Science.gov

Sample records for manipulated peritoneal cell

  1. Does the use of a uterine manipulator with an intrauterine balloon in total laparoscopic hysterectomy facilitate tumor cell spillage into the peritoneal cavity in patients with endometrial cancer?

    PubMed

    Lim, S; Kim, H S; Lee, K B; Yoo, C W; Park, S Y; Seo, S S

    2008-01-01

    The objective of this study was to determine if total laparoscopic hysterectomy using a uterine manipulator with an intrauterine balloon increases the risk of positive peritoneal washings in patients with endometrial cancer. Three sets of peritoneal washings were obtained during surgery from 46 women with endometrial cancer at the Center for Uterine Cancer, National Cancer Center, Korea, between May 2004 and July 2006: the first before the insertion of the uterine manipulator (premanipulator), the second after clipping the fallopian tubes and inserting the uterine manipulator (postmanipulator), and the third after the removal of the uterus through the vagina (posthysterectomy). The cytology samples were examined by the same cytopathologist for the presence of malignant cells. Two of 46 (4.3%) patients were upstaged to IIIA disease due to positive cytology conversion after the insertion of the uterine manipulator, one after the insertion of the uterine manipulator, and the other after the hysterectomy. However, during the follow-up for 3-28 months (median 18), neither of the 2 patients experienced a tumor recurrence. In conclusion, using a uterine manipulator with an intrauterine balloon during the laparoscopic surgery for endometrial cancer might be associated with positive cytologic conversion. Possible explanations are retrograde seeding of tumor cells into the peritoneal cavity, the pressure effect of the inflatable manipulator tip, and spillage of preexited tumor cells between the isthmus and the fimbriae. More effective preventive methods such as distal tubal clipping or coagulation of the fimbriae may be necessary in treating women with endometrial cancer.

  2. Pathophysiological Changes to the Peritoneal Membrane during PD-Related Peritonitis: The Role of Mesothelial Cells

    PubMed Central

    Yung, Susan; Chan, Tak Mao

    2012-01-01

    The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental changes in the peritoneal membrane structure and function correlate with the number and severity of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the structural and functional changes that occur in the peritoneal membrane during peritonitis and how mesothelial cells contribute to these changes and respond to infection. The latter part of the review discusses the potential of mesothelial cell transplantation and genetic manipulation in the preservation of the peritoneal membrane. PMID:22577250

  3. [Ultrastructure of peritoneal mesothelial cells].

    PubMed

    Obradovic, M M; Stojimirovic, B B; Trpinac, D P; Milutinovic, D D; Obradovic, D I; Nesic, V B

    2001-01-01

    The introduction of peritoneal dialysis (PD) as a respectable modality of renal replacement therapy some three decades ago, suddenly drew attention of many authors to peritoneal membrane as insufficiently investigated structure. In order to explain the pathological changes in peritoneum due to renal diseases, it became necessary to explore the normal peritoneal structure. The aim of this study was to examine the morphology of peritoneal lining cells in healthy persons. Biopsies of the peritoneum were performed on 20 volunteer kidney donors. Tissue samples were taken during renal transplantation. Special care was taken in getting appropriate samples without artificial damage because of the extreme fragility of the peritoneal tissue. The preparing procedure was standard for routine HE staining and for plastic embedded semifine and fine sections studies. Semifine sections were made on ultramicrotome, stained with Toluidin blue and studied by light microscope, while fine sections were made by ultramicrotome and studied by transmission electron microscope. One layer of cuboidal or flattened lining cells present over the lamina propria connective tissue presented mesothelium. The cells were overlapped like tiles on the roof. Lateral parts of their interdigitated membranes were interconnected with different types of cell junctions: unpermeable, adhesion and communication junctions; inhibiting intercellular transport. Cell surface was often covered with great number of microvilli and lamellar bodies. A single kinocilia was also often present on apical cell surface. Nuclei were euchromatic with well developed nucleoli. Cytoplasm was filled with a great number of ribosomes, mitochondria, cisterns of rough endoplasmatic reticulum and Golgi apparatus, lamellar bodies and lipid inclusions. Numerous pinocytic vesicles on all parts of the membrane as well as in the cytoplasm indicating active endocytosis, egsocytosis and transcytosys in the process of secretion and reabsorption

  4. Mls presentation by peritoneal cavity B cells.

    PubMed

    Riggs, James E; Howell, Koko F; Taylor, Justin; Mahjied, Tazee; Prokopenko, Nataliya; Alvarez, John; Coleman, Clenton

    2004-01-01

    DBA/2J spleen and peritoneal cells were compared for their ability to present the minor lymphocyte stimulatory superantigen Mls-1a. Although capable of Mls presentation in vivo, peritoneal cells were less effective than spleen cells in vitro. This difference was not due to cell concentration or culture duration. Flow cytometric comparison of spleen and peritoneal B cells revealed no significant differences in cell surface markers needed for cognate interaction with T cells. Resolution of peritoneal B cell subsets by cell sorting revealed that even though B-1 cells were capable of Mls presentation, they were less effective than B-2 cells. Mixing experiments showed that B-1 cells did not inhibit B-2 cell presentation of Mls. In contrast, total peritoneal cells inhibited T cell responses to Mls presented by spleen cells. The peritoneal cavity harbors B cells that can present Mls as well as other cells that can suppress this response.

  5. Microfluidics for manipulating cells.

    PubMed

    Mu, Xuan; Zheng, Wenfu; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2013-01-14

    Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.

  6. Cell manipulation in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-06-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.

  7. Peritonitis

    MedlinePlus

    Acute abdomen; Spontaneous bacterial peritonitis; SBP; Cirrhosis - spontaneous peritonitis ... blood, body fluids, or pus in the belly ( abdomen ). One type is called spontaneous bacterial peritonitis (SPP). ...

  8. Peritonitis

    MedlinePlus

    ... complication of colonoscopy or endoscopy. A ruptured appendix, stomach ulcer or perforated colon. Any of these conditions can ... risk of developing peritonitis: cirrhosis, appendicitis, Crohn's disease, stomach ulcers, diverticulitis and pancreatitis. History of peritonitis. Once you' ...

  9. Peritoneal Cell-free DNA: an innovative method for determining acute cell damage in peritoneal membrane and for monitoring the recovery process after peritonitis.

    PubMed

    Virzì, Grazia Maria; Milan Manani, Sabrina; Brocca, Alessandra; Cantaluppi, Vincenzo; de Cal, Massimo; Pastori, Silvia; Tantillo, Ilaria; Zambon, Roberto; Crepaldi, Carlo; Ronco, Claudio

    2016-02-01

    Cell-free DNA (cfDNA) is present in the peritoneal effluent of stable peritoneal dialysis (PD) patients, but there are no data on cfDNA in PD patients with peritonitis. We investigated the variation of peritoneal cfDNA levels subsequent to peritonitis in PD patients. We enrolled 53 PD patients: 30 without any history of systemic inflammation or peritonitis in the last 3 months (group A) and 23 with acute peritonitis (group B). CfDNA was quantified in the peritoneal effluent. Peritoneal samples on days 1, 3, 10, 30 and until day 120 from the start of peritonitis were collected for white blood cells (WBC) count and cfDNA evaluation in group B. Quantitative analysis of cfDNA showed significantly higher levels in group B on day 1, 3, 10 and 30 compared with group A (p < 0.05). A significant positive correlation was observed between cfDNA concentration and WBC on day 1 (rho = 0.89) and day 3 (rho = 0.5) (both, p < 0.05). However, no significant correlation was observed between cfDNA and WBC on days 10 and 30. In group B, peritoneal cfDNA levels tended to progressively decline during follow-up of peritonitis. From this decreasing curve, we estimated that 49 days are necessary to reach the value of 51 genome equivalents (GE)/ml (75th percentile in controls) and 63 days to reach 31 GE/ml (median). Our results demonstrate that cfDNA increases in peritoneal effluent of PD patients with peritonitis and tends to progressively decline in step with peritonitis resolution and membrane repair process. Peritoneal cfDNA quantification could be an innovative method to determine acute damage and an inverse index of the repair process.

  10. Pannexin-1 influences peritoneal cavity cell population but is not involved in NLRP3 inflammasome activation.

    PubMed

    Wang, Hongbin; Xing, Yue; Mao, Liming; Luo, Yi; Kang, Lishan; Meng, Guangxun

    2013-04-01

    Pannexin-1 (Panx1) forms nonselective large channel in cell plasma membrane and has been shown to be associated with NLRP3 inflammasome activation, ATP release and phagocytes recruitment. In the current study, by manipulation of Panx1 expression in human myeloid cells and application of Panx1 deficient mice, we failed to find a correlation between Panx1 and NLRP3 inflammasome activation, although an interaction between these two proteins was evident. However, in thioglycollate induced peritonitis, Panx1 deficient mice showed much more phagocytes infiltration. Further analyses showed that mice deficient for Panx1 exhibited enlarged F4/80(low)Gr1(-)Ly6C(-)cell population in the peritonea. Our study thus reveals an important role for Panx1 in regulation of peritoneal cell population and peritonitis development.

  11. Nonlymphoid peritoneal cells suppress the T cell response to Mls.

    PubMed

    Rosini, Laura; Matlack, Robin; Taylor, Justin; Howell, Koko F; Yeh, Kenneth; Pennello, Anthony; Riggs, James E

    2004-01-01

    Comparative analyses of the ability of lymphoid tissue to present the minor lymphocyte stimulatory (Mls) superantigen Mls-1a in vitro revealed that all tissues containing mature B cells, except peritoneal cavity (PerC) cells, induced Mls-1a-specific T cell activation. Irradiation and mitomycin C treatment, addition of IL-2 and IL-12, and neutralization of IL-10 and TGF-beta did not restore Mls-1a antigen presentation by PerC cells. Co-culture studies revealed that PerC cells actively suppress the T cell response to Mls-1a. PerC cells from severe-combined immune-defective (SCID) mice also suppressed this response indicating that nonlymphoid cells mediate this effect. These results suggest that in addition to antigen processing and presentation, resident peritoneal cavity cells may temper lymphocyte activation.

  12. Recanalization of Obstructed Tenckhoff Peritoneal Dialysis Catheter: Wire/Stylet Manipulation Combined with Endoluminal Electrocauterization

    SciTech Connect

    Lim, Sang Joon; Shim, Hyung Jin; Kwak, Byung Gook; Kim, Hyeon Joo; Park, Hyo Jin; Sa, Eun Jin; Min, Cheol Hong; Lee, Yong Chul; Kim, Kun Sang

    1998-09-15

    We report the results of fluoroscopically guided wire/stylet manipulation combined with endoluminal electrocauterization in seven patients with obstructed Tenckhoff peritoneal dialysis catheters. In preparation for clinical application, electrocauterization was performed using a stone basket to recanalize surgically removed Tenckhoff catheters obstructed with omental fat ingrowing through the side holes. All ingrowing omental fat was removed easily by electrocauterization with the rotating movement of a stone basket. The technique was then applied in vivo in seven cases with ingrowing omental fat and malpositioned catheter; six (86%) were successfully recanalized. Among those six cases with initial success, four maintained good catheter function with durable patency (mean 261.3 days). No significant complication was noted.

  13. Aquaporin-1 in the peritoneal membrane: implications for peritoneal dialysis and endothelial cell function.

    PubMed

    Devuyst, Olivier; Ni, Jie; Verbavatz, Jean-Marc

    2005-09-01

    PD (peritoneal dialysis) is an established mode of renal replacement therapy, based on the exchange of fluid and solutes between blood in peritoneal capillaries and a dialysate that has been introduced into the peritoneal cavity. The dialysis process involves diffusive and convective transports and osmosis through the PM (peritoneal membrane). Computer simulations predicted that the PM contains ultrasmall pores (radius <3 A, 1 A=10(-10) m), responsible for up to 50% of UF (ultrafiltration), i.e. the osmotically driven water movement during PD. Several lines of evidence suggest that AQP1 (aquaporin-1) is the ultrasmall pore responsible for transcellular water permeability during PD. Treatment with corticosteroids induces the expression of AQP1 in the PM and improves water permeability and UF in rats without affecting the osmotic gradient and permeability for small solutes. Studies in knockout mice provided further evidence that osmotically driven water transport across the PM is mediated by AQP1. AQP1 and eNOS (endothelial nitric oxide synthase) show a distinct regulation within the endothelium lining the peritoneal capillaries. In acute peritonitis, the up-regulation of eNOS and increased release of nitric oxide dissipate the osmotic gradient and prevent UF, whereas AQP1 expression is unchanged. These results illustrate the usefulness of the PM to investigate the role and regulation of AQP1 in the endothelium. The results also emphasize the critical role of AQP1 during PD and suggest that manipulation of AQP1 expression may be used to increase water permeability across the PM.

  14. Sperm cells manipulation employing dielectrophoresis.

    PubMed

    Rosales-Cruzaley, E; Cota-Elizondo, P A; Sánchez, D; Lapizco-Encinas, Blanca H

    2013-10-01

    Infertility studies are an important growing field, where new methods for the manipulation, enrichment and selection of sperm cells are required. Microfluidic techniques offer attractive advantages such as requirement of low sample volume and short processing times in the range of second or minutes. Presented here is the application of insulator-based dielectrophoresis (iDEP) for the enrichment and separation of mature and spermatogenic cells by employing a microchannel with cylindrical insulating structures with DC electric potentials in the range of 200-1500 V. The results demonstrated that iDEP has the potential to concentrate sperm cells and distinguish between mature and spermatogenic cells by exploiting the differences in shape which lead to differences in electric polarization. Viability assessments revealed that a significant percentage of the cells are viable after the dielectrophoretic treatment, opening the possibility for iDEP to be developed as a tool in infertility studies.

  15. Virus manipulation of cell cycle.

    PubMed

    Nascimento, R; Costa, H; Parkhouse, R M E

    2012-07-01

    Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

  16. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  17. Phagocytosis of dying tumor cells by human peritoneal mesothelial cells.

    PubMed

    Wagner, Britta Janina; Lindau, Dennis; Ripper, Dagmar; Stierhof, York-Dieter; Glatzle, Jörg; Witte, Maria; Beck, Henning; Keppeler, Hildegard; Lauber, Kirsten; Rammensee, Hans-Georg; Königsrainer, Alfred

    2011-05-15

    Peritoneal carcinomatosis is an advanced form of metastatic disease characterized by cancer cell dissemination onto the peritoneum. It is commonly observed in ovarian and colorectal cancers and is associated with poor patient survival. Novel therapies consist of cytoreductive surgery in combination with intraperitoneal chemotherapy, aiming at tumor cell death induction. The resulting dying tumor cells are considered to be eliminated by professional as well as semi-professional phagocytes. In the present study, we have identified a hitherto unknown type of 'amateur' phagocyte in this environment: human peritoneal mesothelial cells (HMCs). We demonstrate that HMCs engulf corpses of dying ovarian and colorectal cancer cells, as well as other types of apoptotic cells. Flow cytometric, confocal and electron microscopical analyses revealed that HMCs ingest dying cell fragments in a dose- and time-dependent manner and the internalized material subsequently traffics into late phagolysosomes. Regarding the mechanisms of prey cell recognition, our results show that HMCs engulf apoptotic corpses in a serum-dependent and -independent fashion and quantitative real-time PCR (qRT-PCR) analyses revealed that diverse opsonin receptor systems orchestrating dying cell clearance are expressed in HMCs at high levels. Our data strongly suggest that HMCs contribute to dying cell removal in the peritoneum, and future studies will elucidate in what manner this influences tumor cell dissemination and the antitumor immune response.

  18. Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation.

    PubMed

    Oliveira, Felipe L; Bernardes, Emerson S; Brand, Camila; dos Santos, Sofia N; Cabanel, Mariana P; Arcanjo, Kátia D; Brito, José M; Borojevic, Radovan; Chammas, Roger; El-Cheikh, Márcia C

    2016-02-01

    Galectin-3 is a β-galactoside-binding protein with an inhibitory role in B cell differentiation into plasma cells in distinct lymphoid tissues. We use a model of chronic schistosomiasis, a well-characterized experimental disease hallmarked by polyclonal B cell activation, in order to investigate the role of galectin-3 in controlling IgA production through peritoneal B1 cells. Chronically infected, galectin-3-deficient mice (Lgals3(-/-)) display peritoneal fluid hypercellularity, increased numbers of atypical peritoneal IgM(+)/IgA(+) B1a and B1b lymphocytes and histological disturbances in plasma cell niches when compared with Lgals3(+/+) mice. Similar to our infection model, peritoneal B1 cells from uninfected Lgals3(-/-) mice show enhanced switching to IgA after in vitro treatment with interleukin-5 plus transforming growth factor-β (IL-5 + TGF-β1). A higher number of IgA(+) B1a lymphocytes was found in the peritoneal cavity of Lgals3(-/-)-uninfected mice at 1 week after i.p. injection of IL-5 + TGF-β1; this correlates with the increased levels of secreted IgA detected in the peritoneal fluid of these mice after cytokine treatment. Interestingly, a higher number of degranulated mast cells is present in the peritoneal cavity of uninfected and Schistosoma mansoni-infected Lgals3(-/-) mice, indicating that, at least in part, mast cells account for the enhanced differentiation of B1 into IgA-producing B cells found in the absence of galectin-3. Thus, a novel role is revealed for galectin-3 in controlling the expression of surface IgA by peritoneal B1 lymphocytes; this might have important implications for manipulating the mucosal immune response.

  19. Small-cell carcinoma of the ovary in peritoneal fluid.

    PubMed

    Selvaggi, S M

    1994-01-01

    Two cases of small-cell carcinoma of the ovary in the ascitic fluid and peritoneal/pelvic washings of a 30- and 28-yr-old woman, respectively, are presented and discussed. Smear preparations from the ascitic fluid showed loose clusters and single malignant cells with scant cytoplasm and nuclei with smooth to irregular nuclear membranes, granular chromatin, and small nucleoli. In the second case peritoneal/pelvic washing specimens contained clusters and single malignant cells with a moderate amount of cytoplasm and nuclei with smooth nuclear membranes, granular, clumped chromatin, and prominent nucleoli. Hisology confirmed the diagnosis of small-cell carcinoma of the ovary. These are the first reported cases of this rare ovarian neoplasm present on fluid cytology. Its differentiation from other small-cell neoplasms on peritoneal fluid cytology from young women is discussed.

  20. Rapid white blood cell detection for peritonitis diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  1. Hepatocyte Growth Factor/Scatter Factor Released during Peritonitis Is Active on Mesothelial Cells

    PubMed Central

    Rampino, Teresa; Cancarini, Giovanni; Gregorini, Marilena; Guallini, Paola; Maggio, Milena; Ranghino, Andrea; Soccio, Grazia; Dal Canton, Antonio

    2001-01-01

    Peritonitis causes mesothelial detachment that may result in persistent peritoneal denudation and fibrosis. We investigated whether hepatocyte growth factor (HGF), a scatter factor that induces detachment from substrate and fibroblastic transformation of several cell types, is produced during peritonitis and is active on mesothelial cells. We studied 18 patients on peritoneal dialysis, 9 uncomplicated, 9 with peritonitis. HGF was measured in serum, peritoneal fluid, and supernatant of peripheral blood mononuclear cells and peritoneal mononuclear cells. Primary culture of human peritoneal mesothelial cells and the human mesothelial cell line MeT-5A were conditioned with recombinant HGF, serum, and peritoneal fluid. HGF levels were significantly higher in serum and peritoneal fluid of peritonitic than uncomplicated patients. Mononuclear cells of peritonitic patients produced more HGF than cells of uncomplicated patients. Recombinant HGF, serum, and peritoneal fluid of peritonitic patients caused mesothelial cell growth, detachment, transformation from epithelial to fibroblast-like shape, overexpression of vimentin, and synthesis of type I and III collagen. In conclusion, HGF released during peritonitis causes a change in mesothelial cell phenotype and function. HGF may affect the healing process facilitating repair through mesothelial cell growth, but may contribute to peritoneal fibrosis inducing cell detachment with mesothelial denudation and collagen synthesis. PMID:11583955

  2. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans.

    PubMed Central

    Yung, S.; Thomas, G. J.; Stylianou, E.; Williams, J. D.; Coles, G. A.; Davies, M.

    1995-01-01

    This study describes experiments that compare the proteoglycans (PGs) extracted from the dialysate from patients receiving continuous peritoneal ambulatory dialysis (CAPD) with those secreted by metabolically labeled human peritoneal mesothelial cells in vitro. The PGs isolated from both sources were predominantly small chondroitin sulfate/dermatan sulfate PGs. Western blot of the core proteins obtained after chondroitin ABC lyase treatment with specific antibodies identified decorin and biglycan. With [35S]sulfate and [35S]methionine as labeling precursors it was shown that dermatan sulfate rather than chondroitin sulfate were the major glycosaminoglycan chains and that decorin was the predominant species. These data provide the first evidence that human peritoneal mesothelial cells may be the principal source of PGs in the peritoneum. Given the proposed functions of decorin and biglycan, the results suggest that these PGs may be involved in the control of transforming growth factor-beta activity and collagen fibril formation in the peritoneum. Images Figure 2 Figure 7 Figure 8 PMID:7856761

  3. Exfoliated mesothelial cell and CA-125 in automated peritoneal dialysis (APD) and continuous ambulatory peritoneal dialysis (CAPD) patients.

    PubMed

    Kanjanabuch, Talerngsak; Puttipittayathorn, Nopadol; Leelahavanichkul, Asada; Lieusuwan, Songkiat; Katavetin, Pisut; Mahatanan, Nanta; Sriudom, Kanda; Chirananthavat, Thanit; Thongbor, Nisa; Eiam-Ong, Somchai

    2011-09-01

    Automated peritoneal dialysis (APD) becomes the first option for peritoneal dialysis, nowadays overtaking continuous ambulatory peritoneal dialysis (CAPD) in many countries. The comparison of peritoneal membrane alteration in CAPD and APD is inconclusive. The authors therefore compared the peritoneal membrane changes in patients undergoing CAPD and APD. In naive end stage renal disease patients, the choice of PD modes (CAPD or APD) was dependent on the patient's decision. Thirty-six CAPD and 25APD patients with a total of 287 patient-months were compared. The peritoneal mass parameter, exfoliated mesothelial cell (MTC) and dialysate CA-125, as well as modified peritoneal equilibrium test (mPET) with 4.25% dextrose solution was simultaneously evaluated at 1 and 6 month follow-up. Although the peritoneal function (as measured by D/P creatinine, D/D0 glucose, sodium dipping, and dialysate protein loss), adequacy, serum albumin, nutritional status, and residual renal function showed no significant differences between groups at 1 and 6 months, CA-125 but not MTC was higher in APD compared with CAPD at the first month of PD beginning. Due to the single time-point measurement limitation, the authors compared the peritoneal mass parameter differences between 1 and 6 month. During 6-month follow-up, CA-125 decreased 30 +/- 5% vs. 7 +/- 5% and MTC decreased 5 +/- 12% vs. 40 +/- 11% in APD and CAPD, respectively. The higher CA-125 reduction in APD and greater changes of MTC in CAPD suggested that there was less viable mesothelial cell in APD compared with CAPD. The authors observed that both APD and CAPD damaged peritoneum. However, there might be higher peritoneal injury in APD patients. The proper randomization study in longer follow-up period is mandatory to confirm this observation.

  4. Ultrastructural Changes in Murine Peritoneal Cells Following Cyclophosphamide Administration

    PubMed Central

    Chin, K. N.; Hudson, G.

    1974-01-01

    Peritoneal cells were studied at intervals of between 6 h and 30 days following a single intravenous injection of a sublethal dose of cyclophosphamide. With the electron microscope, evidence of cell damage and death could be seen at 6 h, and by 12 h large numbers of dead cells were noted, either lying free or within the cytoplasm of macrophages. Most of the damaged cells were lymphocytes but degenerating blast cells, eosinophils, neutrophils and mast cells were also identified. Nuclei were seen in which margination of chromatin had occurred but nuclei of uniform density were also prominent and showed irregular shape and lobulation. Macrophages exhibited all stages of phagocytosis and digestion and a few phagocytes of atypical appearance were noted. By 24 h most of the dead cells lay within the cytoplasm of macrophages which showed many phagocytic inclusions as well as lipid droplets. By 6 days, the peritoneal cells had regained normal appearances although the proportion of lymphoid cells was still reduced. By the 18th day, all features were indistinguishable from normal. The changes observed showed a general similarity to those noted previously in the lymphoreticular cells of the Peyer's patch; they provide no evidence that the environment of the peritoneal cavity protects cells against the action of cyclophosphamide. ImagesFigs. 4-6Figs. 7-9Figs. 10-12Figs. 1-3 PMID:4447790

  5. Optoelectronic tweezers for microparticle and cell manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei Yu (Inventor); Ohta, Aaron T. (Inventor)

    2009-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 .mu.m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  6. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  7. Interference of peritoneal dialysis fluids with cell cycle mechanisms.

    PubMed

    Büchel, Janine; Bartosova, Maria; Eich, Gwendolyn; Wittenberger, Timo; Klein-Hitpass, Ludger; Steppan, Sonja; Hackert, Thilo; Schaefer, Franz; Passlick-Deetjen, Jutta; Schmitt, Claus P

    2015-01-01

    Peritoneal dialysis fluids (PDF) differ with respect to osmotic and buffer compound, and pH and glucose degradation products (GDP) content. The impact on peritoneal membrane integrity is still insufficiently described. We assessed global genomic effects of PDF in primary human peritoneal mesothelial cells (PMC) by whole genome analyses, quantitative real-time polymerase chain reaction (RT-PCR) and functional measurements. PMC isolated from omentum of non-uremic patients were incubated with conventional single chamber PDF (CPDF), lactate- (LPDF), bicarbonate- (BPDF) and bicarbonate/lactate-buffered double-chamber PDF (BLPDF), icodextrin (IPDF) and amino acid PDF (APDF), diluted 1:1 with medium. Affymetrix GeneChip U133Plus2.0 (Affymetrix, CA, USA) and quantitative RT-PCR were applied; cell viability was assessed by proliferation assays. The number of differentially expressed genes compared to medium was 464 with APDF, 208 with CPDF, 169 with IPDF, 71 with LPDF, 45 with BPDF and 42 with BLPDF. Out of these genes 74%, 73%, 79%, 72%, 47% and 57% were downregulated. Gene Ontology (GO) term annotations mainly revealed associations with cell cycle (p = 10(-35)), cell division, mitosis, and DNA replication. One hundred and eighteen out of 249 probe sets detecting genes involved in cell cycle/division were suppressed, with APDF-treated PMC being affected the most regarding absolute number and degree, followed by CPDF and IPDF. Bicarbonate-containing PDF and BLPDF-treated PMC were affected the least. Quantitative RT-PCR measurements confirmed microarray findings for key cell cycle genes (CDK1/CCNB1/CCNE2/AURKA/KIF11/KIF14). Suppression was lowest for BPDF and BLPDF, they upregulated CCNE2 and SMC4. All PDF upregulated 3 out of 4 assessed cell cycle repressors (p53/BAX/p21). Cell viability scores confirmed gene expression results, being 79% of medium for LPDF, 101% for BLPDF, 51% for CPDF and 23% for IPDF. Amino acid-containing PDF (84%) incubated cells were as viable as BPDF

  8. Stimulation of peritoneal cell arginase by bacterial lipopolysaccharides.

    PubMed

    Ryan, J L; Yohe, W B; Morrison, D C

    1980-05-01

    The conditions under which bacterial endotoxins stimulate arginase production in mouse peritoneal macrophages have been defined. Both lipid-A and lipid-A-associated protein are potent activators. Fetal calf serum and normal mouse serum enhance macrophage arginase levels in the presence and absence of lipopolysaccharide (LPS). LPS in the amount of 10(-1) microgram/ml represents a maximal stimulus for macrophage arginase production and release. Thioglycollate-elicited peritoneal cells have increased arginase activity, compared with resident cells. This activity can be stimulated further by the addition of LPS. Arginase levels may alter the outcome of in vitro immunologic processes by depleting arginine and may also serve as a useful indicator of the state of activation of macrophages.

  9. Optical trapping, cell manipulation and robotics

    SciTech Connect

    Buican, T.N.; Neagley, D.L.; Morrison, W.C.; Upham, B.D.

    1989-01-01

    A new type of analytical and preparative cytometric instrument was developed. The instrument combines image analysis and machine vision with single cell and chromosome manipulation by means of optical trapping. A proof-of-principle instrument, OCAM, has the ability to locate and analyze biological particles inside an enclosed manipulation chamber, as well as the ability to move and position particles according to preprogrammed protocols. Preliminary results and potential biological applications of such a microrobot are discussed. 12 refs., 8 figs.

  10. Interference of Peritoneal Dialysis Fluids with Cell Cycle Mechanisms

    PubMed Central

    Büchel, Janine; Bartosova, Maria; Eich, Gwendolyn; Wittenberger, Timo; Klein-Hitpass, Ludger; Steppan, Sonja; Hackert, Thilo; Schaefer, Franz; Passlick-Deetjen, Jutta; Schmitt, Claus P.

    2015-01-01

    ♦ Introduction: Peritoneal dialysis fluids (PDF) differ with respect to osmotic and buffer compound, and pH and glucose degradation products (GDP) content. The impact on peritoneal membrane integrity is still insufficiently described. We assessed global genomic effects of PDF in primary human peritoneal mesothelial cells (PMC) by whole genome analyses, quantitative real-time polymerase chain reaction (RT-PCR) and functional measurements. ♦ Methods: PMC isolated from omentum of non-uremic patients were incubated with conventional single chamber PDF (CPDF), lactate- (LPDF), bicarbonate- (BPDF) and bicarbonate/lactate-buffered double-chamber PDF (BLPDF), icodextrin (IPDF) and amino acid PDF (APDF), diluted 1:1 with medium. Affymetrix GeneChip U133Plus2.0 (Affymetrix, CA, USA) and quantitative RT-PCR were applied; cell viability was assessed by proliferation assays. ♦ Results: The number of differentially expressed genes compared to medium was 464 with APDF, 208 with CPDF, 169 with IPDF, 71 with LPDF, 45 with BPDF and 42 with BLPDF. Out of these genes 74%, 73%, 79%, 72%, 47% and 57% were downregulated. Gene Ontology (GO) term annotations mainly revealed associations with cell cycle (p = 10-35), cell division, mitosis, and DNA replication. One hundred and eighteen out of 249 probe sets detecting genes involved in cell cycle/division were suppressed, with APDF-treated PMC being affected the most regarding absolute number and degree, followed by CPDF and IPDF. Bicarbonate-containing PDF and BLPDF-treated PMC were affected the least. Quantitative RT-PCR measurements confirmed microarray findings for key cell cycle genes (CDK1/CCNB1/CCNE2/AURKA/KIF11/KIF14). Suppression was lowest for BPDF and BLPDF, they upregulated CCNE2 and SMC4. All PDF upregulated 3 out of 4 assessed cell cycle repressors (p53/BAX/p21). Cell viability scores confirmed gene expression results, being 79% of medium for LPDF, 101% for BLPDF, 51% for CPDF and 23% for IPDF. Amino acid-containing PDF

  11. Transition of Mesothelial Cell to Fibroblast in Peritoneal Dialysis: EMT, Stem Cell or Bystander?

    PubMed Central

    Liu, Yu; Dong, Zheng; Liu, Hong; Zhu, Jiefu; Liu, Fuyou; Chen, Guochun

    2015-01-01

    Long-term peritoneal dialysis (PD) can lead to fibrotic changes in the peritoneum, characterized by loss of mesothelial cells (MCs) and thickening of the submesothelial area with an accumulation of collagen and myofibroblasts. The origin of myofibroblasts is a central question in peritoneal fibrosis that remains unanswered at present. Numerous clinical and experimental studies have suggested that MCs, through epithelial-mesenchymal transition (EMT), contribute to the pool of peritoneal myofibroblasts. However, recent work has placed significant doubts on the paradigm of EMT in organ fibrogenesis (in the kidney particularly), highlighting the need to reconsider the role of EMT in the generation of myofibroblasts in peritoneal fibrosis. In particular, selective cell isolation and lineage-tracing experiments have suggested the existence of progenitor cells in the peritoneum, which are able to switch to fibroblast-like cells when stimulated by the local environment. These findings highlight the plastic nature of MCs and its contribution to peritoneal fibrogenesis. In this review, we summarize the key findings and caveats of EMT in organ fibrogenesis, with a focus on PD-related peritoneal fibrosis, and discuss the potential of peritoneal MCs as a source of myofibroblasts. PMID:25700459

  12. Cell Signaling Experiments Driven by Optical Manipulation

    PubMed Central

    Difato, Francesco; Pinato, Giulietta; Cojoc, Dan

    2013-01-01

    Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection. PMID:23698758

  13. Nanopipette Apparatus for Manipulating Cells

    NASA Technical Reports Server (NTRS)

    Seger, R. Adam (Inventor); Actis, Paolo (Inventor); Vilozny, Boaz (Inventor); Pourmand, Nader (Inventor)

    2017-01-01

    Disclosed herein are methods and systems for controlled ejection of desired material onto surfaces including in single cells using nanopipettes, as well as ejection onto and into cells. Some embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller for depositing a user defined pattern on an arbitrary substrate for the purpose of controlled cell adhesion and growth. Alternate embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller and electronic control of a voltage differential in a bore of the nanopipette electroosmotically injecting material into a cell in a high-throughput manner and with minimal damage to the cell. Yet other embodiments are directed to method and system comprising functionalized nanopipettes combined with scanning ion conductance microscopy for studying molecular interactions and detection of biomolecules inside a single living cell.

  14. Peritoneal mast cell stabilization potential of Pothos scandens L

    PubMed Central

    Gupta, Saurabh; Duraiswamy, B.; Satishkumar, M. N.

    2013-01-01

    Objective: To investigate the peritoneal mast cell stabilization activity of Pothos scandens extracts Materials and Methods: Pothos scandens L. (family- Araceae) aerial part was successively extracted with ethanol and aqueous to prepare extract of the plant. The extracts of P. scandens were evaluated for stabilization of mast cell in rat allergic models. The extract of P. scandens ethanolic, 50% aqueous ethanolic and aqueous (1, 10 and 100 μg/ml) was studied for peritoneal mast cell stabilization activity in rat mesenteric preparation induced by C 48/80. Result: Preliminary phytochemical analysis revealed the presence of carbohydrates, fixed oil, proteins, alkaloids, glycosides, flavonoids and phenolic compounds. The ethanolic, 50% aqueous ethanolic and aqueous extracts of P. scandens L. showed dose dependent increase in the number of intact cells when compare with C48/80 at the concentration of 10 and 100 μg/ml. It virtues further work towards the isolation of phytoconstituents from this plant. Conclusion: This finding provides evidence that the P. scandens L. inhibits mast cell-derived immediate-type allergic reactions and mast cell degranulation. P. scandens has a potential as allergic anti- asthmatic agent. PMID:23542883

  15. Comparative studies of endotoxin uptake by isolated rat Kupffer and peritoneal cells.

    PubMed

    Fox, E S; Thomas, P; Broitman, S A

    1987-12-01

    The process of uptake of endotoxin by cells of the reticuloendothelial system is of current interest. Rabbit peritoneal macrophages have been used to study macrophage-endotoxin interactions and have suggested a receptor-mediated process. It is generally believed that the site of in vivo endotoxin clearance is the liver and that this clearance involves the Kupffer cell population. In the current report, the uptake characteristics of iodine-125-labeled Salmonella minnesota lipopolysaccharide (LPS) were compared in both isolated rat Kupffer cells and elicited rat peritoneal cells. Both types of cells were isolated from male Sprague-Dawley rats fed a semisynthetic AIN-76 5% saturated-fat diet either by peritoneal lavage for peritoneal cells or by collagenase perfusion followed by purification on a 17.5% metrizamide gradient for Kupffer cells. Hot phenol water-extracted S. minnesota LPS was labeled with iodine by the chloramine-T method following a reaction with methyl-p-hydroxybenzimidate. The in vitro uptake of [125I]LPS by Kupffer cells was unsaturable up to concentrations of 33.33 micrograms/ml, while peritoneal cells became saturated at between 16.67 and 25 micrograms of LPS per ml. Uptake by both types of cells could be inhibited by a 10-fold excess of unlabeled LPS. Kinetic experiments demonstrated that Kupffer cells were unsaturable after 60 min of incubation, while peritoneal cells were saturable after 40 min of incubation. Pretreatment with 75 mM colchicine inhibited uptake by peritoneal cells but not Kupffer cells, while pretreatment with 12 mM 2-deoxyglucose inhibited uptake by Kupffer cells but not peritoneal cells. These results are consistent with a process of receptor-mediated endocytosis for peritoneal cells, while Kupffer cells may internalize endotoxins by absorptive pinocytosis. These results suggest that studies of peritoneal cell-endotoxin interactions do not accurately describe the physiologic process within the liver, the major site for the

  16. Comparative studies of endotoxin uptake by isolated rat Kupffer and peritoneal cells.

    PubMed Central

    Fox, E S; Thomas, P; Broitman, S A

    1987-01-01

    The process of uptake of endotoxin by cells of the reticuloendothelial system is of current interest. Rabbit peritoneal macrophages have been used to study macrophage-endotoxin interactions and have suggested a receptor-mediated process. It is generally believed that the site of in vivo endotoxin clearance is the liver and that this clearance involves the Kupffer cell population. In the current report, the uptake characteristics of iodine-125-labeled Salmonella minnesota lipopolysaccharide (LPS) were compared in both isolated rat Kupffer cells and elicited rat peritoneal cells. Both types of cells were isolated from male Sprague-Dawley rats fed a semisynthetic AIN-76 5% saturated-fat diet either by peritoneal lavage for peritoneal cells or by collagenase perfusion followed by purification on a 17.5% metrizamide gradient for Kupffer cells. Hot phenol water-extracted S. minnesota LPS was labeled with iodine by the chloramine-T method following a reaction with methyl-p-hydroxybenzimidate. The in vitro uptake of [125I]LPS by Kupffer cells was unsaturable up to concentrations of 33.33 micrograms/ml, while peritoneal cells became saturated at between 16.67 and 25 micrograms of LPS per ml. Uptake by both types of cells could be inhibited by a 10-fold excess of unlabeled LPS. Kinetic experiments demonstrated that Kupffer cells were unsaturable after 60 min of incubation, while peritoneal cells were saturable after 40 min of incubation. Pretreatment with 75 mM colchicine inhibited uptake by peritoneal cells but not Kupffer cells, while pretreatment with 12 mM 2-deoxyglucose inhibited uptake by Kupffer cells but not peritoneal cells. These results are consistent with a process of receptor-mediated endocytosis for peritoneal cells, while Kupffer cells may internalize endotoxins by absorptive pinocytosis. These results suggest that studies of peritoneal cell-endotoxin interactions do not accurately describe the physiologic process within the liver, the major site for the

  17. Pericardial, pleural and peritoneal involvement in a patient with primary gastric mantle cell lymphoma.

    PubMed

    Keklik, Muzaffer; Yildirim, Afra; Keklik, Ertugrul; Ertan, Sirac; Deniz, Kemal; Ozturk, Fahir; Ileri, Ibrahim; Cerci, Ilkcan; Camlica, Demet; Cetin, Mustafa; Eser, Bulent

    2015-05-01

    Primary gastric mantle cell lymphoma is a rare form of gastointestinal tumour. Although peritoneal carcinomatosis accompanied by malignant ascites is relatively common, mantle cell lymphoma presenting with ascites is rare. Also, effusions involving pericardial and pleural cavities are uncommon during the course of lymphomas. We report the first case in which pericardial, pleural and peritoneal effusion of a primary gastric mantle cell lymphoma.

  18. Diabetes and exposure to peritoneal dialysis solutions alter tight junction proteins and glucose transporters of rat peritoneal mesothelial cells.

    PubMed

    Debray-García, Yazmin; Sánchez, Elsa I; Rodríguez-Muñoz, Rafael; Venegas, Miguel A; Velazquez, Josue; Reyes, José L

    2016-09-15

    To evaluate alterations in tight junction (TJ) proteins and glucose transporters in rat peritoneal mesothelial cells (RPMC) from diabetic rats and after treatment with peritoneal dialysis solutions (PDS) in vitro. Diabetes was induced in female Wistar rats by streptozotocin (STZ)-injection. Twenty-one days after STZ-injection, peritoneal thickness and mesothelial cell morphology were studied by light microscopy and microvilli length and density by atomic force microscopy. RPMC were obtained from healthy and diabetic rats. Mesothelial phenotype, evaluated by cytokeratin and pan-cadherin, epithelial to mesenchymal transition (EMT), evaluated by alpha-smooth muscle action (α-SMA) and vimentin, TJ proteins, claudins-1 and -2, and occludin, and glucose transporters, sodium and glucose co-transporters (SGLT) -1 and -2 and facilitative glucose transporters (GLUT) -1 and -2 were analyzed. Also, transepithelial electrical resistance (TER) was measured. Oxidative stress was estimated by measuring reactive oxygen species production, and protein carbonylation, receptor for advanced glycation end products (RAGE), nuclear factor erythroid related factor-2 (Nrf-2), and expression of antioxidant enzymes. Peritoneal damage was present 21days after STZ-injection. Diabetes induced changes in TJ and glucose transporters in RPMC together with decreased TER. RPMC from diabetic rats showed oxidative stress, which was enhanced by exposure to PDS. In addition, RPMC from diabetic rats showed early EMT. To our knowledge, this is the first study that shows changes in TJ proteins and glucose transporters of RPMC from diabetic rats. All these alterations might explain the increased peritoneal permeability observed in diabetic patients undergoing peritoneal dialysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mast cell mediators and peritoneal adhesion formation in the rat.

    PubMed

    Langer, J C; Liebman, S M; Monk, P K; Pelletier, G J

    1995-09-01

    We have previously shown that mast cell stabilization attenuates peritoneal adhesion formation in the rat. The present study investigated the mechanism of this protection. Adhesions were created in weanling rats using cecal scraping and application of 95% ethanol. Rats received specific blockers for the mast cell products histamine, serotonin (5HT), leukotriene D4, and platelet activating factor intraperitoneally 30 min before laparotomy and at the time of abdominal closure. Control animals received saline. Adhesions were assessed blindly 1 week later using a standardized scale. Adhesion formation was not affected by histamine blockade using combined mepyramine and ranitidine, 5-HT1 blockade using methysergide, 5-HT3 blockade using ondansetron, leukotriene D4 blockade using MK-571, or platelet activating factor blockade using WEB-2086. However, blockade of the 5-HT2 receptor using ketanserin resulted in significant dose-dependent attenuation of adhesions compared to saline. These data suggest that mast cells mediate peritoneal adhesion formation in the rat through release of serotonin acting on 5HT2 receptors. Further understanding of this process may lead to new strategies for the prevention of postoperative adhesions.

  20. Laser nanosurgery and manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Sacconi, Leonardo; Tolic-Norrelykke, Iva M.; Antolini, Renzo; Pavone, Francesco S.

    2005-03-01

    We present a combination of nonlinear microscopy, laser nanosurgery and optical trapping applied to the 3D imaging and manipulation of intracellular structures in live cells. We use Titanium-sapphire laser pulses for a combined nonlinear microscopy and nanosurgery on microtubules tagged with green fluorescent protein (GFP) in fission yeast. The same laser source is also used to trap small round lipid droplets naturally present in the cell. The trapped droplets are used as handles to exert a pushing force on the nucleus, allowing for a displacement of the nucleus away from its normal position in the center of the cell. We show that nonlinear nanosurgery and optical manipulation can be performed with sub-micrometer precision and without visible collateral damage to the cell. We present this combination as an important tool in cell biology for the manipulation of specific structures in alternative to genetic methods or chemical agents. This technique can be applied to several fundamental problems in cell biology, including the study of dynamics processes in cell division.

  1. Single-cell analysis reveals new subset markers of murine peritoneal macrophages and highlights macrophage dynamics upon Staphylococcus aureus peritonitis.

    PubMed

    Accarias, Solène; Genthon, Clémence; Rengel, David; Boullier, Séverine; Foucras, Gilles; Tabouret, Guillaume

    2016-07-01

    Resident macrophages play a central role in maintaining tissue homeostasis and immune surveillance. Here, we used single cell-based qPCR coupled with flow cytometry analysis to further define the phenotypes of large and small resident peritoneal macrophages (LPMs and SPMs, respectively) in mice. We demonstrated that the expression of Cxcl13, IfngR1, Fizz-1 and Mrc-1 clearly distinguished between LPMs and SPMs subsets. Using these markers, the dynamics of peritoneal macrophages in a Staphylococcus aureus-induced peritonitis model were analyzed. We found that S. aureus infection triggers a massive macrophage disappearance reaction in both subsets. Thereafter, inflammatory monocytes rapidly infiltrated the cavity and differentiated to replenish the SPMs. Although phenotypically indistinguishable from resident SPMs by flow cytometry, newly recruited SPMs had a different pattern of gene expression dominated by M2 markers combined with M1 associated features (inos expression). Interestingly, S. aureus elicited SPMs showed a robust expression of Cxcl13, suggesting that these cells may endorse the role of depleted LPMs and contribute to restoring peritoneal homeostasis. These data provide information on both resident and recruited macrophages dynamics upon S. aureus infection and demonstrate that single-cell phenotyping is a promising and highly valuable approach to unraveling macrophage diversity and plasticity.

  2. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  3. Optofluidic cell manipulation for a biological microbeam

    PubMed Central

    Grad, Michael; Bigelow, Alan W.; Garty, Guy; Attinger, Daniel; Brenner, David J.

    2013-01-01

    This paper describes the fabrication and integration of light-induced dielectrophoresis for cellular manipulation in biological microbeams. An optoelectronic tweezers (OET) cellular manipulation platform was designed, fabricated, and tested at Columbia University's Radiological Research Accelerator Facility (RARAF). The platform involves a light induced dielectrophoretic surface and a microfluidic chamber with channels for easy input and output of cells. The electrical conductivity of the particle-laden medium was optimized to maximize the dielectrophoretic force. To experimentally validate the operation of the OET device, we demonstrate UV-microspot irradiation of cells containing green fluorescent protein (GFP) tagged DNA single-strand break repair protein, targeted in suspension. We demonstrate the optofluidic control of single cells and groups of cells before, during, and after irradiation. The integration of optofluidic cellular manipulation into a biological microbeam enhances the facility's ability to handle non-adherent cells such as lymphocytes. To the best of our knowledge, this is the first time that OET cell handling is successfully implemented in a biological microbeam. PMID:23387672

  4. Optofluidic cell manipulation for a biological microbeam

    NASA Astrophysics Data System (ADS)

    Grad, Michael; Bigelow, Alan W.; Garty, Guy; Attinger, Daniel; Brenner, David J.

    2013-01-01

    This paper describes the fabrication and integration of light-induced dielectrophoresis for cellular manipulation in biological microbeams. An optoelectronic tweezers (OET) cellular manipulation platform was designed, fabricated, and tested at Columbia University's Radiological Research Accelerator Facility (RARAF). The platform involves a light induced dielectrophoretic surface and a microfluidic chamber with channels for easy input and output of cells. The electrical conductivity of the particle-laden medium was optimized to maximize the dielectrophoretic force. To experimentally validate the operation of the OET device, we demonstrate UV-microspot irradiation of cells containing green fluorescent protein (GFP) tagged DNA single-strand break repair protein, targeted in suspension. We demonstrate the optofluidic control of single cells and groups of cells before, during, and after irradiation. The integration of optofluidic cellular manipulation into a biological microbeam enhances the facility's ability to handle non-adherent cells such as lymphocytes. To the best of our knowledge, this is the first time that OET cell handling is successfully implemented in a biological microbeam.

  5. Blockade of Indoleamine 2,3-Dioxygenase Reduces Mortality from Peritonitis and Sepsis in Mice by Regulating Functions of CD11b+ Peritoneal Cells

    PubMed Central

    Osawa, Yosuke; Ito, Hiroyasu; Ohtaki, Hirofumi; Ando, Tatsuya; Takamatsu, Manabu; Hara, Akira; Saito, Kuniaki; Seishima, Mitsuru

    2014-01-01

    Indoleamine 2,3-dioxygenase-1 (Ido), which catalyzes the first and limiting step of tryptophan catabolism, has been implicated in immune tolerance. However, the roles of Ido in systemic bacterial infection are complicated and remain controversial. To explore this issue, we examined the roles of Ido in bacterial peritonitis and sepsis after cecal ligation and puncture (CLP) in mice by using the Ido inhibitor 1-methyl-d,l-tryptophan (1-MT), by comparing Ido+/+ and Ido−/− mice, or by using chimeric mice in which Ido in the bone marrow-derived cells was deficient. Ido expression in the peritoneal CD11b+ cells and its metabolite l-kynurenine in the serum were increased after CLP. 1-MT treatment or Ido deficiency, especially in bone marrow-derived cells, reduced mortality after CLP. Compared to Ido+/+ mice, Ido−/− mice showed increased recruitment of neutrophils and mononuclear cells into the peritoneal cavity and a decreased bacterial count in the blood accompanied by increased CXCL-2 and CXCL-1 mRNA in the peritoneal cells. Ido has an inhibitory effect on LPS-induced CXCL-2 and CXCL-1 production in cultured peritoneal cells. These findings indicate that inhibition of Ido reduces mortality from peritonitis and sepsis after CLP via recruitment of neutrophils and mononuclear cells by chemokine production in peritoneal CD11b+ cells. Thus, blockade of Ido plays a beneficial role in host protection during bacterial peritonitis and sepsis. PMID:25114116

  6. Cell stimulation with optically manipulated microsources

    PubMed Central

    Kress, Holger; Park, Jin-Gyu; Mejean, Cecile O; Forster, Jason D; Park, Jason; Walse, Spencer S; Zhang, Yong; Wu, Dianqing; Weiner, Orion D; Fahmy, Tarek M; Dufresne, Eric R

    2010-01-01

    Molecular gradients are important for various biological processes including the polarization of tissues and cells during embryogenesis and chemotaxis. Investigations of these phenomena require control over the chemical microenvironment of cells. We present a technique to set up molecular concentration patterns that are chemically, spatially and temporally flexible. Our strategy uses optically manipulated microsources, which steadily release molecules. Our technique enables the control of molecular concentrations over length scales down to about 1 µm and timescales from fractions of a second to an hour. We demonstrate this technique by manipulating the motility of single human neutrophils. We induced directed cell polarization and migration with microsources loaded with the chemoattractant formyl-methionine-leucine-phenylalanine. Furthermore, we triggered highly localized retraction of lamellipodia and redirection of polarization and migration with microsources releasing cytochalasin D, an inhibitor of actin polymerization. PMID:19915561

  7. Adapted Biotroph Manipulation of Plant Cell Ploidy.

    PubMed

    Wildermuth, Mary C; Steinwand, Michael A; McRae, Amanda G; Jaenisch, Johan; Chandran, Divya

    2017-08-04

    Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify (a) common host components manipulated to promote induced host endoreduplication and (b) biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.

  8. Biological cell manipulation by magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gertz, Frederick; Khitun, Alexander

    2016-02-01

    We report a manipulation of biological cells (erythrocytes) by magnetite (Fe3O4) nanoparticles in the presence of a magnetic field. The experiment was accomplished on the top of a micro-electromagnet consisting of two magnetic field generating contours. An electric current flowing through the contour(s) produces a non-uniform magnetic field, which is about 1.4 mT/μm in strength at 100 mA current in the vicinity of the current-carrying wire. In responses to the magnetic field, magnetic nanoparticles move towards the systems energy minima. In turn, magnetic nanoparticles drag biological cells in the same direction. We present experimental data showing cell manipulation through the control of electric current. This technique allows us to capture and move cells located in the vicinity (10-20 microns) of the current-carrying wires. One of the most interesting results shows a periodic motion of erythrocytes between the two conducting contours, whose frequency is controlled by an electric circuit. The obtained results demonstrate the feasibility of non-destructive cell manipulation by magnetic nanoparticles with micrometer-scale precision.

  9. Resident peritoneal leukocytes are important sources of MMP-9 during zymosan peritonitis: superior contribution of macrophages over mast cells.

    PubMed

    Kolaczkowska, Elzbieta; Lelito, Monika; Kozakiewicz, Elzbieta; van Rooijen, Nico; Plytycz, Barbara; Arnold, Bernd

    2007-11-15

    Metalloproteinase 9 (MMP-9) is crucial for normal neutrophil infiltration into zymosan-inflamed peritoneum. During the course of zymosan peritonitis MMP-9 is produced in a biphasic-manner as its presence is detectable as early as 30 min post zymosan and then between 2 and 8 h of inflammation. As inflammatory leukocytes were shown to produce MMP-9 we asked if also resident leukocytes, mast cells and macrophages, contribute to its production. And furthermore, if their contribution is limited only to the early phase of inflammation or extends to the later stages. For this purpose some mice were depleted of either resident macrophages or functional mast cells and expression of MMP-9 in peritoneal leukocytes and its release to the exudate were monitored. It turned out that depletion of peritoneal macrophages decreased both MMP-9 content in the leukocytes and its release to the inflammatory exudate at 30 min and 6h of peritonitis. The functional depletion of mast cells also caused a significant decrease in the production/release of MMP-9 that was especially apparent at the early time point (30 min). Moreover, the study shows concomitant kinetics of MMP-9 expression in leukocytes and its release to the exudatory fluid. The findings indicate that resident tissue leukocytes, and among them especially macrophages, constitute an important source of MMP-9 during acute peritoneal inflammation. Overall, the study shows that resident tissue leukocytes, mostly macrophages, constitute an important cellular source(s) of inflammation-related factors and should be regarded as possible targets of anti-inflammatory treatment.

  10. CD4-Positive T Cells and M2 Macrophages Dominate the Peritoneal Infiltrate of Patients with Encapsulating Peritoneal Sclerosis

    PubMed Central

    Habib, Sayed M.; Abrahams, Alferso C.; Korte, Mario R.; Zietse, Robert; de Vogel, Lisette L.; Boer, Walther H.; Dendooven, Amélie; Clahsen-van Groningen, Marian C.; Betjes, Michiel G. H.

    2015-01-01

    Background Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). Previously, it has been shown that infiltrating CD4-positive T cells and M2 macrophages are associated with several fibrotic conditions. Therefore, the characteristics of the peritoneal cell infiltrate in EPS may be of interest to understand EPS pathogenesis. In this study, we aim to elucidate the composition of the peritoneal cell infiltrate in EPS patients and relate the findings to clinical outcome. Study Design, Setting, and Participants We studied peritoneal membrane biopsies of 23 EPS patients and compared them to biopsies of 15 PD patients without EPS. The cellular infiltrate was characterized by immunohistochemistry to detect T cells(CD3-positive), CD4-positive (CD4+) and CD8-positive T cell subsets, B cells(CD20-positive), granulocytes(CD15-positive), macrophages(CD68-positive), M1(CD80-positive), and M2(CD163-positive) macrophages. Tissues were analysed using digital image analysis. Kaplan-Meier survival analysis was performed to investigate the survival in the different staining groups. Results The cellular infiltrate in EPS biopsies was dominated by mononuclear cells. For both CD3 and CD68, the median percentage of area stained was higher in biopsies of EPS as opposed to non-EPS patients (p<0.001). EPS biopsies showed a higher percentage of area stained for CD4 (1.29%(0.61-3.20)) compared to CD8 (0.71%(0.46-1.01), p = 0.04), while in the non-EPS group these cells were almost equally represented (respectively 0.28%(0.05-0.83) versus 0.22%(0.17-0.43), p = 0.97). The percentage of area stained for both CD80 and CD163 was higher in EPS than in non-EPS biopsies (p<0.001), with CD163+ cells being the most abundant phenotype. Virtually no CD20-positive and CD15-positive cells were present in biopsies of a subgroup of EPS patients. No relation was found between the composition of the mononuclear cell infiltrate and clinical outcome. Conclusions A

  11. Gastric cancer cell supernatant causes apoptosis and fibrosis in the peritoneal tissues and results in an environment favorable to peritoneal metastases, in vitro and in vivo.

    PubMed

    Na, Di; Lv, Zhi-Dong; Liu, Fu-Nan; Xu, Yan; Jiang, Cheng-Gang; Sun, Zhe; Miao, Zhi-Feng; Li, Feng; Xu, Hui-Mian

    2012-04-20

    In this study, we examined effects of soluble factors released by gastric cancer cells on peritoneal mesothelial cells in vitro and in vivo. HMrSV5, a human peritoneal mesothelial cell line, was incubated with supernatants from gastric cancer cells. Morphological changes of HMrSV5 cells were observed. Apoptosis of HMrSV5 cells was observed under a transmission electron microscope and quantitatively determined by MTT assay and flow cytometry. Expressions of apoptosis-related proteins (caspase-3, caspase-8, Bax, bcl-2) were immunochemically evaluated. Conspicuous morphological changes indicating apoptosis were observed in HMrSV5 cells 24 h after treatment with the supernatants of gastric cancer cells. In vivo, peritoneal tissues treated with gastric cancer cell supernatant were substantially thickened and contained extensive fibrosis. These findings demonstrate that supernatants of gastric cancer cells can induce apoptosis and fibrosis in HMrSV5 human peritoneal mesothelial cells through supernatants in the early peritoneal metastasis, in a time-dependent manner, and indicate that soluble factors in the peritoneal cavity affect the morphology and function of mesothelial cells so that the resulting environment can become favorable to peritoneal metastases.

  12. Mechanism of the modulation of murine peritoneal cell function and mast cell degranulation by low doses of malathion.

    PubMed

    Rodgers, K; Ellefson, D

    1992-01-01

    Malathion is a widely used organophosphate pesticide that modulates immune function at noncholinergic doses. Previous studies showed that this alteration in immune function was the result of enhanced macrophage function. In the present study, the effects of low doses of purified malathion (as low as 0.25 mg/kg malathion) administered orally to mice enhanced the respiratory burst of peritoneal cells. Microscopic examination of the peritoneal cells showed that mast cells were degranulated within 4 hr after malathion administration. The amount of beta-hexosaminidase, an enzyme released upon immunologic degranulation of mast cells, in the peritoneal lavage fluid of malathion-treated mice was also significantly elevated with 4 hours after malathion administration. Treatment of RBL-1, a rat basophilic cell line, cells with malathion, parathion or paroxon in vitro also led to the release of beta-hexosaminidase with paraoxon being the most potent. Further examination of the peritoneal cells of malathion-treated mice showed that the percentage of phagocytic peritoneal cells ingesting mast cell granules and the number of granules ingested per cell were elevated. These data suggest that malathion may enhance the respiratory burst of peritoneal cells through degranulation of peritoneal mast cells and the subsequent exposure to peritoneal cells to mast cell mediators.

  13. Mesenchymal stroma cells in peritoneal dialysis effluents from patients.

    PubMed

    Liu, Bin; Guan, Qiunong; Li, Jing; da Roza, Gerald; Wang, Hao; Du, Caigan

    2017-04-01

    Mesenchymal stroma cells (MSCs) have potential as an emerging cell therapy for treating many different diseases, but discovery of the practical sources of MSCs is needed for the large-scale clinical application of this therapy. This study was to identify MSCs in peritoneal dialysis (PD) effluents that were discarded after PD. The effluents were collected from patients who were on the dialysis for less than 1 month. Adherent cells from the effluents were isolated by incubation in serum-containing medium in plastic culture dishes. Cell surface markers were determined by a flow cytometric analysis, and the in vitro differentiation to chondrocytes, osteocytes or adipocytes was confirmed by staining with a specific dye. After four passages, these isolated cells displayed the typical morphology of mesenchymal cells in traditional 2-D cultures, and were grown to form spherical colonies in 3-D collagen cultures. Flow cytometric analysis revealed that the unsorted cells from all of seven patient samples showed robust expression of typical mesenchymal marker CD29, CD44, CD73, CD90 and CD166, and the absence of CD34, CD79a, CD105, CD271, SSEA-4, Stro-1 and HLA-DR. In differentiation assays, these cells were induced in vitro to chondrocytes, osteocytes or adipocytes. In conclusion, this preliminary study suggests the presence of MSCs in the "discarded" PD effluents. Further characterization of the phenotypes of these MSCs and evaluation of their therapeutic potential, particularly for the prevention of PD failure, are needed.

  14. TWEAK Promotes Peritoneal Inflammation

    PubMed Central

    Sanz, Ana Belen; Aroeira, Luiz Stark; Bellon, Teresa; del Peso, Gloria; Jimenez-Heffernan, Jose; Santamaria, Beatriz; Sanchez-Niño, Maria Dolores; Blanco-Colio, Luis Miguel; Lopez-Cabrera, Manuel; Ruiz-Ortega, Marta; Egido, Jesus; Selgas, Rafael; Ortiz, Alberto

    2014-01-01

    Peritoneal dialysis (PD) is complicated by peritonitis episodes that cause loss of mesothelium and eventually sclerosing peritonitis. An improved understanding of the molecular contributors to peritoneal injury and defense may increase the therapeutic armamentarium to optimize peritoneal defenses while minimizing peritoneal injury. There is no information on the expression and function of the cytokine TWEAK and its receptor Fn14 during peritoneal injury. Fn14 expression and soluble TWEAK levels were measured in human PD peritoneal effluent cells or fluids with or without peritonitis. Fn14 expression was also analyzed in peritoneal biopsies from PD patients. Actions of intraperitoneal TWEAK were studied in mice in vivo. sTWEAK levels were increased in peritoneal effluent in PD peritonitis. Effluent sTWEAK levels correlated with the number of peritoneal macrophages (r = 0.491, p = 0.002). Potential TWEAK targets that express the receptor Fn14 include mesothelial cells and macrophages, as demonstrated by flow cytometry of peritoneal effluents and by analysis of peritoneal biopsies. Peritoneal biopsy Fn14 correlated with mesothelial injury, fibrosis and inflammation, suggesting a potential deleterious effect of TWEAK/Fn14. In this regard, intraperitoneal TWEAK administration to mice promoted peritoneal inflammation characterized by increased peritoneal effluent MCP-1, Fn14 and Gr1+ macrophages, increased mesothelial Fn14, MCP-1 and CCL21 expression and submesothelial tissue macrophage recruitment. Taken together these data suggest that the TWEAK/Fn14 system may promote inflammation and tissue injury during peritonitis and PD. PMID:24599047

  15. French National Registry of Rare Peritoneal Surface Malignancies

    ClinicalTrials.gov

    2016-07-12

    Rare Peritoneal Surface Malignancies; Pseudomyxoma Peritonei; Peritoneal Mesothelioma; Desmoplastic Small Round Cell Tumor; Psammocarcinoma; Primary Peritoneal Serous Carcinoma; Diffuse Peritoneal Leiomyomatosis; Appendiceal Mucinous Neoplasms

  16. Blocking TGF-β1 by P17 peptides attenuates gastric cancer cell induced peritoneal fibrosis and prevents peritoneal dissemination in vitro and in vivo.

    PubMed

    Lv, Zhi-Dong; Zhao, Wei-Jun; Jin, Li-Ying; Wang, Wen-Juan; Dong, Qian; Li, Na; Xu, Hui-Mian; Wang, Hai-Bo

    2017-04-01

    Our previous study demonstrated that the peritoneal stroma environment favors proliferation of tumor cells by serving as a rich source of growth factors and chemokines known to be involved in tumor metastasis. In this study, we investigated the interaction between gastric cancer cells and peritoneal mesothelial cells, and determined the effects of TGF-β1 in this processing. Human peritoneal tissues and peritoneal wash fluid were obtained, which examined by hematoxylin and eosin staining or ELISA for measurements of TGF-β1 levels. The peritoneal mesothelial cells were co-incubated with the supernatants of gastric cancer, the expression of TGF-β1, collagen and fibronectin was observed by ELISA and western blot. We then investigated the effects of serum-free conditioned media from HSC-39 gastric cancer cells on the peritoneum of nude mice, and the effects of peritoneal fibrosis on the development of peritoneal metastasis in vivo. The peritoneum from gastric patients were thickened and contained extensive fibrosis. After co-culture both gastric tumor cells and mesothelial cells, we found that TGF-β1 expression was greatly increased in the co-culture system compared to individual culture condition. Serum-free Conditioned Media from HSC-39 was able to induce extracellular matrix expression in vitro and in vivo, and tumorigenicity in mice with peritoneal fibrosis was greater than in mice with normal peritoneum, while blocking TGF-β1 by peptide P17 can partially inhibit these effects. In conclusion, these results indicated that the interaction of gastric cancer with peritoneal fibrosis and determined that TGF-β1 plays a key role in induction of peritoneal fibrosis, which in turn affected dissemination of gastric cancer.

  17. Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum.

    PubMed

    Nakamura, Michihiko; Ono, Yoshihiro J; Kanemura, Masanori; Tanaka, Tomohito; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2015-11-01

    A current working model for the metastatic process of ovarian carcinoma suggests that cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the layer of mesothelial cells that line the inner surface of the peritoneum, and several studies suggest that hepatocyte growth factor (HGF) plays an important role in the dissemination of ovarian cancer. Our objectives were to evaluate the HGF expression of ovarian cancer using clinical data and assess the effect of HGF secreted from human ovarian cancer cells to human mesothelial cells. HGF expression was immunohistochemically evaluated in 165 epithelial ovarian cancer patients arranged as tissue microarrays. HGF expression in four ovarian cancer cell lines was evaluated by using semi-quantitative polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay. The effect of ovarian cancer cell derived HGF to the human mesothelial cells was assessed by using morphologic analysis, Western blotting and cell invasion assay. The effect of HGF on ovarian cancer metastasis was assessed by using in vivo experimental model. The clinical data showed a significantly high correlation between the HGF expression and the cancer stage. The in vivo and in vitro experimental models revealed that HGF secreted by ovarian cancer cells induces the mesothelial-to-mesenchymal transition and stimulates the invasion of mesothelial cells. Furthermore, manipulating the HGF activity affected the degree of dissemination and ascite formation. We demonstrated that HGF secreted by ovarian cancer cells plays an important role in cancer peritoneal implantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Programmable Cell Manipulation Using Lab-on-a-Display

    NASA Astrophysics Data System (ADS)

    Hwang, Hyundoo; Park, Je-kyun

    Programmable manipulation of particles or cells plays an important role in many biological and medical applications. Here a new programmable micro manipulator, named lab-on-a-display, in which particles are manipulated by optically induced electrokinetic forces generated from an optoelectronic tweezers on a liquid crystal display, is introduced. This optoelectrofluidic platform has been utilized to manipulate various kinds of cells such as blood cells, oocytes, and motile bacteria for several biotechnological applications.

  19. Peritoneal fluid immunocytochemistry used for the diagnosis of a possible case of equine gastrointestinal B-cell lymphoma

    PubMed Central

    Duran, Maria Carolina; Starrak, Gregory; Dickinson, Ryan; Montgomery, Julia

    2016-01-01

    After physical examination, ultrasonographic evaluation of thorax and abdomen, and peritoneal fluid analysis, gastrointestinal neoplasia with suspected diffuse peritoneal metastasis was diagnosed in a 17-year-old Arabian gelding. The owner elected euthanasia and declined postmortem examination. Immunocytochemistry analysis of the peritoneal fluid resulted in a diagnosis of B-cell lymphoma. PMID:27247458

  20. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    PubMed

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p < 0.05) followed by late apoptosis at 12 hpi (p < 0.05) and necrosis from 24 hpi (p < 0.05). Then, next generation sequencing was performed on 9 hpi and control uninfected cells by Illumina analyzer. An aggregate of 4546 genes (2229 down-regulated and 2317 up-regulated) from 17 cellular process, 11 molecular functions and 130 possible biological pathways were affected by FIPV. 131 genes from apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  1. [A test for sperm cell survival in peritoneal fluid].

    PubMed

    Radwan, J; Niwald, W; Bielak, A; Pawlicki, J; Banaszczyk, R; Makuła, D

    1995-06-01

    The role of the peritoneal fluid in the physiology of reproduction, as well as in the transportation and survival of gametes, is little known. The authors have examined interactions between spermatozoa and the peritoneal fluid, collected during laparoscopy in the, so-called, survival test, from 42 infertile couples. The studied survival of spermatozoa in the peritoneal fluid was relatively high--19% after 48 hours--longer than in Menezo B2 fluid. Values of the test have been indicated, especially in cases of endometriosis-caused and idiopathic infertility.

  2. Impacts of icodextrin on integrin-mediated wound healing of peritoneal mesothelial cells.

    PubMed

    Matsumoto, Mika; Tamura, Masahito; Miyamoto, Tetsu; Furuno, Yumi; Kabashima, Narutoshi; Serino, Ryota; Shibata, Tatsuya; Kanegae, Kaori; Takeuchi, Masaaki; Abe, Haruhiko; Okazaki, Masahiro; Otsuji, Yutaka

    2012-06-14

    Exposure to glucose and its metabolites in peritoneal dialysis fluid (PDF) results in structural alterations of the peritoneal membrane. Icodextrin-containing PDF eliminates glucose and reduces deterioration of peritoneal membrane function, but direct effects of icodextrin molecules on peritoneal mesothelial cells have yet to be elucidated. We compared the impacts of icodextrin itself with those of glucose under PDF-free conditions on wound healing processes of injured mesothelial cell monolayers, focusing on integrin-mediated cell adhesion mechanisms. Regeneration processes of the peritoneal mesothelial cell monolayer were investigated employing an in vitro wound healing assay of cultured rat peritoneal mesothelial cells treated with icodextrin powder- or glucose-dissolved culture medium without PDF, as well as icodextrin- or glucose-containing PDF. The effects of icodextrin on integrin-mediated cell adhesions were examined by immunocytochemistry and Western blotting against focal adhesion kinase (FAK). Cell migration over fibronectin was inhibited in conventional glucose-containing PDF, while icodextrin-containing PDF exerted no significant inhibitory effects. Culture medium containing 1.5% glucose without PDF also inhibited wound healing of mesothelial cells, while 7.5% icodextrin-dissolved culture medium without PDF had no inhibitory effects. Glucose suppressed cell motility by inhibiting tyrosine phosphorylation of FAK, formation of focal adhesions, and cell spreading, while icodextrin had no effects on any of these mesothelial cell functions. Our results demonstrate icodextrin to have no adverse effects on wound healing processes of peritoneal mesothelial cells. Preservation of integrin-mediated cell adhesion might be one of the molecular mechanisms accounting for the superior biocompatibility of icodextrin-containing PDF. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Parasitic Infection Improves Survival from Septic Peritonitis by Enhancing Mast Cell Responses to Bacteria in Mice

    PubMed Central

    Sutherland, Rachel E.; Xu, Xiang; Kim, Sophia S.; Seeley, Eric J.; Caughey, George H.; Wolters, Paul J.

    2011-01-01

    Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2–4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient KitW-sh/KitW-sh mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to KitW-sh/KitW-sh mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host. PMID:22110673

  4. Differential susceptibility of human pleural and peritoneal mesothelial cells to asbestos exposure

    PubMed Central

    Dragon, Julie; Thompson, Joyce; MacPherson, Maximilian; Shukla, Arti

    2015-01-01

    Malignant mesothelioma (MM) is an aggressive cancer of mesothelial cells of pleural and peritoneal cavities. In 85% of cases both pleural and peritoneal MM is caused by asbestos exposure. Although both are asbestos-induced cancers, the incidence of pleural MM is significantly higher (85%) than peritoneal MM (15%). It has been proposed that carcinogenesis is a result of asbestos-induced inflammation but it is not clear what contributes to the differences observed between incidences of these two cancers. We hypothesize that the observed differences in incidences of pleural and peritoneal MM are the result of differences in the direct response of these cell types to asbestos rather than to differences mediated by the in vivo microenvironment. To test this hypothesis we characterized cellular responses to asbestos in a controlled environment. We found significantly greater changes in genome-wide expression in response to asbestos exposure in pleural mesothelial cells as compared to peritoneal mesothelial cells. In particular, a greater response in many common genes (IL-8, ATF3, CXCL2, CXCL3, IL-6, GOS2) was seen in pleural mesothelial cells as compared to peritoneal mesothelial cells. Unique genes expressed in pleural mesothelial cells were mainly pro-inflammatory (G-CSF, IL-1β, IL-1α, GREM1) and have previously been shown to be involved in development of MM. Our results are consistent with the hypothesis that differences in incidences of pleural and peritoneal MM upon exposure to asbestos are the result of differences in mesothelial cell physiology that lead to differences in the inflammatory response, which leads to cancer. PMID:25757056

  5. Differential Susceptibility of Human Pleural and Peritoneal Mesothelial Cells to Asbestos Exposure.

    PubMed

    Dragon, Julie; Thompson, Joyce; MacPherson, Maximilian; Shukla, Arti

    2015-08-01

    Malignant mesothelioma (MM) is an aggressive cancer of mesothelial cells of pleural and peritoneal cavities. In 85% of cases both pleural and peritoneal MM is caused by asbestos exposure. Although both are asbestos-induced cancers, the incidence of pleural MM is significantly higher (85%) than peritoneal MM (15%). It has been proposed that carcinogenesis is a result of asbestos-induced inflammation but it is not clear what contributes to the differences observed between incidences of these two cancers. We hypothesize that the observed differences in incidences of pleural and peritoneal MM are the result of differences in the direct response of these cell types to asbestos rather than to differences mediated by the in vivo microenvironment. To test this hypothesis we characterized cellular responses to asbestos in a controlled environment. We found significantly greater changes in genome-wide expression in response to asbestos exposure in pleural mesothelial cells as compared to peritoneal mesothelial cells. In particular, a greater response in many common genes (IL-8, ATF3, CXCL2, CXCL3, IL-6, GOS2) was seen in pleural mesothelial cells as compared to peritoneal mesothelial cells. Unique genes expressed in pleural mesothelial cells were mainly pro-inflammatory (G-CSF, IL-1β, IL-1α, GREM1) and have previously been shown to be involved in development of MM. Our results are consistent with the hypothesis that differences in incidences of pleural and peritoneal MM upon exposure to asbestos are the result of differences in mesothelial cell physiology that lead to differences in the inflammatory response, which leads to cancer.

  6. Role of progenitor cell producing normal vagina by metaplasia in laparoscopic peritoneal vaginoplasty

    PubMed Central

    Mhatre, Pravin N.; Narkhede, Hemraj R.; Pawar, P. Amol; Mhatre, P. Jyoti; Kumar, Das Dhanjit

    2016-01-01

    CONTEXT: Host of vaginoplasty techniques have been described. None has been successful in developing normal vagina. Laparoscopic peritoneal vaginoplasty (LPV) is performed in Mayer–Rokitansky–Küster–Hauser syndrome (MRKHS) culminating in normal vagina. AIMS: This study aims to confirm normal development of neovagina by anatomical and functional parameters of histology, cytology, and ultrasonography (USG) in LPV. To identify peritoneal progenitor cell by OCT4/SOX2 markers. To demonstrate the metaplastic conversion of peritoneum to neovagina and the progenitor cell concentration, distribution pattern. SETTINGS AND DESIGN: This is prospective experimental study, conducted at teaching hospital and private hospital. SUBJECTS AND METHODS: Fifteen women of MRKHS underwent LPV followed by histology, cytology, two-/three-dimensional USG of neovagina. Four women underwent peritoneal biopsy for identification of progenitor cells with OCT4/SOX2 markers. One patient underwent serial biopsies for 4 weeks for histology and progenitor cell immunohistochemistry. RESULTS: Normal vaginal histology and cytology were apparent. USG of neovagina showed normal appearance and blood flow. Two peritoneal samples confirmed the presence of progenitor cells. Serial biopsies demonstrated the epithelial change from single to multilayer with stromal compaction and neoangiogenesis. The progenitor cells concentration and different distribution patterns were described using SOX2/OCT4 markers. CONCLUSIONS: We have shown successful peritoneal metaplastic conversion to normal vagina in LPV. The progenitor cell was identified in normal peritoneum using SOX2/OCT4 markers. The progenitor cell concentration and pattern were demonstrated at various stages of neovaginal development. PMID:28216908

  7. Large cell variant of small cell carcinoma, hypercalcemic type, of primary peritoneal origin.

    PubMed

    Popiolek, Dorota A; Kumar, Asok R; Mittal, Khush

    2005-01-01

    Large cell variant of small cell carcinoma hypercalcemic type (SCC-HT) is extremely rare. All reported cases involved an ovary, and one with primary peritoneal origin has not been described. Also, convincing neuroendocrine granules have not been illustrated. A 35-year-old woman underwent an exploratory laparotomy for leiomyomas. Intraoperative impression of peritoneal carcinomatosis was confirmed on frozen section. TAH/BSO, debulking/omentectomy followed. The tumor was present on the pelvic/abdominal peritoneum. The normal-sized ovaries were free of tumor grossly. The tumor had features of large cell variant of SCC-HT, described in the ovary. Furthermore, unequivocal neuroendocrine granules were present. The patient received standard chemotherapy for SCC. At 22 months she is NED. SCC-HT should be considered in the differential diagnosis of primary neoplasms of the peritoneum.

  8. Trafficking of phagocytic peritoneal cells in hypoinsulinemic-hyperglycemic mice with systemic candidiasis

    PubMed Central

    2013-01-01

    Background Candidemia is a severe fungal infection that primarily affects hospitalized and/or immunocompromised patients. Mononuclear phagocytes have been recognized as pivotal immune cells which act in the recognition of pathogens, phagocytosis, inflammation, polarization of adaptive immune response and tissue repair. Experimental studies have showed that the systemic candidiasis could be controlled by activated peritoneal macrophages. However, the mechanism to explain how these cells act in distant tissue during a systemic fungal infection is still to be elucidated. In the present study we investigate the in vivo trafficking of phagocytic peritoneal cells into infected organs in hypoinsulinemic-hyperglycemic (HH) mice with systemic candidiasis. Methods The red fluorescent vital dye PKH-26 PCL was injected into the peritoneal cavity of Swiss mice 24 hours before the intravenous inoculation with Candida albicans. After 24 and 48 hours and 7 days of infection, samples of the spleen, liver, kidneys, brain and lungs were submitted to the microbiological evaluation as well as to phagocytic peritoneal cell trafficking analyses by fluorescence microscopy. Results In the present study, PKH+ cells were observed in the peritoneum, kidney, spleen and liver samples from all groups. In infected mice, we also found PKH+ cells in the lung and brain. The HH condition did not affect this process. Conclusions In the present study we have observed that peritoneal phagocytes migrate to tissues infected by C. albicans and the HH condition did not interfere in this process. PMID:23521724

  9. Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.

    1992-12-01

    During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.

  10. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    PubMed

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tumor-environment biomimetics delay peritoneal metastasis formation by deceiving and redirecting disseminated cancer cells.

    PubMed

    De Vlieghere, Elly; Gremonprez, Félix; Verset, Laurine; Mariën, Lore; Jones, Christopher J; De Craene, Bram; Berx, Geert; Descamps, Benedicte; Vanhove, Christian; Remon, Jean-Paul; Ceelen, Wim; Demetter, Pieter; Bracke, Marc; De Geest, Bruno G; De Wever, Olivier

    2015-06-01

    Peritoneal metastasis is life threatening and is the result of an extensive communication between disseminated cancer cells, mesothelial cells and cancer-associated fibroblasts (CAF). CAFs secrete extracellular matrix (ECM) proteins creating a receptive environment for peritoneal implantation. Considering cancer as an ecosystem may provide opportunities to exploit CAFs to create biomimetic traps to deceive and redirect cancer cells. We have designed microparticles (MP) containing a CAF-derived ECM-surface that is intended to compete with natural niches. CAFs were encapsulated in alginate/gelatine beads (500-750 μm in diameter) functionalised with a polyelectrolyte coating (MP[CAF]). The encapsulated CAFs remain viable and metabolically active (≥35 days), when permanently encapsulated. CAF-derived ECM proteins are retained by the non-biodegradable coating. Adhesion experiments mimicking the environment of the peritoneal cavity show the selective capture of floating cancer cells from different tumor origins by MP[CAF] compared to control MP. MP[CAF] are distributed throughout the abdominal cavity without attachment to intestinal organs and without signs of inflammatory reaction. Intraperitoneal delivery of MP[CAF] and sequential removal redirects cancer cell adhesion from the surgical wound to the MP[CAF], delays peritoneal metastasis formation and prolongs animal survival. Our experiments suggest the use of a biomimetic trap based on tumor-environment interactions to delay peritoneal metastasis.

  12. The Lectin ArtinM Induces Recruitment of Rat Mast Cells from the Bone Marrow to the Peritoneal Cavity

    PubMed Central

    de Almeida Buranello, Patricia Andressa; Moulin, Maria Raquel Isnard; Souza, Devandir Antonio; Jamur, Maria Célia; Roque-Barreira, Maria Cristina; Oliver, Constance

    2010-01-01

    Background The D-mannose binding lectin ArtinM is known to recruit neutrophils, to degranulate mast cells and may have potential therapeutic applications. However, the effect of ArtinM on mast cell recruitment has not been investigated. Methodology Male Wistar rats were injected i.p. with ArtinM or ConA (control). The ability of the lectin to degranulate peritoneal and mesenteric mast cells was examined. Recruitment of mast cells to the peritoneal cavity and mesentery after ArtinM injection was examined with or without depletion of peritoneal mast cells by distilled water. Results ArtinM degranulated both peritoneal and mesentery mast cells in vitro. Three days after i.p. injection of the lectin there were reduced numbers of mast cells in the peritoneal lavage, while at 7 days post injection of ArtinM, the number of peritoneal mast cells was close to control values. Since immature mast cells are recruited from the bone marrow, the effect of the lectin on bone marrow mast cells was examined. Injection of ArtinM resulted in an increased number of mast cells in the bone marrow. To determine if degranulation of mast cells in the peritoneal cavity was required for the increase in bone marrow mast cells, the peritoneal cavity was depleted of mast cells with ultrapure water. Exposure to ArtinM increased the number of mast cells in the bone marrow of rats depleted of peritoneal mast cells. Conclusions The ArtinM induced recruitment of mast cells from the bone marrow to the peritoneal cavity may partially explain the therapeutic actions of ArtinM. PMID:20339538

  13. Aberrant expression of Cx43 is associated with the peritoneal metastasis of gastric cancer and Cx43-mediated gap junction enhances gastric cancer cell diapedesis from peritoneal mesothelium.

    PubMed

    Tang, Bo; Peng, Zhi-hong; Yu, Pei-wu; Yu, Ge; Qian, Feng; Zeng, Dong-zhu; Zhao, Yong-liang; Shi, Yan; Hao, Ying-xue; Luo, Hua-xing

    2013-01-01

    The process of peritoneal metastasis involves the diapedesis of intra-abdominal exfoliated gastric cancer cells through the mesothelial cell monolayers; however, the related molecular mechanisms for this process are still unclear. Heterocellular gap-junctional intercellular communication (GJIC) between gastric cancer cells and mesothelial cells may play an active role during diapedesis. In this study we detected the expression of connexin 43 (Cx43) in primary gastric cancer tissues, intra-abdominal exfoliated cancer cells, and matched metastatic peritoneal tissues. We found that the expression of Cx43 in primary gastric cancer tissues was significantly decreased; the intra-abdominal exfoliated cancer cells and matched metastatic peritoneal tissues exhibited increasing expression compared with primary gastric cancer tissues. BGC-823 and SGC-7901 human gastric cancer cells were engineered to express Cx43 or Cx43T154A (a mutant protein that only couples gap junctions but provides no intercellular communication) and were co-cultured with human peritoneal mesothelial cells (HPMCs). Heterocellular GJIC and diapedesis through HPMC monolayers on matrigel-coated coverslips were investigated. We found that BGC-823 and SGC-7901 gastric cancer cells expressing Cx43 formed functional heterocellular gap junctions with HPMC monolayers within one hour. A significant increase in diapedesis was observed in engineered Cx43-expressing cells compared with Cx43T154A and control group cells, which suggested that the observed upregulation of diapedesis in Cx43-expressing cells required heterocellular GJIC. Further study revealed that the gastric cancer cells transmigrated through the intercellular space between the mesothelial cells via a paracellular route. Our results suggest that the abnormal expression of Cx43 plays an essential role in peritoneal metastasis and that Cx43-mediated heterocellular GJIC between gastric cancer cells and mesothelial cells may be an important regulatory

  14. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery

    PubMed Central

    Katz, Steven; Point, Gary R.; Cunetta, Marissa; Thorn, Mitchell; Guha, Prajna; Espat, N. Joseph; Boutros, Cherif; Hanna, Nader; Junghans, Richard P.

    2016-01-01

    Metastatic spread of colorectal cancer (CRC) to the peritoneal cavity is common and difficult to treat, with many patients dying from malignant bowel obstruction. Chimeric antigen receptor T cell (CAR-T) immunotherapy has shown great promise, and we previously reported murine and phase I clinical studies on regional intrahepatic CAR-T infusion for CRC liver metastases. We are now studying intraperitoneal (IP) delivery of CAR-Ts for peritoneal carcinomatosis. Regional IP infusion of CAR-T resulted in superior protection against CEA+ peritoneal tumors, when compared to systemically infused CAR-Ts. IP CAR-Ts also provided prolonged protection against IP tumor re-challenges and demonstrated an increase in effector memory phenotype over time. IP CAR-Ts provided protection against tumor growth at distant subcutaneous (SC) sites in association with increases in serum IFNγ levels. Given the challenges posed by immunoinhibitory pathways in solid tumors, we combined IP CAR-T treatment with suppressor cell targeting. High frequencies of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) were found within the IP tumors, with MDSC expressing high levels of immunosuppressive PD-L1. Combinatorial IP CAR-T treatment with depleting antibodies against MDSC and Treg further improved efficacy against peritoneal metastases. Our data support further development of combinatorial IP CAR-T immunotherapy for peritoneal malignancies. PMID:27080226

  15. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery.

    PubMed

    Katz, S C; Point, G R; Cunetta, M; Thorn, M; Guha, P; Espat, N J; Boutros, C; Hanna, N; Junghans, R P

    2016-05-01

    Metastatic spread of colorectal cancer (CRC) to the peritoneal cavity is common and difficult to treat, with many patients dying from malignant bowel obstruction. Chimeric antigen receptor T cell (CAR-T) immunotherapy has shown great promise, and we previously reported murine and phase I clinical studies on regional intrahepatic CAR-T infusion for CRC liver metastases. We are now studying intraperitoneal (IP) delivery of CAR-Ts for peritoneal carcinomatosis. Regional IP infusion of CAR-T resulted in superior protection against carcinoembryonic antigen (CEA+) peritoneal tumors, when compared with systemically infused CAR-Ts. IP CAR-Ts also provided prolonged protection against IP tumor re-challenges and demonstrated an increase in effector memory phenotype over time. IP CAR-Ts provided protection against tumor growth at distant subcutaneous (SC) sites in association with increases in serum IFNγ levels. Given the challenges posed by immunoinhibitory pathways in solid tumors, we combined IP CAR-T treatment with suppressor cell targeting. High frequencies of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) were found within the IP tumors, with MDSC expressing high levels of immunosuppressive PD-L1. Combinatorial IP CAR-T treatment with depleting antibodies against MDSC and Treg further improved efficacy against peritoneal metastases. Our data support further development of combinatorial IP CAR-T immunotherapy for peritoneal malignancies.

  16. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells.

    PubMed

    Patel, Pranali; West-Mays, Judy; Kolb, Martin; Rodrigues, Juan-Carlos; Hoff, Catherine M; Margetts, Peter J

    2010-03-01

    Platelet derived growth factor (PDGF) is involved in wound healing in various organ systems. Its potential role in the context of peritoneal injury following long-term peritoneal dialysis is unclear. We used an adenovirus expressing the B chain of PDGF (AdPDGF-B) to assess its effect on pro-fibrotic pathways in the peritoneal membrane. To assess the transforming growth factor (TGF) beta independent effects of PDGF, we over-expressed PDGF-B in the peritoneum of either wild-type mice (Smad3+/+) or those with a deletion of the TGFbeta signaling protein Smad3 (Smad3(-/-)). PDGF-B induced sustained angiogenesis in both Smad3+/+ and Smad3(-/-) mice. Despite increased collagen gene expression, collagen accumulation was transient and fibrogenesis was associated with induction of collagenase activity. We observed epithelial to mesenchymal transition (EMT) involving the peritoneal mesothelial cells, as shown by increased SNAIL and decreased E-Cadherin expression with evidence of mesothelial cells expressing both epithelial and mesenchymal markers. Unlike TGFbeta-induced EMT, PDGF-B exposure did not lead to mobilization of the mesothelial cells; they remained as a single monolayer throughout the observation period. This "non-invasive" EMT phenomenon is a novel finding and may have implications concerning the role of EMT in peritoneal fibrosis and injury to other organ systems. The observed effects were similar in Smad3(-/-) and Smad3+/+ animals, suggesting that the PDGF-B effects were independent of TGFbeta or Smad signaling.

  17. Genetic manipulation of sinusoidal endothelial cells.

    PubMed

    Takei, Yoshiyuki; Maruyama, Atsushi; Ikejima, Kenichi; Enomoto, Nobuyuki; Yamashina, Shunhei; Lemasters, John J; Sato, Nobuhiro

    2007-06-01

    Altered gene expression in liver sinusoidal endothelial cells (SEC) is associated with a variety of aspects of liver pathophysiology. It is, therefore, possible to envision a new therapeutic strategy for treatment of intractable liver diseases and achievement of graft-specific immunotolerance through modulation of SEC functions by genetic engineering. The SEC possesses unique hyaluronan receptors that recognize and internalize hyaluronic acid (HA). This characteristic was used in the development of a system for targeting foreign DNA to SEC. A gene carrier system was prepared by coupling HA oligomers to poly L-lysine (PLL) in a 1:1 weight ratio by reductive amination reaction. The resulting copolymer (PLL-g-HA) was mixed with various amounts of DNA in 154 mM NaCl. Inter-polyelectrolyte complex formation between PLL-g-HA and DNA exhibited minimal self-aggregation, explaining the highly soluble nature of the complex. Complex formation between PLL-g-HA and DNA was further assessed with a gel retardation assay. The titration point representing the minimum proportion of PLL-g-HA required to retard the DNA completely occurred at a 1:1 copolymer (based on PLL) to DNA charge ratio. Following intravenous injection of (32)P-labeled pSV beta-Gal plasmid complexed to PLL-g-HA in Wistar rats, >90% of the injected counts were shown to be taken up by the liver. Further, it was shown that the PLL-g-HA/DNA complex was distributed exclusively in the SEC. At 72 h after injection of 90 mug of pSV beta-Gal in a PLL-g-HA-complexed form, a large number of SEC expressing beta-galactosidase were detected. So, the PLL-g-HA/DNA system permits targeted delivery of exogenous nucleotide agents selectively to the liver SEC, providing a novel strategy for manipulation of SEC functions.

  18. Presence of SNAP-23 and syntaxin 4 in mouse and hamster peritoneal mast cells.

    PubMed

    Salinas, Eva; Rodríguez, Gonzalo; Quintanar, J Luis

    2007-01-01

    Mast cells (MCs) play a crucial role in inflammatory reactions. Their presence and number in the peritoneal cavity is important to overcome and enhance resistance to peritoneal infection. When MCs are activated they release a variety of biological mediators from their granules, such as histamine, that contribute to the appropriate and rapid local immune response. Granular content is released using a process of compound exocytosis, also termed degranulation. SNAP-23 and syntaxin 4 are plasma membrane proteins involved in degranulation of rat MCs. Their presence, however, has not been studied in MCs of other rodent species. The aim of the present study was to investigate using immunocytochemistry whether SNAP-23 and syntaxin 4 are present in peritoneal MCs of the mouse and hamster. In addition, the diameter, percentage and histamine content of these cells were also analyzed. Our results demonstrate that SNAP-23 and syntaxin 4 are present in the mouse and hamster peritoneal MCs, suggesting that proteins involved in the secretory process in MCs are conserved among species. Likewise, we conclude that peritoneal MCs of mouse and hamster are heterogeneous in size, percentage and histamine content.

  19. Retinoic acid improves morphology of cultured peritoneal mesothelial cells from patients undergoing dialysis.

    PubMed

    Retana, Carmen; Sanchez, Elsa I; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor-β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in

  20. ARAP3 inhibits peritoneal dissemination of scirrhous gastric carcinoma cells by regulating cell adhesion and invasion.

    PubMed

    Yagi, R; Tanaka, M; Sasaki, K; Kamata, R; Nakanishi, Y; Kanai, Y; Sakai, R

    2011-03-24

    During the analysis of phosphotyrosine-containing proteins in scirrhous gastric carcinoma cell lines, we observed an unusual expression of Arf-GAP with Rho-GAP domain, ankyrin repeat and PH domain 3 (ARAP3), a multimodular signaling protein that is a substrate of Src family kinases. Unlike other phosphotyrosine proteins, such as CUB domain-containing protein 1 (CDCP1) and Homo sapiens chromosome 9 open reading frame 10/oxidative stress-associated Src activator (C9orf10/Ossa), which are overexpressed and hyperphosphorylated in scirrhous gastric carcinoma cell lines, ARAP3 was underexpressed in cancerous human gastric tissues. In this study, we found that overexpression of ARAP3 in the scirrhous gastric carcinoma cell lines significantly reduced peritoneal dissemination. In vitro studies also showed that ARAP3 regulated cell attachment to the extracellular matrix, as well as invasive activities. These effects were suppressed by mutations in the Rho-GTPase-activating protein (GAP) domain or in the C-terminal two tyrosine residues that are phosphorylated by Src. Thus, the expression and phosphorylation state of ARAP3 may affect the invasiveness of cancer by modulating cell adhesion and motility. Our results suggest that ARAP3 is a unique Src substrate that suppresses peritoneal dissemination of scirrhous gastric carcinoma cells.

  1. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis.

    PubMed

    Witowski, J; Topley, N; Jörres, A; Liberek, T; Coles, G A; Williams, J D

    1995-01-01

    The present study focused on the evaluation of constitutive and cytokine-stimulated human peritoneal mesothelial cell (HPMC) IL-6 and 6-keto-PGF1 alpha release following pre-exposure to peritoneal dialysis fluid (PDF). Exposure of HPMC to PDF pH 5.2 resulted in a time-dependent increase in cell cytotoxicity [as assessed by lactate dehydrogenase (LDH) release] and concomitant inhibition of constitutive and IL-1 beta stimulated IL-6 and 6-keto-PGF1 alpha synthesis. After 15 minutes of exposure to PDF constitutive and IL-1 beta stimulated IL-6 release were reduced by 32.0 +/- 9.7% and 76.0 +/- 7.4% (N = 6, P < 0.046 and P < 0.027, respectively). PCR amplification of reverse transcribed mRNA from HPMC pre-exposed to PDF pH 5.2 demonstrated suppression of IL-1 beta stimulated IL-6 and cyclooxygenase (Cox-1 and Cox-2) transcripts. In order to mimic the dialysis cycle in vivo, an in vitro dialysis system was established. HPMC were exposed first to control medium, PDF pH 5.2 or PDF 7.3 for 15 minutes and then sequentially to pooled spent peritoneal dialysis effluent for up to four hours. The cells were subsequently allowed to recover in control medium for 12 hours in the presence or absence of IL-1 beta or TNF-alpha (both at 1000 pg/ml). There was no evidence of significant cell toxicity as assessed by LDH release during either the 'in vitro dialysis' or 'recovery' phases. Under these conditions short term exposure to PDF pH 5.2 followed by 'in vitro dialysis' resulted in significant inhibition of cytokine stimulated IL-6 (69.6 +/- 18.2 vs. 96.7 +/- 27.9 pg/microgram, N = 13; P < 0.020 for IL-1 beta) and 6-keto-PGF1 alpha (197.5 +/- 89.2 vs. 289.6 +/- 114.5 pg/microgram, N = 13; P < 0.020 for IL-1 beta) and 6-keto-PGF1 alpha (197.5 +/- 89.2 vs. 289.6 +/- 114.5 pg/microgram, N = 13; P < 0.003) release when compared to cells incubated in control medium. Adjustment of the pH of PDF to 7.3 reversed its inhibitory effects. We conclude that short-term exposure to PDF pH 5

  2. Vascular Endothelial Cell Injury Is an Important Factor in the Development of Encapsulating Peritoneal Sclerosis in Long-Term Peritoneal Dialysis Patients

    PubMed Central

    Tawada, Mitsuhiro; Ito, Yasuhiko; Hamada, Chieko; Honda, Kazuho; Mizuno, Masashi; Suzuki, Yasuhiro; Sakata, Fumiko; Terabayashi, Takeshi; Matsukawa, Yoshihisa; Maruyama, Shoichi; Imai, Enyu; Matsuo, Seiichi; Takei, Yoshifumi

    2016-01-01

    Background and Objectives Encapsulating peritoneal sclerosis (EPS) is a rare but serious and life-threatening complication of peritoneal dialysis (PD). However, the precise pathogenesis remains unclear; in addition, predictors and early diagnostic biomarkers for EPS have not yet to be established. Methods Eighty-three peritoneal membrane samples taken at catheter removal were examined to identify pathological characteristics of chronic peritoneal deterioration, which promotes EPS in patients undergoing long-term PD treatment with low occurrence of peritonitis. Results According to univariable logistic regression analysis of the pathological findings, thickness of the peritoneal membrane (P = 0.045), new membrane formation score (P = 0.006), ratio of luminal diameter to vessel diameter (L/V ratio, P<0.001), presence of CD31-negative vessels (P = 0.021), fibrin deposition (P<0.001), and collagen volume fraction (P = 0.018) were associated with EPS development. In analyses of samples with and without EPS matched for PD treatment period, non-diabetes, and PD solution, univariable analysis identified L/V ratio (per 0.1 increase: odds ratio (OR) 0.44, P = 0.003) and fibrin deposition (OR 6.35, P = 0.027) as the factors associated with EPS. L/V ratio was lower in patients with fibrin exudation than in patients without fibrin exudation. Conclusions These findings suggest that damage to vascular endothelial cells, as represented by low L/V ratio, could be a predictive finding for the development of EPS, particularly in long-term PD patients unaffected by peritonitis. PMID:27119341

  3. Involvement of peritoneal dendritic cells in the induction of autoimmune prostatitis.

    PubMed

    Correa, S G; Riera, C M; Iribarren, P

    1997-04-01

    We have been working within a model of autoimmune prostatitis induced by the intraperitoneal administration of saline extract of rat male accessory glands (RAG) associated to liposomes. The intraperitoneal administration of RAG-liposomes elicits both primary and secondary cellular autoimmune responses to RAG as well as organ-specific lesions. To evaluate the participation of dendritic cells (DC) in the induction of the autoimmune response, we purified peritoneal DC (PDC) after a single injection of RAG-liposomes and we characterized this population by morphology and phenotype. Based on adherence and morphologic criteria, we determined that PDC comprised approximately 1% of the total peritoneal cells. The ultrastructure of the dendritic cell enriched fraction was assessed by electron microscopy. By FACS analysis, PDC showed a two to three-fold increase in expression of the IA molecule compared to macrophages. They expressed low but positive levels of the CD14 marker, and intermediate levels of both CD11b (Mac-1) and CD54 (ICAM-1) adhesion molecules. In addition, PDC transferred either intravenously or intraperitoneally efficiently elicited the autoimmune response to RAG in normal receptors. These results support the involvement of peritoneal dendritic cells in the induction of autoimmune prostatitis, modifying the idea of macrophages as the single antigen presenting cell in the peritoneal cavity.

  4. Imaging the Role of Multinucleate Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in Peritoneal Metastasis in Mouse Models.

    PubMed

    Hasegawa, Kosuke; Suetsugu, Atsushi; Nakamura, Miki; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    The interaction between pancreatic-cancer cells and stromal cells in the tumor microenvironment (TME) is of particular importance in cancer progression and metastasis. The present report demonstrates the role of cancer-associated fibroblasts (CAFs) and multinucleate pancreatic-cancer cells in peritoneal metastasis. An orthotopic mouse model of pancreatic cancer was established with the human pancreatic cancer cell line BxPC3, which stably expresses green fluorescent protein (GFP). BxPC3-GFP cells formed peritoneal metastases by week 18 after orthotopic implantation. Using an Olympus FV1000 confocal microscope, multi-nucleated cancer cells were frequently observed in the peritoneal metastases. The primary pancreatic tumor and peritoneal-metastases were harvested, cultured and then transplanted subcutaneously. Subcutaneous tumors established from peritoneal-metastatic cells were larger than subcutaneous tumors established from primary-tumor cells. Subcutaneous tumors of each type were subsequently cultured in vitro. CAFs were observed growing out from the tumors established from peritoneal-metastatic cells, but not the tumors established from the primary cancer. The results of the present study suggest that multi-nucleated cancer cells and CAFs were related to peritoneal metastasis of pancreatic cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage

    PubMed Central

    Liappas, Georgios; Gónzalez-Mateo, Guadalupe Tirma; Majano, Pedro; Sánchez- Tomero, José Antonio; Ruiz-Ortega, Marta; Martín, Pilar; Sanchez-Díaz, Raquel; Selgas, Rafael; López-Cabrera, Manuel; Aguilera Peralta, Abelardo

    2015-01-01

    Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD) treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT) are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance) leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD. PMID:26064907

  6. Acoustic Devices for Particle and Cell Manipulation and Sensing

    PubMed Central

    Qiu, Yongqiang; Wang, Han; Demore, Christine E. M.; Hughes, David A.; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-01-01

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed. PMID:25123465

  7. Acoustic devices for particle and cell manipulation and sensing.

    PubMed

    Qiu, Yongqiang; Wang, Han; Demore, Christine E M; Hughes, David A; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-08-13

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.

  8. Rapid cell separation with minimal manipulation for autologous cell therapies

    PubMed Central

    Smith, Alban J.; O’Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-01-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities. PMID:28150746

  9. Rapid cell separation with minimal manipulation for autologous cell therapies

    NASA Astrophysics Data System (ADS)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  10. Plasmonic cell manipulation for biomedical and screening applications

    NASA Astrophysics Data System (ADS)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Sinram, Merve; Heeger, Patrick; Murua Escobar, Hugo; Meyer, Heiko; Ripken, Tammo

    2015-03-01

    Modulation of the cell membrane permeability by the plasmonic interaction of gold nanoparticles and short laser pulses for cell manipulation or destruction has been the objective of several recent studies. Gold nanoparticles in close vicinity to the cellular membrane are irradiated to evoke a nanoscale membrane perforation, enabling extracellular molecules to enter the cell. However, besides several basic studies no real translation from proof of concept experiments to routine usage of this approach was achieved so far. In order to provide a reproducible and easy-to-use platform for gold nanoparticle mediated (GNOME) laser manipulation, we established an automated and encased laser setup. We demonstrate its feasibility for high-throughput cell manipulation. In particular, protein delivery into canine cancer cells is shown. The biofunctional modification of cells was investigated using the caspase 3 protein, which represents a central effector molecule in the apoptotic signaling cascade. An efficient and temporally well-defined induction of apoptosis was observed with an early onset 2 h after protein delivery by GNOME laser manipulation. Besides protein delivery, modulation of gene function using GNOME laser transfection of antisense molecules was demonstrated, showing the potential of this technique for basic science and screening purposes. Concluding, we established GNOME laser manipulation of cells as a routine method, which can be utilized reliably for the efficient delivery of biomolecules. Its intrinsic features, being low impairment of the cell viability, high delivery efficiency and universal applicability, render this method well suited for a large variety of biomedical application.

  11. Interleukin-5 mediates peritoneal eosinophilia induced by the F1 cell wall fraction of Histoplasma capsulatum.

    PubMed

    Sá-Nunes, A; Medeiros, A I; Faccioli, L H

    2004-03-01

    An alkali-insoluble fraction 1 (F1), which contains mainly ss-glucan isolated from the cell wall of Histoplasma capsulatum, induces eosinophil recruitment into the peritoneal cavity of mice. The present study was carried out to determine the participation of interleukin-5 (IL-5) in this process. Inbred C57BL/6 male mice weighing 15-20 g were treated ip with 100 microg of anti-IL-5 monoclonal antibody (TRFK-5, N=7) or an isotype-matched antibody (N=7), followed by 300 microg F1 in 1 ml PBS ip 24 h later. Controls (N=5) received only 1 ml PBS. Two days later, cells from the peritoneal cavity were harvested by injection of 3 ml PBS and total cell counts were determined using diluting fluid in a Neubauer chamber. Differential counts were performed using Rosenfeld-stained cytospin preparations. The F1 injection induced significant (P<0.01) leukocyte recruitment into the peritoneal cavity (8.4 x 10(6) cells/ml) when compared with PBS alone (5.5 x 10(6) cells/ml). Moreover, F1 selectively (P<0.01) induced eosinophil recruitment (1 x 10(6) cells/ml) when compared to the control group (0.07 x 10(6) cells/ml). Treatment with TRFK-5 significantly (P<0.01) inhibited eosinophil recruitment (0.18 x 10(6) cells/ml) by F1 without affecting recruitment of mononuclear cells or neutrophils. We conclude that the F1 fraction of the cell wall of H. capsulatum induces peritoneal eosinophilia by an IL-5-dependent mechanism. Depletion of this cytokine does not have effect on the recruitment of other cell types induced by F1.

  12. T cell regulation of the chronic peritoneal neutrophilia during mycobacterial infections.

    PubMed Central

    Appelberg, R

    1992-01-01

    Intraperitoneal infection of mice with mycobacteria induces the persistent mobilization of neutrophils to the infected peritoneal cavities. The recruitment of the neutrophils was mediated by the immune system since it was enhanced by immunization and reduced in T cell-deficient nude and SCID mice. Anti-mitotic treatments with cyclophosphamide or X-rays led to a reduction in the number of mononuclear cells in the peritoneal cavity of infected mice, followed by a reduction in neutrophil numbers despite the presence of a normal circulating pool of neutrophils. The depletion of T cells with antibodies during mycobacterial i.p. infection led to a reduction in the number of neutrophils. Such a reduction was more extensive if the antibodies were administered early. Our data suggest that T cells are partially involved in the direct recruitment of neutrophils during chronic mycobacteriosis but they also play a role in the priming of other cell types for the mobilization of these phagocytes. PMID:1628420

  13. Ultrashort laser pulse cell manipulation using nano- and micro- materials

    NASA Astrophysics Data System (ADS)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander

    2010-08-01

    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  14. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells.

    PubMed

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-11-13

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF-κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy.

  15. Rotational manipulation of single cells and organisms using acoustic waves

    PubMed Central

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-01-01

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. PMID:27004764

  16. Cell stimulation with optically manipulated microsources

    USDA-ARS?s Scientific Manuscript database

    Many cells are sensitive to spatial and temporal heterogeneities in concentrations of molecules. Polarization of tissues and cells in molecular gradients plays a critical role for a large variety of biological processes including embryogenesis, and the response of immune cells to chemical ques. The ...

  17. Ultrasound assisted particle and cell manipulation on-chip.

    PubMed

    Mulvana, Helen; Cochran, Sandy; Hill, Martyn

    2013-11-01

    Ultrasonic fields are able to exert forces on cells and other micron-scale particles, including microbubbles. The technology is compatible with existing lab-on-chip techniques and is complementary to many alternative manipulation approaches due to its ability to handle many cells simultaneously over extended length scales. This paper provides an overview of the physical principles underlying ultrasonic manipulation, discusses the biological effects relevant to its use with cells, and describes emerging applications that are of interest in the field of drug development and delivery on-chip. © 2013.

  18. Mannose receptor is highly expressed by peritoneal dendritic cells in endometriosis.

    PubMed

    Izumi, Gentaro; Koga, Kaori; Takamura, Masashi; Makabe, Tomoko; Nagai, Miwako; Urata, Yoko; Harada, Miyuki; Hirata, Tetsuya; Hirota, Yasushi; Fujii, Tomoyuki; Osuga, Yutaka

    2017-01-01

    To characterize peritoneal dendritic cells (DCs) in endometriosis and to clarify their role in its etiology. Experimental. University hospital. Sixty-three women (35 patients with endometriosis and 28 control women) who had undergone laparoscopic surgery. Peritoneal DCs from endometriosis and control samples were analyzed for the expression of cell surface markers. Monocyte-derived dendritic cells (Mo-DCs) were cultured with dead endometrial stromal cells (dESCs) to investigate changes in phagocytic activity and cytokine expression. Cell surface markers and cytokine expression and identification with the use of flow cytometry or reverse-transcription polymerase chain reaction (RT-PCR). Changes in cytokine expression and phagocytic activity of Mo-DCs cultured with dESCs and d-mannan were measured with the use of flow cytometry and RT-PCR. The proportion of mannose receptor (MR)-positive myeloid DC type 1 was higher in endometriosis samples than in control samples. The blocking of MR reduced phagocytosis of dESCs by Mo-DCs. Mo-DCs cultured with dESCs expressed higher levels of interleukin (IL) 1β and IL-6 than control samples. Peritoneal DCs in endometriosis tissue express high levels of MR, which promotes phagocytosis of dead endometrial cells and thereby contributes to the etiology of endometriosis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Thermophoretic manipulation of molecules inside living cells.

    PubMed

    Reichl, Maren R; Braun, Dieter

    2014-11-12

    The complexity of biology requires that measurements of biomolecular interactions be performed inside living cells. While electrophoresis inside cells is prohibited by the cell membrane, the movement of molecules along a temperature gradient appears feasible. This thermophoresis could be used to quantify binding affinities in vitro at picomolar levels and perform pharmaceutical fragment screens. Here we changed the measurement paradigm to enable measurements inside living cells. The temperature gradient is now applied along the optical axis and measures thermophoretic properties for each pixel of the camera image. We verify the approach for polystyrene beads and DNA of various lengths using finite element modeling. Thermophoresis inside living cells is able to record thermophoretic mobilities and intracellular diffusion coefficients across the whole cytoplasm. Interestingly, we find a 30-fold reduced diffusion coefficient inside the cell, indicating that molecular movement across the cell cytoplasm is slowed down due to molecular crowding.

  20. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.

  1. Digital Microfluidics for Manipulation and Analysis of a Single Cell

    PubMed Central

    He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang

    2015-01-01

    The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed. PMID:26389890

  2. Digital Microfluidics for Manipulation and Analysis of a Single Cell.

    PubMed

    He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang

    2015-09-15

    The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.

  3. Remote Learning for the Manipulation and Control of Robotic Cells

    ERIC Educational Resources Information Center

    Goldstain, Ofir; Ben-Gal, Irad; Bukchin, Yossi

    2007-01-01

    This work proposes an approach to remote learning of robotic cells based on internet and simulation tools. The proposed approach, which integrates remote-learning and tele-operation into a generic scheme, is designed to enable students and developers to set-up and manipulate a robotic cell remotely. Its implementation is based on a dedicated…

  4. Dielectrophoretic manipulation of cells with spiral electrodes.

    PubMed Central

    Wang, X B; Huang, Y; Wang, X; Becker, F F; Gascoyne, P R

    1997-01-01

    Electrokinetic responses of human breast cancer MDA-MB-231 cells were studied in suspensions of conductivities 18, 56, and 160 mS/m on a microelectrode array consisting of four parallel spiral electrode elements energized with phase-quadrature signals of frequencies between 100 Hz and 100 MHz. At low frequencies cells were levitated and transported toward or away from the center of the spiral array, whereas at high frequencies cells were trapped at electrode edges. The frequencies of transition between these characteristic cell behaviors increased with increasing suspension conductivity. Levitation heights and radial velocities were determined simultaneously for individual cells as a function of the applied field magnitude and frequency. Results were compared with theoretical predictions from generalized dielectrophoresis theory applied in conjunction with cell dielectric parameters and simulated electric field distributions corrected for electrode polarization effects. It was shown that the conventional and traveling-wave dielectrophoretic force components dominated cell levitation and radial motion, respectively. Both theoretical predictions and experimental data showed that the cell radial velocity was very sensitive to the field frequency when the in-phase component of the field-induced polarization was close to zero. Applications of spiral electrode arrays, including the isolation of cells of clinical relevance, are discussed. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 11 PMID:9083692

  5. [³H]serotonin release assay using antigen-stimulated rat peritoneal mast cells.

    PubMed

    Skaper, Stephen D; Facci, Laura

    2012-01-01

    The concentration of nerve growth factor (NGF) is elevated in a number of inflammatory and autoimmune states in conjunction with increased accumulation of mast cells. Mast cells, which are of hematopoietic lineage, and NGF appear to be involved in neuroimmune interactions and tissue inflammation. Mast cells themselves are capable of producing and responding to NGF. Here we describe a protocol for the isolation and culture of peritoneal-derived rat mast cells, together with a [(3)H]serotonin release assay which is useful in assessing the effects of antigens and neurotrophic factors on mast-cell activation.

  6. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  7. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    PubMed

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research.

  8. Perspectives in nanostructure assisted laser manipulation of mammalian cells

    NASA Astrophysics Data System (ADS)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Hoerdt, Anton; Murua Escobar, Hugo; Ripken, Tammo; Meyer, Heiko

    2015-03-01

    The interaction of cell-adhered nanostructures with laser light has attracted much interest within the biomedical field. Molecular delivery using a variety of plasmonic nanostructures, such as structured surfaces, nanoparticles and particle clusters, is currently evolving from its proof-of-concept into a routine method. Here, gold represents the material of choice, as it provides unique optical properties, different surface modifications as well as biocompatibility. In addition, new materials (e.g. polypyrrole) provide interesting alternatives. Applying this approach, a variety of molecules, such as fluorescent dyes, proteins, antisense structures, and DNA, has been transfected in order to manipulate the cellular functions in different experimental settings. Antisense structures, for example, allow the efficient down regulation of the gene activity of a target, providing insights into the gene's function. The delivery of proteins, as executing molecules in the cell, can exhibit an immediate effect on the cell behavior, allowing a minute observation of the intracellular kinetics. Direct cell manipulation can be achieved with this approach as well. Increasing the nanoparticle concentration and/or the radiant exposure, effective cell destruction is induced. Using targeted nanoparticles (e.g. by antibody conjugation) in combination with spatially selective laser irradiation permits well-directed cell manipulation even in mixed cultures and potentially in tissues. Furthermore, excited gold nanoparticles can directly trigger cellular reactions, which can possibly be utilized for cell stimulation. The manifold possibilities of nanostructure assisted laser manipulation are still in development.

  9. Intraperitoneal cefazolin and ceftazidime effects on human peritoneal mesothelial cell release of cancer antigen-125.

    PubMed

    Manley, Harold J; Elwell, Rowland J; Bailie, George R; Welch, Charles L

    2004-12-01

    Intraperitoneal (IP) cefazolin and ceftazidime are recommended as empiric treatment for peritoneal dialysis (PD)-associated peritonitis. Human peritoneal mesothelial cells (HPMCs) may be affected by high IP cefazolin and ceftazidime concentrations. Peritoneal dialysate cancer antigen-125 (CA-125) appearance rate can be used to measure HPMC damage. To determine whether IP cefazolin and ceftazidime increase peritoneal CA-125 appearance rate. The study consisted of 2 phases. In phase I, no antibiotic was administered, and in phase II, patients received IP cefazolin and ceftazidime (15 mg/kg rounded to nearest 100 mg). Phase II occurred immediately after phase I. Each phase used a 4-hour dwell time with 2 L of dextrose 2.5% dialysate. Dialysate samples were collected at 0, 0.5, 1, 2, and 4 hours during each phase. Samples were assayed for CA-125, and CA-125 appearance rate was calculated. Thirteen patients were recruited (7 men; aged 44.0 +/-16.0 y). The mean +/- SD (range) CA-125 dialysate concentration after phases I and II were 6.6 +/- 3.7 U/mL (2.3-15.0) and 6.4 +/-3.8 U/mL (1.6-13.8), respectively (p = 0.46). The CA-125 appearance rate after phases I and II were 51.9 +/- 31.3 U/min/1.73 m(2) (13.8-113.0) and 50.5 +/- 32.9 U/min/1.73 m(2) (11.0-104.0), respectively (p = 0.57). The slopes of the regression lines of CA-125 appearance rate were not significantly different between phases I and II. These findings demonstrate that concurrently administered IP cefazolin and ceftazidime have no effect on HPMC release of CA-125 in non-infected PD patients.

  10. Cellular Plasticity of Inflammatory Myeloid Cells in the Peritoneal Foreign Body Response

    PubMed Central

    Mooney, Jane E.; Rolfe, Barbara E.; Osborne, Geoffrey W.; Sester, David P.; van Rooijen, Nico; Campbell, Gordon R.; Hume, David A.; Campbell, Julie H.

    2010-01-01

    Implantation of sterile foreign objects in the peritoneal cavity of an animal initiates an inflammatory response and results in encapsulation of the objects by bone marrow-derived cells. Over time, a multilayered tissue capsule develops with abundant myofibroblasts embedded in extracellular matrix. The present study used the transgenic MacGreen mouse to characterize the time-dependent accumulation of monocyte subsets and neutrophilic granulocytes in the inflammatory infiltrate and within the tissue capsule by their differential expression of the csf1r-EGFP transgene, F4/80, and Ly6C. As the tissue capsule developed, enhanced green fluorescent protein-positive cells changed from rounded to spindle-shaped morphology and began to co-express the myofibroblast marker α-smooth muscle actin. Expression increased with time: at day 14, 11.13 ± 0.67% of tissue capsule cells co-expressed these markers, compared with 50.77 ± 12.85% of cells at day 28. The importance of monocyte/macrophages in tissue capsule development was confirmed by clodronate-encapsulated liposome removal, which resulted in almost complete abrogation of capsule development. These results confirm the importance of monocyte/macrophages in the tissue response to sterile foreign objects implanted in the peritoneal cavity. In addition, the in vivo plasticity of peritoneal macrophages and their ability to transdifferentiate from a myeloid to mesenchymal phenotype is demonstrated. PMID:20008135

  11. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response.

    PubMed

    Mooney, Jane E; Rolfe, Barbara E; Osborne, Geoffrey W; Sester, David P; van Rooijen, Nico; Campbell, Gordon R; Hume, David A; Campbell, Julie H

    2010-01-01

    Implantation of sterile foreign objects in the peritoneal cavity of an animal initiates an inflammatory response and results in encapsulation of the objects by bone marrow-derived cells. Over time, a multilayered tissue capsule develops with abundant myofibroblasts embedded in extracellular matrix. The present study used the transgenic MacGreen mouse to characterize the time-dependent accumulation of monocyte subsets and neutrophilic granulocytes in the inflammatory infiltrate and within the tissue capsule by their differential expression of the csf1r-EGFP transgene, F4/80, and Ly6C. As the tissue capsule developed, enhanced green fluorescent protein-positive cells changed from rounded to spindle-shaped morphology and began to co-express the myofibroblast marker alpha-smooth muscle actin. Expression increased with time: at day 14, 11.13 +/- 0.67% of tissue capsule cells co-expressed these markers, compared with 50.77 +/- 12.85% of cells at day 28. The importance of monocyte/macrophages in tissue capsule development was confirmed by clodronate-encapsulated liposome removal, which resulted in almost complete abrogation of capsule development. These results confirm the importance of monocyte/macrophages in the tissue response to sterile foreign objects implanted in the peritoneal cavity. In addition, the in vivo plasticity of peritoneal macrophages and their ability to transdifferentiate from a myeloid to mesenchymal phenotype is demonstrated.

  12. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.

    PubMed

    Coakley, W T; Whitworth, G; Grundy, M A; Gould, R K; Allman, R

    1994-04-01

    Cells or particles suspended in a sonic standing wave field experience forces which concentrate them at positions separated by half a wavelength. The aims of the study were: (1) To optimise conditions and test theoretical predictions for ultrasonic concentration and separation of particles or cells. (2) To investigate the scale-up of experimental systems. (3) To establish the maximum acoustic pressure to which a suspension might be exposed without inducing order-disrupting cavitation. (4) To compare the efficiencies of techniques for harvesting concentrated particles. The primary outcomes were: (1) To design of an acoustic pressure distribution within cylindrical containers which led to uniformly repeating sound pressure patterns throughout the containers in the standing wave mode, concentrated suspended eukaryotic cells or latex beads in clumps on the axis of wide containers, and provided uniform response of all particle clumps to acoustic harvesting regimes. Theory for the behaviour (e.g. movement to different preferred sites) of particles as a function of specific gravity and compressibility in containers of different lateral dimensions was extended and was confirmed experimentally. Convective streaming in the container was identified as a variable requiring control in the manipulation of particles of 1 micron or smaller size. (2) Consideration of scale-up from the model 10 ml volume led to the conclusion that flow systems in intermediate volume containers have more promise than scaled up batch systems. (3) The maximum acoustic pressures applicable to a suspension without inducing order-disrupting cavitation or excessive conductive streaming at 1 MHz and 3 MHz induce a force equivalent to a centrifugal field of about 10(3) g. (4) The most efficient technique for harvesting concentrated particles was the introduction of a frequency increment between two transducers to form a slowly sweeping pseudo-standing wave. The attractive inter-droplet ultrasonic standing

  13. High-Throughput Single-Cell Manipulation in Brain Tissue

    PubMed Central

    Steinmeyer, Joseph D.; Yanik, Mehmet Fatih

    2012-01-01

    The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution. PMID:22536416

  14. High-throughput single-cell manipulation in brain tissue.

    PubMed

    Steinmeyer, Joseph D; Yanik, Mehmet Fatih

    2012-01-01

    The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution.

  15. Neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues

    SciTech Connect

    Terasawa, Masao; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-12-12

    Antigen-transporting cells take up pathogens, and then migrate from sites of inflammation to secondary lymphoid tissues to induce an immune response. Among antigen-transporting cells, dendritic cells (DCs) are believed to be the most potent and professional antigen-presenting cells that can stimulate naive T cells. However, the cells that transport antigens, tumor cell antigens in particular, have not been clearly identified. In this study we have analyzed what types of cells transport tumor cell antigens to secondary lymphoid tissues. We show that neutrophils, monocytes and macrophages but not DCs engulf X-irradiated P388 leukemic cells after their injection into the peritoneal cavity, and that neutrophils and monocytes but not macrophages migrate to the parathymic lymph nodes (pLN), the blood, and then the spleen. The monocytes in the pLN comprise Gr-1{sup -} and Gr-1{sup +} ones, and some of these cells express CD11c. Overall, this study demonstrates that neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues.

  16. Alterations of Intercellular Junctions in Peritoneal Mesothelial Cells from Patients Undergoing Dialysis: Effect of Retinoic Acid

    PubMed Central

    Retana, Carmen; Sanchez, Elsa; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas, Jesus; Cruz, Carmen; Vital, Socorro; Reyes, Jose L.

    2015-01-01

    ♦ Background: Dialysis patients are classified according to their peritoneal permeability as low transporter (LT, low solute permeability) or high transporter (HT, high solute permeability). Tight junction (TJ) proteins are critical to maintain ions, molecules and water paracellular transport through peritoneum. Exposure to peritoneal dialysis solutions causes damage to TJ in human peritoneal mesothelial cells (HPMCs). We analyzed the quantity, distribution and function of TJ proteins: claudin-1, -2 and -8, ZO-1 and occludin, in HPMC cultures from LT and HT patients. Since all-trans retinoic acid (ATRA) might modify the expression of TJ proteins, we studied its effect on HPMCs. ♦ Methods: Control HPMCs were isolated from human omentum, while HT or LT cells were obtained from dialysis effluents. Cells were cultured in presence of ATRA 0, 50 or 100 nM. Transepithelial electrical resistance (TER) measurement, immunostaining and Western blot analyses were performed. ♦ Results: HT exhibited lower TER than control and LT monolayers. Immunofluorescence for TJ was weak and discontinuous along the cell contour, in LT and HT. Furthermore, claudin-1, occludin and ZO-1 expressions were decreased. In all groups, claudin-2 was localized at nuclei. We observed that ATRA improved TJ distribution and increased TJ expression in HT. This retinoid did not modify claudin-2 and -8 expressions. All-trans retinoic acid decreased TER in HT, but had no effect in LT. ♦ Conclusions: Tight junctions were altered in HPMCs from dialyzed patients. The HT monolayer has lower TER than LT, which might be associated with the peritoneal permeability in these patients. ATRA might be a therapeutic alternative to maintain mesothelial integrity, since it improved TJ localization and expression. PMID:24584604

  17. Magnetic Wire Traps and Programmable Manipulation of Biological Cells

    NASA Astrophysics Data System (ADS)

    Vieira, G.; Henighan, T.; Chen, A.; Hauser, A. J.; Yang, F. Y.; Chalmers, J. J.; Sooryakumar, R.

    2009-09-01

    We present a multiplex method, based on microscopic programmable magnetic traps in zigzag wires patterned on a platform, to simultaneously apply directed forces on multiple fluid-borne cells or biologically inert magnetic microparticles or nanoparticles. The gentle tunable forces do not produce damage and retain cell viability. The technique is demonstrated with T-lymphocyte cells remotely manipulated (by a joystick) along desired trajectories on a silicon surface with average speeds up to 20μm/s.

  18. Effect of Corynebacterium acnes on interferon production in mouse peritoneal exudate cells.

    PubMed Central

    Fischbach, J; Glasgow, L A

    1975-01-01

    Corynebacterium acnes, an organism closely related to C. parvum, has been recognized to have a striking effect on the reticuloendothelial system, as well as on both humoral and cellular immunity. In mice previously exposed to C. acnes, serum interferon levels induced by injection of Newcastle disease virus (NDV), Chikungunya virus (CV), and polyinosinic-polycytidylic acid are suppressed. When peritoneal macrophages and lymphocytes from animals exposed to C. acnes were cultivated in vitro, their capacity to produce interferon in response to NDV and CV was reduced. Furthermore, the interferon-producing capacity of these cells in tissue culture was inhibited after exposure to C. acnes to vitro. Exposure of separated populations of peritoneal macrophages and lymphocytes to C. acnes in vitro demonstrated that the interferon response to NDV by both cell types is inhibited. Peritoneal macrophages appear to be the major contributor to the interferon response in this system. Finally, this inhibitory effect was shown to occur after exposure to a purified cell wall preparation of C. acnes organisms, as well as a lipid extract of this preparation. PMID:234914

  19. Isolation and manipulation of mouse trophoblast stem cells.

    PubMed

    Hayakawa, Koji; Himeno, Emi; Tanaka, Satoshi; Kunath, Tilo

    2015-02-02

    The isolation of stable trophoblast stem (TS) cell lines from early mouse embryos has provided a useful cell culture model to study trophoblast development. TS cells are derived from pre-implantation blastocysts or from the extraembryonic ectoderm of early post-implantation embryos. The derivation and maintenance of mouse TS cells is dependent upon continuous fibroblast growth factor (FGF) signaling. Gene expression analysis, differentiation in culture, and chimera formation show that TS cells accurately model the mouse trophoblast lineage. This unit describes how to derive, maintain, and manipulate TS cells, including DNA transfection and chimera formation.

  20. Human Cytomegalovirus Manipulation of Latently Infected Cells

    PubMed Central

    Sinclair, John H.; Reeves, Matthew B.

    2013-01-01

    Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a “silent partner” until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV. PMID:24284875

  1. Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells.

    PubMed

    Zhai, Yihui; Bloch, Jacek; Hömme, Meike; Schaefer, Julia; Hackert, Thilo; Philippin, Bärbel; Schwenger, Vedat; Schaefer, Franz; Schmitt, Claus P

    2012-07-01

    Biocompatible peritoneal dialysis fluids (PDF) are buffered with lactate and/or bicarbonate. We hypothesized that the reduced toxicity of the biocompatible solutions might unmask specific effects of the buffer type on mesothelial cell functions. Human peritoneal mesothelial cells (HPMC) were incubated with bicarbonate (B-)PDF or lactate-buffered (L-)PDF followed by messenger RNA (mRNA) and protein analysis. Gene silencing was achieved using small interfering RNA (siRNA), functional studies using Transwell culture systems, and monolayer wound-healing assays. Incubation with B-PDF increased HPMC migration in the Transwell and monolayer wound-healing assay to 245 ± 99 and 137 ± 11% compared with L-PDF. Gene silencing showed this effect to be entirely dependent on the expression of aquaporin-1 (AQP-1) and independent of AQP-3. Exposure of HPMC to B-PDF increased AQP-1 mRNA and protein abundance to 209  ± 80 and 197  ±  60% of medium control; the effect was pH dependent. L-PDF reduced AQP-1 mRNA. Addition of bicarbonate to L-PDF increased AQP-1 abundance by threefold; mRNA half-life remained unchanged. Immunocytochemistry confirmed opposite changes of AQP-1 cell-membrane abundance with B-PDF and L-PDF. Peritoneal mesothelial AQP-1 abundance and migration capacity is regulated by pH and buffer agents used in PD solutions. In vivo studies are required to delineate the impact with respect to long-term peritoneal membrane integrity and function.

  2. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions.

  3. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Treesearch

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  4. 18. Photocopy of photograph. VIEW WITHIN POSTMORTEM CELL OF MANIPULATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph. VIEW WITHIN POST-MORTEM CELL OF MANIPULATOR ARMS BEING USED TO MOVE METAL BARS FROM ONE LOCATION TO ANOTHER. Photographer unknown, ca. 1965, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  5. Increased NHC Cells in the Peritoneal Cavity of Plasmacytoma Susceptible BALB/c Mouse

    PubMed Central

    Sánchez-González, Berenice; García-Vázquez, Francisco Javier; Farfán-Morales, José Eduardo; Jiménez-Zamudio, Luis Antonio

    2015-01-01

    BALB/c strain mice are unique in that they develop murine plasmacytoma (MPC) as a consequence of the inflammation induced by pristane oil injection in the peritoneal cavity. In this work the Treg, Th17, B1, B2, and NHC lymphocyte populations from the peritoneal environment of BALB/c, the susceptible strain, and C57BL/6 mice, which do not develop MPC after oil treatment, were studied. Both oil-treated strains showed decreased levels of Th17 lymphocytes, no significant variation in Treg lymphocytes, and a drastic decrease of all B lymphocyte populations. However, only oil-induced BALB/c showed increased levels of natural helper cells (NHC) which could be important in the myeloma induction. PMID:26504358

  6. Paricalcitol Reduces Peritoneal Fibrosis in Mice through the Activation of Regulatory T Cells and Reduction in IL-17 Production

    PubMed Central

    González-Mateo, Guadalupe T.; Fernández-Míllara, Vanessa; Bellón, Teresa; Liappas, Georgios; Ruiz-Ortega, Marta; López-Cabrera, Manuel; Selgas, Rafael; Aroeira, Luiz S.

    2014-01-01

    Fibrosis is a significant health problem associated with a chronic inflammatory reaction. The precise mechanisms involved in the fibrotic process are still poorly understood. However, given that inflammation is a major causative factor, immunomodulation is a possible therapeutic approach to reduce fibrosis. The vitamin D receptor (VDR) that is present in all hematopoietic cells has been associated with immunomodulation. We investigated whether the intraperitoneal administration of paricalcitol, a specific activator of the VDR, modulates peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis. We characterized the inflammatory process in the peritoneal cavity of mice treated or not treated with paricalcitol and analyzed the ensuing fibrosis. The treatment reduced peritoneal IL-17 levels, which strongly correlated with a significantly lower peritoneal fibrotic response. In vitro studies demonstrate that both CD4+ and CD8+ regulatory T cells appear to impact the regulation of IL-17. Paricalcitol treatment resulted in a significantly increased frequency of CD8+ T cells showing a regulatory phenotype. The frequency of CD4+ Tregs tends to be increased, but it did not achieve statistical significance. However, paricalcitol treatment increased the number of CD4+ and CD8+ Treg cells in vivo. In conclusion, the activation of immunological regulatory mechanisms by VDR signaling could prevent or reduce fibrosis, as shown in peritoneal fibrosis induced by PDF exposure in mice. PMID:25279459

  7. Olopatadine inhibits exocytosis in rat peritoneal mast cells by counteracting membrane surface deformation.

    PubMed

    Baba, Asuka; Tachi, Masahiro; Maruyama, Yoshio; Kazama, Itsuro

    2015-01-01

    Besides its anti-allergic properties as a histamine receptor antagonist, olopatadine stabilizes mast cells by inhibiting the release of chemokines. Since olopatadine bears amphiphilic features and is preferentially partitioned into the lipid bilayers of the plasma membrane, it would induce some morphological changes in mast cells and thus affect the process of exocytosis. Employing the standard patch-clamp whole-cell recording technique, we examined the effects of olopatadine and other anti-allergic drugs on the membrane capacitance (Cm) in rat peritoneal mast cells during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Low concentrations of olopatadine (1 or 10 µM) did not significantly affect the GTP-γ-S-induced increase in the Cm. However, 100 µM and 1 mM olopatadine almost totally suppressed the increase in the Cm. Additionally, these doses completely washed out the trapping of the dye on the cell surface, indicating that olopatadine counteracted the membrane surface deformation induced by exocytosis. As shown by electron microscopy, olopatadine generated inward membrane bending in mast cells. This study provides electrophysiological evidence for the first time that olopatadine dose-dependently inhibits the process of exocytosis in rat peritoneal mast cells. Such mast cell stabilizing properties of olopatadine may be attributed to its counteracting effects on the plasma membrane deformation in degranulating mast cells. © 2015 S. Karger AG, Basel.

  8. Prevention of peritoneal carcinomatosis from colon cancer cell seeding using a pirarubicin solution in rats and nude mice.

    PubMed

    Favoulet, Patrick; Benoit, Laurent; Osmak, Liliana; Polycarpe, Emmanuel; Esquis, Philippe; Duvillard, Christian; Guiu, Boris; Rat, Patrick; Favre, Jean Pierre; Chauffert, Bruno

    2004-05-01

    Free malignant cells, which are frequently detected in the washing liquid from the peritoneal cavity before and after resection of human colorectal cancer, are suspected to cause recurrent peritoneal cancer. We carried out an experimental study to compare the prophylactic efficacy of washing the peritoneum with several anticancer drugs and the antiseptic povidone-iodine against the development of peritoneal carcinomatosis from colonic origin in rats and nude mice. The in vitro anticancer activity of a short, 15-minute exposure of pirarubicin, doxorubicin, 5-fluorouracil, cisplatin, mitomycin C, and 1% povidone-iodine was first evaluated by an MTT assay on DHD/K12/PROb rat and LS174T human colon cancer cells. For the in vivo experiments, BDIX rats were inoculated intraperitoneally (i.p.) with 1 x 10(6) DHD/K12/PROb cells followed by peritoneal scarring and a colocolic anastomosis. A 15-minute peritoneal washing with the anticancer drugs or povidone-iodine was then performed. Nude mice were i.p.-inoculated with 1 x 10(7) LS174T human cells and treated 2 hours later with i.p. pirarubicin. Only pirarubicin, mitomycin C, and povidone-iodine were fully cytotoxic in vitro against DHD/K12/PROb rat colon cancer cells. In contrast to pirarubicin and povidone-iodine, mitomycin C was not completely active against LS174Tcells. In vivo, pirarubicin cured DHD/K12/PROb-inoculated rats, even at the site of the peritoneal scarring and intestinal anastomosis. i.p. pirarubicin prevented the development of peritoneal carcinomatosis and liver metastasis in LS174T-inoculated mice. i.p. washing with pirarubicin cured 2-day-old, but not 7-day-old, peritoneal carcinomatosis in rats. Short exposure to i.p. pirarubicin is nontoxic and more active than povidone-iodine and other anticancer drugs in preventing the development of peritoneal carcinomatosis from colonic origin in rats and mice. The prophylactic effect of preoperative peritoneal washing with pirarubicin on the development of

  9. Mechanical force characterization in manipulating live cells with optical tweezers.

    PubMed

    Wu, Yanhua; Sun, Dong; Huang, Wenhao

    2011-02-24

    Laser trapping with optical tweezers is a noninvasive manipulation technique and has received increasing attentions in biological applications. Understanding forces exerted on live cells is essential to cell biomechanical characterizations. Traditional numerical or experimental force measurement assumes live cells as ideal objects, ignoring their complicated inner structures and rough membranes. In this paper, we propose a new experimental method to calibrate the trapping and drag forces acted on live cells. Binding a micro polystyrene sphere to a live cell and moving the mixture with optical tweezers, we can obtain the drag force on the cell by subtracting the drag force on the sphere from the total drag force on the mixture, under the condition of extremely low Reynolds number. The trapping force on the cell is then obtained from the drag force when the cell is in force equilibrium state. Experiments on numerous live cells demonstrate the effectiveness of the proposed force calibration approach.

  10. Measurement and manipulation of cell size parameters in fission yeast.

    PubMed

    Zegman, Yonatan; Bonazzi, Daria; Minc, Nicolas

    2015-01-01

    Cells usually grow to a certain size before they divide. The fission yeast Schizosaccharomyces pombe is an established model to dissect the molecular control of cell size homeostasis and cell cycle. In this chapter, we describe two simple methods to: (1) precisely compute geometrical parameters (cell length, diameter, surface, and volume) of single growing and dividing fission yeast cells with image analysis scripts and (2) manipulate cell diameter with microfabricated chambers and assess for cell size at division. We demonstrate the strength of these approaches in the context of growing spores, which constantly change size and shape and in deriving allometric relationships between cell geometrical parameters associated with G2/M transition. We emphasize these methods to be useful to investigate problems of growth, size, and division in fungal or bacterial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    PubMed Central

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed for the successful generation of gene knockout embryonic stem cells using homologous recombination technologies. PMID:19731225

  12. Detection methods and clinical significance of free peritoneal tumor cells found during colorectal cancer surgery

    PubMed Central

    Sibio, Simone; Fiorani, Cristina; Stolfi, Carmine; Divizia, Andrea; Pezzuto, Roberto; Montagnese, Fabrizio; Bagaglini, Giulia; Sammartino, Paolo; Sica, Giuseppe Sigismondo

    2015-01-01

    Peritoneal washing is now part of the standard clinical practice in several abdominal and pelvic neoplasias. However, in colorectal cancer surgery, intra-peritoneal free cancer cells (IFCC) presence is not routinely investigated and their prognostic meaning is still unclear. When peritoneal washing results are positive for the presence of IFCC a worse outcome is usually expected in these colorectal cancer operated patients, but it what is not clear is whether it is associated with an increased risk of local recurrence. It is authors’ belief that one of the main reasons why IFCC are not researched as integral part of the routine staging system for colon cancer is that there still isn’t a diagnostic or detection method with enough sensibility and specificity. However, the potential clinical implications of a routine research for the presence IFCC in colon neoplasias are enormous: not only to obtain a more accurate clinical staging but also to offer different therapy protocols, based on the presence of IFCC. Based on this, adjuvant chemotherapy could be offered to those patients found to be positive for IFCC; also, protocols of proactive intraperitoneal chemotherapy could be applied. Although presence of IFCC appears to have a valid prognostic significance, further studies are needed to standardize detection and examination procedures, to determine if there are and which are the stages more likely to benefit from routine search for IFCC. PMID:26425265

  13. Detection methods and clinical significance of free peritoneal tumor cells found during colorectal cancer surgery.

    PubMed

    Sibio, Simone; Fiorani, Cristina; Stolfi, Carmine; Divizia, Andrea; Pezzuto, Roberto; Montagnese, Fabrizio; Bagaglini, Giulia; Sammartino, Paolo; Sica, Giuseppe Sigismondo

    2015-09-27

    Peritoneal washing is now part of the standard clinical practice in several abdominal and pelvic neoplasias. However, in colorectal cancer surgery, intra-peritoneal free cancer cells (IFCC) presence is not routinely investigated and their prognostic meaning is still unclear. When peritoneal washing results are positive for the presence of IFCC a worse outcome is usually expected in these colorectal cancer operated patients, but it what is not clear is whether it is associated with an increased risk of local recurrence. It is authors' belief that one of the main reasons why IFCC are not researched as integral part of the routine staging system for colon cancer is that there still isn't a diagnostic or detection method with enough sensibility and specificity. However, the potential clinical implications of a routine research for the presence IFCC in colon neoplasias are enormous: not only to obtain a more accurate clinical staging but also to offer different therapy protocols, based on the presence of IFCC. Based on this, adjuvant chemotherapy could be offered to those patients found to be positive for IFCC; also, protocols of proactive intraperitoneal chemotherapy could be applied. Although presence of IFCC appears to have a valid prognostic significance, further studies are needed to standardize detection and examination procedures, to determine if there are and which are the stages more likely to benefit from routine search for IFCC.

  14. Angiopoietin-like protein 2 induces proinflammatory responses in peritoneal cells

    SciTech Connect

    Umikawa, Masato; Umikawa, Asako; Asato, Tsuyoshi; Takei, Kimiko; Matsuzaki, Goro; Kariya, Ken-ichi; Zhang, Cheng Cheng

    2015-11-13

    Monocytes and macrophages are important effectors and regulators of inflammation, and both their differentiation and activation are regulated strictly in response to environmental cues. Angiopoietin-like protein 2 (Angptl2) is a multifaceted protein, displaying many physiological and pathological functions in inflammation, angiogenesis, hematopoiesis, and tumor development. Although recent studies implicate Angptl2 in chronic inflammation, the mechanisms of inflammation caused by Angptl2 remain unclear. The purpose of the present study was to elucidate the role of Angptl2 in inflammation by understanding the effects of Angptl2 on monocytes/macrophages. We showed that Angptl2 directly activates resident murine peritoneal monocytes and macrophages and induces a drastic upregulation of the transcription of several inflammatory genes including nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, and several proinflammatory cytokine genes such as interleukin (IL)-1β, IL-6, TNFα, and CSF2, along with activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. Concordantly, proinflammatory cytokines IL-1β, IL-6, TNFα, and GM-CSF, were rapidly elevated from murine peritoneal monocytes and macrophages. These results demonstrate a novel role for Angptl2 in inflammation via the direct activation of peritoneal monocytes and macrophages. - Highlights: • Angptl2 directly activates resident murine peritoneal monocytes and macrophages. • Angptl2 induces a drastic upregulation of expression of inflammatory genes. • Angptl2 induces activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. • Angptl2 does not activate bone marrow derived macrophages or macrophage cell lines.

  15. A portable and integrated instrument for cell manipulation by dielectrophoresis.

    PubMed

    Burgarella, Sarah; Di Bari, Marco

    2015-07-01

    The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications.

  16. Research resource: Comparative nuclear receptor atlas: basal and activated peritoneal B-1 and B-2 cells.

    PubMed

    Diehl, Cody J; Barish, Grant D; Downes, Michael; Chou, Meng-Yun; Heinz, Sven; Glass, Christopher K; Evans, Ronald M; Witztum, Joseph L

    2011-03-01

    Naïve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease.

  17. Research Resource: Comparative Nuclear Receptor Atlas: Basal and Activated Peritoneal B-1 and B-2 Cells

    PubMed Central

    Diehl, Cody J.; Barish, Grant D.; Downes, Michael; Chou, Meng-Yun; Heinz, Sven; Glass, Christopher K.; Evans, Ronald M.

    2011-01-01

    Naïve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease. PMID:21273443

  18. In vivo function of immune murine peritoneal exudate cells after freezing and thawing

    SciTech Connect

    Adkison, L.R.; Coggin, J.H. Jr.

    1980-01-01

    Peritoneal exudate cells were collected from Balb/c mice immunized against a 3-methylcholanthrene-induced (3-MCA) tumor and known to be capable of conferring tumor transplantation resistance in vivo in syngeneic recipients. These PEC were frozen-using dimethylsulfoxide as the cryopreservative agent. Adoptive transfer of tumor resistance in syngeneic recipients challenged with homologous 3-MCA sarcoma cells was attempted using these frozen exudate cells. Cells were thawed 1, 4, 7, 10 or 30 days after freezing and admixed with tumor cells in ratios of 100:1 or 1000:1 before injecting into mice. Tumorigenesis was decreased and delayed in groups receiving the 100:1 ratio. Less than 3% of the mice developed tumors in groups receiving the 1000:1 ratio. The number of cells recovered post-thawing ranged from 60 to 80%; viability of post-thawed cells ranged from 80 to 96%.

  19. Isolation, culture and genetic manipulation of mouse pancreatic ductal cells.

    PubMed

    Reichert, Maximilian; Takano, Shigetsugu; Heeg, Steffen; Bakir, Basil; Botta, Gregory P; Rustgi, Anil K

    2013-01-01

    The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles duct cells morphologically and, to some extent, at a molecular level. Recently, genetic-lineage labeling has become popular in the field of tumor biology in order to study cell-fate decisions or to trace cancer cells in the mouse. However, certain biological questions require a nongenetic labeling approach to purify a distinct cell population in the pancreas. Here we describe a protocol for isolating mouse pancreatic ductal epithelial cells and ductlike cells directly in vivo using ductal-specific Dolichos biflorus agglutinin (DBA) lectin labeling followed by magnetic bead separation. Isolated cells can be cultured (in two or three dimensions), manipulated by lentiviral transduction to modulate gene expression and directly used for molecular studies. This approach is fast (~4 h), affordable, results in cells with high viability, can be performed on the bench and is applicable to virtually all genetic and nongenetic disease models of the pancreas.

  20. Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers

    PubMed Central

    Nève, Nathalie; Kohles, Sean S.; Winn, Shelley R.; Tretheway, Derek C.

    2010-01-01

    Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser powers below 30 mW, a dead cell presents less resistance to internal organelle rearrangement and deforms globally more than a viable cell, the maximum fluid-induced shear stresses are limited to ~15 mPa for uniform flows but may exceed 1 Pa for extensional flows, and osteoblasts show no deformation for shear stresses up to 250 mPa while myoblasts are more easily deformed and exhibit a modulated response to increasing stress. This suggests that global and/or local stresses can be applied to single cells without physical contact. Coupled with microfluidic sensors, these manipulations may provide unique methods to explore single cell biomechanics. PMID:20824110

  1. Inhibition of NF-kappaB with Dehydroxymethylepoxyquinomicin modifies the function of human peritoneal mesothelial cells

    PubMed Central

    Sosińska, Patrycja; Baum, Ewa; Maćkowiak, Beata; Staniszewski, Ryszard; Jasinski, Tomasz; Umezawa, Kazuo; Bręborowicz, Andrzej

    2016-01-01

    Peritoneal mesothelial cells exposed to bioincompatible dialysis fluids contribute to damage of the peritoneum during chronic dialysis. Inflammatory response triggered in the mesothelium leading to neovascularization and fibrosis plays an important role in that process. We studied the effects of Dehydroxymethyepoxyquinmicin (DHMEQ)-an NF-κB inhibitor on function of human peritoneal mesothelial cells (HPMC) in in vitro culture. DHMEQ studied in concentrations of 1-10 µg/ml was not toxic to HPMC. Synthesis of IL-6, MCP-1 and hyaluronan in unstimulated and stimulated with interleukin-1 (100 pg/ml) HPMC was inhibited in the presence of DHMEQ and the effect was proportional to the dose of the drug. DHMEQ (10 µg/ml) reduced in unstimulated HPMC synthesis of IL-6 (-55%), MCP-1 (-58%) and hyaluronan (-41%). Respective values for stimulated HMPC were: -63% for IL-6, -57% for MCP-1 and -67% for hyaluronan. The observed effects were due to the suppression of the expression of genes responsible for the synthesis of these molecules. DHMEQ modified the effects of the effluent dialysates from CAPD patients on the function of HMPC. Dialysate induced accelerated growth of these cells, and synthesis of collagen was inhibited in the presence of DHMEQ 10 µg/ml, by 69% and 40%, respectively. The results of our study show that DHMEQ effectively reduces inflammatory response in HMPC and prevents excessive dialysate induced proliferation and collagen synthesis in these cells. All of these effects may be beneficial during chronic peritoneal dialysis and prevents progressive dialysis-induced damage to the peritoneum. PMID:28078047

  2. Ghrelin and obestatin promote the allergic action in rat peritoneal mast cells as basic secretagogues.

    PubMed

    Hirayama, Tatsuya; Kawabe, Tsutomu; Matsushima, Miyoko; Nishimura, Yuko; Kobe, Yuko; Ota, Yui; Baba, Kenji; Takagi, Kenzo

    2010-11-01

    Ghrelin is an endogenous ligand of the type 1a growth hormone secretagogue receptor (GHSR1a) that regulates energy balance. Ghrelin and obestatin, derived from the post-translational processing of preproghrelin, are involved in a diverse range of biological activities, yet their effect on the immune system is not fully understood. In the present study, we investigated the roles of ghrelin and obestatin on mast cell degranulation and found that both ghrelin and obestatin induce the release of histamine from rat peritoneal mast cells. This induced histamine release was inhibited by the pertussis toxin, an inhibitor of Gα(i) protein, and extracellular Ca(2+). Rat peritoneal mast cells and rat basophilic leukemia (RBL-2H3) cells did not express the ghrelin receptor GHSR1a, suggesting that histamine release induced by ghrelin occurs via a receptor-independent mechanism. We report here that ghrelin and obestatin, belonging to the family of basic secretagogues, stimulate mast cells independent of a receptor, and this may play a crucial role at the site of allergy or inflammation.

  3. Phagocytosis of PLGA Microparticles in Rat Peritoneal Exudate Cells: A Time-Dependent Study

    NASA Astrophysics Data System (ADS)

    Gomes, Anderson De Jesus; Nain Lunardi, Claure; Henrique Caetano, Flávio; Orive Lunardi, Laurelúcia; da Hora Machado, Antonio Eduardo

    2006-07-01

    With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(D,L-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 [mu]m. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.

  4. Hybrid IC / Microfluidic Chips for the Manipulation of Biological Cells

    NASA Astrophysics Data System (ADS)

    Lee, Hakho

    2005-03-01

    A hybrid IC / Microfluidic chip that can manipulate individual biological cells in a fluid with microscopic resolution has been demonstrated. The chip starts with a custom-designed silicon integrated circuit (IC) produced in a foundry using standard processing techniques. A microfluidic chamber is then fabricated on top of the IC to provide a biocompatible environment. The motion of biological cells in the chamber is controlled using a two-dimensional array of micro-scale electromagnets in the IC that generate spatially patterned magnetic fields. A local peak in the magnetic field amplitude will trap a magnetic bead and an attached cell; by moving the peak's location, the bead-bound cell can be moved to any position on the chip surface above the array. By generating multiple peaks, many cells can be moved independently along separate paths, allowing many different manipulations of individual cells. The hybrid IC / Microfluidic chip can be used, for example, to sort cells or to assemble tissue on micrometer length scales. To prove the concept, an IC / Microfluidic chip was fabricated, based on a custom-designed IC that contained a two-dimensional microcoil array with integrated current sources and control circuits. The chip was tested by trapping and moving biological cells tagged with magnetic beads inside the microfluidic chamber over the array. By combining the power of silicon technology with the biocompatibility of microfluidics, IC / Microfluidic chips will make new types of investigations possible in biological and biomedical studies.

  5. Electro-Optical Platform for the Manipulation of Live Cells

    DTIC Science & Technology

    2002-10-02

    Electro-Optical Platform for the Manipulation of Live Cells† M. Ozkan,‡ T. Pisanic,§ J. Scheel,| C. Barlow,| S. Esener,‡ and S. N. Bhatia...revolutionized our understanding of living systems. DNA microarrays, catalytic RNA arrays, and protein arrays are all a consequence of innovations in...engineering at the micro- and nanoscales. Here, we extend this paradigm to the fabrication of live mammalian cell arrays that can be used to investigate

  6. Optical manipulation and microfluidics for studies of single cell dynamics

    NASA Astrophysics Data System (ADS)

    Eriksson, E.; Scrimgeour, J.; Granéli, A.; Ramser, K.; Wellander, R.; Enger, J.; Hanstorp, D.; Goksör, M.

    2007-08-01

    Most research on optical manipulation aims towards investigation and development of the system itself. In this paper we show how optical manipulation, imaging and microfluidics can be combined for investigations of single cells. Microfluidic systems have been fabricated and are used, in combination with optical tweezers, to enable environmental changes for single cells. The environment within the microfluidic system has been modelled to ensure control of the process. Three biological model systems have been studied with different combinations of optical manipulation, imaging techniques and microfluidics. In Saccharomyces cerevisiae, environmentally induced size modulations and spatial localization of proteins have been studied to elucidate various signalling pathways. In a similar manner the oxygenation cycle of single red blood cells was triggered and mapped using Raman spectroscopy. In the third experiment the forces between the endoplasmic reticulum and chloroplasts were studied in Pisum sativum and Arabidopsis thaliana. By combining different techniques we make advanced biological research possible, revealing information on a cellular level that is impossible to obtain with traditional techniques.

  7. Zinc supplementation attenuates high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells.

    PubMed

    Zhang, Xiuli; Wang, Jun; Fan, Yi; Yang, Lina; Wang, Lining; Ma, Jianfei

    2012-12-01

    Zinc (Zn) plays an important role in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. But its function in the EMT of the peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the Zn effect on the high glucose (HG)-induced EMT in the rat PMCs (RPMCs) and the underlying molecular mechanisms. We found that Zn supplementation significantly inhibited TGF-β1 and ROS production, and attenuated the HG-induced EMT in the RPMCs, likely through inhibition of MAPK, NF-κB, and TGF-β/Smad pathways.

  8. Viral manipulation of DNA repair and cell cycle checkpoints

    PubMed Central

    Chaurushiya, Mira S.; Weitzman, Matthew D.

    2009-01-01

    Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are exquisitely coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation. PMID:19473887

  9. Interleukin-5 induces tumor suppression by peritoneal exudate cells in mice.

    PubMed

    Nakashima, Y; Mita, S; Takatsu, K; Ogawa, M

    1993-09-01

    The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 microgram/day) from day -5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days -10 to -1 was used as opposed to -5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1 microgram/day, from day -10 to -1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC104E cells, they could reject Meth-A sarcoma cells but not MOPC104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augmented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.

  10. Contactless dielectrophoresis: a new technique for cell manipulation.

    PubMed

    Shafiee, Hadi; Caldwell, John L; Sano, Michael B; Davalos, Rafael V

    2009-10-01

    Dielectrophoresis (DEP) has become a promising technique to separate and identify cells and microparticles suspended in a medium based on their size or electrical properties. Presented herein is a new technique to provide the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid. In our method, electrodes are capacitively-coupled to a fluidic channel through dielectric barriers; the application of a high-frequency electric field to these electrodes then induces an electric field in the channel. This technique combines the cell manipulation abilities of traditional DEP with the ease of fabrication found in insulator-based technologies. A microfluidic device was fabricated based on this principle to determine the feasibility of cell manipulations through contactless DEP (cDEP). We were able to demonstrate cell responses unique to the DEP effect in three separate cell lines. These results illustrate the potential for this technique to identify cells through their electrical properties without fear of contamination from electrodes.

  11. Activated T-cell Therapy, Low-Dose Aldesleukin, and Sargramostim in Treating Patients With Ovarian, Fallopian Tube, or Primary Peritoneal Cancer That is Stage III-IV, Refractory, or Recurrent

    ClinicalTrials.gov

    2016-02-15

    Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Serous Tumor; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  12. The effects of nonidet P40 on the function of rat peritoneal mast cells in vitro.

    PubMed

    Batchelor, K W; Stanworth, D R

    1981-01-01

    1 Treatment of purified rat peritoneal mast cells at 37 degrees C with concentrations of the non-ionic detergent nonidet P40 (NP40) up to 0.005% (v/v) failed to reduce their viability. 2 There was a marked reduction in the histamine releasing capacity of NP40-treated mast cells upon challenge with a variety of selective (adrenocorticotrophic hormone 1-24 (Synacthen), rabbit anti-rat IgE antiserum, adenosine triphosphate (ATP) and the calcium ionophore, A 23187) and non-selective (rabbit anti-rat mast cell antiserum plus complement) histamine liberators. 3 Nonidet P40 (0.005%) was found to reduce the activity of a mast cell membrane 'ecto-enzyme', calcium-activated ATPase, by about 45% when presented at the time of its assay.

  13. Optical manipulation of hot nanoparticles can mediate selected cell fusion

    NASA Astrophysics Data System (ADS)

    Oddershede, Lene B.; Bahadori, Azra; Bendix, Poul M.

    2017-04-01

    Metallic nanoparticles with diameters from 10 nm to 250 nm can be optically trapped and manipulated in 3D using a single tightly focused near infrared laser beam. This will result in a significant heating of the particle and its vicinity, with temperature increases easily reaching hundreds degrees Celsius. If such a hot metallic nanoparticle is brought into the contact zone between two cells or vesicles, this local temperature increase can cause a total fusion of the selected cells or vesicles. Upon fusion, both the membrane and the cargos become completely mixed and we also show that the cells remain viable after fusion. The presented method has potential for single-cell targeted drug delivery and for the creation of hybrid cells.

  14. Fluorescence Cell Imaging and Manipulation Using Conventional Halogen Lamp Microscopy

    PubMed Central

    Yamagata, Kazuo; Iwamoto, Daisaku; Terashita, Yukari; Li, Chong; Wakayama, Sayaka; Hayashi-Takanaka, Yoko; Kimura, Hiroshi; Saeki, Kazuhiro; Wakayama, Teruhiko

    2012-01-01

    Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries. PMID:22347500

  15. Magnetically driven microrobotic system for cancer cell manipulation.

    PubMed

    Lucarini, G; Iacovacci, V; Ricotti, L; Comisso, N; Dario, P; Menciassi, A

    2015-08-01

    Lab-on-a-chip applications, such as single cell manipulation and targeted delivery of chemicals, could greatly benefit from mobile untethered microdevices able to move in fluidic environments by using magnetic fields. In this paper a magnetically driven microrobotic system enabling the controlled locomotion of objects placed at the air/liquid interface is proposed and exploited for cell manipulation. In particular authors report the design, fabrication and testing of a polymeric thin film-based magnetic microrobot (called "FilmBot") used as a support for navigating cancer cells. By finely controlling magnetic film locomotion, it is possible to navigate the cells by exploiting their adhesion to the film without affecting their integrity. Preliminary in vitro tests demonstrated that the magnetic thin film is able to act as substrate for T24 bladder cancer cells without affecting their viability and that film locomotion can be magnetically controlled (with a magnetic field and a gradient of 6 mT and 0.6 T/m, respectively) along specific directions, with a mean speed of about 3 mm/s.

  16. Biophotonics for imaging and cell manipulation: quo vadis?

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mirsini; Kotsifaki, Domna G.; Tsigaridas, Giorgos

    2016-01-01

    As one of the major health problems for mankind is cancer, any development for the early detection and effective treatment of cancer is crucial to saving lives. Worldwide, the dream for the anti-cancer procedure of attack is the development of a safe and efficient early diagnosis technique, the so called "optical biopsy". As early diagnosis of cancer is associated with improved prognosis, several laser based optical diagnostic methods were developed to enable earlier, non-invasive detection of human cancer, as Laser Induced Fluorescence spectroscopy (LIFs), Diffuse Reflectance spectroscopy (DRs), confocal microscopy, and Optical Coherence Tomography (OCT). Among them, Optical Coherence Tomography (OCT) imaging is considered to be a useful tool to differentiate healthy from malignant (e.g. basal cell carcinoma, squamous cell carcinoma) skin tissue. If the demand is to perform imaging in sub-tissular or even sub-cellular level, optical tweezers and atomic force microscopy have enabled the visualization of molecular events underlying cellular processes in live cells, as well as the manipulation and characterization of microscale or even nanoscale biostructures. In this work, we will present the latest advances in the field of laser imaging and manipulation techniques, discussing some representative experimental data focusing on the 21th century biophotonics roadmap of novel diagnostic and therapeutical approaches. As an example of a recently discussed health and environmental problem, we studied both experimentally and theoretically the optical trapping forces exerted on yeast cells and modified with estrogen-like acting compounds yeast cells, suspended in various buffer media.

  17. Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity.

    PubMed

    Wang, Xin; Sun, Kang; Tan, Yanping; Wu, Shanshan; Zhang, Jinsong

    2014-07-01

    Peritoneal implantation of cancer cells, particularly postoperative seeding metastasis, frequently occurs in patients with primary tumors in the stomach, colon, liver, and ovary. Peritoneal carcinomatosis is associated with poor prognosis. In this work, we evaluated the prophylactic effect of intraperitoneal administration of selenium (Se), an essential trace element and a putative chemopreventive agent, on peritoneal implantation of cancer cells. Elemental Se nanoparticles were injected into the abdominal cavity of mice, into which highly malignant H22 hepatocarcinoma cells had previously been inoculated. Se concentrations in the cancer cells and tissues, as well as the efficacy of proliferation inhibition and safety, were evaluated. Se was mainly concentrated in cancer cells compared to Se retention in normal tissues, showing at least an order of magnitude difference between the drug target cells (the H22 cells) and the well-recognized toxicity target of Se (the liver). Such a favorable selective distribution resulted in strong proliferation suppression without perceived host toxicity. The mechanism of action of the Se nanoparticle-triggered cytotoxicity was associated with Se-mediated production of reactive oxygen species, which impaired the glutathione and thioredoxin systems. Our results suggest that intraperitoneal administration of Se is a safe and effective means of preventing growth of cancer cells in the peritoneal cavity for the above-mentioned high-risk populations.

  18. Inhibition of nuclear factor-kappaB suppresses peritoneal dissemination of gastric cancer by blocking cancer cell adhesion.

    PubMed

    Mino, Kazuhiro; Ozaki, Michitaka; Nakanishi, Kazuaki; Haga, Sanae; Sato, Masanori; Kina, Masaya; Takahashi, Masato; Takahashi, Norihiko; Kataoka, Akihiko; Yanagihara, Kazuyoshi; Ochiya, Takahiro; Kamiyama, Toshiya; Umezawa, Kazuo; Todo, Satoru

    2011-05-01

    Currently, patients with peritoneal dissemination of gastric cancer must accept a poor prognosis because there is no standard effective therapy. To inhibit peritoneal dissemination it is important to inhibit interactions between extracellular matrices (ECM) and cell surface integrins, which are important for cancer cell adhesion. Although nuclear factor-kappa B (NF-κB) is involved in various processes in cancer progression, its involvement in the expression of integrins has not been elucidated. We used a novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), to study whether NF-κB blocks cancer cell adhesion via integrins in a gastric cancer dissemination model in mice and found that DHMEQ is a potent suppressor of cancer cell dissemination. Dehydroxymethylepoxyquinomicin suppressed the NF-κB activity of human gastric cancer cells NUGC-4 and 44As3Luc and blocked the adhesion of cancer cells to ECM when compared with the control. Dehydroxymethylepoxyquinomicin also inhibited expression of integrin (α2, α3, β1) in in vitro studies. In the in vivo model, we injected 44As3Luc cells pretreated with DHMEQ into the peritoneal cavity of mice and performed peritoneal lavage after the injection of cancer cells. Viable cancer cells in the peritoneal cavities were evaluated sequentially by in vivo imaging. In mice injected with DHMEQ-pretreated cells and lavaged, live cancer cells in the peritoneum were significantly reduced compared with the control, and these mice survived longer. These results indicate that DHMEQ could inhibit cancer cell adhesion to the peritoneum possibly by suppressing integrin expression. Nuclear factor-kappa B inhibition may be a new therapeutic option for suppressing postoperative cancer dissemination.

  19. Anticancer effect of bromelain with and without cisplatin or 5-FU on malignant peritoneal mesothelioma cells.

    PubMed

    Pillai, Krishna; Ehteda, Anahid; Akhter, Javid; Chua, Terence C; Morris, David L

    2014-02-01

    Malignant peritoneal mesothelioma (MPM) is a rare neoplasm of the peritoneum, causally related to asbestos exposure. Nonspecific symptoms with a late diagnosis results in poor survival (<1 year). Treatment with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy has improved survival in some patients (median 3-5 years). Hence, new therapies are urgently needed. MUC1 is a glycosylation-dependent protein that confers tumours with invasiveness, metastasis and chemoresistance. Bromelain (cysteine proteinase) hydrolyses glycosidic bonds. Therefore, we investigated the antitumour effect of bromelain on MUC1-expressing MPM cell lines. MUC1 expressions in cells were assessed using immunofluorescent probes with cells grown on cover slips and western blot analysis on cell lysates. The cell lines were treated with various concentrations of bromelain and after 4 and 72 h, their viability was assessed using standard sulforhodamine assays. The cells were also treated with combinations of bromelain and cytotoxic drugs (cisplatin or 5-FU) and their viability was assessed at 72 h. Finally, with western blotting, the effects of bromelain on cellular survival proteins were investigated. PET cells expressed more MUC1 compared with YOU cells. The cell viability of both PET and YOU cells was adversely affected by bromelain, with PET cells being slightly resistant. The addition of bromelain increased the cytotoxicity of cisplatin significantly in both cell lines. However, 5-FU with bromelain did not show any significant increase in cytotoxicity. Bromelain-induced cell death is by apoptosis and autophagy. Bromelain has the potential of being developed as a therapeutic agent in MPM.

  20. Cytology of benign multicystic peritoneal mesothelioma in peritoneal washings.

    PubMed

    Assaly, M; Bongiovanni, M; Kumar, N; Egger, J-F; Pelte, M-F; Genevay, M; Finci, V; Tschanz, E; Pache, J-C

    2008-08-01

    To describe the cytological aspect of peritoneal washings in benign multicystic peritoneal mesothelioma (BMPM). Three peritoneal washing specimens stained by standard cytological and histological procedures and analysed by light microscopy. The specimens showed an abundance of monomorphous mesothelial cells devoid of atypia or mitoses. The mesothelial cells were calretinin positive. They also showed numerous squamous metaplastic cells arranged in flat sheets or isolated cells. The background contained some inflammatory cells. The combination of cytology of the peritoneal washing, histology (cell block and surgical specimen) and clinical history allow differentiation of BMPM from other cystic lesions (cystic lymphangioma and malignant mesothelioma).

  1. HSP induction in mesothelial cells by peritoneal dialysis fluid depends on biocompatibility test system.

    PubMed

    Bender, Thorsten O; Kratochwill, Klaus; Böhm, Michael; Jörres, Achim; Aufricht, Christoph

    2011-05-01

    We have previously shown that exposure of mesothelial cells (MC) to peritoneal dialysis fluids (PDF) not only caused toxic injury, but also induced cytoprotective heat shock proteins (HSP). This study was performed in order to compare HSP expression in MC upon PDF exposure in three currently used biocompatibility test systems. Omentum-derived human peritoneal MC underwent 3 modalities of exposure to heat- or filter-sterilized PDF: (A) pure PDF for 60 minutes followed by a recovery-period in pure culture medium for 24 hours; (B) 1:1 mixture of PDF and culture medium for 24 hours or (C) pure PDF for 60 minutes followed by a recovery-period in a 1:1 mixture of PDF and culture medium for 24 hours. Biocompatibility was assessed by LDH-release into the supernatant and HSP-72 expression in MC lysates. Short-term exposure of MC to pure PDF (Modality A) resulted in concordant LDH release and upregulation of HSP-72, regardless of heat or filter sterilization. In contrast, both test systems that exposed MC to heat-sterilized PDF during the recovery period (Modalities B and C) resulted in severe cellular lethality but low HSP-72 expression. This study clearly shows that HSP expression in MC upon PDF exposure depends on the biocompatibility test system. The presence of heat-sterilized PDF during recovery resulted in significant downregulation of Hsp-72 despite severe cell injury. Therefore, Hsp-72 expression reflects adequate cellular stress responses rather than PDF cytotoxicity.

  2. beta-Naphthoflavone protects from peritonitis by reducing TNF-alpha-induced endothelial cell activation.

    PubMed

    Hsu, Sheng-Yao; Liou, Je-Wen; Cheng, Tsung-Lin; Peng, Shih-Yi; Lin, Chi-Chen; Chu, Yuan-Yuan; Luo, Wei-Cheng; Huang, Zheng-Kai; Jiang, Shinn-Jong

    2015-12-01

    β-Naphthoflavone (β-NF), a ligand of the aryl hydrocarbon receptor, has been shown to possess anti-oxidative properties. We investigated the anti-oxidative and anti-inflammatory potential of β-NF in human microvascular endothelial cells treated with tumor necrosis factor-alpha (TNF-α). Pretreatment with β-NF significantly inhibited TNF-α-induced intracellular reactive oxygen species, translocation of p67(phox), and TNF-α-induced monocyte binding and transmigration. In addition, β-NF significantly inhibited TNF-α-induced ICAM-1 and VCAM-1 expression. The mRNA expression levels of the inflammatory cytokines TNF-α and IL-6 were reduced by β-NF, as was the infiltration of white blood cells, in a peritonitis model. The inhibition of adhesion molecules was associated with suppressed nuclear translocation of NF-κB p65 and Akt, and suppressed phosphorylation of ERK1/2 and p38. The translocation of Egr-1, a downstream transcription factor involved in the MEK-ERK signaling pathway, was suppressed by β-NF treatment. Our findings show that β-NF inhibits TNF-α-induced NF-kB and ERK1/2 activation and ROS generation, thereby suppressing the expression of adhesion molecules. This results in reduced adhesion and transmigration of leukocytes in vitro and prevents the infiltration of leukocytes in a peritonitis model. Our findings also suggest that β-NF might prevent TNF-α-induced inflammation.

  3. Effect of peritoneal dialysis fluid containing osmo-metabolic agents on human endothelial cells

    PubMed Central

    Bonomini, Mario; Di Silvestre, Sara; Di Tomo, Pamela; Di Pietro, Natalia; Mandatori, Domitilla; Di Liberato, Lorenzo; Sirolli, Vittorio; Chiarelli, Francesco; Indiveri, Cesare; Pandolfi, Assunta; Arduini, Arduino

    2016-01-01

    Background The use of glucose as the only osmotic agent in peritoneal dialysis (PD) solutions (PDSs) is believed to exert local (peritoneal) and systemic detrimental actions, particularly in diabetic PD patients. To improve peritoneal biocompatibility, we have developed more biocompatible PDSs containing xylitol and carnitine along with significantly less amounts of glucose and have tested them in cultured Human Vein Endothelial Cells (HUVECs) obtained from the umbilical cords of healthy (C) and gestational diabetic (GD) mothers. Methods Primary C- and GD-HUVECs were treated for 72 hours with our PDSs (xylitol 0.7% and 1.5%, whereas carnitine and glucose were fixed at 0.02% and 0.5%, respectively) and two glucose-based PDSs (glucose 1.36% or 2.27%). We examined their effects on endothelial cell proliferation (cell count), viability (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay), intracellular nitro-oxidative stress (peroxynitrite levels), Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 membrane exposure (flow cytometry), and HUVEC-monocyte interactions (U937 adhesion assay). Results Compared to glucose-based PDSs, our in vitro studies demonstrated that the tested PDSs did not change the proliferative potential both in C- and GD-HUVECs. Moreover, our PDSs significantly improved endothelial cell viability, compared to glucose-based PDSs and basal condition. Notably, glucose-based PDSs significantly increased the intracellular peroxynitrite levels, Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 membrane exposure, and endothelial cell–monocyte interactions in both C- and GD-HUVECs, as compared with our experimental PDSs. Conclusion Present results show that in control and diabetic human endothelial cell models, xylitol–carnitine-based PDSs do not cause cytotoxicity, nitro-oxidative stress, and inflammation as caused by hypertonic glucose-based PDSs. Since xylitol and carnitine are also known to

  4. Peritoneal Disorders

    MedlinePlus

    ... peritoneal fluid, lubricates the surface of this tissue. Disorders of the peritoneum are not common. They include ... fluid to diagnose the problem. Treatment of peritoneal disorders depends on the cause.

  5. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation.

    PubMed

    Kolosnjaj-Tabi, Jelena; Wilhelm, Claire; Clément, Olivier; Gazeau, Florence

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.

  6. Expansion and differentiation of IgM(+) B cells in the rainbow trout peritoneal cavity in response to different antigens.

    PubMed

    Castro, Rosario; Abós, Beatriz; González, Lucia; Granja, Aitor G; Tafalla, Carolina

    2017-05-01

    To date, intraperitoneal (i.p.) injection seems to be the most effective vaccination route in aquaculture, as many i.p. administered fish vaccines are capable of conferring strong and long-lasting immune responses. Despite this, how peritoneal leukocytes are regulated upon antigen encounter has only been scarcely studied in fish. Although, in the past, myeloid cells were thought to be the main responders to peritoneal inflammation, a recent study revealed that IgM(+) B cells are one of the main cell types in the teleost peritoneal cavity in response to pathogenic bacteria. Thus, in the current work, we have focused on establishing how IgM(+) B cells are recruited into the peritoneum in rainbow trout (Oncorhynchus mykiss) comparing different antigens: Escherichia coli as a bacterial model, E. coli-derived lipopolysaccharide (LPS) or viral hemorrhagic septicemia virus (VHSV). In addition to studying their capacity to dominate the peritoneal cavity, we have established how these IgM(+) B cells are regulated in response to the different antigens, determining their levels of IgM secretion, surface MHC II expression, cell size and phagocytic abilities. Our results reveal that IgM(+) B cells are one of the main cell types amplified in the peritoneum in response to either bacterial or viral antigens and that these immunogenic stimulations provoke a differentiation of some of these cells towards plasmablasts/plasma cells whereas others seem to be implicated in antigen presentation. These findings contribute to a better understanding of the immune processes that regulate peritoneal inflammation in teleost fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The use of microelectrode array (MEA) to study rat peritoneal mast cell activation.

    PubMed

    Yeung, Chi-Kong; Law, Jessica Ka-Yan; Sam, Sze-Wing; Ingebrandt, Sven; Lau, Hang-Yung Alaster; Rudd, John Anthony; Chan, Mansun

    2008-06-01

    We performed this study to demonstrate the applicability of the microelectrode array (MEA) to study electrophysiological changes of rat peritoneal mast cells in the presence of compound 48/80 under normal, Ca(2+)-free, Ca(2+)-free with EDTA, and Cl(-)-free conditions. The use of high extracellular K(+) (KCl, 150 mM), charybdotoxin (ChTX, 100 nM), and Cl(-)-free containing ChTX buffers verified that the hyperpolarizing signal was due to the activation of mainly K(+) and, to a lesser extent, Cl(-) channels. Compound 48/80 concentration-dependently shortened the latent periods (the onset of response) and increased both the spatial (the K(+) and Cl(-) hyperpolarizing field potentials, HFP) and temporal measurements (the duration of response). Ca(2+)-free buffer had no effect on the latent period of compound 48/80 but increased the HFP at high concentrations. The latent period increased while the HFP diminished when cells were equilibrated in Ca(2+)-free buffer containing EDTA. Durations of the HFP were generally longer when cells were in either Ca(2+)-free or Ca(2+)-free containing EDTA buffers than when cells were in normal buffer. The EC(50) values confirmed that effects were only affected in Ca(2+)-free buffer containing EDTA but not in Ca(2+)-free or Cl(-)-free buffers, further reinforcing the hypothesis that the presence of Ca(2+) is not essential to the action of compound 48/80. The present study is the first application of MEA to study rat peritoneal mast cells, and our results indicate that it could be of value in future pharmacological research on other non-excitable cells.

  8. Automated transportation of single cells using robot-tweezer manipulation system.

    PubMed

    Hu, Songyu; Sun, Dong

    2011-08-01

    Manipulation of biological cells becomes increasingly important in biomedical engineering to address challenge issues in cell-cell interaction, drug discovery, and tissue engineering. Significant demand for both accuracy and productivity in cell manipulation highlights the need for automated cell transportation with integrated robotics and micro/nano manipulation technologies. Optical tweezers, which use highly focused low-power laser beams to trap and manipulate particles at micro/nanoscale, have emerged as an essential tool for manipulating single cells. In this article, we propose to use a robot-tweezer manipulation system to solve the problem of automatic transportation of biological cells, where optical tweezers function as special robot end effectors. Dynamics equation of the cell in optical tweezers is analyzed. A closed-loop controller is designed for transporting and positioning cells. Experiments are performed on live cells to demonstrate the effectiveness of the proposed approach in effective cell positioning.

  9. PRIMARY MARROW DERIVED STROMAL CELLS: ISOLATION AND MANIPULATION

    PubMed Central

    Ramakrishnan, Aravind; Torok-Storb, Beverly; Pillai, Manoj M

    2013-01-01

    Marrow Stromal Cells (MSCs) are relatively rare cells difficult to visualize in marrow biopsies or detect in aspirated marrow. Under specific conditions MSC can be expanded in vitro and the population can give rise to several mesenchymal lineages. “MSC” also refers to mesenchymal stem cells which implies that all cells in the population are multipotent. It is generally agreed that while there may be a few multipotent stem cells in an MSC population the majority are not stem cells. In either case MSC do not produce hematopoietic cells. Although MSCs have been isolated and characterized from several tissues, bone marrow is their most common source for research and clinical use. Primary MSC populations can be derived from bone marrow mononuclear cells with relative ease, but it is important to recognize the cellular heterogeneity within a culture and how this may vary from donor to donor. In this chapter, we will describe methodology to derive primary MSCs from bone marrow screens, an otherwise discarded byproduct of bone marrow harvests used for clinical transplantation. We will also describe some useful techniques to characterize and manipulate MSCs – both primary and immortalized cell lines. PMID:23959984

  10. Primary marrow-derived stromal cells: isolation and manipulation.

    PubMed

    Ramakrishnan, Aravind; Torok-Storb, Beverly; Pillai, Manoj M

    2013-01-01

    Marrow stromal cells (MSCs) are relatively rare cells difficult to visualize in marrow biopsies or detect in aspirated marrow. Under specific conditions MSC can be expanded in vitro and the population can give rise to several mesenchymal lineages. "MSC" also refers to mesenchymal stem cells which implies that all cells in the population are multipotent. It is generally agreed that while there may be a few multipotent stem cells in an MSC population the majority are not stem cells. In either case MSCs do not produce hematopoietic cells. Although MSCs have been isolated and characterized from several tissues, bone marrow is their most common source for research and clinical use. Primary MSC populations can be derived from bone marrow mononuclear cells with relative ease, but it is important to recognize the cellular heterogeneity within a culture and how this may vary from donor to donor. In this chapter, we describe methodology to derive primary MSCs from bone marrow screens, an otherwise discarded by-product of bone marrow harvests used for clinical transplantation. We also describe some useful techniques to characterize and manipulate MSCs-both primary and immortalized cell lines.

  11. Development, differentiation and manipulation of chicken germ cells.

    PubMed

    Nakamura, Yoshiaki; Kagami, Hiroshi; Tagami, Takahiro

    2013-01-01

    Germ cells are the only cell type capable of transmitting genetic information to the next generation. During development, they are set aside from all somatic cells of the embryo. In many species, germ cells form at the fringe of the embryo proper and then traverse through several developing somatic tissues on their migration to the emerging gonads. Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. Unlike other species, in avian embryos, PGCs use blood circulation for transport to the future gonadal region. This unique accessibility of avian PGCs during early development provides an opportunity to collect and transplant PGCs. The recent development of methods for production of germline chimeras by transfer of PGCs, and long-term cultivation methods of chicken PGCs without losing their germline transmission ability have provided important breakthroughs for the preservation of germplasm , for the production of transgenic birds and study the germ cell system. This review will describe the development, migration, differentiation and manipulation of germ cells, and discuss the prospects that germ cell technologies offer for agriculture, biotechnology and academic research. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  12. Dipolar Rings of Microscopic Ellipsoids: Magnetic Manipulation and Cell Entrapment

    NASA Astrophysics Data System (ADS)

    Martinez-Pedrero, Fernando; Cebers, Andrejs; Tierno, Pietro

    2016-09-01

    We study the formation and the dynamics of dipolar rings composed by microscopic ferromagnetic ellipsoids, which self-assemble in water by switching the direction of the applied field. We show how to manipulate these fragile structures and control their shape via the application of external static and oscillating magnetic fields. We introduce a theoretical framework which describes the ring deformation under an applied field, allowing us to understand the underlying physical mechanism. Our microscopic rings are finally used to capture, entrap, and later release a biological cell via a magnetic command, i.e., performing a simple operation which can be implemented in other microfluidic devices which make use of ferromagnetic particles.

  13. Local probing and stimulation of neuronal cells by optical manipulation

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan

    2014-09-01

    During development and in the adult brain, neurons continuously explore the environment searching for guidance cues, leading to the appropriate connections. Elucidating these mechanisms represents a gold goal in neurobiology. Here, I discuss our recent achievements developing new approaches to locally probe the growth cones and stimulate neuronal cell compartments with high spatial and temporal resolution. Optical tweezers force spectroscopy applied in conjunction with metabolic inhibitors reveals new properties of the cytoskeleton dynamics. On the other hand, using optically manipulated microvectors as functionalized beads or filled liposomes, we demonstrate focal stimulation of neurons by small number of signaling molecules.

  14. Manipulation of red blood cells with electric field

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  15. Intraperitoneal Mesenchymal Cells Promote the Development of Peritoneal Metastasis Partly by Supporting Long Migration of Disseminated Tumor Cells.

    PubMed

    Kitayama, Joji; Yamaguchi, Hironori; Ishigami, Hironori; Matsuzaki, Keisuke; Sata, Naohiro

    2016-01-01

    The human peritoneal cavity contains a small number of free cells of mesenchymal cell lineage. Intraperitoneal mesenchymal cells (PMC) play supportive roles in metastasis formation on the peritoneum. In this study, we found that PMC, when co-cultuerd with human gastric cancer cells, MKN45, enhanced the proliferation of MKN45 when cultured at low, but not high, cellular density. Also, PMC suppressed apoptotic cell death of MKN45 only under low density culture conditions. Time-lapse videoanalysis clearly demonstrated that PMC randomly migrated more vigorously than did MKN45, and strongly enhanced the migration behavior of co-cultured MKN45. In fact, the majority of MKN45 migrated together in direct physical contact with PMC, and the sum of migration lengths from original position of co-cultured MKN45 for 48 hours was approximately 10 times longer than that of MKN45 cultured alone. Our data suggest that enhanced migration can increase the chance of direct contact or positional proximity among sparcely distributed MKN45, which may bring survival advantages to tumor cells. This may be one of the important mechanisms of peritoneal metastasis, since only a small number of tumor cells are considered to be disseminated in the early step of metastasis formation on the peritoneum.

  16. Poor outcome after cytoreductive surgery and HIPEC for colorectal peritoneal carcinomatosis with signet ring cell histology.

    PubMed

    van Oudheusden, T R; Braam, H J; Nienhuijs, S W; Wiezer, M J; van Ramshorst, B; Luyer, P; de Hingh, I H

    2015-02-01

    Signet ring cell cancer (SRCC) patients have a poor oncologic outcome. The aim of this study was to determine whether the potential drawbacks of hyperthermic intraperitoneal chemotherapy (HIPEC) outweigh the benefits in patients with peritoneally metastasized SRCC. Patients with peritoneal carcinomatosis (PC) of colorectal origin referred to two tertiary centers between April 2005 and December 2013 were identified and retrospectively analyzed. Data were compared between SRCC histology and other differentiations. Three-hundred-fifty-one patients were referred for CRS+HIPEC among which 20 (5.7%) patients were identified with SRCC histology. CRS + HIPEC was performed in 16 of these 20 (80%) and 252 out of the 331 remaining patients (76.1%). A higher proportion of patients in the SRCC-group were diagnosed with N2 stage (62.5% vs. 36.1%, P=0.04). A macroscopic complete resection was achieved in 87.5% and 97.2% respectively (P=0.04). Median survival was 14.1 months compared to 35.1 months (P<0.01). Recurrence occurred in 68.8% of the SRCC patients and in 43.7% of the other histology patients (P=0.05). Patients with SRCC and PC treated with CRS+HIPEC have a poor median survival only slightly reaching over 1 year. In the presence of other relative contraindications, SRCC histology should refrain a surgeon from performing CRS and HIPEC. © 2014 Wiley Periodicals, Inc.

  17. Dynamic Manipulation of Hydrogels to Control Cell Behavior: A Review

    PubMed Central

    Vats, Kanika

    2013-01-01

    For many tissue engineering applications and studies to understand how materials fundamentally affect cellular functions, it is important to have the ability to synthesize biomaterials that can mimic elements of native cell–extracellular matrix interactions. Hydrogels possess many properties that are desirable for studying cell behavior. For example, hydrogels are biocompatible and can be biochemically and mechanically altered by exploiting the presentation of cell adhesive epitopes or by changing hydrogel crosslinking density. To establish physical and biochemical tunability, hydrogels can be engineered to alter their properties upon interaction with external driving forces such as pH, temperature, electric current, as well as exposure to cytocompatible irradiation. Additionally, hydrogels can be engineered to respond to enzymes secreted by cells, such as matrix metalloproteinases and hyaluronidases. This review details different strategies and mechanisms by which biomaterials, specifically hydrogels, can be manipulated dynamically to affect cell behavior. By employing the appropriate combination of stimuli and hydrogel composition and architecture, cell behavior such as adhesion, migration, proliferation, and differentiation can be controlled in real time. This three-dimensional control in cell behavior can help create programmable cell niches that can be useful for fundamental cell studies and in a variety of tissue engineering applications. PMID:23541134

  18. Patterned Magnetic Structures for Micro-/Nanoparticle and Cell Manipulation

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory Butler

    Remote manipulation of fluid-borne magnetic particles on a surface is useful to probe, assemble, and sort microscale and nanoscale objects. By patterning magnetic structures in shapes designed to exploit local heterogeneities in thin film magnetization, we have demonstrated effective trapping mechanisms for superparamagnetic micro- and nanoparticles. The features necessary for trapping are shown to arise at domain walls or indentations in microscale and smaller magnetic wires, at the periphery of magnetized disks, and at corners of magnetized triangles. Weak (<150 Oe) in- and out-of-plane external magnetic fields modify the energy landscape of the trapped particles, allowing for the objects to be remotely maneuvered along selected routes across the surface. The mechanism is multiplexed, allowing for simultaneous manipulation of many trapped particles, and their motion is directed using a handheld user interface. Particles are able to be transported over hundreds of micrometers with velocities of upwards of 200 µm/s and average forces of up to hundreds of picoNewtons. The magnetic fields, their spatial distribution, and resulting forces are estimated by modeling magnetization of the patterned structures using micromagnetic simulation or by approximating the traps as point sources of fields. The quality of these models and their relevance for describing particle manipulation under the experimental conditions is discussed. The applicability of these techniques is demonstrated for various biological, biomolecular, and nanoscale systems. Binding of magnetic particles to cells allows for guided cell transport. Composite micelle nanostructures, only tens of nm across, are simultaneously trapped and maneuvered magnetically and tracked fluorescently, despite their small size. The implications for use of this technology in lab-on-chip devices are discussed.

  19. Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues.

    PubMed

    Krimmel, Jeffrey D; Schmitt, Michael W; Harrell, Maria I; Agnew, Kathy J; Kennedy, Scott R; Emond, Mary J; Loeb, Lawrence A; Swisher, Elizabeth M; Risques, Rosa Ana

    2016-05-24

    Current sequencing methods are error-prone, which precludes the identification of low frequency mutations for early cancer detection. Duplex sequencing is a sequencing technology that decreases errors by scoring mutations present only in both strands of DNA. Our aim was to determine whether duplex sequencing could detect extremely rare cancer cells present in peritoneal fluid from women with high-grade serous ovarian carcinomas (HGSOCs). These aggressive cancers are typically diagnosed at a late stage and are characterized by TP53 mutations and peritoneal dissemination. We used duplex sequencing to analyze TP53 mutations in 17 peritoneal fluid samples from women with HGSOC and 20 from women without cancer. The tumor TP53 mutation was detected in 94% (16/17) of peritoneal fluid samples from women with HGSOC (frequency as low as 1 mutant per 24,736 normal genomes). Additionally, we detected extremely low frequency TP53 mutations (median mutant fraction 1/13,139) in peritoneal fluid from nearly all patients with and without cancer (35/37). These mutations were mostly deleterious, clustered in hotspots, increased with age, and were more abundant in women with cancer than in controls. The total burden of TP53 mutations in peritoneal fluid distinguished cancers from controls with 82% sensitivity (14/17) and 90% specificity (18/20). Age-associated, low frequency TP53 mutations were also found in 100% of peripheral blood samples from 15 women with and without ovarian cancer (none with hematologic disorder). Our results demonstrate the ability of duplex sequencing to detect rare cancer cells and provide evidence of widespread, low frequency, age-associated somatic TP53 mutation in noncancerous tissue.

  20. Effects of Icodextrin and Glucose Bicarbonate/Lactate-Buffered Peritoneal Dialysis Fluids on Effluent Cell Population and Biocompatibility Markers IL-6 and CA125 in Incident Peritoneal Dialysis Patients.

    PubMed

    Opatrná, Sylvie; Pöpperlová, Anna; Lysák, Daniel; Fuchsová, Radka; Trefil, Ladislav; Racek, Jaroslav; Topolčan, Ondrej

    2016-04-01

    Icodextrin peritoneal dialysis (PD) solution has been shown to increase interleukin-6 (IL-6) levels in PD effluent as well as leukocyte and mesothelial cell count. Mesothelial cells release cancer antigen 125 (CA125), which is used as a marker of mesothelial cell mass. This 1-year prospective study was designed to compare peritoneal effluent cell population, its inflammatory phenotype and biocompatibility biomarkers IL-6 and CA125 between icodextrin (E) and glucose bicarbonate/lactate (P) based PD solutions. Using baseline peritoneal ultrafiltration capacity, 19 stable incident PD patients were allocated either to P only (N = 8) or to P plus E for the overnight dwell (N = 11). Flow cytometry was used to measure white blood cell count and differential and the expression of inflammatory molecules on peritoneal cells isolated from timed overnight peritoneal effluents. Compared to P, E effluent showed higher leukocyte (10.9 vs. 7.9), macrophages (6.1 vs. 2.5) and mesothelial cells (0.3 vs. 0.1)×10(6) /L count, as well as expression of HLA DR on mesothelial cells and IL-6 (320.5 vs. 141.2 pg/min) on mesothelial cells and CA125 appearance rate (159.6 vs. 84.3 IU/min), all P < 0.05. In the E group, correlation between IL-6 and CA125 effluent levels (r = 0.503, P < 0.05) as well as appearance rates (r = 0.774, P < 0.001) was demonstrated. No effect on systemic inflammatory markers or peritoneal permeability was found. Icodextrin PD solution activates local inflammation without systemic consequences so the clinical relevance of this observation remains obscure. Correlation between effluent IL-6 and CA125 suggests that CA125 might be upregulated due to inflammation and thus is not a reliable marker of mesothelial cell mass and/or biocompatibility.

  1. Dual effects of protoporphyrin and long wave ultraviolet light on histamine release from rat peritoneal and cutaneous mast cells

    SciTech Connect

    Yen, A.; Gigli, I.; Barrett, K.E. )

    1990-06-01

    In this study we investigated the effects of long wave ultraviolet light (UVA) and various doses of protoporphyrin (PP) on the release of histamine from rat peritoneal and cutaneous mast cells. We also correlated these results with morphologic characteristics and viability of the cells. PP at a dose of 30 ng/ml plus UVA-induced negligible histamine release from rat peritoneal mast cells (RPMC), but was able to suppress the ability of the cells to release histamine in response to subsequent exposure to the calcium ionophore A23187, compound 48/80, or the combination of Ag and IgE. This functional change was associated with an increase in cell size, and cell lysis that gradually occurred during 24 h in culture. PP at a dose of 3 ng/ml plus UVA also significantly inhibited secretogogue-induced histamine release from rat peritoneal mast cells, but this dose was not associated with significant changes in morphology or viability. These various effects of PP plus UVA were also observed with mast cell preparations obtained by the enzymatic dispersion of rat skin. The suppression of secretogogue-induced histamine release in rat peritoneal mast cells treated with PP (3 ng/ml) and UVA could not be reversed by culturing the cells in the dark for 24 h in the absence of PP. Unlike the direct cytotoxic histamine releasing action of high doses of PP plus UVA, the suppressive effect of low PP doses could not be inhibited by catalase, but could be reduced by the absence of calcium. Our results indicate that PP plus UVA has dual effects on mast cells, apparently involving distinct mechanisms. This implies the possibility that PP and UVA at appropriate doses could be used in photochemotherapy of mast cell-mediated skin diseases.

  2. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton’s Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis

    PubMed Central

    Fan, Yu-Pei; Hsia, Ching-Chih; Tseng, Kuang-Wen; Liao, Chih-Kai; Fu, Tz-Win; Ko, Tsui-Ling; Chiu, Mei-Miao; Shih, Yang-Hsin; Huang, Pei-Yu; Chiang, Yi-Chia

    2016-01-01

    A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton’s jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco’s modified Eagle’s medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively

  3. Neuroendocrine circuitry and endometriosis: progesterone derivative dampens corticotropin-releasing hormone-induced inflammation by peritoneal cells in vitro.

    PubMed

    Tariverdian, Nadja; Rücke, Mirjam; Szekeres-Bartho, Julia; Blois, Sandra M; Karpf, Eva F; Sedlmayr, Peter; Klapp, Burghard F; Kentenich, Heribert; Siedentopf, Friederike; Arck, Petra C

    2010-03-01

    Clinical symptoms of endometriosis, such as pain and infertility, can be described as persistent stressors. Such continuous exposure to stress may severely affect the equilibrium and bidirectional communication of the endocrine and immune system, hereby further aggravating the progression of endometriosis. In the present study, we aimed to tease apart mediators that are involved in the stress response as well as in the progression of endometriosis. Women undergoing diagnostic laparoscopy due to infertility were recruited (n = 69). Within this cohort, early stage of endometriosis were diagnosed in n = 30 and advanced stage of endometriosis in n = 8. Levels of progesterone in serum were determined. Frequency of progesterone receptor (PR) expression on CD56(+) and CD8(+) peritoneal lymphocytes was analysed by flow cytometry. The production of tumour necrosis factor (TNF) and interleukin (IL)-10 by peritoneal leukocytes upon stimulation with the potent stress mediator corticotropin-releasing hormone (CRH) and the progesterone derivative dydrogesterone, or both, were evaluated. Furthermore, the production of progesterone-induced blocking factor (PIBF) by peritoneal leukocytes and the expression of PR in endometriotic tissue were investigated. Levels of progesterone in serum were decreased in women with endometriosis and inversely correlated to pain scores. Furthermore, an increased frequency of CD56(+)PR(+) and CD8(+)PR(+) peritoneal lymphocytes was present in advanced endometriosis. The TNF/IL-10 ratio, reflecting cytokine secretion by peritoneal cells, was higher in cells derived from endometriosis patients and could be further heightened by CRH stimulation, whereas stimulation with dydrogesterone abrogated the CRH-mediated inflammation. Finally, the expression of PIBF by peritoneal leukocytes was increased in endometriosis. Low levels of progesterone in the follicular phase could be responsible for the progression of endometriosis and related pain. Peripheral CRH

  4. Piezoelectric driven non-toxic injector for automated cell manipulation.

    PubMed

    Huang, H B; Su, Hao; Chen, H Y; Mills, J K

    2011-01-01

    Stimulated by state-of-the-art robotic and computer technology, Intra Cytoplasmic Sperm Injection (ICSI) automation aims to scale and seamlessly transfer the human hand movements into more precise and fast movements of the micro manipulator. Piezo-drill cell injection, a novel technique using piezo-driven pipettes with a very small mercury column, has significantly improves the survival rates of ICSI process. It is found that complications are due, in large part, to toxicity of mercury and the damage to the cell membrane because of the lateral tip oscillations of injector pipette. In this paper, a new design of piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design centralizes the piezo oscillation power on the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. Detrimental lateral tip oscillations of the injector pipette are attenuated to a desirable level even without the help of mercury column. This mercury-free injector can sublime the piezoelectric driven injection technique to completely non-toxic level with great research and commercial application in gene injection, in-vitro fertilization, ICSI and drug development.

  5. Dysregulation of peritoneal cavity B1a cells and murine primary biliary cholangitis

    PubMed Central

    Yang, Yan-Qing; Yang, Wei; Yao, Yuan; Ma, Hong-Di; Wang, Yin-Hu; Li, Liang; Wu, Qingfa; Gershwin, M. Eric; Lian, Zhe-Xiong

    2016-01-01

    Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease with progressive cholestasis and liver fibrosis. Similar to human patients with PBC, p40−/−IL-2Rα−/− mice spontaneously develop severe autoimmune cholangitis. Although there has been considerable work on immune regulation and autoimmunity, there is a relative paucity of work directed at the functional implications of the key peritoneal cavity (PC) B cell subset, coined B1a cells in PBC. We used flow cytometry and high-resolution microarrays to study the qualitative and quantitative characteristics of B cells, particularly B1a cells, in the PC of p40−/−IL-2Rα−/− mice compared to controls. Importantly, B1a cell proliferation was markedly lower as the expression of Ki67 decreased. Meanwhile, the apoptosis level was much higher. These lead to a reduction of B1a cells in the PC of p40−/−IL-2Rα−/− mice compared to controls. In contrast, there was a dramatic increase of CD4+ and CD8+ T cells accompanied by elevated production of IFN-γ. In addition, we found a negative correlation between the frequency of B1a cells and the presence of autoreactive CD8+ T cells in both liver and PC of p40−/−IL-2Rα−/− mice. From a functional perspective, B cells from p40−/−IL-2Rα−/− mice downregulated IL-10 production and CTLA-4 expression, leading to loss of B cell regulatory function. We suggest that the dysfunction of B1a cells in the PC in this murine model of autoimmune cholangitis results in defective regulatory function. This highlights a new potential therapeutic target in PBC. PMID:27105495

  6. Interleukin-6 production by peritoneal mesothelial cells and its regulation by inflammatory factors in rats administered carbon tetrachloride intraperitoneally

    SciTech Connect

    Yamaji, Kenzaburo; Ohnishi, Ken-ichi; Zuinen, Ryoji; Ochiai, Yosuke; Chikuma, Toshiyuki; Hojo, Hiroshi

    2008-01-01

    We previously reported that a high level of interleukin-6 (IL-6), which is protective against CCl{sub 4}-induced hepatotoxicity, is produced in the peritoneal cavity in the early period after ip carbon tetrachloride (CCl{sub 4}) administration. The objective of this study was to identify the tissues and cells involved in IL-6 production and clarify the mechanisms underlying its regulation. IL-6 mRNA levels increased significantly in the serous membranes of the mesentery and peritoneum, but not in the parenchymal organs including liver, kidney and spleen, 3 h after ip CCl{sub 4} administration. Peritoneal mesothelial cells (PMCs), a major cell population in serous membranes, were isolated from rat peritoneal walls by trypsin digestion and cultured with peritoneal exudate fluid (PEF) from CCl{sub 4}-administered rats. PMCs produced a high level of IL-6 in the presence of PEF recovered 0.5 h after ip CCl{sub 4} administration. Analyses of PEF revealed that the levels of prostaglandin E{sub 2} (PGE{sub 2}), histamine, IL-1{alpha}, IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) increased immediately after ip CCl{sub 4} administration. These inflammatory factors, except for histamine, stimulated IL-6 production to varying degrees, in the following order: IL-1{alpha} > IL-1{beta} > TNF-{alpha} >> PGE{sub 2}. In summary, the present study indicates that the high level of IL-6 observed in the rat peritoneal cavity after ip CCl{sub 4} administration is at least partially produced by PMCs stimulated cooperatively with IL-1{alpha}, IL-1{beta}, TNF-{alpha} and PGE{sub 2}. These inflammatory factors may be released from tissues or cells either stimulated or injured directly by CCl{sub 4}.

  7. High-glucose-based peritoneal dialysis solution induces the upregulation of VEGF expression in human peritoneal mesothelial cells: The role of pleiotrophin.

    PubMed

    Liu, Jia; Wu, Xia; Liu, Yanchun; Xu, Yaguang; Huang, Yuhan; Xing, Changying; Wang, Xiaoyun

    2013-11-01

    The aim of the present study was to investigate the effect of a high-glucose-based peritoneal dialysis solution (HGPDS) on the expression of pleiotrophin (PTN) and vascular endothelial growth factor (VEGF) in human peritoneal mesothelial cells (HPMCs) and the mechanisms through which fluvastatin (Flu) protects the peritoneal membrane in continuous ambulatory peritoneal dialysis (CAPD). HPMCs were cultured with HGPDS, Flu (10-8‑10-6 mol/l) and PTN (10‑30 nmol/l). The expression of PTN and VEGF was examined at the mRNA and protein level. To define the role of PTN in the regulation of VEGF expression, HPMCs were cultured with HGPDS in the presence or absence of the blocking peptide of PTN. The signaling pathways involved in PTN synthesis induced by HGPDS were also characterized. The phenotypic characteristics of HPMCs were observed under a light microscope. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetry and the mRNA and protein expression of PTN, VEGF and ERK1/2 was assessed by RT‑PCR and the western blot analysis, respectively. Following incubation with HGPDS for 48 h, the morphology of the HPMCs changed from a typical cobblestone‑like appearance to a fibroblast‑like phenotype. The same alteration in the morphology of the HPMCs also occurred following incubation with 20 nmol/l PTN. Flu (10-6 mol/l), GSK650394 [a competitive inhibitor of serum/glucocorticoid-regulated kinase 1 (SGK1), 10-5 mol/l] and PD98059 (a competitive inhibitor of ERK1/2, 10-5 mol/l) improved the negative changes in cell morphology induced by HGPDS. The results of MTT assay revealed that the reduction in HPMC viability occurred in the groups treated with HGPDS and this reduction was partially restored by Flu, GSK650394 and PD98059. A significant improvement in cell viability, which had been decreased by HGPDS, was observed following treatment with Flu (10-6 mol/l), PD98059 (10-5 mol/l) or GSK650394 (10-5 mol/l) (P<0

  8. Immunocytochemical localization of chymase to cytoplasmic vesicles after rat peritoneal mast cell stimulation by compound 48/80.

    PubMed

    Login, G R; Aoki, M; Yamakawa, M; Lunardi, L O; Digenis, E C; Tanda, N; Schwartz, L B; Dvorak, A M

    1997-10-01

    The subcellular events responsible for release of mediators by mast cells may help to clarify roles for mast cells in health and disease. In this study we show that the granule-associated protease chymase is also within cytoplasmic vesicles in appropriately stimulated rat peritoneal mast cells. Rat peritoneal mast cells were recovered before or 1-10 sec after exposure to the secretogogue compound 48/80 (10 micrograms/ml) and then were examined by radioimmunoassay to quantify histamine release or were processed, using routine methods for postembedding immunoelectron microscopy, to identify the subcellular localization of chymase. In comparison to unstimulated cells, compound 48/80 stimulated cells in two independent experiments showed an increase (15%, 28%) in the surface area of the cell and a decrease (12%, 6%) in the surface area of the total granule compartment before degranulation channel formation. These global cellular changes occurred in a background of transient but significant (p < 0.01) increases in the area and number of chymase-immunoreactive vesicles per microns2 cytoplasm. These changes were detectable at 5 or 7 sec after stimulation with compound 48/80 but returned to near prestimulation levels by 9 or 10 sec after addition of compound 48/80 (total cumulative histamine release was 28% by 8 sec and 47% by 14 sec). These observations suggest that vesicles participate in the early stages of regulated secretion of chymase from rat peritoneal mast cells.

  9. Some characteristics of histamine secretion from rat peritoneal mast cells stimulated with nerve growth factor.

    PubMed Central

    Pearce, F L; Thompson, H L

    1986-01-01

    Nerve growth factor (NGF) isolated from mouse submandibular gland or from snake venom produced a dose-dependent release of histamine from isolated rat peritoneal mast cells. The response was almost totally dependent on the presence of extracellular calcium ions and on added phosphatidylserine or its lyso-derivative. At high concentrations, strontium ions could substitute for calcium. The process was non-cytotoxic, relatively slow, pH dependent and blocked by polyclonal antibodies to NGF. Binding of NGF to the mast cell was not dependent on added calcium. The release was unaffected by low molecular weight glucose polymers or specific quaternary ammonium salts and thus differed from that evoked by clinical dextran or polyamines. The release was not inhibited by soluble rat IgE or IgG and was unimpaired in mast cells recovered from specific pathogen free rats. As such it did not appear to be mediated through interaction with cell-fixed antibodies. The process further differed from anaphylactic histamine release in that there was no accompanying change in the intracellular level of adenosine 3',5'-cyclic monophosphate (cyclic AMP), the activated state induced by NGF was much more persistent than that evoked by antigen, and there was no cross-desensitization between the two latter stimuli. In total, these data suggest that NGF may induce secretion from rat mast cells by interaction with a specific receptor on the plasma membrane, possibly similar to that present on sensory and sympathetic neurones. PMID:2425086

  10. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  11. Cells and Stripes: A novel quantitative photo-manipulation technique.

    PubMed

    Mistrik, Martin; Vesela, Eva; Furst, Tomas; Hanzlikova, Hana; Frydrych, Ivo; Gursky, Jan; Majera, Dusana; Bartek, Jiri

    2016-01-18

    Laser micro-irradiation is a technology widely used in the DNA damage response, checkpoint signaling, chromatin remodeling and related research fields, to assess chromatin modifications and recruitment of diverse DNA damage sensors, mediators and repair proteins to sites of DNA lesions. While this approach has aided numerous discoveries related to cell biology, maintenance of genome integrity, aging and cancer, it has so far been limited by a tedious manual definition of laser-irradiated subcellular regions, with the ensuing restriction to only a small number of cells treated and analyzed in a single experiment. Here, we present an improved and versatile alternative to the micro-irradiation approach: Quantitative analysis of photo-manipulated samples using innovative settings of standard laser-scanning microscopes. Up to 200 cells are simultaneously exposed to a laser beam in a defined pattern of collinear rays. The induced striation pattern is then automatically evaluated by a simple algorithm, which provides a quantitative assessment of various laser-induced phenotypes in live or fixed cells. Overall, this new approach represents a more robust alternative to existing techniques, and provides a versatile tool for a wide range of applications in biomedicine.

  12. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations

    NASA Astrophysics Data System (ADS)

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-01

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or ``click chemistry''. The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or ``click chemistry''. The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high

  13. Influence of salmeterol and benzalkonium chloride on G-protein-mediated exocytotic responses of rat peritoneal mast cells.

    PubMed

    Seebeck, J; Krebs, D; Ziegler, A

    2000-05-26

    The long-acting beta(2)-adrenoceptor agonist salmeterol and the invert soap benzalkonium chloride share physicochemically important structures, namely a polar head group and a long aliphatic chain. Low concentrations of benzalkonium chloride have been shown to inhibit exocytotic responses in rat peritoneal mast cells by selectively interacting with heterotrimeric G-proteins of the G(i)-type. The present study investigates whether salmeterol inhibits, independently of beta-adrenoceptors, exocytotic responses of rat peritoneal mast cells induced by the direct agonists at G-proteins mastoparan or guanosine 5'-O-(3-thiotriphosphate) (++GTP gamma S++). Exocytosis was studied by secretion assays ([3H]5-hydroxytryptamine ([3H]5-HT)-release) using intact, streptolysin O-permeabilised or metabolically inhibited (antimycin, deoxyglucose) rat peritoneal mast cells. Both amphiphilics, salmeterol, and benzalkonium chloride, dose-dependently exerted biphasic effects on mastoparan-induced [3H]5-HT release in intact mast cells. In contrast to benzalkonium chloride, the dose-response curves for secretostatic and celltoxic effects of salmeterol markedly overlapped. Similar to benzalkonium chloride, salmeterol in non-cytotoxic concentrations (1-25 microg/ml) dose-dependently inhibited exocytosis induced by mastoparan (intact cells) or ++GTP gamma S (permeabilised cells). These findings indicate a direct, adrenoceptor-independent affection of G proteins by salmeterol in mast cells.

  14. Primary rectal signet ring cell carcinoma with peritoneal dissemination and gastric secondaries

    PubMed Central

    Sim, Hsien-Lin; Tan, Kok-Yang; Poon, Pak-Leng; Cheng, Anton

    2008-01-01

    Disseminated signet ring cell carcinomas frequently arise from the stomach. However, primaries in the colon and rectum have also been reported. We present a 68 year old lady who presented with a change in her bowel habit. Colonoscopy showed a stenosing rectal tumour at 7 cm to 8 cm from the anal verge. Multiple scattered ulcers were also noted along the entire length of the colon. Biopsy of the lesions revealed signet ring cell adenocarcinoma. Gastroscopy showed multiple nodules with ulceration over several areas of the stomach which were similar in appearance to the colonic lesions. However, no primary tumour of the stomach was seen. Biopsy of the gastric lesions also showed signet ring cell adenocarcinoma. Computed tomography scan of the abdomen and pelvis revealed circumferential tumour at the rectosigmoid junction with possible invasion into the left ischiorectal fossa. The overall picture was that of a primary rectal signet ring cell carcinoma with peritoneal dissemination. The patient was referred for palliative chemotherapy in view of the disseminated disease. In the present report, we discuss this interesting pathological entity and review the role of various histolological techniques in helping to identify the primary tumor. PMID:18395918

  15. [Experimental investigations on cell resorption from the peritoneal cavity by use of the scanning electron microscope (author's transl)].

    PubMed

    Remmele, W; Richter, I E; Wildenhof, H

    1975-10-01

    1. It is well known that microscopically small particles may be absorbed from the peritoneal cavity via the large lymphatic vessels. The present experiments were carried out in order to elucidate the site of the absorption. In addition, the role of transperitoneal transport of neoplastic cells as a possible cause of cancer metastases was studied. 2. The peritoneal surface of 40 rats and mice was studied with the scanning electron microscope (diaphragm, lateral abdominal wall). The investigations were carried out in 8 rats and 3 mice 24 hrs following the intraperitoneal injection of washed homologous erythrocytes and in 20 rats and 5 mice 24 hrs after the intraperitoneal injection of Ehrlich ascites tumor cells. 2 rats and 2 mice served as controls. 3. In the control animals no stomata could be shown in the peritoneum of the diaphragm or in the lateral abdominal wall. 4. The i.p. injection of erythrocytes was followed by the appearance of stomata in the peritoneal surface of the diaphragm, and absorption of erythrocytes could be demonstrated. No stomata were found in the peritoneum of the lateral abdominal wall. 5. Tumor cells were found in the stomata following the i.p. injection of ascites tumor cells. It is concluded that a lympho-hematogenous spread of tumor cells seems probable at least in the early stage of tumor infiltration of the peritoneum. This stage is followed by implantation of the tumor cells on the peritoneum.

  16. Comparison of icodextrin- and glucose-based peritoneal dialysis fluids in their acute and chronic effects on human peritoneal mesothelial cells.

    PubMed

    Bender, T O; Witowski, J; Ksiazek, K; Jörres, A

    2007-12-01

    Icodextrin-based peritoneal dialysis fluids (PDFs) display several features that may potentially improve their biocompatibility compared to conventional glucose-containing solutions. So far, however, the studies assessing the biocompatibility profile of icodextrin toward human peritoneal mesothelial cells (HPMC) has produced mixed results. The present study was performed to examine the acute and chronic impact of icodextrin on HPMC in vitro in comparison with standard glucose-based PDF. Omentum-derived HPMC were either acutely pre-exposed to or incubated chronically (for up to 10 days) in the presence of icodextrin-PDF. Parallel cultures were treated with conventional PDFs containing either 1.5% or 4.25% glucose. All fluids were tested at neutral pH. HPMC were assessed for viability, proliferation, IL-6 secretion and generation of reactive oxygen species (ROS). Incubation in the presence of icodextrin-PDF significantly reduced HPMC proliferation in a manner similar to that of 1.5% glucose-PDF. In addition, exposure to icodextrin-PDF impaired viability and IL-6 release from HPMC. This effect occurred both after the short pre-treatment with neat icodextrin-PDF for 1-4 hours and after prolonged incubation (up to 10 days) in media supplemented with icodextrin-PDF (1:1). The dysfunction of icodextrin-treated HPMC was of the magnitude that was between the effects exerted by 1.5%- and 4.25%-glucose PDF. Furthermore, exposure of HPMC to icodextrin-PDF induced a dose-dependent increase in ROS generation which was comparable to that produced by 1.5%-glucose PDF. Exposure to icodextrin-PDF may impair viability and function of HPMC. The detrimental effects of icodextrin-PDF are at least as serious as those produced by conventional heat-sterilized low glucose-based PDF.

  17. Paracrine effects of transplanted mesothelial cells isolated from temperature-sensitive SV40 large T-antigen gene transgenic rats during peritoneal repair

    PubMed Central

    Kanda, Reo; Hamada, Chieko; Kaneko, Kayo; Nakano, Takanori; Wakabayashi, Keiichi; Hara, Kazuaki; Io, Hiroaki; Horikoshi, Satoshi; Tomino, Yasuhiko

    2014-01-01

    Background The prevention and restoration of peritoneal damage is a critical mission in peritoneal dialysis (PD). Transplantation of mesothelial cells has been suggested to suppress peritoneal injury during PD. Few studies have examined the efficacy and safety of cell transplantation. We evaluated the paracrine effects of mesothelial transplantation during peritoneal repair using immortalized temperature-sensitive mesothelial cells (TSMCs) in chlorhexidine gluconate (CG)-induced peritoneal fibrosis rats. Methods Continuous-infusion pumps containing 8% CG were placed into the abdominal cavity for 21 days. After the removal of the pumps, the TSMCs were injected into the peritoneal cavity at Day 22 (Tx-1 group) or 29 (Tx-2 group). Morphological findings and mRNA expressions of regeneration-related factors were examined at Days 22, 29 and 35. Results Peritoneal thickness was aggravated in the Tx-1 group. Levels of transforming growth factor (TGF)-β, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 mRNA in the Tx-1 group at Day 35 were comparable with those at Day 22. The levels of Snail, B-Raf and ERK-1, markers of epithelial to mesenchymal transition and of the RAS/MAPK pathway in the Tx-1 group, were significantly higher than those in the Tx-2 group. TGF-β and VEGF were produced from the transplanted mesothelial cells and the surrounding cells in the Tx-1 group. Conclusion It appears that the paracrine effect of transplanted mesothelial cells during peritoneal repair is associated with its surrounding condition. It is important to determine the most appropriate time for developing peritoneal repair through mesothelial transplantation. PMID:24081857

  18. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Gou, Xue; Chen, Shuxun; Yan, Xiao; Sun, Dong

    2013-07-01

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented.

  19. Adoptive transfer of fibrocytes enhances splenic T-cell numbers and survival in septic peritonitis.

    PubMed

    Nemzek, Jean A; Fry, Christopher; Moore, Bethany B

    2013-08-01

    Fibrocytes are unique, fibroblast-like cells with diverse functions and the potential for immunomodulation, which prompted investigation of their previously unexplored role in sepsis. Specifically, the study goals were to determine if adoptive transfer of fibrocytes would affect outcome in sepsis and to define relevant immunopathologic changes associated with the outcomes. Initial in vitro studies demonstrated that naive T-cell proliferation was significantly increased in cocultures with tissue-derived fibrocytes as compared with culture either alone or with fibroblasts. In vivo, the adoptive transfer of fibrocytes at the time of cecal ligation and puncture significantly improved survival of mice compared with transfer of fibroblasts or saline. Septic mice had lower blood levels of interleukin 6 (IL-6) and markers of organ injury after fibrocyte transfer as well as a reduced bacterial burden. Locally, peritoneal lavage fluid yielded lower bacterial counts, lower IL-6, and reduced inflammatory cell counts when fibrocyte transfer was compared with saline. This was also accompanied by significant increases in splenic CD4(+) and CD8(+) T cells. In vitro stimulation of the splenic T cells demonstrated that, after cecal ligation and puncture and adoptive transfer, the percentages of both CD4(+) and CD8(+) T cells with intracellular interferon γ were increased, whereas those with IL-4 remained similar between the groups. Therefore, it appears the adoptive transfer of fibrocytes improves sepsis survival, lowers bacterial burden, and promotes the proliferation of splenic T cells with a T(H)1 phenotype. These results confirm the immunomodulatory effects of exogenous, tissue-derived fibrocytes in sepsis and suggest their potential in cell therapy.

  20. Optogenetic manipulation of cerebellar Purkinje cell activity in vivo.

    PubMed

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita; Sato, Ayana; Miyashita, Yasushi

    2011-01-01

    Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. We injected into rat cerebellar cortex lentiviruses expressing either the light-activated cationic channel channelrhodopsin-2 (ChR2) or light-driven chloride pump halorhodopsin (eNpHR) under the control of the PC-specific L7 promoter. Transgene expression was observed in most PCs (ChR2, 92.6%; eNpHR, 95.3%), as determined by immunohistochemical analysis. In vivo electrophysiological recordings showed that all light-responsive PCs in ChR2-transduced rats increased frequency of simple spike in response to blue laser illumination. Similarly, most light-responsive PCs (93.8%) in eNpHR-transduced rats decreased frequency of simple spike in response to orange laser illumination. We then applied these techniques to characterize the roles of rat cerebellar uvula, one of the cardiovascular regulatory regions in the cerebellum, in resting blood pressure (BP) regulation in anesthetized rats. ChR2-mediated photostimulation and eNpHR-mediated photoinhibition of the uvula had opposite effects on resting BP, inducing depressor and pressor responses, respectively. In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didn't affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum.

  1. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities.

    PubMed

    Park, Ji Hun; Yang, Sung Ho; Lee, Juno; Ko, Eun Hyea; Hong, Daewha; Choi, Insung S

    2014-04-02

    The chronological progresses in single-cell nanocoating are described. The historical developments in the field are divided into biotemplating, cytocompatible nanocoating, and cells in nano-nutshells, depending on the main research focuses. Each subfield is discussed in conjunction with the others, regarding how and why to manipulate living cells by nanocoating at the single-cell level. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. MicroBioRobots for single cell manipulation

    NASA Astrophysics Data System (ADS)

    Sakar, Mahmut Selman

    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable microactuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a biointegrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 mum coated with a monolayer of the swarming Serratia marcescens . The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples

  3. Peritoneal Dialysis

    MedlinePlus

    Peritoneal dialysis Overview By Mayo Clinic Staff Peritoneal dialysis (per-ih-toe-NEE-ul die-AL-uh-sis) is a way to remove waste products from your blood when your kidneys can no longer do the job adequately. A cleansing fluid flows through a tube (catheter) into part of your abdomen and filters waste ...

  4. Peritoneal Dialysis–Related Peritonitis Due to Abiotrophia defectiva

    PubMed Central

    Shah, Nikhil; Naidu, Prenilla; Pauly, Robert P.

    2016-01-01

    Background: Abiotrophia defectiva is a fastidious aerobic gram-positive bacterium which is part of the normal flora of the human oral cavity. It is an unusual cause of peritoneal dialysis–related peritonitis. Case Presentation: We present a case of a man in his fifties with end-stage renal failure secondary to polycystic kidney disease who presented with a cloudy peritoneal fluid effluent and a cell count of 35 620 × 106 cells/L with 90% polymorphonuclear cells. The fluid was cultured per unit protocol, and the organism was identified as Abiotrophia defectiva. Post–peritonitis dialysis technique review revealed frequent lapses in the use of facemask and hand washing during cycler connection and disconnection. The patient responded well to vancomycin; however, he subsequently developed ultrafiltration failure and symptoms of fluid overload and uremia and was transferred to home hemodialysis. Conclusions: Abiotrophia defectiva is an unusual cause of peritoneal dialysis–related peritonitis. The organism is a normal commensal of the oral cavity and may cause peritonitis in patients with nonadherence to dialysis technique. In our case, the infection was followed by peritoneal membrane failure and transfer to hemodialysis. It remains to be seen if peritonitis with Abiotrophia defectiva heralds a worse outcome. PMID:28270927

  5. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  6. Transplantation tool integrated with MEMS manipulator for retinal pigment epithelium cell sheet.

    PubMed

    Wada, H; Konishi, S

    2013-01-01

    This paper reports a transplantation tool for the retinal pigment epithelium in an eye. We have developed MEMS manipulator as an end-effector for transplantation of retinal pigment epithelium cell sheet. Typical size of MEMS manipulator is 3mm×3mm. MEMS manipulator was made of polydimethylsiloxane and driven by pneumatic balloon actuators. MEMS manipulator have been improved and integrated with several functions by sensors and actuators. MEMS manipulator is integrated into a transplantation tool. A whole tool also requires improvements based on our experimental results. We have improved our tool in terms of assembling, sealing, and operation.

  7. Design and fabrication of an integrated cell processor for single embryo cell manipulation.

    PubMed

    Park, Jungyul; Jung, Seng-Hwan; Kim, Young-Ho; Kim, Byungkyu; Lee, Seung-Ki; Park, Jong-Oh

    2005-01-01

    This paper presents an integrated cell processor for the automatic handling of individual embryo cells. The integrated processor can perform various functions such as cell transport, isolation, orientation, and immobilization. These functions are indispensable and frequently used for the manipulation of single cells, but can only be carried out by a skillful operator. The purpose of this study was the integration and automation of these functions for effective cell manipulation, using a MEMS approach. The isolation of a cell was performed using polypyrrole (PPy) valves in a microchannel into which cells were transported. The orientation of cells was controlled by electrorotation (ER), and the target cell was immobilized by suction from a microhole. All of these functions were seamlessly realized on a single chip. Excellent experimental results with mouse (B6CBA) embryo cells showed that this device could substitute for routine and cumbersome manual work. It is expected that the integrated chip will contribute significantly to faster and more reliable manipulation of cells.

  8. Association between red cell distribution width and mortality in patients undergoing continuous ambulatory peritoneal dialysis

    PubMed Central

    Hsieh, Yao-Peng; Tsai, Shr-Mei; Chang, Chia-Chu; Kor, Chew-Teng; Lin, Chi-Chen

    2017-01-01

    Although red cell distribution width (RDW) has emerged as a biomarker of clinical prognostic value across a variety of clinical settings in the last two decades, limited evidence is available for its role in end-stage renal disease. We enrolled 313 incident patients undergoing continuous ambulatory peritoneal dialysis (CAPD) in this retrospective observational study from 2006 to 2015. In the fully adjusted model of Cox regression analysis, the adjusted hazard ratios for the high RDW group versus the low RDW group were 2.58 (95% confidence interval (CI) = 1.31–5.09, p = 0.006) and 3.48 (95% CI = 1.44–8.34, p = 0.006) for all-cause and cardiovascular disease (CVD)-related mortality, respectively. Based on area under the receiver operating characteristic curve (AUC) analysis, RDW (AUC = 0.699) had a stronger predictive value for all-cause and CVD-related mortality than other biological markers including hemoglobin (AUC = 0.51), ferritin (AUC = 0.584), iron saturation (AUC = 0.535), albumin (AUC = 0.683) and white blood cell count (AUC = 0.588). Given that RDW is a readily available hematological parameter without the need for additional cost, we suggest that it can be used as a valuable index to stratify the risk of mortality beyond a diagnosis of anemia. PMID:28367961

  9. Pyrazolopyrimidines: synthesis, effect on histamine release from rat peritoneal mast cells and cytotoxic activity.

    PubMed

    Quintela, J M; Peinador, C; Moreira, M J; Alfonso, A; Botana, L M; Riguera, R

    2001-04-01

    A series of 1H-pyrazolo[3,4-d]pyrimidines (3--6) substituted at positions 1 (R(1)=Ph, H, tert-butyl and ribosetribenzoate), 4 (R(2)=chlorine, nitrogen and oxygen nucleophiles), and 6 (dimethylamino) have been synthesized and their effect on the release of histamine from rat peritoneal mast cells measured. After chemical stimulation, (polymer 48/80), several compounds (i.e. 3b, 4a, 4b, 4d, 4g, 5a), produce inhibition two to three times higher (40--60%) than DSCG but this action is lower after preincubation. 4b (R(1)=Ph, R(2)=NHCH(2)Ph; 50--70% inhibition) and 5a (R(1)=H, R(2)=OMe; 50--55% inhibition) are the most active ones in both experiments. With ovoalbumin as stimulus, several pyrazolopyrimidines show inhibition similar to DSCG, the most active compounds being 6a--d (IC(50)=12--16 microM; R(1)=ribosetribenzoate, R(2)=methoxy and amino). Compounds 4e (R(1)=t-butyl, R(2)=OMe) and 4g (R(1)=t-butyl, R(2)=piperidino) are inducers of the release of histamine (60 and 150% increase). Compounds 4b and 4c showed cytotoxic activity (IC(50)=1 microg/mL) to HT-29 human colon cancer cells.

  10. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein.

    PubMed Central

    Yokode, M; Kita, T; Kikawa, Y; Ogorochi, T; Narumiya, S; Kawai, C

    1988-01-01

    Changes in arachidonate metabolism were examined in mouse peritoneal macrophages incubated with various types of lipoproteins. Oxidized low density lipoprotein (LDL) was incorporated by macrophages and stimulated macrophage prostaglandin E2 (PGE2) and leukotriene C4 syntheses, respectively, 10.8- and 10.7-fold higher than by the control. Production of 6-keto-PGF1 alpha, a stable metabolite of prostacyclin, was also stimulated. No stimulation was found with native LDL, which was minimally incorporated by the cells. Acetylated LDL and beta-migrating very low density lipoprotein (beta-VLDL), though incorporated more efficiently than oxidized LDL, also had no stimulatory effect. When oxidized LDL was separated into the lipoprotein-lipid peroxide complex and free lipid peroxides, most of the stimulatory activity was found in the former fraction, indicating that stimulation of arachidonate metabolism in the cell is associated with uptake of the lipoprotein-lipid peroxide complex. These results suggest that peroxidative modification of LDL could contribute to the progression of atheroma by stimulating arachidonate metabolism during incorporation into macrophages. Images PMID:3125226

  11. Phorbal esters and calcium ionophore can prime murine peritoneal macrophages for tumor cell destruction

    SciTech Connect

    Somers, S.D.; Weiel, J.E.; Hamilton, T.A.; Adams, D.O.

    1986-06-01

    Murine macrophages from sites of inflammation develop toward tumoricidal competence by exposure to a macrophage-activating factor such as interferon-..gamma.. (IFN-..gamma..). To explore the biochemical transductional events initiated by IFN-..gamma.., peritoneal macrophages from C57BL/6J mice elicited by various sterile irritants were treated in vitro with two pharmacologic agents that mimic the action of certain second messengers. Phorbol myristate acetate (PMA) and the ionophore A23187 cooperatively reproduced the ability of IFN-..gamma.. to prime macrophages for tumoricidal function. Neither agent alone was able to prime macrophages. The two agents acted on the macrophages, and target susceptibility to kill was not altered by PMA and A23187. Only active phorbol esters, which are known to bind and stimulate protein kinase C, were able to cooperate with A23187 to induce priming. A cell-permeable synthetic diacylglycerol (sn-1,2-dioctanoyl glycerol) could also prime for cytolysis. In the presence of PMA, A23187, and EGTA, addition of Ca/sup + +/ was sufficient for priming, whereas the addition of Mg/sup + +/ was much less efficient. Priming by IFN-..gamma.., however, was not blocked by EGTA. Efflux of /sup 45/Ca/sup + +/ from preloaded cells was significantly increased by A23187 and by IFN-..gamma... Quin-2/AM, an intracellular chelator of Ca/sup + +/, blocked priming by IFN-..gamma...

  12. Intestinal and peritoneal mast cells differ in kinetics of quantal release.

    PubMed

    Balseiro-Gomez, Santiago; Ramirez-Ponce, M Pilar; Acosta, Jorge; Ales, Eva; Flores, Juan A

    2016-01-15

    5-hydroxytriptamine (5-HT, serotonin) storage and release in mast cell (MC) secretory granules (SG) are dependent on serglycin proteoglycans (PG). This notion is based on the studies of MC of the connective tissue subtype that predominantly contain PG of the heparin type, whereas intestinal mucosal MC, which contain predominantly chondroitin sulfate, have been poorly explored. In the present study, we addressed the possibility that PG contents may differently affect the storage and release of preformed mediators in these two MC subclasses and explain in part their different functional properties. Rat peritoneal (PMC) and intestinal mast cells (IMC) were isolated and purified using a percoll gradient, and the efflux of 5-HT from each SG was measured by amperometric detection. IMC exhibited a ∼34% reduction in the release of 5-HT compared with PMC because of a lower number of exocytotic events, rather than a lower secretion per single exocytotic event. Amperometric spikes from IMC exhibited a slower decay phase and increased half-width but a similar ascending phase and foot parameters, indicating that the fusion pore kinetics are comparable in both MC subclasses. We conclude that both PG subtypes are equally efficient systems, directly involved in serotonin accumulation, and play a crucial role in regulating the kinetics of exocytosis from SG, providing specific secretory properties for the two cellular subtypes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The significance of chloride in the inhibitory action of disodium cromoglycate on immunologically-stimulated rat peritoneal mast cells.

    PubMed

    Law, J K Y; Yeung, C K; Wan, S P; Ingebrandt, S; Lau, H Y A; Rudd, J A; Chan, M

    2011-09-01

    The microelectrode array (MEA) was used to investigate the pharmacological relevance of chloride (Cl-) ions in antigen-dependent mast cell activation and the inhibitory effect of disodium cromoglycate (DSCG) on mast cell activation. The movements of ions across the cellular membrane and the potential relationship between Cl- channels and DSCG during immunological activation were investigated using the MEA. The results were then subsequently compared with the amount of histamine released from anti-IgE activated peritoneal mast cells. The inclusion of charybdotoxin (ChTX) in Cl--free buffer showed that the measured field potentials during antigen-stimulated peritoneal mast cell were a combination of Cl- influx and K+ efflux. The delayed onset time of Cl- influx indicated the presence of a delayed outwardly-rectifying Cl- current in the antigen-stimulated peritoneal mast cells. The use of 5-nitro-2-(3-phenylpropylamino) benzoic acid demonstrated that the activated mast cell membrane potential can be stabilised, thereby reducing the amount of histamine released from the anti-IgE activated mast cells. The correlation between the results of the histamine release assay and the electrophysiological measurements demonstrated the importance of Cl- to anti-IgE dependent mast cell activation. The inhibitory effect of DSCG on anti-IgE activated cells, however, did not correlate with the presumed influx of Cl-. The MEA data suggest that Cl- influx is crucial to IgE-dependent mast cell degranulation. While the MEA cannot yield information about single channel properties, it is convenient to use and can provide information on the global changes in electrophysiological responses of non-excitable cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence

    PubMed Central

    Clément, Flora; Grockowiak, Elodie; Zylbersztejn, Florence; Fossard, Gaëlle; Gobert, Stéphanie

    2017-01-01

    Stem cells (SCs) have been extensively studied in the context of regenerative medicine. Human hematopoietic stem cell (HSC)-based therapies have been applied to treat leukemic patients for decades. Handling of mesenchymal stem cells (MSCs) has also raised hopes and concerns in the field of tissue engineering. Lately, discovery of cell reprogramming by Yamanaka’s team has profoundly modified research strategies and approaches in this domain. As we gain further insight into cell fate mechanisms and identification of key actors and parameters, this also raises issues as to the manipulation of SCs. These include the engraftment of manipulated cells and the potential predisposition of those cells to develop cancer. As a unique and pioneer model, the use of HSCs to provide new perspectives in the field of regenerative and curative medicine will be reviewed. We will also discuss the potential use of various SCs from embryonic to adult stem cells (ASCs), including induced pluripotent stem cells (iPSCs) as well as MSCs. Furthermore, to sensitize clinicians and researchers to unresolved issues in these new therapeutic approaches, we will highlight the risks associated with the manipulation of human SCs from embryonic or adult origins for each strategy presented. PMID:28815178

  15. [Peritoneal gliomatosis].

    PubMed

    Sánchez-Cifuentes, Angela; Gonzalez-Valverde, Francisco Miguel; Vicente-Ruiz, María; Peña-Ros, Emilio; Pastor-Quirante, Francisco; Albarracín-Marín-Blázquez, Antonio; Escamilla-Segade, Concepción

    2014-01-01

    Peritoneal gliomatosis is characterized by the presence of miliary implants of mature glia on the peritoneum of patients with ovarian teratomas, usually immature. We report the case of a woman operated on 5 years earlier due to a right mature ovarian teratoma. When she was operated on due to left ovarian tumor she presented a miliary glial dissemination in omentum and peritoneum. The association of peritoneal gliomatosis ovarian teratomas is rare. Although the primary treatment and patient monitoring is focused on the teratoma, control should be maintained of peritoneal implants because of the possibility of malignancy. We believe it would be beneficial to establish a protocol for monitoring these lesions.

  16. Synthesis of hyaluronic acid by human peritoneal mesothelial cells: effect of cytokines and dialysate.

    PubMed

    Breborowicz, A; Korybalska, K; Grzybowski, A; Wieczorowska-Tobis, K; Martis, L; Oreopoulos, D G

    1996-01-01

    To assess effects of the inflammatory cytokines (IL-1-beta, TNF-alpha, TGF-beta 1) and dialysate effluent on synthesis of hyaluronic acid by human peritoneal mesothelial cells (HMC) in in vitro culture. Dialysate effluent was collected after the overnight dwell of Dianeal 1.5% from patients during CAPD training. HMC were obtained from omentum from nonuremic donors or were harvested from the dialysate effluent from CAPD patients. Synthesis of hyaluronic acid was studied on monolayers of HMC, which were deprived of serum 48 hours prior to experiment. Effects of cytokines were tested in a medium with low serum concentration (0.1%) or in medium mixed (1:1 v/v) with the autologous dialysate. Hyaluronic acid level in medium was measured with radioimmunoassay. Cytokines enhanced synthesis of hyaluronic acid by HMC, and the strongest effect was induced by IL-1. Effluent dialysate stimulates synthesis of hyaluronic acid stronger than 10% FCS. Effluent dialysate and IL-1 synergistically enhance synthesis of hyaluronic acid by HMC. Effluent dialysate from CAPD patients stimulates production of hyaluronic acid by HMC and acts synergistically with cytokines.

  17. Seabream (Sparus aurata) long-term dominant-subordinate interplay affects phagocytosis by peritoneal cavity cells.

    PubMed

    Cammarata, M; Vazzana, M; Accardi, D; Parrinello, N

    2012-05-01

    Fish are sensitive to stressful conditions that affect their innate immune systems and increase their susceptibility to diseases. We examined the social stress of paired gilthead seabream (Sparus aurata). Social hierarchies (dominant/subordinate) were characterised by behavioural changes, such as "aggressiveness" and "feeding order"; hierarchical positions were established within an hour of exposure to social stress and remained unchanged for approximately 1 year. To characterise physiological stress, we measured blood plasma levels of cortisol, glucose, and lactate as well as osmolarity and observed that the levels of these stress markers were higher in subordinate individuals than in dominant ones. The discriminant analysis revealed a separation of the subordinate fish groups, and at 15 days, a significant separation among groups was observed. Moreover, diminished phagocytic and respiratory burst activities revealed that social stress appeared to affect the cellular innate immune response of the subordinate specimens. Finally, to examine the effect of cortisol on phagocytosis, peritoneal cavity cells were treated in vitro, and an inhibitory effect was observed.

  18. Whole exome sequencing of independent lung adenocarcinoma, lung squamous cell carcinoma, and malignant peritoneal mesothelioma

    PubMed Central

    Vanni, Irene; Coco, Simona; Bonfiglio, Silvia; Cittaro, Davide; Genova, Carlo; Biello, Federica; Mora, Marco; Rossella, Valeria; Dal Bello, Maria Giovanna; Truini, Anna; Banelli, Barbara; Lazarevic, Dejan; Alama, Angela; Rijavec, Erika; Barletta, Giulia; Grossi, Francesco

    2016-01-01

    Abstract The presence of multiple primary tumors (MPT) in a single patient has been identified with an increasing frequency. A critical issue is to establish if the second tumor represents an independent primary cancer or a metastasis. Therefore, the assessment of MPT clonal origin might help understand the disease behavior and improve the management/prognosis of the patient. Herein, we report a 73-year-old male smoker who developed 2 primary lung cancers (adenocarcinoma and squamous cell carcinoma) and a malignant peritoneal mesothelioma (PM). Whole exome sequencing (WES) of the 3 tumors and of germline DNA was performed to determine the clonal origin and identify genetic cancer susceptibility. Both lung cancers were characterized by a high mutational rate with distinct mutational profiles and activation of tumor-specific pathways. Conversely, the PM harbored a relative low number of genetic variants and a novel mutation in the WT1 gene that might be involved in the carcinogenesis of nonasbestos-related mesothelioma. Finally, WES of the germinal DNA displayed several single nucleotide polymorphisms in DNA repair genes likely conferring higher cancer susceptibility. Overall, WES did not disclose any somatic genetic variant shared across the 3 tumors, suggesting their clonal independency; however, the carcinogenic effect of smoke combined with a deficiency in DNA repair genes and the patient advanced age might have been responsible for the MPT development. This case highlights the WES importance to define the clonal origin of MPT and susceptibility to cancer. PMID:27902597

  19. Zinc inhibits high glucose-induced NLRP3 inflammasome activation in human peritoneal mesothelial cells.

    PubMed

    Fan, Yi; Zhang, Xiuli; Yang, Lina; Wang, Jun; Hu, Ye; Bian, Aishu; Liu, Jin; Ma, Jianfei

    2017-10-01

    Zinc (Zn) deficiency is important for inducing nucleotide-binding domain and leucine‑rich repeat‑containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in macrophages. However, its function in the NLRP3 inflammasome activation of peritoneal mesothelial cells (PMCs) remains to be elucidated. In the present study, the human PMC (HPMC) line HMrSV5 was co‑treated with high glucose and either ZnSO4 or a Zn chelator. The activity of the NLRP3/caspase‑1 inflammasome was assessed via western blot analysis, immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and ELISA. In addition, the activity of the nuclear factor erythroid 2‑related factor 2 (Nrf2) pathway was detected using western blotting, and the level of reactive oxygen species (ROS) was assessed by 2,7‑dichlorofluorescein fluorescence and flow cytometry. It was found that Zn supplementation inhibited HG‑induced NLRP3 inflammasome activation in the HPMCs by attenuating ROS production. Further experiments revealed that Zn supplementation inhibited the HG‑induced production of ROS through activation of the Nrf2 antioxidant pathway. These results indicated that Zn inhibited NLRP3 inflammasome activation in the HG‑treated HPMCs by activating the Nrf2 antioxidant pathway and reducing the production of ROS.

  20. A comparison of the peritoneal cell population of pregnant rabbits after LPS or TNF-alpha induced septic shock.

    PubMed

    Terlikowski, S; Sulkowska, M; Południewski, G; Dziecioł, J; Sobaniec-Lotowska, M; Musiatowicz, B; Kulikowski, M

    1997-01-01

    Septic shock is a catastrophic consequence of invasive infection. Unfortunately, recent advances in surgical and medical sciences have not significantly reduced the overall mortality from septic shock. Bacterial antigens stimulate a cascade of cytokine release; each cytokine helps the host to overcome infection, but their excessive production causes them to trigger events that lead to septic syndrome and shock. Tumour necrosis factor (TNF-alpha) has a pivotal role in orchestrating the events leading to septic shock. Intraperitoneal administration of certain substances can increase the number and phagocytic activity of cells, which reach naturally the site of infection. Activation of the immunity cells in the peritoneal cavity and their immunocompetence are found to be responsible for the organism protection against abdominal cavity infections. Macrophages, lymphocytes and granulocytes of low activity in the non-stimulated peritoneal cavity become significant due to the influence of numerous biologically active substances. This study was designed to determine the peritoneal response to local administration of LPS or TNF-alpha in the course of experimental septic shock.

  1. Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis

    PubMed Central

    Chi, Zhixia; Du, Shou-Hui; Chen, Can; Tay, Johan C.K.; Toh, Han Chong; Connolly, John E.; Xu, Xue Hu; Wang, Shu

    2017-01-01

    The epithelial cell adhesion molecule (EpCAM) is overexpressed in a wide variety of tumor types, including peritoneal carcinomatosis (PC) from gastrointestinal and gynecological malignancies. To develop a chimeric antigen receptor T (CART) cell therapy approach to treat patients with end-stage PC, we constructed third generation CARs specific to EpCAM using the 4D5MOC-B single chain variable fragment. CART cells were generated with lentiviral transduction and exhibited specific in vitro killing activity against EpCAM-positive human ovarian and colorectal cancer cells. A single intraperitoneal injection of the CART cells eradicated established ovarian xenografts and resulted in significantly prolonged animal survival. Since EpCAM is also expressed on normal epithelium, anti-EpCAM CART cells were generated by mRNA electroporation that display a controlled cytolytic activity with a limited CAR expression duration. Multiple repeated infusions of these RNA CAR-modified T cells delayed disease progression in immunodeficient mice bearing well-established peritoneal ovarian and colorectal xenografts. Thus, our study demonstrates the effectiveness of using anti-EpCAM CAR-expressing T cells for local treatment of PC in mice. The possibility of using this approach for clinical treatment of EpCAM-positive gastrointestinal and gynecological malignancies warrants further validation. PMID:28088790

  2. Involvement of MIP-2 and CXCR2 in neutrophil infiltration following injection of late apoptotic cells into the peritoneal cavity.

    PubMed

    Iyoda, T; Kobayashi, Y

    2004-07-01

    Apoptotic cells are cleared by phagocytes, such as macrophages, as soon as they appear in vivo. If apoptosis occurs acutely, however, macrophages may be outnumbered by apoptotic cells, which causes late apoptosis. We previously showed that injection of late apoptotic cells into the peritoneal cavity led to transient infiltration of neutrophils. In this study, we examined the involvement of MIP-2 and CXCR2 in the neutrophil infiltration. We first produced a recombinant MIP-2 protein, and a fusion protein between CXCR2 and GST in E. coli, and then generated anti-MIP-2 antibodies and anti-CXCR2 antibodies in rabbits. We then confirmed their specificity by Western blotting analysis and flow cytometry. Injection of late apoptotic cells, such as P388 cells treated with etoposide for 24 hours and CTLL-2 cells cultured in IL-2-free medium for 28 hours, induced neutrophil infiltration into the peritoneal cavity, as expected. The antibodies, but not control antibodies against GST, suppressed the neutrophil infiltration to the level caused by injection of normal (viable) cells, suggesting that MIP-2 and CXCR2 are mainly involved in the neutrophil infiltration caused by late apoptotic cells.

  3. Intestinal and peritoneal mast cells differ in kinetics of quantal release

    SciTech Connect

    Balseiro-Gomez, Santiago Ramirez-Ponce, M. Pilar Acosta, Jorge Ales, Eva Flores, Juan A.

    2016-01-15

    5-hydroxytriptamine (5-HT, serotonin) storage and release in mast cell (MC) secretory granules (SG) are dependent on serglycin proteoglycans (PG). This notion is based on the studies of MC of the connective tissue subtype that predominantly contain PG of the heparin type, whereas intestinal mucosal MC, which contain predominantly chondroitin sulfate, have been poorly explored. In the present study, we addressed the possibility that PG contents may differently affect the storage and release of preformed mediators in these two MC subclasses and explain in part their different functional properties. Rat peritoneal (PMC) and intestinal mast cells (IMC) were isolated and purified using a percoll gradient, and the efflux of 5-HT from each SG was measured by amperometric detection. IMC exhibited a ∼34% reduction in the release of 5-HT compared with PMC because of a lower number of exocytotic events, rather than a lower secretion per single exocytotic event. Amperometric spikes from IMC exhibited a slower decay phase and increased half-width but a similar ascending phase and foot parameters, indicating that the fusion pore kinetics are comparable in both MC subclasses. We conclude that both PG subtypes are equally efficient systems, directly involved in serotonin accumulation, and play a crucial role in regulating the kinetics of exocytosis from SG, providing specific secretory properties for the two cellular subtypes. - Highlights: • We improved a method for isolating and purifying IMC. • There was a reduction in total serotonin release in IMC with respect to PMC. • This decrease was not due to less secretion per quantum but a lower number of exocytotic events. • There was also a deceleration of exocytosis in IMC with respect to PMC.

  4. Systemic mast cell degranulation increases mortality during polymicrobial septic peritonitis in mice

    PubMed Central

    Seeley, Eric J.; Sutherland, Rachel E.; Kim, Sophia S.; Wolters, Paul J.

    2011-01-01

    MCs are required for an effective host response during septic peritonitis. Local MC degranulation facilitates neutrophil recruitment, activation, and bacterial killing. However, the role of MCs located distant from the site of infection is unknown. We studied the temporal and spacial degranulation of MCs following CLP-induced septic peritonitis. The functional importance of systemic MC degranulation during infection was evaluated by compartment-specific MC reconstitution. Serum histamine, reflecting MC degranulation, was elevated 4 h after onset of septic peritonitis. Histologic examination revealed progressive MC degranulation in select tissues during the first 24 h of infection. MC-deficient Wsh mice, reconstituted only in the peritoneal compartment, had improved survival after CLP compared with controls. However, reconstitution in peritoneal plus systemic compartments worsened survival after CLP. IL-6 contributed to the detrimental effects of systemic MCs on survival, as mice systemically reconstituted with IL-6−/− MCs were more likely to survive than control mice. These results indicate that in contrast to the benefits of local MC activation during infection, systemic MC activation worsens survival during CLP-induced sepsis. PMID:21653231

  5. Cryptococcal peritonitis in a CAPD patient.

    PubMed

    Morris, B; Chan, Y F; Reddy, J; Woodgyer, A

    1992-01-01

    A 50-year-old diabetic woman with end-stage renal disease, who had been on continuous ambulatory peritoneal dialysis for 8 months, developed peritonitis caused by Cryptococcus neoformans var. neoformans. The patient was completely asymptomatic and infection was confirmed by detection of budding yeast cells in Gram-stained smears of turbid peritoneal fluid. The infection was cleared after intravenous fluconazole with delayed removal of the catheter. Fluconazole may be a suitable alternative drug in treating cryptococcal peritonitis.

  6. Recent patents and advances on applications of magnetic nanoparticles and thin films in cell manipulation.

    PubMed

    Abedini-Nassab, Roozbeh; Eslamian, Morteza

    2014-01-01

    Cell manipulation is instrumental in most biological applications. One of the most promising methods in handling cells and other biological particles is the magnetic manipulation technique. In this technique, magnetic nanoparticles are employed to magnetize cells. Such cells then can be manipulated, sorted, or separated by applying an external magnetic field. In this work, first recent works and patents on the synthesis methods used for producing magnetic nanoparticles are investigated. These methods include co-precipitation, solvothermal, electrical wire explosion, microemulsion, laser pyrolysis, spray pyrolysis and carbon reduction. Then recent patents and articles on surface modification and functionalization of magnetic nanoparticles using polymers, dithiocarbamate, superparamagnetic shells, antibodies, graphene shells, and fluorescent materials are reviewed. Finally, different techniques on magnetic cell manipulation, such as direct attaching of magnetic particles to cells, employing intercellular markers or extra support molecules, as well as magnetic thin films, microfluidic channels and magnetic beads, are studied.

  7. NK-Cell Recruitment Is Necessary for Eradication of Peritoneal Carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine.

    PubMed

    Alkayyal, Almohanad A; Tai, Lee-Hwa; Kennedy, Michael A; de Souza, Christiano Tanese; Zhang, Jiqing; Lefebvre, Charles; Sahi, Shalini; Ananth, Abhirami A; Mahmoud, Ahmad Bakur; Makrigiannis, Andrew P; Cron, Greg O; Macdonald, Blair; Marginean, E Celia; Stojdl, David F; Bell, John C; Auer, Rebecca C

    2017-03-01

    Despite improvements in chemotherapy and radical surgical debulking, peritoneal carcinomatosis (PC) remains among the most common causes of death from abdominal cancers. Immunotherapies have been effective for selected solid malignancies, but their potential in PC has been little explored. Here, we report that intraperitoneal injection of an infected cell vaccine (ICV), consisting of autologous tumor cells infected ex vivo with an oncolytic Maraba MG1 virus expressing IL12, promotes the migration of activated natural killer (NK) cells to the peritoneal cavity in response to the secretion of IFNγ-induced protein-10 (IP-10) from dendritic cells. The recruitment of cytotoxic, IFNγ-secreting NK cells was associated with reduced tumor burden and improved survival in a colon cancer model of PC. Even in mice with bulky PC (tumors > 8 mm), a complete radiologic response was demonstrated within 8 to14 weeks, associated with 100% long-term survival. The impact of MG1-IL12-ICV upon NK-cell recruitment and function observed in the murine system was recapitulated in human lymphocytes exposed to human tumor cell lines infected with MG1-IL12. These findings suggest that an MG1-IL12-ICV is a promising therapy that could provide benefit to the thousands of patients diagnosed with PC each year. Cancer Immunol Res; 5(3); 211-21. ©2017 AACR. ©2017 American Association for Cancer Research.

  8. Small molecules, big roles -- the chemical manipulation of stem cell fate and somatic cell reprogramming.

    PubMed

    Zhang, Yu; Li, Wenlin; Laurent, Timothy; Ding, Sheng

    2012-12-01

    Despite the great potential of stem cells for basic research and clinical applications, obstacles - such as their scarce availability and difficulty in controlling their fate - need to be addressed to fully realize their potential. Recent achievements of cellular reprogramming have enabled the generation of induced pluripotent stem cells (iPSCs) or other lineage-committed cells from more accessible and abundant somatic cell types by defined genetic factors. However, serious concerns remain about the efficiency and safety of current genetic approaches to cell reprogramming and traditional culture systems that are used for stem cell maintenance. As a complementary approach, small molecules that target specific signaling pathways, epigenetic processes and other cellular processes offer powerful tools for manipulating cell fate to a desired outcome. A growing number of small molecules have been identified to maintain the self-renewal potential of stem cells, to induce lineage differentiation and to facilitate reprogramming by increasing the efficiency of reprogramming or by replacing genetic reprogramming factors. Furthermore, mechanistic investigations of the effects of these chemicals also provide new biological insights. Here, we examine recent achievements in the maintenance of stem cells, including pluripotent and lineage-specific stem cells, and in the control of cell fate conversions, including iPSC reprogramming, conversion of primed to naïve pluripotency, and transdifferentiation, with an emphasis on manipulation with small molecules.

  9. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse

    PubMed Central

    1994-01-01

    About a half of the antierythrocyte autoantibody transgenic (autoAb Tg) mice, in which almost all B cells are detected in the spleen, lymph nodes, and Peyer's patches, but not in the peritoneal cavity, suffer from autoimmune hemolytic anemia. The occurrence of this disease is strongly linked to production of autoAb by activated peritoneal B-1 cells in the Tg mice. In this study, we have shown that oral administration of lipopolysaccharides (LPS) activated B-1 cells in the lamina propria of the gut as well as the peritoneal cavity in the healthy Tg mice and induced the autoimmune symptoms in all the Tg mice. The activation of peritoneal and lamina propria B-1 cells by enteric LPS is found not only in the anti-RBC autoAb Tg mice and normal mice but also in the aly mice which congenitally lack lymph nodes and Peyer's patches. These results suggest that B-1 cells in the two locations may form a common pool independent of Peyer's patches and lymph nodes, and can be activated by enteric thymus-independent antigens or polyclonal activators such as LPS. The induction of autoimmune hemolytic anemia in the Tg mice by enteric LPS through the activation of B-1 cells in the lamina propria of gut and in the peritoneal cavity suggests that B-1 cells and bacterial infection may play a pathogenic role in the onset of autoimmune diseases. PMID:8006578

  10. Peritoneal sarcomatosis: site of origin for the establishment of an in vitro and in vivo cell line model to study therapeutic resistance in dedifferentiated liposarcoma.

    PubMed

    Mersch, Sabrina; Riemer, Jasmin C; Schlünder, Philipp M; Ghadimi, Markus P; Ashmawy, Hany; Möhlendick, Birte; Topp, Stefan A; Arent, Tanja; Kröpil, Patric; Stoecklein, Nikolas H; Gabbert, Helmut E; Knoefel, Wolfram T; Krieg, Andreas

    2016-02-01

    Approximately 50-70 % of patients with retroperitoneal or intraabdominal sarcoma develop a relapse after surgical therapy, including peritoneal sarcomatosis, an extremely rare site of metastatic disease which is associated with an extremely poor prognosis. Accordingly, the establishment of a permanent cell line derived from peritoneal sarcomatosis might provide a helpful tool to understand the biological behavior and to develop new therapeutic strategies. Thus, we established and characterized a liposarcoma cell line (Lipo-DUE1) from a peritoneal sarcomatosis that was permanently cultured without showing any morphological changes. Lipo-DUE1 cells exhibited a spindle-shaped morphology and positive staining for S100. Tumorigenicity was demonstrated in vitro by invasion and migration assays and in vivo by using a subcutaneous xenograft mouse model. In addition, aCGH analysis revealed concordant copy number variations on chromosome 12q in the primary tumor, peritoneal sarcomatosis, and Lipo-DUE1 cells that are commonly observed in liposarcoma. Chemotherapeutic sensitivity assays revealed a pronounced drug-resistant phenotype of Lipo-DUE1 cells to conventionally used chemotherapeutic agents. In conclusion, we describe for the first time the establishment and characterization of a liposarcoma cell line derived from a peritoneal sarcomatosis. Hence, in the future, the newly established cell line Lipo-DUE1 might serve as a useful in vitro and in vivo model to investigate the biological behavior of liposarcoma and to assess novel targeted therapies.

  11. Different IgM(+) B cell subpopulations residing within the peritoneal cavity of vaccinated rainbow trout are differently regulated by BAFF.

    PubMed

    Granja, Aitor G; Tafalla, Carolina

    2017-10-05

    In teleost fish, IgM(+) B cells are one of the main responders against inflammatory stimuli in the peritoneal cavity, as IgM(+) B cells dominate the peritoneum after intraperitoneal stimulation, also increasing the levels of secreted IgM. BAFF, a cytokine known to play a major role in B cell biology, has been shown to be up-regulated along with its receptors in the peritoneum of rainbow trout upon antigenic exposure, however, the regulatory mechanisms underneath this response remain unclear. In this study, we have identified two different IgM(+) B cell types residing in the peritoneal cavity of previously vaccinated rainbow trout (Oncorhynchus mykiss): IgD(+)IgM(hi)MHCII(hi) cells, resembling naïve B cells, and IgD(-)IgM(lo)MHCII(lo) cells, resembling antibody-secreting cells. Based on their membrane IgM levels, these cell types were named IgM(hi) and IgM(lo) B cells, respectively. As each of these B cell populations showed a distinct expression pattern for the different BAFF receptors, we studied the effect of BAFF individually on each cell subset. Recombinant BAFF promoted the survival of IgM(lo) but not IgM(hi) B cells in vitro, resulting in increased levels of IgM-secreting cells. In contrast, BAFF increased the levels of membrane MHC II only on IgM(hi) B cells, suggesting different functions on these B cell subsets. Moreover, we also showed that peritoneal IgM(hi) B cells expressed BAFF at levels comparable to those seen on myeloid cells. These results point to BAFF as a main regulator of B cell homeostasis in the peritoneal cavity, suggesting that this cytokine can trigger different signals on different peritoneal B cell subsets in a specific manner. Copyright © 2017. Published by Elsevier Ltd.

  12. Primary peritoneal clear cell carcinoma treated with IMRT and interstitial HDR brachytherapy: a case report.

    PubMed

    Johnson, Skyler B; Prisciandaro, Joann I; Zhou, Jessica; Hadley, Scott W; Reynolds, R Kevin; Jolly, Shruti

    2014-01-06

    Primary peritoneal clear cell carcinoma (PP-CCC), which is a rare tumor with poor prognosis, is typically managed with surgery and/or chemotherapy. We present a unique treatment approach for a patient with a pelvic PP-CCC, consisting of postchemotherapy intensity-modulated radiation therapy (IMRT) followed by interstitial high-dose-rate (HDR) brachytherapy. A 54-year-old female with an inoperable pelvic-supravaginal 5.6 cm T3N0M0 PP-CCC tumor underwent treatment with 6 cycles of carboplatin and taxol chemotherapy. Postchemotherapy PET/CT scan revealed a residual 3.3 cm tumor. The patient underwent CT and MR planning simulation, and was treated with 50 Gy to the primary tumor and 45 Gy to the pelvis including the pelvic lymph nodes, using IMRT to spare bowel. Subsequently, the patient was treated with an interstitial HDR brachytherapy implant, planned using both CT and MR scans. A total dose of 15 Gy in 5 Gy fractions over two days was delivered with Ir-192 HDR brachytherapy. The total prescribed equivalent 2 Gy dose (EQD2) to the HDR planning target volume (PTV) from both the EBRT and HDR treatments ranged between 63 and 68.8 Gy2 due to differential dosing of the primary and pelvic targets. The patient tolerated radiotherapy well, except for mild diarrhea not requiring medication. There was no patient-reported acute toxicity one month following the radiotherapy course. At four months following adjuvant radiation therapy, the patient had near complete resolution of local tumor on PET/CT without any radiation-associated toxicity. However, the patient was noted to have metastatic disease outside of the radiation field, specifically lesions in the liver and bone. This case report illustrates the feasibility of the treatment of a pelvic PP-CCC with IMRT followed by interstitial HDR brachytherapy boost, which resulted in near complete local tumor response without significant morbidity.

  13. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin α5 expression.

    PubMed

    Ohyagi-Hara, Chifumi; Sawada, Kenjiro; Kamiura, Shoji; Tomita, Yasuhiko; Isobe, Aki; Hashimoto, Kae; Kinose, Yasuto; Mabuchi, Seiji; Hisamatsu, Takeshi; Takahashi, Toshifumi; Kumasawa, Keiichi; Nagata, Shigenori; Morishige, Ken-Ichirou; Lengyel, Ernst; Kurachi, Hirohisa; Kimura, Tadashi

    2013-05-01

    Ovarian cancer is characterized by widespread peritoneal dissemination and ascites and has a cure rate of only 30%. As has been previously reported, integrin α5 plays a key role in the peritoneal dissemination of ovarian cancer. Our aim was to identify a new miRNA that regulates integrin α5 expression and analyze the therapeutic potential of targeting this miRNA. By using an IHC analysis, we proved that high integrin α5 expression correlates with a poor prognosis in Japanese patients with International Federation of Gynecology and Obstetrics stage III ovarian cancer. Based on an miRNA algorithm search, we identified hsa-mir-92a (miR-92a) as a candidate. The level of miR-92a expression was significantly inversely correlated with ITGA5 expression in various cancer cells. Transfection of precursor miR-92a reduced integrin α5 expression in ovarian cancer cells, which was accompanied by the inhibition of cancer cell adhesion, invasion, and proliferation. miR-92a overexpression reduced the luciferase activity of the ITGA5 3'-untranslated region, suggesting that ITGA5 mRNA is a direct target of miR-92a. In in vivo ovarian cancer xenografts, the enforced expression of miR-92a in HeyA-8 cells suppressed peritoneal dissemination. Although we still have a long way to go before an effective and nontoxic miRNA-based cancer therapy can be introduced into the clinic, the inhibition of integrin α5 expression by targeting miR-92a needs to be explored further for future applications in ovarian cancer treatment. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Manipulation of neutrophil-like HL-60 cells for the study of directed cell migration.

    PubMed

    Millius, Arthur; Weiner, Orion D

    2010-01-01

    Many cells undergo directed cell migration in response to external cues in a process known as chemotaxis. This ability is essential for many single-celled organisms to hunt and mate, the development of multicellular organisms, and the functioning of the immune system. Because of their relative ease of manipulation and their robust chemotactic abilities, the neutrophil-like cell line (HL-60) has been a powerful system to analyze directed cell migration. In this chapter, we describe the maintenance and transient transfection of HL-60 cells and explain how to analyze their behavior with two standard chemotactic assays (micropipette and EZ-TAXIS). Finally, we demonstrate how to fix and stain the actin cytoskeleton of polarized cells for fluorescent microscopy imaging.

  15. Encapsulating peritoneal sclerosis—a rare but devastating peritoneal disease

    PubMed Central

    Moinuddin, Zia; Summers, Angela; Van Dellen, David; Augustine, Titus; Herrick, Sarah E.

    2015-01-01

    Encapsulating peritoneal sclerosis (EPS) is a devastating but, fortunately, rare complication of long-term peritoneal dialysis. The disease is associated with extensive thickening and fibrosis of the peritoneum resulting in the formation of a fibrous cocoon encapsulating the bowel leading to intestinal obstruction. The incidence of EPS ranges between 0.7 and 3.3% and increases with duration of peritoneal dialysis therapy. Dialysis fluid is hyperosmotic, hyperglycemic, and acidic causing chronic injury and inflammation in the peritoneum with loss of mesothelium and extensive tissue fibrosis. The pathogenesis of EPS, however, still remains uncertain, although a widely accepted hypothesis is the “two-hit theory,” where, the first hit is chronic peritoneal membrane injury from long standing peritoneal dialysis followed by a second hit such as an episode of peritonitis, genetic predisposition and/or acute cessation of peritoneal dialysis, leading to EPS. Recently, EPS has been reported in patients shortly after transplantation suggesting that this procedure may also act as a possible second insult. The process of epithelial–mesenchymal transition of mesothelial cells is proposed to play a central role in the development of peritoneal sclerosis, a common characteristic of patients on dialysis, however, its importance in EPS is less clear. There is no established treatment for EPS although evidence from small case studies suggests that corticosteroids and tamoxifen may be beneficial. Nutritional support is essential and surgical intervention (peritonectomy and enterolysis) is recommended in later stages to relieve bowel obstruction. PMID:25601836

  16. Peritoneal Dialysis

    PubMed Central

    Al-Natour, Mohammed; Thompson, Dustin

    2016-01-01

    Peritoneal dialysis is becoming more important in the management of patients with end-stage renal disease. Because of the efforts of the “Fistula First Breakthrough Initiative,” dialysis venous access in the United States has become focused on promoting arteriovenous fistula creation and reducing the number of patients who start dialysis with a tunneled catheter. This is important because tunneled catheters can lead to infection, endocarditis, and early loss of more long-term access. When planned for, peritoneal dialysis can offer patients the opportunity to start dialysis at home without jeopardizing central access or the possibilities of eventual arteriovenous fistula creation. The purpose of this review is to highlight the indications, contraindications, and procedural methods for implanting peritoneal dialysis catheters in the interventional radiology suite. PMID:27011420

  17. Milky spots in the omentum develop in the absence of lymphoid tissue inducer cells and independently support B and T cell responses to peritoneal antigens

    PubMed Central

    Rangel-Moreno, Javier; Moyron-Quiroz, Juan E.; Carragher, Damian M.; Kusser, Kim; Hartson, Louise; Moquin, Amy; Randall, Troy D.

    2009-01-01

    Summary The omentum is a site of B1 lymphopoiesis and immune responsiveness to T-independent antigens. However, it is unknown whether it supports immune responses independently of conventional lymphoid organs. We show that the omentum collects antigens and cells from the peritoneal cavity and supports T-dependent B cell responses, including isotype switching, somatic hypermutation and limited affinity maturation, despite the lack of identifiable follicular dendritic cells. The omentum also supports CD4 and CD8 responses to peritoneal antigens and recruits effector T cells primed in other locations. Unlike conventional lymphoid organs, milky spots in the omentum develop in the absence of lymphoid tissue inducer cells, but require CXCL13. Although the lymphoid architecture of milky spots is disrupted in lymphotoxin-deficient mice, normal architecture is restored by reconstitution with lymphotoxin-sufficient hematopoietic cells. These results indicate that the milky spots of the omentum function as unique secondary lymphoid organs that promote immunity to peritoneal antigens. PMID:19427241

  18. Ribozyme modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by peritoneal cells in vitro and in vivo.

    PubMed

    Sioud, M

    1996-05-01

    We have utilized synthetic ribozymes to modulate the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-alpha) by peritoneal cells. Two hammerhead ribozymes (mRz1 and mRz2) were prepared by transcription in vitro and their activities in vitro and in vivo were investigated. Both ribozymes cleaved their RNA target with an apparent turnover number (kcat) of 2 min(-1), and inhibited TNF-alpha gene expression in vitro by 50% and 70%, respectively. When mRz1 and mRz2, entrapped in liposomes, were delivered into mice by intraperitoneal injection, they inhibited LPS-induced TNF-alpha gene expression in vivo with mRz2 being the most effective. This enhanced activity could result from the facilitation of catalysis by cellular endogenous proteins, since they specifically bind to mRz2 as compared to mRz1. Furthermore, a significant mRz2 activity can be recovered from peritoneal cells 2 days post-administration in vivo. The anti-TNF-alpha ribozyme treatment in vivo resulted in a more significant reduction of LPS-induced IFN-gamma protein secretion compared to IL-10. In contrast to this pleiotropic effect, the anti-TNF-alpha ribozyme treatment did not affect the heterogenous expression of Fas ligand by peritoneal cells, indicating the specificity of the treatment. Taken together, the present data indicate that the biological effects of TNF-alpha can be modulated by ribozymes. In addition, the data suggest that ribozymes can be administered in a drug-like manner, and therefore indicate their potential in clinical applications.

  19. [Experience of the Pharmacotherapy against Appendix and Sigmoid Colon Signet Ring Cell Carcinoma with the Peritoneal Dissemination].

    PubMed

    Harada, Shingo; Tsuchida, Kazuhito; Shibuya, Taisuke; Doi, Yuki; Kikuchi, Akitomo; Mori, Koichi; Yabushita, Yasuhiro; Watanabe, Takuo; Murakami, Hitoshi; Hasegawa, Seiji; Fukushima, Tadao; Ike, Hideyuki; Nakayama, Takashi

    2015-10-01

    We report 2 cases of signet ring cell carcinoma of the appendix and colon. Case 1: A 61-year-old man was admitted for lower abdominal pain. Colonoscopy revealed an elevated lesion in the orifice of the appendix. Signet ring cell carcinoma was diagnosed on biopsy. The surgical findings showed multiple peritoneal dissemination nodules, while the primary tumor was unresectable owing to extensive invasion into the retroperitoneum. The histopathological findings were signet ring cell carcinoma, T4b (retroperitoneum), NX, P3, Stage Ⅳ. Although the patient received 14 courses of treatment with S-1 as postoperative chemotherapy, he died of his illness at 32 postoperative months. Case 2: A 76-year-old man was admitted for abdominal pain. Perforation of the lower gastrointestinal tract was diagnosed on abdominal CT, and an emergency operation was performed. The surgical findings demonstrated a large number of peritoneal dissemination nodules, cecal invasion of a sigmoid tumor, and perforation of the ascending colon. The primary tumor was thought to be unresectable, and the perforated segment was resected. The histopathological findings were signet ring cell carcinoma, T4b (cecum), NX, P3, Stage Ⅳ. Although 11 courses of treatment using FOLFIRI+Bev were administered as postoperative chemotherapy, the patient died of his illness at 26 postoperative months.

  20. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  1. Pharmacological inhibition of outwardly rectifying Cl- currents in rat peritoneal mast cells: a comparison of different stilbene derivatives.

    PubMed

    Roloff, Tim; Ziegler, Albrecht; Heber, Dieter; Seebeck, Jörg

    2003-10-08

    Diethylstilbestrol and other stilbene derivatives can provide some inhibition of the outwardly rectifying Cl- current (I(Cl-,OR)) in rat peritoneal mast cells. In order to elucidate structure-activity relationships of diethylstilbestrol, 12 stilbenes as well as 17beta-estradiol and hexestrol were tested in rat peritoneal mast cells using the nystatin-perforated patch approach of the whole-cell patch-clamp technique. Since trans-stilbene showed no effect, the substituents of diethylstilbestrol must be of importance. The introduction of only one hydroxy group in trans-stilbene produced potent inhibition of the I(Cl-,OR) (IC50: 3.3 microM). But in contrast, resveratrol with hydroxy groups at positions 4, 3', and 5' as well as methoxy substituted stilbene derivatives and 17beta-estradiol were ineffective. On the other hand, hexestrol potently inhibited I(Cl-,OR) indicating that the aromatic ring systems can also be connected by an ethyl bridge. In summary, a hydroxy group at position 4 (or 4') is a prerequisite for diethylstilbestrol-mediated inhibition of I(Cl-,OR).

  2. Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Wei, Xiaoling; Mao, Zhangming; Xie, Chong; Zheng, Yuebing

    2017-03-28

    Optical manipulation of biological cells and nanoparticles is significantly important in life sciences, early disease diagnosis, and nanomanufacturing. However, low-power and versatile all-optical manipulation has remained elusive. Herein, we have achieved light-directed versatile thermophoretic manipulation of biological cells at an optical power 100-1000 times lower than that of optical tweezers. By harnessing the permittivity gradient in the electric double layer of the charged surface of the cell membrane, we succeed at the low-power trapping of suspended biological cells within a light-controlled temperature gradient field. Furthermore, through dynamic control of optothermal potentials using a digital micromirror device, we have achieved arbitrary spatial arrangements of cells at a resolution of ∼100 nm and precise rotation of both single and assemblies of cells. Our thermophoretic tweezers will find applications in cellular biology, nanomedicine, and tissue engineering.

  3. [Effects of allogeneic bone marrow mesenchymal stem cells on polarization of peritoneal macrophages in rats with sepsis].

    PubMed

    Zheng, Y H; Xiong, B; Deng, Y Y; Lai, W; Zheng, S Y; Bian, H N; Liu, Z A; Huang, Z F; Sun, C W; Li, H H; Luo, H M; Ma, L H; Chen, H X

    2017-04-20

    Objective: To explore the effects of allogeneic bone marrow mesenchymal stem cells (BMSCs) on polarization of peritoneal macrophages isolated from rats with sepsis induced by endotoxin/lipopolysaccharide (LPS). Methods: (1) BMSCs were isolated, cultured and purified from 5 SD rats with whole bone marrow adherent method. The third passage of cells were collected for morphologic observation, detection of expressions of stem cell surface markers CD29, CD44, CD45, and CD90 with flow cytometer, and identification of osteogenic and adipogenic differentiation. (2) Another 45 SD rats were divided into sham injury group (SI, n=5), LPS control group (LC, n=20), and BMSCs-treated group (BT, n=20) according to the random number table. Rats in groups LC and BT were injected with LPS (5 mg/kg) via tail vein to induce sepsis; rats in group SI were injected with the same amount of normal saline to simulate the damage. At post injury hour (PIH) 1, rats in group BT were given 1 mL BMSCs (2×10(6)/mL) via tail vein injection; rats in another two groups were injected with equal volume of phosphate buffer saline. Five rats in group SI at PIH 24 and in groups LC and BT at PIH 6, 12, 24, and 48 were sacrificed to harvest lung tissue for pathological observation with HE staining. In addition, rats in group SI at PIH 24 and in groups LC and BT at PIH 24 and 48 were simultaneously performed with intraperitoneal injection of low-glucose DMEM. Then peritoneal fluid was harvested to culture peritoneal macrophages. Flow cytometer was used to assess the positive expression of cell makers of macrophages including CD68 (making gate), CD11c, and CD206 in group SI at PIH 24 and in groups LC and BT at PIH 24 and 48. Data were processed with one-way analysis of variance and LSD test. Results: (1) The third passage of cells showed uniform fiber-like shape similar to fibroblasts. These cells showed positive expressions of CD29, CD44, CD90 and weak positive expression of CD45. They were able to

  4. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure.

    PubMed

    Chu, H K; Huan, Z; Mills, J K; Yang, J; Sun, D

    2015-02-07

    Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications.

  5. Ovarian cancer-derived ascitic fluids induce a senescence-dependent pro-cancerogenic phenotype in normal peritoneal mesothelial cells.

    PubMed

    Mikuła-Pietrasik, Justyna; Uruski, Paweł; Matuszkiewicz, Kinga; Szubert, Sebastian; Moszyński, Rafał; Szpurek, Dariusz; Sajdak, Stefan; Tykarski, Andrzej; Książek, Krzysztof

    2016-10-01

    After the seeding ovarian cancer cells into the peritoneal cavity, ascitic fluid creates a microenvironment in which these cells can survive and disseminate. The exact nature of the interactions between malignant ascitic fluids and peritoneal mesothelial cells (HPMCs) in ovarian cancer progression has so far remained elusive. Here we assessed whether malignant ascitic fluids may promote the senescence of HPMCs and, by doing so, enhance the acquisition of their pro-cancerogenic phenotype. Primary omentum-derived HPMCs, ovarian cancer-derived cell lines (A2780, OVCAR-3, SKOV-3), malignant ascitic fluids and benign ascitic fluids from non-cancerous patients were used in this study. Ovarian cancer cell proliferation, as well as HPMC proliferation and senescence, were determined using flow cytometry and β-galactosidase assays, respectively. Ovarian cancer cell migration was quantified using a Transwell assay. The concentrations of soluble agents in ascitic fluids, conditioned media and cell lysates were measured using DuoSet® Immunoassay Development kits. We found that HPMCs, when exposed to malignant ascitic fluids, exhibited decreased proliferation and increased senescence rates. The malignant ascitic fluids were found to contain elevated levels of HGF, TGF-β1 and GRO-1, of which HGF and GRO-1 were able to induce senescence in HPMCs. We also found that HPMCs subjected to malignant ascitic fluids or exogenously added HGF and GRO-1 stimulated ovarian cancer cell progression, which was manifested by an increased production of HA (adhesion), uPA (proliferation), IL-8 and MCP-1 (migration). Our results indicate that malignant ascitic fluids may contribute to ovarian cancer progression by accelerating the senescence of HPMCs.

  6. Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1

    PubMed Central

    McNerney, Gregory P.; Hübner, Wolfgang; Chen, Benjamin K.; Huser, Thomas

    2011-01-01

    Cell-cell interactions through direct contact are very important for cellular communication and coordination – especially for immune cells. The human immunodeficiency virus type I (HIV-1) induces immune cell interactions between CD4+ cells to shuttle between T cells via a virological synapse. A goal to understand the process of cell-cell transmission through virological synapses is to determine the cellular states that allow a chance encounter between cells to become a stable cell-cell adhesion. Here we demonstrate the use of optical tweezers to manipulate uninfected primary CD4+ T cells near HIV Gag-iGFP transfected Jurkat T cells to probe the determinants that induce stable adhesion. When combined with fast 4D confocal fluorescence microscopy, optical tweezers can be utilized to not only facilitate cell-cell contact, but to also allow one to simultaneously track the formation of a virological synapse, and ultimately to enable us to precisely determine all events preceding virus transfer. HIV-1 infected T cell (green) decorated with uninfected primary T cells (red) by manipulating the primary cells with an optical tweezers system PMID:20301121

  7. Optoelectronic Tweezers as a Tool for Parallel Single-Cell Manipulation and Stimulation

    PubMed Central

    Valley, Justin K.; Ohta, Aaron T.; Hsu, Hsan-Yin; Neale, Steven L.; Jamshidi, Arash; Wu, Ming C.

    2010-01-01

    Optoelectronic tweezers (OET) is a promising approach for the parallel manipulation of single cells for a variety of biological applications. By combining the manipulation capabilities of OET with other relevant biological techniques (such as cell lysis and electroporation), one can realize a true parallel, single-cell diagnostic and stimulation tool. Here, we demonstrate the utility of the OET device by integrating it onto single-chip systems capable of performing in-situ, electrode-based electroporation/lysis, individual cell, light-induced lysis, and light-induced electroporation. PMID:20543904

  8. Morphological effects of autologous hsp70 on peritoneal macrophages in a murine T cell lymphoma.

    PubMed

    Gautam, P K; Kumar, S; Deepak, P; Acharya, A

    2013-12-01

    Heat shock protein 70 is highly conserved cytosolic protein which have important role in growth, development, and apoptosis. Hsp70 is well-known activator of macrophages and enhances the release of specific and non-specific effector molecules that have major role in tumor destruction and immunopotentiation of host. However, morphological effects of hsp 70 has not been carried out, therefore, morphological effects of hsp 70 on murine peritoneal macrophages were examined by light microscopy and scanning electron microscopy. Thioglycolate-induced peritoneal macrophages were prepared from BALB/c mice and cultured for 24 h in the presence of the hsp70. Tumor-associated macrophages treated with 10 μg/ml were varied in shape, mostly spindle shaped, i.e., stretched bidirectionally; surface ruffles were increased and their lamellipodia was prominent which suggest that hsp 70 treatment not only enhances the functional state of the peritoneal macrophages but also initiate immense morphological changes leading to increased endothelium adherence, increased antigen uptake, and increased migration to the inflammatory site.

  9. Massively parallel manipulation of single cells and microparticles using optical images

    NASA Astrophysics Data System (ADS)

    Chiou, Pei Yu; Ohta, Aaron T.; Wu, Ming C.

    2005-07-01

    The ability to manipulate biological cells and micrometre-scale particles plays an important role in many biological and colloidal science applications. However, conventional manipulation techniques-including optical tweezers, electrokinetic forces (electrophoresis, dielectrophoresis, travelling-wave dielectrophoresis), magnetic tweezers, acoustic traps and hydrodynamic flows-cannot achieve high resolution and high throughput at the same time. Optical tweezers offer high resolution for trapping single particles, but have a limited manipulation area owing to tight focusing requirements; on the other hand, electrokinetic forces and other mechanisms provide high throughput, but lack the flexibility or the spatial resolution necessary for controlling individual cells. Here we present an optical image-driven dielectrophoresis technique that permits high-resolution patterning of electric fields on a photoconductive surface for manipulating single particles. It requires 100,000 times less optical intensity than optical tweezers. Using an incoherent light source (a light-emitting diode or a halogen lamp) and a digital micromirror spatial light modulator, we have demonstrated parallel manipulation of 15,000 particle traps on a 1.3 × 1.0mm2 area. With direct optical imaging control, multiple manipulation functions are combined to achieve complex, multi-step manipulation protocols.

  10. Massively parallel manipulation of single cells and microparticles using optical images.

    PubMed

    Chiou, Pei Yu; Ohta, Aaron T; Wu, Ming C

    2005-07-21

    The ability to manipulate biological cells and micrometre-scale particles plays an important role in many biological and colloidal science applications. However, conventional manipulation techniques--including optical tweezers, electrokinetic forces (electrophoresis, dielectrophoresis, travelling-wave dielectrophoresis), magnetic tweezers, acoustic traps and hydrodynamic flows--cannot achieve high resolution and high throughput at the same time. Optical tweezers offer high resolution for trapping single particles, but have a limited manipulation area owing to tight focusing requirements; on the other hand, electrokinetic forces and other mechanisms provide high throughput, but lack the flexibility or the spatial resolution necessary for controlling individual cells. Here we present an optical image-driven dielectrophoresis technique that permits high-resolution patterning of electric fields on a photoconductive surface for manipulating single particles. It requires 100,000 times less optical intensity than optical tweezers. Using an incoherent light source (a light-emitting diode or a halogen lamp) and a digital micromirror spatial light modulator, we have demonstrated parallel manipulation of 15,000 particle traps on a 1.3 x 1.0 mm2 area. With direct optical imaging control, multiple manipulation functions are combined to achieve complex, multi-step manipulation protocols.

  11. Generation of a complement-derived chemotactic factor for tumor cells in experimentally induced peritoneal exudates and its effect on the local metastasis of circulating tumor cells.

    PubMed Central

    Orr, F. W.; Mokashi, S.; Delikatny, J.

    1982-01-01

    A chemotactic factor for tumor cells was found in inflammatory exudate fluids induced by giving intraperitoneal injections of glycogen to Sprague-Dawley rats. The quantity of chemotactic activity and the period of time during which it could be detected correlated with the inflammatory reaction, measured by the cellular composition of the exudates and their content of protein and lysosomal enzymes. In gel filtration the chemotactic factor behaved mainly as a molecule having a molecular weight of approximately 6000 daltons. Its biologic activity was blocked by antiserums directed against C5 but not by antiserums against C3 or C4. In these two respects, the factor generated in vivo has the same properties as a previously described chemotactic factor that can be generated in vitro by proteolysis of purified C5 or C5a. Chemotactic activity was not detected in the glycogen-induced peritoneal exudates of rats depleted of serum complement by cobra venom factor. Intravenously injected Walker tumor cells arrested and formed metastases in the mesenteries of rats with peritonitis in greater numbers than in normal controls, animals depleted of complement during the experimental period, or animals given intraperitoneal injections of the vasopermeability agent, histamine. The growth of tumor cells in vitro was not promoted by peritoneal exudate fluids, nor was the number of metastases on vivo greater than in negative controls, in animals in which peritonitis was induced 24 hours after the intravenous injection of tumor cells. It is argued that chemotactic mechanisms can contribute to the formation of metastases at sites of tissue injury. PMID:7091299

  12. Cross-omics comparison of stress responses in mesothelial cells exposed to heat- versus filter-sterilized peritoneal dialysis fluids.

    PubMed

    Kratochwill, Klaus; Bender, Thorsten O; Lichtenauer, Anton M; Herzog, Rebecca; Tarantino, Silvia; Bialas, Katarzyna; Jörres, Achim; Aufricht, Christoph

    2015-01-01

    Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses.

  13. Cross-Omics Comparison of Stress Responses in Mesothelial Cells Exposed to Heat- versus Filter-Sterilized Peritoneal Dialysis Fluids

    PubMed Central

    Kratochwill, Klaus; Bender, Thorsten O.; Lichtenauer, Anton M.; Herzog, Rebecca; Tarantino, Silvia; Bialas, Katarzyna; Jörres, Achim; Aufricht, Christoph

    2015-01-01

    Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses. PMID:26495307

  14. Brazilian red propolis effects on peritoneal macrophage activity: Nitric oxide, cell viability, pro-inflammatory cytokines and gene expression.

    PubMed

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S; Casarin, Renato C V; Alencar, Severino M; Rosalen, Pedro L; Mayer, Marcia P A

    2017-07-31

    Propolis has been used in folk medicine since ancient times and it presented inhibitory effect on neutrophil recruitment previously. However, its effect on macrophage obtained from mice remains unclear. To demonstrate BRP effects on LPS activated peritoneal macrophage. Peritoneal macrophages, obtained from C57BL6 mice and activated with LPS, were treated with 50-80µg/mL of crude extract of Brazilian red propolis (BRP) during 48h. Cell viability, levels of NO, 20 cytokines and expression of 360 genes were evaluated. BRP 60µg/mL reduced NO production by 65% without affecting the cell viability and decreased production IL1α, IL1β, IL4, IL6, IL12p40, Il12p70, IL13, MCP1 and GM-CSF. Molecular mechanism beyond the anti-inflammatory activity may be due to BRP-effects on decreasing expression of Mmp7, Egfr, Adm, Gata3, Wnt2b, Txn1, Herpud1, Axin2, Car9, Id1, Vegfa, Hes1, Hes5, Icam1, Wnt3a, Pcna, Wnt5a, Tnfsf10, Ccl5, Il1b, Akt1, Mapk1, Noxa1 and Cdkn1b and increasing expression of Cav1, Wnt6, Calm1, Tnf, Rb1, Socs3 and Dab2. Therefore, BRP has anti-inflammatory effects on macrophage activity by reducing NO levels and diminished release and expression of pro-inflammatory cytokine and genes, respectively. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device.

    PubMed

    Hondroulis, Evangelia; Melnick, Steven J; Zhang, Xueji; Wu, Ze-Zhi; Li, Chen-Zhong

    2013-08-01

    All living cells possess electrical characteristics and are thus responsive to, and even generate electric fields and currents. It has been shown that the electrical properties of cancer cells differ from normal proliferating cells, thus electric fields may induce differential effects in normal and cancer cells. Manipulation of these electrical properties may provide a powerful direct and/or adjuvant therapeutic option for cancer. A whole cell impedance-based biosensor to monitor the effects of a range of different frequencies (50 kHz-2 MHz) at low-intensity (<2 V/cm) on the growth rate of human SKOV3 ovarian cancer cells versus non-cancerous HUVECs is reported. Rapid real-time monitoring of the SKOV3 behavior was observed as the alternating electric fields were applied and the impedimetric response of the cells was recorded. The cells were also labeled with propidium iodide to examine morphological changes and cell viability with fluorescence microscopy with trypan blue for comparison. A noticeable decrease in the growth profile of the SKOV3 was observed with the application of 200 kHz alternating electric fields indicating specific inhibitory effects on dividing cells in culture in contrast to the HUVECs. The outcome of this research will improve our fundamental understanding of the behavior of cancer cells when exposed to alternating electric fields at specific frequencies and foster the development strategies and optimal parameters for alternating electric field therapies for clinical and drug delivery applications.

  16. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells.

    PubMed

    Kimura, Takayuki; Tse, Kevin; McArdle, Sara; Gerhardt, Teresa; Miller, Jacqueline; Mikulski, Zbigniew; Sidney, John; Sette, Alessandro; Wolf, Dennis; Ley, Klaus

    2017-04-01

    Although immunization with major histocompatibility complex (MHC) class II-restricted apolipoprotein B (ApoB) peptides has been shown to be atheroprotective, the mechanism is unclear. Here, we investigated CD4(+) T cell populations in immunized atherosclerotic mice. Peptides (16-mers) from mouse ApoB, the core protein of low-density lipoprotein (LDL), were screened for binding to I-A(b) by computer prediction and confirmed by radiolabeled peptide competition. Three new peptides, P101 (FGKQGFFPDSVNKALY, 5.5 nM IC50), P102 (TLYALSHAVNSYFDVD, 6.8 nM), and P103 (LYYKEDKTSLSASAAS, 95 nM), were tested in an atherosclerosis model (Apoe(-/-) mice on Western diet). Immunization with each of the three peptides (1 time in complete Freund's adjuvant subcuntaneously and 4 time in incomplete Freund's adjuvant intraperitoneally) but not with adjuvant alone showed significantly reduced atherosclerotic plaques in the aortic root by serial sections and in the whole aorta by en face staining. There were no differences in body weight, LDL cholesterol, or triglycerides. Peritoneal leukocytes from ApoB peptide-immunized mice, but not control mice, secreted significant amounts of IL-10 (150 pg/ml). Flow cytometry showed that peptide immunization induced IL-10 in 10% of peritoneal CD4(+) T cells, some of which also expressed chemokine (C-C motif) receptor 5 (CCR5). Vaccination with ApoB peptides expanded peritoneal FoxP3(+) regulatory CD4(+) T cells and more than tripled the number of CCR5(+)FoxP3(+) cells. Similar trends were also seen in the draining mediastinal lymph nodes but not in the nondraining inguinal lymph nodes. We conclude that vaccination with MHC class II-restricted autologous ApoB peptides induces regulatory T cells (Tregs) and IL-10, suggesting a plausible mechanism for atheroprotection.NEW & NOTEWORTHY Vaccination against apolipoprotein B (ApoB), the protein of LDL, attracts attention as a novel approach to prevent atherosclerosis. We discovered major histocompatibility

  17. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells.

    PubMed Central

    Razi-Wolf, Z; Freeman, G J; Galvin, F; Benacerraf, B; Nadler, L; Reiser, H

    1992-01-01

    The murine B7 (mB7) protein is a potent costimulatory molecule for the T-cell receptor (TCR)-mediated activation of murine CD4+ T cells. We have previously shown that stable mB7-transfected Chinese hamster ovary (CHO) cells but not vector-transfected controls synergize with either anti-CD3 monoclonal antibody-induced or concanavalin A-induced T-cell activation, resulting ultimately in lymphokine production and proliferation. We now have generated a hamster anti-mB7 monoclonal antibody. This reagent recognizes a protein with an apparent molecular mass of 50-60 kDa. The mB7 antigen is expressed on activated B cells and on peritoneal exudate cells (PECs). Antibody blocking experiments demonstrate that mB7 is the major costimulatory molecule expressed by PECs for the activation of murine CD4+ T cells. This suggests an important role for mB7 during immune-cell interactions. We have also surveyed a panel of murine cell lines capable of providing costimulatory activity. Our results indicate that mB7 is the major costimulatory molecule on some but not all cell lines and that there may be additional molecules besides mB7 that can costimulate the activation of murine CD4+ T cells. Images PMID:1373896

  18. Biophysical induction of cell release for minimally manipulative cell enrichment strategies

    PubMed Central

    Schaus, Thomas; Sass, Andrea; Dienelt, Anke; Cheung, Alexander S.; Duda, Georg N.; Mooney, David J.

    2017-01-01

    The use of autologous cells harvested and subsequently transplanted in an intraoperative environment constitutes a new approach to promote regeneration. Usually cells are isolated by selection methods such as fluorescence- or magnetic- activated cell sorting with residual binding of the antibodies or beads. Thus, cell-based therapies would benefit from the development of new devices for cell isolation that minimally manipulate the target cell population. In the clinic, 5 to 10 percent of fractures do not heal properly and CD31+ cells have been identified as promising candidates to support bone regeneration. The aim of this project was to develop and prototype a simple system to facilitate the enrichment of CD31+ cells from whole blood. After validating the specificity of a commercially available aptamer for CD31, we combined this aptamer with traditional magnetic bead strategies, which led to enrichment of CD31+ cells with a purity of 91±10%. Subsequently, the aptamer was attached to agarose beads (Ø = 100–165 um) that were incorporated into a column-based system to enable capture and subsequent release of the CD31+ enriched cells. Different parameters were investigated to allow a biophysical-based cell release from beads, and a simple mixing was found sufficient to release initially bound cells from the optimized column without the need for any chemicals that promote disassociation. The system led to a significant enrichment of CD31+ cells (initial population: 63±9%, released: 87±3%) with excellent cell viability (released: 97±1%). The composition of the released CD31+ fraction indicated an enrichment of the monocyte population. The angiogenic and osteogenic potential of the released cell population were confirmed in vitro. These results and the simplicity of this system highlight the potential of such approach to enable cell enrichment strategies in intraoperative settings. PMID:28665971

  19. Biochemical and functional characterization of glycosaminoglycans released from degranulating rat peritoneal mast cells: Insights into the physiological role of endogenous heparin.

    PubMed

    Lever, Rebecca; Smailbegovic, Amir; Riffo-Vasquez, Yanira; Gray, Elaine; Hogwood, John; Francis, Stephen M; Richardson, Neville V; Page, Clive P; Mulloy, Barbara

    2016-12-01

    The properties of commercially prepared heparin as an anticoagulant and antithrombotic agent in medicine are better understood than is the physiological role of heparin in its native form, where it is uniquely found in the secretory granules of mast cells. In the present study we have isolated and characterised the glycosaminoglycans (GAGs) released from degranulating rat peritoneal mast cells. Analysis of the GAGs by NMR spectroscopy showed the presence of both heparin and the galactosaminoglycan dermatan sulphate; heparinase digestion profiles and measurements of anticoagulant activity were consistent with this finding. The rat peritoneal mast cell GAGs significantly inhibited accumulation of leukocytes in the rat peritoneal cavity in response to IL-1β (p < 0.05, n = 6/group), and inhibited adhesion and diapedesis of leukocytes in the inflamed rat cremasteric microcirculation in response to LPS (p < 0.001, n = 4/group). FTIR spectra of human umbilical vein endothelial cells (HUVECs) were altered by treatment of the cells with heparin degrading enzymes, and restored by the addition of exogenous heparin. In conclusion, we have shown that rat peritoneal mast cells contain a mixture of GAGs that possess anticoagulant and anti-inflammatory properties. Copyright © 2016. Published by Elsevier Ltd.

  20. Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media.

    PubMed

    Hsu, Hsan-yin; Ohta, Aaron T; Chiou, Pei-Yu; Jamshidi, Arash; Neale, Steven L; Wu, Ming C

    2010-01-21

    Optoelectronic tweezers (OET), based on light-induced dielectrophoresis, has been shown as a versatile tool for parallel manipulation of micro-particles and cells (P. Y. Chiou, A. T. Ohta and M. C. Wu, Nature, 2005, 436, 370-372). However, the conventional OET device cannot operate in cell culture media or other high-conductivity physiological buffers due to the limited photoconductivity of amorphous silicon. In this paper, we report a new phototransistor-based OET (Ph-OET). Consisting of single-crystalline bipolar junction transistors, the Ph-OET has more than 500x higher photoconductivity than amorphous silicon. Efficient cell trapping of live HeLa and Jurkat cells in Phosphate Buffered Saline (PBS) and Dulbecco's Modified Eagle's Medium (DMEM) has been demonstrated using a digital light projector, with a cell transport speed of 33 microm/sec, indicating a force of 14.5 pN. Optical concentration of cells and real-time control of individually addressable cell arrays have also been realized. Precise control of separation between two cells has also been demonstrated. We envision a new platform for single cell studies using Ph-OET.

  1. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.

    PubMed

    Yang, Shih-Mo; Yu, Tung-Ming; Huang, Hang-Ping; Ku, Meng-Yen; Hsu, Long; Liu, Cheng-Hsien

    2010-06-15

    We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light patterns that drive the optoelectronic DEP onchip are designed by using Flash software to approach appropriate dynamic manipulation. This is also the first reported demonstration, to the best of our knowledge, for successfully patterning such delicate cells from human hepatocellular liver carcinoma cell line HepG2 by using any optoelectronic tweezers.

  2. Peritoneal Fluid Reduces Angiogenesis-Related MicroRNA Expression in Cell Cultures of Endometrial and Endometriotic Tissues from Women with Endometriosis

    PubMed Central

    Braza-Boïls, Aitana; Gilabert-Estellés, Juan; Ramón, Luis A.; Gilabert, Juan; Marí-Alexandre, Josep; Chirivella, Melitina; España, Francisco; Estellés, Amparo

    2013-01-01

    Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis. Methods Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222) by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively. Results Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion, this “in vitro” study indicates that

  3. Isolation and manipulation of mammalian neural stem cells in vitro.

    PubMed

    Giachino, Claudio; Basak, Onur; Taylor, Verdon

    2009-01-01

    Neural stem cells are potentially a source of cells not only for replacement therapy but also as drug vectors, bringing bioactive molecules into the brain. Stem cell-like cells can be isolated readily from the human brain, thus, it is important to find culture systems that enable expansion in a multipotent state to generate cells that are of potential use for therapy. Currently, two systems have been described for the maintenance and expansion of multipotent progenitors, an adhesive substrate bound and the neurosphere culture. Both systems have pros and cons, but the neurosphere may be able to simulate the three-dimensional environment of the niche in which the cells reside in vivo. Thus, the neurosphere, when used and cultured appropriately, can expand and provide important information about the mechanisms that potentially control neural stem cells in vivo.

  4. Peritoneal carcinomatosis

    PubMed Central

    Coccolini, Federico; Gheza, Federico; Lotti, Marco; Virzì, Salvatore; Iusco, Domenico; Ghermandi, Claudio; Melotti, Rita; Baiocchi, Gianluca; Giulini, Stefano Maria; Ansaloni, Luca; Catena, Fausto

    2013-01-01

    Several gastrointestinal and gynecological malignancies have the potential to disseminate and grow in the peritoneal cavity. The occurrence of peritoneal carcinomatosis (PC) has been shown to significantly decrease overall survival in patients with liver and/or extraperitoneal metastases from gastrointestinal cancer. During the last three decades, the understanding of the biology and pathways of dissemination of tumors with intraperitoneal spread, and the understanding of the protective function of the peritoneal barrier against tumoral seeding, has prompted the concept that PC is a loco-regional disease: in absence of other systemic metastases, multimodal approaches combining aggressive cytoreductive surgery, intraperitoneal hyperthermic chemotherapy and systemic chemotherapy have been proposed and are actually considered promising methods to improve loco-regional control of the disease, and ultimately to increase survival. The aim of this review article is to present the evidence on treatment of PC in different tumors, in order to provide patients with a proper surgical and multidisciplinary treatment focused on optimal control of their locoregional disease. PMID:24222942

  5. Stem cell maintenance by manipulating signaling pathways: past, current and future

    PubMed Central

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  6. New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line.

    PubMed

    Terawaki, Kiyoshi; Sawada, Yumi; Kashiwase, Yohei; Hashimoto, Hirofumi; Yoshimura, Mitsuhiro; Suzuki, Masami; Miyano, Kanako; Sudo, Yuka; Shiraishi, Seiji; Higami, Yoshikazu; Yanagihara, Kazuyoshi; Kase, Yoshio; Ueta, Yoichi; Uezono, Yasuhito

    2014-02-15

    Cancer cachexia (CC), a syndrome characterized by anorexia and body weight loss due to low fat-free mass levels, including reduced musculature, markedly worsens patient quality of life. Although stomach cancer patients have the highest incidence of cachexia, few experimental models for the study of stomach CC have been established. Herein, we developed stomach CC animal models using nude rats subcutaneously implanted with two novel cell lines, i.e., MKN45c185, established from the human stomach cancer cell line MKN-45, and 85As2, derived from peritoneal dissemination of orthotopically implanted MKN45c185 cells in mice. Both CC models showed marked weight loss, anorexia, reduced musculature and muscle strength, increased inflammatory markers, and low plasma albumin levels; however, CC developed earlier and was more severe in rats implanted with 85As2 than in those implanted with MKN45cl85. Moreover, human leukemia inhibitory factor (LIF), a known cachectic factor, and hypothalamic orexigenic peptide mRNA levels increased in the models, whereas hypothalamic anorexigenic peptide mRNA levels decreased. Surgical removal of the tumor not only abolished cachexia symptoms but also reduced plasma LIF levels to below detectable limits. Importantly, oral administration of rikkunshito, a traditional Japanese medicine, substantially ameliorated CC-related anorexia and body composition changes. In summary, our novel peritoneal dissemination-derived 85As2 rat model developed severe cachexia, possibly caused by LIF from cancer cells, that was ameliorated by rikkunshito. This model should provide a useful tool for further study into the mechanisms and treatment of stomach CC.

  7. Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism.

    PubMed

    Torchiaro, Erica; Lorenzato, Annalisa; Olivero, Martina; Valdembri, Donatella; Gagliardi, Paolo Armando; Gai, Marta; Erriquez, Jessica; Serini, Guido; Di Renzo, Maria Flavia

    2016-01-05

    The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.

  8. Laser microbeam manipulation of cell morphogenesis growing in fungal hyphae

    NASA Astrophysics Data System (ADS)

    Bracker, Charles E.; Murphy, Douglas J.; Lopez-Franco, Rosamaria

    1997-05-01

    Laser microbeam irradiation at 820 nm predictably and reproducibly altered morphogenetic patterns in fungal cells. Optical tweezers were highly effective as localized, noninvasive, and largely nondestructive probes under precise spatial and temporal control. In growing hyphae, the position of the Spitzenkorper (a multicomponent complex containing mainly secretory vesicles in the hyphal apex), is correlated with the site of maximum cell expansion during tip growth. The Spitzenkorper was not trapped by the laser, but moved away from the trap, and could be `chased' around the cell by the laser beam. Consequently, the direction of cell elongation was readily changed by moving the Spitzenkorper. When the laser was held steady at the cytoplasmic surface immediately beside the Spitzenkorper, an adventitious branch hypha was initiated on the same side of the hypha, suggesting that unilateral disturbance of vesicle traffic initiated a new lateral Spitzenkorper and hyphal branch near the original hyphal apex. If moving vesicles were trapped by the laser beam and transported to a different area of the cytoplasm near the cell surface, the cell profile bulged where the vesicles were newly concentrated. Variations in the mode of vesicle transfer caused: (1) single and multiple bulges, (2) adventitious branch hyphae, (3) increased cell diameter, and (4) changing directions of hyphal elongation. Thus, laser tweezers emerge as a powerful tool for controlling patterns of cell morphogenesis. The findings strongly support the hypothesis that sites of vesicle concentration and release to the cell surface are important determinants of cell morphogenesis in fungi. This conclusion lends support to the basic premises of a modern mathematical model of hyphal tip growth (the hyphoid/VSC model) but does not in itself provide the information needed for a comprehensive and integrated explanation of the mechanism of cell growth in fungi.

  9. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging

    PubMed Central

    Lam, Kwok Ho; Li, Ying; Li, Yang; Lim, Hae Gyun; Zhou, Qifa; Shung, Koping Kirk

    2016-01-01

    Non-contact precise manipulation of single microparticles, cells, and organisms has attracted considerable interest in biophysics and biomedical engineering. Similar to optical tweezers, acoustic tweezers have been proposed to be capable of manipulating microparticles and even cells. Although there have been concerted efforts to develop tools for non-contact manipulation, no alternative to complex, unifunctional tweezer has yet been found. Here we report a simple, low-cost, multifunctional single beam acoustic tweezer (SBAT) that is capable of manipulating an individual micrometer scale non-spherical cell at Rayleigh regime and even a single millimeter scale organism at Mie regime, and imaging tissue as well. We experimentally demonstrate that the SBAT with an ultralow f-number (f# = focal length/aperture size) could manipulate an individual red blood cell and a single 1.6 mm-diameter fertilized Zebrafish egg, respectively. Besides, in vitro rat aorta images were collected successfully at dynamic foci in which the lumen and the outer surface of the aorta could be clearly seen. With the ultralow f-number, the SBAT offers the combination of large acoustic radiation force and narrow beam width, leading to strong trapping and high-resolution imaging capabilities. These attributes enable the feasibility of using a single acoustic device to perform non-invasive multi-functions simultaneously for biomedical and biophysical applications. PMID:27874052

  10. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging

    NASA Astrophysics Data System (ADS)

    Lam, Kwok Ho; Li, Ying; Li, Yang; Lim, Hae Gyun; Zhou, Qifa; Shung, Koping Kirk

    2016-11-01

    Non-contact precise manipulation of single microparticles, cells, and organisms has attracted considerable interest in biophysics and biomedical engineering. Similar to optical tweezers, acoustic tweezers have been proposed to be capable of manipulating microparticles and even cells. Although there have been concerted efforts to develop tools for non-contact manipulation, no alternative to complex, unifunctional tweezer has yet been found. Here we report a simple, low-cost, multifunctional single beam acoustic tweezer (SBAT) that is capable of manipulating an individual micrometer scale non-spherical cell at Rayleigh regime and even a single millimeter scale organism at Mie regime, and imaging tissue as well. We experimentally demonstrate that the SBAT with an ultralow f-number (f# = focal length/aperture size) could manipulate an individual red blood cell and a single 1.6 mm-diameter fertilized Zebrafish egg, respectively. Besides, in vitro rat aorta images were collected successfully at dynamic foci in which the lumen and the outer surface of the aorta could be clearly seen. With the ultralow f-number, the SBAT offers the combination of large acoustic radiation force and narrow beam width, leading to strong trapping and high-resolution imaging capabilities. These attributes enable the feasibility of using a single acoustic device to perform non-invasive multi-functions simultaneously for biomedical and biophysical applications.

  11. High accuracy indirect optical manipulation of live cells with functionalized microtools

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd

    2016-09-01

    Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.

  12. Manipulating of living cells by micropattern-immobilized biosignal molecules

    NASA Astrophysics Data System (ADS)

    Ito, Yoshihiro

    2001-03-01

    Recent progress in biological science has revealed many types of biosignal proteins. The signal proteins regulate various cell functions such as growth, differentiation, mobility, secretion, and apotosis. It was known that the proteins interact with the cognate receptor on the cell surface to form complexes, and that the complexes are internalized into the cells and are decomposed in the cell. Recently we found that immobilized biosignal proteins had the potential to regulate the cell's functions without internalization. This was confirmed by micropattern-immobilization of biosignal molecules. Micropattern immobilization of proteins was peformed by photolithography as follows. The protein was mixed with photo-reactive polymers synthesized and the mixture was deposited on a polymeric plate. The cast plate was covered with photo-mask and photo-irradiated. Protein just on the irraditated regions was immobilized. Micropattern-immobilized insulin or epidermal growth factor significantly enhanced cell growth. In addition, icropattern-immobilized tumor necrosis factor and nerve growth factor induced apotosis and neural differentiation of cells, respectively. Micropatterning technology enabled us not only to visualize the effects of immobilized proteins on the cell functions, but also to make new micro-fabricated biomaterials.

  13. Image-guided precision manipulation of cells and nanoparticles in microfluidics

    NASA Astrophysics Data System (ADS)

    Cummins, Zachary

    Manipulation of single cells and particles is important to biology and nanotechnology. Our electrokinetic (EK) tweezers manipulate objects in simple microfluidic devices using gentle fluid and electric forces under vision-based feedback control. In this dissertation, I detail a user-friendly implementation of EK tweezers that allows users to select, position, and assemble cells and nanoparticles. This EK system was used to measure attachment forces between living breast cancer cells, trap single quantum dots with 45 nm accuracy, build nanophotonic circuits, and scan optical properties of nanowires. With a novel multi-layer microfluidic device, EK was also used to guide single microspheres along complex 3D trajectories. The schemes, software, and methods developed here can be used in many settings to precisely manipulate most visible objects, assemble objects into useful structures, and improve the function of lab-on-a-chip microfluidic systems.

  14. Mouse models of fear-related disorders: Cell-type-specific manipulations in amygdala.

    PubMed

    Gafford, G M; Ressler, K J

    2016-05-03

    Fear conditioning is a model system used to study threat responses, fear memory and their dysregulation in a variety of organisms. Newly developed tools such as optogenetics, Cre recombinase and DREADD technologies have allowed researchers to manipulate anatomically or molecularly defined cell subtypes with a high degree of temporal control and determine the effect of this manipulation on behavior. These targeted molecular techniques have opened up a new appreciation for the critical contributions different subpopulations of cells make to fear behavior and potentially to treatment of fear and anxiety disorders. Here we review progress to date across a variety of techniques to understand fear-related behavior through the manipulation of different cell subtypes within the amygdala.

  15. Dynamic ray tracing for modeling optical cell manipulation.

    PubMed

    Sraj, Ihab; Szatmary, Alex C; Marr, David W M; Eggleton, Charles D

    2010-08-02

    Current methods for predicting stress distribution on a cell surface due to optical trapping forces are based on a traditional ray optics scheme for fixed geometries. Cells are typically modeled as solid spheres as this facilitates optical force calculation. Under such applied forces however, real and non-rigid cells can deform, so assumptions inherent in traditional ray optics methods begin to break down. In this work, we implement a dynamic ray tracing technique to calculate the stress distribution on a deformable cell induced by optical trapping. Here, cells are modeled as three-dimensional elastic capsules with a discretized surface with associated hydrodynamic forces calculated using the Immersed Boundary Method. We use this approach to simulate the transient deformation of spherical, ellipsoidal and biconcave capsules due to external optical forces induced by a single diode bar optical trap for a range of optical powers.

  16. Process optimization and biocompatibility of cell carriers suitable for automated magnetic manipulation.

    PubMed

    Krejci, I; Piana, C; Howitz, S; Wegener, T; Fiedler, S; Zwanzig, M; Schmitt, D; Daum, N; Meier, K; Lehr, C M; Batista, U; Zemljic, S; Messerschmidt, J; Franzke, J; Wirth, M; Gabor, F

    2012-03-01

    There is increasing demand for automated cell reprogramming in the fields of cell biology, biotechnology and the biomedical sciences. Microfluidic-based platforms that provide unattended manipulation of adherent cells promise to be an appropriate basis for cell manipulation. In this study we developed a magnetically driven cell carrier to serve as a vehicle within an in vitro environment. To elucidate the impact of the carrier on cells, biocompatibility was estimated using the human adenocarcinoma cell line Caco-2. Besides evaluation of the quality of the magnetic carriers by field emission scanning electron microscopy, the rate of adherence, proliferation and differentiation of Caco-2 cells grown on the carriers was quantified. Moreover, the morphology of the cells was monitored by immunofluorescent staining. Early generations of the cell carrier suffered from release of cytotoxic nickel from the magnetic cushion. Biocompatibility was achieved by complete encapsulation of the nickel bulk within galvanic gold. The insulation process had to be developed stepwise and was controlled by parallel monitoring of the cell viability. The final carrier generation proved to be a proper support for cell manipulation, allowing proliferation of Caco-2 cells equal to that on glass or polystyrene as a reference for up to 10 days. Functional differentiation was enhanced by more than 30% compared with the reference. A flat, ferromagnetic and fully biocompatible carrier for cell manipulation was developed for application in microfluidic systems. Beyond that, this study offers advice for the development of magnetic cell carriers and the estimation of their biocompatibility. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations.

    PubMed

    Marcus, Michal; Karni, Moshe; Baranes, Koby; Levy, Itay; Alon, Noa; Margel, Shlomo; Shefi, Orit

    2016-05-14

    The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells. We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration. Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.

  18. Characterization of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) activity in mouse peritoneal cavity cells.

    PubMed

    Dias, Dhébora Albuquerque; de Barros Penteado, Bruna; Dos Santos, Lucas Derbocio; Dos Santos, Pedro Mendes; Arruda, Carla Cardozo Pinto; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa; Dos Santos Jaques, Jeandre Augusto

    2017-09-04

    This study aimed to characterize the activity of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) in peritoneal cavity cells from BALB/c mice. E-NTPDase was activated in the presence of both calcium (1.5mM) and magnesium (1.5mM) ions. However, the activity was higher in the presence of Ca(2+) . A pH of 8.5 and temperature of 37°C were the optimum conditions for catalysis. The apparent Km values were 0.51mM and 0.66mM for the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively. The Vmax values were 136.4 and 120.8 nmol Pi/min/mg of protein for ATPase and ADPase activity, respectively. Nucleotide hydrolysis was inhibited in the presence of sodium azide (20mM, ATP: P < .05; ADP: P < .001), sodium fluoride (20mM; ATP and ADP: P < .001), and suramin (0.3mM; ATP: P < .01; ADP: P < .05), which is a known profile for NTPDase inhibition. Although all of the diphosphate and triphosphate nucleotides that were tested were hydrolyzed, enzyme activity was increased when adenine nucleotides were used as substrates. Finally, we stress that knowledge of the E-NTPDase catalytic biochemical properties in mouse peritoneal cavity cells is indispensable for properly determining its activity, as well as to fully understand the immune response profile in both healthy and sick cells. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Cell Cycle Manipulation in Breast Cancer: Implications for Improved Therapy.

    DTIC Science & Technology

    1999-07-01

    SPR) on the Pharmacia BIACore instrument in the Molecular Recognition Core Lab at Vanderbilt University. Months 1-3: Optimization of XPA growth and...p53 and XPA, the damage recognition and binding component Cell 75, 805-816 13. Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R., and Beach...initiated, the availability of consensus sites would likely in- 38. Ellenberger, T. E., Brandl , C. J., Struhl, K., and Harrison, S. C. (1992) Cell 71

  20. ES cell technology: an introduction to genetic manipulation, differentiation and therapeutic cloning.

    PubMed

    Hook, Lilian; O'Brien, Carmel; Allsopp, Timothy

    2005-12-12

    ES cells are extraordinary cells, capable of proliferating in a pluripotent state indefinitely and of differentiating spontaneously into all cell types in vivo and many in vitro. However, the manipulation and modification of ES cells by processes such as directed differentiation and genetic modification have placed ES cells at the forefront of many biological studies and could lead to their application in biopharmaceutical areas such as cellular therapy and drug screening. Here we describe some of the ES cell based technologies that have lead to this realisation of ES cell potential.

  1. Suppressed histamine release from rat peritoneal mast cells by ultraviolet B irradiation: decreased diacylglycerol formation as a possible mechanism

    SciTech Connect

    Danno, K.; Fujii, K.; Tachibana, T.; Toda, K.; Horio, T.

    1988-06-01

    This study was designed to investigate the effect of ultraviolet B (UVB) irradiation on mast cell functions. Purified mast cells obtained from rat peritoneal cavity were irradiated with UVB and subsequently exposed to a degranulator, compound 48/80, or the calcium ionophore A-23187. The amount of histamine released from mast cells measured by the enzyme isotopic assay was significantly decreased by UVB irradiation (100-400 mJ/cm2). Within this dose range, UVB alone was not cytotoxic to the cells because it did not induce histamine release. The suppression was observed when mast cells were subjected to degranulation without intervals after UVB irradiation, and even after 5 h postirradiation. The wavelength of 300 nm from a monochromatic light source showed the maximum effect. When mast cells prelabeled with (/sup 3/H)arachidonate were irradiated and challenged by compound 48/80, label accumulation in diacylglycerol produced by the phosphatidylinositol cycle was considerably decreased by UVB irradiation. From these results, we hypothesize that, within an adequate irradiation dose, UVB irradiation suppresses histamine release from mast cells, probably by causing noncytotoxic damage to the membrane phospholipid metabolism, which is tied to the degranulation mechanisms.

  2. The NLRP3 Inflammasome Has a Critical Role in Peritoneal Dialysis-Related Peritonitis.

    PubMed

    Hautem, Nicolas; Morelle, Johann; Sow, Amadou; Corbet, Cyril; Feron, Olivier; Goffin, Eric; Huaux, François; Devuyst, Olivier

    2017-07-01

    Bacterial peritonitis remains the main cause of technique failure in peritoneal dialysis (PD). During peritonitis, the peritoneal membrane undergoes structural and functional alterations that are mediated by IL-1β The NLRP3 inflammasome is a caspase-1-activating multiprotein complex that links sensing of microbial and stress products to activation of proinflammatory cytokines, including IL-1β The potential roles of the NLRP3 inflammasome and IL-1β in the peritoneal membrane during acute peritonitis have not been investigated. Here, we show that the NLRP3 inflammasome is activated during acute bacterial peritonitis in patients on PD, and this activation associates with the release of IL-1β in the dialysate. In mice, lipopolysaccharide- or Escherichia coli-induced peritonitis led to IL-1β release in the peritoneal membrane. The genetic deletion of Nalp3, which encodes NLRP3, abrogated defects in solute transport during acute peritonitis and restored ultrafiltration. In human umbilical vein endothelial cells, IL-1β treatment directly enhanced endothelial cell proliferation and increased microvascular permeability. These in vitro effects require endothelial IL-1 receptors, shown by immunofluorescence to be expressed in peritoneal capillaries in mice. Furthermore, administration of the IL-1β receptor antagonist, anakinra, efficiently decreased nitric oxide production and vascular proliferation and restored peritoneal function in mouse models of peritonitis, even in mice treated with standard-of-care antibiotherapy. These data demonstrate that NLRP3 activation and IL-1β release have a critical role in solute transport defects and tissue remodeling during PD-related peritonitis. Blockade of the NLRP3/IL-1β axis offers a novel method for rescuing morphologic alterations and transport defects during acute peritonitis. Copyright © 2017 by the American Society of Nephrology.

  3. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  4. Single cell manipulation utilizing femtosecond laser-induced shock and stress waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2017-02-01

    When an intense femtosecond laser pulse is focused into a culture medium through an objective lens, an impulsive force is loaded on the cells with generations of the shock and stress waves at the laser focal point. The shock and stress waves were acted to single cells in the vicinity of the laser focal point as an impulsive force. We have applied the impulsive force to manipulate single cells. As the transient intensity of the impulsive force is over 1000 times stronger than the force due to optical tweezers, drastic single manipulation which is difficult by the optical tweezers can be realized. The generation process of the impulsive force and behavior of animal cell after loading the impulsive force were reviewed, and then our original quantification method of the impulsive force utilizing atomic force microscope (AFM) was introduced with its applications for evaluating adhesions between animal cells and between sub-organelles in plant cell.

  5. Manipulation of hematopoietic stem cells for regenerative medicine.

    PubMed

    Nakajima-Takagi, Yaeko; Osawa, Mitsujiro; Iwama, Atsushi

    2014-01-01

    Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and to differentiate into all blood cell lineages while retaining robust capacity to regenerate hematopoiesis. Based on these characteristics, they are widely used for transplantation and gene therapy. However, the dose of HSCs available for use in treatments is limited. Therefore, extensive work has been undertaken to expand HSCs in culture and to produce HSCs from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in order to improve the efficiency and outcome of HSC-based therapies. Various surface markers have been characterized to improve the purification of HSCs and a huge number of cytokines and small-molecule compounds have been screened for use in the expansion of HSCs. In addition, attempts to generate not only HSCs but also mature blood cells from ESCs and iPSCs are currently ongoing. This review covers recent approaches for the purification, expansion or production of human HSCs and provides insight into problems that need to be resolved.

  6. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus.

    PubMed

    Vermeulen, Ben L; Devriendt, Bert; Olyslaegers, Dominique A; Dedeurwaerder, Annelike; Desmarets, Lowiese M; Favoreel, Herman W; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-05-31

    A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25-Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection.

  7. Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator

    NASA Astrophysics Data System (ADS)

    Horade, M.; Kojima, M.; Kamiyama, K.; Kurata, T.; Mae, Y.; Arai, T.

    2015-11-01

    In order to realize effective micro-manipulation using a micro-manipulator system, an optimum end-effector is proposed. Cell-manipulation experiments using mouse fibroblast cells are conducted, and the usability of the proposed end-effector is confirmed. A key advantage of the micro-manipulator is high-accuracy, high-speed 3D micro- and nano-scale positioning. Micro-manipulation has often been used in research involving biological cells. However, there are two important concerns with the micro-manipulator system: gripping efficiency and the release of gripped objects. When it is not possible to grip a micro-object, such as a cell, near its center, the object may be dropped during manipulation. Since the acquisition of exact position information for a micro-object in the vertical direction is difficult using a microscope, the gripping efficiency of the end-effector should be improved. Therefore, technical skill or operational support is required. Since, on the micro-scale, surface forces such as the adsorption force are greater than body forces, such as the gravitational force, the adhesion force between the end-effector and the object is strong. Therefore, manipulation techniques without adhesion are required for placed an object at an arbitrary position. In the present study, we consider direct physical contact between the end-effector and objects. First, the design and materials of the end-effector for micro-scale manipulation were optimized, and an end-effector with an optimum shape to increase the grip force was fabricated. Second, the surface of the end-effector tip was made uneven, and the adhesion force from increasing on the micro-scale was prevented. When an end-effector with an uneven surface was used, release without adhesion was successful 85.0% of the time. On the other hand, when an end-effector without an uneven surface was used, release without adhesion was successful 6.25% of the time. Therefore, the superiority of a structure with an uneven

  8. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  9. Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion.

    PubMed

    Sun, Yi-xin; Ren, Ke-feng; Wang, Jin-lei; Chang, Guo-xun; Ji, Jian

    2013-06-12

    Stimuli-responsive thin films attract considerable attention in different fields. Herein, an electrochemical redox multilayers with tunable stiffness is constructed through the layer-by-layer self-assembly method. The redox ferrocene modified poly(ethylenimine) play an essential role to induce multilayers' swelling/shrinking under an electrochemical stimulus, resulting reversible change of elastic modulus of the multilayers. The adhesion of fibroblast cells can be thus controlled from well spreading to round shape. Such soft multilayers with electrochemically controlled stiffness could have potentials for cell-based applications.

  10. Stimulation of 14-3-3 protein and its isoform on histamine secretion from permeabilized rat peritoneal mast cells.

    PubMed

    Fujii, Toshihiro; Ueeda, Takayuki

    2002-12-01

    The effect of the 14-3-3 protein, an adaptor protein of intracellular signal pathways, on histamine release from rat peritoneal mast cells was investigated. The exogenous 14-3-3 protein from bovine brain increased the Ca(2+)-dependent histamine release from permeabilized mast cells, but only slightly affected the non-permeabilized cells. Partial amino acid sequences showed that the bovine brain 14-3-3 protein contained 14-3-3beta, gamma and zeta isoforms, and that these recombinant isoforms were prepared. Among them, 14-3-3zeta was an active species while the 14-3-3beta and gamma were inactive for histamine release from the permeabilized mast cells. Approximately 15% of the histamine release was stimulated by 14-3-3zeta at 2.5 microM, and half-maximal stimulation occurred at 1 microM. Treatment of the mast cells with wortmannin or staurosporine completely inhibited the stimulatory effect on histamine release caused by Ca(2+) or Ca(2+)/14-3-3zeta, and genistein partially inhibited both stimulatory effects. PD 98059, however, had little effect on the histamine release. These results suggest the possibility that 14-3-3zeta is associated with signal transduction for degranulation of the mast cells.

  11. L-Carnosine Prevents the Pro-cancerogenic Activity of Senescent Peritoneal Mesothelium Towards Ovarian Cancer Cells.

    PubMed

    Mikuła-Pietrasik, Justyna; Książek, Krzysztof

    2016-02-01

    L-Carnosine inhibits senescence of somatic cells and displays anticancer activity. Here we analyzed if L-carnosine (20 mM) retards senescence of human peritoneal mesothelial cells (HPMCs) and inhibits progression of ovarian cancer cells. Experiments were performed with primary HPMCs established from patients undergoing abdominal surgery and with three ovarian cancer cell lines: A2780, OVCAR-3 and SKOV-3. L-Carnosine retards senescence of HPMCs plausibly via inhibition of mitochondria-related oxidative stress. Prolonged exposure of HPMCs to L-carnosine prevented senescent HPMC-dependent exacerbation of cancer cell adhesion, migration, invasion and proliferation, which may be linked with decreased secretion of various pro-cancerogenic agents by HPMCs. Cancer cells exposed directly to L-carnosine displayed reduced viability, increased frequency of apoptosis and unaltered proliferation. L-carnosine may be a valuable anticancer drug, especially in the context of prevention and therapy of intraperitoneal ovarian cancer metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Vitamin D Modulates Hematological Parameters and Cell Migration into Peritoneal and Pulmonary Cavities in Alloxan-Diabetic Mice

    PubMed Central

    Bella, Leonardo M.; Fieri, Isis; Nunes, Fernanda P. B.; Ferreira, Sabrina S.; Azevedo, Carolina B.

    2017-01-01

    Background/Aims. The effects of cholecalciferol supplementation on the course of diabetes in humans and animals need to be better understood. Therefore, this study investigated the effect of short-term cholecalciferol supplementation on biochemical and hematological parameters in mice. Methods. Male diabetic (alloxan, 60 mg/kg i.v., 10 days) and nondiabetic mice were supplemented with cholecalciferol for seven days. The following parameters were determined: serum levels of 25-hydroxyvitamin D, phosphorus, calcium, urea, creatinine, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, red blood cell count, white blood cell count (WBC), hematocrit, hemoglobin, differential cell counts of peritoneal lavage (PeL), and bronchoalveolar lavage (BAL) fluids and morphological analysis of lung, kidney, and liver tissues. Results. Relative to controls, cholecalciferol supplementation increased serum levels of 25-hydroxyvitamin D, calcium, hemoglobin, hematocrit, and red blood cell counts and decreased leukocyte cell counts of PeL and BAL fluids in diabetic mice. Diabetic mice that were not treated with cholecalciferol had lower serum calcium and albumin levels and hemoglobin, WBC, and mononuclear blood cell counts and higher serum creatinine and urea levels than controls. Conclusion. Our results suggest that cholecalciferol supplementation improves the hematological parameters and reduces leukocyte migration into the PeL and BAL lavage of diabetic mice. PMID:28503574

  13. Amadori adducts activate nuclear factor-κB-related proinflammatory genes in cultured human peritoneal mesothelial cells

    PubMed Central

    Nevado, Julián; Peiró, Concepción; Vallejo, Susana; El-Assar, Mariam; Lafuente, Nuria; Matesanz, Nuria; Azcutia, Veronica; Cercas, Elena; Sánchez-Ferrer, Carlos F; Rodríguez-Mañas, Leocadio

    2005-01-01

    Diabetes mellitus leads to a high incidence of several so-called complications, sharing similar pathophysiological features in several territories. Previous reports points at early nonenzymatic glycosylation products (Amadori adducts) as mediators of diabetic vascular complications. In the present study, we analysed a possible role for Amadori adducts as stimulators of proinflammatory pathways in human peritoneal mesothelial cells (HPMCs). Cultured HPMCs isolated from 13 different patients (mean age 38.7±16 years) were exposed to different Amadori adducts, that is, highly glycated haemoglobin (10 nM) and glycated bovine serum albumin (0.25 mg ml−1), as well as to their respective low glycosylation controls. Amadori adducts, but not their respective controls, elicited a marked increase of NF-κB activation, as determined by electromobility shift assays and transient transfection experiments. Additionally, Amadori adducts significantly increased the production of NF-κB-related proinflammatory molecules, including cytokines, such as TNF-α, IL-1β or IL-6, and enzymes, such as cyclooxygenase-2 and inducible nitric oxide (NO) synthase, this latter leading to the release of NO by HPMCs. The effects of Amadori adducts were mediated by different reactive oxygen and nitrosative species (e.g. superoxide anions, hydroxyl radicals, and peroxynitrite), as they were blunted by coincubation with the appropriate scavengers. Furthermore, NO generated upon exposure to Amadori adducts further stimulated NF-κB activation, either directly or after combination with superoxide anions to form peroxynitrite. We conclude that Amadori adducts can favour peritoneal inflammation by exacerbating changes in NO synthesis pathway and triggering NF-κB-related proinflammatory signals in human mesothelial cells. PMID:15997235

  14. Vitamin D Can Ameliorate Chlorhexidine Gluconate-Induced Peritoneal Fibrosis and Functional Deterioration through the Inhibition of Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    PubMed Central

    Lee, Yi-Che; Hung, Shih-Yuan; Liou, Hung-Hsiang; Lin, Tsun-Mei; Tsai, Chu-Hung; Lin, Sheng-Hsiang; Tsai, Yau-Sheng; Chang, Min-Yu; Wang, Hsi-Hao; Ho, Li-Chun; Chen, Yi-Ting; Wu, Ching-Fang; Chen, Ho-Ching; Chen, Hsin-Pao; Liu, Kuang-Wen; Chen, Chih-I.; She, Kuan Min; Wang, Hao-Kuang; Lin, Chi-Wei; Chiou, Yuan-Yow

    2015-01-01

    Background. Peritoneal dialysis (PD) can induce fibrosis and functional alterations in PD patients' peritoneal membranes, due to long-term unphysiological dialysate exposure, partially occurring via triggering of epithelial-to-mesenchymal transition (EMT) in peritoneal mesothelial cells (MCs). Vitamin D can ameliorate these negative effects; however, the mechanism remains unexplored. Therefore, we investigated its possible links to MCs EMT inhibition. Methods. Peritoneal fibrosis was established in Sprague-Dawley rats by chlorhexidine gluconate (CG) intraperitoneal injection for 21 days, with and without 1α,25(OH)2D3 treatment. Morphological and functional evaluation and western blot analysis of EMT marker were performed upon peritoneum tissue. In vitro study was also performed in a primary human peritoneal MC culture system; MCs were incubated with transforming growth factor-β1 (TGF-β1) in the absence or presence of 1α,25(OH)2D3. EMT marker expression, migration activities, and cytoskeleton redistribution of MCs were determined. Results. 1α,25(OH)2D3 ameliorated CG-induced morphological and functional deterioration in animal model, along with CG-induced upregulation of α-SMA and downregulation of E-cadherin expression. Meanwhile, 1α,25(OH)2D3 also ameliorated TGF-β1-induced decrease in E-cadherin expression, increase in Snai1 and α-SMA expression, intracellular F-actin redistribution, and migration activity in vitro. Conclusion. 1α,25(OH)2D3 can ameliorate CG-induced peritoneal fibrosis and attenuate functional deterioration through inhibiting MC EMT. PMID:26495304

  15. Continuous Hyperthermic Peritoneal Perfusion (CHPP) With Cisplatin for Children With Peritoneal Cancer

    ClinicalTrials.gov

    2012-03-29

    Peritoneal Neoplasms; Retroperitoneal Neoplasms; Gastrointestinal Neoplasms; Adenocarcinoma; Neuroblastoma; Ovarian Neoplasms; Sarcoma; Adrenocortical Carcinoma; Wilms Tumor; Rhabdomyosarcoma; Desmoplastic Small Round Cell Tumor

  16. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model.

    PubMed

    Liu, Qi; Ma, Pingchuan; Liu, Lanxia; Ma, Guilei; Ma, Jingjing; Liu, Xiaoxuan; Liu, Yijin; Lin, Wanjun; Zhu, Yingjun

    2017-01-01

    Our study investigated poly(lactic-co-glycolic acid) (PLGA) as protein delivery vehicles encapsulate CTLA-4-antibody (anti-CTLA-4) which is essential for CD4+CD25+Treg cells suppressive function exposing superior potential for inhibiting endometriosis progress in mouse model than single anti-CTLA-4. Anti-CTLA-4 loaded PLGA combined to ligands CTLA-4 in surface of CD4+CD25+Treg cells which distributed in peritoneal fluid of mouse endometriosis model. The particle size, zeta potential of the anti-CTLA-4 loaded nanoparticles was detected by dynamic light scattering. Morphology of nanoparticles was evaluated by transmission electron microscopy (TEM). Confocal laser scanning microscopy (CLSM) indicated distribution of anti-CTLA-4 with PLGA or without in peritoneal fluid. Cumulative anti-CTLA-4 release from nanoparticles was evaluated by Micro BCA assay. The percentage of CD4+CD25+Treg cells in peritoneal fluid was demonstrated by flow cytometer. In vitro experiment we co-culture ectopic endometrial cells (EEC) with isolated CD4+CD25+Treg cells in peritoneal fluid (PF), proliferation and invasion of ectopic endometrial cells (EEC) was measured by BrdU ELISA assay and Matrigel invasion assay. In comparison with anti-CTLA-4 without nanoparticles, the bioconjugates PLGA/anti-CTLA-4 were tolerated in peritoneal fluid with a controlled release of anti-CTLA-4 in 3, 7, 14days. Moreover, PLGA/anti-CTLA-4 had superior protective regulation ability to reduce level of CD4+CD25+Treg cells in peritoneal fluid. Most strikingly, in vitro experiment, PLGA/anti-CTLA-4 exhibited better ability in inhibiting proliferation and invasion of ectopic endometrial cells in co-culture system compared with anti-CTLA-4. Progressively, PLGA/anti-CTLA-4 had better suppressive activity to inhibited IL-10 and TGF-beta secreted by CD4+CD25+Treg cells which indicating that PLGA/anti-CTLA-4 suppressed cells proliferation and invasion through reduced IL-10 and TGF-beta production. Thus, PLGA/anti-CTLA-4 may

  17. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    SciTech Connect

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y. )

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.

  18. Chapter 16: Magnetic manipulation for force measurements in cell biology.

    PubMed

    Tim O'Brien, E; Cribb, Jeremy; Marshburn, David; Taylor, Russell M; Superfine, Richard

    2008-01-01

    Life is a mechanical process. Cells, tissues, and bodies must act within their environments to grow, divide, move, communicate, and defend themselves. The stiffness and viscosity of cells and biologic materials will vary depending upon a wide variety of variables including for example environmental conditions, activation of signaling pathways, stage of development, gene expression. By pushing and pulling cells or materials such as mucus or extracellular matrix, one can learn about their mechanical properties. By varying the conditions, signaling pathways or genetic background, one can also assess how the response of the cell or material is modulated by that pathway. Magnetic particles are available commercially in many useful sizes, magnetic contents, and surface chemistries. The variety of surface chemistries allow forces to be applied to a specimen through specific linkages such as receptors or particular proteins, allowing the biologist to ask fundamental questions about the role of those linkages in the transduction of force or motion. In this chapter, we discuss the use of a magnetic system designed to apply a wide range of forces and force patterns fully integrated into a high numerical aperture inverted fluorescence microscope. Fine, thin and flat magnetic poles allow the use of high magnification microscope objectives, and flexible software to control the direction and pattern of applied forces supports a variety of experimental situations. The system can be coupled with simple video acquisition for medium-bandwidth, two-dimensional particle tracking. Alternatively, the system can be coupled with a laser tracking and position feedback system for higher resolution, high bandwidth, three-dimensional tracking.

  19. Potential for pharmacological manipulation of human embryonic stem cells

    PubMed Central

    Atkinson, Stuart P; Lako, Majlinda; Armstrong, Lyle

    2013-01-01

    The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22515554

  20. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation.

    PubMed

    Schmetterer, Klaus G; Neunkirchner, Alina; Pickl, Winfried F

    2012-06-01

    Naturally occurring CD4(+)CD25(high) forkhead box protein 3 (FOXP3)(+) regulatory T cells (nTregs) are key mediators of immunity, which orchestrate and maintain tolerance to self and foreign antigens. In the recent 1.5 decades, a multitude of studies have aimed to define the phenotype and function of nTregs and to assess their therapeutic potential for modulating immune mediated disorders such as autoimmunity, allergy, and episodes of transplant rejection. In this review, we summarize the current knowledge on the biology of nTregs. We address the exact definition of nTregs by specific markers and combinations thereof, which is a prerequisite for the state-of-the-art isolation of defined nTreg populations. Furthermore, we discuss the mechanism by which nTregs mediate immunosuppression and how this knowledge might translate into novel therapeutic modalities. With first clinical studies of nTreg-based therapies being finished, questions concerning the reliable sources of nTregs are becoming more and more eminent. Consequently, approaches allowing conversion of CD4(+) T cells into nTregs by coculture with antigen-presenting cells, cytokines, and/or pharmacological agents are discussed. In addition, genetic engineering approaches for the generation of antigen-specific nTregs are described.

  1. Fabrication of micropatterned arrays of gold nanoparticles for photothermal manipulation of living cells.

    PubMed

    Polleux, Julien; Baffou, Guillaume

    2014-01-01

    The fabrication of micro/nanostructured surfaces functionalized with stimulus-responsive chemical groups proved to be an interesting approach to simultaneously confine cell adhesion and manipulate cell-substrate interactions down to the single cell level. However, reversibility of stimulus-triggered systems is often not possible or exhibits slow switching kinetics. In contrast to such setups, gold nanoparticles have the properties to efficiently and reversibly generate heat under illumination at their plasmon resonance band. Thus, photo-induced heating could be used to directly and locally interface living cells and dynamically tailor the interactions to their adhesive environment. In the present chapter, we will first detail the preparation of micropatterned and functionalized gold nanoparticles immobilized on glass coverslips, and then report how to reliably characterize the photothermal properties of such substrates that enable the dynamic manipulation of cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Laboratory diagnostics of spontaneous bacterial peritonitis.

    PubMed

    Lippi, Giuseppe; Danese, Elisa; Cervellin, Gianfranco; Montagnana, Martina

    2014-03-20

    The term peritonitis indicates an inflammatory process involving the peritoneum that is most frequently infectious in nature. Primary or spontaneous bacterial peritonitis (SBP) typically occurs when a bacterial infection spreads to the peritoneum across the gut wall or mesenteric lymphatics or, less frequently, from hematogenous transmission in combination with impaired immune system and in absence of an identified intra-abdominal source of infection or malignancy. The clinical presentation of SBP is variable. The condition may manifest as a relatively insidious colonization, without signs and symptoms, or may suddenly occur as a septic syndrome. Laboratory diagnostics play a pivotal role for timely and appropriate management of patients with bacterial peritonitis. It is now clearly established that polymorphonuclear leukocyte (PMN) in peritoneal fluid is the mainstay for the diagnosis, whereas the role of additional biochemical tests is rather controversial. Recent evidence also suggests that automatic cell counting in peritoneal fluid may be a reliable approach for early screening of patients. According to available clinical and laboratory data, we have developed a tentative algorithm for efficient diagnosis of SBP, which is based on a reasonable integration between optimization of human/economical resources and gradually increasing use of invasive and expensive testing. The proposed strategy entails, in sequential steps, serum procalcitonin testing, automated cell count in peritoneal fluid, manual cell count in peritoneal fluid, peritoneal fluid culture and bacterial DNA testing in peritoneal fluid.

  3. Superinduction of IL-6 synthesis in human peritoneal mesothelial cells is related to the induction and stabilization of IL-6 mRNA.

    PubMed

    Witowski, J; Jörres, A; Coles, G A; Williams, J D; Topley, N

    1996-10-01

    The initiation of peritonitis is accompanied by a massive increase in intraperitoneal levels of IL-6. The source of this cytokine and the mechanism by which its levels are increased so dramatically are unknown. We examined the mechanism of IL-6 secretion by HPMC exposed to the milicu present in the peritoneal cavity during the initiation of inflammation. Exposure of HPMC to spent peritoneal dialysis effluent (PDE) or IL-1 beta resulted in a time- and dose-dependent increase in IL-6 secretion. After 24 hours the IL-6 release (pg/microgram cell protein) was increased from 5.0 +/- 0.8 in control cells to 16.0 +/- 2.4 and to 83.8 +/- 17.4 in HPMC treated with PDE and IL-1 beta (1000 pg/ml), respectively (N = 5, P < 0.05). If, however, PDE and IL-1 beta were combined, then the secretion of IL-6 was synergistically increased to 747.7 +/- 349.9 (P < 0.05 vs. expected additive value). The same effect was evident when PDE was combined with TNF alpha or mixed with peritoneal macrophage conditioned medium. These changes were not a reflection of HPMC proliferation as estimated by 3H-thymidine incorporation. The "superinduction" of IL-6 release was associated both with the induction and stabilization of IL-6 mRNA. Competitive PCR demonstrated that the amount of IL-6 mRNA (fM/microgram total RNA) was increased from 0.35 +/- 0.13 in control cells to 11.66 +/- 3.89 and to 10.83 +/- 5.17 in HPMC treated with PDE and IL-1 beta (100 pg/ml), respectively (N = 5, P < 0.05). The combination of PDE + IL-1 beta synergistically increased IL-6 mRNA levels to 56.33 +/- 8.79 (P < 0.05 vs. additive value). RNA stability experiments using actinomycin D revealed that the half life of IL-6 mRNA (hours) was increased from 2.8 hours in control cells to 6.7 and 9.4 in HPMC exposed to PDE and IL-1 beta, respectively. The combination of PDE together with IL-1 beta resulted in a prolonged stabilization of IL-6 mRNA with levels remaining constant over the 12 hours of the experiment. These data

  4. Isolated tumor cells are frequently detectable in the peritoneal cavity of gastric and colorectal cancer patients and serve as a new prognostic marker.

    PubMed Central

    Schott, A; Vogel, I; Krueger, U; Kalthoff, H; Schreiber, H W; Schmiegel, W; Henne-Bruns, D; Kremer, B; Juhl, H

    1998-01-01

    OBJECTIVE: To evaluate the prognostic significance of isolated tumor cells detected by a panel of various monoclonal antibodies. SUMMARY BACKGROUND DATA: Previously, we showed by using immunocytology that cancer cells are frequently found in bone marrow and peritoneal cavity samples of gastrointestinal cancer patients. METHODS: Findings in bone marrow and peritoneal cavity samples were compared and correlated with the 4-year survival rate of 84 gastric and 109 colorectal patients with cancer. RESULTS: Although positive results in the bone marrow showed little prognostic significance, the peritoneal cavity results correlated with the 4-year survival rate (gastric cancer: p = 0.0038; colorectal cancer: p = 0.0079). Additionally, in subgroups of patients with early (gastric cancer: p = 0.02, colorectal cancer: p = 0.48) and advanced (gastric cancer: p = 0.02, colorectal cancer: p < 0.0001) tumor stages, a correlation of immunocytologic findings and the survival rate was seen. CONCLUSIONS: The detection of minimal residual disease in the peritoneal cavity serves as a new prognostic marker. Images Figure 5. PMID:9527060

  5. Decreased Progesterone Receptor B/A Ratio in Endometrial Cells by Tumor Necrosis Factor-Alpha and Peritoneal Fluid from Patients with Endometriosis.

    PubMed

    Chae, Uisoo; Min, Jin Young; Kim, Sung Hoon; Ihm, Hyo Jin; Oh, Young Sang; Park, So Yun; Chae, Hee Dong; Kim, Chung Hoon; Kang, Byung Moon

    2016-11-01

    Progesterone resistance is thought to be a major factor that contributes to progression of endometriosis. However, it is not clear what causes progesterone resistance in endometriosis. This study aimed to assess whether cytokines or peritoneal fluid can affect progesterone receptor (PR) expression in endometrial cells and to verify whether PR expression is reduced in endometriosis. The PR-B/A ratio was measured via real-time polymerase chain reaction after in vitro culture, in which endometrial cells were treated with either tumor necrosis factor-alpha (TNF-α), interleukin-1 beta, or peritoneal fluid obtained from women with advanced-stage endometriosis. Immunohistochemistry was performed to compare PR-B expression between eutopic and ectopic endometrial tissues from women with and without advanced-stage endometriosis. The PR-B/A ratio was significantly decreased by treatment with either TNF-α (p=0.011) or peritoneal fluid from women with advanced-stage endometriosis (p=0.027). Immunoreactivity of PR-B expression was significantly lower during the secretory phase than during the proliferative phase in endometrial tissues from control subjects (p<0.001). PR-B expression was significantly reduced in the eutopic endometrium (p=0.031) and ovarian endometrioma (p=0.036) from women with advanced-stage endometriosis compared with eutopic endometrium tissues from control subjects. Progesterone resistance in endometriosis may be caused by proinflammatory conditions in the pelvic peritoneal microenvironment.

  6. Femtosecond laser fabricated integrated chip for manipulation of single cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keloth, Anusha; Jimenez, Melanie; Bridle, H.; Paterson, Lynn; Markx, Gerard H.; Kar, Ajoy K.

    2016-03-01

    Optical micromanipulation techniques and microfluidic techniques can be used in same platform for manipulating biological samples at single cell level. Novel microfluidic devices with integrated channels and waveguides fabricated using ultrafast laser inscription combined with selective chemical etching can be used to enable sorting and isolation of biological cells. In this paper we report the design and fabrication of a three dimensional chip that can be used to manipulate single cells in principle with a higher throughput than is possible using optical tweezers. The capability of ultrafast laser inscription followed by selective chemical etching to fabricate microstructures and waveguides have been utilised to fabricate the device presented in this paper. The complex three dimensional microfluidic structures within the device allow the injected cell population to focus in a hydrodynamic flow. A 1064 nm cw laser source, coupled to the integrated waveguide, is used to exert radiation pressure on the cells to be manipulated. As the cells in the focussed stream flow past the waveguide, optical scattering force induced by the laser beam pushes the cell from out of the focussed stream to the sheath fluid, which can be then collected at the outlet. Thus cells can be controllably deflected from the focussed flow to the side channel for downstream analysis or culture.

  7. System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells

    PubMed Central

    Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung

    2011-01-01

    This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685

  8. Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis.

    PubMed

    Yokoi, Hideki; Kasahara, Masato; Mori, Kiyoshi; Ogawa, Yoshihisa; Kuwabara, Takashige; Imamaki, Hirotaka; Kawanishi, Tomoko; Koga, Kenichi; Ishii, Akira; Kato, Yukiko; Mori, Keita P; Toda, Naohiro; Ohno, Shoko; Muramatsu, Hisako; Muramatsu, Takashi; Sugawara, Akira; Mukoyama, Masashi; Nakao, Kazuwa

    2012-01-01

    Long-term peritoneal dialysis induces peritoneal fibrosis with submesothelial fibrotic tissue. Although angiogenesis and inflammatory mediators are involved in peritoneal fibrosis, precise molecular mechanisms are undefined. To study this, we used microarray analysis and compared gene expression profiles of the peritoneum in control and chlorhexidine gluconate (CG)-induced peritoneal fibrosis mice. One of the 43 highly upregulated genes was pleiotrophin, a midkine family member, the expression of which was also upregulated by the solution used to treat mice by peritoneal dialysis. This growth factor was found in fibroblasts and mesothelial cells within the underlying submesothelial compact zones of mice, and in human peritoneal biopsy samples and peritoneal dialysate effluent. Recombinant pleiotrophin stimulated mitogenesis and migration of mouse mesothelial cells in culture. We found that in wild-type mice, CG treatment increased peritoneal permeability (measured by equilibration), increased mRNA expression of TGF-β1, connective tissue growth factor and fibronectin, TNF-α and IL-1β expression, and resulted in infiltration of CD3-positive T cells, and caused a high number of Ki-67-positive proliferating cells. All of these parameters were decreased in peritoneal tissues of CG-treated pleiotrophin-knockout mice. Thus, an upregulation of pleiotrophin appears to play a role in fibrosis and inflammation during peritoneal injury.

  9. HOT CELL BUILDING, TRA632. SHIELDED WINDOWS HAVE BEEN INSTALLED. MANIPULATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. SHIELDED WINDOWS HAVE BEEN INSTALLED. MANIPULATORS AWAIT ATTACHMENT TO HAND CONTROLS. INL NEGATIVE NO. 9001. Unknown Photographer, photo is identified as taken 10/28/1953, but it may be an error as it shows progress since ID-33-G-266 of same date. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. HOT CELL BUILDING, TRA632. INSTRUMENT FITTINGS, MASTER/SLAVE MANIPULATOR, "POT LID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. INSTRUMENT FITTINGS, MASTER/SLAVE MANIPULATOR, "POT LID CRANE." IDAHO OPERATIONS OFFICE MTR-632-IDO-16, 11/1952. INL INDEX NO. 531-0632-40-396-110574, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Imaging and manipulating proteins in live cells through covalent labeling.

    PubMed

    Xue, Lin; Karpenko, Iuliia A; Hiblot, Julien; Johnsson, Kai

    2015-12-01

    The past 20 years have witnessed the advent of numerous technologies to specifically and covalently label proteins in cellulo and in vivo with synthetic probes. These technologies range from self-labeling proteins tags to non-natural amino acids, and the question is no longer how we can specifically label a given protein but rather with what additional functionality we wish to equip it. In addition, progress in fields such as super-resolution microscopy and genome editing have either provided additional motivation to label proteins with advanced synthetic probes or removed some of the difficulties of conducting such experiments. By focusing on two particular applications, live-cell imaging and the generation of reversible protein switches, we outline the opportunities and challenges of the field and how the synergy between synthetic chemistry and protein engineering will make it possible to conduct experiments that are not feasible with conventional approaches.

  12. Different antiviral activity and cell specificity of interferon preparations produced by mouse peritoneal cells at 37 degrees C and at 26 degrees C.

    PubMed

    Cembrzyńska-Nowak, M

    1989-01-01

    Three sublines of mouse L cells and mouse embryo fibroblasts were used for determination of the antiviral activity of mouse interferons produced by nonadherent peritoneal exudate cells incubated either at 37 degrees C or at 26 degrees C. IFN produced at 37 degrees C or at 26 degrees C had the same antiviral activity in L Borgen, L929 cells. However, in MEC IFN-37 degrees had relatively higher activity than IFN-26 degrees. Of the interferon investigated only IFN-37 degrees exhibited antiviral activity in the established line of rat kidney cells. The IFN preparations showed no activity in the human and chicken cells. The studies on the sensitivity of viruses to both forms of IFN revealed that EMC and VSV viruses were equally sensitive to IFN-26 degrees C. However, the replication of EMC virus was more strongly inhibited by IFN-37 degrees than the multiplication of VSV virus.

  13. Membrane-tethered ligands: tools for cell-autonomous pharmacological manipulation of biological circuits.

    PubMed

    Choi, Charles; Nitabach, Michael N

    2013-05-01

    Detection of secreted signaling molecules by cognate cell surface receptors is a major intercellular communication pathway in cellular circuits that control biological processes. Understanding the biological significance of these connections would allow us to understand how cellular circuits operate as a whole. Membrane-tethered ligands are recombinant transgenes with structural modules that allow them to act on cell-surface receptors and ion channel subtypes with pharmacological specificity in a cell-autonomous manner. Membrane-tethered ligands have been successful in the specific manipulation of ion channels as well as G-protein-coupled receptors, and, in combination with cell-specific promoters, such manipulations have been restricted to genetically defined subpopulations within cellular circuits in vivo to induce specific phenotypes controlled by those circuits. These studies establish the membrane-tethering approach as a generally applicable method for dissecting neural and physiological circuits.

  14. Membrane-Tethered Ligands: Tools for Cell-Autonomous Pharmacological Manipulation of Biological Circuits

    PubMed Central

    Choi, Charles

    2013-01-01

    Detection of secreted signaling molecules by cognate cell surface receptors is a major intercellular communication pathway in cellular circuits that control biological processes. Understanding the biological significance of these connections would allow us to understand how cellular circuits operate as a whole. Membrane-tethered ligands are recombinant transgenes with structural modules that allow them to act on cell-surface receptors and ion channel subtypes with pharmacological specificity in a cell-autonomous manner. Membrane-tethered ligands have been successful in the specific manipulation of ion channels as well as G-protein-coupled receptors, and, in combination with cell-specific promoters, such manipulations have been restricted to genetically defined subpopulations within cellular circuits in vivo to induce specific phenotypes controlled by those circuits. These studies establish the membrane-tethering approach as a generally applicable method for dissecting neural and physiological circuits. PMID:23636262

  15. Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells

    PubMed Central

    Aekbote, Badri L.; Fekete, Tamás; Jacak, Jaroslaw; Vizsnyiczai, Gaszton; Ormos, Pál; Kelemen, Lóránd

    2015-01-01

    We introduce a method that combines two-photon polymerization (TPP) and surface functionalization to enable the indirect optical manipulation of live cells. TPP-made 3D microstructures were coated specifically with a multilayer of the protein streptavidin and non-specifically with IgG antibody using polyethylene glycol diamine as a linker molecule. Protein density on their surfaces was quantified for various coating methods. The streptavidin-coated structures were shown to attach to biotinated cells reproducibly. We performed basic indirect optical micromanipulation tasks with attached structure-cell couples using complex structures and a multi-focus optical trap. The use of such extended manipulators for indirect optical trapping ensures to keep a safe distance between the trapping beams and the sensitive cell and enables their 6 degrees of freedom actuation. PMID:26819816

  16. Triacylglycerol-induced impairment in mitochondrial biogenesis and function in J774.2 and mouse peritoneal macrophage foam cells.

    PubMed

    Aronis, Anna; Aharoni-Simon, Michal; Madar, Zecharia; Tirosh, Oren

    2009-12-01

    The aim of this study was to detect mitochondrial alterations in J774.2 macrophages and mouse peritoneal macrophages (MPM) foam cells. J774.2 and MPM cells were exposed to triacylglycerol (TG) emulsion (1 mg/ml) for induction of fat accumulation. Impairment of mitochondrial function was reflected by reduced cellular ATP production and decreased expression of subunits of mitochondrial complexes I and III. The expression of subunit IV of complex IV remained unchanged, however, the content of its precursor in cells increased. Inhibitors of mitochondrial complexes, rotenone (0.1 microM) and myxothiazol (25 nM), protected the viability in TG-loaded macrophages. The exposure to TG caused downregulation of PPARgamma coactivator (PGC)-1alpha and nuclear respiratory factor (NRF)-1. Activation of peroxisome proliferator-activated receptors attenuated reactive oxygen species production in the foam cells. Treatment with antioxidant N-acetylcysteine (NAC) prevented lipid-mediated mitochondrial and cellular damage. In conclusion, this study demonstrates the important role of mitochondrial biogenesis dysfunction in TG-induced lipotoxicity in macrophages.

  17. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    PubMed

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  18. Acoustic cavity transducers for the manipulation of cells and biomolecules

    NASA Astrophysics Data System (ADS)

    Tovar, Armando; Patel, Maulik; Lee, Abraham P.

    2010-02-01

    A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.

  19. New opto-plasmonic tweezers for manipulation and rotation of biological cells--design and fabrication.

    PubMed

    Miao, Xiaoyu; Lin, Lih Y

    2006-01-01

    Opto-Plasmonic Tweezers are proposed as a new optical manipulator and rotator for biological cells. The approach utilizes polarized light to excite localized surface plasmon resonance (LSPR) on an array of Au nanostructure. Large dielectrophoretic trapping force is expected to be induced by the highly non-uniform scattering field from the resonant oscillating dipoles. Fine orientation control of the cells can be realized by tuning the polarization state of the input light.

  20. Automatic fabrication of 3-dimensional tissues using cell sheet manipulator technique.

    PubMed

    Kikuchi, Tetsutaro; Shimizu, Tatsuya; Wada, Masanori; Yamato, Masayuki; Okano, Teruo

    2014-03-01

    Automated manufacturing is a key for tissue-engineered therapeutic products to become common-place and economical. Here, we developed an automatic cell sheet stacking apparatus to fabricate 3-dimensional tissue-engineered constructs exploiting our cell sheet manipulator technique, where cell sheets harvested from temperature-responsive culture dishes are stacked into a multilayered cell sheet. By optimizing the stacking conditions and cell seeding conditions, the apparatus was eventually capable of reproducibly making five-layer human skeletal muscle myoblast (HSMM) sheets with a thickness of approximately 70-80 μm within 100 min. Histological sections and confocal topographies of the five-layer HSMM sheets revealed a stratified structure with no delamination. In cell counts using trypsinization, the live cell numbers in one-, three- and five-layer HSMM sheets were equivalent to the seeded cell numbers at 1 h after the stacking processes; however, after subsequent 5-day static cultures, the live cell numbers of the five-layered HSMM sheets decreased slightly, while one- and three-layer HSMM sheets maintained their live cell numbers. This suggests that there are thickness limitations in maintaining tissues in a static culture. We concluded that by combining our cell sheet manipulator technique and industrial robot technology we can create a secure, cost-effective manufacturing system able to produce tissue-engineered products from cell sheets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Peritoneal dialysis-related peritonitis due to Halomonas hamiltonii

    PubMed Central

    Yeo, Se Hwan; Kwak, Jae Hoon; Kim, Yeo Un; Lee, Jin Suk; Kim, Hyo Jin; Park, Kyoung Hwa; Lee, Jung Sook; Ha, Gyoung Yim; Lee, Jeong Ho; Lee, Jun Yeop; Yoo, Kyung Don

    2016-01-01

    Abstract Introduction: Halomonas hamiltonii is a Gram-negative, halophilic, motile, and nonspore-forming rod bacterium. Although most Halomonas sp. are commonly found in saline environments, it has rarely been implicated as a cause of human infection. Herein, the authors present a case report of continuous ambulatory peritoneal dialysis (CAPD)-related peritonitis attributed to H hamiltonii. Case presentation: An 82-year-old male patient who had been receiving CAPD therapy presented to an emergency department with complaints of abdominal pain and cloudy dialysate that had persisted for 2 days. The peritoneal dialysate was compatible with CAPD peritonitis, with white blood cell count of peritoneal effluent of 810/mm3 and neutrophils predominated (60%). Two days after culture on blood agar medium, nonhemolytic pink mucoid colonies showed, with cells showing Gram-negative, nonspore-forming rods with a few longer and larger bacilli than usual were found. We also performed biochemical tests and found negative responses in K/K on the triple sugar iron test and H2S and equivocal (very weak) response in the motility test, but positive responses to catalase, oxidase, and urease tests. The partial sequence of the 16S rRNA gene of a bacterium detected by peritoneal fluid culture was utilized for a Basic Local Alignment Search Tool search, which revealed that the organism was H hamiltonii. Intraperitoneal antibiotics were administered for 21 days, and the patient was discharged without clinical problems. Conclusion: We present here the first case report of CAPD-related peritonitis caused by H hamiltonii, which was identified using molecular biological techniques. Although guidelines do not exist for the treatment of infections caused by this organism, conventional treatment for Gram-negative organisms could be effective. PMID:27893682

  2. IL-6 promotes epithelial-to-mesenchymal transition of human peritoneal mesothelial cells possibly through the JAK2/STAT3 signaling pathway.

    PubMed

    Xiao, Jing; Gong, Yanan; Chen, Ying; Yu, Dahai; Wang, Xiaoyang; Zhang, Xiaoxue; Dou, Yanna; Liu, Dong; Cheng, Genyang; Lu, Shan; Yuan, Wenming; Li, Yansheng; Zhao, Zhanzheng

    2017-08-01

    Long-term peritoneal dialysis (PD) therapy results in functional and structural alteration of the peritoneal membrane, including epithelial-to-mesenchymal transition (EMT). Interleukin 6 (IL-6) is a local pleiotropic cytokine, hypothesized to play an important role in EMT. This study was designed to investigate the role of IL-6 in EMT and peritoneal membrane dysfunction in long-term PD patients by assessing the level of IL-6 in dialysate and exploring the relationship between IL-6, the related signaling pathway JAK2/STAT3, and EMT, using in vitro cellular and molecular techniques. Plasma and dialysate levels of IL-6 were significantly higher in PD ultrafiltration failure patients compared with patients without ultrafiltration failure and were negatively correlated with measures of PD adequacy. In vitro IL-6 treatment changed human peritoneal mesothelial cell phenotype from a typical cobblestone-like to a fibroblast-like appearance and increased cell viability. IL-6 treatment increased α-smooth muscle actin and vascular endothelial growth factor expression but decreased E-cadherin expression. IL-6 treatment activated the JAK/STAT signaling pathway. However, the JAK2/STAT3 inhibitor WP1066 prevented IL-6-induced activation of the JAK2/STAT3 pathway and EMT. We conclude that IL-6 promotes the EMT process, possibly by activating the JAK2/STAT3 signaling pathway. IL-6 may serve as a novel therapeutic target for preventing EMT, and preservation of the peritoneal membrane may arise from these studies. Copyright © 2017 the American Physiological Society.

  3. Adaptive tuning of a 2DOF controller for robust cell manipulation using IPMC actuators

    NASA Astrophysics Data System (ADS)

    McDaid, A. J.; Aw, K. C.; Haemmerle, E.; Shahinpoor, M.; Xie, S. Q.

    2011-12-01

    Rapid advancement in medicine and bioscience is causing demand for faster, more accurate and dexterous as well as safer and more reliable micro-manipulators capable of handling biological cells. Current micro-manipulation techniques commonly damage cell walls and membranes due to their stiffness and rigidity. Ionic polymer-metal composite (IPMC) actuators have inherent compliance and with their ability to operate well in fluid and cellular environments they present a unique solution for safe cell manipulation. The reason for the downfall of IPMCs is that their complex behaviour makes them hard to control precisely in unknown environments and in the presence of sizeable external disturbances. This paper presents a novel scheme for adaptively tuning IPMC actuators for precise and robust micro-manipulation of biological cells. A two-degree-of-freedom (2DOF) controller is developed to allow optimal performance for both disturbance rejection (DR) and set point (SP) tracking. These criteria are optimized using a proposed IFT algorithm which adaptively updates the controller parameters, with no model or prior knowledge of the operating conditions, to achieve a compliant manipulation system which can precisely track targets in the presence of large external disturbances, as will be encountered in real biological environments. Experiments are presented showing the performance optimization of an IPMC actuator in the presence of external mechanical disturbances as well as the optimization of the SP tracking. The IFT algorithm successfully tunes the DR and SP to an 85% and 69% improvement, respectively. Results are also presented for a one-degree-of-freedom (1DOF) controller tuned first for DR and then for SP, for a comparison with the 2DOF controller. Validation has been undertaken to verify that the 2DOF controller does indeed outperform both 1DOF controllers over a variety of operating conditions.

  4. Lentiviral Nef proteins manipulate T cells in a subset-specific manner.

    PubMed

    Yu, Hangxing; Khalid, Mohammad; Heigele, Anke; Schmökel, Jan; Usmani, Shariq M; van der Merwe, Johannes; Münch, Jan; Silvestri, Guido; Kirchhoff, Frank

    2015-02-01

    The role of the accessory viral Nef protein as a multifunctional manipulator of the host cell that is required for effective replication of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) in vivo is well established. It is unknown, however, whether Nef manipulates all or just specific subsets of CD4(+) T cells, which are the main targets of virus infection and differ substantially in their state of activation and importance for a functional immune system. Here, we analyzed the effect of Nef proteins differing in their T cell receptor (TCR)-CD3 downmodulation function in HIV-infected human lymphoid aggregate cultures and peripheral blood mononuclear cells. We found that Nef efficiently downmodulates TCR-CD3 in naive and memory CD4(+) T cells and protects the latter against apoptosis. In contrast, highly proliferative CD45RA(+) CD45RO(+) CD4(+) T cells were main producers of infectious virus but largely refractory to TCR-CD3 downmodulation. Such T cell subset-specific differences were also observed for Nef-mediated modulation of CD4 but not for enhancement of virion infectivity. Our results indicate that Nef predominantly modulates surface receptors on CD4(+) T cell subsets that are not already fully permissive for viral replication. As a consequence, Nef-mediated downmodulation of TCR-CD3, which distinguishes most primate lentiviruses from HIV type 1 (HIV-1) and its vpu-containing simian precursors, may promote a selective preservation of central memory CD4(+) T cells, which are critical for the maintenance of a functional immune system. The Nef proteins of human and simian immunodeficiency viruses manipulate infected CD4(+) T cells in multiple ways to promote viral replication and immune evasion in vivo. Here, we show that some effects of Nef are subset specific. Downmodulation of CD4 and TCR-CD3 is highly effective in central memory CD4(+) T cells, and the latter Nef function protects this T cell subset against apoptosis. In contrast

  5. Lentiviral Nef Proteins Manipulate T Cells in a Subset-Specific Manner

    PubMed Central

    Yu, Hangxing; Khalid, Mohammad; Heigele, Anke; Schmökel, Jan; M. Usmani, Shariq; van der Merwe, Johannes; Münch, Jan; Silvestri, Guido

    2014-01-01

    ABSTRACT The role of the accessory viral Nef protein as a multifunctional manipulator of the host cell that is required for effective replication of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) in vivo is well established. It is unknown, however, whether Nef manipulates all or just specific subsets of CD4+ T cells, which are the main targets of virus infection and differ substantially in their state of activation and importance for a functional immune system. Here, we analyzed the effect of Nef proteins differing in their T cell receptor (TCR)-CD3 downmodulation function in HIV-infected human lymphoid aggregate cultures and peripheral blood mononuclear cells. We found that Nef efficiently downmodulates TCR-CD3 in naive and memory CD4+ T cells and protects the latter against apoptosis. In contrast, highly proliferative CD45RA+ CD45RO+ CD4+ T cells were main producers of infectious virus but largely refractory to TCR-CD3 downmodulation. Such T cell subset-specific differences were also observed for Nef-mediated modulation of CD4 but not for enhancement of virion infectivity. Our results indicate that Nef predominantly modulates surface receptors on CD4+ T cell subsets that are not already fully permissive for viral replication. As a consequence, Nef-mediated downmodulation of TCR-CD3, which distinguishes most primate lentiviruses from HIV type 1 (HIV-1) and its vpu-containing simian precursors, may promote a selective preservation of central memory CD4+ T cells, which are critical for the maintenance of a functional immune system. IMPORTANCE The Nef proteins of human and simian immunodeficiency viruses manipulate infected CD4+ T cells in multiple ways to promote viral replication and immune evasion in vivo. Here, we show that some effects of Nef are subset specific. Downmodulation of CD4 and TCR-CD3 is highly effective in central memory CD4+ T cells, and the latter Nef function protects this T cell subset against apoptosis. In contrast

  6. Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection.

    PubMed

    Bucki, Robert; Niemirowicz, Katarzyna; Wnorowska, Urszula; Byfield, Fitzroy J; Piktel, Ewelina; Wątek, Marzena; Janmey, Paul A; Savage, Paul B

    2015-10-01

    Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Sodium-cromoglycate (Cromolyn) selectively increases the binding and phagocytosis of unsensitized target cells by rat peritoneal macrophages.

    PubMed

    Miklós, K; Tolnay, M; Medgyesi, G A

    1996-09-01

    The influence of sodium-cromoglycate (cromolyn) on the binding and ingestion of sheep erythrocytes (SRBC) by elicited rat peritoneal macrophages (M phi) was studied using unsensitized SRBC. SRBC sensitized by homologous IgG or by IgM and complement as target cells. Preincubation of M phi with the drug (1 nM/1-2 mM/1) markedly enhanced both binding and ingestion of uncoated SRBC. The IgG-related increment in binding and phagocytosis was not significantly influenced by the drug. When target cells were coated by IgM and complement cromolyn pretreatment was ineffective. Preincubation of M phi by bovine brain gangliosides (BBG) diminished the cromolyn-induced enhancement of target cell binding and phagocytosis. When SRBC were pretreated by BBG, an increase of binding and phagocytosis was observed. These data suggest that cromoglycate may enhance the capacity of M phi to bind erythrocytes via ganglioside structures. Coating SRBC by complement components appears to interfere with binding of erythrocytes to M phi ganglioside receptors.

  8. Morphological and biochemical changes during formocresol induced cell death in murine peritoneal macrophages: apoptotic and necrotic features.

    PubMed

    Cardoso, María Lorena; Todaro, Juan Santiago; Aguirre, María Victoria; Juaristi, Julián Antonio; Brandan, Nora Cristina

    2010-10-01

    The present study was conducted to investigate the role of Formocresol (FC)-induced apoptosis and necrotic cell death in murine peritoneal macrophages (pMø). Macrophages were cultured with 1:100 FC for 2 to 24 h. The viability (trypan blue assay), cell morphology (scanning electronic microscope), and apoptotic and necrotic indexes (light and fluorescent microscopy) were determined at different scheduled times. Simultaneously, the expressions of proteins related to stress, survival, and cell death were measured by western blotting. FC-exposed macrophages exhibited maximal apoptosis from 2 to 6 h, coincident with Bax overexpression (P < 0.001). Additionally, Bcl-x(L) showed maximal expression between 12 and 24 h suggesting its survival effect in pMø. The lowest pMø viability and the increment of the necrotic rate from 4 to 12 h were observed in accordance to Fas and Hsp60 overexpressions. In summary, all the experimental data suggest that two different pathways emerge in pMø exposed to FC, one leading Bax-dependent apoptosis (2-6 h) and the other one favoring necrosis (4-18 h), related to Fas-receptor and Hsp60 stress signal.

  9. Bactericidal Activity of Ceragenin CSA-13 in Cell Culture and in an Animal Model of Peritoneal Infection

    PubMed Central

    Niemirowicz, Katarzyna; Wnorowska, Urszula; Byfield, Fitzroy J.; Piktel, Ewelina; Wątek, Marzena; Janmey, Paul A.; Savage, Paul B.

    2015-01-01

    Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13–IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13–IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13–IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds. PMID:26248361

  10. Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Nam, Seong-Won; Hwang, Hyundoo; Park, Sungsu; Park, Je-Kyun

    2008-10-01

    This paper describes a grayscale optoelectronic tweezers (OET) which allows adjustment of the electric field strength at each position of OET. A grayscale light image was used to pattern vertical electric field strength on an OET. As an electric field depends on the brightness at each point, the brighter light patterns generate the stronger electric field in the OET. Its feasibility for application to cell manipulation was demonstrated by aligning highly motile protozoan cells in vertical direction. Depending on the brightness of each pixel, the behaviors of aligned cells varied due to the different electric field strength to each cell.

  11. Dual stimuli-responsive smart beads that allow "on-off" manipulation of cancer cells.

    PubMed

    Kim, Young-Jin; Kim, Soo Hyeon; Fujii, Teruo; Matsunaga, Yukiko T

    2016-06-24

    Temperature- and electric field-responsive polymer-conjugated polystyrene beads, termed smart beads, are designed to isolate cancer cells. In smart beads, the reversible "on-off" antigen-antibody reaction and dielectrophoresis force on an electrode are accomplished to realize "on-off" remote manipulation of smart beads and cancer cells. Both the zeta-potential and the hydrodynamic diameter of the smart beads are sensitive to temperature, allowing "on-off" reversible capture and release of cancer cells. Cancer cell-captured smart beads are then localized on electrodes by applying an electrical signal.

  12. Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP diagnosed cats

    PubMed Central

    2013-01-01

    Background Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood. Methods RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79–1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic’s analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal’s Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats. Results Based on Kal’s Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data. Conclusion The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed. PMID:24209771

  13. Cutaneous basophil responses and immune resistance of guinea pigs to ticks: passive transfer with peritoneal exudate cells or serum.

    PubMed

    Brown, S J; Askenase, P W

    1981-11-01

    Resistance to infestation by larval Amblyomma americanum or Rhipicephalus sanguineus ticks was transferred to naive guinea pigs with peritoneal exudate cells (PEC) or serum from donors immunized by prior infestation with homologous tick larvae. In the A. americanum system, PEC transfer induced 87% tick rejection, which was similar to the level of resistance in actively sensitized hosts. In the R. sanguineus system, PEC conferred resistance (39% rejection) that was weaker than in actively sensitized hosts (57% rejection). In both systems, immune serum conferred significant but weaker resistance (20 to 29% rejection). In actively sensitized hosts, resistance to each tick species was specific, but there was considerable cross-reactive resistance. Basophils dominated the 24-hr challenge feeding sites of A. americanum ticks in actively sensitized hosts (69% of the infiltrate) and recipients of sensitized PEC (69%). Mononuclear cells were dominant (69% of the infiltrate) in the challenged tissues of immune serum recipients that had a significant but weaker cutaneous basophil response (24%). Mononuclear cells also dominated (58% of the infiltrate) the 24-hr challenge feeding sites of R. sanguineus ticks in actively sensitized hosts, but there were also 24% basophils. These studies demonstrate that immune resistance to tick is dependent on sensitized lymphoid cells or serum components, and that sensitized cells or serum can transfer a cutaneous basophil response that is associated with immune resistance. Rejection of ticks is usually associated with large basophil infiltrates, but sometimes mononuclear cells are dominant. Thus, immune resistance of guinea pigs to ticks is a heterogeneous response in which immune cells and serum probably act to recruit diverse effector leukocytes to mediate rejection that is specific but significantly cross-reactive.

  14. Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells

    NASA Astrophysics Data System (ADS)

    Farré, Arnau; López-Quesada, Carol; Andilla, Jordi; Martín-Badosa, Estela; Montes-Usategui, Mario

    2010-08-01

    Optical tweezer experiments have partially unveiled the mechanical properties of processive motor proteins while driving polystyrene or silica microbeads in vitro. However, the set of forces underlying the more complex transport mechanisms in living samples remains poorly understood. Several studies have shown that optical tweezers are capable of trapping vesicles and organelles in the cytoplasm of living cells, which can be used as handles to mechanically interact with engaged (active) motors, or other components regulating transport. This may ultimately enable the exploration of the mechanics of this trafficking mechanism in vivo. These cell manipulation experiments have been carried out using different strategies to achieve dynamic beam steering capable of trapping these subcellular structures. We report here the first trapping and manipulation, to our knowledge, of such small motor-propelled cargos in living cells using holographic technology.

  15. Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites.

    PubMed

    Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2013-02-01

    A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Permeabilization and cell surgery using femtosecond laser pulses: an emerging tool for cellular manipulation

    NASA Astrophysics Data System (ADS)

    Kohli, Vikram; Acker, Jason P.; Elezzabi, Abdulhakem Y.

    2006-02-01

    Non-invasive manipulation of live cells is important for cell-based therapeutics. Herein, we report on the application of femtosecond laser pulses for cellular manipulation, and the generation of optical pores for cytoplasmic delivery of non-reducing cryoprotectants. Under precise laser focusing, we demonstrate membrane surgery on live mammalian cells, and ablation of focal adhesions adjoining fibroblast cells. In both studies, the morphology of the cell post-laser treatment was maintained with no visible collapse or disassociation. When mammalian cells were suspended in a hyperosmotic cryoprotectant solution, focused femtosecond laser pulses were used to transiently permeabilize live cells for sucrose uptake. To verify the cytoplasmic uptake, the volumetric response of cells in 0.2, 0.3, 0.4, and 0.5 M cryoprotective sucrose was measured using video microscopy. From membrane integrity assays, we determined that optimal cell survival of 91.5 +/- 8% is achieved using 0.2 M sucrose, with a decline in survival at higher concentrations. Using diffusion analysis for a porous membrane, the intracellular accumulation of cryoprotective sucrose was theoretically determined. At a diffusion length of 10 um, > 70% of the extracellular osmolarity was estimated to be intracellularly delivered following closure of the transient pore. We anticipate that our study will have important applications for biopresevation, and profound implications for surgery and cell-isolation.

  17. [Peritonitis in pediatric patients receiving peritoneal dialysis].

    PubMed

    Jellouli, Manel; Ferjani, Meriem; Abidi, Kamel; Hammi, Yosra; Boutiba, Ilhem; Naija, Ouns; Zarrouk, Chokri; Ben Abdallah, Taieb; Gargah, Tahar

    2015-12-01

    Peritonitis on catheter of dialysis represents the most frequent complication of the peritoneal dialysis (PD) in the pediatric population. It remains a significant cause of morbidity and mortality. In this study, we investigated the risk factors for peritonitis in children. In this study, we retrospectively collected the records of 85 patients who were treated with PD within the past ten years in the service of pediatrics of the University Hospital Charles-Nicolle of Tunis. Peritonitis rate was 0.75 episode per patient-year. Notably, peritonitis caused by Gram-positive organisms were more common. Analysis of infection risk revealed three significant independent factors: the poor weight (P=0.0045), the non-automated PD (P=0.02) and the short delay from catheter insertion to starting PD (P=0.02). The early onset peritonitis was significantly associated with frequent peritonitis episodes (P=0.0008). The mean duration between the first and second episode of peritonitis was significantly shorter than between PD commencement and the first episode of peritonitis. We revealed a significant association between Gram-negative peritonitis and the presence of ureterostomy (0.018) and between Gram-positive peritonitis and the presence of exit-site and tunnel infections (0.02). Transition to permanent hemodialysis was needed in many children but no death occurred in patients with peritonitis. Considering the important incidence of peritonitis in our patients, it is imperative to establish a targeted primary prevention. Nutritional care must be provided to children to avoid poor weight. The automated dialysis has to be the modality of choice. Copyright © 2015 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  18. Effects of intermittent pressure imitating rolling manipulation on calcium ion homeostasis in human skeletal muscle cells.

    PubMed

    Zhang, Hong; Liu, Howe; Lin, Qing; Zhang, Guohui; Mason, David C

    2016-08-26

    Homeostasis imbalance of intracellular Ca(2+) is one of the key pathophysiological factors in skeletal muscle injuries. Such imbalance can cause significant change in the metabolism of Ca(2+)-related biomarkers in skeletal muscle, such as superoxide dismutase (SOD), malondialdehyde (MDA) and creatine kinase (CK). Measurements of these biomarkers can be used to evaluate the degree of damage to human skeletal muscle cells (HSKMCs) injury. Rolling manipulation is the most popular myofascial release technique in Traditional Chinese Medicine. The mechanism of how this technique works in ameliorating muscle injury is unknown. This study aimed to investigate the possible Ca(2+) mediated effects of intermittent pressure imitating rolling manipulation (IPIRM) of Traditional Chinese Medicine in the injured HSKMCs. The normal HSKMCs was used as control normal group (CNG), while the injured HSKMCs were further divided into five different groups: control injured group (CIG), Rolling manipulation group (RMG), Rolling manipulation-Verapamil group (RMVG), static pressure group (SPG) and static pressure-Verapamil group (SPVG). RMG and RMVG cells were cyclically exposed to 9.5-12.5 N/cm(2) of IPIRM at a frequency of 1.0 Hz for 10 min. SPG and SPVG were loaded to a continuous pressure of 12.5 N/cm(2) for 10 min. Verapamil, a calcium antagonist, was added into the culture mediums of both RMVG and SPVG groups to block the influx of calcium ion. Compared with the CNG (normal cells), SOD activity was remarkably decreased while both MDA content and CK activity were significantly increased in the CIG (injured cells). When the injured cells were treated with the intermittent rolling manipulation pressure (RMG), the SOD activity was significantly increased and MDA content and CK activity were remarkably decreased. These effects were suppressed by adding the calcium antagonist Verapamil into the culture medium in RMVG. On the other hand, exposure to static pressure in SPG and SPVG

  19. Fine structure of carcinosarcoma cells and peritoneal macrophages activated by photodynamic therapy during their interaction in vivo

    NASA Astrophysics Data System (ADS)

    Dima, Vasile F.; Ionescu, Mircea D.; Vasiliu, Virgil V.; Coman, Niculina; Dima, Stefan V.

    1996-12-01

    The interaction of the photodynamic therapy activated macrophages (PDT-AM0) of the host and rat Walker-256 carcinosarcoma target cells (ascitic form) was investigated. The periotoneal macrophages were sensitized with different concentrations of Photofrin II (0.1 to 12 (mu) g/2.5 multiplied by 106 cells) and irradiated with He-Ne laser (632.8 nm; 10 mW) at different dose fluences varying between 1.5 and 15 kJ/m2. The degree of macrophage activation by PDT was estimated by means of the following parameters: (1) in vitro assay of cytotoxic and cytostatic activities and (2) observation at the electron microscopy. The results obtained indicate the following: (1) the highest rate of cytotoxic activity against Walker-256 (39.7%) and K562 (21.6%) cells was found in Photofrin II sensitized with 0.8 mg and exposure to He-Ne laser irradiation (3.0 kJ/m2): (2) the cytostatic activity of PDT-AM0 was higher against murine Walker-256 (54.7%) and lower on human K562 (28.1%) cells, in comparison with normal macrophages (NM0); (3) during interaction of PDT-AM0 in peritoneal cavity, the tumor cells were accompanied by strong changes in nuclear and cytoplasmic fine structure. Summing up, in photobioactivated macrophages by PDT some functional activities (cytotoxic, cytostatic and phagocytosis) were enhanced and induced ultrastructural changes in Walker-256 ascites carcinosarcoma cells by their interaction 'in vivo.'

  20. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality?

    PubMed Central

    Simoni, Y; Diana, J; Ghazarian, L; Beaudoin, L; Lehuen, A

    2013-01-01

    T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases. PMID:23199318

  1. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    NASA Astrophysics Data System (ADS)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna

    2017-03-01

    Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

  2. Aquaporin-1 in the peritoneal membrane: Implications for water transport across capillaries and peritoneal dialysis.

    PubMed

    Devuyst, Olivier; Ni, Jie

    2006-08-01

    Peritoneal dialysis (PD) is an established mode of renal replacement therapy, based on the exchange of fluid and solutes between blood in peritoneal capillaries and a dialysate that has been introduced in the peritoneal cavity. The dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Computer simulations predicted that the membrane contains ultrasmall pores (radius < 3 A) responsible for the transport of solute-free water across the capillary endothelium during crystalloid osmosis. The distribution of the water channel aquaporin-1 (AQP1), as well as its molecular structure ensuring an exquisite selectivity for water perfectly fit with the characteristics of the ultrasmall pore. Treatment with corticosteroids induces the expression of AQP1 in peritoneal capillaries and increases water permeability and ultrafiltration in rats, without affecting the osmotic gradient and the permeability for small solutes. Studies in knockout mice provided further evidence that osmotically-driven water transport across the peritoneal membrane is mediated by AQP1. AQP1 and endothelial NO synthase (eNOS) show a distinct regulation within the endothelium lining peritoneal capillaries. In acute peritonitis, the upregulation of eNOS and increased release of NO dissipate the osmotic gradient and result in ultrafiltration failure, despite the unchanged expression of AQP1. These data illustrate the potential of the peritoneal membrane to investigate the role and regulation of AQP1 in the endothelium. They also emphasize the critical role of AQP1 during peritoneal dialysis and suggest that manipulating AQP1 expression may be used to increase water permeability across the peritoneal membrane.

  3. B-cell activation in cats with feline infectious peritonitis (FIP) by FIP-virus-induced B-cell differentiation/survival factors.

    PubMed

    Takano, Tomomi; Azuma, Natsuko; Hashida, Yoshikiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2009-01-01

    It has been suggested that antibody overproduction plays a role in the pathogenesis of feline infectious peritonitis (FIP). However, only a few studies on the B-cell activation mechanism after FIP virus (FIPV) infection have been reported. The present study shows that: (1) the ratio of peripheral blood sIg(+) CD21(-) B-cells was higher in cats with FIP than in SPF cats, (2) the albumin-to-globulin ratio has negative correlation with the ratio of peripheral blood sIg(+) CD21(-) B-cell, (3) cells strongly expressing mRNA of the plasma cell master gene, B-lymphocyte-induced maturation protein 1 (Blimp-1), were increased in peripheral blood in cats with FIP, (4) mRNA expression of B-cell differentiation/survival factors, IL-6, CD40 ligand, and B-cell-activating factor belonging to the tumor necrosis factor family (BAFF), was enhanced in macrophages in cats with FIP, and (5) mRNAs of these B-cell differentiation/survival factors were overexpressed in antibody-dependent enhancement (ADE)-induced macrophages. These data suggest that virus-infected macrophages overproduce B-cell differentiation/survival factors, and these factors act on B-cells and promote B-cell differentiation into plasma cells in FIPV-infected cats.

  4. Hepatic cells' mitotic and peritoneal macrophage phagocytic activities during Trypanosoma musculi infection in zinc-deficient mice.

    PubMed Central

    Humphrey, P. A.; Ashraf, M.; Lee, C. M.

    1997-01-01

    The effects of zinc deficiency on hepatic cell mitotic and peritoneal macrophage phagocytic activities were examined in mice infected with Trypanosoma musculi or immunized with parasitic products. On a full-complement or pair-fed diet, infected and homogenate-inoculated mice showed mitotic activity gains of 7.9% to 80.3% and 6.5% to 99.0%, respectively. Infected and homogenate-inoculated mice on a zinc-deficient diet showed 21.8% to 95.7% and 17.2% to 65.2%, respectively, more dividing liver cells compared with controls. In comparison to controls, macrophages isolated from infected and homogenate-immunized mice on full-complement or pair-fed diets had phagocytized 13.4% to 31.4% more latex particles from day 50 to 80. In the zinc-deficient group, macrophages isolated from infected mice had significant numbers of phagocytized latex particles (1.8% to 38.5%) from day 20 to day 80 compared with controls. The homogenate-immunized mice also had increased numbers (18.6 to 30.8%) of phagocytized latex particles. PMID:9145631

  5. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board.

    PubMed

    Park, Kidong; Suk, Ho-Jun; Akin, Demir; Bashir, Rashid

    2009-08-07

    Particle manipulation based on dielectrophoresis (DEP) can be a versatile and useful tool in lab-on-chip systems for a wide range of cell patterning and tissue engineering applications. Even though there are extensive reports on the use of DEP for cell patterning applications, the development of approaches that make DEP even more affordable and common place is still desirable. In this study, we present the use of interdigitated electrodes on a printed circuit board (PCB) that can be reused to manipulate and position HeLa cells and polystyrene particles over 100 microm thick glass cover slips using DEP. An open-well or a closed microfluidic channel, both made of PDMS, was placed on the glass coverslip, which was then placed directly over the PCB. An AC voltage was applied to the electrodes on the PCB to induce DEP on the particles through the thin glass coverslip. The HeLa cells patterned with DEP were subsequently grown to confirm the lack of any adverse affects from the electric fields. This alternative and reusable platform for DEP particle manipulation can provide a convenient and rapid method for prototyping a DEP-based lab-on-chip system, cost-sensitive lab-on-chip applications, and a wide range of tissue engineering applications.

  6. Changes in numbers and types of mast cell colony-forming cells in the peritoneal cavity of mice after injection of distilled water: evidence that mast cells suppress differentiation of bone marrow-derived precursors

    SciTech Connect

    Kanakura, Y.; Kuriu, A.; Waki, N.; Nakano, T.; Asai, H.; Yonezawa, T.; Kitamura, Y.

    1988-03-01

    Two different types of cells in the peritoneal cavity of mice produce mast cell colonies in methylcellulose. Large mast cell colonies are produced by bone marrow-derived precursors resembling lymphoid cells by light microscopy (L-CFU-Mast), whereas medium and small mast cell colonies are produced by morphologically identifiable mast cells (M-CFU-Mast and S-CFU-Mast, respectively). In the present study we eradicated peritoneal mast cells by intraperitoneal (IP) injection of distilled water. The regeneration process was investigated to clarify the relationship between L-CFU-Mast, M-CFU-Mast, and S-CFU-Mast. After injection of distilled water, M-CFU-Mast and S-CFU-Mast disappeared, but L-CFU-Mast increased, and then M-CFU-Mast and S-CFU-Mast appeared, suggesting the presence of a hierarchic relationship. When purified peritoneal mast cells were injected two days after the water injection, the L-CFU-Mast did not increase. In the peritoneal cavity of WBB6F1-+/+ mice that had been lethally irradiated and rescued by bone marrow cells of C57BL/6-bgJ/bgJ (beige, Chediak-Higashi syndrome) mice, L-CFU-Mast were of bgJ/bgJ type, but M-CFU-Mast and S-CFU-Mast were of +/+ type. The injection of distilled water to the radiation chimeras resulted in the development of bgJ/bgJ-type M-CFU-Mast and then S-CFU-Mast. The presence of mast cells appeared to suppress the recruitment of L-CFU-Mast from the bloodstream and to inhibit the differentiation of L-CFU-Mast to M-CFU-Mast.

  7. Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells.

    PubMed

    Solís-López, A; Kriebs, U; Marx, A; Mannebach, S; Liedtke, W B; Caterina, M J; Freichel, M; Tsvilovskyy, V V

    2017-01-01

    The activation of mast cells (MC) is part of the innate and adaptive immune responses and depends on Ca2+ entry across the plasma membrane, leading to the release of preformed inflammatory mediators by degranulation or by de novo synthesis. The calcium conducting channels of the TRPV family, known by their thermo and osmotic sensitivity, have been proposed to be involved in the MC activation in murine, rat, and human mast cell models. So far, immortalized mast cell lines and nonspecific TRPV blockers have been employed to characterize the role of TRPV channels in MC. The aim of this work was to elucidate the physiological role of TRPV channels by using primary peritoneal mast cells (PMCs), a model of connective tissue type mast cells. Our RT-PCR and NanoString analysis identified the expression of TRPV1, TRPV2, and TRPV4 channels in PMCs. For determination of the functional role of the expressed TRPV channels we performed measurements of intracellular free Ca2+ concentrations and beta-hexosaminidase release in PMCs obtained from wild type and mice deficient for corresponding TRPV1, TRPV2 and TRPV4 in response to various receptor-mediated and physical stimuli. Furthermore, substances known as activators of corresponding TRPV-channels were also tested using these assays. Our results demonstrate that TRPV1, TRPV2, and TRPV4 do not participate in activation pathways triggered by activation of the high-affinity receptors for IgE (FcεRI), Mrgprb2 receptor, or Endothelin-1 receptor nor by heat or osmotic stimulation in mouse PMCs.

  8. Analysis of TRPV channel activation by stimulation of FCεRI and MRGPR receptors in mouse peritoneal mast cells

    PubMed Central

    Solís-López, A.; Kriebs, U.; Marx, A.; Mannebach, S.; Liedtke, W. B.; Caterina, M. J.; Freichel, M.; Tsvilovskyy, V. V.

    2017-01-01

    The activation of mast cells (MC) is part of the innate and adaptive immune responses and depends on Ca2+ entry across the plasma membrane, leading to the release of preformed inflammatory mediators by degranulation or by de novo synthesis. The calcium conducting channels of the TRPV family, known by their thermo and osmotic sensitivity, have been proposed to be involved in the MC activation in murine, rat, and human mast cell models. So far, immortalized mast cell lines and nonspecific TRPV blockers have been employed to characterize the role of TRPV channels in MC. The aim of this work was to elucidate the physiological role of TRPV channels by using primary peritoneal mast cells (PMCs), a model of connective tissue type mast cells. Our RT-PCR and NanoString analysis identified the expression of TRPV1, TRPV2, and TRPV4 channels in PMCs. For determination of the functional role of the expressed TRPV channels we performed measurements of intracellular free Ca2+ concentrations and beta-hexosaminidase release in PMCs obtained from wild type and mice deficient for corresponding TRPV1, TRPV2 and TRPV4 in response to various receptor-mediated and physical stimuli. Furthermore, substances known as activators of corresponding TRPV-channels were also tested using these assays. Our results demonstrate that TRPV1, TRPV2, and TRPV4 do not participate in activation pathways triggered by activation of the high-affinity receptors for IgE (FcεRI), Mrgprb2 receptor, or Endothelin-1 receptor nor by heat or osmotic stimulation in mouse PMCs. PMID:28158279

  9. Polymeric optical fiber tweezers as a tool for single cell micro manipulation and sensing

    NASA Astrophysics Data System (ADS)

    Rodrigues Ribeiro, R. S.; Soppera, O.; Guerreiro, A.; Jorge, P. A...

    2015-09-01

    In this paper a new type of polymeric fiber optic tweezers for single cell manipulation is reported. The optical trapping of a yeast cell using a polymeric micro lens fabricated by guided photo polymerization at the fiber tip is demonstrated. The 2D trapping of the yeast cells is analyzed and maximum optical forces on the pN range are calculated. The experimental results are supported by computational simulations using a FDTD method. Moreover, new insights on the potential for simultaneous sensing and optical trapping, are presented.

  10. Mobile magnetic traps for manipulation of magnetically labeled and unlabeled cells

    NASA Astrophysics Data System (ADS)

    Henighan, Thomas; Chen, Aaron; Vieira, Greg; Hauser, Adam; Yang, Fengyuan; Chalmers, Jeffrey; Sooryakumar, Ratnasingham

    2010-03-01

    Magnetic forces are frequently used for the manipulation of biological cells because magnetic fields are typically easier to use and have fewer effects on the cells than optical or electrical fields. While magnetic forces are typically used for bulk separation, it is considerably harder to magnetically manipulate a single cell, or a small number of cells. In this study we employ reprogrammable magnetization profiles created through lithographically patterned ferromagnetic disks as a template for producing highly localized trapping fields. The resulting magnetic field gradients can be modulated by an external magnetic field enabling directed forces to be applied on, (a) single, or a small number of immunomagnetically labeled biological cells and, (b) magnetic microspheres that act as magnetically actuated force transmitting probes to navigate fluid-borne unlabeled cells with micrometer precision. We demonstrate the mobile traps by remotely transporting and arranging, with programmed routines (a la joystick), T-lymphocyte and leukemia cells on the platform. Without producing damage, the forces transport the cells with speeds up to 20 microns/sec across a silicon platform to predetermined sites.

  11. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE PAGES

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; ...

    2017-03-13

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  12. Methods for human embryonic stem cells derived cardiomyocytes cultivation, genetic manipulation, and transplantation.

    PubMed

    Arbel, Gil; Caspi, Oren; Huber, Irit; Gepstein, Amira; Weiler-Sagie, Michal; Gepstein, Lior

    2010-01-01

    A decade has passed since the initial derivation of human embryonic stem cells (hESC). The ensuing years have witnessed a significant progress in the development of methodologies allowing cell cultivation, differentiation, genetic manipulation, and in vivo transplantation. Specifically, the potential to derive human cardiomyocytes from the hESC lines, which can be used for several basic and applied cardiovascular research areas including in the emerging field of cardiac regenerative medicine, attracted significant attention from the scientific community. This resulted in the development of protocols for the cultivation of hESC and their successful differentiation toward the cardiomyocyte lineage fate. In this chapter, we will describe in detail methods related to the cultivation, genetic manipulation, selection, and in vivo transplantation of hESC-derived cardiomyocytes.

  13. Specification for movable manipulator system for use in radiochemical engineering cells

    SciTech Connect

    Dixson, G.E.

    1998-07-13

    This specification was prepared to identify requirements for a movable manipulator for use in B-Ccl 1 and the REC Airlock at 324 Building. This manipulator could also be used in other hot cells at the 324 Building. This work involves retrieval, inspection, reduction and decontamination of material on the Airlock and Cell floors, in the pipe trench and on the walls. B and W Hanford Company (BWHC) recognizes that not all of the requirements are compatible and some may need to be changed, subject to agreement between the parties involved. BWHC also recognizes that in order to perform the tasks described two or more different machines with significantly different layout may be necessary. These requirements are the starting point for any proposal.

  14. Human Peritoneal Mesothelial Cell Death Induced by High-Glucose Hypertonic Solution Involves Ca2+ and Na+ Ions and Oxidative Stress with the Participation of PKC/NOX2 and PI3K/Akt Pathways

    PubMed Central

    Simon, Felipe; Tapia, Pablo; Armisen, Ricardo; Echeverria, Cesar; Gatica, Sebastian; Vallejos, Alejandro; Pacheco, Alejandro; Sanhueza, Maria E.; Alvo, Miriam; Segovia, Erico

    2017-01-01

    Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis. PMID:28659813

  15. Novel Endothelial Cell-Specific AQP1 Knockout Mice Confirm the Crucial Role of Endothelial AQP1 in Ultrafiltration during Peritoneal Dialysis.

    PubMed

    Zhang, Wei; Freichel, Marc; van der Hoeven, Frank; Nawroth, Peter Paul; Katus, Hugo; Kälble, Florian; Zitron, Edgar; Schwenger, Vedat

    2016-01-01

    The water channel aquaporin-1 (AQP1) mediates about 50% ultrafiltration during a 2-hour hypertonic dwell in global AQP1 knockout (AQP1-/-) mice. Although AQP1 is widely expressed in various cell types including mesothelial cells, the ultrafiltration has been assumed to be mediated via endothelial AQP1 of the peritoneum. The partial embryonic lethality and reduced body weight in AQP1-/- mice may reflect potential confounding phenotypic effects evoked by ubiquitous AQP1 deletion, which may interfere with functional analysis of endothelial AQP1. Using a Cre/loxP approach, we generated and characterised endothelial cell- and time-specific AQP1 knockout (AQP1fl/fl; Cdh5-Cre+) mice. Compared to controls, AQP1fl/fl; Cdh5-Cre+ mice showed no difference in an initial clinical and biological analysis at baseline, including body weight and survival. During a 1-hour 3.86% mini-peritoneal equilibration test (mini-PET), AQP1fl/fl; Cdh5-Cre+ mice exhibited strongly decreased indices for AQP1-related transcellular water transport (43.0% in net ultrafiltration, 93.0% in sodium sieving and 57.9% in free water transport) compared to controls. The transport rates for small solutes of urea and glucose were not significantly altered. Our data provide the first direct experimental evidence for the functional relevance of endothelial AQP1 to the fluid transport in peritoneal dialysis and thereby further validate essential predictions of the three-pore model of peritoneal transport.

  16. [A case of peritonitis carcinomatosa from goblet cell carcinoid of the appendix treated by intraperitoneal paclitaxel and systemic S-1 chemotherapy].

    PubMed

    Nakamura, Shingen; Kimura, Shigeaki; Kashima, Masahiro; Shichijo, Kana; Yoshida, Sumiko; Harada, Eiji; Matsushita, Takaya; Oshima, Yasushi; Tamaki, Yasutami; Horiuchi, Noriaki; Takeichi, Toshiaki; Fujimoto, Hiroshi; Masuda, Kazuhiko; Iwasaka, Naohito; Shinomiya, Sadao

    2008-12-01

    Goblet cell carcinoid of the appendix is a rare neoplasm and clinically tends to take a malignant course. Most cases are young and early stage, and the surgical strategy is available. But appropriate chemotherapy for inoperable cases with peritoneal dissemination is not established. A 77-year-old woman with a past history of appendectomy was admitted to our hospital complaining of abdominal fullness. Abdominal computed tomography showed massive ascites and slight contrast enhancement of appendix. A tumor was found by colonoscopic examination at the orifice of vermiform and was diagnosed pathologically as goblet cell carcinoid of the appendix. Laparoscopy showed multiple peritoneal dissemination. We performed intraperitoneal paclitaxel(PTX)administration at 70 mg/m(2) week without any resection of the tumor. Ascites were reduced immediately, but drug-induced interstitial pneumonia occurred due to PTX. After steroid therapy, we switched to systemic S-1 therapy. For about one year, her tumor was controlled but became worse thirteen months after diagnosis and died. It is thought that intraabdominal paclitaxel administration and systemic S-1 therapy can be one of appropriate forms of chemotherapy for inoperable peritoneal carcinomatosis from goblet cell carcinoid of appendix.

  17. Inflammation and the Peritoneal Membrane: Causes and Impact on Structure and Function during Peritoneal Dialysis

    PubMed Central

    Baroni, Gilberto; Schuinski, Adriana; de Moraes, Thyago P.; Meyer, Fernando; Pecoits-Filho, Roberto

    2012-01-01

    Peritoneal dialysis therapy has increased in popularity since the end of the 1970s. This method provides a patient survival rate equivalent to hemodialysis and better preservation of residual renal function. However, technique failure by peritonitis, and ultrafiltration failure, which is a multifactorial complication that can affect up to 40% of patients after 3 years of therapy. Encapsulant peritoneal sclerosis is an extreme and potentially fatal manifestation. Causes of inflammation in peritoneal dialysis range from traditional factors to those related to chronic kidney disease per se, as well as from the peritoneal dialysis treatment, including the peritoneal dialysis catheter, dialysis solution, and infectious peritonitis. Peritoneal inflammation generated causes significant structural alterations including: thickening and cubic transformation of mesothelial cells, fibrin deposition, fibrous capsule formation, perivascular bleeding, and interstitial fibrosis. Structural alterations of the peritoneal membrane described above result in clinical and functional changes. One of these clinical manifestations is ultrafiltration failure and can occur in up to 30% of patients on PD after five years of treatment. An understanding of the mechanisms involved in peritoneal inflammation is fundamental to improve patient survival and provide a better quality of life. PMID:22547910

  18. Investigation of biophysical mechanisms in gold nanoparticle mediated laser manipulation of cells using a multimodal holographic and fluorescence imaging setup.

    PubMed

    Kalies, Stefan; Antonopoulos, Georgios C; Rakoski, Mirko S; Heinemann, Dag; Schomaker, Markus; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.

  19. Investigation of Biophysical Mechanisms in Gold Nanoparticle Mediated Laser Manipulation of Cells Using a Multimodal Holographic and Fluorescence Imaging Setup

    PubMed Central

    Rakoski, Mirko S.; Heinemann, Dag; Schomaker, Markus; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy. PMID:25909631

  20. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: apoptosis and immune cell dysfunction.

    PubMed

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Zhao, Lixia; Yang, Yu

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and are often detected in the environment, wildlife, and humans, presenting potential threats to ecosystem and human health. PBDEs can cause neurotoxicity, hepatotoxicity, and endocrine disruption. However, data on PBDE immunotoxicity are limited, and the toxicity mechanisms remain largely unknown. Both immune cell death and dysfunction can modulate the responses of the immune system. This study examined the toxic effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) on the immune system by using peritoneal macrophages as the model. The macrophages were exposed to PBDEs, and cell death was determined through flow cytometry and immunochemical blot. The results showed that after 24h of exposure, BDE-47 (>5 μM) and BDE-209 (>20 μM) induced cell apoptosis, increased intracellular reactive oxygen species (ROS) formation and depleted glutathione. BDE-47 was more potent than BDE-209; the cytotoxic concentrations for BDE-47 and BDE-209 were determined to be 5 μM and 20 μM, respectively, during 24h of exposure. However, pretreatment with n-acetyl-l-cysteine (ROS scavenger) partially reversed the cytotoxic effects. Further gene expression analyses on Caspase-3,-8,-9, TNFR1, and Bax revealed that both intrinsic and extrinsic apoptotic pathways were activated. More importantly, non-cytotoxic concentrations BDE-47 (<2 μM) and BDE-209 (<10 μM) could impair macrophage accessory cell function in a concentration-dependent manner, but no effects were observed on phagocytic responses. These revealed effects of PBDEs on macrophages may shed light on the toxicity mechanisms of PBDEs and suggest the necessity of evaluating cellular functionality during the risk assessment of PBDE immunotoxicity.

  1. MicroRNA manipulation in colorectal cancer cells: from laboratory to clinical application.

    PubMed

    Aslam, Muhammad Imran; Patel, Maleene; Singh, Baljit; Jameson, John Stuart; Pringle, James Howard

    2012-06-20

    The development of Colorectal Cancer (CRC) follows a sequential progression from adenoma to the carcinoma. Therefore, opportunities exist to interfere with the natural course of disease development and progression. Dysregulation of microRNAs (miRNAs) in cancer cells indirectly results in higher levels of messenger RNA (mRNA) specific to tumour promoter genes or tumour suppressor genes. This narrative review aims to provide a comprehensive review of the literature about the manipulation of oncogenic or tumour suppressor miRNAs in colorectal cancer cells for the purpose of development of anticancer therapies. A literature search identified studies describing manipulation of miRNAs in colorectal cancer cells in vivo and in vitro. Studies were also included to provide an update on the role of miRNAs in CRC development, progression and diagnosis. Strategy based on restoration of silenced miRNAs or inhibition of over expressed miRNAs has opened a new area of research in cancer therapy. In this review article different techniques for miRNA manipulation are reviewed and their utility for colorectal cancer therapy has been discussed in detail. Restoration of normal equilibrium for cancer related miRNAs can result in inhibition of tumour growth, apoptosis, blocking of invasion, angiogenesis and metastasis. Furthermore, drug resistant cancer cells can be turned into drug sensitive cells on alteration of specific miRNAs in cancer cells. MiRNA modulation in cancer cells holds great potential to replace current anticancer therapies. However, further work is needed on tissue specific delivery systems and strategies to avoid side effects.

  2. Live-cell analysis of plant reproduction: live-cell imaging, optical manipulation, and advanced microscopy technologies.

    PubMed

    Kurihara, Daisuke; Hamamura, Yuki; Higashiyama, Tetsuya

    2013-05-01

    Sexual reproduction ensures propagation of species and enhances genetic diversity within populations. In flowering plants, sexual reproduction requires complicated and multi-step cell-to-cell communications among male and female cells. However, the confined nature of plant reproduction processes, which occur in the female reproductive organs and several cell layers of the pistil, limits our ability to observe these events in vivo. In this review, we discuss recent live-cell imaging in in vitro systems and the optical manipulation techniques that are used to capture the dynamic mechanisms representing molecular and cellular communications in sexual plant reproduction.

  3. [Induction of nitric oxide synthesis in mononuclear cells in culture using peritoneal fluid from women with endometriosis, in relation to the percentage of T lymphocytes and NK cells identified in an such environment].

    PubMed

    Henández-Guerrero, C; Vadilllo-Ortega, F; Beltrán-Montoya, J; Farina-Granja, M; Avila-Vergara, M A; Bustos-López, H; Arriaga-Pizano, L

    2001-01-01

    Even though endometriosis represents a reproductive health problem of the greatest importance due to the fact that it is one of the most common benign gynecological conditions, its aetiology is still unknown. The most accepted hypothesis is the one proposed by John Sampson, suggesting that the endometrial cells and tissues derived from menstrual flow during uterine scaling reach the peritoneum through the tubes by reversed flow and, under the specific conditions of the peritoneal microenvironment, they are able to implant and proliferate in an ectopic manner. Some evidence shows that the number and activation of macrophages are increased in the peritoneal medium of women with endometriosis. It is known that the activation of this cell group leads to a greater synthesis of diverse molecules associated with this condition. Evaluating the association between the nitric oxide (NO) synthesis induction capacity of the peritoneal fluid, the percentage of cooperative T lymphocytes and NK cells present in the peritoneal medium of women with different stages of endometriosis, as compared to fertile and healthy women. We also tried to find the correlation between the concentration of TNF-alpha identified in the peritoneal fluid of both groups with the NO synthesis induction that was carried out. Material and methods. The study group was formed by women with endometriosis (WEN) from the National Institute of Perinatology, and the control group was formed by patients attending the Family Planning Clinic of the Northeast Regional Unit (Culiacán, Sin.) (HFW). A NO synthesis induction was performed using lymphocytes stimulated with peritoneal fluid from WEN and HFW in order to measure the concentration of cooperative T lymphocytes and NK cells, the TNF-alpha of the peritoneal fluid was also measured. The NO synthesis induction capacity of peritoneal fluid observed with lymphocytes from a culture was greater than the one presented by healthy women. Nitric oxide was recently

  4. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  5. Whole exome sequencing of independent lung adenocarcinoma, lung squamous cell carcinoma, and malignant peritoneal mesothelioma: A case report.

    PubMed

    Vanni, Irene; Coco, Simona; Bonfiglio, Silvia; Cittaro, Davide; Genova, Carlo; Biello, Federica; Mora, Marco; Rossella, Valeria; Dal Bello, Maria Giovanna; Truini, Anna; Banelli, Barbara; Lazarevic, Dejan; Alama, Angela; Rijavec, Erika; Barletta, Giulia; Grossi, Francesco

    2016-11-01

    The presence of multiple primary tumors (MPT) in a single patient has been identified with an increasing frequency. A critical issue is to establish if the second tumor represents an independent primary cancer or a metastasis. Therefore, the assessment of MPT clonal origin might help understand the disease behavior and improve the management/prognosis of the patient.Herein, we report a 73-year-old male smoker who developed 2 primary lung cancers (adenocarcinoma and squamous cell carcinoma) and a malignant peritoneal mesothelioma (PM).Whole exome sequencing (WES) of the 3 tumors and of germline DNA was performed to determine the clonal origin and identify genetic cancer susceptibility.Both lung cancers were characterized by a high mutational rate with distinct mutational profiles and activation of tumor-specific pathways. Conversely, the PM harbored a relative low number of genetic variants and a novel mutation in the WT1 gene that might be involved in the carcinogenesis of nonasbestos-related mesothelioma. Finally, WES of the germinal DNA displayed several single nucleotide polymorphisms in DNA repair genes likely conferring higher cancer susceptibility.Overall, WES did not disclose any somatic genetic variant shared across the 3 tumors, suggesting their clonal independency; however, the carcinogenic effect of smoke combined with a deficiency in DNA repair genes and the patient advanced age might have been responsible for the MPT development. This case highlights the WES importance to define the clonal origin of MPT and susceptibility to cancer.

  6. Evidence for lipoxygenase activity in induction of histamine release from rat peritoneal mast cells by chelated iron.

    PubMed

    Magro, A M; Brai, M

    1983-05-01

    The ferric iron-desferrioxamine B chelate effectively induced histamine release from rat peritoneal mast cells. The release was maximum at exogenous ferric iron concentrations of 10-100 microM, and the chelate was non-toxic, as determined by trypan blue uptake. In many aspects the chelate-induced histamine release paralleled IgE-mediated release. The kinetics, temperature, and Ca2+ dependence resembled antigen-induced release. Phosphatidylserine potentiated the release in Wistar rats but not in fawn-hooded rats, a strain which does not respond to phosphatidylserine potentiation. The chelate-induced histamine release was blocked by the metabolic inhibitors dinitrophenol, potassium cyanide, 2-deoxyglucose, and antimycin A. Lipoxygenase inhibitors also effectively blocked release, indicating an involvement of fatty acid metabolism via the lipoxygenase pathway. Free radical scavengers and antioxidants antagonistic to lipid peroxidation also inhibited the chelate-induced histamine release. Overall the data raise the possibility that endogenous cellular iron may be involved in the generation of free radicals and lipid peroxidation and that these may be early events in IgE-mediated release of histamine.

  7. Evidence for lipoxygenase activity in induction of histamine release from rat peritoneal mast cells by chelated iron.

    PubMed Central

    Magro, A M; Brai, M

    1983-01-01

    The ferric iron-desferrioxamine B chelate effectively induced histamine release from rat peritoneal mast cells. The release was maximum at exogenous ferric iron concentrations of 10-100 microM, and the chelate was non-toxic, as determined by trypan blue uptake. In many aspects the chelate-induced histamine release paralleled IgE-mediated release. The kinetics, temperature, and Ca2+ dependence resembled antigen-induced release. Phosphatidylserine potentiated the release in Wistar rats but not in fawn-hooded rats, a strain which does not respond to phosphatidylserine potentiation. The chelate-induced histamine release was blocked by the metabolic inhibitors dinitrophenol, potassium cyanide, 2-deoxyglucose, and antimycin A. Lipoxygenase inhibitors also effectively blocked release, indicating an involvement of fatty acid metabolism via the lipoxygenase pathway. Free radical scavengers and antioxidants antagonistic to lipid peroxidation also inhibited the chelate-induced histamine release. Overall the data raise the possibility that endogenous cellular iron may be involved in the generation of free radicals and lipid peroxidation and that these may be early events in IgE-mediated release of histamine. PMID:6188682

  8. Activation of the Na+/K(+)-pump in rat peritoneal mast cells following histamine release: a possible role in cell recovery.

    PubMed Central

    Knudsen, T.; Ferjan, I.; Johansen, T.

    1993-01-01

    1. The activity of the Na+/K(+)-pump in rat peritoneal mast cells was measured at various time intervals after induction of cellular histamine release by compound 48/80 or by the antigen-antibody reaction. The Na+/K(+)-pump activity was assessed as the ouabain-sensitive potassium uptake of the cells using 86Rb+ as a tracer for potassium (K+(86Rb+)-uptake). 2. Stimulation of the cells with compound 48/80 induced a time and concentration dependent increase of the Na+/K(+)-pump activity. The pump activity was maximal 2 min after stimulation of the cells. Then, the activity gradually decreased and reached a level not significantly different from the controls after 2 h of incubation. 3. When the cells were stimulated by the antigen-antibody reaction, there was also a rapid (within 5 min) stimulation of the Na+/K(+)-pump. In contrast to the stimulation with compound 48/80, the pump activity returned to the control level after 60 min of incubation with antigen. 4. The ouabain-resistant potassium uptake of the cells was increased after stimulation of the cells, regardless of the secretagogue used. This probably reflects the increased surface area of the cells present after the histamine release. 5. On the basis of the present results, we suggest a role for the Na+/K(+)-pump in the recovery process of the mast cell following histamine release. PMID:7679025

  9. Peritoneal fluid analysis

    MedlinePlus

    ... at fluid that has built up in the space in the abdomen around the internal organs. This area is called the peritoneal space. ... sample of fluid is removed from the peritoneal space using a needle and syringe. Your health care ...

  10. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  11. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology.

    PubMed

    Nascimento, E; Silva, T; Oliva, A

    2007-05-01

    Nowadays numerous microfluidic systems are being developed to address a variety of clinical problems. Latest advances in microfluidic technology are promising to revolutionize the detection of pathogens in vivo through the development of integrated lab-on-chip devices. Such microfabricated systems will undertake all steps in sample analysis from collection and preparation to molecular detection. Micro total analysis systems are suitable candidates for point of care diagnostics due to small size, low cost production and enabled portability. The work here presented aimed the use of microfluidic platforms to identify and manipulate bovine red blood cells infected by the protozoan parasite Babesia bovis. A microfabricated device based on impedance spectroscopy was used for single cell discrimination and its sensitivity and applicability as a diagnostic method for bovine babesiosis was studied. Furthermore, manipulation and sorting of normal and infected red blood cells was performed on a dielectrophoresis based microfabricated cell cytometer. Single cell analysis of normal and B. bovis infected red blood cells was performed by electrorotation and dielectric parameters such as permittivities and conductivities of the cellular membrane and cytoplasm were determined.

  12. Detection, manipulation and post processing of circulating tumor cells using optical techniques

    NASA Astrophysics Data System (ADS)

    Bakhtiaridoost, Somayyeh; Habibiyan, Hamidreza; Ghafoorifard, Hassan

    2015-12-01

    Circulating tumor cells (CTCs) are malignant cells that are derived from a solid tumor in the metastasis stage and are shed into the blood stream. These cells hold great promise to be used as liquid biopsy that is less aggressive than traditional biopsy. Recently, detection and enumeration of these cells has received ever-increasing attention from researchers as a way of early detection of cancer metastasis, determining the effectiveness of treatment and studying the mechanism of formation of secondary tumors. CTCs are found in blood at low concentration, which is a major limitation of isolation and detection of these cells. Over the last few years, multifarious research studies have been conducted on accurate isolation and detection and post processing of CTCs. Among all the proposed systems, microfluidic systems seem to be more attractive for researchers due to their numerous advantages. On the other hand, recent developments in optical methods have made the possibility of cellular studies at single-cell level. Thus, accuracy and efficiency of separation, detection and manipulation of CTCs can be improved using optical techniques. In this review, we describe optical methods that have been used for CTC detection, manipulation and post processing.

  13. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  14. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis

    SciTech Connect

    Li Zhengrong; Zhan Wenhua . E-mail: wcywk@hotmail.com; Wang Zhao; Zhu Baohe; He Yulong; Peng Junsheng; Cai Shirong; Ma Jinping

    2006-09-15

    High expression of PRL-3, a protein tyrosine phosphatase, is proved to be associated with lymph node metastasis in gastric carcinoma from previous studies. In this paper, we examined the relationship between PRL-3 expression and peritoneal metastasis in gastric carcinoma. We applied the artificial miRNA (pCMV-PRL3miRNA), which is based on the murine miR-155 sequence, to efficiently silence the target gene expression of PRL-3 in SGC7901 gastric cancer cells at both mRNA and protein levels. Then we observed that, in vitro, pCMV-PRL3miRNA significantly depressed the SGC7901 cell invasion and migration independent of cellular proliferation. In vivo, PRL-3 knockdown effectively suppressed the growth of peritoneal metastases and improved the prognosis in nude mice. Therefore, we concluded that artificial miRNA can depress the expression of PRL-3, and that PRL-3 might be a potential therapeutic target for gastric cancer peritoneal metastasis.

  15. The outwardly rectifying chloride channel in rat peritoneal mast cells is regulated by serine/threonine kinases and phosphatases.

    PubMed

    Seebeck, Jörg; Tritschler, Stefan; Roloff, Tim; Kruse, Marie-Luise; Schmidt, Wolfgang E; Ziegler, Albrecht

    2002-02-01

    A slowly activating, outwardly rectifying Cl- channel (ORCC) has been described in rat peritoneal mast cells (RPMCs). This channel is activated by intracellular application of cAMP, an effect that might be mediated by a PKA-type serine/threonine protein kinase. To test this hypothesis, whole-cell patch-clamp experiments (nystatin-perforated patch) were performed and 8-bromoadenosine 3',5'-cyclic monophosphothioate, Sp-enantiomer (Sp-8Br-cAMPS), a cell membrane-permeable activator of PKA, and three inhibitors of different serine/threonine protein phosphatases (okadaic acid, cantharidin, calyculin A), were tested. In RPMCs application of repetitive series of step hyper- and depolarizations (holding potential 0 mV, test potentials -80 to +80 mV, step size +20 mV) induced a slowly increasing, [half-maximal activation time ( t0.5) 11.0+/-1.1 min, Imax (at +80 mV) 18.7+/-3.1 pA pF-1], DIDS-sensitive, outwardly rectifying Cl- current I(Cl,OR). The activation of this current could be accelerated by Sp-8Br-cAMPS, okadaic acid or cantharidin in the extracellular solution. Co-application of Sp-8Br-cAMPS and okadaic acid increased Imax supra-additively. Calyculin A and higher concentrations of cantharidin inhibited the Cl- current via unknown mechanisms. Our findings suggest that I(Cl,OR) in RPMCs is activated by a PKA-type protein kinase, a process which is antagonized functionally by okadaic acid- and cantharidin-sensitive protein phosphatases.

  16. ANALYSIS OF DOSE RATES DURING REPLACEMENT OF MANIPULATORS IN THE FFTF INTERIM EXAMINATION & MAINTENANCE (IEM) CELL

    SciTech Connect

    NELSON, J.V.

    2002-01-23

    Replacement of a master-slave manipulator in the Interim Examination and Maintenance Cell at the Fast Flux Test Facility was carried out in August 2001. This operation created a 178-mm opening in the thick concrete wall of the hot cell. To aid in radiological work planning, dose rates outside the penetration in the wall were predicted using MCNP{trademark} photon transport calculations. The predicted dose rate was 7.7 mrem/h, which was reasonably close to the value of 10.4 mrem/h inferred from measurements.

  17. Manipulation of a Single Circulating Tumor Cell Using Visualization of Hydrogel Encapsulation toward Single-Cell Whole-Genome Amplification.

    PubMed

    Yoshino, Tomoko; Tanaka, Tsuyoshi; Nakamura, Seita; Negishi, Ryo; Hosokawa, Masahito; Matsunaga, Tadashi

    2016-07-19

    Genetic characterization of circulating tumor cells (CTCs) could guide the choice of therapies for individual patients and also facilitate the development of new drugs. We previously developed a CTC recovery system using a microcavity array, which demonstrated highly efficient CTC recovery based on differences in cell size and deformability. However, the CTC recovery system lacked an efficient cell manipulation tool suitable for subsequent genetic analysis. Here, we resolve this issue and present a simple and rapid manipulation method for single CTCs using a photopolymerized hydrogel, polyethylene glycol diacrylate (PEGDA), which is useful for subsequent genetic analysis. First, PEGDA was introduced into the cells entrapped on the microcavity array. Then, excitation light was projected onto the target single cells for encapsulation of each CTC by confocal laser-scanning microscopy. The encapsulated single CTCs could be visualized by the naked eye and easily handled with tweezers. The single CTCs were only partially encapsulated on the PEGDA hydrogel, which allowed for sufficient whole-genome amplification and accurate genotyping. Our proposed methodology is a valuable tool for the rapid and simple manipulation of single CTCs and is expected to become widely utilized for analyses of mammalian cells and microorganisms in addition to CTCs.

  18. Peritoneal fluid culture

    MedlinePlus

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...

  19. Molecular Handles for the Mechanical Manipulation of Single-Membrane Proteins in Living Cells

    PubMed Central

    Gorostiza, Pau; Tombola, Francesco; Verdaguer, Albert; Smith, Steven B.; Bustamante, Carlos; Isacoff, Ehud Y.

    2006-01-01

    We have developed a procedure to selectively biotinylate a specific membrane protein, enabling its attachment to external force probes and thus allowing its mechanical manipulation within its native environment. Using potassium channels as model membrane proteins in oocytes, we have found that Maleimide-PEG3400-biotin is the crosslinker with highest conjugation selectivity and accessibility to external probes. Neutravidin-coated beads provide for directed attachment while avoiding nonspecific interactions with the cell. The technology was successfully tested by mechanical manipulation of biotinylated extracellular residues of channels in oocytes using an atomic force microscope under conditions which preserve function of the channels. Binding forces of ∼80 pN at 100 nN/s were measured. PMID:16433292

  20. Molecular handles for the mechanical manipulation of single-membrane proteins in living cells.

    PubMed

    Gorostiza, Pau; Tombola, Francesco; Verdaguer, Albert; Smith, Steven B; Bustamante, Carlos; Isacoff, Ehud Y

    2005-12-01

    We have developed a procedure to selectively biotinylate a specific membrane protein, enabling its attachment to external force probes and thus allowing its mechanical manipulation within its native environment. Using potassium channels as model membrane proteins in oocytes, we have found that Maleimide-PEG3400-biotin is the crosslinker with highest conjugation selectivity and accessibility to external probes. Neutravidin-coated beads provide for directed attachment while avoiding nonspecific interactions with the cell. The technology was successfully tested by mechanical manipulation of biotinylated extracellular residues of channels in oocytes using an atomic force microscope under conditions which preserve function of the channels. Binding forces of approximately 80 pN at 100 nN/s were measured.

  1. A novel optoelectrofulidic system for cells/particles manipulation and sorting

    NASA Astrophysics Data System (ADS)

    Yang, Shih-Mo; Yu, Tung-Ming; Huang, Hang-Ping; Hsu, Long; Liu, Cheng-Hsien

    2010-08-01

    A novel optoelectrofulidic system integrated optical image concentration and alignment system, dielectrophoresis phenomenon, microfluidic and friendly real-time control interface is first reported in this article. A new application of photoconductive material oxotitanium phthalocyanine (TiOPc) for microparticle applying has been first described and demonstrated by our research group. Basis on the special character of the photoconductive material, a TiOPc-based optoelectronic tweezers (Ti-OET) is utilized for single and massive cells/particles manipulation. The objects wanted to be manipulated are defined with different behaviors (e.g., press, release, drag and move) using Flash® software when the cursor acts on them. It also reveals the application for biological application to form the cells trapping with three sorts of cells, HMEC-1, HepG2 and HEK293t. Another application of our optoelectrofulidic system is to fabricate a TiOPc-based flow cytometry chip which can be used for sorting the 15μm diameter particles with 105 μm/s velocity. When the 10Vp.p. voltage and 45 kHz AC frequency apply on the top and button ITO electrode, the illuminated light pattern will become a spatially virtual switch inside the microchannel. The dielectrophoresis force between top ITO glass and button photoconductive layer controlled by the friendly interface will concentrate the cells/particles as a straight line and individually direct each one in different paths. In summary, we have established an optoelectronfulidic-based chip and spatially virtual switch system which are applied for cell pattern and particles sorting. In the future, this easy manipulation approach can place the full power of optoelectronfulidic chip into the biological operators' hands.

  2. Manipulating mammalian cell by phase transformed titanium surface fabricated through ultra-short pulsed laser synthesis.

    PubMed

    Chinnakkannu Vijayakumar, Sivaprasad; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-15

    Developing cell sensitive indicators on interacting substrates that allows specific cell manipulation by a combination of physical, chemical or mechanical cues is a challenge for current biomaterials. Hence, various fabrication approaches have been created on a variety of substrates to mimic or create cell specific cues. However, to achieve cell specific cues a multistep process or a post-chemical treatment is often necessitated. So, a simple approach without any chemical or biological treatment would go a long way in developing bio-functionalized substrates to effectively modulate cell adhesion and interaction. The present investigation is aimed to study the manipulative activity induced by phase transformed titanium surface. An ultra-short laser is used to fabricate the phase transformed titanium surface where a polymorphic titanium oxide phases with titanium monoxide (TiO), tri-titanium oxide (Ti3O) and titanium dioxide (TiO2) have been synthesized on commercially pure titanium. Control over oxide phase transformed area was demonstrated via a combination of laser scanning time (laser pulse interaction time) and laser pulse widths (laser pulse to pulse separation time). The interaction of phase transformed titanium surface with NIH3T3 fibroblasts and MC3T3-E1 osteoblast cells developed a new bio-functionalized platforms on titanium based biomaterials to modulate cell migration and adhesion. The synthesized phase transformed titanium surface on the whole appeared to induce directional cues for cell migration with unique preferential cell adhesion unseen by other fabrication approaches. The precise bio-functionalization controllability exhibited during fabrication offers perceptible edge for developing a variety of smart bio-medical devices, implants and cardiovascular stents where the need in supressing specific cell adhesion and proliferation is of great demand.

  3. Optical manipulation of a single human virus for study of viral-cell interactions

    NASA Astrophysics Data System (ADS)

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-09-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  4. Optical manipulation of a single human virus for study of viral-cell interactions.

    PubMed

    Hou, Ximiao; DeSantis, Michael C; Tian, Chunjuan; Cheng, Wei

    2016-08-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  5. Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle

    NASA Astrophysics Data System (ADS)

    Shaik, F. Azam; Cathcart, G.; Ihida, S.; Lereau-Bernier, M.; Leclerc, E.; Sakai, Y.; Toshiyoshi, H.; Tixier-Mita, A.

    2017-05-01

    In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis.

  6. Optical manipulation of a single human virus for study of viral-cell interactions

    PubMed Central

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-01-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses. PMID:27746582

  7. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis

    PubMed Central

    Strippoli, Raffaele; Moreno-Vicente, Roberto; Battistelli, Cecilia; Cicchini, Carla; Noce, Valeria; Amicone, Laura; Marchetti, Alessandra; del Pozo, Miguel Angel; Tripodi, Marco

    2016-01-01

    Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane. PMID:26941801

  8. The Natural Time Course of Membrane Alterations During Peritoneal Dialysis Is Partly Altered by Peritonitis.

    PubMed

    van Esch, Sadie; Struijk, Dirk G; Krediet, Raymond T

    2016-01-01

    patients who experienced peritonitis (p < 0.01). No difference was observed in the time-course of the effective lymphatic absorption rate. The time-courses of immunoglobulin G and α2-macroglobulin clearances showed a decrease in both patient groups, with a concomitant increase of the restriction coefficient. Those changes were not evidently influenced by peritonitis. The two groups showed a similar decrease in the mesothelial cell mass marker cancer antigen 125 during follow-up. ♦ On top of the natural course of peritoneal function, peritonitis episodes to some extent influence the time-course of small-solute and fluid transport-especially the transport of solute-free water. Those modifications increase the risk for overhydration. Copyright © 2016 International Society for Peritoneal Dialysis.

  9. Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells

    NASA Astrophysics Data System (ADS)

    Lee, Hojae; Hong, Daewha; Cho, Hyeoncheol; Kim, Ji Yup; Park, Ji Hun; Lee, Sang Hee; Kim, Ho Min; Fakhrullin, Rawil F.; Choi, Insung S.

    2016-12-01

    Inspired by the biogenic magnetism found in certain organisms, such as magnetotactic bacteria, magnetic nanomaterials have been integrated into living cells for bioorthogonal, magnetic manipulation of the cells. However, magnetized cells have so far been reported to be only binary system (on/off) without any control of magnetization degree, limiting their applications typically to the simple accumulation or separation of cells as a whole. In this work, the magnetization degree is tightly controlled, leading to the generation of multiple subgroups of the magnetized cells, and each subgroup is manipulated independently from the other subgroups in the pool of heterogeneous cell-mixtures. This work will provide a strategic approach to tailor-made fabrication of magnetically functionalized living cells as micro-magnets, and open new vistas in biotechnological and biomedical applications, which highly demand the spatio-temporal manipulation of living cells.

  10. Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells.

    PubMed

    Lee, Hojae; Hong, Daewha; Cho, Hyeoncheol; Kim, Ji Yup; Park, Ji Hun; Lee, Sang Hee; Kim, Ho Min; Fakhrullin, Rawil F; Choi, Insung S

    2016-12-05

    Inspired by the biogenic magnetism found in certain organisms, such as magnetotactic bacteria, magnetic nanomaterials have been integrated into living cells for bioorthogonal, magnetic manipulation of the cells. However, magnetized cells have so far been reported to be only binary system (on/off) without any control of magnetization degree, limiting their applications typically to the simple accumulation or separation of cells as a whole. In this work, the magnetization degree is tightly controlled, leading to the generation of multiple subgroups of the magnetized cells, and each subgroup is manipulated independently from the other subgroups in the pool of heterogeneous cell-mixtures. This work will provide a strategic approach to tailor-made fabrication of magnetically functionalized living cells as micro-magnets, and open new vistas in biotechnological and biomedical applications, which highly demand the spatio-temporal manipulation of living cells.

  11. Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells

    PubMed Central

    Lee, Hojae; Hong, Daewha; Cho, Hyeoncheol; Kim, Ji Yup; Park, Ji Hun; Lee, Sang Hee; Kim, Ho Min; Fakhrullin, Rawil F.; Choi, Insung S.

    2016-01-01

    Inspired by the biogenic magnetism found in certain organisms, such as magnetotactic bacteria, magnetic nanomaterials have been integrated into living cells for bioorthogonal, magnetic manipulation of the cells. However, magnetized cells have so far been reported to be only binary system (on/off) without any control of magnetization degree, limiting their applications typically to the simple accumulation or separation of cells as a whole. In this work, the magnetization degree is tightly controlled, leading to the generation of multiple subgroups of the magnetized cells, and each subgroup is manipulated independently from the other subgroups in the pool of heterogeneous cell-mixtures. This work will provide a strategic approach to tailor-made fabrication of magnetically functionalized living cells as micro-magnets, and open new vistas in biotechnological and biomedical applications, which highly demand the spatio-temporal manipulation of living cells. PMID:27917922

  12. Effects of melanin-induced free radicals on the isolated rat peritoneal mast cells

    SciTech Connect

    Ranadive, N.S.; Shirwadkar, S.; Persad, S.; Menon, I.A.

    1986-03-01

    Pheomelanin from human red hair (RHM) produces considerably more cellular damage in Ehrlich ascites carcinoma cells when subjected to radiations of wavelength 320-700 nm than eumelanin from black hair (BHM). Irradiation of RHM generated large amounts of superoxide while BHM did not produce detectable amounts of superoxide. The present investigations describe the effects of irradiation of mast cells in the presence of various natural and synthetic melanins. Irradiation of mast cells in the presence of RHM and red hair melanoprotein released large amounts of histamine while BHM and synthetic melanins prepared from dopa, cysteinyldopa, or a mixture of dopa and cysteinyldopa did not release histamine. The release of histamine at lower concentrations of RHM was not accompanied by the release of /sup 51/Cr from chromium-loaded cells, suggesting that this release was of noncytotoxic nature. On the other hand, the release of histamine at higher concentrations of RHM was due to cell lysis since both histamine and cytoplasmic marker /sup 51/Cr were released to the same extent. The release evoked by large concentration RHM was not inhibited by superoxide dismutase or catalase. This suggests that the cell lysis under these conditions was not due to H/sub 2/O/sub 2/ or O-2. The finding that mast cells release histamine when irradiated in the presence of RHM suggests that the immediate and late-phase reactions seen in sunburn may in part be due to the release of mediators from these cells.

  13. SAHA Suppresses Peritoneal Fibrosis in Mice.

    PubMed

    Io, Kumiko; Nishino, Tomoya; Obata, Yoko; Kitamura, Mineaki; Koji, Takehiko; Kohno, Shigeru

    2015-01-01

    Long-term peritoneal dialysis causes peritoneal fibrosis in submesothelial areas. However, the mechanism of peritoneal fibrosis is unclear. Epigenetics is the mechanism to induce heritable changes without any changes in DNA sequences. Among epigenetic modifications, histone acetylation leads to the transcriptional activation of genes. Recent studies indicate that histone acetylation is involved in the progression of fibrosis. Therefore, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on the progression of peritoneal fibrosis in mice. Peritoneal fibrosis was induced by the injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. SAHA, or a dimethylsulfoxide and saline vehicle, was administered subcutaneously every day from the start of the CG injections for 3 weeks. Morphologic peritoneal changes were assessed by Masson's trichrome staining, and fibrosis-associated factors were assessed by immunohistochemistry. In CG-injected mice, a marked thickening of the submesothelial compact zone was observed. In contrast, the administration of SAHA suppressed the progression of submesothelial thickening and type III collagen accumulation in CG-injected mice. The numbers of fibroblast-specific protein-1-positive cells and α-smooth muscle actin α-positive cells were significantly decreased in the CG + SAHA group compared to that of the CG group. The level of histone acetylation was reduced in the peritoneum of the CG group, whereas it was increased in the CG + SAHA group. Our results indicate that SAHA can suppress peritoneal thickening and fibrosis in mice through up-regulation of histone acetylation. These results suggest that SAHA may have therapeutic potential for treating peritoneal fibrosis. Copyright © 2015 International Society for Peritoneal Dialysis.

  14. Can manipulation of differentiation conditions eliminate proliferative cells from a population of ES cell-derived forebrain cells?

    PubMed Central

    Precious, Sophie V.; Kelly, Claire M.; Allen, Nicholas D.; Rosser, Anne E.

    2016-01-01

    ABSTRACT There is preliminary evidence that implantation of primary fetal striatal cells provides functional benefit in patients with Huntington's disease, a neurodegenerative condition resulting in loss of medium-sized spiny neurons (MSN) of the striatum. Scarcity of primary fetal tissue means it is important to identify a renewable source of cells from which to derive donor MSNs. Embryonic stem (ES) cells, which predominantly default to telencephalic-like precursors in chemically defined medium (CDM), offer a potentially inexhaustible supply of cells capable of generating the desired neurons. Using an ES cell line, with the forebrain marker FoxG1 tagged to the LacZ reporter, we assessed effects of known developmental factors on the yield of forebrain-like precursor cells in CDM suspension culture. Addition of FGF2, but not DKK1, increased the proportion of FoxG1-expressing cells at day 8 of neural induction. Oct4 was expressed at day 8, but was undetectable by day 16. Differentiation of day 16 precursors generated GABA-expressing neurons, with few DARPP32 positive MSNs. Transplantation of day 8 precursor cells into quinolinic acid-lesioned striata resulted in generation of teratomas. However, transplantation of day 16 precursors yielded grafts expressing neuronal markers including NeuN, calbindin and parvalbumin, but no DARPP32 6 weeks post-transplantation. Manipulation of fate of ES cells requires optimization of both concentration and timing of addition of factors to culture systems to generate the desired phenotypes. Furthermore, we highlight the value of increasing the precursor phase of ES cell suspension culture when directing differentiation toward forebrain fate, so as to dramatically reduce the risk of teratoma formation. PMID:27606335

  15. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications.

  16. 3D Nanochannel Array Platform for High-throughput Cell Manipulation and Nano-electroporation

    NASA Astrophysics Data System (ADS)

    Chang, Lingqian

    Electroporation is one of the most common non-viral methods for gene delivery. Recent progress in gene therapy has offered special opportunities to electroporation for in vitro and in vivo applications. However, conventional bulk electroporation (BEP) inevitably causes serious cell damage and stochastic transfection between cells. Microfluidic electroporation (MEP) has been claimed to provide benign single cell transfection for the last decade. Nevertheless, the intracellular transport in both MEP and BEP systems is highly diffusion-dominant, which prevents precise dose control and high uniformity. In this Ph.D. research, we developed a 3D nanochannel-electroporation (3D NEP) platform for mass cell transfection. A silicon-based nanochannel array (3D NEP) chip was designed and fabricated for cell manipulation and electroporation. The chip, designed as Z-directional microchannel - nanochannel array, was fabricated by clean room techniques including projection photolithography and deep reactive-ion etching (DRIE). The fabricated 3D NEP chip is capable of handling 40,000 cells per 1 cm2, up to 1 million per wafer (100 mm diameter). High-throughput cell manipulation technologies were investigated for precise alignment of individual cells to the nanochannel array, a key step for NEP to achieve dose control. We developed three techniques for cell trapping in this work. (1) Magnetic tweezers (MTs) were integrated on the chip to remotely control cells under a programmed magnetic field. (2) A positive dielectrophoresis (pDEP) power system was built as an alternative to trap cells onto the nanochannel array using DEP force. (3) A novel yet simple 'dipping-trap' method was used to rapidly trap cells onto a nanochannel array, aligned by a micro-cap array pattern on the 3D NEP chip, which eventually offered 70 - 90 % trapping efficiency and 90 % specificity. 3D NEP platforms were assembled for cell transfection based on the Si-based nanochannel array chip and cell manipulation

  17. Peritoneal Fluid Titer Test for Peritoneal Dialysis-Related Peritonitis

    PubMed Central

    Strijack, Christine; Harding, Godfrey K. M.; Ariano, Robert E.; Zelenitsky, Sheryl A.

    2004-01-01

    Standard microbiological tests (i.e., MIC) do not account for the unique factors of peritoneal dialysis (PD)-related peritonitis which can significantly influence treatment response. Our goals were to develop a peritoneal fluid titer (PFT) test and to conduct a pilot study of its association with clinical outcome. The methodology was developed by using spent dialysate collected from patients with bacterial PD-related peritonitis prior to the initiation of antibiotics. Dialysate was processed and spiked with antibiotic to simulate two standard intraperitoneal regimens: cefazolin plus tobramycin and cefazolin alone. Thirty-six clinical isolates, including Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa, were tested. In the pilot study, dialysate was collected from 14 patients with bacterial PD-related peritonitis. Titers were determined by using each patient's dialysate and infecting pathogen. Titers were highly reproducible, with discrepancies in only 1% of cases. Overall, PFTs were notably higher against gram-positive bacteria (P < 0.0001). The addition of tobramycin increased titers significantly from zero to values of 1/16 to 1/64 against E. cloacae and P. aeruginosa (P < 0.0001). In the pilot study, peritoneal fluid inhibitory titers were significantly associated with clinical outcome, with a median value of 1/96 for patients who were cured compared to 1/32 for those who failed treatment (P = 0.036). In conclusion, this study provides preliminary support for the PFT as a pharmacodynamic index specific to the treatment of PD-related peritonitis. With further characterization and validation in patients, the PFT test may advance the study of antibiotic therapies for PD-related peritonitis. PMID:15105126

  18. A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types

    PubMed Central

    Shima, Yasuyuki; Sugino, Ken; Hempel, Chris Martin; Shima, Masami; Taneja, Praveen; Bullis, James B; Mehta, Sonam; Lois, Carlos; Nelson, Sacha B

    2016-01-01

    There is a continuing need for driver strains to enable cell-type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However, since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu). DOI: http://dx.doi.org/10.7554/eLife.13503.001 PMID:26999799

  19. Manipulating Neuronal Circuits with Endogenous and Recombinant Cell-Surface Tethered Modulators

    PubMed Central

    Holford, Mandë; Auer, Sebastian; Laqua, Martin; Ibañez-Tallon, Ines

    2009-01-01

    Neuronal circuits depend on the precise regulation of cell-surface receptors and ion channels. An ongoing challenge in neuroscience research is deciphering the functional contribution of specific receptors and ion channels using engineered modulators. A novel strategy, termed “tethered toxins”, was recently developed to characterize neuronal circuits using the evolutionary derived selectivity of venom peptide toxins and endogenous peptide ligands, such as lynx1 prototoxins. Herein, the discovery and engineering of cell-surface tethered peptides is reviewed, with particular attention given to their cell-autonomy, modular composition, and genetic targeting in different model organisms. The relative ease with which tethered peptides can be engineered, coupled with the increasing number of neuroactive venom toxins and ligand peptides being discovered, imply a multitude of potentially innovative applications for manipulating neuronal circuits and tissue-specific cell networks, including treatment of disorders caused by malfunction of receptors and ion channels. PMID:19915728

  20. Manipulating neuronal circuits with endogenous and recombinant cell-surface tethered modulators.

    PubMed

    Holford, Mandë; Auer, Sebastian; Laqua, Martin; Ibañez-Tallon, Ines

    2009-01-01

    Neuronal circuits depend on the precise regulation of cell-surface receptors and ion channels. An ongoing challenge in neuroscience research is deciphering the functional contribution of specific receptors and ion channels using engineered modulators. A novel strategy, termed "tethered toxins", was recently developed to characterize neuronal circuits using the evolutionary derived selectivity of venom peptide toxins and endogenous peptide ligands, such as lynx1 prototoxins. Herein, the discovery and engineering of cell-surface tethered peptides is reviewed, with particular attention given to their cell-autonomy, modular composition, and genetic targeting in different model organisms. The relative ease with which tethered peptides can be engineered, coupled with the increasing number of neuroactive venom toxins and ligand peptides being discovered, imply a multitude of potentially innovative applications for manipulating neuronal circuits and tissue-specific cell networks, including treatment of disorders caused by malfunction of receptors and ion channels.

  1. Precise manipulation of cell behaviors on surfaces for construction of tissue/organs.

    PubMed

    Zheng, Wenfu; Jiang, Xingyu

    2014-12-01

    The use of micro/nanotechnology has become an indispensable strategy to manipulating cell microenvironments. By employing key elements of soft lithographical technologies including self-assembled monolayers (SAMs), microcontact printing (μCP), and microfluidic pattering (μFP) and a number of switchable surfaces such as electrochemical active, photosensitive, and thermosensitive surfaces, scientists can control the adhesion, proliferation, migration and differentiation of cells. By combining essential in vivo conditions, various physical or pathological processes such as cell-cell interaction in wound healing and tumor metastasis could be studied on well-defined surfaces and interfaces. By integrating key elements in live tissues, in vitro models mimicking basic structure and function of vital organs such as lung, heart, blood vessel, liver, kidney, and brain have been developed and greatly increased our knowledge of these important life processes. In this review, we will focus on the recent development of these interfacial methods and their application in fundamental biology research.

  2. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.

    PubMed

    Das, Debanjan; Biswas, Karabi; Das, Soumen

    2014-06-01

    The present study demonstrates the design, simulation, fabrication and testing of a label-free continuous manipulation and separation micro-device of particles/biological cells suspended on medium based on conventional dielectrophoresis. The current dielectrophoretic device uses three planner electrodes to generate non-uniform electric field and induces both p-DEP and n-DEP force simultaneously depending on the dielectric properties of the particles and thus influencing at least two types of particles at a time. Numerical simulations were performed to predict the distribution of non-uniform electric field, DEP force and particle trajectories. The device is fabricated utilizing the advantage of bonding between PDMS and SU8 polymer. The p-DEP particles move away from the center of the streamline, while the n-DEP particles will follow the central streamline along the channel length. Dielectrophoretic effects were initially tested using polystyrene beads followed by manipulation of HeLa cells. In the experiment, it was observed that polystyrene beads in DI water always response as n-DEP up to 1MHz frequency, whereas HeLa cells in PBS medium response as n-DEP up to 400kHz frequency and then it experiences p-DEP up to 1MHz. Further, the microscopic observations of DEP responses of HeLa cells were verified by performing trapping experiment at static condition.

  3. Cell openness manipulation of low density polyurethane foam for efficient sound absorption

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae

    2017-10-01

    Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.

  4. Foreign Body Reaction to Dialysis Chatheter and Peritoneal Fluid Eosinophilia in a Child on Continuous Ambulatory Peritoneal Dialysis.

    PubMed

    Cetin, Nuran; Sav, Nadide Melike; Ciftci, Evrim; Yildiz, Bilal

    2017-07-01

    Foreign body reaction is a tissue response against implanted materials. We described for the first time the eosinophilic peritonitis and foreign body giant cell reaction to dialysis catheter in a nonatopic child on continuous ambulatory peritoneal dialysis. We found tenderness, redness, and swelling without purulent discharge around the peritoneal catheter; increased eosinophil count in cloudy dialysis fluid; and blood and hyperechoic granulomatous formation appearance surrounding the peritoneal catheter on ultrasonography and foreign body giant cell reaction to dialysis catheter in pathologic examination of granulomatous lesionin in our patient. The peritoneal dialysis catheter was removed due to resistance to antibiotic and antihistamine treatments for suspected peritonitis and tunnel infection. Foreign body reaction and eosinophilic peritonitis with eosinophilic cloudy dialysis effluent can exist simultaneously. Foreign body reaction should be considered in the differential diagnosis of exit site and/or tunnel infection. Ultrasonography helps distinguish between foreign body reaction and exit-site or tunnel infection.

  5. Design and experimental demonstration of low-power CMOS magnetic cell manipulation platform using charge recycling technique

    NASA Astrophysics Data System (ADS)

    Niitsu, Kiichi; Yoshida, Kohei; Nakazato, Kazuo

    2016-03-01

    We present the world’s first charge-recycling-based low-power technique of complementary metal-oxide-semiconductor (CMOS) magnetic cell manipulation. CMOS magnetic cell manipulation associated with magnetic beads is a promissing tool for on-chip biomedical-analysis applications such as drug screening because CMOS can integrate control electronics and electro-chemical sensors. However, the conventional CMOS cell manipulation requires considerable power consumption. In this work, by concatenating multiple unit circuits and recycling electric charge among them, power consumption is reduced by a factor of the number of the concatenated unit circuits (1/N). For verifying the effectiveness, test chip was fabricated in a 0.6-µm CMOS. The chip successfully manipulates magnetic microbeads with achieving 49% power reduction (from 51 to 26.2 mW). Even considering the additional serial resistance of the concatenated inductors, nearly theoretical power reduction effect can be confirmed.

  6. Effects of methyl p-hydroxybenzoate (methyl paraben) on Ca2+ concentration and histamine release in rat peritoneal mast cells

    PubMed Central

    Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi

    2003-01-01

    Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943

  7. Extracellular mass/body cell mass ratio is an independent predictor of survival in peritoneal dialysis patients.

    PubMed

    Avram, Morrell M; Fein, Paul A; Borawski, Cezary; Chattopadhyay, Jyotiprakas; Matza, Betty

    2010-08-01

    Malnutrition is a strong predictor of mortality in peritoneal dialysis (PD) patients. Extracellular mass (ECM) contains all the metabolically inactive, whereas body cell mass (BCM) contains all the metabolically active, tissues of the body. ECM/BCM ratio is a highly sensitive index of malnutrition. The objective of this study was to explore the relationship between ECM/BCM ratio and survival in PD patients. We enrolled 62 patients from November 2000 to July 2008. On enrollment, demographic, clinical, and biochemical data were recorded. Bioimpedance analysis (BIA) was used to determine ECM and BCM in PD patients. Patients were followed up to November 2008. Mean age was 54+/-16 (s.d.) years; female, 55%; African Americans, 65%; diabetic, 24%. Mean ECM/BCM ratio was 1.206+/-0.197 (range: 0.73-1.62). Diabetics had higher ECM/BCM ratio than nondiabetics (1.29 vs 1.18, P=0.04). ECM/BCM ratio correlated directly with age (r=0.38, P=0.002) and inversely with serum albumin (r=-0.43, P=0.001), creatinine (-0.24, P=0.08), blood urea nitrogen (r=-0.26, P=0.06), and total protein (r=-0.31, P=0.026). Using multivariate Cox regression analysis, adjusting for age, race, gender, diabetes, and human immunodeficiency virus status, enrollment ECM/BCM ratio was a significant independent predictor of mortality (relative risk=1.035, P=0.018). For every 10% increase in the ECM/BCM ratio, the relative risk of death was increased by about 35%. In conclusion, BIA-derived enrollment ECM/BCM ratio, a marker of malnutrition, was an independent predictor of long-term survival in PD patients.

  8. Eicosanoid production by mouse peritoneal macrophages during Toxoplasma gondii penetration: role of parasite and host cell phospholipases.

    PubMed Central

    Thardin, J F; M'Rini, C; Beraud, M; Vandaele, J; Frisach, M F; Bessieres, M H; Seguela, J P; Pipy, B

    1993-01-01

    The metabolism of endogenous arachidonic acid by mouse resident peritoneal macrophages infected in vitro with Toxoplasma gondii was studied. Prelabeling of macrophages with [5,6,8,9,11,12,14,15-3H]arachidonic acid and challenge with tachyzoites for 15 min resulted in a high mobilization of free labeled arachidonic acid (178%) in the culture medium. The parasites also triggered the synthesis of 6-keto-prostaglandin F1 alpha (47%), prostaglandin E2 (44%), leukotrienes C4 and D4 (33%) and 5-, 12-hydroxyeicosatetraenoic acids (155%). The study indicated that during the intracellular development phase of the parasites, 6-keto-prostaglandin F1 alpha (38%), prostaglandin E2 (31%) leukotrienes C4 and D4 (15%), hydroxyeicosatetraenoic acids (43%), and free arachidonic acid (110%) were secreted into the culture medium. Pretreatment of tachyzoites with phospholipase A2 inhibitors (4-p-bromophenacyl bromide and quinacrine) and no calcium in the culture medium resulted in inhibition of tachyzoite penetration into the macrophages and a decrease of the arachidonic acid metabolism. The triggering of the arachidonic acid cascade by T. gondii was dependent on the active penetration of the parasites into the macrophages, whereas preincubation of the macrophages with phospholipase A2 inhibitors did not affect penetration or free arachidonic acid release, thereby supporting a role for parasite phospholipase in the penetration process and in arachidonic acid mobilization from macrophage membrane phospholipids. Moreover, treatment of macrophages with phospholipase A2 inhibitors decreased the activities of the cyclooxygenase and lipoxygenase pathways, also suggesting an activation of host cell phospholipase A2 by the parasite. PMID:8454347

  9. Shewanella algae Peritonitis in Patients on Peritoneal Dialysis.

    PubMed

    Shanmuganathan, Malini; Goh, Bak Leong; Lim, Christopher; NorFadhlina, Zakaria; Fairol, Ibrahim

    Patients with peritonitis present with abdominal pain, diarrhea, fever, and turbid peritoneal dialysis (PD) fluid. Shewanella algae peritonitis has not yet been reported in PD patients in the literature. We present the first 2 cases of Shewanella algae peritonitis in PD patients. Mupirocin cream is applied on the exit site as prophylactic antibiotic therapy. Copyright © 2016 International Society for Peritoneal Dialysis.

  10. Kinetic of magnetic nanoparticles uptake evaluated by morphometry of mice peritoneal cells

    NASA Astrophysics Data System (ADS)

    Silva, L. P.; Kuckelhaus, S.; Guedes, M. H. A.; Lacava, Z. G. M.; Tedesco, A. C.; Morais, P. C.; Azevedo, R. B.

    2005-03-01

    The development of magnetic fluids (MFs) has led to a wide range of new biomedical applications. Nevertheless, few studies have examined the kinetics of the magnetic nanoparticles (MNPs) internalization by phagocytes. In this study, we present morphometry as a method to quantify the cell surface covered by MNPs. The maximum cell surface covered by MNPs aggregates was 32.5% (8.5 min), 18.3% (24.1 min), and 18.0% (20.2 min) in DMSA, citric acid and dextran-coated MNPs, respectively. We concluded that the phagocytosis process of MNPs is strongly dependent upon the coating species.

  11. Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells.

    PubMed

    Kim, Mijung; Rooper, Lisa; Xie, Jia; Kajdacsy-Balla, Andre A; Barbolina, Maria V

    2012-01-01

    Epithelial ovarian carcinoma (EOC) is a deadly disease, and little is known about the mechanisms underlying its metastatic progression. Using human specimens and established cell lines, we determined that the G-protein-coupled seven-transmembrane fractalkine receptor (CX(3)CR1) is expressed in primary and metastatic ovarian carcinoma cells. Ovarian carcinoma cells robustly migrated toward CX(3)CL1, a specific ligand of CX(3)CR1, in a CX(3)CR1-dependent manner. Silencing of CX(3)CR1 reduced migration toward human ovarian carcinoma ascites fluid by approximately 70%. Importantly, adhesion of ovarian carcinoma cells to human peritoneal mesothelial cells was dependent on CX(3)CL1/CX(3)CR1 signaling. In addition, CX(3)CL1 was able to induce cellular proliferation. Together, our data suggest that the fractalkine network may function as a major contributor to the progression of EOC, and further attention to its role in the metastasis of this deadly malignancy is warranted.

  12. Transgenic Manipulation of the Metabolism of Polyamines in Poplar Cells1

    PubMed Central

    Bhatnagar, Pratiksha; Glasheen, Bernadette M.; Bains, Suneet K.; Long, Stephanie L.; Minocha, Rakesh; Walter, Christian; Minocha, Subhash C.

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra × maximowiczii) expressing a mouse Orn decarboxylase (odc) cDNA. The transgenic cells showed elevated levels of mouse ODC enzyme activity, severalfold higher amounts of putrescine, a small increase in spermidine, and a small reduction in spermine as compared with NT cells. The conversion of labeled ornithine (Orn) into putrescine was significantly higher in the transgenic than the NT cells. Whereas exogenously supplied Orn caused an increase in cellular putrescine in both cell lines, arginine at high concentrations was inhibitory to putrescine accumulation. The addition of urea and glutamine had no effect on polyamines in either of the cell lines. Inhibition of glutamine synthetase by methionine sulfoximine led to a substantial reduction in putrescine and spermidine in both cell lines. The results show that: (a) Transgenic expression of a heterologous odc gene can be used to modulate putrescine metabolism in plant cells, (b) accumulation of putrescine in high amounts does not affect the native arginine decarboxylase activity, (c) Orn biosynthesis occurs primarily from glutamine/glutamate and not from catabolic breakdown of arginine, (d) Orn biosynthesis may become a limiting factor for putrescine production in the odc transgenic cells, and (e) assimilation of nitrogen into glutamine keeps pace with an increased demand for its use for putrescine production. PMID:11299393

  13. Genetic manipulation of insulin action and beta-cell function in mice.

    PubMed

    Lamothe, B; Duvillié, B; Cordonnier, N; Baudry, A; Saint-Just, S; Bucchini, D; Jami, J; Joshi, R L

    1998-05-01

    Transgenic and gene targeting approaches have now been applied to a number of genes in order to investigate the metabolic disorders that would result by manipulating insulin action or pancreatic beta-cell function in the mouse. The availability of such mutant mice will allow in the future to develop animal models in which the pathophysiologies resulting from polygenic defects might be reconstituted and studied in detail. Such animal models hopefully will lead to better understanding of complex polygenic diseases such as non-insulin-dependent diabetes mellitus (NIDDM).

  14. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation.

    PubMed

    Yechoor, Vijay; Chan, Lawrence

    2010-08-01

    Pancreatic beta-cell failure underlies type 1 diabetes; it also contributes in an essential way to type 2 diabetes. beta-Cell replacement is an important component of any cure for diabetes. The current options of islet and pancreas transplantation are not satisfactory as definitive forms of therapy. Here, we review strategies for induced de novo pancreatic beta-cell formation, which depend on the targeted differentiation of cells into pancreatic beta-cells. With this objective in mind, one can manipulate the fate of three different types of cells: 1) from terminally differentiated cells, e.g. exocrine pancreatic cells, into beta-cells; 2) from multipotent adult stem cells, e.g. hepatic oval cells, into pancreatic islets; and 3) from pluripotent stem cells, e.g. embryonic stem cells and induced pluripotent stem cells, into beta-cells. We will examine the pros and cons of each strategy as well as the hurdles that must be overcome before these approaches to generate new beta-cells will be ready for clinical application.

  15. Manipulation and Motion of Organelles and Single Molecules in Living Cells.

    PubMed

    Norregaard, Kamilla; Metzler, Ralf; Ritter, Christine M; Berg-Sørensen, Kirstine; Oddershede, Lene B

    2017-03-08

    The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.

  16. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells.

    PubMed

    Drecoll, Enken; Gaertner, Florian C; Miederer, Matthias; Blechert, Birgit; Vallon, Mario; Müller, Jan M; Alke, Andrea; Seidl, Christof; Bruchertseifer, Frank; Morgenstern, Alfred; Senekowitsch-Schmidtke, Reingard; Essler, Markus

    2009-05-27

    Alpha-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for alpha-particle emitting isotopes facilitating selective tumor therapies. A dimer of the vascular tumor homing peptide F3 was chemically coupled to the alpha-emitter (213)Bi ((213)Bi-DTPA-[F3](2)). We found (213)Bi-DTPA-[F3](2) to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of (213)Bi-DTPA-[F3](2) we treated mice bearing intraperitoneally growing xenograft tumors with (213)Bi-DTPA-[F3](2). In a tumor prevention study between the days 4-14 after inoculation of tumor cells 6x1.85 MBq (50 microCi) of (213)Bi-DTPA-[F3](2) were injected. In a tumor reduction study between the days 16-26 after inoculation of tumor cells 6x1.85 MBq of (213)Bi-DTPA-[F3](2) were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found (213)Bi-DTPA-[F3](2) to accumulate in tumors but only low activities were found in control organs except for the kidneys, where (213)Bi-DTPA-[F3](2) is found due to renal excretion. In conclusion we report that (213)Bi-DTPA-[F3](2) is a novel tool for the targeted delivery of alpha-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be useful in oncology.

  17. How viruses affect the cell cycle through manipulation of the APC/C.

    PubMed

    Mo, Min; Shahar, Saleha; Fleming, Stephen B; Mercer, Andrew A

    2012-09-01

    Viruses frequently exploit host cell cycle machineries for their own benefit, often by targeting 'master switches' of cell cycle regulation. By doing so, they achieve maximum effect from minimal input. One such master switch is the anaphase promoting complex or cyclosome (APC/C), a multicomponent ubiquitin ligase and a dominant regulator of the cell cycle. A growing number of viruses have been shown to target the APC/C. Although differing strategies are employed, viral manipulation of the APC/C seems to serve a common purpose, namely, to create an environment supportive of viral replication. Here, the molecular mechanisms employed by these viruses are summarized and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Efficient in vitro lowering of carbonyl stress by the glyoxalase system in conventional glucose peritoneal dialysis fluid.

    PubMed

    Inagi, Reiko; Miyata, Toshio; Ueda, Yasuhiko; Yoshino, Atsushi; Nangaku, Masaomi; van Ypersele de Strihou, Charles; Kurokawa, Kiyoshi

    2002-08-01

    Reactive carbonyl compounds (RCOs) present in heat-sterilized peritoneal dialysis (PD) fluid have been incriminated in the progressive deterioration of the peritoneal membrane observed in long-term PD patients. The present study utilized the glyoxalase I (GLO I) system as a new approach to lower in vitro the peritoneal fluid content of RCOs such as methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3-DG). GO, MGO, and 3-DG solutions or conventional glucose PD fluids were incubated in vitro with various RCO lowering compounds. The evolution of GO, MGO, and 3-DG levels was monitored by high-performance liquid chromatography. The tested compounds included aminoguanidine and glutathione (GSH), alone or together with GLO I. The human GLO I gene was overexpressed in Chinese hamster ovary (CHO) cells, or ubiquitously in transgenic mice. Cell supernatant of the CHO transfectant and protein extracts of various organs of the transgenic mice were also tested. Aminoguanidine incubated with MGO/GO/3-DG mixtures, promptly reduced RCO levels. GSH alone had a similar but milder and slower effect. Together with GLO I, it promptly decreased GO and MGO levels but was less efficient toward 3-DG. After incubation with glucose PD fluid, GSH together with GLO I had the same effect on MGO, GO, and 3-DG levels. Addition of transfected cell supernatant or tissue extracts overexpressing GLO I, together with GSH to either GO, MGO, or 3-DG solutions, promptly and markedly reduced GO and MGO but not 3-DG levels. GLO I together with GSH efficiently lowers glucose-derived RCOs, especially GO and MGO, both in conventional glucose PD fluids and in RCO solutions. The fact that genetically manipulated cells overexpressing GLO I activity have a similar effect suggests that maneuvers raising GLO I activity in peritoneal cells or in the peritoneal cavity might help prevent the deleterious effects of the peritoneal carbonyl stress in PD patients. The clinical relevance of this approach is yet to be

  19. Pentraxin 3 as a new biomarker of peritoneal injury in peritoneal dialysis patients.

    PubMed

    Kanda, Reo; Hamada, Chieko; Kaneko, Kayo; Nakano, Takanori; Wakabayashi, Keiichi; Io, Hiroaki; Horikoshi, Satoshi; Tomino, Yasuhiko

    2013-03-01

    It is well known that bioincompatible peritoneal dialysate plays a central role in the development of peritoneal fibrosis. Peritoneal inflammation continues even after the cessation of peritoneal dialysate stimulation. It is important to establish the definition of persistent inflammation in the peritoneal cavity at the cessation of peritoneal dialysis (PD). The objective of the present study was to determine whether pentraxin 3 (PTX3) in peritoneal effluent (PE) may be a new biomarker in PD patients. Serum, PE, and peritoneal specimens were obtained from 50 patients with end-stage kidney disease at Juntendo University Hospital. Samples of 19 patients were obtained at the initiation of PD and those of 31 patients at the cessation of PD. PTX3, high-sensitivity CRP, and MMP-2 and IL-6 were analyzed. An immunohistological examination using an anti-PTX3 antibody was performed. Expressions of PTX3 were observed in endothelial cells, fibroblasts, and mesothelial cells in the peritoneum. The PTX3 level in PE at the cessation of PD was significantly higher than that at the initiation of PD. Effluent PTX3 levels in patients with a history of peritonitis or a PD duration of more than 8 years were significantly higher than those in patients without peritonitis or patients with a PD duration of <8 years. The PTX3 level was significantly correlated with MMP-2 and IL-6 levels in PE, as well as the thickness of the submesothelial compact zone and the vasculopathy. It appears that PTX3 may be a new biomarker of peritoneal inflammation and progressive fibrosis.

  20. Phagocytosis and nitric oxide production by peritoneal adherent cells in response to Candida albicans in aging: a collaboration to elucidate the pathogenesis of denture stomatitis.

    PubMed

    Gardizani, Taiane Priscila; Pinke, Karen Henriette; Lima, Heliton Gustavo de; Lara, Vanessa Soares

    2017-01-01

    The aim of this study was to investigate the influence of aging on the internalization and the production of nitric oxide (NO) by peritoneal adherent cells (PAC), in response to Candida albicans (C. albicans). PAC obtained from young and aged mice were challenged with dead or viable C. albicans by using predetermined proportions (cells:yeast) for 30 and 120 minutes. Phagocytosis was analyzed by acridine orange dye, and NO production by the Griess reaction. C. albicans phagocytosis by PAC from aged mice was similar to that of young mice, although the cells from older mice cells present more internalized fungi compared with matched control. In addition, a tendency towards impaired NO production by peritoneal mononuclear phagocytes from aged mice was observed. PAC from aged mice may capture and store many fungi, which in turn may mean that these cells are effectively unable to eliminate fungi, probably due to impaired NO production. Therefore, considering the important role of C. albicans overgrowth in the pathogenesis of DS and the aspects observed in this study, aging may favor the onset and severity of local candidosis such as DS and its systemic forms.

  1. A shift toward smaller cell size via manipulation of cell cycle gene expression acts to smoothen Arabidopsis leaf shape.

    PubMed

    Kuwabara, Asuka; Backhaus, Andreas; Malinowski, Robert; Bauch, Marion; Hunt, Lee; Nagata, Toshiyuki; Monk, Nick; Sanguinetti, Guido; Fleming, Andrew

    2011-08-01

    Understanding the relationship of the size and shape of an organism to the size, shape, and number of its constituent cells is a basic problem in biology; however, numerous studies indicate that the relationship is complex and often nonintuitive. To investigate this problem, we used a system for the inducible expression of genes involved in the G1/S transition of the plant cell cycle and analyzed the outcome on leaf shape. By combining a careful developmental staging with a quantitative analysis of the temporal and spatial response of cell division pattern and leaf shape to these manipulations, we found that changes in cell division frequency occurred much later than the observed changes in leaf shape. These data indicate that altered cell division frequency cannot be causally involved in the observed change of shape. Rather, a shift to a smaller cell size as a result of the genetic manipulations performed correlated with the formation of a smoother leaf perimeter, i.e. appeared to be the primary cellular driver influencing form. These data are discussed in the context of the relationship of cell division, growth, and leaf size and shape.

  2. Bimodal gold nanoparticle therapeutics for manipulating exogenous and endogenous protein levels in mammalian cells.

    PubMed

    Muroski, Megan E; Kogot, Joshua M; Strouse, Geoffrey F

    2012-12-05

    A new advance in cell transfection protocol using a bimodal nanoparticle agent to selectively manipulate protein expression levels within mammalian cells is demonstrated. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of codelivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol.

  3. Manipulation and Immobilization of a Single Fluorescence Nanosensor for Selective Injection into Cells

    PubMed Central

    Hashim, Hairulazwan; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito

    2016-01-01

    Manipulation and injection of single nanosensors with high cell viability is an emerging field in cell analysis. We propose a new method using fluorescence nanosensors with a glass nanoprobe and optical control of the zeta potential. The nanosensor is fabricated by encapsulating a fluorescence polystyrene nanobead into a lipid layer with 1,3,3-trimethylindolino-6′-nitrobenzopyrylospiran (SP), which is a photochromic material. The nanobead contains iron oxide nanoparticles and a temperature-sensitive fluorescent dye, Rhodamine B. The zeta potential of the nanosensor switches between negative and positive by photo-isomerization of SP with ultraviolet irradiation. The positively-charged nanosensor easily adheres to a negatively-charged glass nanoprobe, is transported to a target cell, and then adheres to the negatively-charged cell membrane. The nanosensor is then injected into the cytoplasm by heating with a near-infrared (NIR) laser. As a demonstration, a single 750 nm nanosensor was picked-up using a glass nanoprobe with optical control of the zeta potential. Then, the nanosensor was transported and immobilized onto a target cell membrane. Finally, it was injected into the cytoplasm using a NIR laser. The success rates of pick-up and cell immobilization of the nanosensor were 75% and 64%, respectively. Cell injection and cell survival rates were 80% and 100%, respectively. PMID:27916931

  4. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

    PubMed

    Ireland, Ronald G; Simmons, Craig A

    2015-11-01

    A stem cell in its microenvironment is subjected to a myriad of soluble chemical cues and mechanical forces that act in concert to orchestrate cell fate. Intuitively, many of these soluble and biophysical factors have been the focus of intense study to successfully influence and direct cell differentiation in vitro. Human pluripotent stem cells (hPSCs) have been of considerable interest in these studies due to their great promise for regenerative medicine. Culturing and directing differentiation of hPSCs, however, is currently extremely labor-intensive and lacks the efficiency required to generate large populations of clinical-grade cells. Improved efficiency may come from efforts to understand how the cell biophysical signals can complement biochemical signals to regulate cell pluripotency and direct differentiation. In this concise review, we explore hPSC mechanobiology and how the hPSC biophysical microenvironment can be manipulated to maintain and differentiate hPSCs into functional cell types for regenerative medicine and tissue engineering applications. © 2015 AlphaMed Press.

  5. Surgical management of peritoneal dialysis peritonitis: the impact of peritoneal sclerosis.

    PubMed

    Yates, Phillip J; Kitchen, Jessica P A; Kaushik, Monica; Nicholson, Michael L

    2009-07-01

    Peritonitis is a life-threatening complication of peritoneal dialysis. Peritoneal sclerosis is associated with long-term peritoneal dialysis. The aim of this study was to assess the effect of peritoneal sclerosis on outcomes following laparotomy for peritoneal dialysis peritonitis. A series of 63 consecutive patients underwent laparotomy for peritoneal dialysis peritonitis. Patients were divided into two groups, those with and those without simple peritoneal sclerosis identified at laparotomy. Medical, anaesthetic, and surgical notes were used for data collection. Patients with known encapsulating peritoneal sclerosis were excluded from the study. Patients with simple peritoneal sclerosis had a statistically significant longer duration of peritoneal dialysis. They also had a significantly higher risk of major complications postoperatively and a greater relative risk for mortality. There is an increased prevalence of simple peritoneal sclerosis with long-term peritoneal dialysis. Patients with simple peritoneal sclerosis have higher incidence of postlaparotomy complications. Patients on long-term peritoneal dialysis should be treated aggressively for peritoneal dialysis peritonitis to reduce complication/mortality rates. Evidence of simple peritoneal sclerosis at laparotomy should preclude further peritoneal dialysis.

  6. Depletion of peritoneal CD5+ B cells has no effect on the course of Leishmania major infection in susceptible and resistant mice

    PubMed Central

    BABAI, B; LOUZIR, H; CAZENAVE, P -A; DELLAGI, K

    1999-01-01

    The mouse peritoneal cavity contains a unique self-renewing population of B cells (B-1) derived from fetal liver precursors and mainly producing polyreactive antibodies. Since B-1 cells are a potential source of IL-10, it has been suggested that these cells may contribute to the susceptibility of BALB/c mice to Leishmania major infection by skewing the T helper cell network towards a Th2 phenotype. Accordingly, L. major infection of B cell-defective BALB/c Xid mice (lacking B-1 cells) induces less severe disease compared with controls. However, in addition to the lack of B-1 cells, the Xid immune deficiency is characterized by high endogenous interferon-gamma (IFN-γ) production. In the present study, the role of B-1 cells during L. major infection was investigated in mice experimentally depleted of peritoneal B-1 cells. Six weeks old C57Bl/6 and BALB/c mice were lethally irradiated and reconstituted with autologous bone marrow which allows systemic depletion of B-1 cells. Untreated BALB/c, C57Bl/6 as well as BALB/c Xid mice were used as controls. After reconstitution, mice were injected with L. major amastigotes and progression was followed using clinical, parasitological and immunological criteria. As previously reported, BALB/c Xid mice showed a significant reduction in disease progression. In contrast, despite the dramatic reduction of B-1 cells, B-1-depleted BALB/c mice showed similar or even worse disease progression compared with control BALB/c mice. No differences were found between B-1-depleted or control C57Bl/6 mice. Our data suggest that the B-1 cells do not contribute to the susceptibility of BALB/c mice to L. major infection. PMID:10403925

  7. Mast cells play no role in the pathogenesis of postoperative ileus induced by intestinal manipulation.

    PubMed

    Gomez-Pinilla, Pedro J; Farro, Giovanna; Di Giovangiulio, Martina; Stakenborg, Nathalie; Némethova, Andrea; de Vries, Annick; Liston, Adrian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Rodewald, Hans-Reimwer; Boeckxstaens, Guy E; Matteoli, Gianluca

    2014-01-01

    Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3(Cre/+) , devoid of mast cells but with intact Kit signaling. The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. Kit(W-sh/W-sh) and Cpa3(Cre/+) mice, and by use of the mast cell stabilizer cromolyn. Kit(W-sh/W-sh) mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3(Cre/+) mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3(Cre/+) mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3(+/+) ). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI.

  8. Mast Cells Play No Role in the Pathogenesis of Postoperative Ileus Induced by Intestinal Manipulation

    PubMed Central

    Gomez-Pinilla, Pedro J.; Farro, Giovanna; Di Giovangiulio, Martina; Stakenborg, Nathalie; Némethova, Andrea; de Vries, Annick; Liston, Adrian; Feyerabend, Thorsten B.; Rodewald, Hans-Reimwer; Boeckxstaens, Guy E.; Matteoli, Gianluca

    2014-01-01

    Introduction Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3Cre/+, devoid of mast cells but with intact Kit signaling. Design The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. KitW-sh/W-sh and Cpa3Cre/+ mice, and by use of the mast cell stabilizer cromolyn. Results KitW-sh/W-sh mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3Cre/+ mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3Cre/+ mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3+/+). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Conclusions Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic

  9. Multicystic peritoneal mesothelioma: report of three cases.

    PubMed

    Charfi, S; Chetaille, B; Marcy, M; Turrini, O; Chaise De Maison, C; Delpero, J R; Viret, F; Xerri, L; Monges, G

    2008-10-01

    Multicystic peritoneal mesothelioma is a rare lesion occurring mainly in women in a reproductive age. Its pathogenesis is unclear. We report three cases of multicystic peritoneal mesothelioma in patients that were 28, 38 and 47 years of age (one male, two females). A history of abdominal surgery was reported in two cases. Explorative laparotomy was presumptive of a pseudomyxoma peritoni in two cases, and hyperthermic intraperitoneal chemotherapy was performed. Histological examination demonstrated multicystic lesions with mesothelial cells lining confirmed by immunohistochemical analysis. Unusual findings such as hyperplasia, hobnail features, cytoplasmic vacuolisation and papillary pattern were occasionally noted. The clinical presentation, pathogenesis and pathologic features including differential diagnosis of multicystic peritoneal mesothelioma are discussed.

  10. Detection of disseminated peritoneal tumors by fluorescein diacrylate in mice

    NASA Astrophysics Data System (ADS)

    Harada, Yoshinori; Furuta, Hirokazu; Murayama, Yasutoshi; Dai, Ping; Fujikawa, Yuta; Urano, Yasuteru; Nagano, Tetsuo; Morishita, Koki; Hasegawa, Akira; Takamatsu, Tetsuro

    2009-02-01

    Tumor invasion to the peritoneum is a poor prognostic factor in cancer patients. Accurate diagnosis of disseminated peritoneal tumors is essential to accurate cancer staging. To date, peritoneal washing cytology during laparotomy has been used for diagnosis of peritoneal dissemination of gastrointestinal cancer, but its sensitivity has not been satisfactory. Thus, a more direct approach is indispensable to detect peritoneal dissemination in vivo. Fluorescein diacrylate (FDAcr) is an esterase-sensitive fluorescent probe derived from fluorescein. In cancer cells, fluorescent fluorescein generated by exogenous application of FDAcr selectively deposits owing to its stronger hydrolytic enzyme activity and its lower leakage rate. We examined whether FDAcr can specifically detect disseminated peritoneal tumors in athymic nude mouse models. Intraperitoneally administered FDAcr revealed disseminated peritoneal microscopic tumors not readily recognized on white-light imaging. These results suggest that FDAcr is a useful probe for detecting disseminated peritoneal tumors.

  11. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    NASA Astrophysics Data System (ADS)

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-03-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility.

  12. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    PubMed Central

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-01-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility. PMID:26940301

  13. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media.

    PubMed

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-03-04

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT's stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility.

  14. Tuberculous peritonitis in a case receiving continuous ambulatory peritoneal dialysis(CAPD) treatment

    PubMed Central

    Sahin, Garip; Kiraz, Nuri; Sahin, Ilknur; Soydan, Mehmet; Akgün, Yurdanur

    2004-01-01

    Background Tuberculosis continues to be an important health problem in the world. Besides pulmonary involvement extrapulmonary involvement becomes an affair in developing countries, even in developed countries. Case presentation A thirty-six year old male patient was admitted with abdominal pain, diarrhea, nausea, vomiting and fever which had started one week before. The patient had been followed up with predialisis Chronic Renal Failure(CRF) diagnosis for 4 years and receiving continuous ambulatory peritoneal dialysis (CAPD) treatment for 4 months. In peritoneal fluid, 1600/mm3 cells were detected and 70% of them were polymorphonuclear leukocytosis. The patient begun nonspesific antibiotherapy but no benefit was obtained after 12 days and peritoneal fluid bacterial cultures remained negative. Peritoneal smear was positive for Asid-fast basilli (AFB), and antituberculosis therapy was started with isoniazid, rifampicine, ethambutol and pyrazinamide. After 15 days his peritoneal fluid cell count was decreased and his symptoms were relieved. Peritoneal fluid tuberculosis culture was found positive. Conclusion Considering this case, we think that in patients with CAPD catheter and peritonitis; when peritoneal fluid leukocytes are high and PMNL are dominant, AFB and tuberculosis culture must be investigated besides bacterial culture routinely. PMID:15461815

  15. IGE AND IGGA ANTIBODY-MEDIATED RELEASE OF HISTAMINE FROM RAT PERITONEAL CELLS

    PubMed Central

    Bach, Michael K.; Bloch, Kurt J.; Austen, K. Frank

    1971-01-01

    The optimum conditions for antigen-induced release of histamine in the rat IgE and IgGa antibody-mediated systems were studied in vitro. The IgE antibody-mediated reaction could be separated into two steps: preparation of target cells with antibody and challenge with antigen. The optimal conditions for these two steps were distinctly different. Release of histamine by IgGa antibody and antigen could not be separated into two steps, and the optimal conditions for the total reaction were identical to those of the antigen challenge step of the IgE antibody-mediated system. PMID:4100657

  16. A20 overexpression inhibits lipopolysaccharide-induced NF-κB activation, TRAF6 and CD40 expression in rat peritoneal mesothelial cells.

    PubMed

    Zou, Xun-Liang; Pei, De-An; Yan, Ju-Zhen; Xu, Gang; Wu, Ping

    2014-04-17

    Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD)-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS)-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs). Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF) 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p<0.01). In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p<0.05). However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.

  17. Selective manipulation of the human T-cell receptor repertoire expressed by thymocytes in organ culture.

    PubMed Central

    Merkenschlager, M; Fisher, A G

    1992-01-01

    A recently described organ culture system for human thymocytes is shown to support the generation of a diverse T-cell receptor repertoire in vitro: thymocytes of the alpha beta lineage, including representatives of the V beta families 5.2/5.3, 6.7, and 8, accounted for the majority of T-cell receptor-positive cells throughout a 3-week culture period. Thymocytes bearing gamma delta receptors were also identified, particularly among the CD4 CD8 double-negative subset. The T-cell receptor repertoire expressed in organ culture responded to experimental manipulation with staphylococcal enterotoxins. Staphylococcal enterotoxin D (a powerful activator of human peripheral T cells expressing V beta 5.2/5.3 receptors) caused a marked reduction of V beta 5.2/5.3 expression, as determined with the V beta-specific antibody 42/1C1. Evidence is presented that this loss of V beta 5.2/5.3 expression resulted from the selective deletion of activated thymocytes by apoptosis, in concert with T-cell receptor modulation. These effects of staphylococcal enterotoxin D were specific (since staphylococcal enterotoxin E did not influence V beta 5.2/5.3 expression) and V beta-selective (since expression of V beta 6.7 remained unaffected by staphylococcal enterotoxin D). On the basis of these observations, we suggest that thymic organ culture provides a powerful approach to study the generation of the human T-cell repertoire. Images PMID:1584760

  18. The Pla Protease of Yersinia pestis Degrades Fas Ligand to Manipulate Host Cell Death and Inflammation

    PubMed Central

    Caulfield, Adam J.; Walker, Margaret E.; Gielda, Lindsay M.; Lathem, Wyndham W.

    2014-01-01

    SUMMARY Pneumonic plague is a deadly respiratory disease caused by Yersinia pestis. The bacterial protease Pla contributes to disease progression and manipulation of host immunity, but the mechanisms by which this occurs are largely unknown. Here we show that Pla degrades the apoptotic signaling molecule Fas ligand (FasL) to prevent host cell apoptosis and inflammation. Wild-type Y. pestis, but not a Pla mutant (Δpla), degrades FasL, which results in decreased downstream caspase-3/7 activation and reduced apoptosis. Similarly, lungs of mice challenged with wild-type Y. pestis show reduced levels of FasL and activated caspase-3/7 compared to Δpla infection. Consistent with a role for FasL in regulating immune responses, Δpla infection results in aberrant pro-inflammatory cytokine levels. The loss of FasL or inhibition of caspase activity alters host inflammatory responses and enables enhanced Y. pestis outgrowth in the lungs. Thus, by degrading FasL, Y. pestis manipulates host cell death pathways to facilitate infection. PMID:24721571

  19. Development of a piezo-actuated micro-teleoperation system for cell manipulation.

    PubMed

    Zareinejad, M; Rezaei, S M; Abdullah, A; Shiry Ghidary, S

    2009-03-01

    Intracytoplasmic sperm injection (ICSI) requires long training and has low success rates, primarily due to poor control over the injection force. Making force feedback available to the operator will improve the success rate of the injection task. A macro-micro-teleoperation system bridges the gap between the task performed at the micro-level and the macroscopic movements of the operator. The teleoperation slave manipulator should accurately position a needle to precisely penetrate a cell membrane. Piezoelectric actuators are widely used in micromanipulation applications; however, hysteresis non-linearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as slave manipulator of a teleoperation system. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in a feedforward scheme to cancel out this non-linearity. To deal with the influence of parametric uncertainties, unmodelled dynamics and PI identification error, a perturbation term is added to the slave model and applies a sliding mode-based impedance control with perturbation estimation. The stability of entire system is guaranteed by Llewellyn's absolute stability criterion. The performance of the proposed controller was investigated through experiments for cell membrane penetration. The experimental results verified the accurate position tracking in free motion and simultaneous position and force tracking in contact with a low stiffness environment.

  20. SAHA Suppresses Peritoneal Fibrosis in Mice

    PubMed Central

    Io, Kumiko; Nishino, Tomoya; Obata, Yoko; Kitamura, Mineaki; Koji, Takehiko; Kohno, Shigeru

    2015-01-01

    ♦ Objective: Long-term peritoneal dialysis causes peritoneal fibrosis in submesothelial areas. However, the mechanism of peritoneal fibrosis is unclear. Epigenetics is the mechanism to induce heritable changes without any changes in DNA sequences. Among epigenetic modifications, histone acetylation leads to the transcriptional activation of genes. Recent studies indicate that histone acetylation is involved in the progression of fibrosis. Therefore, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on the progression of peritoneal fibrosis in mice. ♦ Methods: Peritoneal fibrosis was induced by the injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. SAHA, or a dimethylsulfoxide and saline vehicle, was administered subcutaneously every day from the start of the CG injections for 3 weeks. Morphologic peritoneal changes were assessed by Masson’s trichrome staining, and fibrosis-associated factors were assessed by immunohistochemistry. ♦ Results: In CG-injected mice, a marked thickening of the submesothelial compact zone was observed. In contrast, the administration of SAHA suppressed the progression of submesothelial thickening and type III collagen accumulation in CG-injected mice. The numbers of fibroblast-specific protein-1-positive cells and α-smooth muscle actin α-positive cells were significantly decreased in the CG + SAHA group compared to that of the CG group. The level of histone acetylation was reduced in the peritoneum of the CG group, whereas it was increased in the CG + SAHA group. ♦ Conclusions: Our results indicate that SAHA can suppress peritoneal thickening and fibrosis in mice through up-regulation of histone acetylation. These results suggest that SAHA may have therapeutic potential for treating peritoneal fibrosis. PMID:24584598

  1. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells.

    PubMed

    Regan, Andrew D; Cohen, Rebecca D; Whittaker, Gary R

    2009-02-05

    Feline infectious peritonitis (FIP) is an invariably fatal disease of cats caused by systemic infection with a feline coronavirus (FCoV) termed feline infectious peritonitis virus (FIPV). The lethal pathology associated with FIP (granulomatous inflammation and T-cell lymphopenia) is thought to be mediated by aberrant modulation of the immune system due to infection of cells such as monocytes and macrophages. Overproduction of pro-inflammatory cytokines occurs in cats with FIP, and has been suggested to play a significant role in the disease process. However, the mechanism underlying this process remains unknown. Here we show that infection of primary blood-derived feline mononuclear cells by FIPV WSU 79-1146 and FIPV-DF2 leads to rapid activation of the p38 MAPK pathway and that this activation regulates production of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). FIPV-induced p38 MAPK activation and pro-inflammatory cytokine production was inhibited by the pyridinyl imidazole inhibitors SB 203580 and SC 409 in a dose-dependent manner. FIPV-induced p38 MAPK activation was observed in primary feline blood-derived mononuclear cells individually purified from multiple SPF cats, as was the inhibition of TNF-alpha production by pyridinyl imidazole inhibitors.

  2. Effect of Prolyl-Glycyl-Proline (PGP) and Its Acetylated Form (N-AcPGP) on Calcium Level in the Cytoplasm of Rat Peritoneal Mast Cells.

    PubMed

    Bondarenko, N S; Kurenkova, A D; Nikishin, D A; Umarova, B A

    2016-08-01

    Tripeptide glycyl-prolyl-proline (PGP), a regulatory peptide of the glyproline family, possesses a pronounced anti-inflammatory effect primarily due to its ability to prevent secretion of the proinflammatory mediator histamine by rat peritoneal mast cells. Activation of mast cell with synacthen (ACTH1-24) and substance 48/80 leads to an increase in intracellular calcium concentration. Pretreatment of mast cells with PGP prevented calcium entry into the cytoplasm from both intercellular space and intracellular stores. Acetylated peptide (N-AcPGP) produced a similar effect on histamine release and intracellular calcium content in mast cells activated with synacthen. These fin