Science.gov

Sample records for manipulating subject mass

  1. The Effect of Manipulating Subject Mass on Lower Extremity Torque Patterns During Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Cromwell, Ronita L.; Hagan, R. Donald

    2007-01-01

    During locomotion, humans adapt their motor patterns to maintain coordination despite changing conditions (Reisman et al., 2005). Bernstein (1967) proposed that in addition to the present state of a given joint, other factors, including limb inertia and velocity, must be taken into account to allow proper motion to occur. During locomotion with added mass counterbalanced using vertical suspension to maintain body weight, vertical ground reaction forces (GRF's) increase during walking but decrease during running, suggesting that adaptation may be velocity-specific (De Witt et al., 2006). It is not known, however, how lower extremity joint torques adapt to changes in inertial forces. The purpose of this investigation was to examine the effects of increasing body mass while maintaining body weight upon lower-limb joint torque during walking and running. We hypothesized that adaptations in joint torque patterns would occur with the addition of body mass.

  2. Kinematic manipulation of molecular chains subject to rigid constraints

    SciTech Connect

    Manocha, D.; Zhu, Yunshan

    1994-12-31

    We present algorithms for kinematic manipulation of molecular chains subject to fixed bond lengths and bond angles. They are useful for calculating conformations of a molecule subject to geometric constraints, such as those derived from two-dimensional NMR experiments. Other applications include searching out the full range of conformations available to a molecule such as cyclic configurations. We make use of results from robot kinematics and recently developed algorithms for solving polynomial systems. In particular, we model the molecule as a serial chain using the Denavit-Hartenberg formulation and reduce these problems to inverse kinematics of a serial chain. We also highlight the relationship between molecular embedding problems and inverse kinematics. As compared to earlier methods, the main advantages of the kinematic formulation are its generality to all molecular chains without any restrictions on the geometry and efficiency in terms of performance. The algorithms give us real time performance (order of tens of milliseconds) on smaller chains and are applicable to all chains.

  3. Pharmacology of manipulating lean body mass

    PubMed Central

    Sepulveda, Patricio V; Bush, Ernest D; Baar, Keith

    2015-01-01

    Summary Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts.Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health.With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development.The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader. PMID:25311629

  4. Spatial operator factorization and inversion of the manipulator mass matrix

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.

  5. Immediate effects of bilateral manipulation of talocrural joints on standing stability in healthy subjects.

    PubMed

    Alburquerque-Sendín, Francisco; Fernández-de-las-Peñas, César; Santos-del-Rey, Miguel; Martín-Vallejo, Francisco Javier

    2009-02-01

    The purpose of this study was to investigate the immediate effects of bilateral talocrural joint manipulation on standing stability in healthy subjects. Sixty-two healthy subjects, 16 males and 46 females, aged from 18 to 32 years old (mean: 21+/-3 years old) participated in the study. Subjects were randomly divided into two groups: an intervention group (n=32), who received manipulation of bilateral talocrural joints and a control group (n=30) which did not receive any intervention. Baropodometric and stabilometric evaluations were assessed pre- and 5 min post-intervention by an assessor blinded to the treatment allocation. Intra-group and inter-group comparisons were analysed using appropriate parametric tests. The results indicated that changes on the X coordinate range, length of motion, and mean speed approximated to statistical significance (P=0.06), and changes on the Y coordinate range reached statistical significance (P=0.02). Average X and Y motions, and anterior-posterior or lateral velocities did not show significant differences. Our results showed that bilateral thrust manipulation of the talocrural joint did not modify standing stability, that is, the behavioural pattern of the projection of the centre of pressure, in healthy subjects.

  6. Preliminary Structural Design Considerations and Mass Efficiencies for Lunar Surface Manipulator Concepts

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M.; Doggett, William R.

    2008-01-01

    The mass and sizing characteristics of manipulators for Lunar and Mars planetary surface applications are investigated by analyzing three structural configurations: a simple cantilevered boom with a square tubular cross-section; a hybrid cable/boom configuration with a square tubular cross-section support structure; and a hybrid cable/boom configuration with a square truss cross-section support structure. Design procedures are developed for the three configurations and numerical examples are given. A new set of performance parameters are developed that relate the mass of manipulators and cranes to a loading parameter. These parameters enable the masses of different manipulator configurations to be compared over a wide range of design loads and reach envelopes (radii). The use of these parameters is demonstrated in the form of a structural efficiency chart using the newly considered manipulator configurations. To understand the performance of Lunar and Mars manipulators, the design procedures were exercised on the three manipulator configurations assuming graphite/epoxy materials for the tubes and trusses. It is also assumed that the actuators are electric motor, gear reduction systems. Numerical results for manipulator masses and sizes are presented for a variety of manipulator reach and payload mass capabilities. Results are presented that demonstrate the sensitivity of manipulator mass to operational radius, tip force, and actuator efficiency. The effect of the value of gravitational force on the ratio of manipulator-mass to payload-mass is also shown. Finally, results are presented to demonstrate the relative mass reduction for the use of graphite/epoxy compared to aluminum for the support structure.

  7. Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspective.

    PubMed

    Pfeiffer, Christian; Schmutz, Valentin; Blanke, Olaf

    2014-12-01

    Self-consciousness is based on multisensory signals from the body. In full-body illusion (FBI) experiments, multisensory conflict was used to induce changes in three key aspects of bodily self-consciousness (BSC): self-identification (which body 'I' identify with), self-location (where 'I' am located), and first-person perspective (from where 'I' experience the world; 1PP). Here, we adapted a previous FBI protocol in which visuotactile stroking was administered by a robotic device (tactile stroking) and simultaneously rendered on the back of a virtual body (visual stroking) that participants viewed on a head-mounted display as if filmed from a posterior viewpoint of a camera. We compared the effects of two different visuospatial viewpoints on the FBI and thereby on these key aspects of BSC. During control manipulations, participants saw a no-body object instead of a virtual body (first experiment) or received asynchronous versus synchronous visuotactile stroking (second experiment). Results showed that within-subjects visuospatial viewpoint manipulations affected the subjective 1PP ratings if a virtual body was seen but had no effect for viewing a non-body object. However, visuospatial viewpoint had no effect on self-identification, but depended on the viewed object and visuotactile synchrony. Self-location depended on visuospatial viewpoint (first experiment) and visuotactile synchrony (second experiment). Our results show that the visuospatial viewpoint from which the virtual body is seen during FBIs modulates the subjective 1PP and that such viewpoint manipulations contribute to spatial aspects of BSC. We compare the present data with recent data revealing vestibular contributions to the subjective 1PP and discuss the multisensory nature of BSC and the subjective 1PP.

  8. Effect of Painful and Non-Painful Sensorimotor Manipulations on Subjective Body Midline

    PubMed Central

    Bouffard, Jason; Gagné, Martin; Mercier, Catherine

    2013-01-01

    Patients with chronic pain often show disturbances in their body perception. Understanding the exact role played by pain is however complex, as confounding factors can contribute to the observed deficits in these clinical populations. To address this question, acute experimental pain was used to test the effect of lateralized pain on body perception in healthy subjects. Subjects were asked to indicate the position of their body midline (subjective body midline, SBM) by stopping a moving luminescent dot projected on a screen placed in front of them, in a completely dark environment. The effect of other non-painful sensorimotor manipulations was also tested to assess the potential unspecific attentional effects of stimulating one side of the body. SBM judgment was made in 17 volunteers under control and three experimental conditions: (1) painful (heat) stimulation; (2) non-painful vibrotactile stimulation; and (3) muscle contraction. The effects of the stimulated side and the type of trial (control vs. experimental condition), were tested separately for each condition with a 2 × 2 repeated measures ANOVA. The analyses revealed a significant interaction in both pain (p = 0.05) and vibration conditions (p = 0.04). Post hoc tests showed opposite effects of pain and vibration. Pain applied on the right arm deviated the SBM toward the right (stimulated) side (p = 0.03) while vibration applied on the left arm deviated the SBM toward the right (not stimulated) side (p = 0.01). These opposite patterns suggest that the shift in SBM is likely to be specifically linked to the stimulation modality. It is concluded that acute experimental pain can induce an SBM shift toward the stimulated side, which might be functionally beneficial to protect the painful area of the body. Interestingly, it appears to be easier to bias SBM toward the right side, regardless of the modality and of the stimulated side. PMID:23504448

  9. Tissue Damage Markers after a Spinal Manipulation in Healthy Subjects: A Preliminary Report of a Randomized Controlled Trial

    PubMed Central

    Achalandabaso, A.; Plaza-Manzano, G.; Lomas-Vega, R.; Martínez-Amat, A.; Camacho, M. V.; Gassó, M.; Hita-Contreras, F.; Molina, F.

    2014-01-01

    Spinal manipulation (SM) is a manual therapy technique frequently applied to treat musculoskeletal disorders because of its analgesic effects. It is defined by a manual procedure involving a directed impulse to move a joint past its physiologic range of movement (ROM). In this sense, to exceed the physiologic ROM of a joint could trigger tissue damage, which might represent an adverse effect associated with spinal manipulation. The present work tries to explore the presence of tissue damage associated with SM through the damage markers analysis. Thirty healthy subjects recruited at the University of Jaén were submitted to a placebo SM (control group; n = 10), a single lower cervical manipulation (cervical group; n = 10), and a thoracic manipulation (n = 10). Before the intervention, blood samples were extracted and centrifuged to obtain plasma and serum. The procedure was repeated right after the intervention and two hours after the intervention. Tissue damage markers creatine phosphokinase (CPK), lactate dehydrogenase (LDH), C-reactive protein (CRP), troponin-I, myoglobin, neuron-specific enolase (NSE), and aldolase were determined in samples. Statistical analysis was performed through a 3 × 3 mixed-model ANOVA. Neither cervical manipulation nor thoracic manipulation did produce significant changes in the CPK, LDH, CRP, troponin-I, myoglobin, NSE, or aldolase blood levels. Our data suggest that the mechanical strain produced by SM seems to be innocuous to the joints and surrounding tissues in healthy subjects. PMID:25609853

  10. Tissue damage markers after a spinal manipulation in healthy subjects: a preliminary report of a randomized controlled trial.

    PubMed

    Achalandabaso, A; Plaza-Manzano, G; Lomas-Vega, R; Martínez-Amat, A; Camacho, M V; Gassó, M; Hita-Contreras, F; Molina, F

    2014-01-01

    Spinal manipulation (SM) is a manual therapy technique frequently applied to treat musculoskeletal disorders because of its analgesic effects. It is defined by a manual procedure involving a directed impulse to move a joint past its physiologic range of movement (ROM). In this sense, to exceed the physiologic ROM of a joint could trigger tissue damage, which might represent an adverse effect associated with spinal manipulation. The present work tries to explore the presence of tissue damage associated with SM through the damage markers analysis. Thirty healthy subjects recruited at the University of Jaén were submitted to a placebo SM (control group; n = 10), a single lower cervical manipulation (cervical group; n = 10), and a thoracic manipulation (n = 10). Before the intervention, blood samples were extracted and centrifuged to obtain plasma and serum. The procedure was repeated right after the intervention and two hours after the intervention. Tissue damage markers creatine phosphokinase (CPK), lactate dehydrogenase (LDH), C-reactive protein (CRP), troponin-I, myoglobin, neuron-specific enolase (NSE), and aldolase were determined in samples. Statistical analysis was performed through a 3 × 3 mixed-model ANOVA. Neither cervical manipulation nor thoracic manipulation did produce significant changes in the CPK, LDH, CRP, troponin-I, myoglobin, NSE, or aldolase blood levels. Our data suggest that the mechanical strain produced by SM seems to be innocuous to the joints and surrounding tissues in healthy subjects.

  11. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  12. Minimum acceleration with constraints of center of mass: a unified model for arm movements and object manipulation.

    PubMed

    Leib, Raz; Karniel, Amir

    2012-09-01

    Daily interaction with the environment consists of moving with or without objects. Increasing interest in both types of movements drove the creation of computational models to describe reaching movements and, later, to describe a simplified version of object manipulation. The previously suggested models for object manipulation rely on the same optimization criteria as models for reaching movements, yet there is no single model accounting for both tasks that does not require reminimization of the criterion for each environment. We suggest a unified model for both cases: minimum acceleration with constraints for the center of mass (MACM). For point-to-point reaching movement, the model predicts the typical rectilinear path and bell-shaped speed profile as previous criteria. We have derived the predicted trajectories for the case of manipulating a mass-on-spring and show that the predicted trajectories match the observations of a few independent previous experimental studies of human arm movement during a mass-on-spring manipulation. Moreover, the previously reported "unusual" trajectories are also well accounted for by the proposed MACM. We have tested the predictions of the MACM model in 3 experiments with 12 subjects, where we demonstrated that the MACM model is equal or better (Wilcoxon sign-rank test, P < 0.001) in accounting for the data than three other previously proposed models in the conditions tested. Altogether, the MACM model is currently the only model accounting for reaching movements with or without external degrees of freedom. Moreover, it provides predictions about the intermittent nature of the neural control of movements and about the dominant control variable.

  13. Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects

    PubMed Central

    2014-01-01

    Background Hand synergies have been extensively studied over the last few decades. Objectives of such research are numerous. In neuroscience, the aim is to improve the understanding of motor control and its ability to reduce the control dimensionality. In applied research fields like robotics the aim is to build biomimetic hand structures, or in prosthetics to design more performant underactuated replacement hands. Nevertheless, most of the synergy schemes identified to this day have been obtained from grasping experiments performed with one single (generally dominant) hand to objects placed in a given position and orientation in space. Aiming at identifying more generic synergies, we conducted similar experiments on postural synergy identification during bimanual manipulation of various objects in order to avoid the factors due to the extrinsic spatial position of the objects. Methods Ten healthy naive subjects were asked to perform a selected “grasp-give-receive” task with both hands using 9 objects. Subjects were wearing Cyberglove Ⓒ on both hands, allowing a measurement of the joint posture (15 degrees of freedom) of each hand. Postural synergies were then evaluated through Principal Component Analysis (PCA). Matches between the identified Principal Components and the human hand joints were analyzed thanks to the correlation matrix. Finally, statistical analysis was performed on the data in order to evaluate the effect of some specific variables on the hand synergies: object shape, hand side (i.e., laterality) and role (giving or receiving hand). Results Results on PCs are consistent with previous literature showing that a few principal components might be sufficient to describe a large variety of different grasps. Nevertheless some simple and strong correlations between PCs and clearly identified sets of hand joints were obtained in this study. In addition, these groupings of DoF corresponds to well-defined anatomo-functional finger joints according to

  14. The robust application of computed torque control to manipulators subject to saturation

    NASA Technical Reports Server (NTRS)

    Lokshin, Anatole; Lee, Sukhan

    1988-01-01

    A technique is presented which allows use of an exact linearization (EL) control for robot manipulators for those cases when actuator saturation cannot be ignored. A modification of a nonlinear dynamic compensation technique that has been successfully used in the feedback amplifiers is applied to a case of a nonredundant manipulator. Computer simulation for a two-link planar robot arm illustrates the advantages of the modified computed torque technique compared to the traditional linear full state control.

  15. The impact of lower extremity mass and inertia manipulation on sprint kinematics.

    PubMed

    Bennett, John P; Sayers, Mark G L; Burkett, Brendan J

    2009-12-01

    Resistance sprint training is a sprint-specific training protocol commonly employed by athletes and coaches to enhance sprint performance. This research quantified the impact of lower extremity mass and inertia manipulation on key temporal and kinematic variables associated with sprint performance. A 3-dimensional analysis of 40 m sprinting was conducted on 8 elite sprinters under normal conditions and resisted sprint training. Results of the study showed that lower extremity additional mass training (at 10% individual segment weight) led to a significant reduction in sprint time for both the 10-m to 20-m and the 30-m to 40-m splits and the total 40 m measure. The stride velocity throughout the 20-m to 30-m phase of the sprint trials was also shown to be significantly reduced in the lower extremity mass and inertia manipulation condition. Importantly, no significant differences were observed across the remaining spatiotemporal variables of stride length, stride frequency, total stride time, and ground contact time. For coaches and athletes, the addition of specific lower extremity mass could improve the athlete's sprint performance without any measured effect on the technique of highly trained elite sprinters.

  16. Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites.

    PubMed

    Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2013-02-01

    A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions.

  17. Temperature effects on mass-scaling exponents in colonial animals: a manipulative test.

    PubMed

    Barneche, Diego R; White, Craig R; Marshall, Dustin J

    2017-01-01

    Body size and temperature are fundamental drivers of ecological processes because they determine metabolic rates at the individual level. Whether these drivers act independently on individual-level metabolic rates remains uncertain. Most studies of intraspecific scaling of unitary organisms must rely on preexisting differences in size to examine its relationship with metabolic rate, thereby potentially confounding size-correlated traits (e.g., age, nutrition) with size, which can affect metabolic rate. Here, we use a size manipulation approach to test whether metabolic mass scaling and temperature dependence interact in four species (two phyla) of colonial marine invertebrates. Size manipulation in colonial organisms allows tests of how ecological processes (e.g., predation) affect individual physiology and consequently population- and community-level energy flux. Body mass and temperature interacted in two species, with one species exhibiting decreased and the other increased mass-scaling exponents with increasing temperature. The allometric scaling of metabolic rate that we observe in three species contrasts with the isometric scaling of ingestion rates observed in some colonial marine invertebrates. Thus, we suggest that the often observed competitive superiority of colonial over unitary organisms may arise because the difference between energy intake and expenditure increases more strongly with size in colonial organisms.

  18. Effects of Lumbosacral Manipulation on Isokinetic Strength of the Knee Extensors and Flexors in Healthy Subjects: A Randomized, Controlled, Single-Blind Crossover Trial

    PubMed Central

    Sanders, Grant D.; Nitz, Arthur J.; Abel, Mark G.; Symons, T. Brock; Shapiro, Robert; Black, W. Scott; Yates, James W.

    2015-01-01

    Objective The purpose of this study was to investigate the effect of manual manipulations targeting the lumbar spine and/or sacroiliac joint on concentric knee extension and flexion forces. Torque production was measured during isometric and isokinetic contractions. Methods This was a randomized, controlled, single-blind crossover design with 21 asymptomatic, college-aged subjects who had never received spinal manipulation. During 2 separate sessions, subjects’ peak torques were recorded while performing maximal voluntary contractions on an isokinetic dynamometer. Isometric knee extension and flexion were recorded at 60° of knee flexion, in addition to isokinetic measurements obtained at 60°/s and 180°/s. Baseline measurements were acquired before either treatment form of lumbosacral manipulation or sham manipulation, followed by identical peak torque measurements within 5 and 20 minutes posttreatment. Data were analyzed with a repeated measures analysis of variance. Results A statistically significant difference did not occur between the effects of lumbosacral manipulation or the sham manipulation in the percentage changes of knee extension and flexion peak torques at 5 and 20 minutes posttreatment. Similar, nonsignificant results were observed in the overall percentage changes of isometric contractions (spinal manipulation 4.0 ± 9.5 vs sham 1.2 ± 6.3, P = .067), isokinetic contractions at 60°/s (spinal manipulation − 4.0 ± 14.2 vs sham − 0.3 ± 8.2, P = .34), and isokinetic contractions at 180°/s (spinal manipulation − 1.4 ± 13.9 vs sham − 5.5 ± 20.0, P = .18). Conclusion The results of the current study suggest that spinal manipulation does not yield an immediate strength-enhancing effect about the knee in healthy, college-aged subjects when measured with isokinetic dynamometry. PMID:26793035

  19. Manipulation of responsibility in non-clinical subjects: does expectation of failure exacerbate obsessive-compulsive behaviors?

    PubMed

    Mancini, Francesco; D'Olimpio, Francesca; Cieri, Luca

    2004-04-01

    An exaggerated sense of responsibility is currently considered as the ground for the obsessive-compulsive disorder. Obsessive-like behaviors, such as hesitations and checks, may be induced in non-clinical subjects by increasing perceived responsibility (i.e., perceived personal influence on negative outcomes). In line with Salkovskis' proposal [The cognitive approach to anxiety: threat beliefs, safety-seeking behavior, and the special case of health anxiety and obsessions, in: P.M. Salkovskis (Ed.), Frontiers of Cognitive Therapy, Guilford, New York], we tested the hypothesis that reduced coping abilities (i.e., an exaggerated expectation of failure) are another effectual factor contributing to obsessive-like behaviors. We examined 47 normal volunteers in a visuo-spatial memory task, and manipulated their perceived personal influence and expectation of failure by giving differential instructions and feedback about their performance. Increase of perceived personal influence induced slowness, hesitations and checks without enhancing performance. Expectation of failure exacerbated obsessive-like behaviors, again without affecting performance. These results confirm the role of responsibility in obsessive-like behavior and indicate that reduced coping abilities may contribute to worsen dysfunctional strategies.

  20. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2006-05-01

    The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

  1. New frontiers for mass spectrometry based upon structures for lossless ion manipulations.

    PubMed

    Ibrahim, Yehia M; Hamid, Ahmed M; Deng, Liulin; Garimella, Sandilya V B; Webb, Ian K; Baker, Erin S; Smith, Richard D

    2017-03-06

    Structures for lossless ion manipulations (SLIM) provide a new paradigm for efficient, complex and extended gas phase ion manipulations. SLIM are created from electric fields generated by the application of DC and RF potentials to arrays of electrodes patterned on two parallel surfaces. The electric fields provide lossless ion manipulations, including effective ion transport and storage. SLIM modules have been developed using both constant and oscillatory electric fields (e.g. traveling waves) to affect the ion motion. Ion manipulations demonstrated to date with SLIM include: extended trapping, ion selection, ion dissociation, and ion mobility spectrometry (IMS) separations achieving unprecedented ultra high resolution. SLIM thus provide the basis for previously impractical manipulations, such as very long path length ion mobility separations where ions traverse a serpentine path multiple times, as well as new capabilities that extend the utility of these developments based on temporal and spatial compression of ion mobility separations and other ion distributions. The evolution of SLIM devices developed over the last three years is reviewed and we provide examples of various ion manipulations performed, and briefly discuss potential applications and new directions.

  2. Ion Mobility Separations of Isomers based upon Long Path Length Structures for Lossless Ion Manipulations Combined with Mass Spectrometry

    SciTech Connect

    Deng, Liulin; Ibrahim, Yehia M.; Baker, Erin S.; Aly, Noor A.; Hamid, Ahmed M.; Zhang, Xing; Zheng, Xueyun; Garimella, Sandilya V. B.; Webb, Ian K.; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Smith, Richard D.

    2016-07-01

    Mass spectrometry (MS)-based multi-omic measurements, including proteomics, metabolomics, lipidomics, and glycomics, are increasingly transforming our ability to characterize and understand biological systems, but, presently have limitations due to the chemical diversity and range of abundances of biomolecules in complex samples. Advances addressing these challenges increasingly are based upon the ability to quickly separate, react and otherwise manipulate sample components for analysis by MS. Here we report on a new approach using Structures for Lossless Ion Manipulations (SLIM) to enable long serpentine path ion mobility spectrometry (IMS) separations followed by MS analyses. This approach provides previously unachieved mobility biomolecule isomer separations for biomolecular species, in conjunction with more effective ion utilization, and producing a basis for the improved characterization of very small samples.

  3. Mass-marking of otoliths of lake trout sac fry by temperature manipulation

    USGS Publications Warehouse

    Bergstedt, R.A.; Eshenroder, R.L.; Bowen, C. II; Seelye, J.G.; Locke, J.C.; Parker, N.C.; Giorgi, A.E.; Heidenger, R.C.; Jester, D. B.; Prince, E.D.; Winans, G.A.

    1990-01-01

    The otoliths of 676,000 sac fry of lake trout Salvelinus namaycush in 1986, and of 1,100,000 in 1987, were marked by daily manipulation of water temperature. The fish were stocked into Lake Huron in the spring. Otolith marks consisted of groups of daily growth rings accentuated into recognizable patterns by steadily raising and lowering the temperature about IOA?C (from a base of 1-4A?C) over 14h. In 1987, groups of marked and control fish were held for 6 months. The otoliths were removed from samples of the fish, embedded in epoxy, thin-sectioned by grinding in the sagittal plane, etched, and viewed by using a combination of a compound microscope (400-1000x) and a video enhancement system. One or more readable otolith sections were obtained from 39 of a sample of 40 fish. Three independent readers examined 41 otoliths for marks and correctly classified the otoliths, with accuracies of 85, 98,and 100%, as being from marked or unmarked fish. The exact number of rings in a recognizable pattern sometimes differed from the number of temperature cycles to which the fish were exposed. Counts of daily rings within groups of six rings varied less than counts within groups of three rings.

  4. Mass-marking of otoliths of lake trout sac fry by temperature manipulation

    USGS Publications Warehouse

    Bergstedt, Roger A.; Eshenroder, Randy L.; Bowen, Charles; Seelye, James G.; Locke, Jeffrey C.

    1990-01-01

    The otoliths of 676,000 sac fry of lake trout Salvelinus namaycush in 1986, and of 1,100,000 in 1987, were marked by daily manipulation of water temperature. The fish were stocked into Lake Huron in the spring. Otolith marks consisted of groups of daily growth rings accentuated into recognizable patterns by steadily raising and lowering the temperature about 10 degrees C (from a base of 1-4 degrees C) over 14 h. In 1987, groups of marked and control fish were held for 6 months. The otoliths were removed from samples of the fish, embedded in epoxy, thin sectioned by grinding in the sagittal plane, etched, and viewed by using a combination of a compound microscope (400-1000x) and a video enhancement system. One or more readable otolith sections were obtained from 39 of a sample of 40 fish. Three independent readers examined 41 otoliths for marks and correctly classified the otoliths, with accuracies of 85, 98, and 100%, as being from marked or unmarked fish. The exact number of rings in a recognizable pattern sometimes differed from the number of temperature cycles to which the fish were exposed. Counts of daily rings within groups of six rings varied less than counts within groups of rings.

  5. Underwater manipulator

    DOEpatents

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  6. Underwater manipulator

    DOEpatents

    Schrum, Phillip B.; Cohen, George H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  7. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1992-12-31

    This invention is comprised of a self-contained, waterproof, water-submersible, remote-controlled apparatus provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer {plus_minus} 45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer {plus_minus} 10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  8. Apparent mass of the human body in the vertical direction: Inter-subject variability

    NASA Astrophysics Data System (ADS)

    Toward, Martin G. R.; Griffin, Michael J.

    2011-02-01

    The biodynamic responses of the seated human body to whole-body vibration vary considerably between people, but the reasons for the variability are not well understood. This study was designed to determine how the physical characteristics of people affect their apparent mass and whether inter-subject variability is influenced by the magnitude of vibration and the support of a seat backrest. The vertical apparent masses of 80 seated adults (41 males and 39 females aged 18-65) were measured at frequencies between 0.6 and 20 Hz with four backrest conditions (no backrest, upright rigid backrest, reclined rigid backrest, reclined foam backrest) and with three magnitudes of random vibration (0.5, 1.0 and 1.5 m s -2 rms). Relationships between subject physical characteristics (age, gender, weight, and anthropometry) and subject apparent mass were investigated with multiple regression models. The strongest predictor of the modulus of the vertical apparent mass at 0.6 Hz, at resonance, and at 12 Hz was body weight, with other factors having only a marginal effect. After correction for other variables, the principal resonance frequency was most consistently associated with age and body mass index. As age increased from 18 to 65 years, the resonance frequency increased by up to 1.7 Hz, and when the body mass index was increased from 18 to 34 kg m -2 the resonance frequency decreased by up to 1.7 Hz. These changes were greater than the 0.9-Hz increase in resonance frequency between sitting without a backrest and sitting with a reclined rigid backrest, and greater than the 1.0-Hz reduction in resonance frequency when the magnitude of vibration increased from 0.5 to 1.5 m s -2 rms. It is concluded that the effects of age, body mass index, posture, vibration magnitude, and weight should be taken into account when defining the vertical apparent mass of the seated human body.

  9. Diet of southern toads (Bufo terrestris) in loblolly pine (Pinus taeda) stands subject to coarse woody debris manipulations.

    SciTech Connect

    Moseley, Kurtis R.; Steven B. Castleberry; James L. Hanula; Mark Ford.

    2005-04-01

    ABSTRACT In the southeastern United States, coarse woody debris (CWD) typically harbors high densities of invertebrates. However, its importance as a foraging substrate for southeastern amphibians is relatively unknown. We examined effects of CWD manipulations on diet composition of southern toads (Bufo terrestris) in upland loblolly pine (Pinus taeda) stands in the Coastal Plain of South Carolina. Twelve 9.3-ha plots were assigned one of the following treatments: removal- all CWD _10 cm in diameter and _60 cm long removed; downed- five-fold increase in volume of down CWD; and unmanipulated control stands. We collected southern toads _4 cm snout-vent length (SVL) during 14 d sampling periods in June and October 2002, June 2003 and during a 28 d sampling period in April 2003. We collected 80, 36 and 35 southern toads in control, downed and removal treatments, respectively. We found no difference in relative abundance or frequency of invertebrate groups consumed among treatments (P.0.05). Average body weight (g), SVL (cm) and stomach content weight (g wet) of individuals also were similar among treatments (P . 0.05). The role of CWD as a foraging substrate for southern toads in loblolly pine stands of the southeastern Coastal Plain may be negligible, at least in the early stages of decay.

  10. Design and Field Test of a Mass Efficient Crane for Lunar Payload Handling and Inspection: The Lunar Surface Manipulation System

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; King, Bruce D.; Jones, Thomas Carno; Dorsey, John T.; Mikulas, Martin M.

    2008-01-01

    Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with

  11. Using pliers in assembly work: short and long task duration effects of gloves on hand performance capabilities and subjective assessments of discomfort and ease of tool manipulation.

    PubMed

    Dianat, Iman; Haslegrave, Christine M; Stedmon, Alex W

    2012-03-01

    The present study investigated the effects of wearing typical industrial gloves on hand performance capabilities (muscle activity, wrist posture, touch sensitivity, hand grip and forearm torque strength) and subjective assessments for an extended duration of performing a common assembly task, wire tying with pliers, which requires a combination of manipulation and force exertion. Three commercially available gloves (cotton, nylon and nitrile gloves) were tested and compared with a bare hand condition while participants performed the simulated assembly task for 2 h. The results showed that wearing gloves significantly increased the muscle activity, wrist deviation, and discomfort whilst reducing hand grip strength, forearm torque strength and touch sensitivity. The combined results showed that the length of time for which gloves are worn does affect hand performance capability and that gloves need to be evaluated in a realistic working context. The results are discussed in terms of selection of gloves for industrial assembly tasks involving pliers.

  12. Comparative short-term effects of two thoracic spinal manipulation techniques in subjects with chronic mechanical neck pain: a randomized controlled trial.

    PubMed

    Casanova-Méndez, Amaloha; Oliva-Pascual-Vaca, Angel; Rodriguez-Blanco, Cleofás; Heredia-Rizo, Alberto Marcos; Gogorza-Arroitaonandia, Kristobal; Almazán-Campos, Ginés

    2014-08-01

    Spinal Manipulation (SM) has been purported to decrease pain and improve function in subjects with non-specific neck pain. Previous research has investigated which individuals with non-specific neck pain will be more likely to benefit from SM. It has not yet been proven whether or not the effectiveness of thoracic SM depends on the specific technique being used. This double-blind randomized trial has compared the short-term effects of two thoracic SM maneuvers in subjects with chronic non-specific neck pain. Sixty participants were distributed randomly into two groups. One group received the Dog technique (n = 30), with the subject in supine position, and the other group underwent the Toggle-Recoil technique (n = 30), with the participant lying prone, T4 being the targeted area in both cases. Evaluations were made of self-reported neck pain (Visual Analogue Scale); neck mobility (Cervical Range of Motion); and pressure pain threshold at the cervical and thoracic levels (C4 and T4 spinous process) and over the site described for location of tense bands of the upper trapezius muscle. Measurements were taken before intervention, immediately afterward, and 20 min later. Both maneuvers improved neck mobility and mechanosensitivity and reduced pain in the short term. No major or clinical differences were found between the groups. In the between-groups comparison slightly better results were observed in the Toggle-Recoil group only for cervical extension (p = 0.009), right lateral flexion (p = 0.004) and left rotation (p < 0.05).

  13. Variations of high frequency parameter of heart rate variability following osteopathic manipulative treatment in healthy subjects compared to control group and sham therapy: randomized controlled trial

    PubMed Central

    Ruffini, Nuria; D'Alessandro, Giandomenico; Mariani, Nicolò; Pollastrelli, Alberto; Cardinali, Lucia; Cerritelli, Francesco

    2015-01-01

    Context: Heart Rate Variability (HRV) indicates how heart rate changes in response to inner and external stimuli. HRV is linked to health status and it is an indirect marker of the autonomic nervous system (ANS) function. Objective: To investigate the influence of osteopathic manipulative treatment (OMT) on cardiac autonomic modulation in healthy subjects, compared with sham therapy and control group. Methods: Sixty-six healthy subjects, both male and female, were included in the present 3-armed randomized placebo controlled within subject cross-over single blinded study. Participants were asymptomatic adults (26.7 ± 8.4 y, 51% male, BMI 18.5 ± 4.8), both smokers and non-smokers and not on medications. At enrollment subjects were randomized in three groups: A, B, C. Standardized structural evaluation followed by a patient need-based osteopathic treatment was performed in the first session of group A and in the second session of group B. Standardized evaluation followed by a protocoled sham treatment was provided in the second session of group A and in the first session of group B. No intervention was performed in the two sessions of group C, acting as a time-control. The trial was registered on clinicaltrials.gov identifier: NCT01908920. Main Outcomes Measures: HRV was calculated from electrocardiography before, during and after the intervention, for a total amount time of 25 min and considering frequency domain as well as linear and non-linear methods as outcome measures. Results: OMT engendered a statistically significant increase of parasympathetic activity, as shown by High Frequency power (p < 0.001), expressed in normalized and absolute unit, and possibly decrease of sympathetic activity, as revealed by Low Frequency power (p < 0.01); results also showed a reduction of Low Frequency/High Frequency ratio (p < 0.001) and Detrended fluctuation scaling exponent (p < 0.05). Conclusions: Findings suggested that OMT can influence ANS activity increasing

  14. Vibration control of bridge subjected to multi-axle vehicle using multiple tuned mass friction dampers

    NASA Astrophysics Data System (ADS)

    Pisal, Alka Y.; Jangid, R. S.

    2016-06-01

    The effectiveness of tuned mass friction damper (TMFD) in reducing undesirable resonant response of the bridge subjected to multi-axle vehicular load is investigated. A Taiwan high-speed railway (THSR) bridge subjected to Japanese SKS (Salkesa) train load is considered. The bridge is idealized as a simply supported Euler-Bernoulli beam with uniform properties throughout the length of the bridge, and the train's vehicular load is modeled as a series of moving forces. Simplified model of vehicle, bridge and TMFD system has been considered to derive coupled differential equations of motion which is solved numerically using the Newmark's linear acceleration method. The critical train velocities at which the bridge undergoes resonant vibration are investigated. Response of the bridge is studied for three different arrangements of TMFD systems, namely, TMFD attached at mid-span of the bridge, multiple tuned mass friction dampers (MTMFD) system concentrated at mid-span of the bridge and MTMFD system with distributed TMFD units along the length of the bridge. The optimum parameters of each TMFD system are found out. It has been demonstrated that an optimized MTMFD system concentrated at mid-span of the bridge is more effective than an optimized TMFD at the same place with the same total mass and an optimized MTMFD system having TMFD units distributed along the length of the bridge. However, the distributed MTMFD system is more effective than an optimized TMFD system, provided that TMFD units of MTMFD system are distributed within certain limiting interval and the frequency of TMFD units is appropriately distributed.

  15. Subjective Norms as a Driver of Mass Communication Students' Intentions to Adopt New Media Production Technologies

    ERIC Educational Resources Information Center

    Hopp, Toby M.

    2013-01-01

    In this study, the impact of subjective norms on mass communication students' intentions to adopt new media production technologies was explored. The results indicated that subjective norms play an instrumental role in explaining behavioral intentions to adopt new media technologies. Moreover, the data indicated that public relations students…

  16. Decreased β-Cell Function Is Associated with Reduced Skeletal Muscle Mass in Japanese Subjects without Diabetes

    PubMed Central

    Sakai, Satoshi; Tanimoto, Keiji; Imbe, Ayumi; Inaba, Yuiko; Shishikura, Kanako; Tanimoto, Yoshimi; Ushiroyama, Takahisa; Terasaki, Jungo; Hanafusa, Toshiaki

    2016-01-01

    Background Decreased insulin secretion has a great impact on the incidence of type 2 diabetes in Japanese subjects. It is not clear whether β-cell function is related to muscle mass in subjects without diabetes. We investigated the relationship between β-cell function and skeletal muscle mass in Japanese subjects without diabetes. Methods The study included 1098 subjects (538 men and 560 women) aged 40 to 79 years, without diabetes (fasting glucose lower than 126 mg/dL and glycosylated hemoglobin lower than 6.5%), who consulted Osaka Medical College Health Science Clinic for a medical examination. Appendicular muscle mass was measured by bioelectrical impedance analysis. Appendicular muscle mass index was calculated as appendicular muscle mass divided by height squared (kg/m2). The homeostatic model assessment of β-cell function was used to assess β-cell function. The homeostatic model assessment of insulin resistance was used as a measure of insulin resistance. The association between appendicular muscle mass index and clinical parameters of β-cell function and insulin resistance was examined. Results Log-transformed homeostatic model assessment of β-cell function and Log-transformed homeostatic model assessment of insulin resistance showed a normal distribution. In both men and women, there was a significant positive correlation between appendicular muscle mass index and clinical parameters of β-cell function and insulin resistance. Tertile analysis, following stratification according to appendicular muscle mass index, found that low appendicular muscle mass index was significantly associated with the Log homeostatic model assessment of β-cell function and Log-transformed homeostatic model assessment of insulin resistance. Conclusion This study shows that decreased β cell function is associated with reduced skeletal muscle mass in Japanese subjects without diabetes. PMID:27612202

  17. Minimum mass design of large-scale space trusses subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2006-01-01

    Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.

  18. Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads

    NASA Astrophysics Data System (ADS)

    Tigli, Omer F.

    2012-06-01

    Optimum design of dynamic vibration absorbers (DVAs) installed on linear damped systems that are subjected to random loads is studied and closed-form design formulas are provided. Three cases are considered in the optimization process: Minimizing the variance of the displacement, velocity and acceleration of the main mass. Exact optimum design parameters for the velocity case, which to the best knowledge of the author do not exist in the literature, are derived for the first time. Exact solutions are found to be directly applicable for practical use with no simplification needed. For displacement and acceleration cases, a solution for the optimum absorber frequency ratio is obtained as a function of optimum absorber damping ratio. Numerical simulations indicate that optimum absorber damping ratio is not significantly related to the structural damping, especially when the displacement variance is minimized. Therefore, optimum damping ratio derived for undamped systems is proposed for damped systems for the displacement case. When acceleration variance is minimized, however, the optimum damping ratio derived for undamped systems is found not as accurate for damped systems. Therefore, a more accurate approximate expression is derived. Numerical comparisons with published approximate expressions at the same level of complexity indicated that proposed design formula yield more accurate estimates. Another important finding of the paper is that for specific applications where all of the response parameters are desired to be minimized simultaneously, DVAs designed per velocity criteria provide the best overall performance with the least complexity in the design equations.

  19. Kinetics of Beta-14[14C] Carotene in a Human Subject Using Accelerator Mass Spectrometry

    SciTech Connect

    Dueker, S.R.; Lin, Y.; Follett, J.R.; Clifford, A.J.; Buchholz, B.A.

    2000-01-31

    {beta}-Carotene is a tetraterpenoid distributed widely throughout the plant kingdom. It is a member of a group of pigments referred to as carotenoids that have the distinction of serving as metabolic precursors to vitamin A in humans and many animals [1,2]. We used Accelerator Mass Spectrometry (AMS) [3] to determine the metabolic behavior of a physiologic oral dose of {beta}-[{sup 14}C]carotene (200 nanoCuries; 0.57 {micro}mol) in a healthy human subject. Serial blood specimens were collected for 210-d and complete urine and feces were collected for 17 and 10-d, respectively. Balance data indicated that the dose was 42% bioavailable. The absorbed {beta}-carotene was lost slowly via urine in accord with the slow body turnover of {beta}-carotene and vitamin A [4]. HPLC fractionation of plasma taken at early time points (0-24-h) showed the label was distributed between {beta}-carotene and retinyl esters (vitamin A) derived from intestinal metabolism.

  20. Effects of Lewis number on coupled heat and mass transfer in a circular tube subjected to external convective heating.

    PubMed

    Jiao, Anjun; Zhang, Yuwen; Ma, Hongbin; Critser, John

    2009-03-01

    Heat and mass transfer in a circular tube subject to the boundary condition of the third kind is investigated. The closed form of temperature and concentration distributions, the local Nusselt number based on the total external heat transfer and convective heat transfer inside the tube, as well as the Sherwood number were obtained. The effects of Lewis number and Biot number on heat and mass transfer were investigated.

  1. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains

    PubMed Central

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S.

    2010-01-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument. PMID:20165563

  2. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains.

    PubMed

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S

    2007-11-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.

  3. Transition probabilities of a string oscillator subject to impulsive collisions with a heavy mass point.

    PubMed

    Teubner, Max

    2005-11-01

    Impulsive linear collisions between a string oscillator (a one-dimensional particle in a box) and a mass point are studied quantum mechanically. In the limit of a very heavy mass point (which corresponds classically to many collisions during a single encounter) the transition probabilities are determined exactly. The result permits a discussion of the mixed quantum-classical regime where the collider becomes almost classical while the oscillator remains quantum mechanical. While the average transition probabilities P(m-->n) are well reproduced by the Ehrenfest mean-field approximation, the prediction for the superimposed high-frequency resonance structure is qualitatively wrong for a genuine quantum oscillator. Only if the oscillator is also almost classical and if (m-n)2 square root(mu) < m, where mu is the mass ratio collider/oscillator, this structure is correctly predicted by the Ehrenfest approximation.

  4. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  5. Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance.

    PubMed

    Ben Ami, Eyal; Yuval, Boaz; Jurkevitch, Edouard

    2010-01-01

    The sterile insect technique (SIT) is a method of biological control whereby millions of factory reared sterile male insects are released into the field. This technique is commonly used to combat the Mediterranean fruit fly (Ceratitis capitata, Diptera: Tephritidae). Sterile medfly males are less competent in attracting and mating with wild females, a property commonly linked to the irradiation process responsible for the sterilization. As bacteria are important partners in the fly's life cycle, we used molecular analytical methods to study the community structure of the gut microbiota in irradiated male medflies. We find that the sterilizing irradiation procedure affects the gut bacterial community structure of the Mediterranean fruit fly. Although the Enterobacteriaceae family remains the dominant bacterial group present in the gut, the levels of Klebsiella species decreases significantly in the days after sterilization. In addition, we detected substantial differences in some bacterial species between the mass rearing strain Vienna 8 and the wild strain. Most notable among these are the increased levels of the potentially pathogenic species Pseudomonas in the industrial strain. Testing the hypothesis that regenerating the original microbiota community could result in enhanced competitiveness of the sterile flies, we found that the addition of the bacterial species Klebsiella oxytoca to the postirradiation diet enables colonization of these bacteria in the gut while resulting in decreased levels of the Pseudomonas sp. Feeding on diets containing bacteria significantly improved sterile male performance in copulatory tests. Further studies will determine the feasibility of bacterial amelioration in SIT operations.

  6. Genetic manipulation of proline accumulation influences the concentrations of other amino acids in soybean subjected to simultaneous drought and heat stress.

    PubMed

    Simon-Sarkadi, Livia; Kocsy, Gábor; Várhegyi, Agnes; Galiba, Gábor; de Ronde, Jacoba A

    2005-09-21

    The effect of simultaneous drought and heat stress on free amino acid levels was compared in wild type and transgenic soybean (Glycine max (L.) Merr cv Ibis) plants transformed with the cDNA coding for the last enzyme of Pro biosynthesis, l-Delta(1)-pyrroline-5-carboxylate reductase (EC 1.5.1.2), in sense and antisense directions. The most rapid increase in Pro content was found in the sense transformants that exhibited the least water loss, while the slowest elevation of Pro levels was detected in the antisense transformants that exhibited the greatest water loss during stress. Correspondingly, the level of the Pro precursors Glu and Arg was higher in sense transformants and lower in antisense ones compared to the wild type plants during the initial part of the stress. Interestingly, genetic manipulation of Pro levels also affected the stress-induced changes in the concentration of several other amino acids, which indicates the coordinated regulation of their metabolic pathways.

  7. Intelligent damping layer under a plate subjected to a pair of masses moving in opposite directions

    NASA Astrophysics Data System (ADS)

    Bajer, Czesław; Pisarski, Dominik; Szmidt, Tomasz; Dyniewicz, Bartłomiej

    2017-04-01

    Reducing displacements of a plate vibrating under a pair of masses traveling in opposite directions can be improved by adding a smart subsoil instead of a classical damping layer. We propose a material that acts according to the instantaneous state of the plate, i.e., its displacements and velocity. Such an intelligent damping layer reduces vertical displacements even by 40%-60%, depending on the type of load and the assumed objective function. Existing materials enable the application of the proposed layer in a semi-active mode. The passive mode can be applied with materials exhibiting direction-dependent viscosity.

  8. Stochastic resonance in a fractional harmonic oscillator subject to random mass and signal-modulated noise

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Li, Heng

    2016-10-01

    Stochastic resonance in a fractional harmonic oscillator with random mass and signal-modulated noise is investigated. Applying linear system theory and the characteristics of the noises, the analysis expression of the mean output-amplitude-gain (OAG) is obtained. It is shown that the OAG varies non-monotonically with the increase of the intensity of the multiplicative dichotomous noise, with the increase of the frequency of the driving force, as well as with the increase of the system frequency. In addition, the OAG is a non-monotonic function of the system friction coefficient, as a function of the viscous damping coefficient, as a function of the fractional exponent.

  9. Muscle mass gain observed in patients with short bowel syndrome subjected to resistance training.

    PubMed

    Araújo, Ellen Cristini Freitas; Suen, Vivian Marques Miguel; Marchini, Julio Sergio; Vannucchi, Helio

    2008-02-01

    Few studies are available about the evaluation of resistance training in patients with protein-energy malnutrition. To assess the effects of resistance training on the recovery of nutritional status of patients with short bowel syndrome, with a small bowel remnant of less than 100 cm, 9 patients of both sexes with protein-energy malnutrition after extensive resection of the small bowel were submitted to resistance training of progressive intensity consisting of concentric and eccentric work exercises for the upper limbs, trunk, and lower limbs, with the individuality and limitations of each patients being respected. Food consumption was monitored by 24-hour food recall performed during the initial phase of the study, before and 7 and 14 weeks after physical training, and by a dietary record for a period of 3 days of oral feeding. The nutrients administered by the enteral and parenteral route were recorded. A significant increase in total arm area (P < or = .01) and fat-free mass (P < or = .01) was observed as determined by computed tomography. An increase in total energy ingestion and carbohydrate consumption (P < or = .01) was also observed. In addition, the activity of the enzyme carnosinase was increased after resistance training (P < or = .01). The present results show that resistance training in patients with short bowel syndrome and protein-energy malnutrition can be considered to be a part of the nonmedicamentous treatment of these patients, leading to better nutrient use and to a gain of lean mass.

  10. Mass Spectrometry Imaging of Kidney Tissue Sections of Rat Subjected to Unilateral Ureteral Obstruction

    PubMed Central

    Liu, Huihui; Li, Wan; He, Qing; Xue, Jinjuan; Wang, Jiyun; Xiong, Caiqiao; Pu, Xiaoping; Nie, Zongxiu

    2017-01-01

    Chronic kidney disease (CKD) poses a serious threat to the quality of human life and health with an increasing incidence worldwide. Renal fibrosis is closely related to CKD and regarded as the final common pathophysiological pathway in most cases of end-stage renal diseases. Elucidating the mechanisms underlying renal fibrosis and developing novel therapeutic strategies are of great importance. Herein, matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) based on 1, 5-diaminonaphthalene hydrochloride was applied to the rat model of unilateral ureteral obstruction (UUO) to investigate metabolic changes during renal fibrosis. Among identified endogenous compounds, twenty-one metabolites involved in metabolic networks such as glycolysis, tricarboxylic acid (TCA) cycle, ATP metabolism, fatty acids metabolism, antioxidants, and metal ions underwent relatively obvious changes after 1 and 3 weeks of UUO. Unique distribution of the metabolites was obtained, and metabolic changes of kidneys during renal fibrosis were investigated simultaneously for the first time. These findings once again highlighted the promising potential of the organic salt matrix for application in small molecule in situ MSI and in the field of biomedical research. PMID:28157191

  11. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  12. Effects of Carpal Tunnel Syndrome on adaptation of multi-digit forces to object mass distribution for whole-hand manipulation

    PubMed Central

    2012-01-01

    Background Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve that results in sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces as a function of object center of mass (CM) during whole-hand grasping. Methods Fourteen CTS patients and age- and gender-matched controls were instructed to grasp, lift, hold, and release a grip device with five digits for seven consecutive lifts while maintaining its vertical orientation. The object CM was changed by adding a mass at different locations at the base of the object. We measured forces and torques exerted by each digit and object kinematics and analyzed modulation of these variables to object CM at object lift onset and during object hold. Our task requires a modulation of digit forces at and after object lift onset to generate a compensatory moment to counteract the external moment caused by the added mass and to minimize object tilt. Results We found that CTS patients learned to generate a compensatory moment and minimized object roll to the same extent as controls. However, controls fully exploited the available degrees of freedom (DoF) in coordinating their multi-digit forces to generate a compensatory moment, i.e., digit normal forces, tangential forces, and the net center of pressure on the finger side of the device at object lift onset and during object hold. In contrast, patients modulated only one of these DoFs (the net center of pressure) to object CM by modulating individual normal forces at object lift onset. During object hold, however, CTS patients were able to modulate digit tangential force distribution to object CM. Conclusions Our findings suggest that, although CTS did not affect patients’ ability to perform our manipulation task, it interfered with the modulation of specific grasp control variables. This

  13. Association of subcutaneous and visceral fat mass with serum concentrations of adipokines in subjects with type 2 diabetes mellitus.

    PubMed

    Saito, Tomoyuki; Murata, Miho; Otani, Taeko; Tamemoto, Hiroyuki; Kawakami, Masanobu; Ishikawa, San-E

    2012-01-01

    The goal of the study was to examine the association of subcutaneous and visceral fat mass with serum concentrations of adipokines in 130 subjects with type 2 diabetes mellitus. The levels of serum high sensitivity C-reactive protein (HS-CRP), adiponectin, high-molecular-weight (HMW) adiponectin, interleukin-18, and retinol-binding protein 4 were measured. Percentage body fat was determined by dual energy X-ray absorptiometry, and subcutaneous and visceral fat areas were measured by abdominal CT. HS-CRP had significant positive correlations with percentage body fat and subcutaneous fat area, and a particularly significant positive correlation with visceral fat area. Serum adiponectin had a negative correlation with the subcutaneous and visceral fat areas, with the strongest correlation with the visceral fat area. Similar results were obtained for HMW adiponectin. Serum adiponectin had a negative correlation with visceral fat area in subjects with a visceral fat area < 100 cm², but not in those with a visceral fat area ≥ 100 cm². In contrast, serum HS-CRP showed a positive correlation with visceral fat area in subjects with visceral fat area ≥ 100 cm², but not in those with a visceral fat area < 100 cm². These findings indicate that an increased visceral fat area is associated with inflammatory changes, and that inflammatory reactions may alter the functional properties of visceral fat in type 2 diabetes mellitus.

  14. Transfer of learned manipulation following changes in degrees of freedom.

    PubMed

    Fu, Qiushi; Hasan, Ziaul; Santello, Marco

    2011-09-21

    The present study was designed to determine whether manipulation learned with a set of digits can be transferred to grips involving a different number of digits, and possible mechanisms underlying such transfer. The goal of the task was to exert a torque and vertical forces on a visually symmetrical object at object lift onset to balance the external torque caused by asymmetrical mass distribution. Subjects learned this manipulation through consecutive practice using one grip type (two or three digits), after which they performed the same task but with another grip type (e.g., after adding or removing one digit, respectively). Subjects were able to switch grip type without compromising the behavioral outcome (i.e., the direction, timing, and magnitude of the torque exerted on the object was unchanged), despite the use of significantly different digit force-position coordination patterns in the two grip types. Our results support the transfer of learning for anticipatory control of manipulation and indicate that the CNS forms an internal model of the manipulation task independent of the effectors that are used to learn it. We propose that sensory information about the new digit placement--resulting from adding or removing a digit immediately after the switch in grip type--plays an important role in the accurate modulation of new digit force distributions. We discuss our results in relation to studies of manipulation reporting lack of learning transfer and propose a theoretical framework that accounts for failure or success of motor learning generalization.

  15. Manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  16. Indices of vascular stiffness and wave reflection in relation to body mass index or body fat in healthy subjects.

    PubMed

    Wykretowicz, Andrzej; Adamska, Karolina; Guzik, Przemyslaw; Krauze, Tomasz; Wysocki, Henryk

    2007-10-01

    1. Obesity appears to influence vascular stiffness, an important cardiovascular risk factor. An accurate picture of arterial stiffness may be obtained when a combination of various techniques is used. 2. The purpose of the present study was to assess whether the body mass index (BMI) and body fat content obtained by bioimpedance were of equal value in estimating the influence of body fatness on various indices of vascular stiffness and wave reflection. 3. A total of 175 healthy subjects was studied. Anthropometric measurements and total body bio-impedance analysis were performed to assess fat mass as a proportion of total body composition. Arterial stiffness and wave reflection were assessed using digital volume pulse analysis and tonometric measurement of the wave reflection indices and central haemodynamics. 4. Significant differences in the stiffness index (SI(DVP); P < 0.0001), peripheral augmentation index (pAI(x); P < 0.0001), central augmentation index (cAI(x); P < 0.0001), peripheral pulse pressure (pPP; P = 0.026) and central pulse pressure (cPP; P < 0.0001) were found when the population examined was divided accordingly to tertile of body fat content. However, subdividing various indices of arterial stiffness according to the tertile of BMI did not reveal any significant differences between groups, except for pPP and cPP. 5. Body fat content was significantly correlated with SI(DVP), pAI(x), cAI(x), pPP and cPP. The BMI correlated weakly with SI(DVP), pPP and cPP. 6. In conclusion, the BMI is not very useful in predicting changes in arterial stiffness and wave reflection due to obesity. However, stiffness and wave reflection indices derived from digital volume pulse analysis, the characteristics of radial and aortic pressure waveforms and peripheral and aortic pulse pressure are all related to body fat content, as estimated by bioimpedance.

  17. Generalization of Dexterous Manipulation Is Sensitive to the Frame of Reference in Which It Is Learned.

    PubMed

    Marneweck, Michelle; Knelange, Elisabeth; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M

    2015-01-01

    Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations of these manipulations are specific to the reference frame in which they are formed. However, it is unknown whether that reference frame is specific to the hand, the body, or both, because rotating the object 180° modifies the relation between object and body as well as object and hand. An alternative, untested explanation for the above failure to generalize learned manipulations is that any rotation will disrupt grasp performance, regardless if the reference frame in which the manipulation was learned is maintained or modified. We examined the effect of rotations that (1) maintain and (2) modify relations between object and body, and object and hand, on the generalizability of learned two-digit manipulation of an object with an asymmetric mass distribution. Following rotations that maintained the relation between object and body and object and hand (e.g., rotating the object and subject 180°), subjects continued to use appropriate digit placement and load force distributions, thus generating sufficient compensatory moments to minimize object roll. In contrast, following rotations that modified the relation between (1) object and hand (e.g. rotating the hand around to the opposite object side), (2) object and body (e.g. rotating subject and hand 180°), or (3) both (e.g. rotating the subject 180°), subjects used the same, yet inappropriate digit placement and load force distribution, as those used prior to the rotation. Consequently, the compensatory moments were insufficient to prevent large object rolls. These findings suggest that representations of learned manipulation of objects with asymmetric mass

  18. Generalization of Dexterous Manipulation Is Sensitive to the Frame of Reference in Which It Is Learned

    PubMed Central

    Marneweck, Michelle; Knelange, Elisabeth; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M.

    2015-01-01

    Studies have shown that internal representations of manipulations of objects with asymmetric mass distributions that are generated within a specific orientation are not generalizable to novel orientations, i.e., subjects fail to prevent object roll on their first grasp-lift attempt of the object following 180° object rotation. This suggests that representations of these manipulations are specific to the reference frame in which they are formed. However, it is unknown whether that reference frame is specific to the hand, the body, or both, because rotating the object 180° modifies the relation between object and body as well as object and hand. An alternative, untested explanation for the above failure to generalize learned manipulations is that any rotation will disrupt grasp performance, regardless if the reference frame in which the manipulation was learned is maintained or modified. We examined the effect of rotations that (1) maintain and (2) modify relations between object and body, and object and hand, on the generalizability of learned two-digit manipulation of an object with an asymmetric mass distribution. Following rotations that maintained the relation between object and body and object and hand (e.g., rotating the object and subject 180°), subjects continued to use appropriate digit placement and load force distributions, thus generating sufficient compensatory moments to minimize object roll. In contrast, following rotations that modified the relation between (1) object and hand (e.g. rotating the hand around to the opposite object side), (2) object and body (e.g. rotating subject and hand 180°), or (3) both (e.g. rotating the subject 180°), subjects used the same, yet inappropriate digit placement and load force distribution, as those used prior to the rotation. Consequently, the compensatory moments were insufficient to prevent large object rolls. These findings suggest that representations of learned manipulation of objects with asymmetric mass

  19. Synergistic Manipulation.

    ERIC Educational Resources Information Center

    Weingartner, Charles

    1979-01-01

    Discusses differences between the primary functions of the cerebral hemispheres, notes differences between conscious and subconscious responses of subjects in several research studies, and stresses the need for a whole series of questions (so far largely unasked) about how unconscious meanings are made from media. (GT)

  20. Ferromagnetic mass fixed on a spring and subjected to an electromagnet powered by self-sustained oscillators

    NASA Astrophysics Data System (ADS)

    Abobda, L. T.; Woafo, P.

    2014-12-01

    The study of a ferromagnetic mass, fixed on a spring and subjected to an electromagnet powered by a Van der Pol (VDP) oscillator and by a Hindmarsh-Rose (HR) oscillator is performed, to serve as an electromechanical devices, but also to mimic the action of a natural pacemaker and nerves on a cardiac assist device or artificial heart. The excitation with the VDP oscillator shows in the mechanical part the transition from harmonic, periodic, biperiodic up to bursting oscillations, high displacement without pull-in instability in the free dynamics regime. Under DC plus square wave excitation, there is a coexistence of the bursting oscillations of the free dynamics and the one of the modulated dynamics. Considering the action of a HR oscillator, it is found transition from spikes, bursting oscillations, relaxation spikes, multiperiodic and sinusoidal oscillations under DC or DC plus square wave excitation. These electrical behaviors are transferred to the mechanical part which can then adopt spiking or bursting dynamics as the HR oscillator. For this electromechanical model, the VDP oscillator is more efficient than the HR oscillator to induce pulsatile pumping function with higher amplitude and to react to external influences without pull-in.

  1. Learned manipulation at unconstrained contacts does not transfer across hands.

    PubMed

    Fu, Qiushi; Choi, Jason Y; Gordon, Andrew M; Jesunathadas, Mark; Santello, Marco

    2014-01-01

    Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object's vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.

  2. Learned Manipulation at Unconstrained Contacts Does Not Transfer across Hands

    PubMed Central

    Fu, Qiushi; Choi, Jason Y.; Gordon, Andrew M.; Jesunathadas, Mark; Santello, Marco

    2014-01-01

    Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands. PMID:25233091

  3. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  4. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis

    PubMed Central

    2009-01-01

    Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS). Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood. PMID:19534808

  5. Weight loss increased serum adiponectin but decreased lipid levels in obese subjects whose body mass index was lower than 30 kg/m².

    PubMed

    Lang, Hui-Fen; Chou, Ching-Ya; Sheu, Wanye Huey-Herng; Lin, Jin-Yuarn

    2011-05-01

    We hypothesized that weight loss in obese subjects may affect adipokine levels, such as adiponectin and tumor necrosis factor (TNF) α. This study investigated the effects of an 8-week weight-control program on serum adiponectin, TNF-α, and blood lipid level profiles in obese subjects. Twenty obese subjects with a body mass index (BMI) higher than 25 kg/m² were recruited for this weight loss program that used dietetic control and aerobic exercise training. A total of 3 obese men and 11 obese women (mean age, 40.3 ± 10.8 years; BMI, 30.0 ± 3.4 kg/m²) finished the program. Anthropometric and biochemical characteristics in subjects before and after the program were determined. The results showed that subjects' body weight, BMI, waist circumference, hip circumference, diastolic blood pressure, total cholesterol, and low-density lipoprotein cholesterol levels significantly (P < .05) decreased during the program. Further analysis showed a negative correlation between delta adiponectin and delta TNF-α, triacylglycerol, and systolic blood pressure in obese subjects. Subgroup analysis showed that obese subjects whose original BMI was less than 30 kg/m² had significantly increased serum adiponectin levels, and more than 3% weight reduction markedly improved blood lipids and body fat profiles during the program. Our findings suggest that weight reduction through an 8-week weight loss program may have anti-inflammatory and antiatherogenic effects via increased serum adiponectin levels and improvements in blood lipid profiles and systolic blood pressure.

  6. Employee involvement: motivation or manipulation?

    PubMed

    McConnell, C R

    1998-03-01

    Employee involvement is subject to a great deal of verbal tribute; there is hardly a manager at work today who will not praise the value of employee input. However, many employee involvement efforts leave employees feeling more manipulated than motivated. This occurs because supervisors and managers, while expecting employees to change the way they work, are themselves either unwilling to change or remain unconscious of the need to change. The result is that, although employee input is regularly solicited in a number of forms, it is often discounted, ignored, or altered to fit the manager's preconceptions. Often the employee is left feeling manipulated. Since the opportunity for involvement can be a strong motivator, it becomes the manager's task to learn how to provide involvement opportunity in manipulative fashion. This can be accomplished by providing involvement opportunity accompanied by clear outcome expectations and allowing employees the freedom to pursue those outcomes in their own way.

  7. Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Rummler, D. R.

    1981-01-01

    Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.

  8. Experimental Evaluation and Optimization of Structures for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time-of-Flight Mass Spectrometry

    PubMed Central

    2015-01-01

    We report on the performance of structures for lossless ion manipulation (SLIM) as a means for transmitting ions and performing ion mobility separations (IMS). Ions were successfully transferred from an electrospray ionization (ESI) source to the TOF MS analyzer by means of a linear SLIM, demonstrating lossless ion transmission and an alternative arrangement including a 90° turn. First, the linear geometry was optimized for radial confinement by tuning RF on the central “rung” electrodes and potentials on the DC-only guard electrodes. Selecting an appropriate DC guard bias (2–6 V) and RF amplitude (≥160 Vp-p at 750 kHz) resulted in the greatest ion intensities. Close to ideal IMS resolving power was maintained over a significant range of applied voltages. Second, the 90° turn was optimized for radial confinement by tuning RF on the rung electrodes and DC on the guard electrodes. However, both resolving power and ion transmission showed a dependence on these voltages, and the best conditions for both were >300 Vp-p RF (685 kHz) and 7–11 V guard DC bias. Both geometries provide IMS resolving powers at the theoretical limit (R ∼ 58), showing that degraded resolution from a “racetrack” effect from turning around a corner can be successfully avoided, and the capability also was maintained for essentially lossless ion transmission. PMID:25152066

  9. Experimental Evaluation and Optimization of Structures for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time-of-Flight Mass Spectrometry

    SciTech Connect

    Webb, Ian K.; Garimella, Venkata BS; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Zhang, Xinyu; Norheim, Randolph V.; Prost, Spencer A.; Lamarche, Brian L.; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2014-09-05

    We report on the performance of Structures for Lossless Ion Manipulation (SLIM) devices as a means for transmitting ions and performing ion mobility separations (IMS). Ions were successfully transferred from an electrospray ionization (ESI) source to the TOF MS analyzer by means of a linear SLIM device and an alternative arrangement including a 90° turn. First, the linear geometry was optimized for radial confinement by tuning RF on the central ‘rung’ electrodes and potentials on the DC-only guard electrodes. Selecting an appropriate DC guard bias (2-6 V) and RF amplitude (≥160 Vp-p at 750 kHz) resulted in the greatest ion intensities. Close to ideal IMS resolving power was maintained over a range of applied voltages. Second, the 90° turn was optimized for radial confinement by tuning the RF on the rung electrodes and DC on the guard electrodes; however, both resolving power and ion transmission showed a dependence on these voltages and the best conditions for both were > 300 Vp-p RF (685 kHz) and 7-11 V guard DC bias. Both geometries provide IMS resolving powers at the theoretical limit (R~58), showing that the negative “racetrack” effect from turning around a corner can be successfully avoided, as well as the capability for essentially lossless ion transmission.

  10. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: Comparison of similarity ranking scores and absolute similarity ratings

    SciTech Connect

    Muramatsu, Chisako; Li Qiang; Schmidt, Robert A.; Shiraishi, Junji; Suzuki, Kenji; Newstead, Gillian M.; Doi, Kunio

    2007-07-15

    The presentation of images that are similar to that of an unknown lesion seen on a mammogram may be helpful for radiologists to correctly diagnose that lesion. For similar images to be useful, they must be quite similar from the radiologists' point of view. We have been trying to quantify the radiologists' impression of similarity for pairs of lesions and to establish a ''gold standard'' for development and evaluation of a computerized scheme for selecting such similar images. However, it is considered difficult to reliably and accurately determine similarity ratings, because they are subjective. In this study, we compared the subjective similarities obtained by two different methods, an absolute rating method and a 2-alternative forced-choice (2AFC) method, to demonstrate that reliable similarity ratings can be determined by the responses of a group of radiologists. The absolute similarity ratings were previously obtained for pairs of masses and pairs of microcalcifications from five and nine radiologists, respectively. In this study, similarity ranking scores for eight pairs of masses and eight pairs of microcalcifications were determined by use of the 2AFC method. In the first session, the eight pairs of masses and eight pairs of microcalcifications were grouped and compared separately for determining the similarity ranking scores. In the second session, another similarity ranking score was determined by use of mixed pairs, i.e., by comparison of the similarity of a mass pair with that of a calcification pair. Four pairs of masses and four pairs of microcalcifications were grouped together to create two sets of eight pairs. The average absolute similarity ratings and the average similarity ranking scores showed very good correlations in the first study (Pearson's correlation coefficients: 0.94 and 0.98 for masses and microcalcifications, respectively). Moreover, in the second study, the correlations between the absolute ratings and the ranking scores were also

  11. Characterization of Human Myotubes From Type 2 Diabetic and Nondiabetic Subjects Using Complementary Quantitative Mass Spectrometric Methods*

    PubMed Central

    Thingholm, Tine E.; Bak, Steffen; Beck-Nielsen, Henning; Jensen, Ole N.; Gaster, Michael

    2011-01-01

    Skeletal muscle is a key tissue site of insulin resistance in type 2 diabetes. Human myotubes are primary skeletal muscle cells displaying both morphological and biochemical characteristics of mature skeletal muscle and the diabetic phenotype is conserved in myotubes derived from subjects with type 2 diabetes. Several abnormalities have been identified in skeletal muscle from type 2 diabetic subjects, however, the exact molecular mechanisms leading to the diabetic phenotype has still not been found. Here we present a large-scale study in which we combine a quantitative proteomic discovery strategy using isobaric peptide tags for relative and absolute quantification (iTRAQ) and a label-free study with a targeted quantitative proteomic approach using selected reaction monitoring to identify, quantify, and validate changes in protein abundance among human myotubes obtained from nondiabetic lean, nondiabetic obese, and type 2 diabetic subjects, respectively. Using an optimized protein precipitation protocol, a total of 2832 unique proteins were identified and quantified using the iTRAQ strategy. Despite a clear diabetic phenotype in diabetic myotubes, the majority of the proteins identified in this study did not exhibit significant abundance changes across the patient groups. Proteins from all major pathways known to be important in type 2 diabetic subjects were well-characterized in this study. This included pathways like the trichloroacetic acid (TCA) cycle, lipid oxidation, oxidative phosphorylation, the glycolytic pathway, and glycogen metabolism from which all but two enzymes were found in the present study. None of these enzymes were found to be regulated at the level of protein expression or degradation supporting the hypothesis that these pathways are regulated at the level of post-translational modification. Twelve proteins were, however, differentially expressed among the three different groups. Thirty-six proteins were chosen for further analysis and

  12. Progress in nonprehensile manipulation

    SciTech Connect

    Mason, M.T.

    1999-11-01

    This paper reviews my recent research in robotic manipulation and speculates on potentially fruitful directions for future work. My recent work is focused on nonprehensile manipulation: manipulating objects without grasping them. In particular, the paper surveys work on a single joint robot that orients parts on a conveyor belt; a robot that uses dynamics to snatch, roll, or throw objects; hitting things to position them; manipulating things whose shapes are not completely known; and integration of manipulation with locomotion. In the future, a broad view of robotics will allow us to focus on fundamental principles and at the same time address a variety of new applications.

  13. Reversed phase liquid chromatography hyphenated to continuous flow-extractive desorption electrospray ionization-mass spectrometry for analysis and charge state manipulation of undigested proteins.

    PubMed

    Li, Li; Yang, Samuel H; Vidova, Veronika; Rice, Elisa M; Wijeratne, Aruna B; Havlíček, Vladimír; Schug, Kevin A

    2015-01-01

    The application of continuous flow-extractive desorption electrospray ionization (CF-EDESI), an ambient ionization source demonstrated previously for use with intact protein analysis, is expanded here for the coupling of reversed phase protein separations to mass spectrometry. This configuration allows the introduction of charging additives to enhance detection without affecting the chromatographic separation mechanism. Two demonstrations of the advantages of CF-EDESI are presented in this work. First, a proof-of- principle is presented to demonstrate the applicability of hyphenation of liquid chromatography (LC) to CF- EDESI. LC-CF-EDESI-MS has good sensitivity compared to LC-electrospray ionization (ESI)-mass spectrometry. Second, the supercharging mechanism investigated in CF-EDESI provides an insight into a highly debated supercharging process in ESI. The results indicate that the mechanism of protein charging seen in HPLC-CF-EDESI is different from supercharging phenomena in conventional ESI. The surface tension mechanism and binding mechanism may both contribute to protein supercharging in ESI.

  14. Effect of Muscle Tension on Non-Linearities in the Apparent Masses of Seated Subjects Exposed to Vertical Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2002-05-01

    In subjects exposed to whole-body vibration, the cause of non-linear dynamic characteristics with changes in vibration magnitude is not understood. The effect of muscle tension on the non-linearity in apparent mass has been investigated in this study. Eight seated male subjects were exposed to random and sinusoidal vertical vibration at five magnitudes (0·35-1·4 m/s2 r.m.s.). The random vibration was presented for 60 s over the frequency range 2·0-20 Hz; the sinusoidal vibration was presented for 10 s at five frequencies (3·15, 4·0, 5·0, 6·3 and 8·0 Hz). Three sitting conditions were adopted such that, in two conditions, muscle tension in the buttocks and the abdomen was controlled. It was assumed that, in these two conditions, involuntary changes in muscle tension would be minimized. The force and acceleration at the seat surface were used to obtain apparent masses of subjects. With both sinusoidal and random vibration, there was statistical support for the hypothesis that non-linear characteristics were less clear when muscle tension in the buttocks and the abdomen was controlled. With increases in the magnitude of random vibration from 0·35 to 1·4 m/s2 r.m.s., the apparent mass resonance frequency decreased from 5·25 to 4·25 Hz with normal muscle tension, from 5·0 to 4·38 Hz with the buttocks muscles tensed, and from 5·13 to 4·5 Hz with the abdominal muscles tensed. Involuntary changes in muscle tension during whole-body vibration may be partly responsible for non-linear biodynamic responses.

  15. On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential

    SciTech Connect

    Vitória, R.L.L.; Furtado, C. Bakke, K.

    2016-07-15

    The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground state of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.

  16. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator.

    PubMed

    Almeida, G; Brito, J O; Perré, P

    2010-12-01

    Torrefaction is a mild pyrolysis process (usually up to 300 degrees C) that changes the chemical and physical properties of biomass. This process is a possible pre-treatment prior to further processes (transport, grinding, combustion, gasification, etc) to generate energy or biofuels. In this study, three eucalyptus wood species and bark were subjected to different torrefaction conditions to determine the alterations in their structural and energy properties. The most severe treatment (280 degrees C, 5h) causes mass losses of more than 35%, with severe damage to anatomical structure, and an increase of about 27% in the specific energy content. Bark is more sensitive to heat than wood. Energy yields are always higher than mass yields, thereby demonstrating the benefits of torrefaction in concentrating biomass energy. The overall mass loss is proposed as a relevant parameter to synthesize the effect of torrefaction conditions (temperature and duration). Accordingly, all results are summarised by analytical expressions able to predict the energy properties as a function of the overall mass loss. These expressions are intended to be used in any optimization procedure, from production in the field to the final use.

  17. Study of heat and mass transfer of water evaporation in a gypsum board subjected to natural convection

    NASA Astrophysics Data System (ADS)

    Zannouni, K.; El Abrach, H.; Dhahri, H.; Mhimid, A.

    2016-12-01

    The present paper reports a numerical study to investigate the drying of rectangular gypsum sample based on a diffusive model. Both vertical and low sides of the porous media are treated as adiabatic and impermeable surfaces plate. The upper face of the plate represents the permeable interface. The energy equation model is based on the local thermal equilibrium assumption between the fluid and the solid phases. The lattice Boltzmann method (LBM) is used for solving the governing differential equations system. The obtained numerical results concerning the moisture content and the temperature within a gypsum sample were discussed. A comprehensive analysis of the influence of the mass transfer coefficient, the convective heat transfer coefficient, the external temperature, the relative humidity and the diffusion coefficient on macroscopic fields are also investigated. They all presented results in this paper and obtained in the stable regime correspond to time superior than 4000 s. Therefore the numerical error is inferior to 2%. The experimental data and the descriptive information of the approach indicate an excellent agreement between the results of our developed numerical code based on the LBM and the published ones.

  18. Giant optical manipulation.

    PubMed

    Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw; Kivshar, Yuri S

    2010-09-10

    We demonstrate a new principle of optical trapping and manipulation increasing more than 1000 times the manipulation distance by harnessing strong thermal forces while suppressing their stochastic nature with optical vortex beams. Our approach expands optical manipulation of particles into a gas media and provides a full control over trapped particles, including the optical transport and pinpoint positioning of ∼100  μm objects over a meter-scale distance with ±10  μm accuracy.

  19. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates.

    PubMed

    Hart-Smith, Gene; Yagoub, Daniel; Tay, Aidan P; Pickford, Russell; Wilkins, Marc R

    2016-03-01

    All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through (13)CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining

  20. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates*

    PubMed Central

    Hart-Smith, Gene; Yagoub, Daniel; Tay, Aidan P.; Pickford, Russell; Wilkins, Marc R.

    2016-01-01

    All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through 13CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining

  1. Microfluidics for manipulating cells.

    PubMed

    Mu, Xuan; Zheng, Wenfu; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2013-01-14

    Microfluidics, a toolbox comprising methods for precise manipulation of fluids at small length scales (micrometers to millimeters), has become useful for manipulating cells. Its uses range from dynamic management of cellular interactions to high-throughput screening of cells, and to precise analysis of chemical contents in single cells. Microfluidics demonstrates a completely new perspective and an excellent practical way to manipulate cells for solving various needs in biology and medicine. This review introduces and comments on recent achievements and challenges of using microfluidics to manipulate and analyze cells. It is believed that microfluidics will assume an even greater role in the mechanistic understanding of cell biology and, eventually, in clinical applications.

  2. Manipulator mounted transfer platform

    DOEpatents

    Dobbins, James C.; Hoover, Mark A.; May, Kay W.; Ross, Maurice J.

    1990-01-01

    A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

  3. Mass balance and metabolite profiling of steady-state faldaprevir, a hepatitis C virus NS3/4 protease inhibitor, in healthy male subjects.

    PubMed

    Chen, Lin-Zhi; Rose, Peter; Mao, Yanping; Yong, Chan-Loi; St George, Roger; Huang, Fenglei; Latli, Bachir; Mandarino, Debra; Li, Yongmei

    2014-01-01

    The pharmacokinetics, mass balance, and metabolite profiles of faldaprevir, a selective peptide-mimetic hepatitis C virus NS3/NS4 protease inhibitor, were assessed at steady state in 7 healthy male subjects. Subjects received oral doses of 480 mg faldaprevir on day 1, followed by 240 mg faldaprevir on days 2 to 8 and 10 to 15. [14C]faldaprevir (240 mg containing 100 μCi) was administered on day 9. Blood, urine, feces, and saliva samples were collected at intervals throughout the study. Metabolite profiling was performed using radiochromatography, and metabolite identification was conducted using liquid chromatography-tandem mass spectrometry. The overall recovery of radioactivity was high (98.8%), with the majority recovered from feces (98.7%). There was minimal radioactivity in urine (0.113%) and saliva. Circulating radioactivity was predominantly confined to plasma with minimal partitioning into red blood cells. The terminal half-life of radioactivity in plasma was approximately 23 h with no evidence of any long-lasting metabolites. Faldaprevir was the predominant circulating form, accounting for 98 to 100% of plasma radioactivity from each subject. Faldaprevir was the only drug-related component detected in urine. Faldaprevir was also the major drug-related component in feces, representing 49.8% of the radioactive dose. The majority of the remainder of radioactivity in feces (41% of the dose) was accounted for in almost equal quantities by 2 hydroxylated metabolites. The most common adverse events were nausea, diarrhea, and constipation, all of which were related to study drug. In conclusion, faldaprevir is predominantly excreted in feces with negligible urinary excretion.

  4. Effect of eight weeks of endurance exercise training on right and left ventricular volume and mass in untrained obese subjects: a longitudinal MRI study.

    PubMed

    Vogelsang, T W; Hanel, B; Kristoffersen, U S; Petersen, C L; Mehlsen, J; Holmquist, N; Larsson, B; Kjaer, A

    2008-06-01

    The aim of the present investigation was to examine how 8 weeks of intense endurance training influenced right and left ventricular volumes and mass in obese untrained subjects. Ten overweight subjects (19-47 years; body mass index of 34+/-5 kg/m(2)) underwent intensive endurance training (rowing) three times 30 min/week for 8 weeks at a relative intensity of 72+/-8% of their maximal heart rate response (mean+/-SD). Before and after 8 weeks of endurance training, the left and the right end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), stroke volume (SV) and ventricular mass (VM) were measured by Magnetic resonance imaging (MRI). Submaximal heart rate decreased from 126+/-5 to 113+/-3 b.p.m. (10%; P<0.01), and from 155+/-5 to 141+/-4 b.p.m. (9%; P<0.001) at submaximal workloads of 70 and 140 W (110 W for women), respectively (mean+/-SEM). Resting ventricular parameters increased significantly: left ventricular SV, EDV and VM increased by 6%, 7% and 13%, respectively (P<0.01). The right side of the heart showed significant changes in SV, EDV and VM with increase of 4%, 4% and 12%, respectively (P<0.05). Eight weeks of endurance training significantly increased left ventricular SV and right ventricular SV, due to an increase in left ventricular EDV and right ventricular EDV. Furthermore, left VM and right VM increased. We conclude that using MRI and a longitudinal design it was possible to demonstrate similar and balanced changes in the right and left ventricle in response to training.

  5. Actuability of Underactuated Manipulators

    DTIC Science & Technology

    1994-06-01

    of a manipulator with passive joints in operational space. IEEE Transactions on Robotics and Automation, 9(1), February 1993. [6] !irohiko Arai and...Susumu Tachi Position control of a manipulator with passive joints using dynamic coupling. IEEE Transactions on Robotics and Automation, 7(4), August

  6. Linearization of Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Kreutz, Kenneth

    1987-01-01

    Four nonlinear control schemes equivalent. Report discusses theory of nonlinear feedback control of robot manipulator, emphasis on control schemes making manipulator input and output behave like decoupled linear system. Approach, called "exact external linearization," contributes efforts to control end-effector trajectories, positions, and orientations.

  7. Association of Waist Circumference and Body Fat Weight with Insulin Resistance in Male Subjects with Normal Body Mass Index and Normal Glucose Tolerance.

    PubMed

    Sasaki, Ryoma; Yano, Yutaka; Yasuma, Taro; Onishi, Yuki; Suzuki, Toshinari; Maruyama-Furuta, Noriko; Gabazza, Esteban C; Sumida, Yasuhiro; Takei, Yoshiyuki

    2016-01-01

    Objective We investigated the relationship of the waist circumference (WC) and body fat weight (BF) with insulin resistance in subjects with normal body mass index (BMI) and normal glucose tolerance (NGT) during a routine medical check-up. Methods We categorized 167 male subjects in three groups as follows: a group with normal BMI but high WC (normal-BMI/high-WC group; 22≤BMI<25 kg/m(2), waist ≥85 cm; n=31), a group with normal BMI and normal WC (normal-BMI/normal-WC group, waist <85 cm; n=68), and a group with low normal BMI and normal WC (low normal-BMI/normal-WC group; 18.5≤BMI<22 kg/m(2) and waist<85 cm; n=68). We measured the plasma glucose and serum insulin levels before glucose loading and after 30 and 120 minutes and calculated several indexes of insulin secretion and sensitivity. Results Subjects from the normal-BMI/high-WC group showed significantly decreased Matsuda index and increased homeostasis model assessment for insulin resistance (HOMA-IR) compared with normal-BMI/normal-WC group. Univariate regression analyses showed significant correlation of HOMA-IR with WC (r=0.39) and BF (r=0.37). Matsuda index was significantly correlated with WC (r=-0.39) and BF (r=-0.47). The multiple regression analysis showed that the BF is significantly correlated with HOMA-IR (p<0.05) and Masuda index (p<0.005) among the clinical variables and with HOMA-IR (p<0.05) and Masuda index (p<0.0001) among the anthropometric variables but not with WC in either analysis. Conclusion Decreased Matsuda index and increased HOMA-IR were observed in subjects from the normal-BMI/high-WC group. Multivariate analysis showed that BF is associated with decreased Matsuda index and increased HOMA-IR and that WC is not associated with either factors.

  8. Optimum Shape Design against Flutter of a Cantilevered Column with AN End-Mass of Finite Size Subjected to a Non-Conservative Load

    NASA Astrophysics Data System (ADS)

    LANGTHJEM, MIKAEL A.; SUGIYAMA, YOSHIHIKO

    1999-09-01

    Optimum design for dynamic stability of slender cantilevered columns subjected to a follower force, due to a rocket thrust, is investigated. The aim is to determine the tapering of the column which maximizes the critical value of the rocket thrust (at which flutter is initiated) under the constraint of constant length and volume of the column. The rocket thrust is assumed to be produced by a solid rocket motor mounted at the tip end of the column. The rocket motor is simplified as a massive ball with the same material density as the column. Based on experimental evidence [1, 2] it is argued that a mathematical model without damping gives the practical stability limit if internal and external damping is small and the rocket thrust acts only in a short interval of time. Optimum columns are determined for various sizes of the end-ball (rocket motor). For small sizes, the critical thrust can be significantly increased by optimization, about eight times. By practical (experimental realizable) values of the mass ratio μ=(mass of end-ball)/(mass of column) the critical thrust can only be increased 1·3-1·4 times which is similar to the case of a pure conservative (dead) end load. Also, it is found that the great sensitivity to small changes in design parameters, which significantly complicates optimization of the pure Beck's column, is not present for practical values of μ. It is argued then, that the ‘pure’ Beck's column should be considered as a theoretical limit case of vanishing end-mass.

  9. Manipulator comparative testing program

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maeda, M.

    1986-01-01

    The Manipulator Comparative Testing Program examined differences among manipulator systems from the United States and Japan. The manipulator systems included the Meidensha BILARM 83A, the Model M-2 of Central Research Laboratories Division of Sargent Industries (CRL), and the GCA Corporation PaR Systems Model 6000. The site of testing was the Remote Operations Maintenance Demonstration (ROMD) facility, operated by the Fuel Recycle Division in the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL). In all stages of testing, operators using the CRL Model M-2 manipulator had consistently lower times to completion and error rates than they did using other machines. Performance was second best with the Meidensha BILARM 83A in master-slave mode. Performance with the BILARM in switchbox mode and the PaR 6000 manipulator was approximately equivalent in terms of criteria recorded in testing. These data show no impact of force reflection on task performance.

  10. Cell manipulation in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-06-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.

  11. Osteopathic Manipulative Treatment

    PubMed Central

    Campbell, Shannon M.; Walkowski, Stevan

    2012-01-01

    Dermatological diseases, such as dysesthesia syndromes, stasis dermatoses, and hyperhidrosis are difficult to treat due to their complex etiologies. Current theories suggest these diseases are caused by physiological imbalances, such as nerve impingement, localized tissue congestion, and impaired autonomic regulation. Osteopathic manipulative therapy targets these physiological dysfunctions and may serve as a beneficial therapeutic option. Osteopathic manipulative therapy techniques include high velocity low amplitude, muscle energy, counterstrain, myofascial release, craniosacral, and lymphatic drainage. An osteopathic manipulative therapy technique is chosen based on its physiological target for a particular disease. Osteopathic manipulative therapy may be useful alone or in combination with standard therapeutic options. However, due to the lack of standardized trials supporting the efficacy of osteopathic manipulative therapy treatment for dermatological disease, randomized, well-controlled studies are necessary to confirm its therapeutic value. PMID:23125887

  12. Position control of robot manipulators manipulating a flexible payload

    SciTech Connect

    Sun, D.; Mills, J.K.; Liu, Y.

    1999-03-01

    Robotic manipulation of a flexible payload is a complex and challenging control problem. This paper demonstrates from both theoretical and experimental perspectives that through proper design of the control gains, the simple scheme of PD plus gravity compensation can control a flexible payload manipulated by multiple robots to a desired position/orientation while damping the vibrations of the payload at each contact. The suppression of the vibration at each contact is helpful to suppress all vibrations of the flexible body. If the payload has a large stiffness or small mass, the proposed scheme can regulate the deformations at the contacts to zero, and also, the offsets of all static deformations of the payload with reference to the original positions decay to zero. A clamped-free model is used to decompose the dynamics of the payload into two distinct dynamic subsystems. This allows them to treat these dynamic subsystems separately and prove that desired motion trajectories can be achieved with the proposed scheme. As an example, the experiment of manipulating a flexible sheet using two CRS A460 robots is further described.

  13. What is morally new in genetic manipulation?

    PubMed

    Keenan, J F

    1990-01-01

    The investigation into the specific moral issues of genetic manipulation requires us to determine exactly the new moral issues of genetic manipulation. But even that determination requires us to consider whether the context in which we live and the method of moral reflection which we use is adequate enough to address genetic manipulation. Given the liberalist context in which we live, this paper argues that an act-oriented ethics is inadequate and that only a virtue-oriented ethics enables us to recognize and resolve the new problems ahead of us in genetic manipulation. Moreover, those problems have a common root, that is, that through genetics we will be in danger of objectifying the human subject.

  14. Body image discrepancy and subjective norm as mediators and moderators of the relationship between body mass index and quality of life

    PubMed Central

    Pétré, Benoit; Scheen, André J; Ziegler, Olivier; Donneau, Anne-Françoise; Dardenne, Nadia; Husson, Eddy; Albert, Adelin; Guillaume, Michèle

    2016-01-01

    Background and objective Despite the strength and consistency of the relationship between body mass index (BMI) and quality of life (QoL), a reduction in BMI does not necessarily lead to an improvement in QoL. Between-subject variability indicates the presence of mediators and moderators in the BMI–QoL association. This study aimed to examine the roles of body image discrepancy (BID) and subjective norm (SN) as potential mediators and moderators. Subjects and methods In 2012, 3,016 volunteers (aged ≥18 years) participated in a community-based survey conducted in the French-speaking region of Belgium. Participation was enhanced using a large multimedia campaign (which was supported by a large network of recruiters) that employed the nonstigmatizing slogan, “Whatever your weight, your opinion will count”. Participants were invited to complete a web-based questionnaire on their weight-related experiences. Self-reported measures were used to calculate each participant’s BMI, BID, SN, and QoL (a French obesity-specific QoL questionnaire was used to calculate the participants’ physical dimension of QoL scores [PHY-QoL], psychosocial dimension of QoL scores [PSY/SOC-QoL], and their total scores). The covariates included gender, age, subjective economic status, level of education, household size, and perceived health. The mediation/moderation tests were based on Hayes’ method. Results Tests showed that the relationships between BMI and PHY-QoL, PSY/SOC-QoL, and TOT-QoL were partially mediated by BID in both males and females and by SN in females. Moreover, BID was a moderator of the relationship between BMI and PSY/SOC-QoL in males and females. SN was a moderator of the relationship between BMI and PSY/SOC-QoL in males and between BMI and total scores in males (when used without BID in the models). Conclusion BID and SN should be considered as important factors in obesity management strategies. The study shows that targeting BMI only is not sufficient to

  15. Anthropomorphic Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1991-01-01

    Two-armed telerobot undergoing development manipulates objects with dexterity approaching that of human. Designed to be remotely operated by human. Operator wears harness with exoskeletonlike sleeves and gloves; remote manipulator follows operator's arm, hand, and finger movements and feeds back position and force information so operator has sense of manipulating object held by telerobot. Developed for use in outer space. Suited for such terrestrial uses as handling materials and maintaining equipment in hazardous environments where mechanical dexterity and nearly instantaneous feedback of sensory information needed.

  16. Histamine and tele-methylhistamine quantification in cerebrospinal fluid from narcoleptic subjects by liquid chromatography tandem mass spectrometry with precolumn derivatization.

    PubMed

    Croyal, Mikaël; Dauvilliers, Yves; Labeeuw, Olivier; Capet, Marc; Schwartz, Jean-Charles; Robert, Philippe

    2011-02-01

    An ultra-performance liquid chromatography tandem mass spectrometry (UPLC™-MS/MS) assay was developed for the simultaneous analysis of histamine, its major metabolite tele-methylhistamine, and an internal standard (N-tele-(R)-α-dimethylhistamine) from human cerebrospinal fluid (CSF) samples. The method involves derivatization of primary amines with 4-bromobenzenesulfonyl chloride and subsequent analysis by reversed phase liquid chromatography with mass spectrometry detection and positive electrospray ionization. The separation of derivatized biogenic amines was achieved within 3.5 min on an Acquity® BEH C(18) column by elution with a linear gradient of acetonitrile/water/formic acid (0.1%). The assay was linear in the concentration range of 50-5000 pM for each amine (5.5-555 pg/ml for histamine and 6.25-625 pg/ml for tele-methylhistamine). For repeatability and precision determination, coefficients of variation (CVs) were less than 11.0% over the tested concentration ranges, within acceptance criteria. Thus, the developed method provides the rapid, easy, highly sensitive, and selective requirement to quantify these amines in human CSF. No significant difference was found in the mean ± standard error levels of these amines between a group of narcoleptic patients (histamine=392 ± 64 pM, tele-methylhistamine=2431 ± 461 pM, n=7) and of neurological control subjects (histamine=402 ± 72 pM, tele-methylhistamine=2209 ± 463 pM, n=32).

  17. Manipulating the edge of instability

    PubMed Central

    Venkadesan, Madhusudhan; Guckenheimer, John; Valero-Cuevas, Francisco J.

    2009-01-01

    We investigate the integration of visual and tactile sensory input for dynamic manipulation. Our experimental data and computational modeling reveal that time-delays are as critical to task-optimal multisensory integration as sensorimotor noise. Our focus is a dynamic manipulation task “at the edge of instability.” Mathematical bifurcation theory predicts that this system will exhibit well-classified low-dimensional dynamics in this regime. The task was using the thumbpad to compress a slender spring prone to buckling as far as possible, just shy of slipping. As expected from bifurcation theory, principal components analysis gives a projection of the data onto a low dimensional subspace that captures 91-97% of its variance. In this subspace, we formulate a low-order model for the brain+hand+spring dynamics based on known mechanical and neurophysiological properties of the system. By systematically occluding vision and anesthetically blocking thumbpad sensation in 12 consenting subjects, we found that vision contributed to dynamic manipulation only when thumbpad sensation was absent. The reduced ability of the model system to compress the spring with absent sensory channels closely resembled the experimental results. Moreover, we found that the model reproduced the contextual usefulness of vision only if we took account of time-delays. Our results shed light on critical features of dynamic manipulation distinct from those of static pinch, as well as the mechanism likely responsible for loss of manual dexterity and increased reliance on vision when age or neuromuscular disease increase noisiness and/or time-delays during sensorimotor integration. PMID:17400231

  18. Update: Biochemistry of Genetic Manipulation.

    ERIC Educational Resources Information Center

    Barker, G. R.

    1983-01-01

    Various topics on the biochemistry of genetic manipulation are discussed. These include genetic transformation and DNA; genetic expression; DNA replication, repair, and mutation; technology of genetic manipulation; and applications of genetic manipulation. Other techniques employed are also considered. (JN)

  19. Dielectrophoresis for Bioparticle Manipulation

    PubMed Central

    Qian, Cheng; Huang, Haibo; Chen, Liguo; Li, Xiangpeng; Ge, Zunbiao; Chen, Tao; Yang, Zhan; Sun, Lining

    2014-01-01

    As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested. PMID:25310652

  20. Remote manipulator dynamic simulation

    NASA Technical Reports Server (NTRS)

    Wild, E. C.; Donges, P. K.; Garand, W. A.

    1972-01-01

    A simulator to generate the real time visual scenes required to perform man in the loop investigations of remote manipulator application and design concepts for the space shuttle is described. The simulated remote manipulator consists of a computed display system that uses a digital computer, the electronic scene generator, an operator's station, and associated interface hardware. A description of the capabilities of the implemented simulation is presented. The mathematical models and programs developed for the simulation are included.

  1. Steady-state kinetics of serum bile acids in healthy human subjects: single and dual isotope techniques using stable isotopes and mass spectrometry

    SciTech Connect

    Everson, G.T.

    1987-03-01

    Techniques have been developed for the measurement of the complete steady-state kinetics of both chenodeoxycholic (CDCA) and cholic (CA) acid and the pool size of deoxycholic acid (DCA) from the serum of healthy subjects using stable isotopes and capillary gas-liquid chromatography-mass spectrometry (GLC-MS). Serum bile acids were purified by a method employing a C18 chromatographic cartridge, acid solvolysis, enzymic hydrolysis, methylation, a C8 chromatographic cartridge, and TMS-ether derivatization. Fifty mg each of (24-/sup 13/C)CDCA and (24-/sup 13/C)CA was given to five healthy subjects and kinetics were measured from serum and bile. In each case, the measurements from serum (S) equalled those from bile (B) (CDCA (S vs. B): fractional turnover rate (FTR) (d-1) 0.17 +/- 0.03 vs. 0.18 +/- 0.04; pool (g) 0.64 +/- 0.1 vs. 0.68 +/- 0.14, synthesis (g d-1) 0.12 +/- 0.03 vs. 0.1 +/- 0.03; CA (S vs. B): FTR (d-1) 0.28 +/- 0.05 vs. 0.29 +/- 0.07, pool (g) 0.84 +/- 0.29 vs. 0.82 +/- 0.29, synthesis (g d-1) 0.24 +/- 0.10 vs. 0.25 +/- 0.12). In addition, a dual isotope technique for measuring the steady-state kinetics of CDCA was developed using (11,12-2H)CDCA, (24-/sup 13/C)CDCA, and a single sample of serum. In ten subjects, the FTR, pool and synthesis of CDCA measured from serum was similar to that measured from bile. Finally, a technique for estimating the deoxycholic acid (DCA) pool from serum using the ratio of the 370 ion of DCA to that of CDCA was developed. In summary, these data demonstrate that the steady-state kinetics of CDCA and CA and the pool size of DCA can be measured from the serum of healthy subjects.

  2. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  3. Micro manipulator motion control to counteract macro manipulator structural vibrations

    SciTech Connect

    Lew, J.Y.; Trudnowski, D.J.; Evans, M.S.; Bennett, D.W.

    1995-02-01

    Inertial force damping control by micro manipulator modulation is proposed to suppress the vibrations of a micro/macro manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro manipulator system using micro-manipulator-based inertial active damping control.

  4. 19 CFR 134.13 - Imported articles repacked or manipulated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Imported articles repacked or manipulated. 134.13...; DEPARTMENT OF THE TREASURY COUNTRY OF ORIGIN MARKING Articles Subject to Marking § 134.13 Imported articles repacked or manipulated. (a) Marking requirement. An article within the provisions of this section shall...

  5. 19 CFR 134.26 - Imported articles repacked or manipulated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Imported articles repacked or manipulated. 134.26... articles repacked or manipulated. (a) Certification requirements. If an article subject to these... Customs custody, or if the port director having custody of the article, has reason to believe such...

  6. 19 CFR 134.26 - Imported articles repacked or manipulated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Imported articles repacked or manipulated. 134.26... articles repacked or manipulated. (a) Certification requirements. If an article subject to these... Customs custody, or if the port director having custody of the article, has reason to believe such...

  7. 19 CFR 134.13 - Imported articles repacked or manipulated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Imported articles repacked or manipulated. 134.13...; DEPARTMENT OF THE TREASURY COUNTRY OF ORIGIN MARKING Articles Subject to Marking § 134.13 Imported articles repacked or manipulated. (a) Marking requirement. An article within the provisions of this section shall...

  8. 19 CFR 134.13 - Imported articles repacked or manipulated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Imported articles repacked or manipulated. 134.13...; DEPARTMENT OF THE TREASURY COUNTRY OF ORIGIN MARKING Articles Subject to Marking § 134.13 Imported articles repacked or manipulated. (a) Marking requirement. An article within the provisions of this section shall...

  9. Manipulator comparative testing program

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maida, M.

    1986-01-01

    The Manipulator Comparative Testing Program compared performance of selected manipulator systems under typical remote handling conditions. The site of testing was the Remote Operations and Maintenance Demonstration Facility operated by the Consolidated Fuel Reprocessing Program of the Oak Ridge National Laboratory. Three experiment examined differences among manipulator systems from the US and Japan. The manipulator systems included the Meidensha BILARM 83A, Central Research Laboratories' (CRL's) Model M-2, and GCA PaR systems Model 6000. Six manipulator and control mode combinations were evaluated: (a) the BILARM in master-slave mode without force reflection; (b) the BILARM in master-slave mode with force reflection; (c) the Model M-2 in master-slave mode without force reflection; (d) the Model M-2 in master-slave mode with force reflection; (e) the BILARM with switchbox controls; and (f) the PaR 6000 with switchbox controls. The experiments also examined differences between master-slave systems with and without force reflections, and differences between master-slave systems and switchbox-controlled systems.

  10. Ecological consequences of manipulative parasites: chapter 9

    USGS Publications Warehouse

    Lafferty, Kevin D.; Kuris, A. M.

    2012-01-01

    Parasitic "puppet masters", with their twisted, self-serving life history strategies and impressive evolutionary takeovers of host minds, capture the imagination of listeners—even those that might not normally fi nd the topic of parasitism appealing (which includes most everyone). A favorite anecdote concerns the trematode Leucochloridium paradoxum migrating to the eyestalks of its intermediate host snail and pulsating its colored body, presumably to attract the predatory birds that are the final hosts for the worm. Identifying a parasite as “manipulative” infers that a change in host behavior or appearance is a direct consequence of the parasite’s adaptive actions that, on average, will increase the fi tness of the parasite. The list of parasites that manipulate their hosts is long and growing. Holmes and Bethel (1972) presented the earliest comprehensive review and brought the subject to mainstream ecologists. Over two decades ago, Andy Dobson (1988) listed seven cestodes, seven trematodes, ten acanthocephalans, and three nematodes that manipulated host behavior. Fifteen years later, Janice Moore (2002) filled a book with examples. The five infectious trophic strategies, typical parasites (macroparasites), pathogens, trophically transmitted parasites, parasitic castrators, and parasitoids (Kuris and Lafferty 2000; Lafferty and Kuris 2002, 2009) can modify host behavior, but the likelihood that a parasite manipulates behavior differs among strategies. The most studied infectious agents, non-trophically transmitted pathogens and macroparasites, have enormous public health, veterinary, and wildlife disease importance, yet few manipulate host behavior. The beststudied manipulative infectious agents are trophically transmitted parasites in their prey intermediate hosts. Parasitoids and parasitic castrators can also manipulate host behavior, but for different purposes and with different implications. Several studies of manipulative parasites conclude with

  11. Momentum management in redundant manipulators for vibration suppression

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique

    1993-01-01

    This research project dealt with the development of control methodologies which would effectively use existing inertial devices as control actuators in the manipulation of Remote Manipulator System (RMS)-type robotic arms. The existing devices proposed to be investigated are the Torque-Wheel (TW) and the Proof-Mass actuator (PM). This report presents a succinct summary of our results.

  12. Momentum management in redundant manipulators for vibration suppression

    NASA Astrophysics Data System (ADS)

    Barbieri, Enrique

    1993-08-01

    This research project dealt with the development of control methodologies which would effectively use existing inertial devices as control actuators in the manipulation of Remote Manipulator System (RMS)-type robotic arms. The existing devices proposed to be investigated are the Torque-Wheel (TW) and the Proof-Mass actuator (PM). This report presents a succinct summary of our results.

  13. Analysis of heat and mass transfer enhancement in porous material subjected to electric fields (effects of particle sizes and layered arrangement)

    SciTech Connect

    Chaktranond, Chainarong; Rattanadecho, Phadungsak

    2010-11-15

    This research experimentally investigates the influences of electrical voltage, particle sizes and layer arrangement on the heat and mass transfer in porous packed bed subjected to electrohydrodynamic drying. The packed bed consists of a single and double layers of glass beads, water and air. Sizes of glass beads are 0.125 and 0.38 mm in diameter. Electric fields are applied in the range of 0-15 kV. Average velocity and temperature of hot airflow are controlled at 0.33 m/s and 60 C, respectively. The results show that the convective heat transfer coefficient and drying rate are enhanced considerably with a Corona wind. In the single-layered case, due to effects of porosity, the packed bed containing small beads has capillary pressure higher than that with big beads, resulting in higher removal rate of water and higher rate of heat transfer. Considering the effect of capillary pressure difference, temperature distribution and removal rate of moisture in the double-layered case appear to be different than those observed in the single-layered case. Moreover, in the double-layered case, the fine-coarse packed bed gives drying rate higher than that given by the coarse-fine packed bed. (author)

  14. Microdose study of 14C-acetaminophen with accelerator mass spectrometry to examine pharmacokinetics of parent drug and metabolites in healthy subjects.

    PubMed

    Tozuka, Z; Kusuhara, H; Nozawa, K; Hamabe, Y; Ikushima, I; Ikeda, T; Sugiyama, Y

    2010-12-01

    A study of the pharmacokinetics of (14)C-labeled acetaminophen (AAP) was performed in healthy Japanese subjects receiving an oral microdose of the drug. After separation by high-performance liquid chromatography (HPLC), the levels of AAP and its metabolites in the pooled plasma specimens were quantified using accelerator mass spectrometry (AMS). The total body clearance (CL(tot))/bioavailability (F) of AAP was within the variation in the reported values at therapeutic doses, indicating the linearity of AAP pharmacokinetics. AAP-glucuronide (Glu) and AAP-4-O-sulfate satisfied the criteria of safety testing of drug metabolites. AMS could detect AAP-Cys, the active metabolite of AAP conjugated with cysteine, in the urine. Probenecid prolonged the systemic elimination of total radioactivity and caused a marked decrease in AAP-Glu levels in plasma. Probenecid likely inhibited the glucuronidation of AAP and the renal elimination of AAP-4-O-sulfate. Microdosing of (14)C-labeled drug followed by AMS is a powerful tool that can be used in the early phase of drug development for pharmacokinetic analysis of drugs and their metabolites and for detecting the formation of active metabolites in humans.

  15. Simulation of robot manipulators

    SciTech Connect

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-03-01

    This paper describes Oak Ridge National Laboratory`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories` Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment.

  16. Model based manipulator control

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1989-01-01

    The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.

  17. ELECTRONIC MASTER SLAVE MANIPULATOR

    DOEpatents

    Goertz, R.C.; Thompson, Wm.M.; Olsen, R.A.

    1958-08-01

    A remote control manipulator is described in which the master and slave arms are electrically connected to produce the desired motions. A response signal is provided in the master unit in order that the operator may sense a feel of the object and may not thereby exert such pressures that would ordinarily damage delicate objects. This apparatus will permit the manipulation of objects at a great distance, that may be viewed over a closed TV circuit, thereby permitting a remote operator to carry out operations in an extremely dangerous area with complete safety.

  18. On manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kreutz, Kenneth

    1989-01-01

    Comments are given on the application to rigid-link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory, and the essential unity of these techniques for externally linearizing and decoupling end-effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid-link manipulator is positive definite, and the fact that there is an independent input for each degree of freedom, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular.

  19. Investigations on the dynamic coupling in AUV-manipulator system and the manipulator trajectory errors using bond graph method

    NASA Astrophysics Data System (ADS)

    Periasamy, T.; Asokan, T.; Singaperumal, M.

    2012-06-01

    This article presents the modelling and simulation of the dynamic coupling in an autonomous underwater vehicle (AUV)-manipulator system, used for subsea intervention tasks. Bond graph, a powerful tool in multi-domain dynamic system modelling, is used for the first time to model the coupled dynamics of the AUV-manipulator system. This method enables the development of the system model in a modular form by creating sub-system models and connecting these models together at energy interactions ports, thus overcoming many of the computational difficulties encountered in conventional modelling methods. The effects of gravity, buoyancy, added mass and fluid drag on the dynamics of a 3 degrees of freedom (DoF) manipulator mounted on a 6 DoF AUV are analysed. The manipulator trajectory errors due to the interaction forces and moments between the vehicle and the manipulator have also been investigated and the results are presented. The dynamic model predicts the reaction forces on the vehicle under various operating conditions of the manipulator and their influence on the manipulator trajectory. The percentage errors of manipulator tip trajectory for different initial configurations and operating conditions are analysed. The estimation of resulting errors in the manipulator path due to dynamic coupling effect on the manipulator trajectory helps in the design of suitable trajectory controller for the system. Cartesian space transpose Jacobian controller for trajectory control of manipulator has been implemented and results are presented.

  20. Self mobile space manipulator project

    NASA Technical Reports Server (NTRS)

    Brown, H. Ben; Friedman, Mark; Xu, Yangsheng; Kanade, Takeo

    1992-01-01

    A relatively simple, modular, low mass, low cost robot is being developed for space EVA that is large enough to be independently mobile on a space station or platform exterior, yet versatile enough to accomplish many vital tasks. The robot comprises two long flexible links connected by a rotary joint, with 2-DOF 'wrist' joints and grippers at each end. It walks by gripping pre-positioned attachment points, such as trusswork nodes, and alternately shifting its base of support from one foot (gripper) to the other. The robot can perform useful tasks such as visual inspection, material transport, and light assembly by manipulating objects with one gripper, while stabilizing itself with the other. At SOAR '90, we reported development of 1/3 scale robot hardware, modular trusswork to serve as a locomotion substrate, and a gravity compensation system to allow laboratory tests of locomotion strategies on the horizontal face of the trusswork. In this paper, we report on project progress including the development of: (1) adaptive control for automatic adjustment to loads; (2) enhanced manipulation capabilities; (3) machine vision, including the use of neural nets, to guide autonomous locomotion; (4) locomotion between orthogonal trusswork faces; and (5) improved facilities for gravity compensation and telerobotic control.

  1. Osteopathic Manipulative Treatment

    MedlinePlus

    ... AOA Certification DO Jobs Online Doctors That DO Facebook Twitter LinkedIn YouTube Pinterest What is a DO? How Are DOs Licensed? How Are DOs Certified? Search for a DO Health Library Osteopathic Manipulative Treatment Becoming a DO Video Library ...

  2. Manipulating the Gradient

    ERIC Educational Resources Information Center

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  3. Robot Manipulator Control.

    DTIC Science & Technology

    1983-03-07

    This report presents a synthetic approach for calculating the control of robot manipulators. The initial control problem is broken down into linear ... control and modelling problems. The approach allows derivation of numerous schemes (adaptive or not) of control proposed in the literature and suggests

  4. Kinematically redundant robot manipulators

    NASA Technical Reports Server (NTRS)

    Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.

    1987-01-01

    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.

  5. Computer Algebra versus Manipulation

    ERIC Educational Resources Information Center

    Zand, Hossein; Crowe, David

    2004-01-01

    In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…

  6. Door breaching robotic manipulator

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Erik; Parrington, Lawrence; von Muehlen, Stephan

    2008-04-01

    As unmanned systems become more commonplace in military, police, and other security forces, they are tasked to perform missions that the original hardware was not designed for. Current military robots are built for rough outdoor conditions and have strong inflexible manipulators designed to handle a wide range of operations. However, these manipulators are not well suited for some essential indoor tasks, including opening doors. This is a complicated kinematic task that places prohibitively difficult control challenges on the robot and the operator. Honeybee and iRobot have designed a modular door-breaching manipulator that mechanically simplifies the demands upon operator and robot. The manipulator connects to the existing robotic arm of the iRobot PackBot EOD. The gripper is optimized for grasping a variety of door knobs, levers, and car-door handles. It works in conjunction with a compliant wrist and magnetic lock-out mechanism that allows the wrist to remain rigid until the gripper has a firm grasp of the handle and then bend with its rotation and the swing of the door. Once the door is unlatched, the operator simply drives the robot through the doorway while the wrist compensates for the complex, multiple degree-of-freedom motion of the door. Once in the doorway the operator releases the handle, the wrist pops back into place, and the robot is ready for the next door. The new manipulator dramatically improves a robot's ability to non-destructively breach doors and perform an inspection of a room's content, a capability that was previously out of reach of unmanned systems.

  7. Manipulating stored phonological input during verbal working memory.

    PubMed

    Cogan, Gregory B; Iyer, Asha; Melloni, Lucia; Thesen, Thomas; Friedman, Daniel; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2017-02-01

    Verbal working memory (vWM) involves storing and manipulating information in phonological sensory input. An influential theory of vWM proposes that manipulation is carried out by a central executive while storage is performed by two interacting systems: a phonological input buffer that captures sound-based information and an articulatory rehearsal system that controls speech motor output. Whether, when and how neural activity in the brain encodes these components remains unknown. Here we read out the contents of vWM from neural activity in human subjects as they manipulated stored speech sounds. As predicted, we identified storage systems that contained both phonological sensory and articulatory motor representations. Unexpectedly, however, we found that manipulation did not involve a single central executive but rather involved two systems with distinct contributions to successful manipulation. We propose, therefore, that multiple subsystems comprise the central executive needed to manipulate stored phonological input for articulatory motor output in vWM.

  8. Force reflecting hand controller for manipulator teleoperation

    NASA Technical Reports Server (NTRS)

    Bryfogle, Mark D.

    1991-01-01

    A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.

  9. No Evidence for Genome-Wide Interactions on Plasma Fibrinogen by Smoking, Alcohol Consumption and Body Mass Index: Results from Meta-Analyses of 80,607 Subjects

    PubMed Central

    Chu, Audrey Y.; Trompet, Stella; Lopez, Lorna M.; Fornage, Myriam; Teumer, Alexander; Tang, Weihong; Rudnicka, Alicja R.; Mälarstig, Anders; Hottenga, Jouke-Jan; Kavousi, Maryam; Lahti, Jari; Tanaka, Toshiko; Hayward, Caroline; Huffman, Jennifer E.; Morange, Pierre-Emmanuel; Rose, Lynda M.; Basu, Saonli; Rumley, Ann; Stott, David J.; Buckley, Brendan M.; de Craen, Anton J. M.; Sanna, Serena; Masala, Marco; Biffar, Reiner; Homuth, Georg; Silveira, Angela; Sennblad, Bengt; Goel, Anuj; Watkins, Hugh; Müller-Nurasyid, Martina; Rückerl, Regina; Taylor, Kent; Chen, Ming-Huei; de Geus, Eco J. C.; Hofman, Albert; Witteman, Jacqueline C. M.; de Maat, Moniek P. M.; Palotie, Aarno; Davies, Gail; Siscovick, David S.; Kolcic, Ivana; Wild, Sarah H.; Song, Jaejoon; McArdle, Wendy L.; Ford, Ian; Sattar, Naveed; Schlessinger, David; Grotevendt, Anne; Franzosi, Maria Grazia; Illig, Thomas; Waldenberger, Melanie; Lumley, Thomas; Tofler, Geoffrey H.; Willemsen, Gonneke; Uitterlinden, André G.; Rivadeneira, Fernando; Räikkönen, Katri; Chasman, Daniel I.; Folsom, Aaron R.; Lowe, Gordon D.; Westendorp, Rudi G. J.; Slagboom, P. Eline; Cucca, Francesco; Wallaschofski, Henri; Strawbridge, Rona J.; Seedorf, Udo; Koenig, Wolfgang; Bis, Joshua C.; Mukamal, Kenneth J.; van Dongen, Jenny; Widen, Elisabeth; Franco, Oscar H.; Starr, John M.; Liu, Kiang; Ferrucci, Luigi; Polasek, Ozren; Wilson, James F.; Oudot-Mellakh, Tiphaine; Campbell, Harry; Navarro, Pau; Bandinelli, Stefania; Eriksson, Johan; Boomsma, Dorret I.; Dehghan, Abbas; Clarke, Robert; Hamsten, Anders; Boerwinkle, Eric; Jukema, J. Wouter; Naitza, Silvia; Ridker, Paul M.; Völzke, Henry; Deary, Ian J.; Reiner, Alexander P.; Trégouët, David-Alexandre; O'Donnell, Christopher J.; Strachan, David P.; Peters, Annette; Smith, Nicholas L.

    2014-01-01

    Plasma fibrinogen is an acute phase protein playing an important role in the blood coagulation cascade having strong associations with smoking, alcohol consumption and body mass index (BMI). Genome-wide association studies (GWAS) have identified a variety of gene regions associated with elevated plasma fibrinogen concentrations. However, little is yet known about how associations between environmental factors and fibrinogen might be modified by genetic variation. Therefore, we conducted large-scale meta-analyses of genome-wide interaction studies to identify possible interactions of genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentration. The present study included 80,607 subjects of European ancestry from 22 studies. Genome-wide interaction analyses were performed separately in each study for about 2.6 million single nucleotide polymorphisms (SNPs) across the 22 autosomal chromosomes. For each SNP and risk factor, we performed a linear regression under an additive genetic model including an interaction term between SNP and risk factor. Interaction estimates were meta-analysed using a fixed-effects model. No genome-wide significant interaction with smoking status, alcohol consumption or BMI was observed in the meta-analyses. The most suggestive interaction was found for smoking and rs10519203, located in the LOC123688 region on chromosome 15, with a p value of 6.2×10−8. This large genome-wide interaction study including 80,607 participants found no strong evidence of interaction between genetic variants and smoking status, alcohol consumption or BMI on fibrinogen concentrations. Further studies are needed to yield deeper insight in the interplay between environmental factors and gene variants on the regulation of fibrinogen concentrations. PMID:25551457

  10. Frontal theta is a signature of successful working memory manipulation

    PubMed Central

    Itthipuripat, Sirawaj; Wessel, Jan R.; Aron, Adam R.

    2012-01-01

    It has been proposed that working memory (WM) is updated/manipulated via a fronto-basal-ganglia circuit. One way that this could happen is via the synchronization of neural oscillations. A first step towards testing this hypothesis is to clearly establish a frontal scalp EEG signature of WM manipulation. Although many EEG studies have indeed revealed frontal EEG signatures for WM, especially in the theta frequency band (3–8 Hz), few of them required subjects to manipulate WM, and of those that did, none specifically tied the EEG signature to the manipulation process per se. Here we employed a WM manipulation task that has been shown with imaging to engage the prefrontal cortex and the striatum. We adapted this task to titrate the success of WM manipulation to approximately 50%. Using time-frequency analysis of EEG, we showed that theta power is increased over frontal cortex for successful versus failed WM manipulation, specifically at the time of the manipulation event. This establishes a clear-cut EEG signature of WM manipulation. Future studies could employ this to test the fronto-basal-ganglia hypothesis of WM updating/manipulation. PMID:23109082

  11. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  12. REMOTELY OPERATED MANIPULATOR

    DOEpatents

    Hutto, E.L.

    1961-08-15

    A manipulator is described for performing, within an entirely enclosed cell containling radioactive materials, various mechanical operations. A rod with flexible fingers is encompassed by a tubular sleeve shorter than the rod. Relative movement between the rod and sleeve causes the fingers to open and close. This relative movement is effected by relative movement of permanent magnets in magnetic coupling relation to magnetic followers affixed to the ends of the rod and sleeve. The rod and its sleeve may be moved as a unit axially or may be rotated by means of the magnetic couplings. The manipulator is enclosed within a tubular member which is flexibly sealed to an opening in the cell. (AEC)

  13. Computer aided manipulator control

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Zawacki, R. L.

    1980-01-01

    This paper describes the hardware and software system of a dedicated mini- and microcomputer network developed at the JPL teleoperator project to aid the operator in real-time control of remote manipulators. The operator can be in series or in parallel with the control computer during operation. The purpose of the project is to develop, demonstrate and evaluate advanced supervisory control concepts and techniques for space applications. The paper concludes with a brief outline of future development plans and issues.

  14. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  15. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  16. Manipulation of quantum evolution

    NASA Technical Reports Server (NTRS)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  17. MANIPULATOR FOR SLAVE ROBOT

    DOEpatents

    Goertz, R.C.; Grimson, J.H.; Kohut, F.A.

    1961-04-01

    A remote-control manipulator comprising two stationary master units, two slave units on a movable vehicle, and electrical connections between the master and slave units is reported. The slave units are side by side with a minimum over-all width, which is made feasible by an arrangement of transducers producing most movements of each slave unit to one side of the support of said slave unit.

  18. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  19. Endocavity Ultrasound Probe Manipulators.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2013-06-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure.

  20. Welding nozzle position manipulator

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L. (Inventor); Gutow, David A. (Inventor)

    1994-01-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  1. Welding nozzle position manipulator

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1994-11-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  2. Welding nozzle position manipulator

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1993-08-01

    The present invention is directed to a welding nozzle position manipulator. The manipulator consists of an angle support to which the remaining components of the device are attached either directly or indirectly. A pair of pivotal connections attach a weld nozzle holding link to the angle support and provide a two axis freedom of movement of the holding link with respect to the support angle. The manipulator is actuated by a pair of adjusting screws angularly mounted to the angle support. These screws contact a pair of tapered friction surfaces formed on the upper portion of the welding nozzle holding link. A spring positioned between the upper portions of the support angle and the holding link provides a constant bias engagement between the friction surfaces of the holding link and the adjustment screws, so as to firmly hold the link in position and to eliminate any free play in the adjustment mechanism. The angular relationships between the adjustment screws, the angle support and the tapered friction surfaces of the weld nozzle holding link provide a geometric arrangement which permits precision adjustment of the holding link with respect to the angle support and also provides a solid holding link mount which is resistant to movement from outside forces.

  3. Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation.

    PubMed

    Marneweck, Michelle; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M

    2016-01-01

    Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically, recent studies revealed strong covariation of digit position and load force during the loading phase of two-digit grasping. Here, we determined whether such digit force-position covariation is a general feature of grasping. We investigated the coordination of digit position and forces during five-digit whole-hand manipulation of an object with a variable mass distribution. Subjects were instructed to prevent object roll during the lift. As found in precision grasping, there was strong trial-to-trial covariation of digit position and force. This suggests that the natural variation of digit position that is compensated for by trial-to-trial variation in digit forces is a fundamental feature of grasp control, and not only specific to precision grasp. However, a main difference with precision grasping was that modulation of digit position to the object's mass distribution was driven predominantly by the thumb, with little to no modulation of finger position. Modulation of thumb position rather than fingers is likely due to its greater range of motion and therefore adaptability to object properties. Our results underscore the flexibility of the central nervous system in implementing a range of solutions along the digit force-to-position continuum for dexterous manipulation.

  4. Performance measurement of mobile manipulators

    NASA Astrophysics Data System (ADS)

    Bostelman, Roger; Hong, Tsai; Marvel, Jeremy

    2015-05-01

    This paper describes a concept for measuring the reproducible performance of mobile manipulators to be used for assembly or other similar tasks. An automatic guided vehicle with an onboard robot arm was programmed to repeatedly move to and stop at a novel, reconfigurable mobile manipulator artifact (RMMA), sense the RMMA, and detect targets on the RMMA. The manipulator moved a laser retroreflective sensor to detect small reflectors that can be reconfigured to measure various manipulator positions and orientations (poses). This paper describes calibration of a multi-camera, motion capture system using a 6 degree-of-freedom metrology bar and then using the camera system as a ground truth measurement device for validation of the reproducible mobile manipulator's experiments and test method. Static performance measurement of a mobile manipulator using the RMMA has proved useful for relatively high tolerance pose estimation and other metrics that support standard test method development for indexed and dynamic mobile manipulator applications.

  5. Eye-hand coordination in object manipulation.

    PubMed

    Johansson, R S; Westling, G; Bäckström, A; Flanagan, J R

    2001-09-01

    We analyzed the coordination between gaze behavior, fingertip movements, and movements of the manipulated object when subjects reached for and grasped a bar and moved it to press a target-switch. Subjects almost exclusively fixated certain landmarks critical for the control of the task. Landmarks at which contact events took place were obligatory gaze targets. These included the grasp site on the bar, the target, and the support surface where the bar was returned after target contact. Any obstacle in the direct movement path and the tip of the bar were optional landmarks. Subjects never fixated the hand or the moving bar. Gaze and hand/bar movements were linked concerning landmarks, with gaze leading. The instant that gaze exited a given landmark coincided with a kinematic event at that landmark in a manner suggesting that subjects monitored critical kinematic events for phasic verification of task progress and subgoal completion. For both the obstacle and target, subjects directed saccades and fixations to sites that were offset from the physical extension of the objects. Fixations related to an obstacle appeared to specify a location around which the extending tip of the bar should travel. We conclude that gaze supports hand movement planning by marking key positions to which the fingertips or grasped object are subsequently directed. The salience of gaze targets arises from the functional sensorimotor requirements of the task. We further suggest that gaze control contributes to the development and maintenance of sensorimotor correlation matrices that support predictive motor control in manipulation.

  6. Lean body mass by Dual Energy X-ray Absorptiometry (DEXA) and by urine and dialysate creatinine recovery in CAPD and pre-dialysis patients compared to normal subjects.

    PubMed

    Nielsen, P K; Ladefoged, J; Olgaard, K

    1994-01-01

    The urinary creatinine excretion rate is a function of the muscle mass which, in normal subjects, is shown to be correlated with lean body mass. Dual Energy X-ray Absorptiometry (DEXA) has been shown to correlate well with other methods for the measurement of body composition. The purpose of the present study was to compare estimates of lean body mass (LBM) by DEXA scan with urine and dialysate creatinine recovery in uremic patients and in normal subjects. We included 63 normal subjects with a creatinine clearance of 60-120 mL/min, 30 uremic predialysis patients with creatinine clearance below 30 mL/min, and 20 continuous ambulatory peritoneal dialysis (CAPD) patients. LBM was measured by DEXA scan on the same day as urine collection and was estimated from creatinine recovery with and without correction for extrarenal creatinine clearance. Results from the normal subjects showed no difference in estimates of LBM by the different methods but, in predialysis and CAPD patients, a significant difference between methods of estimating LBM was found, even when correction for extrarenal clearance in uremic patients was performed. In normal subjects: DEXA 43.6 kg versus creatinine excretion 43.2 kg (NS). In predialysis patients: DEXA 47.8 kg versus 37.6 kg (p < 0.001) corrected 44.8 kg (p < 0.05). In CAPD patients: DEXA 47.2 kg versus 32 kg (p < 0.001) corrected 42.6 kg (p < 0.05). In conclusion, the urine and dialysate creatinine excretion is an inaccurate estimate of LBM, but reflects the muscle mass and, in that respect, is an important tool in the nutritional evaluation of uremic patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Parasites and supernormal manipulation.

    PubMed Central

    Holen, Ø. H.; Saetre, G. P.; Slagsvold, T.; Stenseth, N. C.

    2001-01-01

    Social parasites may exploit their hosts by mimicking other organisms that the hosts normally benefit from investing in or responding to in some other way. Some parasites exaggerate key characters of the organisms they mimic, possibly in order to increase the response from the hosts. The huge gape and extreme begging intensity of the parasitic common cuckoo chick (Cuculus canorus) may be an example. In this paper, the evolutionary stability of manipulating hosts through exaggerated signals is analysed using game theory. Our model indicates that a parasite's signal intensity must be below a certain threshold in order to ensure acceptance and that this threshold depends directly on the rate of parasitism. The only evolutionarily stable strategy (ESS) combination is when hosts accept all signallers and parasites signal at their optimal signal intensity, which must be below the threshold. Supernormal manipulation by parasites is only evolutionarily stable under sufficiently low rates of parasitism. If the conditions for the ESS combination are not satisfied, rejector hosts can invade using signal intensity as a cue for identifying parasites. These qualitative predictions are discussed with respect to empirical evidence from parasitic mimicry systems that have been suggested to involve supernormal signalling, including evicting avian brood parasites and insect-mimicking Ophrys orchids. PMID:11749709

  8. Memory and subjective workload assessment

    NASA Technical Reports Server (NTRS)

    Staveland, L.; Hart, S.; Yeh, Y. Y.

    1986-01-01

    Recent research suggested subjective introspection of workload is not based upon specific retrieval of information from long term memory, and only reflects the average workload that is imposed upon the human operator by a particular task. These findings are based upon global ratings of workload for the overall task, suggesting that subjective ratings are limited in ability to retrieve specific details of a task from long term memory. To clarify the limits memory imposes on subjective workload assessment, the difficulty of task segments was varied and the workload of specified segments was retrospectively rated. The ratings were retrospectively collected on the manipulations of three levels of segment difficulty. Subjects were assigned to one of two memory groups. In the Before group, subjects knew before performing a block of trials which segment to rate. In the After group, subjects did not know which segment to rate until after performing the block of trials. The subjective ratings, RTs (reaction times) and MTs (movement times) were compared within group, and between group differences. Performance measures and subjective evaluations of workload reflected the experimental manipulations. Subjects were sensitive to different difficulty levels, and recalled the average workload of task components. Cueing did not appear to help recall, and memory group differences possibly reflected variations in the groups of subjects, or an additional memory task.

  9. Flexible manipulator control experiments and analysis

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Ozguner, U.; Tzes, A.; Kotnik, P. T.

    1987-01-01

    Modeling and control design for flexible manipulators, both from an experimental and analytical viewpoint, are described. From the application perspective, an ongoing effort within the laboratory environment at the Ohio State University, where experimentation on a single link flexible arm is underway is described. Several unique features of this study are described here. First, the manipulator arm is slewed by a direct drive dc motor and has a rigid counterbalance appendage. Current experimentation is from two viewpoints: (1) rigid body slewing and vibration control via actuation with the hub motor, and (2) vibration suppression through the use of structure-mounted proof-mass actuation at the tip. Such an application to manipulator control is of interest particularly in design of space-based telerobotic control systems, but has received little attention to date. From an analytical viewpoint, parameter estimation techniques within the closed-loop for self-tuning adaptive control approaches are discussed. Also introduced is a control approach based on output feedback and frequency weighting to counteract effects of spillover in reduced-order model design. A model of the flexible manipulator based on experimental measurements is evaluated for such estimation and control approaches.

  10. Hydraulic manipulator research at ORNL

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  11. Vacuum tool manipulator

    SciTech Connect

    Zollinger, W.T.

    1992-12-31

    This invention is comprised of an apparatus for manipulating a vacuum hose in a reactor vessel comprising a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  12. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  13. REMOTE CONTROL MANIPULATOR

    DOEpatents

    Coffman, R.T.

    1962-11-27

    The patent covers a remote-control manipulator in which a tool is carried on a tube at an end thereof angularly related to the main portion of the tube and joined thereto by a curved section. The main portion of the tube is mounted for rotation and axial shifting in a wall separating safe and dangerous areas. The tool is actuated to grasp and release an object in the dangerous area by means of a compound shaft extending through the tube, the shaft having a flexible section extending through the curved section of the tube. The tool is moved about in the dangerous area by rotation and axial movement of the main portion of the tube. Additional movement of the tool is obtained through axial shifting of the shaft with respect to the tube through which it extends. (AEC)

  14. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  15. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  16. Advanced servo manipulator

    DOEpatents

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  17. Advanced servo manipulator

    DOEpatents

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  18. Ion manipulation device

    SciTech Connect

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  19. A History of Manipulative Therapy

    PubMed Central

    Pettman, Erland

    2007-01-01

    Manipulative therapy has known a parallel development throughout many parts of the world. The earliest historical reference to the practice of manipulative therapy in Europe dates back to 400 BCE. Over the centuries, manipulative interventions have fallen in and out of favor with the medical profession. Manipulative therapy also was initially the mainstay of the two leading alternative health care systems, osteopathy and chiropractic, both founded in the latter part of the 19th century in response to shortcomings in allopathic medicine. With medical and osteopathic physicians initially instrumental in introducing manipulative therapy to the profession of physical therapy, physical therapists have since then provided strong contributions to the field, thereby solidifying the profession's claim to have manipulative therapy within in its legally regulated scope of practice. PMID:19066664

  20. Repeatability in redundant manipulator systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ranjan

    1994-02-01

    Terrestrial manipulators with more DOF than the dimension of the workspace and space manipulators with as many manipulator DOF as the dimension of the workspace are both redundant systems. An interesting problem of such redundant systems has been the repeatability problem due to the presence of nonholonomic constraints. We show, contrary to the existing belief, that integrability of the nonholonomic constraints is not a necessary condition for the repeatability of the configuration variables. There exist certain trajectories in the independent configuration variable space that are like 'holonomic loops' along which the redundant manipulators exhibit repeatable motion. We present a simple method based on optimization techniques for designing repeatable trajectories for free-flying space manipulators and terrestrial manipulators under pseudoinverse control.

  1. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  2. Effects of Visual Cues of Object Density on Perception and Anticipatory Control of Dexterous Manipulation

    PubMed Central

    Crajé, Céline; Santello, Marco; Gordon, Andrew M.

    2013-01-01

    Anticipatory force planning during grasping is based on visual cues about the object’s physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object’s center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object’s center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object’s CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping. PMID:24146935

  3. Effects of visual cues of object density on perception and anticipatory control of dexterous manipulation.

    PubMed

    Crajé, Céline; Santello, Marco; Gordon, Andrew M

    2013-01-01

    Anticipatory force planning during grasping is based on visual cues about the object's physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object's center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object's center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object's CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.

  4. Digital Control For Remote Manipulators

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Dotson, Ronald S.

    1987-01-01

    Multiple microprocessors enable large separations between controllers and manipulators. Controller for remote manipulator requires no direct mechanical connection between slave arm and master arm moved by human operator. Employs two-way digital data transmission rather than mechanical linkage between master and slave. Manipulator a considerable distance from operator. Software for controller distributed between master and slave locations. Organized into modules. Hardware and software for system demonstrated in laboratory model.

  5. Manipulation hardware for microgravity research

    SciTech Connect

    Herndon, J.N.; Glassell, R.L.; Butler, P.L.; Williams, D.M. ); Rohn, D.A. . Lewis Research Center); Miller, J.H. )

    1990-01-01

    The establishment of permanent low earth orbit occupation on the Space Station Freedom will present new opportunities for the introduction of productive flexible automation systems into the microgravity environment of space. The need for robust and reliable robotic systems to support experimental activities normally intended by astronauts will assume great importance. Many experimental modules on the space station are expected to require robotic systems for ongoing experimental operations. When implementing these systems, care must be taken not to introduce deleterious effects on the experiments or on the space station itself. It is important to minimize the acceleration effects on the experimental items being handled while also minimizing manipulator base reaction effects on adjacent experiments and on the space station structure. NASA Lewis Research Center has been performing research on these manipulator applications, focusing on improving the basic manipulator hardware, as well as developing improved manipulator control algorithms. By utilizing the modular manipulator concepts developed during the Laboratory Telerobotic Manipulator program, Oak Ridge National Laboratory has developed an experimental testbed system called the Microgravity Manipulator, incorporating two pitch-yaw modular positioners to provide a 4 dof experimental manipulator arm. A key feature in the design for microgravity manipulation research was the use of traction drives for torque transmission in the modular pitch-yaw differentials.

  6. Torque-Limiting Manipulation Device

    NASA Technical Reports Server (NTRS)

    Moetteli, John B. (Inventor)

    1999-01-01

    A device for manipulating a workpiece in space includes a fixture, a stanchion assembly, a manipulation mechanism, an actuation mechanism, and a reaction mechanism. The fixture has an end onto which the workpiece affixes. The stanchion assembly has an upper and a lower end. The manipulation mechanism connects the fixture and the upper end of the stanchion assembly. The lower end of the stanchion assembly mounts, via probe and a socket, to a structure. The actuation mechanism operably connects to the manipulation mechanism, and moves the fixture in space. The reaction mechanism provides a point through which force inputs into the actuation mechanism may react.

  7. Light Manipulation in Organic Photovoltaics.

    PubMed

    Ou, Qing-Dong; Li, Yan-Qing; Tang, Jian-Xin

    2016-07-01

    Organic photovoltaics (OPVs) hold great promise for next-generation photovoltaics in renewable energy because of the potential to realize low-cost mass production via large-area roll-to-roll printing technologies on flexible substrates. To achieve high-efficiency OPVs, one key issue is to overcome the insufficient photon absorption in organic photoactive layers, since their low carrier mobility limits the film thickness for minimized charge recombination loss. To solve the inherent trade-off between photon absorption and charge transport in OPVs, the optical manipulation of light with novel micro/nano-structures has become an increasingly popular strategy to boost the light harvesting efficiency. In this Review, we make an attempt to capture the recent advances in this area. A survey of light trapping schemes implemented to various functional components and interfaces in OPVs is given and discussed from the viewpoint of plasmonic and photonic resonances, addressing the external antireflection coatings, substrate geometry-induced trapping, the role of electrode design in optical enhancement, as well as optically modifying charge extraction and photoactive layers.

  8. Light Manipulation in Organic Photovoltaics

    PubMed Central

    Ou, Qing‐Dong

    2016-01-01

    Organic photovoltaics (OPVs) hold great promise for next‐generation photovoltaics in renewable energy because of the potential to realize low‐cost mass production via large‐area roll‐to‐roll printing technologies on flexible substrates. To achieve high‐efficiency OPVs, one key issue is to overcome the insufficient photon absorption in organic photoactive layers, since their low carrier mobility limits the film thickness for minimized charge recombination loss. To solve the inherent trade‐off between photon absorption and charge transport in OPVs, the optical manipulation of light with novel micro/nano‐structures has become an increasingly popular strategy to boost the light harvesting efficiency. In this Review, we make an attempt to capture the recent advances in this area. A survey of light trapping schemes implemented to various functional components and interfaces in OPVs is given and discussed from the viewpoint of plasmonic and photonic resonances, addressing the external antireflection coatings, substrate geometry‐induced trapping, the role of electrode design in optical enhancement, as well as optically modifying charge extraction and photoactive layers. PMID:27840805

  9. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  10. Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Doggett, William R.; Komendera, Erik E.

    2015-01-01

    The robotic architecture of State-of-the-Art (SOA) space manipulators, represented by the Shuttle Remote Manipulator System (SRMS), inherently limits their capabilities to extend reach, reduce mass, apply force and package efficiently. TALISMAN uses a new and innovative robotic architecture that incorporates a combination of lightweight truss links, a novel hinge joint, tendon-articulation and passive tension stiffening to achieve revolutionary performance. A TALISMAN with performance similar to the SRMS has 1/10th of its mass and packages in 1/7th of its volume. The TALISMAN architecture allows its reach to be scaled over a large range; from 10 to over 300 meters. In addition, the dexterity (number of degrees-of-freedom) can be easily adjusted without significantly impacting manipulator mass because the joints are very lightweight.

  11. Image Manipulation: Then and Now.

    ERIC Educational Resources Information Center

    Sutton, Ronald E.

    The images of photography have been manipulated almost from the moment of their discovery. The blending together in the studio and darkroom of images not found in actual scenes from life has been a regular feature of modern photography in both art and advertising. Techniques of photograph manipulation include retouching; blocking out figures or…

  12. Modeling Manipulation in Medical Education

    ERIC Educational Resources Information Center

    Dailey, Jason I.

    2010-01-01

    As residents and medical students progress through their medical training, they are presented with multiple instances in which they feel they must manipulate the healthcare system and deceive others in order to efficiently treat their patients. This, however, creates a culture of manipulation resulting in untoward effects on trainees' ethical and…

  13. A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial

    PubMed Central

    Liu, Yuejun; Cotillard, Aurélie; Vatier, Camille; Bastard, Jean-Philippe; Fellahi, Soraya; Stévant, Marie; Allatif, Omran; Langlois, Clotilde; Bieuvelet, Séverine; Brochot, Amandine; Guilbot, Angèle; Clément, Karine; Rizkalla, Salwa W.

    2015-01-01

    Background Preventing or slowing the progression of prediabetes to diabetes is a major therapeutic issue. Objectives Our aim was to evaluate the effects of 4-month treatment with a dietary supplement containing cinnamon, chromium and carnosine in moderately obese or overweight pre-diabetic subjects, the primary outcome being change in fasting plasma glucose (FPG) level. Other parameters of plasma glucose homeostasis, lipid profile, adiposity and inflammatory markers were also assessed. Methods In a randomized, double-blind, placebo-controlled study, 62 subjects with a FPG level ranging from 5.55 to 7 mmol/L and a body mass index ≥25 kg/m2, unwilling to change their dietary and physical activity habits, were allocated to receive a 4-month treatment with either 1.2 g/day of the dietary supplement or placebo. Patients were followed up until 6 months post-randomization. Results Four-month treatment with the dietary supplement decreased FPG compared to placebo (-0.24±0.50 vs +0.12±0.59 mmol/L, respectively, p = 0.02), without detectable significant changes in HbA1c. Insulin sensitivity markers, plasma insulin, plasma lipids and inflammatory markers did not differ between the treatment groups. Although there were no significant differences in changes in body weight and energy or macronutrient intakes between the two groups, fat-free mass (%) increased with the dietary supplement compared to placebo (p = 0.02). Subjects with a higher FPG level and a milder inflammatory state at baseline benefited most from the dietary supplement. Conclusions Four-month treatment with a dietary supplement containing cinnamon, chromium and carnosine decreased FPG and increased fat-free mass in overweight or obese pre-diabetic subjects. These beneficial effects might open up new avenues in the prevention of diabetes. Trial Registration ClinicalTrials.gov NCT01530685 PMID:26406981

  14. Thermoelectrical manipulation of nanomagnets

    NASA Astrophysics Data System (ADS)

    Kadigrobov, A. M.; Andersson, S.; Radić, D.; Shekhter, R. I.; Jonson, M.; Korenivski, V.

    2010-06-01

    We investigate the interplay between the thermodynamic properties and spin-dependent transport in a mesoscopic device based on a magnetic multilayer (F/f/F), in which two strongly ferromagnetic layers (F) are exchange-coupled through a weakly ferromagnetic spacer (f) with the Curie temperature in the vicinity of room temperature. We show theoretically that the Joule heating produced by the spin-dependent current allows a spin-thermoelectronic control of the ferromagnetic-to-paramagnetic (f/N) transition in the spacer and, thereby, of the relative orientation of the outer F-layers in the device (spin-thermoelectric manipulation of nanomagnets). Supporting experimental evidence of such thermally-controlled switching from parallel to antiparallel magnetization orientations in F/f(N)/F sandwiches is presented. Furthermore, we show theoretically that local Joule heating due to a high concentration of current in a magnetic point contact or a nanopillar can be used to reversibly drive the weakly ferromagnetic spacer through its Curie point and thereby exchange couple and decouple the two strongly ferromagnetic F-layers. For the devices designed to have an antiparallel ground state above the Curie point of the spacer, the associated spin-thermionic parallel to antiparallel switching causes magnetoresistance oscillations whose frequency can be controlled by proper biasing from essentially dc to GHz. We discuss in detail an experimental realization of a device that can operate as a thermomagnetoresistive switch or oscillator.

  15. Stereoscopically Observing Manipulative Actions

    PubMed Central

    Ferri, S.; Pauwels, K.; Rizzolatti, G.; Orban, G. A.

    2016-01-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  16. Genetic Manipulations in Dermatophytes.

    PubMed

    Alshahni, Mohamed Mahdi; Yamada, Tsuyoshi

    2017-02-01

    Dermatophytes are a group of closely related fungi that nourish on keratinized materials for their survival. They infect stratum corneum, nails, and hair of human and animals, accounting the largest portion of fungi causing superficial mycoses. Huge populations are suffering from dermatophytoses, though the biology of these fungi is largely unknown yet. Reasons are partially attributed to the poor amenability of dermatophytes to genetic manipulation. However, advancements in this field over the last decade made it possible to conduct genetic studies to satisfying extents. These included genetic transformation methods, indispensable molecular tools, i.e., dominant selectable markers, inducible promoter, and marker recycling system, along with improving homologous recombination frequency and gene silencing. Furthermore, annotated genome sequences of several dermatophytic species have recently been available, ensuring an optimal recruitment of the molecular tools to expand our knowledge on these fungi. In conclusion, the establishment of basic molecular tools and the availability of genomic data will open a new era that might change our understanding on the biology and pathogenicity of this fungal group.

  17. Grasping uncertainty: effects of sensorimotor memories on high-level planning of dexterous manipulation

    PubMed Central

    Lukos, Jamie R.; Choi, Jason Y.

    2013-01-01

    For successful object manipulation, the central nervous system must appropriately coordinate digit placement and force distribution. It is known that digit force planning is significantly influenced by previous manipulations even when object properties cannot be predicted on a trial-to-trial basis. We sought to determine whether this effect extends beyond force control to the coordination of digit placement and force. Subjects grasped and lifted an object whose center of mass (CM) was changed unpredictably across trials. Grasp planning was quantified by measuring the torque generated on the object at lift onset. We found that both digit placement and force were systematically affected by the CM experienced on the previous trial. Additionally, the negative covariation between digit forces and positions typically found for predictable CM presentations was also found for unpredictable CM trials. A follow-up experiment revealed that these effects were not dependent on visual feedback of object roll during object lift on the previous trial. We conclude that somatosensory feedback from previous grasp experience alone can affect high-level grasp planning by constraining the relation between digit force and position even when the task behavioral consequences cannot be reliably predicted. As learning of manipulations often involves interactions with objects in novel environments, the present findings are an important step to understanding the control strategies associated with the integration of sensorimotor memories and motor planning. PMID:23554435

  18. Grasping uncertainty: effects of sensorimotor memories on high-level planning of dexterous manipulation.

    PubMed

    Lukos, Jamie R; Choi, Jason Y; Santello, Marco

    2013-06-01

    For successful object manipulation, the central nervous system must appropriately coordinate digit placement and force distribution. It is known that digit force planning is significantly influenced by previous manipulations even when object properties cannot be predicted on a trial-to-trial basis. We sought to determine whether this effect extends beyond force control to the coordination of digit placement and force. Subjects grasped and lifted an object whose center of mass (CM) was changed unpredictably across trials. Grasp planning was quantified by measuring the torque generated on the object at lift onset. We found that both digit placement and force were systematically affected by the CM experienced on the previous trial. Additionally, the negative covariation between digit forces and positions typically found for predictable CM presentations was also found for unpredictable CM trials. A follow-up experiment revealed that these effects were not dependent on visual feedback of object roll during object lift on the previous trial. We conclude that somatosensory feedback from previous grasp experience alone can affect high-level grasp planning by constraining the relation between digit force and position even when the task behavioral consequences cannot be reliably predicted. As learning of manipulations often involves interactions with objects in novel environments, the present findings are an important step to understanding the control strategies associated with the integration of sensorimotor memories and motor planning.

  19. Manipulability, force, and compliance analysis for planar continuum manipulators.

    PubMed

    Gravagne, Ian A; Walker, Ian D

    2002-06-01

    Continuum manipulators, inspired by the natural capabilities of elephant trunks and octopus tentacles, may find niche applications in areas like human-robot interaction, multiarm manipulation, and unknown environment exploration. However, their true capabilities will remain largely inaccessible without proper analytical tools to evaluate their unique properties. Ellipsoids have long served as one of the foremost analytical tools available to the robotics researcher, and the purpose of this paper is to first formulate, and then to examine, three types of ellipsoids for continuum robots: manipulability, force, and compliance.

  20. Manipulability, force, and compliance analysis for planar continuum manipulators

    NASA Technical Reports Server (NTRS)

    Gravagne, Ian A.; Walker, Ian D.

    2002-01-01

    Continuum manipulators, inspired by the natural capabilities of elephant trunks and octopus tentacles, may find niche applications in areas like human-robot interaction, multiarm manipulation, and unknown environment exploration. However, their true capabilities will remain largely inaccessible without proper analytical tools to evaluate their unique properties. Ellipsoids have long served as one of the foremost analytical tools available to the robotics researcher, and the purpose of this paper is to first formulate, and then to examine, three types of ellipsoids for continuum robots: manipulability, force, and compliance.

  1. Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes.

    PubMed

    Fu, Qiushi; Santello, Marco

    2015-01-01

    An object can be used in multiple contexts, each requiring different hand actions. How the central nervous system builds and maintains memory of such dexterous manipulations remains unclear. We conducted experiments in which human subjects had to learn and recall manipulations performed in two contexts, A and B. Both contexts involved lifting the same L-shaped object whose geometry cued its asymmetrical mass distribution. Correct performance required producing a torque on the vertical handle at object lift onset to prevent it from tilting. The torque direction depended on the context, i.e., object orientation, which was changed by 180° object rotation about a vertical axis. With an A1B1A2 context switching paradigm, subjects learned A1 in the first block of eight trials as indicated by a torque approaching the required one. However, subjects made large errors in anticipating the required torque when switching to B1 immediately after A1 (negative transfer), as well as when they had to recall A1 when switching to A2 after learning B through another block of eight lifts (retrieval interference). Classic sensorimotor learning theories attribute such interferences to multi-rate, multi-state error-driven updates of internal models. However, by systematically changing the interblock break duration and within-block number of trials, our results suggest an alternative explanation underlying interference and retention of dexterous manipulation. Specifically, we identified and quantified through a novel computational model the nonlinear interaction between two sensorimotor mechanisms: a short-lived, context-independent, use-dependent sensorimotor memory and a context-sensitive, error-based learning process.

  2. Energy margins in dynamic object manipulation

    PubMed Central

    Shen, Tian; Sternad, Dagmar

    2012-01-01

    Many tasks require humans to manipulate dynamically complex objects and maintain appropriate safety margins, such as placing a cup of coffee on a coaster without spilling. This study examined how humans learn such safety margins and how they are shaped by task constraints and changing variability with improved skill. Eighteen subjects used a manipulandum to transport a shallow virtual cup containing a ball to a target without losing the ball. Half were to complete the cup transit in a comfortable target time of 2 s (a redundant task with infinitely many equivalent solutions), and the other half in minimum time (a nonredundant task with one explicit cost to optimize). The safety margin was defined as the ball energy relative to escape, i.e., as an energy margin. The first hypothesis, that subjects converge to a single strategy in the minimum-time task but choose different strategies in the less constrained target-time task, was not supported. Both groups developed individualized strategies with practice. The second hypothesis, that subjects decrease safety margins in the minimum-time task but increase them in the target-time task, was supported. The third hypothesis, that in both tasks subjects modulate energy margins according to their execution variability, was partially supported. In the target-time group, changes in energy margins correlated positively with changes in execution variability; in the minimum-time group, such a relation was observed only at the end of practice, not across practice. These results show that when learning a redundant object manipulation task, most subjects increase their safety margins and shape their movement strategies in accordance with their changing variability. PMID:22592302

  3. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  4. Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator

    PubMed Central

    Katzschmann, Robert K.; Marchese, Andrew D.

    2015-01-01

    Abstract This article presents the development of an autonomous motion planning algorithm for a soft planar grasping manipulator capable of grasp-and-place operations by encapsulation with uncertainty in the position and shape of the object. The end effector of the soft manipulator is fabricated in one piece without weakening seams using lost-wax casting instead of the commonly used multilayer lamination process. The soft manipulation system can grasp randomly positioned objects within its reachable envelope and move them to a desired location without human intervention. The autonomous planning system leverages the compliance and continuum bending of the soft grasping manipulator to achieve repeatable grasps in the presence of uncertainty. A suite of experiments is presented that demonstrates the system's capabilities. PMID:27625916

  5. Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator.

    PubMed

    Katzschmann, Robert K; Marchese, Andrew D; Rus, Daniela

    2015-12-01

    This article presents the development of an autonomous motion planning algorithm for a soft planar grasping manipulator capable of grasp-and-place operations by encapsulation with uncertainty in the position and shape of the object. The end effector of the soft manipulator is fabricated in one piece without weakening seams using lost-wax casting instead of the commonly used multilayer lamination process. The soft manipulation system can grasp randomly positioned objects within its reachable envelope and move them to a desired location without human intervention. The autonomous planning system leverages the compliance and continuum bending of the soft grasping manipulator to achieve repeatable grasps in the presence of uncertainty. A suite of experiments is presented that demonstrates the system's capabilities.

  6. Lumbopelvic manipulation in patients with patellofemoral pain syndrome

    PubMed Central

    Crowell, Michael S; Wofford, Nancy H

    2012-01-01

    Objectives: A recent clinical prediction rule (CPR) identified characteristics that may predict an immediate reduction in pain following lumbopelvic manipulation in patients with patellofemoral pain syndrome. The purpose of this single-arm cohort study was to replicate the proposed CPR in a different population and investigate changes in self-reported pain, hip range of motion, strength, and function immediately following lumbopelvic manipulation. Methods: Forty-four subjects (63·6% female; mean age 27·4 years) met inclusion criteria. Hip internal rotation range of motion, lower extremity strength using a handheld dynamometer, and single/triple hop tests were assessed prior to and immediately following a spinal manipulation. A global rating of change questionnaire was administered after testing and telephonically at 1 week. Paired t-tests compared pre- and post-manipulation range of motion, strength, and hop test limb symmetry indices (α = 0·05). Results: Fifty-seven percent of subjects had a successful outcome measured by the numerical pain rating scale immediately following manipulation. Twenty-five of subjects experienced a successful outcome as measured by the global rating of change questionnaire at 1 week. No single individual or combination of predictor variables predicted a positive outcome immediately following the lumbopelvic manipulation (+likelihood ratio 0·7 with three of five predictor variables present). Statistically significant differences (P<0·05) were found in hip extension and abduction strength and hip internal rotation symmetry post-manipulation, but do not appear to be clinically meaningful. Discussion: The previously identified CPR was not able to be replicated and no clinically meaningful changes in range of motion, strength, or function were apparent. Future research should focus on a comprehensive impairment-based treatment approach in patients with patellofemoral pain syndrome. PMID:23904749

  7. Control algorithm implementation for a redundant degree of freedom manipulator

    NASA Technical Reports Server (NTRS)

    Cohan, Steve

    1991-01-01

    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior

  8. Building Fractal Models with Manipulatives.

    ERIC Educational Resources Information Center

    Coes, Loring

    1993-01-01

    Uses manipulative materials to build and examine geometric models that simulate the self-similarity properties of fractals. Examples are discussed in two dimensions, three dimensions, and the fractal dimension. Discusses how models can be misleading. (Contains 10 references.) (MDH)

  9. Machine intelligence for autonomous manipulation.

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1973-01-01

    Survey of the present technological development status of machine intelligence for autonomous manipulation in the U.S., Japan, USSR, and England. The extent of task-performance autonomy is examined that machine intelligence gives the manipulator by eliminating the need for a human operator to close continuously the control loop, or to rewrite control programs for each different task. Surveyed research projects show that the development of some advanced automation systems for manipulator control are within the state of the art. Yet, many more realistic breadboard systems and experimental work are needed before further progress can be made in the design of advanced automation systems for manipulator control suitable for new major practical applications. Specific research areas of promise are pointed out.

  10. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry.

    PubMed

    Ramos, K; Ramos, L; Gómez-Gómez, M M

    2017-04-15

    In this study, a chicken meat containing AgNPs (candidate reference material Nanolyse 14) has been used as a model matrix to study the fate and behaviour of AgNPs upon oral ingestion following an in vitro model that included saliva, gastric and intestinal digestions. The behaviour of a 40nm AgNPs standard solution during the three digestion steps was also evaluated. Sample preparation conditions were optimised to prevent AgNPs oxidation and/or aggregation and to ensure the representativeness of the reported results. Total silver released from the test sample and the evaluated AgNP standard was determined by inductively coupled plasma mass spectrometry (ICPMS). The presence of both AgNPs and dissolved silver in the extracts was confirmed by single particle (SP)-ICPMS analysis. AgNPs were sized and the particle number concentration determined in the three digestion juices. Experimental results demonstrated differentiated behaviours for AgNP from the standard solution and the meat sample highlighting the relevance of using physiological conditions for accurate risk assessment. In the most realistic scenario assayed (i.e., spiked chicken meat analysis), only 13% of the AgNPs present in the reference material would reach the intestine wall. Meanwhile, other bioaccessible dissolved forms of silver would account for as much as 44% of the silver initially spiked to the meat paste.

  11. Dynamic Scaling of Manipulator Trajectories.

    DTIC Science & Technology

    1983-01-01

    Manipulators Robotics Trajectory Planning Manipulator Dynamics 20. ABSTRACT (Conftnue wn reverse side ID neceeOor Oine Identlfy b? block nuemNer) A...receives a c factor for each b(i). ’lhus both terms change equally with differing movement speeds. This contradicts the normal assumption in the robotics ...as well since they share the same significance as the velocity terms, yet this is not done. In any case, future generations of robots will contain

  12. Manipulation: description, identification and ambiguity.

    PubMed

    Bowers, L

    2003-06-01

    The word manipulation is frequently applied to some of the difficult-to-manage behaviours of the personality-disordered patient. However, the term is rarely defined, and a review of both the clinical and research literature shows that little has been written about its definition and identification, let alone its clinical management in both in- and outpatient settings. Recent empirical work conducted with nurses in forensic settings has demonstrated the range of behaviours that professionals refer to as 'manipulative', thus clarifying the use of the term and allowing the provision of a more precise definition. The scope of manipulation in everyday life, management practice and politics is perhaps relatively small, although manipulation can occur in all areas of human activity. Social behaviour is doubly ambiguous with respect to judgements of manipulation, as such judgements involve a moral evaluation combined with the identification of deception on the basis of little or partial evidence. The implications of this social ambiguity for clinical psychiatric practice are that professionals need to guard themselves from two polar faults: seeing manipulation everywhere; or being blind to its presence. In order to achieve a cautious moderation, staff need to hold both alternatives in mind at all times.

  13. Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry

    PubMed Central

    Andreoli, Roberta; Manini, Paola; Corradi, Massimo; Mutti, Antonio; Niessen, Wilfried M. A.

    2006-01-01

    A method for the simultaneous determination of several classes of aldehydes in exhaled breath condensate (EBC) was developed using liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (LC/APCI-MS/MS). EBC is a biological matrix obtained by a relatively new, simple and noninvasive technique and provides an indirect assessment of pulmonary status. The measurement of aldehydes in EBC represents a biomarker of the effect of oxidative stress caused by smoke, disease, or strong oxidants like ozone. Malondialdehyde (MDA), acrolein, α,β-unsaturated hydroxylated aldehydes [namely 4-hydroxyhexenal (4-HHE) and 4-hydroxynonenal (4-HNE)], and saturated aldehydes (n-hexanal, n-heptanal and n-nonanal) were measured in EBC after derivatization with 2,4-dinitrophenylhydrazine (DNPH). Atmospheric pressure chemical ionization of the analytes was obtained in positiveion mode for MDA, and in negativeion mode for acrolein, 4-HHE, 4-HNE, and saturated aldehydes. DNPH derivatives were separated on a C18 column using variable proportions of 20 mM aqueous acetic acid and methanol. Linearity was established over 4–5 orders of magnitude and limits of detection were in the 0.3–1.0 nM range. Intra-day and inter-day precision were in the 1.3–9.9% range for all the compounds. MDA, acrolein and n-alkanals were detectable in all EBC samples, whereas the highly reactive 4-HHE and 4-HNE were found in only a few samples. Statistically significant higher concentrations of MDA, acrolein and n-hexanal were found in EBC from smokers. PMID:12661015

  14. Reductions in body weight and percent fat mass increase the vitamin D status of obese subjects: a systematic review and metaregression analysis.

    PubMed

    Pannu, Poonam K; Zhao, Yun; Soares, Mario J

    2016-03-01

    The purpose of this review was to confirm a volumetric dilution of vitamin D in obesity. It was based on the hypothesis that weight loss, particularly fat loss, would increase serum 25-hydroxyvitamin D (25OHD) in the obese. We conducted a systematic review of the literature over the last 21 years and included human trials that reported changes in 25OHD, weight, or body composition after weight loss. Study arms were excluded if vitamin D was supplemented, dietary intake exceeded 800 IU/d, or extreme sun exposure was reported. Eighteen of 23 trials that met our criteria documented an increase in vitamin D status with weight loss. Metaregression analyses indicated a marginally significant effect of weight loss on unadjusted weighted mean difference of 25OHD (β = -0.60 [95% confidence interval {CI}, -1.24 to +0.04] nmol/L; P = .06) and after adjustment for study quality (Jadad score ≥3) (β = -0.64 [95% CI, -1.28 to +0.01] nmol/L; P = .05). The effect of percent fat mass on weighted mean difference of 25OHD was also marginally significant before (β = -0.91 [95% CI, -1.96 to +0.15] nmol/L; P = .08) and after adjustment of study quality (β = -1.05 [95% CI, -2.18 to +0.08] nmol/L; P = .06). Collectively, these outcomes support a volumetric dilution of vitamin D. The slopes of the respective regression lines, however, indicate a smaller increase in 25OHD than would be expected from a direct mobilization of stores into the circulation. Hence, sequestration of 25OHD and its conversion to inactive metabolites would also play a role. Future studies could relate changes in body fat compartments to the enzymatic regulation of 25OHD in response to weight loss.

  15. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  16. A Gestalt Approach to Text Manipulation in Translation.

    ERIC Educational Resources Information Center

    Farahzad, Farzaneh

    This paper explores the issue of unconscious manipulation in translation. The translator engages in creating new text subject to the principles of totality and part-whole relations. The closer the parts and relations to those of the source text (ST), the more related this new whole will be to the former one. In attempting to preserve ST semantic…

  17. Response Manipulation on the Depression Adjective Check List.

    ERIC Educational Resources Information Center

    Caplan, Marc; And Others

    1982-01-01

    In two trials, subjects completed the Depression Adjective Checklist as they felt, or were instructed to "fake good,""fake bad," or "fake average." Discussed findings for "fake bad" and "fake good" in terms of ability of an examiner to detect the manipulative set through grossly deviant scores.…

  18. Automatic calibration of space based manipulators and mechanisms

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.

    1988-01-01

    Four tasks in manipulator kinematic calibration are summarized. Calibration of a seven degree of freedom manipulator was simulated. A calibration model is presented that can be applied on a closed-loop robot. It is an expansion of open-loop kinematic calibration algorithms subject to constraints. A closed-loop robot with a five-bar linkage transmission was tested. Results show that the algorithm converges within a few iterations. The concept of model differences is formalized. Differences are categorized as structural and numerical, with emphasis on the structural. The work demonstrates that geometric manipulators can be visualized as points in a vector space with the dimension of the space depending solely on the number and type of manipulator joint. Visualizing parameters in a kinematic model as the coordinates locating the manipulator in vector space enables a standard evaluation of the models. Key results include a derivation of the maximum number of parameters necessary for models, a formal discussion on the inclusion of extra parameters, and a method to predetermine a minimum model structure for a kinematic manipulator. A technique is presented that enables single point sensors to gather sufficient information to complete a calibration.

  19. Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation

    PubMed Central

    Marneweck, Michelle; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M.

    2016-01-01

    Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically, recent studies revealed strong covariation of digit position and load force during the loading phase of two-digit grasping. Here, we determined whether such digit force-position covariation is a general feature of grasping. We investigated the coordination of digit position and forces during five-digit whole-hand manipulation of an object with a variable mass distribution. Subjects were instructed to prevent object roll during the lift. As found in precision grasping, there was strong trial-to-trial covariation of digit position and force. This suggests that the natural variation of digit position that is compensated for by trial-to-trial variation in digit forces is a fundamental feature of grasp control, and not only specific to precision grasp. However, a main difference with precision grasping was that modulation of digit position to the object’s mass distribution was driven predominantly by the thumb, with little to no modulation of finger position. Modulation of thumb position rather than fingers is likely due to its greater range of motion and therefore adaptability to object properties. Our results underscore the flexibility of the central nervous system in implementing a range of solutions along the digit force-to-position continuum for dexterous manipulation. PMID:27695406

  20. Analysis of a closed-kinematic chain robot manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  1. Sacroiliac joint manipulation decreases the H-reflex.

    PubMed

    Murphy, B A; Dawson, N J; Slack, J R

    1995-03-01

    Joint manipulation is widely utilized clinically to decrease pain and increase the range of motion of joints displaying limited mobility. Evidence of efficacy is based on subjective reports of symptom improvement as well as on the results of clinical trials. Experiments were designed to determine whether or not sacroiliac joint manipulation affects the amplitude of the Hoffman (H) reflex. Surface EMG recordings of the reflex response to electrical stimulation of the tibial nerve in the popliteal fossa were made from the soleus muscle. The averaged amplitudes of H-reflexes were compared on both legs before and after either sacroiliac joint manipulation or a sham procedure. H-reflex amplitude was significantly decreased (12.9%) in the ipsilateral leg (p < 0.001) following a sacroiliac joint manipulation while there was no significant alteration following the sham intervention. There was no significant alteration in reflex excitability in the contralateral leg to the sacroiliac joint manipulation. To further investigate the mechanism of these reflex alterations, the local anaesthetic cream EMLA (Astra Pharmaceuticals) was applied to the skin overlying the sacroiliac joint and the experiments were repeated on a different group of subjects. This was intended to determine if excitation of cutaneous afferents was responsible for the reflex excitability changes. There was still a significant decrease in reflex excitability (10.6%) following sacroiliac joint manipulation (p < 0.001). These findings indicate that joint manipulation exerts physiological effects on the central nervous system, probably at the segmental level. The fact that the changes persisted in the presence of cutaneous anaesthesia suggests that the reflex changes are likely to be mediated by joint and/or muscle afferents.

  2. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  3. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  4. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  5. Mobile camera-space manipulation

    NASA Technical Reports Server (NTRS)

    Seelinger, Michael J. (Inventor); Yoder, John-David S. (Inventor); Skaar, Steven B. (Inventor)

    2001-01-01

    The invention is a method of using computer vision to control systems consisting of a combination of holonomic and nonholonomic degrees of freedom such as a wheeled rover equipped with a robotic arm, a forklift, and earth-moving equipment such as a backhoe or a front-loader. Using vision sensors mounted on the mobile system and the manipulator, the system establishes a relationship between the internal joint configuration of the holonomic degrees of freedom of the manipulator and the appearance of features on the manipulator in the reference frames of the vision sensors. Then, the system, perhaps with the assistance of an operator, identifies the locations of the target object in the reference frames of the vision sensors. Using this target information, along with the relationship described above, the system determines a suitable trajectory for the nonholonomic degrees of freedom of the base to follow towards the target object. The system also determines a suitable pose or series of poses for the holonomic degrees of freedom of the manipulator. With additional visual samples, the system automatically updates the trajectory and final pose of the manipulator so as to allow for greater precision in the overall final position of the system.

  6. Selective Manipulation of Neural Circuits.

    PubMed

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  7. Modeling the Relationships Among Late-Life Body Mass Index, Cerebrovascular Disease, and Alzheimer's Disease Neuropathology in an Autopsy Sample of 1,421 Subjects from the National Alzheimer's Coordinating Center Data Set.

    PubMed

    Alosco, Michael L; Duskin, Jonathan; Besser, Lilah M; Martin, Brett; Chaisson, Christine E; Gunstad, John; Kowall, Neil W; McKee, Ann C; Stern, Robert A; Tripodis, Yorghos

    2017-03-13

    The relationship between late-life body mass index (BMI) and Alzheimer's disease (AD) is poorly understood due to the lack of research in samples with autopsy-confirmed AD neuropathology (ADNP). The role of cerebrovascular disease (CVD) in the interplay between late-life BMI and ADNP is unclear. We conducted a retrospective longitudinal investigation and used joint modeling of linear mixed effects to investigate causal relationships among repeated antemortem BMI measurements, CVD (quantified neuropathologically), and ADNP in an autopsy sample of subjects across the AD clinical continuum. The sample included 1,421 subjects from the National Alzheimer's Coordinating Center's Uniform Data Set and Neuropathology Data Set with diagnoses of normal cognition (NC; n = 234), mild cognitive impairment (MCI; n = 201), or AD dementia (n = 986). ADNP was defined as moderate to frequent neuritic plaques and Braak stageIII-VI. Ischemic Injury Scale (IIS) operationalized CVD. Joint modeling examined relationships among BMI, IIS, and ADNP in the overall sample and stratified by initial visit Clinical Dementia Rating score. Subject-specific random intercept for BMI was the predictor for ADNP due to minimal BMI change (p = 0.3028). Analyses controlling for demographic variables and APOE ɛ4 showed lower late-life BMI predicted increased odds of ADNP in the overall sample (p < 0.001), and in subjects with CDR of 0 (p = 0.0021) and 0.5 (p = 0.0012), but not ≥1.0 (p = 0.2012). Although higher IIS predicted greater odds of ADNP (p < 0.0001), BMI did not predict IIS (p = 0.2814). The current findings confirm lower late-life BMI confers increased odds for ADNP. Lower late-life BMI may be a preclinical indicator of underlying ADNP.

  8. Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1991-01-01

    Motion planning and control for the joints of flexible manipulators are discussed. Specific topics covered include control of a flexible braced manipulator, control of a small working robot on a large flexible manipulator to suppress vibrations, control strategies for ensuring cooperation among disparate manipulators, and motion planning for robots in free-fall.

  9. Learning Area and Perimeter with Virtual Manipulatives

    ERIC Educational Resources Information Center

    Bouck, Emily; Flanagan, Sara; Bouck, Mary

    2015-01-01

    Manipulatives are considered a best practice for educating students with disabilities, but little research exists which examines virtual manipulatives as tool for supporting students in mathematics. This project investigated the use of a virtual manipulative through the National Library of Virtual Manipulatives--polynominoes (i.e., tiles)--as a…

  10. The biomechanics of spinal manipulation.

    PubMed

    Herzog, Walter

    2010-07-01

    Biomechanics is the science that deals with the external and internal forces acting on biological systems and the effects produced by these forces. Here, we describe the forces exerted by chiropractors on patients during high-speed, low-amplitude manipulations of the spine and the physiological responses produced by the treatments. The external forces were found to vary greatly among clinicians and locations of treatment on the spine. Spinal manipulative treatments produced reflex responses far from the treatment site, caused movements of vertebral bodies in the "para-physiological" zone, and were associated with cavitation of facet joints. Stresses and strains on the vertebral artery during chiropractic spinal manipulation of the neck were always much smaller than those produced during passive range of motion testing and diagnostic procedures.

  11. Manipulating Complex Light with Metamaterials

    PubMed Central

    Zeng, Jinwei; Wang, Xi; Sun, Jingbo; Pandey, Apra; Cartwright, Alexander N.; Litchinitser, Natalia M.

    2013-01-01

    Recent developments in the field of metamaterials have revealed unparalleled opportunities for “engineering” space for light propagation; opening a new paradigm in spin- and quantum-related phenomena in optical physics. Here we show that unique optical properties of metamaterials (MMs) open unlimited prospects to “engineer” light itself. We propose and demonstrate for the first time a novel way of complex light manipulation in few-mode optical fibers using optical MMs. Most importantly, these studies highlight how unique properties of MMs, namely the ability to manipulate both electric and magnetic field components of electromagnetic (EM) waves, open new degrees of freedom in engineering complex polarization states of light at will, while preserving its orbital angular momentum (OAM) state. These results lay the first steps in manipulating complex light in optical fibers, likely providing new opportunities for high capacity communication systems, quantum information, and on-chip signal processing. PMID:24084836

  12. A novel manipulator technology for space applications

    NASA Technical Reports Server (NTRS)

    Schmitz, Donald; Khosia, Pradeep; Kanade, Takeo

    1988-01-01

    Modular manipulator designs have long been considered for use as research tools, and as the basis for easily modified industrial manipulators. In these manipulators the links and joints are discrete and modular components that can be assembled into a desired manipulator configuration. As hardware advances have made actual modular manipulators practical, various capabilities of such manipulators have gained interest. Particularly desirable is the ability to rapidly reconfigure such a manipulator, in order to custom tailor it to specific tasks. The reconfiguration greatly enhances the capability of a given amount of manipulator hardware. The development of a prototype modular manipulator is discussed as well as the implementation of a configuration independent manipulator kinematics algorithm used for path planning in the prototype.

  13. Understanding pharmaceutical research manipulation in the context of accounting manipulation.

    PubMed

    Brown, Abigail

    2013-01-01

    The problem of the manipulation of data that arises when there is both opportunity and incentive to mislead is better accepted and studied - though by no means solved - in financial accounting than in medicine. This article analyzes pharmaceutical company manipulation of medical research as part of a broader problem of corporate manipulation of data in the creation of accounting profits. The article explores how our understanding of accounting fraud and misinformation helps us understand the risk of similar information manipulation in the medical sciences. This understanding provides a framework for considering how best to improve the quality of medical research and analysis in light of the current system of medical information production. I offer three possible responses: (1) use of the Dodd-Frank whistleblower provisions to encourage reporting of medical research fraud; (2) a two-step academic journal review process for clinical trials; and (3) publicly subsidized trial-failure insurance. These would improve the release of negative information about drugs, thereby increasing the reliability of positive information.

  14. Precision Manipulation with Cooperative Robots

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghzarian, Hrand

    2005-01-01

    This work addresses several challenges of cooperative transportThis work addresses several challenges of cooperative transport and precision manipulation. Precision manipulation requires a rigid grasp, which places a hard constraint on the relative rover formation that must be accommodated, even though the rovers cannot directly observe their relative poses. Additionally, rovers must jointly select appropriate actions based on all available sensor information. Lastly, rovers cannot act on independent sensor information, but must fuse information to move jointly; the methods for fusing information must be determined.

  15. Sample Manipulation System for Sample Analysis at Mars

    NASA Technical Reports Server (NTRS)

    Mumm, Erik; Kennedy, Tom; Carlson, Lee; Roberts, Dustyn

    2008-01-01

    The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.

  16. Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces.

    PubMed

    Zhang, Wei; Gordon, Andrew M; Fu, Qiushi; Santello, Marco

    2010-06-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180 degrees about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations.

  17. Manipulation After Object Rotation Reveals Independent Sensorimotor Memory Representations of Digit Positions and Forces

    PubMed Central

    Zhang, Wei; Gordon, Andrew M.; Fu, Qiushi

    2010-01-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180° about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations. PMID:20357064

  18. Experiments evaluating compliance and force feedback effect on manipulator performance

    NASA Technical Reports Server (NTRS)

    Kugath, D. A.

    1972-01-01

    The performance capability was assessed of operators performing simulated space tasks using manipulator systems which had compliance and force feedback varied. Two manipulators were used, the E-2 electromechanical man-equivalent (force, reach, etc.) master-slave system and a modified CAM 1400 hydraulic master-slave with 100 lbs force capability at reaches of 24 ft. The CAM 1400 was further modified to operate without its normal force feedback. Several experiments and simulations were performed. The first two involved the E-2 absorbing the energy of a moving mass and secondly, guiding a mass thru a maze. Thus, both work and self paced tasks were studied as servo compliance was varied. Three simulations were run with the E-2 mounted on the CAM 1400 to evaluate the concept of a dexterous manipulator as an end effector of a boom-manipulator. Finally, the CAM 1400 performed a maze test and also simulated the capture of a large mass as the servo compliance was varied and with force feedback included and removed.

  19. Ball's motion, sliding friction, and internal load distribution in a high-speed ball bearing subjected to a combined radial, thrust, and moment load, applied to the inner ring's center of mass: Numerical procedure

    NASA Astrophysics Data System (ADS)

    César Ricci, Mário

    2015-10-01

    In a companion paper of this was introduced a set of non-linear algebraic equations for ball's motion, sliding friction and internal loading distribution computation in a high-speed, single-row, angular-contact ball bearing, subjected to a known combined radial, thrust and moment load, which must be applied to the inner ring's center of mass. It was shown there that it is required the iterative solution of 9Z + 3 simultaneous non-linear equations - where Z is the number of balls - to yield exact solution for contact angles, ball attitude angles, rolling radii, normal contact deformations and axial, radial, and angular deflections of the inner ring with respect the outer ring. The Newton-Rhapson method is to be used to solve the problem. This paper deals with the numerical procedure description. The numerical results derived from the described procedure shall be published later.

  20. Performance monitoring during a minimal group manipulation.

    PubMed

    Pfabigan, Daniela M; Holzner, Marie-Theres; Lamm, Claus

    2016-10-01

    The on-going (self-)monitoring of our behaviour is inextricably intertwined with the surrounding social context. In this study, we investigated whether a minimal group paradigm assigning individuals to arbitrary group categories is powerful enough to induce changes in behavioural, psychophysiological and event-related potential correlates of performance monitoring. Following arbitrary group assignment based on ostensible task performance and a group identification task, 22 volunteers performed a flanker-task during both in-group and out-group contexts, while electroencephalography was performed. More errors were committed in the out-group compared with the in-group context. Error-related negativity amplitudes were larger for in-group compared with out-group errors. However, subsequent processing reflected in late Pe amplitudes and stimulus-driven conflict reflected in N2 amplitudes were not affected by the group context. Heart rate deceleration (during both correct and incorrect trials) tended to be more pronounced during the out-group compared with the in-group context. This surprising observation was corroborated by subjective ratings of performance satisfaction, in which participants reported higher satisfaction with their out-group performance. This study identified specific stimulus evaluation processes to be affected by a minimal group manipulation and demonstrated thereby transient top-down effects of a social context manipulation on performance monitoring.

  1. Magnetic manipulation instrumentation for medical physics research

    NASA Astrophysics Data System (ADS)

    Gillies, G. T.; Ritter, R. C.; Broaddus, W. C.; Grady, M. S.; Howard, M. A., III; McNeil, R. G.

    1994-03-01

    The noncontact magnetic manipulation of probe masses within the body is an area of research that has received substantial attention from the medical physics community, especially during the past three decades. The therapeutic and diagnostic possibilities arising from such technology include site-specific drug delivery within the central nervous system, advancement of techniques for navigation and selective catheterization of vessels within the cardiovascular and cerebrovascular systems, and the nonsurgical exploration of the alimentary and respiratory tracts. In this review, we examine the physical principles underlying in vivo magnetic manipulation systems, and catalog the various types of instrumentation used for such purposes to date. Thereafter, we evaluate the different methods of image-based localization used to identify the position of the probe within the body. Finally, we appraise an emerging technology known as nonlinear magnetic stereotaxis, a technique that permits minimally invasive access to difficult-to-approach parts of the brain. We close the review with a few comments on the directions for future work within this field.

  2. Master/slave manipulator system

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; King, R. F.; Vallotton, W. C.

    1973-01-01

    System capabilities are equivalent to mobility, dexterity, and strength of human arm. Arrangement of torque motor, harmonic drive, and potentiometer combination allows all power and control leads to pass through center of slave with position-transducer arrangement of master, and "stovepipe joint" is incorporated for manipulator applications.

  3. Manipulating Genetic Material in Bacteria

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  4. Optical manipulation of valley pseudospin

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.

    2017-01-01

    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however, remained out of reach. Here we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. This study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.

  5. Data manipulation in heterogeneous databases

    SciTech Connect

    Chatterjee, A.; Segev, A.

    1991-10-01

    Many important information systems applications require access to data stored in multiple heterogeneous databases. This paper examines a problem in inter-database data manipulation within a heterogeneous environment, where conventional techniques are no longer useful. To solve the problem, a broader definition for join operator is proposed. Also, a method to probabilistically estimate the accuracy of the join is discussed.

  6. Mapping and Manipulating Facial Expression

    ERIC Educational Resources Information Center

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  7. Ants: the supreme soil manipulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review focuses on the semiochemical interactions between ants and their soil environment. Ants occupy virtually every ecological niche and have evolved mechanisms to not just cope with, but also manipulate soil organisms. The metapleural gland, specific to ants was thought to be the major sourc...

  8. COGNITION, ACTION, AND OBJECT MANIPULATION

    PubMed Central

    Rosenbaum, David A.; Chapman, Kate M.; Weigelt, Matthias; Weiss, Daniel J.; van der Wel, Robrecht

    2012-01-01

    Although psychology is the science of mental life and behavior, it has paid little attention to the means by which mental life is translated into behavior. One domain where links between cognition and action have been explored is the manipulation of objects. This article reviews psychological research on this topic, with special emphasis on the tendency to grasp objects differently depending on what one plans to do with the objects. Such differential grasping has been demonstrated in a wide range of object manipulation tasks, including grasping an object in a way that reveals anticipation of the object's future orientation, height, and required placement precision. Differential grasping has also been demonstrated in a wide range of behaviors, including one-hand grasps, two-hand grasps, walking, and transferring objects from place to place as well as from person to person. The populations in whom the tendency has been shown are also diverse, including nonhuman primates as well as human adults, children, and babies. Meanwhile, the tendency is compromised in a variety of clinical populations and in children of a surprisingly advanced age. Verbal working memory is compromised as well if words are memorized while object manipulation tasks are performed; the recency portion of the serial position curve is reduced in this circumstance. In general, the research reviewed here points to rich connections between cognition and action as revealed through the study of object manipulation. Other implications concern affordances, Donders' Law, and naturalistic observation and the teaching of psychology. PMID:22448912

  9. DYMAFLEX: DYnamic Manipulation FLight EXperiment

    DTIC Science & Technology

    2013-09-03

    Moosavian. Learning- based Modified Transpose Jacobian control of robotic manipulators. In Proc. IEEE Conf. on Advanced Intelligent Mechatronics , pages...34Path planning for minimizing base reaction of space robot and its ground experimental study," in IEEE International Conference on Mechatronics

  10. Teaching Integration Applications Using Manipulatives

    ERIC Educational Resources Information Center

    Bhatia, Kavita; Premadasa, Kirthi; Martin, Paul

    2014-01-01

    Calculus students' difficulties in understanding integration have been extensively studied. Research shows that the difficulty lies with students understanding of the definition of the definite integral as a limit of a Riemann sum and with the idea of accumulation inherent in integration. We have created a set of manipulatives and activities…

  11. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  12. Photophoresis and contact-free particle manipulation

    NASA Astrophysics Data System (ADS)

    Ingo von Borstel, Olaf; Blum, Jurgen

    Photophoresis has been proposed to play an important role in the evolution and physics of pro-toplanetary discs (Krauss Wurm 2005, Wurm Krauss 2006, Herrmann 2007). Dust embedded in a gaseous disc is, in the presence of a radiation field, subject to photophoresis which causes the dust particles to move away from the light source. Even though a theory and measure-ments of photophoresis exists for ideal spherical particles (Beresnev 1993), the strength and the order of the parameters and their influence onto the porous dust aggregates (as found in protoplanetary environments) is not well established. Drop tower campaigns were carried out to study the photophoretic effect quantitatively for selected materials as well as the influence of important parameters such as gas pressure or light intensity. Here we present means to contact-free manipulate solid aerosol particles implications of the observed photophoretic effect on aggregates on the dust motion in inner protoplanetary discs.

  13. Microbial Manipulation of the Amyloid Fold

    PubMed Central

    DePas, William H.

    2012-01-01

    Microbial biofilms are encased in a protein, DNA and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells to adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review. PMID:23108148

  14. Inertial-space disturbance rejection for space-based manipulators

    NASA Technical Reports Server (NTRS)

    Holt, Kevin; Desrochers, Alan A.

    1993-01-01

    The implementation of a disturbance rejection controller for a 6-DOF PUMA manipulator mounted on a 3-DOF platform was described. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Experimental results are presented for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities. Robotic manipulators were proposed as a means of reducing the amount of extra vehicular activity time required for space station assembly and maintenance. The proposed scenario involves a robotic manipulator attached to some mobile platform, such as a spacecraft, satellite, or the space station itself. Disturbances in the platform position and attitude may prevent the manipulator from successfully completing the task. The possibility of using the manipulator to compensate for platform disturbances was explored. The problem of controlling a robotic manipulator on a mobile platform has received considerable attention in the past few years. Joshi and Desrochers designed a nonlinear feedback control law to carry out tasks (with respect to the robot base frame) in the presence of roll, pitch and yaw disturbances in the platform axes. Dubowsky, Vance, and Torres proposed a time-optimal planning algorithm for a robotic manipulator mounted on a spacecraft, subject to saturation limits in the attitude control reaction jets. Papadopoulos and Dubowsky developed a general framework for analyzing the control of free-floating space manipulator systems. Most recently, Torres and Dubowsky have presented a technique called the enhanced disturbance map to find manipulator trajectories that reduce the effect of disturbances in the spacecraft position and attitude. One common assumption in the literature is that the disturbance signal is exactly known. If this is the case, then the end-effector location can be calculated without

  15. Context-dependent learning interferes with visuomotor transformations for manipulation planning.

    PubMed

    Fu, Qiushi; Santello, Marco

    2012-10-24

    How the CNS transforms visual information of object properties into motor commands for manipulation is not well understood. We designed novel apparatus and protocols in which human subjects had to learn manipulations in two different contexts. The first task involved manipulating a U-shaped object that can afford two actions by grasping different parts of the same object. The second task involved manipulating two L-shaped objects that were posed at different orientations. In both experiments, subjects learned the manipulation over consecutive trials in one context before switching to a different context. For both objects and tasks, the visual geometric cues were effective in eliciting anticipatory control with little error at the beginning of learning of the first context. However, subjects failed to use the visual information to the same extent when switching to the second context as sensorimotor memory built through eight consecutive repetitions in the first context exerted a strong interference on subjects' ability to use visual cues again when the context changed. A follow-up experiment where subjects were exposed to a pseudorandom sequence of context switches with the U-shaped object revealed that the interference caused by the preceding context persisted even when subjects switched context after only one trial. Our results suggest that learning generalization of dexterous manipulation is fundamentally limited by context-specific learning of motor actions and competition between vision-based motor planning and sensorimotor memory.

  16. Diversity and evolution of bodyguard manipulation.

    PubMed

    Maure, Fanny; Daoust, Simon Payette; Brodeur, Jacques; Mitta, Guillaume; Thomas, Frédéric

    2013-01-01

    Among the different strategies used by parasites to usurp the behaviour of their host, one of the most fascinating is bodyguard manipulation. While all classic examples of bodyguard manipulation involve insect parasitoids, induced protective behaviours have also evolved in other parasite-host systems, typically as specific dimensions of the total manipulation. For instance, parasites may manipulate the host to reduce host mortality during their development or to avoid predation by non-host predators. This type of host manipulation behaviour is rarely described, probably due to the fact that studies have mainly focused on predation enhancement rather than studying all the dimensions of the manipulation. Here, in addition to the classic cases of bodyguard manipulation, we also review these 'bodyguard dimensions' and propose extending the current definition of bodyguard manipulation to include the latter. We also discuss different evolutionary scenarios under which such manipulations could have evolved.

  17. Linearization of manipulator dynamics using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1993-01-01

    Linearized dynamics models for manipulators are useful in robot analysis, motion planning, and control applications. Techniques from the spatial operator algebra are used to obtain closed form operator expressions for two types of linearized dynamics models, the linearized inverse and forward dynamics models. Spatially recursive algorithms of O(n) and O(n-squared) complexity for the computation of the perturbation vector and coefficient matrices for the linearized inverse dynamics model are developed first. Subsequently, operator factorization and inversion identities are used to develop corresponding closed-form expressions for the linearized forward dynamics model (LFDM). Once again, these are used to develop algorithms of O(n) and O(n-squared) complexity for the computation of the perturbation vector and the coefficient matrices. The algorithms for the LFDM do not require the explicit computation of the mass matrix nor its numerical inversion and are also of lower complexity than the conventional O(n-cubed) algorithms.

  18. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: a single-blind randomized clinical trial

    PubMed Central

    Alemán-Mateo, Heliodoro; Carreón, Virginia Ramírez; Macías, Liliana; Astiazaran-García, Humberto; Gallegos-Aguilar, Ana Cristina; Ramos Enríquez, José Rogelio

    2014-01-01

    Background At present, it is unknown whether the use of nutrient-rich dairy proteins improves the markers of sarcopenia syndrome. Therefore, our proposal was to investigate whether adding 210 g of ricotta cheese daily would improve skeletal muscle mass, handgrip strength, and physical performance in non-sarcopenic older subjects. Subjects and methods This was a single-blind randomized clinical trial that included two homogeneous, randomized groups of men and women over 60 years of age. Participants in the intervention group were asked to consume their habitual diet but add 210 g of ricotta cheese (IG/HD + RCH), while the control group was instructed to consume only their habitual diet (CG/HD). Basal and 12-week follow-up measurements included appendicular skeletal muscle mass (ASMM) by dual-energy X-ray absorptiometry, handgrip strength by a handheld dynamometer, and physical performance using the short physical performance battery (SPPB) and the stair-climb power test (SCPT). The main outcomes were relative changes in ASMM, strength, SPPB, and SCPT. Results ASMM increased in the IG/HD + RCH (0.6±3.5 kg), but decreased in the CG/HD (−1.0±2.6). The relative change between groups was statistically significant (P=0.009). The relative change in strength in both groups was negative, but the loss of muscle strength was more pronounced in CG/HD, though in this regard statistical analysis found only a tendency (P=0.07). The relative change in the balance-test scores was positive for the IG/HD + RCH, while in the CG/HD it was negative, as those individuals had poorer balance. In this case, the relative change between groups did reach statistical significance. Conclusion The addition of 210 g of ricotta cheese improves ASMM and balance-test scores, while attenuating the loss of muscle strength. These results suggest that adding ricotta cheese to the habitual diet is a promising dietetic strategy that may improve the markers of sarcopenia in subjects without a pronounced

  19. Automatic Bone Drilling - More Precise, Reliable and Safe Manipulation in the Orthopaedic Surgery

    NASA Astrophysics Data System (ADS)

    Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Delchev, Kamen; Zagurski, Kazimir

    2016-06-01

    Bone drilling manipulation often occurs in the orthopaedic surgery. By statistics, nowadays, about one million people only in Europe need such an operation every year, where bone implants are inserted. Almost always, the drilling is performed handily, which cannot avoid the subjective factor influence. The question of subjective factor reduction has its answer - automatic bone drilling. The specific features and problems of orthopaedic drilling manipulation are considered in this work. The automatic drilling is presented according the possibilities of robotized system Orthopaedic Drilling Robot (ODRO) for assuring the manipulation accuracy, precision, reliability and safety.

  20. Extraction of time and frequency features from grip force rates during dexterous manipulation.

    PubMed

    Mojtahedi, Keivan; Fu, Qiushi; Santello, Marco

    2015-05-01

    The time course of grip force from object contact to onset of manipulation has been extensively studied to gain insight into the underlying control mechanisms. Of particular interest to the motor neuroscience and clinical communities is the phenomenon of bell-shaped grip force rate (GFR) that has been interpreted as indicative of feedforward force control. However, this feature has not been assessed quantitatively. Furthermore, the time course of grip force may contain additional features that could provide insight into sensorimotor control processes. In this study, we addressed these questions by validating and applying two computational approaches to extract features from GFR in humans: 1) fitting a Gaussian function to GFR and quantifying the goodness of the fit [root-mean-square error, (RMSE)]; and 2) continuous wavelet transform (CWT), where we assessed the correlation of the GFR signal with a Mexican Hat function. Experiment 1 consisted of a classic pseudorandomized presentation of object mass (light or heavy), where grip forces developed to lift a mass heavier than expected are known to exhibit corrective responses. For Experiment 2, we applied our two techniques to analyze grip force exerted for manipulating an inverted T-shaped object whose center of mass was changed across blocks of consecutive trials. For both experiments, subjects were asked to grasp the object at either predetermined or self-selected grasp locations ("constrained" and "unconstrained" task, respectively). Experiment 1 successfully validated the use of RMSE and CWT as they correctly distinguished trials with versus without force corrective responses. RMSE and CWT also revealed that grip force is characterized by more feedback-driven corrections when grasping at self-selected contact points. Future work will examine the application of our analytical approaches to a broader range of tasks, e.g., assessment of recovery of sensorimotor function following clinical intervention, interlimb

  1. The laboratory telerobotic manipulator program

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, R. L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.

    1989-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  2. Adaptive hybrid control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  3. Nanoparticle manipulation by thermal gradient

    PubMed Central

    2012-01-01

    A method was proposed to manipulate nanoparticles through a thermal gradient. The motion of a fullerene molecule enclosed inside a (10, 10) carbon nanotube with a thermal gradient was studied by molecular dynamics simulations. We created a one-dimensional potential valley by imposing a symmetrical thermal gradient inside the nanotube. When the temperature gradient was large enough, the fullerene sank into the valley and became trapped. The escaping velocities of the fullerene were evaluated based on the relationship between thermal gradient and thermophoretic force. We then introduced a new way to manipulate the position of nanoparticles by translating the position of thermostats with desirable thermal gradients. Compared to nanomanipulation using a scanning tunneling microscope or an atomic force microscope, our method for nanomanipulation has a great advantage by not requiring a direct contact between the probe and the object. PMID:22364240

  4. Towards Manipulation-Driven Vision

    DTIC Science & Technology

    2001-01-01

    perience through experimental manipulation, using The human ability to segment objects is not general - tight correlations between arm motion and...required for action, rule) generates informative percepts. while the ventral is important for more cognitive tasks such as maintaining an object’s...identity and Neurons in area F4 are thought to provide a body constancy. Although the dorsal/ventral segregation map useful for generating arm, head, and

  5. Fluid Manipulation Utilizing Electrowetting Techniques

    NASA Astrophysics Data System (ADS)

    Kaiser, Laura; Pyrak-Nolte, Laura

    2014-03-01

    The fraction of the pore space in rock occupied by a given fluid is called saturation. The relationship between saturation and capillary pressure for porous media is hysteretic between imbibition and drainage cycles. If the wetting phase saturation increases, the capillary pressure follows an imbibition curve, and, if the wetting phase saturation decreases, the capillary pressure follows the drainage curve. Due to this hysteresis, researchers have suggested that there is a third variable that should be considered called interfacial area per volume that removes the ambiguity in the capillary pressure - saturation relationship. Before the relationship can be explored in more detail, we first must be able to manipulate the saturation internally rather than externally. We used electrowetting techniques to manipulate the contact angle of a salt water drop. This technique affects the interfacial energy and, therefore, enables manipulation of the contact angles and saturation. Once mastered, the technique could be used to explore the effect of interfacial area per volume on micromodel systems. NSF REU

  6. Model reduction of flexible manipulators

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Xu, Yangsheng; Chen, C. S.

    1992-06-01

    Flexible manipulators can be characterized by a dynamic model with a large number of vibration modes, and the use of the model in the model-based control schemes requires reduction of model order. Balanced truncation is an effective method for model reduction of asymptotically stable systems by transforming the states to a coordinate system in which the controllability and observability Gramians are equal and diagonal, and eliminating the states which contribute weakly to the input-output map. An elastic flexible manipulator, however, is a marginally stable system and thus the balanced truncation method can not be directly applied. Herein, a method is presented of reducing the order of a marginally stable system based on the fact that translation transformations in the frequency domain preserve input-output properties of the system. The successful application is addressed of the method to model reduction of flexible manipulators with infinite-dimensional for finite-dimensional model. The method is also applicable for any other marginally stable model, such as elastic space trusswork and multi-dimensional space vehicle structure.

  7. What is 'manipulation'? A reappraisal.

    PubMed

    Evans, David W; Lucas, Nicholas

    2010-06-01

    Due primarily to its colloquial function, 'manipulation' is a poor term for distinguishing one healthcare intervention from another. With reports continuing to associate serious adverse events with manipulation, particularly relating to its use in the cervical spine, it is essential that the term be used appropriately and in accordance with a valid definition. The purpose of this paper is to identify empirically-derived features that we propose to be necessary and collectively sufficient for the formation of a valid definition for manipulation. A final definition is not offered. However, arguments for and against the inclusion of features are presented. Importantly, these features are explicitly divided into two categories: the 'action' (that which the practitioner does to the recipient) and the 'mechanical response' (that which occurs within the recipient). The proposed features are: 1) A force is applied to the recipient; 2) The line of action of this force is perpendicular to the articular surface of the affected joint; 3) The applied force creates motion at a joint; 4) This joint motion includes articular surface separation; 5) Cavitation occurs within the affected joint.

  8. Manipulation of Biofilm Microbial Ecology

    SciTech Connect

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  9. Visualizing Motion Patterns in Acupuncture Manipulation.

    PubMed

    Lee, Ye-Seul; Jung, Won-Mo; Lee, In-Seon; Lee, Hyangsook; Park, Hi-Joon; Chae, Younbyoung

    2016-07-16

    Acupuncture manipulation varies widely among practitioners in clinical settings, and it is difficult to teach novice students how to perform acupuncture manipulation techniques skillfully. The Acupuncture Manipulation Education System (AMES) is an open source software system designed to enhance acupuncture manipulation skills using visual feedback. Using a phantom acupoint and motion sensor, our method for acupuncture manipulation training provides visual feedback regarding the actual movement of the student's acupuncture manipulation in addition to the optimal or intended movement, regardless of whether the manipulation skill is lifting, thrusting, or rotating. Our results show that students could enhance their manipulation skills by training using this method. This video shows the process of manufacturing phantom acupoints and discusses several issues that may require the attention of individuals interested in creating phantom acupoints or operating this system.

  10. ERPs Differentially Reflect Automatic and Deliberate Processing of the Functional Manipulability of Objects

    PubMed Central

    Madan, Christopher R.; Chen, Yvonne Y.; Singhal, Anthony

    2016-01-01

    It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224

  11. A Three Dimensional Non-Singular Modelling of Rigid Manipulators.

    DTIC Science & Technology

    1987-12-01

    511111 OTC FILE COPY (1) ’ NAVAL POSTGRADUATE SCHOOL 0 ’ Monterey, California IDTIC I{ IELECTE S MAR 08 8 f 0? THESIS A THREE DIMENSIONAL NON-SINGULAR...MODELLING OF RIGID MANIPULATORS by Sadrettin Altinok December 1987 Thesis Advisor D.L. Smith Approved for public release; distribution is unlimited. 88...MASTERS THESIS FROM _ TO 1987 DECEMBER iC 6 16 SUPPLEMENTARY NOTATION 17 COSA T i CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by

  12. Spinal manipulation and mobilisation for back and neck pain: a blinded review.

    PubMed Central

    Koes, B W; Assendelft, W J; van der Heijden, G J; Bouter, L M; Knipschild, P G

    1991-01-01

    OBJECTIVE--To assess the efficacy of spinal manipulation for patients with back or neck pain. DESIGN--Computer aided search for published papers and blinded assessment of the methods of the studies. SUBJECTS--35 randomised clinical trials comparing spinal manipulation with other treatments. MAIN OUTCOME MEASURES--Score for quality of methods (based on four main categories: study population, interventions, measurement of effect, and data presentation and analysis) and main conclusion of author(s) with regard to spinal manipulation. RESULTS--No trial scored 60 or more points (maximum score 100) suggesting that most were of poor quality. Eighteen studies (51%) showed favourable results for manipulation. In addition, five studies (14%) reported positive results in one or more subgroups. Of the four studies with 50-60 points, one reported that manipulation was better, two reported that manipulation was better in only a subgroup, and one reported that manipulation was no better or worse than reference treatment. Eight trials attempted to compare manipulation with some placebo, with inconsistent results. CONCLUSIONS--Although some results are promising, the efficacy of manipulation has not been convincingly shown. Further trials are needed, but much more attention should be paid to the methods of study. PMID:1836153

  13. Manipulability measure of dual-arm space robot and its application to design an optimal configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liang, Bin; Wang, Xueqian; Li, Gang; Chen, Zhang; Zhu, Xiaojun

    2016-11-01

    Coupling effect exists among different arms and the base in a multi-arm space robot. The manipulability measure of one arm can be affected by the base and the other arms, which has important effects on the configuration optimization, the singularity avoidance and the compliant control. The manipulability measure for a multi-arm space robot is more complex than that of a single-arm space robot. At present, the manipulability measure of a multi-arm space robot has not been studied. In the paper, a new concept of manipulability measure is applied to analyze the manipulability measure for a dual-arm space robot, especially for the manipulability measure of the mission arm subjecting to the influence from coupling effect of auxiliary arm and the base. Based on the manipulability measure of mission arm, a performance index is introduced and used to design and choose an optimization configuration for a dual-arm space robot. Finally, a plane dual-arm space robot is simulated, which is illustrated the influence of joint angles and the base attitude on mission arm's manipulability measure. Simulation results show that the proposed manipulability measure is useful for a multi-arm space robot and optimal configuration can be extended and applied to the coordinated soft rendezvous and docking and the target capture in the field of on-orbit servicing.

  14. Manipulating the Gut Microbiota: Methods and Challenges

    PubMed Central

    Ericsson, Aaron C.; Franklin, Craig L.

    2015-01-01

    Eukaryotic organisms are colonized by rich and dynamic communities of microbes, both internally (e.g., in the gastrointestinal and respiratory tracts) and externally (e.g., on skin and external mucosal surfaces). The vast majority of bacterial microbes reside in the lower gastrointestinal (GI) tract, and it is estimated that the gut of a healthy human is home to some 100 trillion bacteria, roughly an order of magnitude greater than the number of host somatic cells. The development of culture-independent methods to characterize the gut microbiota (GM) has spurred a renewed interest in its role in host health and disease. Indeed, associations have been identified between various changes in the composition of the GM and an extensive list of diseases, both enteric and systemic. Animal models provide a means whereby causal relationships between characteristic differences in the GM and diseases or conditions can be formally tested using genetically identical animals in highly controlled environments. Clearly, the GM and its interactions with the host and myriad environmental factors are exceedingly complex, and it is rare that a single microbial taxon associates with, much less causes, a phenotype with perfect sensitivity and specificity. Moreover, while the exact numbers are the subject of debate, it is well recognized that only a minority of gut bacteria can be successfully cultured ex vivo. Thus, to perform studies investigating causal roles of the GM in animal model phenotypes, researchers need clever techniques to experimentally manipulate the GM of animals, and several ingenious methods of doing so have been developed, each providing its own type of information and with its own set of advantages and drawbacks. The current review will focus on the various means of experimentally manipulating the GM of research animals, drawing attention to the factors that would aid a researcher in selecting an experimental approach, and with an emphasis on mice and rats, the

  15. Optical manipulation for optogenetics: otoliths manipulation in zebrafish (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Favre-Bulle, Itia A.; Scott, Ethan; Rubinsztein-Dunlop, Halina

    2016-03-01

    Otoliths play an important role in Zebrafish in terms of hearing and sense of balance. Many studies have been conducted to understand its structure and function, however the encoding of its movement in the brain remains unknown. Here we developed a noninvasive system capable of manipulating the otolith using optical trapping while we image its behavioral response and brain activity. We'll also present our tools for behavioral response detection and brain activity mapping. Acceleration is sensed through movements of the otoliths in the inner ear. Because experimental manipulations involve movements, electrophysiology and fluorescence microscopy are difficult. As a result, the neural codes underlying acceleration sensation are poorly understood. We have developed a technique for optically trapping otoliths, allowing us to simulate acceleration in stationary larval zebrafish. By applying forces to the otoliths, we can elicit behavioral responses consistent with compensation for perceived acceleration. Since the animal is stationary, we can use calcium imaging in these animals' brains to identify the functional circuits responsible for mediating responses to acceleration in natural settings.

  16. Models of remote manipulation in space

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake

    1991-01-01

    Robots involved in high value manipulation must be effectively coupled to a human operator either at the work-site or remotely connected via communication links. In order to make use of experimental performance evaluation data, models must be developed. Powerful models of remote manipulation by humans can be used to predict manipulation performance in future systems based on today's laboratory systems. In this paradigm, the models are developed from experimental data, and then used to predict performance in slightly different situations. Second, accurate telemanipulation will allow design of manipulation systems which extend manipulation capability beyond its current bounds.

  17. Earth orbital teleoperator manipulator system evaluation program

    NASA Technical Reports Server (NTRS)

    Brye, R. G.; Frederick, P. N.; Kirkpatrick, M., III; Shields, N. L., Jr.

    1977-01-01

    The operator's ability to perform five manipulator tip movements while using monoptic and stereoptic video systems was assessed. Test data obtained were compared with previous results to determine the impact of camera placement and stereoptic viewing on manipulator system performance. The tests were performed using the NASA MSFC extendible stiff arm Manipulator and an analog joystick controller. Two basic manipulator tasks were utilized. The minimum position change test required the operator to move the manipulator arm to touch a target contract. The dexterity test required removal and replacement of pegs.

  18. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  19. Delays in Admittance-Controlled Haptic Devices Make Simulated Masses Feel Heavier.

    PubMed

    Kuling, Irene A; Smeets, Jeroen B J; Lammertse, Piet; Onneweer, Bram; Mugge, Winfred

    2015-01-01

    In an admittance-controlled haptic device, input forces are used to calculate the movement of the device. Although developers try to minimize delays, there will always be delays between the applied force and the corresponding movement in such systems, which might affect what the user of the device perceives. In this experiment we tested whether these delays in a haptic human-robot interaction influence the perception of mass. In the experiment an admittance-controlled manipulator was used to simulate various masses. In a staircase design subjects had to decide which of two virtual masses was heavier after gently pushing them leftward with the right hand in mid-air (no friction, no gravity). The manipulator responded as quickly as possible or with an additional delay (25 or 50 ms) to the forces exerted by the subject on the handle of the haptic device. The perceived mass was ~10% larger for a delay of 25 ms and ~20% larger for a delay of 50 ms. Based on these results, we estimated that the delays that are present in nowadays admittance-controlled haptic devices (up to 20ms) will give an increase in perceived mass which is smaller than the Weber fraction for mass (~10% for inertial mass). Additional analyses showed that the subjects' decision on mass when the perceptual differences were small did not correlate with intuitive variables such as force, velocity or a combination of these, nor with any other measured variable, suggesting that subjects did not have a consistent strategy during guessing or used other sources of information, for example the efference copy of their pushes.

  20. Spin-manipulating polarized deuterons

    SciTech Connect

    Morozov, V S; Krisch, A D; Leonova, M A; Raymond, R S; Sivers, D W; Wong, V K; Hinterberger, F; Kondratenko, A M; Stephenson, E J

    2011-03-01

    Spin dynamics of polarized deuteron beams near depolarization resonances, including a new polarization preservation concept based on specially-designed multiple resonance crossings, has been tested in a series of experiments in the COSY synchrotron. Intricate spin dynamics with sophisticated pre-programmed patterns as well as effects of multiple crossings of a resonance were studied both theoretically and experimentally with excellent agreement. Possible applications of these results to preserve, manipulate and spin-flip polarized beams in synchrotrons and storage rings are discussed.

  1. From Micro- to Nanoparticle Manipulation

    NASA Astrophysics Data System (ADS)

    Baechi, D.; Buser, R.; Dual, J.

    2000-12-01

    The precise manipulation of small particles is not a trivial task. In a first effort, a nanorobot system was built based on a robot with vision feedback and a micromachined gripper. It was suitable for handling particles down to 100 μ with submicron accuracy in a normal environment. For smaller particles stiction effects prohibit the release of the particles in a controlled way. Stiction effects are avoided in a fluid environment. As an example, a system of channels is described in detail that is able to feed micron sized particles in a fluid environment to the desired places.

  2. Covariance Manipulation for Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Use of probability of collision (Pc) has brought sophistication to CA. Made possible by JSpOC precision catalogue because provides covariance. Has essentially replaced miss distance as basic CA parameter. Embrace of Pc has elevated methods to 'manipulate' covariance to enable/improve CA calculations. Two such methods to be examined here; compensation for absent or unreliable covariances through 'Maximum Pc' calculation constructs, projection (not propagation) of epoch covariances forward in time to try to enable better risk assessments. Two questions to be answered about each; situations to which such approaches are properly applicable, amount of utility that such methods offer.

  3. Mobilization and Manipulation of the Cervical Spine in Patients with Cervicogenic Headache: Any Scientific Evidence?

    PubMed

    Garcia, Jodan D; Arnold, Stephen; Tetley, Kylie; Voight, Kiel; Frank, Rachael Anne

    2016-01-01

    Cervical mobilization and manipulation are frequently used to treat patients diagnosed with cervicogenic headache (CEH); however, there is conflicting evidence on the efficacy of these manual therapy techniques. The purpose of this review is to investigate the effects of cervical mobilization and manipulation on pain intensity and headache frequency, compared to traditional physical therapy interventions in patients diagnosed with CEH. A total of 66 relevant studies were originally identified through a review of the literature, and the 25 most suitable articles were fully evaluated via a careful review of the text. Ultimately, 10 studies met the inclusion criteria: (1) randomized controlled trial (RCT) or open RCT; the study contained at least two separate groups of subjects that were randomly assigned either to a cervical spine mobilization or manipulation or a group that served as a comparison; (2) subjects must have had a diagnosis of CEH; (3) the treatment group received either spinal mobilization or spinal manipulation, while the control group received another physical therapy intervention or placebo control; and (4) the study included headache pain and frequency as outcome measurements. Seven of the 10 studies had statistically significant findings that subjects who received mobilization or manipulation interventions experienced improved outcomes or reported fewer symptoms than control subjects. These results suggest that mobilization or manipulation of the cervical spine may be beneficial for individuals who suffer from CEH, although heterogeneity of the studies makes it difficult to generalize the findings.

  4. Manipulating expression of tonoplast transporters.

    PubMed

    Li, Zhigang; Zhou, Man; Hu, Qian; Reighard, Shane; Yuan, Shuangrong; Yuan, Ning; San, Bekir; Li, Dayong; Jia, Haiyan; Luo, Hong

    2012-01-01

    Plant vacuoles have multifaceted roles including turgor maintenance, cytosolic pH and ionic homeostasis, plant protection against environmental stress, detoxification, pigmentation, and cellular signaling. These roles are achieved through the coordinated activities of many proteins in the tonoplast (vacuolar membrane), of which the proton pumps and ion transporters have been modified for improved abiotic stress tolerance in transgenic plants. Here we describe a method to manipulate vacuolar H(+)-pyrophosphatase in turfgrass and evaluate the impact of the modified tonoplast on the phenotype, biochemistry, and physiology of the transgenics. Creeping bentgrass (Agrostis stolonifera L.) plants overexpressing an Arabidopsis vacuolar H(+)-pyrophosphatase AVP1 exhibited improved growth and enhanced salt tolerance, likely associated with increased photosynthesis, relative water content, proline production, and Na(+) uptake. These transgenic plants also had decreased solute leakage in the leaf tissues and increased concentrations of Na(+), K(+), Cl(-), and total phosphorus in the root tissues. Similar strategies can be employed to manipulate other tonoplast transporters and in other plant species to produce transgenic plants with improved performance under various abiotic stresses.

  5. Mobile remote manipulator vehicle system

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)

    1987-01-01

    A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.

  6. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  7. Covariance Manipulation for Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.

  8. Semantics of directly manipulating spatializations.

    PubMed

    Hu, Xinran; Bradel, Lauren; Maiti, Dipayan; House, Leanna; North, Chris; Leman, Scotland

    2013-12-01

    When high-dimensional data is visualized in a 2D plane by using parametric projection algorithms, users may wish to manipulate the layout of the data points to better reflect their domain knowledge or to explore alternative structures. However, few users are well-versed in the algorithms behind the visualizations, making parameter tweaking more of a guessing game than a series of decisive interactions. Translating user interactions into algorithmic input is a key component of Visual to Parametric Interaction (V2PI) [13]. Instead of adjusting parameters, users directly move data points on the screen, which then updates the underlying statistical model. However, we have found that some data points that are not moved by the user are just as important in the interactions as the data points that are moved. Users frequently move some data points with respect to some other 'unmoved' data points that they consider as spatially contextual. However, in current V2PI interactions, these points are not explicitly identified when directly manipulating the moved points. We design a richer set of interactions that makes this context more explicit, and a new algorithm and sophisticated weighting scheme that incorporates the importance of these unmoved data points into V2PI.

  9. Modeling and control for micro and nano manipulation

    NASA Astrophysics Data System (ADS)

    Wejinya, Uchechukwu C.

    Manipulation of micro and nano entities implies the movement of micro and nano entities from an initial position (location) to the desire position (location). This operation is not only necessary, but a required task with great precision. The tools needed for the manipulation needs to be chosen properly because the capabilities of the human hand are very restricted. Smart micro and nano manipulation are becoming of great interest in many applications including medicine and industry. In industry, high precision manipulation systems are especially needed for mass production of both micro and nano systems which consist of different component in respective scales. The transition from assembling and manipulating micro and nano entities manually to mass products with high quality is only attainable by automated assembly and manipulation systems. An example is the testing of integrated circuits which can be carried out by exchanging the manipulation tool by an electric probe. Furthermore, in medical research it is customary to pick up a single cell (human, plant, or animal), and carry it to another device which is used to further analyze the cell. Consequently, the cell of interest has to be separated from the other cells and picked up using the appropriate micro/nano tool. Hence it becomes absolutely necessary that the appropriate tool be used for specific micro or nano entity manipulation and assembly. In this research, we focus on developing micro tool for manipulating micro and nano entities in liquid environment using a micro fluidic end effector system with in-situ Polyvinylidene Fluoride (PVDF) sensing. The microfluidic end effector system consists of a DC micro-diaphragm pump and compressor, one region of flexible latex tube, a Polyvinylidene Fluoride (PVDF) sensor for in-situ measurement of micro drag force, and a micro pipette. The micro pipette of the novel microfluidic end effector system has an internal diameter (ID) smaller than 20mum used for microfluidic

  10. A systematic review of current and emergent manipulator control approaches

    NASA Astrophysics Data System (ADS)

    Ajwad, Syed Ali; Iqbal, Jamshed; Ullah, Muhammad Imran; Mehmood, Adeel

    2015-06-01

    Pressing demands of productivity and accuracy in today's robotic applications have highlighted an urge to replace classical control strategies with their modern control counterparts. This recent trend is further justified by the fact that the robotic manipulators have complex nonlinear dynamic structure with uncertain parameters. Highlighting the authors' research achievements in the domain of manipulator design and control, this paper presents a systematic and comprehensive review of the state-of-the-art control techniques that find enormous potential in controlling manipulators to execute cuttingedge applications. In particular, three kinds of strategies, i.e., intelligent proportional-integral-derivative (PID) scheme, robust control and adaptation based approaches, are reviewed. Future trend in the subject area is commented. Open-source simulators to facilitate controller design are also tabulated. With a comprehensive list of references, it is anticipated that the review will act as a firsthand reference for researchers, engineers and industrialinterns to realize the control laws for multi-degree of freedom (DOF) manipulators.

  11. Robust Task Space Trajectory Tracking Control of Robotic Manipulators

    NASA Astrophysics Data System (ADS)

    Galicki, M.

    2016-08-01

    This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.

  12. Autonomous manipulation on a robot: Summary of manipulator software functions

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.

    1974-01-01

    A six degree-of-freedom computer-controlled manipulator is examined, and the relationships between the arm's joint variables and 3-space are derived. Arm trajectories using sequences of third-degree polynomials to describe the time history of each joint variable are presented and two approaches to the avoidance of obstacles are given. The equations of motion for the arm are derived and then decomposed into time-dependent factors and time-independent coefficients. Several new and simplifying relationships among the coefficients are proven. Two sample trajectories are analyzed in detail for purposes of determining the most important contributions to total force in order that relatively simple approximations to the equations of motion can be used.

  13. Structural Sizing Methodology for the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) System

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Dorsey, John T.; Doggett, William R.

    2015-01-01

    The Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) is a versatile long-reach robotic manipulator that is currently being tested at NASA Langley Research Center. TALISMAN is designed to be highly mass-efficient and multi-mission capable, with applications including asteroid retrieval and manipulation, in-space servicing, and astronaut and payload positioning. The manipulator uses a modular, periodic, tension-compression design that lends itself well to analytical modeling. Given the versatility of application for TALISMAN, a structural sizing methodology was developed that could rapidly assess mass and configuration sensitivities for any specified operating work space, applied loads and mission requirements. This methodology allows the systematic sizing of the key structural members of TALISMAN, which include the truss arm links, the spreaders and the tension elements. This paper summarizes the detailed analytical derivations and methodology that support the structural sizing approach and provides results from some recent TALISMAN designs developed for current and proposed mission architectures.

  14. Sperm cells manipulation employing dielectrophoresis.

    PubMed

    Rosales-Cruzaley, E; Cota-Elizondo, P A; Sánchez, D; Lapizco-Encinas, Blanca H

    2013-10-01

    Infertility studies are an important growing field, where new methods for the manipulation, enrichment and selection of sperm cells are required. Microfluidic techniques offer attractive advantages such as requirement of low sample volume and short processing times in the range of second or minutes. Presented here is the application of insulator-based dielectrophoresis (iDEP) for the enrichment and separation of mature and spermatogenic cells by employing a microchannel with cylindrical insulating structures with DC electric potentials in the range of 200-1500 V. The results demonstrated that iDEP has the potential to concentrate sperm cells and distinguish between mature and spermatogenic cells by exploiting the differences in shape which lead to differences in electric polarization. Viability assessments revealed that a significant percentage of the cells are viable after the dielectrophoretic treatment, opening the possibility for iDEP to be developed as a tool in infertility studies.

  15. Controlling multiple manipulators using RIPS

    NASA Technical Reports Server (NTRS)

    Wang, Yulun; Jordan, Steve; Mangaser, Amante; Butner, Steve

    1989-01-01

    A prototype of the RIPS architecture (Robotic Instruction Processing System) was developed. A two arm robot control experiment is underway to characterize the architecture as well as research multi-arm control. This experiment uses two manipulators to cooperatively position an object. The location of the object is specified by the host computer's mouse. Consequently, real time kinematics and dynamics are necessary. The RIPS architecture is specialized so that it can satisfy these real time constraints. The two arm experimental set-up is discussed. A major part of this work is the continued development of a good programming environment for RIPS. The C++ language is employed and favorable results exist in the targeting of this language to the RIPS hardware.

  16. Research on a Reconfigurable Modular Manipulator System

    SciTech Connect

    Khosla, P.K.; Kanade, T.

    1992-01-01

    Research has been conducted on developing the theoretical basis and the technology for a Reconfigurable Modular Manipulation System (RMMS). Unlike a conventional manipulator which has a fixed configuration, the RMMS consists of a set of interchangeable modules that can be rapidly assembled into a system of manipulators with appropriate configurations depending on the specific task requirement. For effective development and use of such a versatile and flexible system a program of theoretical and experimental research has been pursued aimed at developing the basis for next generation of autonomous manipulator systems. The RMMS concept extends the idea of autonomy from sensor-based to configuration based autonomy. One of the important components is the development of design methodologies for mapping tasks into manipulator configurations and for automatic generation of manipulator specific algorithms (e.g., kinematics and dynamics) in order to make the hardware transparent to the user.(JDB)

  17. Virus manipulation of cell cycle.

    PubMed

    Nascimento, R; Costa, H; Parkhouse, R M E

    2012-07-01

    Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

  18. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  19. Bracing micro/macro manipulators control

    SciTech Connect

    Lew, J.Y.; Book, W.J.

    1994-05-01

    This paper proposes a bracing strategy for micro/macro manipulators. The bracing micro/macro manipulator can provide advantages in accurate positioning, large work-space, and contact-task capability however, in exchange for improvement in performance one must accept the complex control problem along wit the complex dynamics. This research develops a control scheme for a bracing manipulator which makes multiple contacts with the environment. Experimental results show the feasibility of the proposed ideas for real world applications.

  20. Robust Force Control of a 6-Link Electro-Hydraulic Manipulator

    NASA Astrophysics Data System (ADS)

    Ahn, Kyoungkwan; Yokota, Shinichi

    Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electic line is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H∞ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

  1. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  2. Compliant Gripper for a Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Cipra, Raymond; Das, Hari

    2003-01-01

    A figure depicts a prototype of a robotic-manipulator gripping device that includes two passive compliant fingers, suitable for picking up and manipulating objects that have irregular shapes and/or that are, themselves, compliant. The main advantage offered by this device over other robotic-manipulator gripping devices is simplicity: Because of the compliance of the fingers, force-feedback control of the fingers is not necessary for gripping objects of a variety of sizes, shapes, textures, and degrees of compliance. Examples of objects that can be manipulated include small stones, articles of clothing, and parts of plants.

  3. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  4. Earth orbital teleoperator manipulator system evaluation program

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Frederick, P. N.; Brye, R.; Malone, T. B.

    1975-01-01

    The performance of an orbital teleoperator system which includes small dextrous servicing manipulators to be used in satellite servicing was examined. System/operator performance testing was implemented and the results of a fine positioning control test using two different manipulator systems varying widely in manipulator configuration and control systems are presented. Fine position control is viewed as representing a fundamental requirement placed on manipulator control. The relationship of position control to more complex tasks which directly represent on-orbit servicing operations are also presented.

  5. Rhythmic Manipulation of Objects with Complex Dynamics: Predictability over Chaos

    PubMed Central

    Nasseroleslami, Bahman; Hasson, Christopher J.; Sternad, Dagmar

    2014-01-01

    The study of object manipulation has been largely confined to discrete tasks, where accuracy, mechanical effort, or smoothness were examined to explain subjects' preferred movements. This study investigated a rhythmic manipulation task, which involved continuous interaction with a nonlinear object that led to unpredictable object behavior. Using a simplified virtual version of the task of carrying a cup of coffee, we studied how this unpredictable object behavior affected the selected strategies. The experiment was conducted in a virtual set-up, where subjects moved a cup with a ball inside, modeled by cart-and-pendulum dynamics. Inverse dynamics calculations of the system showed that performing the task with different amplitudes and relative phases required different force profiles and rendered the object's dynamics with different degrees of predictability (quantified by Mutual Information between the applied force and the cup kinematics and its sensitivity). Subjects (n = 8) oscillated the virtual cup between two targets via a robotic manipulandum, paced by a metronome at 1 Hz for 50 trials, each lasting 45 s. They were free to choose their movement amplitude and relative phase between the ball and cup. Experimental results showed that subjects increased their movement amplitudes, which rendered the interactions with the object more predictable and with lower sensitivity to the execution variables. These solutions were associated with higher average exerted force and lower object smoothness, contradicting common expectations from studies on discrete object manipulation and unrestrained movements. Instead, the findings showed that humans selected strategies with higher predictability of interaction dynamics. This finding expressed that humans seek movement strategies where force and kinematics synchronize to repeatable patterns that may require less sensorimotor information processing. PMID:25340581

  6. Estimation of Soft Tissue Mechanical Parameters from Robotic Manipulation Data.

    PubMed

    Boonvisut, Pasu; Jackson, Russell; Cavuşoğlu, M Cenk

    2012-12-31

    Robotic motion planning algorithms used for task automation in robotic surgical systems rely on availability of accurate models of target soft tissue's deformation. Relying on generic tissue parameters in constructing the tissue deformation models is problematic; because, biological tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is also not usually practical. In this paper, a method for estimating mechanical parameters of soft tissue from sensory data collected during robotic surgical manipulation is presented. The method uses force data collected from a multiaxial force sensor mounted on the robotic manipulator, and tissue deformation data collected from a stereo camera system. The tissue parameters are then estimated using an inverse finite element method. The effects of measurement and modeling uncertainties on the proposed method are analyzed in simulation. The results of experimental evaluation of the method are also presented.

  7. Estimation of Soft Tissue Mechanical Parameters from Robotic Manipulation Data.

    PubMed

    Boonvisut, Pasu; Cavuşoğlu, M Cenk

    2013-10-01

    Robotic motion planning algorithms used for task automation in robotic surgical systems rely on availability of accurate models of target soft tissue's deformation. Relying on generic tissue parameters in constructing the tissue deformation models is problematic because, biological tissues are known to have very large (inter- and intra-subject) variability. A priori mechanical characterization (e.g., uniaxial bench test) of the target tissues before a surgical procedure is also not usually practical. In this paper, a method for estimating mechanical parameters of soft tissue from sensory data collected during robotic surgical manipulation is presented. The method uses force data collected from a multiaxial force sensor mounted on the robotic manipulator, and tissue deformation data collected from a stereo camera system. The tissue parameters are then estimated using an inverse finite element method. The effects of measurement and modeling uncertainties on the proposed method are analyzed in simulation. The results of experimental evaluation of the method are also presented.

  8. Manipulation of Dirac Cones in Mechanical Graphene

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-12-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases.

  9. Manipulation of Dirac Cones in Mechanical Graphene

    PubMed Central

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-01-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases. PMID:26667580

  10. Manipulation of Dirac Cones in Mechanical Graphene.

    PubMed

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-12-15

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton's law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the "Chern number" occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton's law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases.

  11. Delays in Admittance-Controlled Haptic Devices Make Simulated Masses Feel Heavier

    PubMed Central

    Kuling, Irene A.; Smeets, Jeroen B. J.; Lammertse, Piet; Onneweer, Bram; Mugge, Winfred

    2015-01-01

    In an admittance-controlled haptic device, input forces are used to calculate the movement of the device. Although developers try to minimize delays, there will always be delays between the applied force and the corresponding movement in such systems, which might affect what the user of the device perceives. In this experiment we tested whether these delays in a haptic human-robot interaction influence the perception of mass. In the experiment an admittance-controlled manipulator was used to simulate various masses. In a staircase design subjects had to decide which of two virtual masses was heavier after gently pushing them leftward with the right hand in mid-air (no friction, no gravity). The manipulator responded as quickly as possible or with an additional delay (25 or 50 ms) to the forces exerted by the subject on the handle of the haptic device. The perceived mass was ~10% larger for a delay of 25 ms and ~20% larger for a delay of 50 ms. Based on these results, we estimated that the delays that are present in nowadays admittance-controlled haptic devices (up to 20ms) will give an increase in perceived mass which is smaller than the Weber fraction for mass (~10% for inertial mass). Additional analyses showed that the subjects’ decision on mass when the perceptual differences were small did not correlate with intuitive variables such as force, velocity or a combination of these, nor with any other measured variable, suggesting that subjects did not have a consistent strategy during guessing or used other sources of information, for example the efference copy of their pushes. PMID:26361353

  12. A theoretical and experimental investigation of impact control for manipulators

    NASA Technical Reports Server (NTRS)

    Volpe, Richard; Khosla, Pradeep

    1993-01-01

    This article describes a simple control strategy for stable hardon-hard contact of a manipulator with the environment. The strategy is motivated by recognition of the equivalence of proportional gain explicit force control and impedance control. It is shown that negative proportional force gains, or impedance mass ratios less than unity, can equivalently provide excellent impact response without bouncing. This result is indicated by an analysis performed with an experimentally determined arm/sensor/environment model. The results are corroborated by experimental data from implementation of the control algorithms on the CMU DD Arm II system. The results confirm that manipulator impact against a stiff environment without bouncing can be readily handled by this novel control strategy.

  13. Kinematics and Control of Robot Manipulators

    NASA Astrophysics Data System (ADS)

    Paden, Bradley Evan

    This dissertation focuses on the kinematics and control of robot manipulators. The contribution to kinematics is a fundamental theorem on the design of manipulators with six revolute joints. The theorem states, roughly speaking, that manipulators which have six revolute joints and are modeled after the human arm are optimal and essentially unique. In developing the mathematical framework to prove this theorem, we define precisely the notions of length of a manipulator, well-connected-workspace, and work-volume. We contribute to control a set of analysis techniques for the design of variable structure (sliding mode) controllers for manipulators. The organization of the dissertation is the following. After introductory remarks in chapter one, the group of proper rigid motions, G, is introduced in chapter two. The tangent bundle of G is introduced and it is shown that the velocity of a rigid body can be represented by an element in the Lie algebra of G (commonly called a twist). Further, rigid motions which are exponentials of twists are used to describe four commonly occurring subproblems in robot kinematics. In chapter three, the exponentials of twists are used to write the forward kinematic map of robot manipulators and the subproblems of chapter two are used to solve the Stanford manipulator and an elbow manipulator. Chapter four focuses on manipulator singularities. Twist coordinates are used to find critical points of the forward kinematic map. The contribution to kinematics is contained in chapter five where a mathematical framework for studying the relationship between the design of 6R manipulators and their performance is developed. Chapter seven contains the contribution to control. The work of A. F. Filippov on differential equations with discontinuous right-hand-side and the work of F. H. Clarke on generalized gradients are combined to obtain a calculus for analyzing nonsmooth gradient systems. The techniques developed are applied to design a simple

  14. Ethnicity and Mass Communication.

    ERIC Educational Resources Information Center

    Nwankwo, Robert L.

    This paper discusses the intercultural communication body of knowledge and focuses on the ethnicity and mass communication. The orientation and tradition of communication research in the United States is discussed; the findings of some mass communication studies that have subject matter or variables related to mass ethnicity are summarized; the…

  15. Influence of MCHR2 and MCHR2-AS1 Genetic Polymorphisms on Body Mass Index in Psychiatric Patients and In Population-Based Subjects with Present or Past Atypical Depression

    PubMed Central

    Delacrétaz, Aurélie; Preisig, Martin; Vandenberghe, Frederik; Saigi Morgui, Nuria; Quteineh, Lina; Choong, Eva; Gholam-Rezaee, Mehdi; Kutalik, Zoltan; Magistretti, Pierre; Aubry, Jean-Michel; von Gunten, Armin; Castelao, Enrique; Vollenweider, Peter; Waeber, Gerard; Conus, Philippe; Eap, Chin B.

    2015-01-01

    Obesity development during psychotropic treatments represents a major health issue in psychiatry. Melanin-concentrating hormone receptor 2 (MCHR2) is a central receptor involved in energy homeostasis. MCHR2 shares its promoter region with MCHR2-AS1, a long antisense non-coding RNA. The aim of this study was to determine whether tagging single nucleotide polymorphisms (tSNPs) of MCHR2 and MCHR2-AS1 are associated with the body mass index (BMI) in the psychiatric and in the general population. The influence of MCHR2 and MCHR2-AS1 tSNPs on BMI was firstly investigated in a discovery psychiatric sample (n1 = 474). Positive results were tested for replication in two other psychiatric samples (n2 = 164, n3 = 178) and in two population-based samples (CoLaus, n4 = 5409; GIANT, n5 = 113809). In the discovery sample, TT carriers of rs7754794C>T had 1.08 kg/m2 (p = 0.04) lower BMI as compared to C-allele carriers. This observation was replicated in an independent psychiatric sample (-2.18 kg/m2; p = 0.009). The association of rs7754794C>T and BMI seemed stronger in subjects younger than 45 years (median of age). In the population-based sample, a moderate association was observed (-0.17 kg/m2; p = 0.02) among younger individuals (<45y). Interestingly, this association was totally driven by patients meeting lifetime criteria for atypical depression, i.e. major depressive episodes characterized by symptoms such as an increased appetite. Indeed, patients with atypical depression carrying rs7754794-TT had 1.17 kg/m2 (p = 0.04) lower BMI values as compared to C-allele carriers, the effect being stronger in younger individuals (-2.50 kg/m2; p = 0.03; interaction between rs7754794 and age: p-value = 0.08). This study provides new insights on the possible influence of MCHR2 and/or MCHR2-AS1 on obesity in psychiatric patients and on the pathophysiology of atypical depression. PMID:26461262

  16. Visual Manipulatives for Proportional Reasoning.

    ERIC Educational Resources Information Center

    Moore, Joyce L.; Schwartz, Daniel L.

    The use of a visual representation in learning about proportional relations was studied, examining students' understandings of the invariance of a multiplicative relation on both sides of a proportion equation and the invariance of the structural relations that exist in different semantic types of proportion problems. Subjects were 49 high-ability…

  17. Spinal manipulative therapy in sports medicine.

    PubMed

    Haldeman, S

    1986-04-01

    Spinal manipulation or manual therapy is becoming an increasingly popular method of treating athletes with spinal problems. The primary theoretic basis for the claimed beneficial results of manipulation is the restoration of motion with subsequent effect on ligamentous adhesions, muscle spasm, disk nutrition, and central nervous system endorphin systems. The concept of joint barriers has been developed to differentiate among exercise therapy, mobilization, and manipulation. Research trials suggest that spinal manipulation is beneficial in relieving or reducing the duration of acute low back pain and acute neck pain but has much less effect on chronic low back pain and neck pain. There is evidence that manipulation increases certain parameters of motion of the spine but this evidence is not yet conclusive. There are a wide variety of manipulative procedures that are utilized to manipulate the spine to increase range of motion, and the selection of the procedures is based on manual diagnostic skills. Manipulation, however, is not a benign procedure and has been implicated in the aggravation of disk herniation or bony fractures as well as the precipitation of vertebrobasilar artery occlusion.

  18. Teachers' Beliefs and Teaching Mathematics with Manipulatives

    ERIC Educational Resources Information Center

    Golafshani, Nahid

    2013-01-01

    To promote the implementation of manipulatives into mathematics instruction, this research project examined how the instructional practices of four Grade 9 applied mathematics teachers related to their beliefs about the use of manipulatives in teaching mathematics, its effects on students' learning, and enabling and disabling factors. Teacher…

  19. Manipulating Language: A Strategy for Teaching Literature.

    ERIC Educational Resources Information Center

    Byers, Prudence P.

    Literary artists manipulate language. If educators could develop in their students the same sense that language is manipulable, they could help them to better appreciate literature. Emily Dickinson's poem "I Like to See It Lap the Miles" could be approached by changing it on several levels--graphics, phonics, syntax, and semantics--and…

  20. Cervical epidural hematoma after chiropractic spinal manipulation.

    PubMed

    Heiner, Jason D

    2009-10-01

    Spinal epidural hematoma is a rare but potentially devastating complication of spinal manipulation therapy. This is a case report of a healthy pregnant female who presented to the emergency department with a cervical epidural hematoma resulting from chiropractic spinal manipulation therapy that responded to conservative treatment rather than the more common route of surgical management.

  1. Count on It: Congruent Manipulative Displays

    ERIC Educational Resources Information Center

    Morin, Joe; Samelson, Vicki M.

    2015-01-01

    Representations that create informative visual displays are powerful tools for communicating mathematical concepts. The National Council of Teachers of Mathematics encourages the use of manipulatives (NCTM 2000). Manipulative materials are often used to present initial representations of basic numerical principles to young children, and it is…

  2. Welding torch and wire feed manipulator

    NASA Technical Reports Server (NTRS)

    Williams, R. T.

    1967-01-01

    Welding torch and wire feed manipulator increase capability for performing automatic welding operations. The manipulator rotates on its horizontal axis to avoid obstacles as they approach the torch. The initial individual attitudes of the torch and wire guide are set with respect to the general configuration of the part.

  3. Adaptive Cartesian coordinate control of space based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    A Cartesian coordinate robot controller is presented for use when the mass properties of a load are unknown. The mass, center of mass, and moments of inertia of the end-effector are assumed unknown. All other inertial properties of the robot are assumed known. This knowledge of the parameters allows the control of the end-effector in a way similar to the use of reaction wheels to control the orientation of a satellite. This is the primary result of the controller. The basic method of the controller is similar to that used for terrestrial-based robot manipulators. The controller is demonstrated using a new simulation algorithm which is based on Hamilton's form of the equations of motion.

  4. On stiffening cables of a long reach manipulator

    SciTech Connect

    Wang, S.L.; Santiago, P.

    1996-02-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator`s slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator`s stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator`s wrist.

  5. Use of commercial manipulator to handle a nuclear weapon component

    SciTech Connect

    Baker, C.P.

    1994-08-01

    Pacific Northwest Laboratory (PNL) has developed a manipulator workcell to load and unload nuclear weapon pit assemblies from a cart. To develop this workcell, PNL procured a commercially available manipulator, equipped it with force-sensing and vision equipment, and developed manipulator control software. Manipulator workcell development demonstrated that commercially available manipulator systems can successfully perform this task if the appropriate manipulator is selected and the manipulator workcell tooling and software are carefully designed.

  6. Genetic manipulation of Giardia lamblia.

    PubMed

    Davis-Hayman, Sara R; Nash, Theodore E

    2002-06-01

    Giardia lamblia is a flagellated protozoan that infects several species including humans and is a major agent of waterborne outbreaks of diarrhea. G. lamblia is also important in the study of basic eukaryotic molecular biology and evolution; however, it has been difficult to employ standard genetic methods in the study of Giardia. Over the past 6 years, two transfection systems were developed and used for the genetic manipulation of G. lamblia. Both systems allow transient or stable transfection of Giardia and/or foreign genes. The DNA-based transfection system allows electroporation of circular or linear plasmid DNA into trophozoites. The RNA virus-based transfection system requires electroporation of in vitro transcribed RNA into GLV-infected trophozoites. Because G. lamblia is one of the most rudimentary eukaryotes, its processes of transcription, translation and protein transport, as well as its metabolic and biochemical pathways, are of interest. Study of these areas will continue to be advanced using transfection in combination with cellular and molecular tools. Several groups have combined these technologies with other techniques to study protein transport and the transcriptional and post-transcriptional regulation of Giardia genes, including encystation-specific and variant surface protein genes. In addition, coupling antisense techniques with transfection has permitted functional knockout of Giardia metabolic genes, allowing Giardia metabolic pathways to be studied. In the near future, both transfection systems will be potent tools in our investigations of the perplexing questions in Giardia biology.

  7. Coanda-assisted Spray Manipulation

    NASA Astrophysics Data System (ADS)

    Mabey, Katie; Smith, Barton; Archibald, Reid; West, Brian

    2009-11-01

    An overview of research on a flow control technique called Coanda-assisted Spray Manipulation (CSM) is presented. CSM uses a high-momentum control jet under the influence of the Coanda effect to vector a high volume-flow jet or spray. Actuators provide the capability of moving the location of applied control flow making rotary or arbitrary motion of the vectored flow possible. The presented work includes a fundamental isothermal study on the effects of rotation speed and Reynolds number on a vectored jet using a belt-driven CSM actuator. Three-component velocity data were acquired for three Reynolds numbers and three rotation speeds using timed resolved high-speed stereo Particle Image Velocimetry. A second CSM system with 16 pneumatically-driven control ports has been retrofitted to a flame spray gun. This combination provides the capability to rapidly alter the direction of applied metal powders. High speed video of this process will also be presented. Finally, a fundamental study on the pneumatic system's response to minor losses and connection lines of varying lengths is presented.

  8. Genetic manipulation of Coxiella burnetii.

    PubMed

    Beare, Paul A

    2012-01-01

    Until very recently, Coxiella burnetii was viewed and studied as an obligate intracellular bacterium that relied exclusively on a eucaryotic host cell for growth. Other medically relevant obligate intracellular bacteria reside in the genera Anaplasma, Chlamydia, Ehrlichia, Orientia, and Rickettsia. An obligate intracellular lifestyle presents a significant obstacle to genetic transformation. Procedures that are straightforward with free-living bacteria, such as antibiotic selection and cloning, can be very difficult when growth of transformants is restricted to a host cell. Long-term passage in host cells to expand small transformant populations can further complicate the procedure. Despite these and other obstacles, at least rudimentary systems are currently available for genetic transformation of most obligate intracellular bacterial pathogens. Dramatically aiding the development of new genetic methods for C. burnetii is the recent discovery of a medium that supports host cell-free growth of the organism in liquid, and importantly, on solid media as clonal colonies. The expanded C. burnetii genetics toolbox now includes transposon systems for random mutagenesis and single-copy, site-specific chromosomal gene knock-ins, as well as a shuttle vector for heterologous gene expression and in trans complementation. A reliable method of targeted gene inactivation remains a challenge. Advances in C. burnetii genetic manipulation will allow identification of genes essential for intracellular parasitism and disease pathogenesis, and undoubtedly fuel new interest in this minimally studied bacterial pathogen.

  9. Interactive digital image manipulation system

    NASA Technical Reports Server (NTRS)

    Henze, J.; Dezur, R.

    1975-01-01

    The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.

  10. Microcrystal manipulation with laser tweezers

    SciTech Connect

    Wagner, Armin Duman, Ramona; Stevens, Bob; Ward, Andy

    2013-07-01

    Optical trapping has successfully been applied to select and mount microcrystals for subsequent X-ray diffraction experiments. X-ray crystallography is the method of choice to deduce atomic resolution structural information from macromolecules. In recent years, significant investments in structural genomics initiatives have been undertaken to automate all steps in X-ray crystallography from protein expression to structure solution. Robotic systems are widely used to prepare crystallization screens and change samples on synchrotron beamlines for macromolecular crystallography. The only remaining manual handling step is the transfer of the crystal from the mother liquor onto the crystal holder. Manual mounting is relatively straightforward for crystals with dimensions of >25 µm; however, this step is nontrivial for smaller crystals. The mounting of microcrystals is becoming increasingly important as advances in microfocus synchrotron beamlines now allow data collection from crystals with dimensions of only a few micrometres. To make optimal usage of these beamlines, new approaches have to be taken to facilitate and automate this last manual handling step. Optical tweezers, which are routinely used for the manipulation of micrometre-sized objects, have successfully been applied to sort and mount macromolecular crystals on newly designed crystal holders. Diffraction data from CPV type 1 polyhedrin microcrystals mounted with laser tweezers are presented.

  11. Simulation and analysis of flexibly jointed manipulators

    NASA Technical Reports Server (NTRS)

    Murphy, Steve H.; Wen, John T.; Saridis, George M.

    1990-01-01

    Modeling, simulation, and analysis of robot manipulators with non-negligible joint flexibility are studied. A recursive Newton-Euler model of the flexibly jointed manipulator is developed with many advantages over the traditional Lagrange-Euler methods. The Newton-Euler approach leads to a method for the simulation of a flexibly jointed manipulator in which the number of computations grows linearly with the number of links. Additionally, any function for the flexibility between the motor and link may be used permitting the simulation of nonlinear effects, such as backlash, in a uniform manner for all joints. An analysis of the control problems for flexibly jointed manipulators is presented by converting the Newton-Euler model to a Lagrange-Euler form. The detailed structure available in the model is used to examine linearizing controllers and shows the dependency of the control on the choice of flexible model and structure of the manipulator.

  12. Damping control of a large flexible manipulator through inertial forces of a small manipulator

    SciTech Connect

    Trudnowski, D.J.; Baker, C.P.; Evans, M.S.

    1993-06-01

    Damping control is applied to a detailed computer model of a long- reach flexible manipulator test bed. The test bed consists of a long slender link with a dexterous manipulator mounted at its tip. The movement of the dexterous manipulator is controlled to create inertial damping forces on the long link. Parameter identification and sequential loop-closure are used to design a controller that feeds back relative tip position and velocity of the long link to control the azimuth angle of the dexterous manipulator. The controller is designed to be robust to varying manipulator loading conditions and reliable under sensor failures.

  13. Inertial-space disturbance rejection for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Holt, Kevin

    1992-01-01

    The disturbance rejection control problem for a 6-DOF (degree of freedom) PUMA manipulator mounted on a 3-DOF platform is investigated. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Conditions for the stability of the closed-loop system are derived. The performance of the controller is compared for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities.

  14. Changes in proprioception and pain in patients with neck pain after upper thoracic manipulation.

    PubMed

    Yang, Jinmo; Lee, Byoungkwon; Kim, Changbeom

    2015-03-01

    [Purpose] The purpose of this study was to conduct cervical stability training and upper thoracic manipulation for patients with chronic neck pain and then investigate the changes of cervical proprioception and pain. [Subjects and Methods] Subjects were 30 workers with mechanical neck pain, who were randomly divided into an upper thoracic manipulation group and a cervical stability training group. Upper thoracic manipulation after cervical stability training was conducted for the upper thoracic manipulation group, and only stability training was conducted for the cervical stability training group. The intervention period was six weeks, and consisted of three sessions a week, each of which lasted for 30 minutes. For proprioception measurement, an electro-goniometer was used to measure reposition sense before and after the intervention. The visual analogue scale was used to assess pain. [Results] After the intervention, the error angle was significantly smaller in flexion and right left side-bending, and pain was significantly reduced in the upper thoracic manipulation group. According to the post intervention comparison of the two groups, there were significant differences in the proprioception and pain values. [Conclusion] Conducting both cervical stability training and upper thoracic manipulation for patients with chronic neck pain was more helpful for the improvement of proprioception and pain than cervical stability training alone.

  15. Dynamics and Manipulation of Nanomagnets

    NASA Astrophysics Data System (ADS)

    Cai, Liufei

    This thesis presents my work on the spin dynamics of nanomagnets and investigates the possibility of manipulating nanomagnets by various means. Most of the work has been published. Some has been submitted for publication. The structure of this thesis is as follows. In Chapter 1, I present the theory of manipulation of a nanomagnet by rotating ac fields whose frequency is time dependent. Theory has been developed that maps the problem onto Landau-Zener problem. For the linear frequency sweep the switching phase diagrams are obtained on the amplitude of the ac field and the frequency sweep rate. Switching conditions have been obtained numerically and analytically. For the nonlinear frequency sweep, the optimal time dependence of the frequency is obtained analytically with account of damping that gives the fastest controllable switching of the magnetization. In Chapter 2, interaction between a nanomagnet and a Josephson junction has been studied. The I-V curve of the Josephson junction in the proximity of a nanomagnet shows Shapiro-like steps due to the ac field generated by the precessing magnetic moment. Possibility of switching of the magnetic moment by a time-linear voltage in the Josephson junction is demonstrated. Realization of the optimal switching is suggested that employs two perpendicular Josephson junctions with time-dependent voltage signals. The result is shown to be robust against voltage noises. Quantum-mechanical coupling between the nanomagnet considered as a two-level system and a Josephson junction has been studied and quantum oscillations of the populations of the spin states have been computed. In Chapter 3, the switching dynamics of a nanomagnet embedded in a torsional oscillator that serves as a conducting wire for a spin current has been investigated. Generalized Slonczewski's equation is derived. The coupling of the nanomagnet, the torsional oscillator and the spin current generates a number of interesting phenomena. The mechanically

  16. New drugs and methods of doping and manipulation.

    PubMed

    Thevis, Mario; Kohler, Maxie; Schänzer, Wilhelm

    2008-01-01

    The issue of doping in sport is multifaceted. New drugs not only with anabolic properties such as selective androgen receptor modulators, synthetic insulins, blood doping with erythropoietins or homologous and autologous blood transfusions but also with sample manipulation have necessitated sensitive, comprehensive and specific detection assays allowing for the identification of cheats. New methods based on mass spectrometry, flow cytometry and immunological techniques have been introduced and improved in the past years to support and enhance the antidoping fight. Although numerous approaches are successful and promising, these methods still have some shortcomings.

  17. Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation.

    PubMed

    Walker, Julie M; Blank, Amy A; Shewokis, Patricia A; OMalley, Marcia K

    2015-01-01

    Recent advances in myoelectric prosthetic technology have enabled more complex movements and interactions with objects, but the lack of natural haptic feedback makes object manipulation difficult to perform. Our research effort aims to develop haptic feedback systems for improving user performance in object manipulation. Specifically, in this work, we explore the effectiveness of vibratory tactile feedback of slip information for grasping objects without slipping. A user interacts with a virtual environment to complete a virtual grasp and hold task using a Sensable Phantom. Force feedback simulates contact with objects, and vibratory tactile feedback alerts the user when a virtual object is slipping from the grasp. Using this task, we found that tactile feedback significantly improved a user's ability to detect and respond to slip and to recover the slipping object when visual feedback was not available. This advantage of tactile feedback is especially important in conjunction with force feedback, which tends to reduce a subject's grasping forces and therefore encourage more slips. Our results demonstrate the potential of slip feedback to improve a prosthesis user's ability to interact with objects with less visual attention, aiding in performance of everyday manipulation tasks.

  18. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  19. Task based synthesis of serial manipulators

    PubMed Central

    Patel, Sarosh; Sobh, Tarek

    2015-01-01

    Computing the optimal geometric structure of manipulators is one of the most intricate problems in contemporary robot kinematics. Robotic manipulators are designed and built to perform certain predetermined tasks. There is a very close relationship between the structure of the manipulator and its kinematic performance. It is therefore important to incorporate such task requirements during the design and synthesis of the robotic manipulators. Such task requirements and performance constraints can be specified in terms of the required end-effector positions, orientations and velocities along the task trajectory. In this work, we present a comprehensive method to develop the optimal geometric structure (DH parameters) of a non-redundant six degree of freedom serial manipulator from task descriptions. In this work we define, develop and test a methodology to design optimal manipulator configurations based on task descriptions. This methodology is devised to investigate all possible manipulator configurations that can satisfy the task performance requirements under imposed joint constraints. Out of all the possible structures, the structures that can reach all the task points with the required orientations are selected. Next, these candidate structures are tested to see whether they can attain end-effector velocities in arbitrary directions within the user defined joint constraints, so that they can deliver the best kinematic performance. Additionally least power consuming configurations are also identified. PMID:26257946

  20. Dynamic control of kinematically redundant manipulators

    NASA Astrophysics Data System (ADS)

    Lin, Zhengcheng

    1993-03-01

    A robot manipulator is said to be kinematically redundant when it has more degrees of freedom than are necessary to accomplish a particular task. Useful control strategies are designed for kinematically redundant manipulators in order to enhance their performance. Following the impedance control approach, the problem of minimizing redundant manipulator collision impacts is addressed. The configuration control approach is used to reduce impulsive forces, while a simplified impedance control scheme is formulated to minimize rebound effects. A new Cartesian control strategy for redundant flexible-joint manipulators is proposed. The main idea in this hybrid scheme is to control not only the manipulator's end-effector but also its links, so as to achieve specified positions and velocities for the end-effector and the links. Finally, a new application of kinematically redundant manipulators is proposed: using redundancy resolution to compensate for joint flexibility. This redundancy resolution scheme is incorporated in a control strategy for redundant flexible-joint manipulators. The problem of possible algorithmic singularities is considered, and a scheme is suggested which makes the controller robust with respect to such singularities.

  1. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  2. Multifactorial determination of the electric drive for the force compensating manipulator

    NASA Astrophysics Data System (ADS)

    Pyatibratov, G. Ya; Danshina, A. A.

    2017-02-01

    The methodology of multifactorial determination of rational parameters of transmission gear and synchronous electric motor driving by permanent magnets for the system of the vertical freight movement of the force compensating manipulator is offered. An integrated approach to the selection of the power part of this manipulator takes into account: motor speed matching and an executive mechanism of the manipulator, operation of the electric drive with a minimum possible value of the maximum torque at the movement of freight with constant speed and with acceleration at different values of the freight mass. A reasonable radius of mechanism activation is determined from accepted values with application of the compromise approach enabling to consider at the same time the performance of all limiting conditions. The electromechanical module of the manipulator is selected when a value of the activation radius provides the minimum possible required motor torque.

  3. W-026, acceptance test report manipulator system

    SciTech Connect

    Watson, T.L.

    1997-04-15

    The purpose of the WRAP Manipulator System Acceptance Test Plan (ATP) is to verify that the 4 glovebox sets of WRAP manipulator components, including rail/carriage, slave arm, master controller and auxiliary equipment, meets the requirements of the functional segments of 14590 specification. The demonstration of performance elements of the ATP are performed as a part of the Assembly specifications. Manipulator integration is integrated in the performance testing of the gloveboxes. Each requirement of the Assembly specification will be carried out in conjunction with glovebox performance tests.

  4. Mobile manipulation: a challenge in integration

    NASA Astrophysics Data System (ADS)

    Anderson, Cressel; Axelrod, Ben; Case, J. Philip; Choi, Jaeil; Engel, Martin; Gupta, Gaurav; Hecht, Florian; Hutchinson, John; Krishnamurthi, Niyant; Lee, Jinhan; Nguyen, Hai Dai; Roberts, Richard; Rogers, John G.; Trevor, Alexander J. B.; Christensen, Henrik I.; Kemp, Charles

    2008-04-01

    Mobile manipulation in many respects represents the next generation of robot applications. An important part of design of such systems is the integration of techniques for navigation, recognition, control, and planning to achieve a robust solution. To study this problem three different approaches to mobile manipulation have been designed and implemented. A prototypical application that requires navigation and manipulation has been chosen as a target for the systems. In this paper we present the basic design of the three systems and draw some general lessons on design and implementation.

  5. Osteopathic manipulative medicine for carpal tunnel syndrome.

    PubMed

    Siu, Gilbert; Jaffe, J Douglas; Rafique, Maryum; Weinik, Michael M

    2012-03-01

    Carpal tunnel syndrome (CTS) is 1 of the most common peripheral nerve entrapment disorders. Osteopathic manipulative medicine can be invaluable in diagnosing and managing CTS. Combined with a patient's history and a standard physical examination, an osteopathic structural examination can facilitate localizing the nerve entrapment, diagnosing CTS, and monitoring the disease process. Osteopathic manipulative treatment is noninvasive and can be used to supplement traditional CTS treatment methods. The authors also review the relevant anatomy involving CTS and the clinical efficacy of osteopathic manipulative medicine in the management of this disorder.

  6. Dynamically consistent Jacobian inverse for mobile manipulators

    NASA Astrophysics Data System (ADS)

    Ratajczak, Joanna; Tchoń, Krzysztof

    2016-06-01

    By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.

  7. Large planar maneuvers for articulated flexible manipulators

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Yang, Li-Farn; Juang, Jer-Nan

    1988-01-01

    An articulated flexible manipulator carried on a translational cart is maneuvered by an active controller to perform certain position control tasks. The nonlinear dynamics of the articulated flexible manipulator are derived and a transformation matrix is formulated to localize the nonlinearities in the inertia matrix. Then a feeback linearization scheme is introduced to linearize the dynamic equations for controller design. Through a pole placement technique, a robust controller design is obtained by properly assigning a set of closed-loop desired eigenvalues to meet performance requirements. Numerical simulations for the articulated flexible manipulators are given to demonstrate the feasibility and effectiveness of the proposed position control algorithms.

  8. Large planar maneuvers for articulated flexible manipulators

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Yang, Li-Farn

    1988-01-01

    An articulated flexible manipulator carried on a translational cart is maneuvered by an active controller to perform certain position control tasks. The nonlinear dynamics of the articulated flexible manipulator are derived and a transformation matrix is formulated to localize the nonlinearities within the inertia matrix. Then a feedback linearization scheme is introduced to linearize the dynamic equations for controller design. Through a pole placement technique, a robust controller design is obtained by properly assigning a set of closed-loop desired eigenvalues to meet performance requirements. Numerical simulations for the articulated flexible manipulators are given to demonstrate the feasibility and effectiveness of the proposed position control algorithms.

  9. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  10. Acoustics in nanotechnology: Manipulation, device application and modeling

    NASA Astrophysics Data System (ADS)

    Buchine, Brent Alan

    Advancing the field of nanotechnology to incorporate the unique properties observed at the nanoscale into functional devices has become a major scientific thrust of the 21st century. New fabrication tools and assembly techniques are required to design and manufacture devices based on one-dimensional nanostructures. Three techniques for manipulating nanomaterials post-synthesis have been developed. Two of them involve direct contact manipulation through the utilization of a physical probe. The third uses optically generated surface acoustic waves to reproducibly control and assemble one-dimensional nanostructures into desired locations. The nature of the third technique is non-contact and limits contamination and defects from being introduced into a device by manipulation. While the effective manipulation of individual nanostructures into device components is important for building functional nanosystems, commercialization is limited by this one-device-at-a-time process. A new approach to nanostructure synthesis was also developed to site-specifically nucleate and grow nanowires between two electrodes. Integrating synthesis directly with prefabricated device architectures leads to the possible mass production of NEMS, MEMS and CMOS systems based upon one-dimensional nanomaterials. The above processes have been pursued to utilize piezoelectric ZnO nanobelts for applications in high frequency electronic filtering as well as biological and chemical sensing. The high quality, single crystal, faceted nature of these materials make them ideal candidates for studying their properties through the designs of a bulk acoustic resonator. The first ever piezoelectric bulk acoustic resonator based on bottom-up synthesized belts will be demonstrated. Initial results are promising and new designs are implemented to scale the device to sub-micron dimensions. Multiple models will be developed to assist with design and testing. Some of models presented will help verify experimental

  11. Kinematics of the upper cervical spine during high velocity-low amplitude manipulation. Analysis of intra- and inter-operator reliability for pre-manipulation positioning and impulse displacements.

    PubMed

    Dugailly, Pierre-Michel; Beyer, Benoît; Sobczak, Stéphane; Salvia, Patrick; Rooze, Marcel; Feipel, Véronique

    2014-10-01

    To date, kinematics data analyzing continuous 3D motion of upper cervical spine (UCS) manipulation is lacking. This in vitro study aims at investigating inter- and intra-operator reliability of kinematics during high velocity low amplitude manipulation of the UCS. Three fresh specimens were used. Restricted dissection was realized to attach technical clusters to each bone (skull to C2). Motion data was obtained using an optoelectronic system during manipulation. Kinematics data were integrated into specific-subject 3D models to provide anatomical motion representation during thrust manipulation. The reliability of manipulation kinematics was assessed for three practitioners performing two sessions of three repetitions on two separate days. For pre-manipulation positioning, average UCS ROM (SD) were 10° (5°), 22° (5°) and 14° (4°) for lateral bending, axial rotation and flexion-extension, respectively. For the impulse phase, average axial rotation magnitude ranged from 7° to 12°. Reliability analysis showed average RMS up to 8° for pre-manipulation positioning and up to 5° for the impulse phase. As compared to physiological ROM, this study supports the limited angular displacement during manipulation for UCS motion components, especially for axial rotation. Kinematics reliability confirms intra- and inter-operator consistency although pre-manipulation positioning reliability is slightly lower between practitioners and sessions.

  12. Surface manipulation of protein filaments

    NASA Astrophysics Data System (ADS)

    Kreplak, Laurent; Staple, Douglas; Loparic, Marko; Kreuzer, Hans-Juergen

    2009-03-01

    Within mammalian tissues, cells move by actively remodeling a dense network of collagen fibrils. In order to study this situation, we analyze the force response of two types of filamentous protein structures, desmin intermediate filaments 12 nm in diameter and collagen fibrils 80 nm in diameter. Both types of filaments were adsorbed at a solid-liquid interface and locally moved with an AFM tip at constant velocity against surface friction in the interfacial plane. In the case of collagen fibrils, that have an extensibility below 30% extension, we observed that microns long fibrils could be moved by the tip and deformed into shapes that could not be explain by the linear elastic theory for a stiff rod. In the case of desmin filaments that can be stretched up to 3.5 times there length, we observed local stretching of the filaments and discreet steps in the torsional force measured with the cantilever. In order to describe both types of filaments' behaviors, we described the protein filaments as a chain of beads of mass m linked together by a mass-less polymer linker. By solving the Newtonian equations of motions for the coupled beads in the presence of a point load and a viscous drag due to the surface-filament interactions we were able to reproduced our experimental data and extract information on friction.

  13. Optoelectronic tweezers for microparticle and cell manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei Yu (Inventor); Ohta, Aaron T. (Inventor)

    2009-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 .mu.m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  14. Which Colles' fractures should be manipulated?

    PubMed

    Dixon, Sean; Allen, Patricia; Bannister, Gordon

    2005-01-01

    Ninety-two patients with displaced Colles' fractures were followed prospectively after manipulation under regional anaesthesia. Radiographs were taken before and after manipulation and after 3 months when a functional assessment was also made. A correlation was sought between outcome and radiological measurements. Final radial shortening of 3mm or more was associated with a significantly worse functional outcome after 3 months (P < 0.001). Where the initial radial shortening was 3 mm or more, the probability of malunion was 65% whereas with less than 3mm, the probability of malunion was 28% (P < 0.001). With 5 mm or more of radial shortening at presentation, the probability of malunion was 73% (P < 0.01). The decision to manipulate remains a matter of judgement but a high failure rate renders simple manipulation and plaster cast fixation a poor treatment option in fractures with 5mm or more of radial shortening at presentation.

  15. Brachioradial pruritus and cervical spine manipulation.

    PubMed

    Tait, C P; Grigg, E; Quirk, C J

    1998-08-01

    Brachioradial pruritus (BRP) causes significant morbidity in the majority of patients for whom no effective treatment is found. Chronic ultraviolet radiation exposure has usually been cited as the cause, but nerve damage from cervical spine disease has also been implicated. We report on a small retrospective exploratory study, conducted by questionnaire, of a group of patients who were treated with a specific cervical spine manipulation. Ten of 14 patients reported resolution of symptoms following manipulative treatment. All six patients who had had previous cervical spine disease responded to manipulation, as did half the remaining eight patients who had no previous history of neck symptoms. Although patients with BRP, by definition, share similar symptoms, the aetiology is almost certainly multifactorial. Prospective studies looking for cervical spine disease, as well as assessment of this particular method of cervical spine manipulation as a treatment modality for BRP, should be considered.

  16. Reconfigurable mobile manipulation for accident response

    SciTech Connect

    ANDERSON,ROBERT J.; MORSE,WILLIAM D.; SHIREY,DAVID L.; CDEBACA,DANIEL M.; HOFFMAN JR.,JOHN P.; LUCY,WILLIAM E.

    2000-06-06

    The need for a telerobotic vehicle with hazard sensing and integral manipulation capabilities has been identified for use in transportation accidents where nuclear weapons are involved. The Accident Response Mobile Manipulation System (ARMMS) platform has been developed to provide remote dexterous manipulation and hazard sensing for the Accident Response Group (ARG) at Sandia National Laboratories. The ARMMS' mobility platform is a military HMMWV [High Mobility Multipurpose Wheeled Vehicle] that is teleoperated over RF or Fiber Optic communication channels. ARMMS is equipped with two high strength Schilling Titan II manipulators and a suite of hazardous gas and radiation sensors. Recently, a modular telerobotic control architecture call SMART (Sandia Modular Architecture for Robotic and Teleoperation) has been applied to ARMMS. SMART enables input devices and many system behaviors to be rapidly configured in the field for specific mission needs. This paper summarizes current SMART developments applied to ARMMS.

  17. The Frankfurt School's Theory of Manipulation

    ERIC Educational Resources Information Center

    Petryszak, Nicholas

    1977-01-01

    Discusses the critical sociology of communication of the Frankfurt School suggesting that theorists such as Lowenthal, Adorno, and Habermas have outlined both the political economics of manipulation and the social psychological interaction between the audience and the media. (MH)

  18. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  19. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  20. Manipulatives Make Math Meaningful for Middle Schoolers.

    ERIC Educational Resources Information Center

    Scheer, Janet K.

    1985-01-01

    Narrates an account of teaching mathematical concepts to junior high school students using manipulative materials and small and large group games. The following concepts are explained through game descriptions using numeration or Dienes blocks: regrouping decimals, and place value. (DST)

  1. Hybrid Image-Plane/Stereo Manipulation

    NASA Technical Reports Server (NTRS)

    Baumgartner, Eric; Robinson, Matthew

    2004-01-01

    Hybrid Image-Plane/Stereo (HIPS) manipulation is a method of processing image data, and of controlling a robotic manipulator arm in response to the data, that enables the manipulator arm to place an end-effector (an instrument or tool) precisely with respect to a target (see figure). Unlike other stereoscopic machine-vision-based methods of controlling robots, this method is robust in the face of calibration errors and changes in calibration during operation. In this method, a stereoscopic pair of cameras on the robot first acquires images of the manipulator at a set of predefined poses. The image data are processed to obtain image-plane coordinates of known visible features of the end-effector. Next, there is computed an initial calibration in the form of a mapping between (1) the image-plane coordinates and (2) the nominal three-dimensional coordinates of the noted end-effector features in a reference frame fixed to the main robot body at the base of the manipulator. The nominal three-dimensional coordinates are obtained by use of the nominal forward kinematics of the manipulator arm that is, calculated by use of the currently measured manipulator joint angles and previously measured lengths of manipulator arm segments under the assumption that the arm segments are rigid, that the arm lengths are constant, and that there is no backlash. It is understood from the outset that these nominal three-dimensional coordinates are likely to contain possibly significant calibration errors, but the effects of the errors are progressively reduced, as described next. As the end-effector is moved toward the target, the calibration is updated repeatedly by use of data from newly acquired images of the end-effector and of the corresponding nominal coordinates in the manipulator reference frame. By use of the updated calibration, the coordinates of the target are computed in manipulator-reference-frame coordinates and then used to the necessary manipulator joint angles to position

  2. Efficient Kinematic Computations For 7-DOF Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Kreutz-Delgado, Kenneth

    1994-01-01

    Efficient algorithms for forward kinematic mappings of seven-degree-of-freedom (7-DOF) robotic manipulator having revolute joints developed on basis of representation of redundant DOF in terms of parameter called "arm angle." Continuing effort to exploit redundancy in manipulator according to concept of basic and additional tasks. Concept also discussed in "Configuration-Control Scheme Copes With Singularities" (NPO-18556) and "Increasing the Dexterity of Redundant Robots" (NPO-17801).

  3. On the manipulability of dual cooperative robots

    NASA Technical Reports Server (NTRS)

    Chiacchio, P.; Chiaverini, S.; Sciavicco, L.; Siciliano, B.

    1989-01-01

    The definition of manipulability ellipsoids for dual robot systems is given. A suitable kineto-static formulation for dual cooperative robots is adopted which allows for a global task space description of external and internal forces, and relative velocities. The well known concepts of force and velocity manipulability ellipsoids for a single robot are formally extended and the contributions of the two single robots to the cooperative system ellipsoids are illustrated. Duality properties are discussed. A practical case study is developed.

  4. Intrarenal stone manipulation: summary of recent experience.

    PubMed

    Ball, T P

    1978-01-01

    Since first described in 1975, non-operative external manipulation of small intrarenal calculi has been done on 30 individuals. This procedure has facilitated stone passage successfully in 80 per cent of the cases and, thus far, has been free of significant complication. Fluoroscopic control and materials available in most radiology departments allow for intrarenal manipulation to dislodge small calculi in virtually any calix, permitting spontaneous and usually asymptomatic passage. The procedure and subsequent management are described in detail.

  5. Online Bimanual Manipulation Using Surface Electromyography and Incremental Learning.

    PubMed

    Strazzulla, Ilaria; Nowak, Markus; Controzzi, Marco; Cipriani, Christian; Castellini, Claudio

    2017-03-01

    The paradigm of simultaneous and proportional myocontrol of hand prostheses is gaining momentum in the rehabilitation robotics community. As opposed to the traditional surface electromyography classification schema, in simultaneous and proportional control the desired force/torque at each degree of freedom of the hand/wrist is predicted in real-time, giving to the individual a more natural experience, reducing the cognitive effort and improving his dexterity in daily-life activities. In this study we apply such an approach in a realistic manipulation scenario, using 10 non-linear incremental regression machines to predict the desired torques for each motor of two robotic hands. The prediction is enforced using two sets of surface electromyography electrodes and an incremental, non-linear machine learning technique called Incremental Ridge Regression with Random Fourier Features. Nine able-bodied subjects were engaged in a functional test with the aim to evaluate the performance of the system. The robotic hands were mounted on two hand/wrist orthopedic splints worn by healthy subjects and controlled online. An average completion rate of more than 95% was achieved in single-handed tasks and 84% in bimanual tasks. On average, 5 min of retraining were necessary on a total session duration of about 1 h and 40 min. This work sets a beginning in the study of bimanual manipulation with prostheses and will be carried on through experiments in unilateral and bilateral upper limb amputees thus increasing its scientific value.

  6. Intelligent modular manipulation for mobile robots

    NASA Astrophysics Data System (ADS)

    Culbertson, John

    2008-04-01

    As mobile robots continue to gain acceptance across a variety of applications within the defense and civilian markets, the number of tasks that these robot platforms are expected to accomplish are expanding. Robot operators are asked to do more with the same platforms - from EOD missions to reconnaissance and inspection operations. Due to the fact that a majority of missions are dangerous in nature, it is critical that users are able to make remote adjustments to the systems to ensure that they are kept out of harm's way. An efficient way to expand the capabilities of existing robot platforms, improve the efficiency of robot missions, and to ultimately improve the operator's safety is to integrate JAUS-enabled Intelligent Modular Manipulation payloads. Intelligent Modular Manipulation payloads include both simple and dexterous manipulator arms with plug-and-play end-effector tools that can be changed based on the specific mission. End-effectors that can be swapped down-range provide an added benefit of decreased time-on-target. The intelligence in these systems comes from semi-autonomous mobile manipulation actions that enable the robot operator to perform manipulation task with the touch of a button on the OCU. RE2 is supporting Unmanned Systems Interoperability by utilizing the JAUS standard as the messaging protocol for all of its manipulation systems. Therefore, they can be easily adapted and integrated onto existing JAUS-enabled robot platforms.

  7. Manipulator control for rover planetary exploration

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Tunstel, Edward; Nguyen, Tam; Cooper, Brian K.

    1992-11-01

    An anticipated goal of Mars surface exploration missions will be to survey and sample surface rock formations which appear scientifically interesting. In such a mission, a planetary rover would navigate close to a selected sampling site and the remote operator would use a manipulator mounted on the rover to perform a sampling operation. Techniques for accomplishing the necessary manipulation for the sampling components of such a mission have been developed and are presented. We discuss the implementation of a system for controlling a seven (7) degree of freedom Puma manipulator, equipped with a special rock gripper mounted on a planetary rover prototype, intended for the purpose of performing the sampling operation. Control is achieved by remote teleoperation. This paper discusses the real-time force control and supervisory control aspects of the rover manipulation system. Integration of the Puma manipulator with the existing distributed computer architecture is also discussed. The work described is a contribution toward achieving the coordinated manipulation and mobility necessary for a Mars sample acquisition and return scenario.

  8. Direct manipulation of virtual objects

    NASA Astrophysics Data System (ADS)

    Nguyen, Long K.

    Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user's real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities -- proprioception, haptics, and audition -- and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum -- Immersive Virtual Environment (IVE) and Reality Environment (RE). This

  9. Control of a flexible bracing manipulator: Integration of current research work to realize the bracing manipulator

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo

    1991-01-01

    All research results about flexible manipulator control were integrated to show a control scenario of a bracing manipulator. First, dynamic analysis of a flexible manipulator was done for modeling. Second, from the dynamic model, the inverse dynamic equation was derived, and the time domain inverse dynamic method was proposed for the calculation of the feedforward torque and the desired flexible coordinate trajectories. Third, a tracking controller was designed by combining the inverse dynamic feedforward control with the joint feedback control. The control scheme was applied to the tip position control of a single link flexible manipulator for zero and non-zero initial condition cases. Finally, the contact control scheme was added to the position tracking control. A control scenario of a bracing manipulator is provided and evaluated through simulation and experiment on a single link flexible manipulator.

  10. The Effects of Explicit Instruction with Manipulatives on the Fraction Skills of Students with Autism

    ERIC Educational Resources Information Center

    Agrawal, Jugnu

    2013-01-01

    This single-subject multiple-baseline across participants study was designed to investigate the effects of explicit instruction with manipulatives on the conceptual and procedural knowledge of addition and subtraction of like and unlike fractions of elementary school students with autism. This study included six 8- to 12-year-old students with…

  11. The Function of Words: Distinct Neural Correlates for Words Denoting Differently Manipulable Objects

    ERIC Educational Resources Information Center

    Rueschemeyer, Shirley-Ann; van Rooij, Daan; Lindemann, Oliver; Willems, Roel M.; Bekkering, Harold

    2010-01-01

    Recent research indicates that language processing relies on brain areas dedicated to perception and action. For example, processing words denoting manipulable objects has been shown to activate a fronto-parietal network involved in actual tool use. This is suggested to reflect the knowledge the subject has about how objects are moved and used.…

  12. The Effects of Learners' Differences on Variable Manipulation Behaviors in Simulation-Based Learning

    ERIC Educational Resources Information Center

    Liew, Tze Wei; Tan, Su-Mae; Seydali, Rouzbeh

    2014-01-01

    The present study examined the relationship among learners' differences, behaviors in manipulating variables, and learning achievements in a simulation-based program that supports discovery learning in the subject of C-programming algorithm. Participants (n = 66) took the Group Embedded Figures Test, Action Control Scale, and Computer…

  13. Early use of thrust manipulation versus non-thrust manipulation: a randomized clinical trial.

    PubMed

    Cook, Chad; Learman, Kenneth; Showalter, Chris; Kabbaz, Vincent; O'Halloran, Bryan

    2013-06-01

    The purpose of this study was to investigate the comparative effectiveness of early use of thrust (TM) and non-thrust manipulation (NTM) in sample of patients with mechanical low back pain (LBP). The randomized controlled trial included patients with mechanically reproducible LBP, ≥ age 18-years who were randomized into two treatment groups. The main outcome measures were the Oswestry Disability Index (ODI) and a Numeric Pain Rating Scale (NPRS), with secondary measures of Rate of Recovery, total visits and days in care, and the work subscale of the Fears Avoidance Beliefs Questionnaire work subscale (FABQ-w). A two-way mixed model MANCOVA was used to compare ODI and pain, at baseline, after visit 2, and at discharge and total visits, days in care, and rate of recovery (while controlling for patient expectations and clinical equipoise). A total of 149 subjects completed the trial and received care over an average of 35 days. There were no significant differences between TM and NTM at the second visit follow-up or at discharge with any of the outcomes categories. Personal equipoise was significantly associated with ODI and pain. The findings suggest that there is no difference between early use of TM or NTM, and secondarily, that personal equipoise affects study outcome. Within-groups changes were significant for both groups.

  14. Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation.

    PubMed

    Arkinstall, Melissa J; Tunstall, Rebecca J; Cameron-Smith, David; Hawley, John A

    2004-07-01

    Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.

  15. Innovation & evaluation of tangible direct manipulation digital drawing pens for children.

    PubMed

    Lee, Tai-Hua; Wu, Fong-Gong; Chen, Huei-Tsz

    2017-04-01

    Focusing on the theme of direct manipulation, in this study, we proposed a new and innovative tangible user interface (TUI) design concept for a manipulative digital drawing pen. Based on interviews with focus groups brainstorming and experts and the results of a field survey, we selected the most suitable tangible user interface for children between 4 and 7 years of age. Using the new tangible user interface, children could choose between the brush tools after touching and feeling the various patterns. The thickness of the brush could be adjusted by changing the tilt angle. In a subsequent experimental process we compared the differences in performance and subjective user satisfaction. A total of sixteen children, aged 4-7 years participated in the experiment. Two operating system experiments (the new designed tangible digital drawing pen and traditional visual interface-icon-clicking digital drawing pens) were performed at random and in turns. We assessed their manipulation performance, accuracy, brush stroke richness and subjective evaluations. During the experimental process we found that operating functions using the direct manipulation method, and adding shapes and semantic models to explain the purpose of each function, enabled the children to perform stroke switches relatively smoothly. By using direct manipulation digital pens, the children could improve their stroke-switching performance for digital drawing. Additionally, by using various patterns to represent different brushes or tools, the children were able to make selections using their sense of touch, thereby reducing the time required to move along the drawing pens and select icons (The significant differences (p = 0.000, p < 0.01) existed in the manipulation times for drawing thick lines using the crayon function of the two (new and old) drawing pens (new 5.8750 < old 10.7500)). The addition of direct manipulation movements to drawing operations enhanced the drawing results, thereby

  16. Immediate effects of spinal manipulation on nitric oxide, substance P and pain perception.

    PubMed

    Molina-Ortega, Francisco; Lomas-Vega, Rafael; Hita-Contreras, Fidel; Plaza Manzano, Gustavo; Achalandabaso, Alexander; Ramos-Morcillo, Antonio J; Martínez-Amat, Antonio

    2014-10-01

    Previous studies have analyzed the effects of spinal manipulation on pain sensitivity by using several sensory modalities, but to our knowledge, no studies have focused on serum biomarkers involved in the nociceptive pathway after spinal manipulation. Our objectives were to determine the immediate effect of cervical and dorsal manipulation over the production of nitric oxide and substance P, and establishing their relationship with changes in pressure pain thresholds in asymptomatic subjects. In this single-blind randomized controlled trial, 30 asymptomatic subjects (16 men) were randomly distributed into 3 groups (n = 10 per group): control, cervical and dorsal manipulation groups. Blood samples were extracted to obtain serum. ELISA assay for substance P and chemiluminescence analysis for nitric oxide determination were performed. Pressure pain thresholds were measured with a pressure algometer at the C5-C6 joint, the lateral epicondyle and the tibialis anterior muscle. Outcome measures were obtained before intervention, just after intervention and 2 h after intervention. Our results indicated an increase in substance P plasma level in the cervical manipulation group (70.55%) when compared with other groups (p < 0.05). This group also showed an elevation in the pressure pain threshold at C5-C6 (26.75%) and lateral epicondyle level (21.63%) immediately after the intervention (p < 0.05). No changes in nitric oxide production were observed. In conclusion, mechanical stimulus provided by cervical manipulation increases substance P levels and pressure pain threshold but does not change nitric oxide concentrations. Part of the hypoalgesic effect of spinal manipulation may be due to the action of substance P.

  17. Precision manipulation with a dextrous robot hand

    NASA Astrophysics Data System (ADS)

    Michelman, Paul

    1994-01-01

    In this thesis, we discuss a framework for describing and synthesizing precision manipulation tasks with a robot hand. Precision manipulations are those in which the motions of grasped objects are caused by finger motions alone (as distinct from arm or wrist motion). Experiments demonstrating the capabilities of the Utah-MIT hand are presented. This work begins by examining current research on biological motor control to raise a number of questions. For example, is the control centralized and organized by a central processor? Or is the control distributed throughout the nervous system? Motor control research on manipulation has focused on developing classifications of hand motions, concentrating solely on finger motions, while neglecting grasp stability and interaction forces that occur in manipulation. In addition, these taxonomies have not been explicitly functional. This thesis defines and analyzes a basic set of manipulation strategies that includes both position and force trajectories. The fundamental purposes of the manipulations are: (1) rectilinear and rotational motion of grasped objects of different geometries; and (2) the application of forces and moments against the environment by the grasped objects. First, task partitioning is described to allocate the fingers their roles in the task. Second, for each strategy, the mechanics and workspace of the tasks are analyzed geometrically to determine the gross finger trajectories required to achieve the tasks. Techniques illustrating the combination of simple manipulations into complex, multiple degree-of-freedom tasks are presented. There is a discussion of several tasks that use multiple elementary strategies. The tasks described are removing the top of a childproof medicine bottle, putting the top back on, rotating and regrasping a block and a cylinder within the grasp. Finally, experimental results are presented. The experimental setup at Columbia University's Center for Research in Intelligent Systems and

  18. Distinguishing manipulated stocks via trading network analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Qian; Cheng, Xue-Qi; Shen, Hua-Wei; Wang, Zhao-Yang

    2011-10-01

    Manipulation is an important issue for both developed and emerging stock markets. For the study of manipulation, it is critical to analyze investor behavior in the stock market. In this paper, an analysis of the full transaction records of over a hundred stocks in a one-year period is conducted. For each stock, a trading network is constructed to characterize the relations among its investors. In trading networks, nodes represent investors and a directed link connects a stock seller to a buyer with the total trade size as the weight of the link, and the node strength is the sum of all edge weights of a node. For all these trading networks, we find that the node degree and node strength both have tails following a power-law distribution. Compared with non-manipulated stocks, manipulated stocks have a high lower bound of the power-law tail, a high average degree of the trading network and a low correlation between the price return and the seller-buyer ratio. These findings may help us to detect manipulated stocks.

  19. Better with Byzantine: Manipulation-Optimal Mechanisms

    NASA Astrophysics Data System (ADS)

    Othman, Abraham; Sandholm, Tuomas

    A mechanism is manipulable if it is in some agents’ best interest to misrepresent their private information. The revelation principle establishes that, roughly, anything that can be accomplished by a manipulable mechanism can also be accomplished with a truthful mechanism. Yet agents often fail to play their optimal manipulations due to computational limitations or various flavors of incompetence and cognitive biases. Thus, manipulable mechanisms in particular should anticipate byzantine play. We study manipulation-optimal mechanisms: mechanisms that are undominated by truthful mechanisms when agents act fully rationally, and do better than any truthful mechanism if any agent fails to act rationally in any way. This enables the mechanism designer to do better than the revelation principle would suggest, and obviates the need to predict byzantine agents’ irrational behavior. We prove a host of possibility and impossibility results for the concept which have the impression of broadly limiting possibility. These results are largely in line with the revelation principle, although the considerations are more subtle and the impossibility not universal.

  20. A Modular Approach to Video Designation of Manipulation Targets for Manipulators

    DTIC Science & Technology

    2014-05-12

    taxing to manipulate (i.e. rotate and zoom) and visualize point cloud data dur- ing an EOD operation, 2) 3D sensors that create data which is easy to...The light blue sphere represents the estimated workspace of the manipulator, the coordinate frame at the top left is the camera’s frame, the pink line

  1. A Molecular Analysis of Training Multiple versus Single Manipulations to Establish a Generalized Manipulative Imitation Repertoire

    ERIC Educational Resources Information Center

    Hartley, Breanne K.

    2009-01-01

    This study evaluates the necessity of training multiple versus single manipulative-imitations per object in order to establish generalized manipulative-imitation. Training took place in Croyden Avenue School's Early Childhood Developmental Delay preschool classroom in Kalamazoo, MI. Two groups of 3 children each were trained to imitate in order to…

  2. Pragmatic Approach to Subject Indexing: A New Concept.

    ERIC Educational Resources Information Center

    Dutta, S.; Sinha, P. K.

    1984-01-01

    Describes adoption at Sorghum and Millets Information Center (India) of Pragmatic Approach to Subject Index (PASI), computer-manipulative indexing procedure in which key words are arranged in meaningful sequence. Indexing problems, search for suitable system, PASI indexing steps, and computerization are discussed. Thirteen references and…

  3. Manipulators live better, but are they always parasites?

    PubMed

    Heil, Martin

    2015-09-01

    A recent study reports partner manipulation for an interaction that was considered a reward-for-defence mutualism. Secretions of lycaenid caterpillars altered ant locomotion and aggressiveness, likely by manipulating dopaminergic signalling. This study opens the question whether such manipulation is common and whether manipulation necessarily characterises an interaction as parasitism.

  4. Ultrasonic resonator for manipulation of bacteria

    NASA Astrophysics Data System (ADS)

    Schwarz, T.; Dual, J.

    2012-05-01

    Ultrasonic manipulation is a contactless and gentle method to manipulate a large number of particles. The method presented here exploits the advantage to simultaneously move bacteria away from a surface by means of acoustic radiation forces. The device for the manipulation consists of five layers (transducer, epoxy adhesive layer, carrier, fluid, reflector), stacked like a conventional planar resonator. The resonator behavior was simulated using the transfer matrix method (TMM). Validation of the model was realized with admittance measurements performed over a wide frequency range (100 kHz - 16 MHz). The TMM-model was used to optimize frequency, layer thickness and material of the resonator in order to find a combination with a high force potential gradient pointing away from the reflector surface into the fluid. The resonator has been experimentally tested with polystyrene particles (1 μm in diameter) which revealed a good matching with the TMM-model. First preliminary tests with Salmonella Thyphimurium have been done.

  5. Design of multivariable controllers for robot manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1986-01-01

    The paper presents a simple method for the design of linear multivariable controllers for multi-link robot manipulators. The control scheme consists of multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and achieves pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. The two controllers are independent of each other and are designed separately based on the linearized robot model and then integrated in the overall control scheme. The proposed scheme is simple and can be implemented for real-time control of robot manipulators.

  6. Manipulating cyanobacteria: Spirulina for potential CELSS diet

    NASA Technical Reports Server (NTRS)

    Tadros, Mahasin G.; Smith, Woodrow; Mbuthia, Peter; Joseph, Beverly

    1989-01-01

    Spirulina sp. as a bioregenerative photosynthetic and an edible alga for spacecraft crew in a CELSS, was characterized for the biomass yield in batch cultures, under various environmental conditions. The partitioning of the assimalitory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. Experiments with Spirulina have shown that under stress conditions (i.e., high light 160 uE/sq m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrates increased at the expense of proteins. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total of the algal could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  7. Sensing Temperatures Via Prostheses And Manipulators

    NASA Technical Reports Server (NTRS)

    Zerkus, Mike

    1991-01-01

    Proposed temperature-sensing system applies heat to (or removes heat from) human user's skin according to temperature of remote object. Used in artificial limbs and in telerobotic manipulators. In prosthetic arm and hand, sensors on tips of artificial fingers send signals to electronic control network that drives small, lightweight thermoelectric heat pump worn on back of user's shoulder. Heat pump heats or cools skin according to signals from sensors. Heat pump and control network worn like article of clothing. In manual control of remote robot, sensors placed in fingers of remote manipulator. Sensors drive, via similar electronic control network, thermoelectric heat pumps in fingers of glove worn by operator, who then has benefit of information about temperatures on manipulated object.

  8. Space station erectable manipulator placement system

    NASA Technical Reports Server (NTRS)

    Grimaldi, Margaret E. (Inventor)

    1988-01-01

    A habitable space station was proposed for low earth orbit, to be constructed from components which will be separately carried up from the earth and thereafter assembled. A suitable manipulating system having extraordinary manipulative capability is required. The invention is an erectable manipulator placement system for use on a space station and comprises an elongate, lattice-like boom having guide tracks attached thereto, a carriage-like assembly pivotally mounted on and extending from said dolly. The system further includes a turntable base pivotally interconnected with the proximal end of the boom and positioned either on a part of a transferring vehicle, or on another payload component being carried by the said transferring vehicle, or on the space station. Novelty resides in the use of a turntable base having a hinged boom with a dolly translatable therealong to carry the arm-like assembly, thus providing an additional 3 degrees of freedom to the arm.

  9. Television systems for remote manipulation. [in space

    NASA Technical Reports Server (NTRS)

    Crooks, W. H.; Freedman, L. A.; Coan, P. P.

    1975-01-01

    An analytical and experimental study was conducted to specify a video system for remote manipulation in space. An operator function analysis identified two basic characteristics, work volume and element relationship, which define four manipulation tasks chosen for examination. A visual function analysis developed a set of elemental scene parameters which grouped the visual dimensions into major areas of influence. Simulation testing was conducted with a four degree-of-freedom motion frame which allowed an operator to perform the manipulation tasks. Four video systems were included in the simulation testing: a black and white and a color monoscopic system, a stereoscopic system, and a black and white two-view system. A sequential experimental plan first provided an overall analysis of the effects of tasks, scene parameters, and video systems. This was followed by a detailed experimental examination of the critical dimensions identified in the first experiment. Results are discussed in terms of a recommended TV system.

  10. Manipulator system for constructing overhead distribution lines

    SciTech Connect

    Ohnishi, H.; Tsuchihashi, H.; Waki, S.; Mochizuki, K. ); Yamamoto, T.; Watanabe, H. ); Furukawa, H. )

    1993-04-01

    This paper describes the manipulator for live-line construction of high-voltage overhead power transmission lines (line voltage 6.6 kV) that is being jointly developed by Tokyo Electric Power and other companies. It describes this system's development concept, makeup, functions, and design, as well as operability tests using actual-scale transmission line poles. In this research, development began in 1984. As the first step, a prototype model of a ground-mounted twin-arm manipulator was trial-manufactured in 1985. As the second step, in 1988 a truck-mounted system was developed in which the twin-arm manipulator was mounted on a cherrypicker vehicle. As the third step, a practical system was developed based on these results.

  11. Cooperative control of multiple space manipulators

    NASA Astrophysics Data System (ADS)

    Nahon, M.; Angeles, J.

    The control of multi-armed robotic systems is inherently more complex than that of single-arm systems. Whereas a single manipulator can be controlled purely through positions or velocities, multiple manipulators handling a common payload must also be controlled in terms of forces. In this paper, the problem of finding force setpoints for the controller is formulated as a constrained optimization problem where the constraints are provided by the dynamics equations and the actuator capabilities. A number of potential objective functions which may be minimized are reviewed including the internal force, a norm of the vector of actuator torques and power losses in the system. These are then compared for a task in which the Special Purpose Dextrous Manipulator (SPDM) moves a payload in the absence of gravity. It is concluded that the actuator torque criterion appears to offer the worst compromise in performance, while the minimum internal force and minimum power loss criteria each have their advantages.

  12. Manipulation of microfluidic droplets by electrorheological fluid.

    PubMed

    Zhang, Menying; Gong, Xiuqing; Wen, Weijia

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized.

  13. Coordinated Control Of Mobile Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Applicable to variety of mobile robotic manipulators, including robots that move along tracks (typically, painting and welding robots), robots mounted on gantries and capable of moving in all three dimensions, wheeled robots, and compound robots (consisting of robots mounted on other robots). Theoretical basis discussed in several prior articles in NASA Tech Briefs, including "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes With Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).

  14. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  15. The Three Paradigms of Mass Media Research.

    ERIC Educational Resources Information Center

    Potter, W. James; And Others

    A study examined the mass media research literature to determine if there was a dominant paradigm in the field. The mass media research published in eight communication journals from 1965 to 1989 was content analyzed to identify paradigm, orientation (focus and theory), data (type, source, and sample), methodology (type and manipulation), and…

  16. The Subject of Policy

    ERIC Educational Resources Information Center

    Bansel, Peter

    2015-01-01

    I work selectively with poststructuralist theories in order to give an account of the subject of policy as a constitutive relationship between social policy and the embodied human subject. Drawing on theories of subjectivity, narrative and governmentality, I articulate possibilities for analysing narrated accounts of experience as a mode of…

  17. Gendered Subjectivities of Spacetimematter

    ERIC Educational Resources Information Center

    Juelskjaer, Malou

    2013-01-01

    This paper investigates enactments of human subjectivities with a focus on how subjectivities may be studied if spatiality and temporality are taken up as constituting forces in the production of subjectivities. By reading poststructuralist feminist theorising, agential realism and empirical material diffractively through each other I re-situate…

  18. Design of a reconfigurable modular manipulator system

    NASA Technical Reports Server (NTRS)

    Schmitz, D.; Kanade, T.

    1987-01-01

    Using manipulators with a fixed configuration for specific tasks is appropriate when the task requirements are known beforehand. However, in less predictable situations, such as an outdoor construction site or aboard a space station, a manipulator system requires a wide range of capabilities, probably beyond the limitations of a single, fixed-configuration manipulator. To fulfill this need, researchers have been working on a Reconfigurable Modular Manipulator System (RMMS). Researchers have designed and are constructing a prototype RMMS. The prototype currently consists of two joint modules and four link modules. The joints utilize a conventional harmonic drive and torque motor actuator, with a small servo amplifier included in the assembly. A brushless resolver is used to sense the joint position and velocity. For coupling the modules together, a standard electrical connector and V-band clamps for mechanical connection are used, although more sophisticated designs are under way for future versions. The joint design yields an output torque to 50 ft-lbf at joint speeds up to 1 radian/second. The resolver and associated electronics have resolutions of 0.0001 radians, and absolute accuracies of plus or minus 0.001 radians. Manipulators configured from these prototype modules will have maximum reaches in the 0.5 to 2 meter range. The real-time RMMS controller consists of a Motorola 68020 single-board computer which will perform real time servo control and path planning of the manipulator. This single board computer communicates via shared memory with a SUN3 workstation, which serves as a software development system and robot programming environment. Researchers have designed a bus communication network to provide multiplexed communication between the joint modules and the computer controller. The bus supports identification of modules, sensing of joint states, and commands to the joint actuator. This network has sufficient bandwidth to allow servo sampling rates in

  19. Simulation analysis of control strategies for a tank waste retrieval manipulator system

    SciTech Connect

    Schryver, J.C.; Draper, J.V.

    1995-02-01

    A network simulation model was developed for the Tank Waste Retrieval Manipulator System, incorporating two distinct levels of control: teleoperation and supervisory control. The model included six error modes, an attentional resource model, and a battery of timing variables. A survey questionnaire administered to subject matter experts provided data for estimating timing distributions for level of control-critical tasks. Simulation studies were performed to evaluate system behavior as a function of control level and error modes. The results provide important insights for development of waste retrieval manipulators.

  20. Experimental study of the optimal angle for arthrodesis of fingers based on kinematic analysis with tip-pinch manipulation.

    PubMed

    Arauz, Paul; Sisto, Sue Ann; Kao, Imin

    2016-12-08

    To evaluate the appropriate angle for arthrodesis of the index finger proximal interphalangeal (PIP) joint, the functional range of motion (ROM) of the joints and manipulabilities at three selected tip-pinch manipulation postures of the finger were studied experimentally under imposed PIP joint arthrodesis angles. A kinematic model of the index finger was used in experiments which involved three postures. Experiments were conducted using seven healthy subjects in tip-pinch manipulation tasks to obtain the measurements of finger motions under imposed angles of joint constraint, including the functional ROM of the joints and the three criteria of kinematic manipulability. Data show that the functional ROM and the shape of the kinematic manipulability ellipses at the fingertip were influenced significantly by the imposed PIP joint constraint in the tip-pinch manipulation tests. Results suggest that a PIP arthrodesis angle between 40° and 60° led to the optimal performance of fingers in grasping and manipulation of fine objects. This theoretical and experimental study can help surgeons and clinicians to make more informed decisions on the appropriate constraint angles before the arthrodesis operation, and to customize this angle for individual patients in order to enhance not only the capability of manipulation of the finger but also the quality of life after such intervention.

  1. Limits of the manipulative-fixed method for measurement of shoulder joint horizontal adduction muscle strength using a handheld dynamometer.

    PubMed

    Hirano, Masahiro; Katoh, Munenori

    2015-01-01

    [Purpose] The aim of this study was to verify the limit of isometric muscle strength of shoulder joint horizontal adduction using handheld dynamometer (HHD) manipulated by hand (referred to as the manipulative-fixed method). [Subjects and Methods] The subjects were 33 healthy college students. The examiner was a healthy college student. Shoulder joint horizontal adductor muscle strength was measured using HHD with the subject in the supine position. The belt-fixed and manipulative-fixed methods were used to secure the HHD sensor unit. The limitations of the manipulative-fixed method were assessed by simple regression analysis, in which the participants were divided into 2 groups according to a branch point. The slope of the straight line of the graph was visualized. [Results] Single regression analysis of the <30 kgf group revealed significant results. The results of single regression of the >30 kgf group were not significant. [Conclusion] The manipulative-fixed method is simple to perform. However, there exists the possibility that the actual muscle strength is not measurable by this method. The measurement limit of the shoulder horizontal adduction strength with the manipulative-fixed method was 30 kgf in the case of the examiner in the present study. The fixed limit was also found to influence in the muscle strength of the upper limbs.

  2. Holographic assembly workstation for optical manipulation

    NASA Astrophysics Data System (ADS)

    Gibson, Graham; Carberry, David M.; Whyte, Graeme; Leach, Jonathan; Courtial, Johannes; Jackson, Joseph C.; Robert, Daniel; Miles, Mervyn; Padgett, Miles

    2008-04-01

    We report a holographic assembler workstation for optical trapping and micro-manipulation. The workstation is based on a titanium sapphire laser, making it particularly suited for biomaterials and incorporates a choice of user interfaces for different applications. The system is designed around a commercial inverted microscope and is configured such that it can be easily used by the non-specialist. We demonstrate the bio-capabilities of our system by manipulating a group of yeast cells, a single red blood cell and a single cell of the green algae colony Volvox.

  3. Control strategies. [of robotic manipulators path

    NASA Technical Reports Server (NTRS)

    Wang, J. C.; Mcinnis, B. C.; Shieh, L. S.

    1988-01-01

    Techniques for improving the performance of robotic-manipulator path-control systems comprising independent SISO feedback controllers for each joint are discussed and illustrated with block diagrams, reviewing the results of recent analytical investigations. Topics examined include the servo design for a single link, the equations of motion for manipulators, SISO servo design for multiple links, inverse methods, pole placement with compensation of the gravity terms, linear state-feedback control based on the perturbation equations, and adaptive control methods. Consideration is given to variable-structure systems, suboptimal controllers, and the optimal-design-strategy approach.

  4. Complementary Skyrmion Racetrack Memory With Voltage Manipulation

    NASA Astrophysics Data System (ADS)

    Kang, Wang; Zheng, Chentian; Huang, Yangqi; Zhang, Xichao; Zhou, Yan; Lv, Weifeng; Zhao, Weisheng

    2016-07-01

    Magnetic skyrmion holds promise as information carriers in the next-generation memory and logic devices, owing to the topological stability, small size and extremely low current needed to drive it. One of the most potential applications of skyrmion is to design racetrack memory (RM), named Sk-RM, instead of utilizing domain wall (DW). However, current studies face some key design challenges, e.g., skyrmion manipulation, data representation and synchronization etc. To address these challenges, we propose here a complementary Sk-RM structure with voltage manipulation. Functionality and performance of the proposed design are investigated with micromagnetic simulations.

  5. Exploration of unknown mechanical assemblies through manipulation

    NASA Technical Reports Server (NTRS)

    Kumar, Vijay R.; Yun, Xiaoping; Bajcsy, Ruzena

    1990-01-01

    If robots must function in unstructured environments, they must also possess the ability to acquire information and construct appropriate models of the unknown environment. This paper addresses the automatic generation of kinematic models of unknown objects with movable parts in the environment. If the relative motion between moving parts must be observed and characterized, vision alone cannot suffice. An approach in which manipulation is used with vision for sensing is better suited to the task of determining kinematic properties. In this paper, algorithms for constructing models of unknown mechanical assemblies and characterizing the relative motion are developed. Results of a simulation are described to demonstrate the role of manipulation in such an endeavor.

  6. Hybrid position/force control of manipulators

    NASA Technical Reports Server (NTRS)

    Raibert, M. H.; Craig, J. J.

    1980-01-01

    A new conceptually simple approach to controlling compliant motions of a robot manipulator is presented. The 'hybrid' technique described combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system. Analysis, simulation, and experiments are used to evaluate the controller's ability to execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions.

  7. Fish genome manipulation and directional breeding.

    PubMed

    Ye, Ding; Zhu, ZuoYan; Sun, YongHua

    2015-02-01

    Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.

  8. TV requirements for manipulation in space

    NASA Technical Reports Server (NTRS)

    Freedman, L. A.; Crooks, W. H.; Coan, P. P.

    1977-01-01

    Four tasks (docking, coupling, manipulation, and transportation), stressing work volume and element relationships, are outlined to test a video system for remote manipulation in space. A 4 degree of freedom motion frame was used to evaluate operating parameters, which grouped the visual dimensions into major areas of influence, e.g., depth precision, object differentiation, reference, dynamics, and resolution. Four video systems were included in the simulation testing: a black and white and a color monoscopic system, a stereoscopic system, and a black and white two-view system. The two-view system was found best suited for the operations described.

  9. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, B.W.; Willenborg, D.L.

    1980-02-12

    A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.

  10. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA

    1980-02-12

    A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

  11. An involuntary stereotypical grasp tendency pervades voluntary dynamic multifinger manipulation.

    PubMed

    Rácz, Kornelius; Brown, Daniel; Valero-Cuevas, Francisco J

    2012-12-01

    We used a novel apparatus with three hinged finger pads to characterize collaborative multifinger interactions during dynamic manipulation requiring individuated control of fingertip motions and forces. Subjects placed the thumb, index, and middle fingertips on each hinged finger pad and held it-unsupported-with constant total grasp force while voluntarily oscillating the thumb's pad. This task combines the need to 1) hold the object against gravity while 2) dynamically reconfiguring the grasp. Fingertip force variability in this combined motion and force task exhibited strong synchrony among normal (i.e., grasp) forces. Mechanical analysis and simulation show that such synchronous variability is unnecessary and cannot be explained solely by signal-dependent noise. Surprisingly, such variability also pervaded control tasks requiring different individuated fingertip motions and forces, but not tasks without finger individuation such as static grasp. These results critically extend notions of finger force variability by exposing and quantifying a pervasive challenge to dynamic multifinger manipulation: the need for the neural controller to carefully and continuously overlay individuated finger actions over mechanically unnecessary synchronous interactions. This is compatible with-and may explain-the phenomenology of strong coupling of hand muscles when this delicate balance is not yet developed, as in early childhood, or when disrupted, as in brain injury. We conclude that the control of healthy multifinger dynamic manipulation has barely enough neuromechanical degrees of freedom to meet the multiple demands of ecological tasks and critically depends on the continuous inhibition of synchronous grasp tendencies, which we speculate may be of vestigial evolutionary origin.

  12. Physics of electromagnetic and material stresses in optical manipulation

    NASA Astrophysics Data System (ADS)

    Kemp, Brandon A.; Sheppard, Cheyenne J.

    2015-08-01

    Modeling the dynamics of optical manipulation experiments relies upon a precise mathematical representation of electromagnetic fields and the interpretation of optical momentum and stresses in materials. However, the momentum of light within media has been an issue of debate over the past century. Multiple energy-momentum models have been advanced, each, under certain conditions, agreeing with experimental observation and mathematically consistent with classical electromagnetism. The modern view is that the various formulations of electrodynamics represent different divisions of the total energy-momentum tensor, with the separation of field and matter being ambiguous. Recently, a proposed view of photon momentum identified two leading forms as the kinetic and canonical momenta. The Abraham momentum is responsible for the overall center-of-mass translation of a material, while the Minkowski momentum is responsible for translations with respect to the surrounding medium. However, the Abraham momentum corresponds to multiple, unique electromagnetic energy-momentum tensors that attempt to separate field from material responses (e.g. Abraham, Chu, and Einstein-Laub). However, only the form of the kinetic momentum density has been revealed, while the formulation that uniquely separates the kinetic stress tensor has remained ambiguous. In this correspondence, multiple formulations are considered within the framework of relativistic electrodynamics. We apply various mathematical techniques to identify the kinetic subsystem of electrodynamics. While optical manipulation is usually modeled using a stationary medium approximation, the lessons from relativistic electrodynamics reveal a specific distribution of electromagnetic stress in media. The physics of optical and static manipulation of dielectric particles are described within this framework.

  13. Intelligent Behaviour Modelling and Control for Mobile Manipulators

    NASA Astrophysics Data System (ADS)

    Elkady, Ayssam; Mohammed, Mohammed; Gebriel, Eslam; Sobh, Tarek

    In the last several years, mobile manipulators have been increasingly utilized and developed from a theoretical viewpoint as well as for practical applications in space, underwater, construction and service environments. The work presented in this chapter deals with the problem of intelligent behaviour modelling and control of a mobile manipulator for the purpose of simultaneously following desired end-effector and platform trajectories. Our mobile manipulator comprised a manipulator arm mounted on a motorized mobile base wheelchair. The need for accurate modelling of the mobile manipulator is crucial in designing and controlling the motion of the robot to achieve the target precision and manipulability requirements. In this chapter, we propose a new method for measuring the manipulability index used for serial manipulators. Furthermore, we provide some simulations that are implemented on different serial manipulators, such as the Puma 560 manipulator, a six degrees of freedom (DOF) manipulator and the Mitsubishi Movemaster manipulator. We then extend the manipulability concept commonly used for serial manipulators to general mobile manipulator systems.

  14. Manipulation of Leading-Edge Vortex Evolution by Applied Suction

    NASA Astrophysics Data System (ADS)

    Buchholz, James; Akkala, James

    2016-11-01

    The generation and shedding of vortices from unsteady maneuvering bodies can be characterized within a framework of vorticity transport, accounting for the effects of multiple sources and sinks of vorticity on the overall circulation of the vortex system. On a maneuvering wing, the diffusive flux of secondary vorticity from the surface is a critical contributor to the strength and dynamics of the leading-edge vortex, suggesting that flow control strategies targeting the manipulation of the secondary vorticity flux and the secondary vortex may provide an effective means of manipulating vortex development. Suction has been applied in the vicinity of the secondary vortex during the downstroke of a periodically-plunging flat-plate airfoil, and the flow evolution and aerodynamic loads are compared to the baseline case in which suction is not applied. Observation of the resulting surface pressure distribution and flow evolution suggest that the secondary flux of vorticity and the evolution of the flow field can be altered subject to appropriate position of the suction ports relative to the developing vortex structures, and at a specific temporal window in the development of the vortex. This work was supported by the Air Force Office of Scientific Research, Grant Number FA9550-16-1-0107 and NSF EPSCoR Grant Number EPS1101284.

  15. Manipulation of the tyrothricin production profile of Bacillus aneurinolyticus.

    PubMed

    Vosloo, Johan Arnold; Stander, Marietjie A; Leussa, Adrienne N-N; Spathelf, Barbara M; Rautenbach, Marina

    2013-10-01

    A group of non-ribosomally produced antimicrobial peptides, the tyrocidines from the tyrothricin complex, have potential as antimicrobial agents in both medicine and industry. Previous work by our group illustrated that the more polar tyrocidines rich in Trp residues in their structure were more active toward Gram-positive bacteria, while the more non-polar tyrocidines rich in Phe residues had greater activity toward Plasmodium falciparum, one of the major causative pathogens of malaria in humans. Our group also found that the tyrocidines have pronounced antifungal activity, dictated by the primary sequence of the tyrocidine. By simply manipulating the Phe or Trp concentration in the culture medium of the tyrothricin producer, Bacillus aneurinolyticus ATCC 10068, we were able to modulate the production of subsets of tyrocidines, thereby tailoring the tyrothricin complex to target specific pathogens. We optimized the tailored tyrothricin production using a novel, small-scale, high-throughput deep 96-well plate culturing method followed by analyses of the peptide mixtures using ultra-performance liquid chromatography linked to mass spectrometry. We were able to gradually shift the production profile of the tyrocidines and analogues, as well as the gramicidins between two extremes in terms of peptide subsets and peptide hydrophobicity. This study demonstrated that tyrothricin peptide subsets with targeted activity can be efficiently produced by simple manipulation of the aromatic amino acid profile of the culture medium.

  16. A proposed remote manipulator system: A concept

    NASA Technical Reports Server (NTRS)

    Brodie, S.; Flatau, C.; Greeb, F.

    1972-01-01

    System is described with variable ratio, mixed mode, bilateral, master-slave control. Manipulator arms consist of shoulder and elbow with two degrees of freedom, a wrist with three degrees of freedom, and terminal grasping device. Feedback is provided by TV cameras attached near shoulder, grasping device, and at end of shuttle opposite arm.

  17. An anthropomorphic master-slave manipulator system.

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.; King, R. F.; Vallotton, W. C.

    1973-01-01

    Review of some of the results of a teleoperator systems technology program devoted to the development of an anthropomorphic unilateral master-slave manipulator system. Following a discussion of the mechanical design details and servo design considerations, the developed system's test results are presented.

  18. Improved electromechanical master-slave manipulator

    NASA Technical Reports Server (NTRS)

    Forster, G.; Goertz, R.; Grimson, J.; Mingesz, D.; Potts, C.

    1968-01-01

    Electric master-slave manipulator uses force multiplication and allows the operator to remotely control the slave arm. Both the master and slave arms execute seven distinct motions by a specially designed force-reflecting servo having a one to one correspondence between the motion at the master and slave.

  19. Manipulation Action Understanding for Observation and Execution

    ERIC Educational Resources Information Center

    Yang, Yezhou

    2015-01-01

    Modern intelligent agents will need to learn the actions that humans perform. They will need to recognize these actions when they see them and they will need to perform these actions themselves. We want to propose a cognitive system that interprets human manipulation actions from perceptual information (image and depth data) and consists of…

  20. A 17 degree of freedom anthropomorphic manipulator

    NASA Technical Reports Server (NTRS)

    Vold, Havard I.; Karlen, James P.; Thompson, Jack M., Jr.; Farrell, James D.; Eismann, Paul H.

    1989-01-01

    A 17 axis anthropomorphic manipulator, providing coordinated control of two seven degree of freedom arms mounted on a three degree of freedom torso-waist assembly, is presented. This massively redundant telerobot, designated the Robotics Research K/B-2017 Dexterous Manipulator, employs a modular mechanism design with joint-mounted actuators based on brushless motors and harmonic drive gear reducers. Direct joint torque control at the servo level causes these high-output joint drives to behave like direct-drive actuators, facilitating the implementation of an effective impedance control scheme. The redundant, but conservative motion control system models the manipulator as a spring-loaded linkage with viscous damping and rotary inertia at each joint. This approach allows for real time, sensor-driven control of manipulator pose using a hierarchy of competing rules, or objective functions, to avoid unplanned collisions with objects in the workplace, to produce energy-efficient, graceful motion, to increase leverage, to control effective impedance at the tool or to favor overloaded joints.

  1. End-Point Control of Flexible Manipulators.

    DTIC Science & Technology

    1986-09-01

    to develop a universal robot end effector, capable of performing generic manipulation functions. This research focuses on the following advances toward...Tncrease the speed and precision of performing "slew arid touch" tasks by a flexible robot arri and second, to develop a universal robot end effector

  2. Nano Robotic Manipulation inside Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Fukuda, Toshio; Nakajima, Masahiro; Liu, Pou

    We report nanomanipulation and nanoassembly through nanorobotic manipulation inside electron microscopes. A hybrid nanorobotic manipulation system, which is integrated with a nanorobotic manipulator inside a transmission electron microscope (TEM) and nanorobotic manipulators inside a scanning electron microscope (SEM), is used. The elasticity of a multi-walled CNT (MWNT) is measured inside a TEM. The telescoping MWNT is fabricated by peeling off outer layers through destructive fabrication process. The electrostatic actuation of telescoping MWNT is directly observed by a TEM. A cutting technique for CNTs assisted by the presence of oxygen gas is also presented. The cutting procedure was conducted in less than 1 minute using a low-energy electron beam inside a scanning electron microscope. A bending technique of a CNT assisted by the presence of oxygen gas is also applied for the 3-D fabrication of nanosturucture. We expect that these techniques will be applied for the rapid prototyping nanoassembly of various CNT nanodevices. For the nano-biological applications, environmental-SEM (E-SEM) nanomanipulation system is also presented with the direct observation of the hydroscopic samples with non-drying treatment.

  3. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect

    Kwon, Jae-Sung; Ravindranath, Sandeep; Kumar, Aloke; Irudayaraj, Joseph; Wereley, Steven T.

    2012-01-01

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  4. Kinematic analysis of the ARID manipulator

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The kinematic structure of the ARID manipulator lends itself to simple forward and inverse kinematics analysis. The purpose of this paper is to fully document and verify an existing analysis. The symbolic software package MATHEMATICA was used to produce and verify the equations presented here. In the analysis to follow, the standard Devenit-Hartenberg kinematic parameters of the ARID were employed.

  5. 75 FR 67657 - Prohibition of Market Manipulation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... COMMISSION 17 CFR Part 180 RIN Number 3038-AD27 Prohibition of Market Manipulation AGENCY: Commodity Futures... security-based swaps. The legislation was enacted to reduce risk, increase transparency, and promote market... that may be material to the market price, rate, or level of the commodity transaction, except...

  6. Spider management in agroecosystems: Habitat manipulation

    NASA Astrophysics Data System (ADS)

    Mansour, Fadel; Richman, David B.; Whitcomb, W. H.

    1983-01-01

    Based on the literature and on work conducted in Israel, the management of spider populations through habitat manipulation was found to be very helpful in controlling pest insects in various crops. Spiders were found to be reduced or eliminated by non-selective insecticides, although some resistance has been noted

  7. Minimum jerk trajectory planning for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1991-01-01

    It has been experimentally verified that the jerk of the desired trajectory adversely affects the performance of the tracking control algorithms for robotic manipulators. In this paper, the reasons behind this effect are investigated, and an optimization problem that minimizes joint jerk over a prespecified Cartesian space trajectory is stated. The necessary conditions are derived, and a numerical algorithm is presented.

  8. Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1991-01-01

    The industrial and environmental applications for robots with a relatively large workspace has increased significantly in the last few years. To accommodate the demands, the manipulator is usually designed with long, lightweight links that are inherently flexible. Ongoing research at Georgia Tech into the behavior and design of these flexible links is discussed.

  9. Disrupting Reconsolidation: Pharmacological and Behavioral Manipulations

    ERIC Educational Resources Information Center

    Soeter, Marieke; Kindt, Merel

    2011-01-01

    We previously demonstrated that disrupting reconsolidation by pharmacological manipulations "deleted" the emotional expression of a fear memory in humans. If we are to target reconsolidation in patients with anxiety disorders, the disruption of reconsolidation should produce content-limited modifications. At the same time, the fear-erasing effects…

  10. Passivity analysis for flexible multilink space manipulators

    NASA Astrophysics Data System (ADS)

    Damaren, Christopher J.

    1995-03-01

    The important input-output property of passivity is explored for a general flexible space manipulator with chain topology. The manipulator is assumed to consist of rigid and/or flexible links interconnected via revolute joints, and a free rigid spacecraft and cantilevered payload are modeled at the base and tip, respectively. Actuation on the spacecraft and torques at the joints serve as control inputs and a suitably modified input variable is constructed. The notion of reflected tip position introduced by Wang and Vidyasagar for a single flexible link is extended to the multilink case and used to define a corresponding modified output variable. The dynamics governing the system are developed using a Lagrangian approach and both linearized and nonlinear forms of the mapping relating modified inputs to modified outputs are examined. Our major result shows that the transfer function in the linear case is positive real when the spacecraft and payload are much more massive than the manipulator links. The corresponding nonlinear analysis shows that the mapping is, in fact, passive and uncovers an approximate static relationship between the elastic coordinates and applied torques. A numerical example employing the Space Shuttle, remote manipulator system, and payload is used to demonstrate the validity of the theoretical results. Applications to control system design are indicated.

  11. The Use of Manipulatives in Mathematics Education

    ERIC Educational Resources Information Center

    Larbi, Ernest; Mavis, Okyere

    2016-01-01

    The study was designed to investigate the efficacy of using algebra tile manipulatives in junior high school students' performance. The study sample comprised 56 students from two schools purposely selected from two towns within the Komenda Edina Eguafo Abirem municipality. The students were made up of two groups; the experimental and the control…

  12. Hybrid Efficient Control Algorithms for Robot Manipulators

    DTIC Science & Technology

    1991-11-01

    In this report, we discuss accurate and robust sliding mode tracking control for highly nonlinear robot manipulators using a disturbance observer . To...The efficient compensation of the disturbance observer has been introduced. The proposed sliding mode control is presented in two theorems. The bounded

  13. Text Manipulation Techniques and Foreign Language Composition.

    ERIC Educational Resources Information Center

    Walker, Ronald W.

    1982-01-01

    Discusses an approach to teaching second language composition which emphasizes (1) careful analysis of model texts from a limited, but well-defined perspective and (2) the application of text manipulation techniques developed by the word processing industry to student compositions. (EKN)

  14. Manipulating directed networks for better synchronization

    NASA Astrophysics Data System (ADS)

    Zeng, An; Lü, Linyuan; Zhou, Tao

    2012-08-01

    In this paper, we studied the strategies to enhance synchronization on directed networks by manipulating a fixed number of links. We proposed a centrality-based manipulating (CBM) method, where the node centrality is measured by the well-known PageRank algorithm. Extensive numerical simulation on many modeled networks demonstrated that the CBM method is more effective in facilitating synchronization than the degree-based manipulating method and the random manipulating method for adding or removing links. The reason is that the CBM method can effectively narrow the incoming degree distribution and reinforce the hierarchical structure of the network. Furthermore, we apply the CBM method to the links rewiring procedure where at each step one link is removed and one new link is added. The CBM method helps to decide which links should be removed or added. After several steps, the resulting networks are very close to the optimal structure from the theoretical analysis and the evolutionary optimization algorithm. The numerical simulations on the Kuramoto model further demonstrate that our method has an advantage in shortening the convergence time to synchronization on directed networks.

  15. Motorized manipulator for positioning a TEM specimen

    DOEpatents

    Schmid, Andreas Karl; Andresen, Nord

    2010-12-14

    The invention relates to a motorized manipulator for positioning a TEM specimen holder with sub-micron resolution parallel to a y-z plane and rotating the specimen holder in the y-z plane, the manipulator comprising a base (2), and attachment means (30) for attaching the specimen holder to the manipulator, characterized in that the manipulator further comprises at least three nano-actuators (3.sup.a, 3.sup.b, 3.sup.c) mounted on the base, each nano-actuator showing a tip (4.sup.a, 4.sup.b, 4.sup.c), the at least three tips defining the y-z plane, each tip capable of moving with respect to the base in the y-z plane; a platform (5) in contact with the tips of the nano-actuators; and clamping means (6) for pressing the platform against the tips of the nano-actuators; as a result of which the nano-actuators can rotate the platform with respect to the base in the y-z plane and translate the platform parallel to the y-z plane.

  16. Nonlinear subjective and dynamic responses of seated subjects exposed to horizontal whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Nawayseh, N.; Matsumoto, Y.; Griffin, M. J.

    2009-03-01

    The effect of the magnitude of fore-and-aft and lateral vibration on the subjective and mechanical responses of seated subjects has been investigated experimentally using simultaneous measurements of relative discomfort and apparent mass. Twelve male subjects were exposed to sinusoidal vibration at nine frequencies (between 1.6 and 10 Hz) at four magnitudes (in the range 0.125-1.0 m s -2 r.m.s.) in both horizontal directions (fore-and-aft and lateral). The method of magnitude estimation was used to estimate discomfort relative to that caused by a 4 Hz reference vibration in the same axis. The apparent mass was calculated from the acceleration and the applied force so as to quantify the mechanical response of the body. With each direction of excitation, the apparent mass was normalised by dividing it by the apparent mass obtained at 4 Hz, so that the mechanical responses could be compared with the subjective responses. The relative discomfort and the normalised apparent mass were similarly affected by the frequency and magnitude of vibration, with significant correlations between the relative discomfort and the normalised apparent mass. The results indicate that the discomfort caused by horizontal whole-body vibration is associated with the apparent mass in a frequency range where motion of the whole body is dominant. In this frequency range, the nonlinear subjective responses may be attributed, at least in part, to the nonlinear dynamic responses to horizontal whole-body vibration.

  17. Microdose pharmacogenetic study of ¹⁴C-tolbutamide in healthy subjects with accelerator mass spectrometry to examine the effects of CYP2C9∗3 on its pharmacokinetics and metabolism.

    PubMed

    Ikeda, Toshihiko; Aoyama, Shinsuke; Tozuka, Zenzaburo; Nozawa, Kohei; Hamabe, Yoshimi; Matsui, Takao; Kainuma, Michiko; Hasegawa, Setsuo; Maeda, Kazuya; Sugiyama, Yuichi

    2013-07-16

    Microdose study enables us to understand the pharmacokinetic profiles of drugs in humans prior to the conventional clinical trials. The advantage of microdose study is that the unexpected pharmacological/toxicological effects of drugs caused by drug interactions or genetic polymorphisms of metabolic enzymes/transporters can be avoided due to the limited dose. With a combination use of accelerator mass spectrometry (AMS) and (14)C-labaled compounds, the pharmacokinetics of both parent drug and its metabolites can be sensitively monitored. Thus, to demonstrate the usability of microdose study with AMS for the prediction of the impact of genetic polymorphisms of CYP enzyme on the pharmacokinetics of unchanged drugs and metabolites, we performed microdose pharmacogenetic study using tolbutamide as a CYP2C9 probe drug. A microdose of (14)C-tolbutamide (100 μg) was administered orally to healthy volunteers with the CYP2C9(∗)1/(∗)1 or CYP2C9(∗)1/(∗)3 diplotype. Area under the plasma concentration-time curve for the (14)C-radioactivity, determined by AMS, or that for the parent drug, determined by liquid chromatography/mass spectrometry, was about 1.6 times or 1.7 times greater in the CYP2C9(∗)1/(∗)3 than in the CYP2C9(∗)1/(∗)1 group, which was comparable to the previous reports at therapeutic dose. In the plasma and urine, tolbutamide, carboxytolbutamide, and 4-hydroxytolbutamide were detected and practically no other metabolites could be found in both diplotype groups. The fraction of metabolites in plasma radioactivity was slightly lower in the CYP2C9(∗)1/(∗)3 group. Microdose study can be used for the prediction of the effects of genetic polymorphisms of enzymes on the pharmacokinetics and metabolic profiles of drugs with minimal care of their pharmacological/toxicological effects.

  18. Adaptive neural control for an uncertain robotic manipulator with joint space constraints

    NASA Astrophysics Data System (ADS)

    Tang, Zhong-Liang; Ge, Shuzhi Sam; Tee, Keng Peng; He, Wei

    2016-07-01

    In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.

  19. Treatment of atlantoaxial rotatory fixation with botulinum toxin muscle block and manipulation.

    PubMed

    Lin, Chia-Hung; Chen, Chun-Jung; Chen, Chuan-Mu; Liao, Su-Lan; Raung, Shue-Ling; Tsai, Sen-Wei

    2010-04-01

    Slippage after reduction of atlantoaxial rotatory fixation (AARF) is usually treated with repeated cervical traction and brace immobilization. To date, no data have been published on the management of muscle spasm during treatment. Here, we describe the case of a 7-year-old girl with AARF for 1 month who visited our hospital for treatment. During physical examination, spasm of the sternocleidomastoid muscle was noted. The patient was treated with manipulative reduction, and slippage after reduction was managed with botulinum spasticity block of the sternocleidomastoid and splenius capitis muscles, and repeated manipulation. Cervical orthosis immobilization with a rehabilitation program of isometric contract-relax exercise for the neck was conducted for 3 months. The subject had full recovery from AARF at 1-year follow-up. This report demonstrates that, in selected cases of slippage after reduction from AARF, conservative management with manipulation under anesthesia is a good method, and the muscle components may play a crucial role in AARF.

  20. Manipulator Comparative Testing Program: Final report

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N; Fujita, Y.; Maeda, M.

    1987-02-01

    The manipulator systems tested included the Meidensha BILARM 83A, the Central Research Laboratories Model M-2, and the GCA PaR Systems Model 6000. Six manipulator and control mode combinations were evaluated: (1) the BILARM in master/slave mode without force reflection, (2) the BILARM in master/slave mode with force reflection, (3) the Model M-2 in master/slave mode without force reflection, (4) the Model M-2 in master/slave mode with force reflection, (5) the BILARM with switchbox controls, and (6) the PaR 6000 with switchbox controls. The experiments examined differences between master/slave systems with and without force reflection and differences between master/slave systems and switchbox-controlled systems. A fourth experiment examined the relative contributions of the remote viewing system and the manipulator system to the performance of remote handling tasks. Results of the experiments showed that operators using the Model M-2 in master/slave mode had significantly faster times to completion than operators using the BILARM in master/slave mode, with about the same error rate per trial. Operators were slower using the BILARM with force reflection than without it, and they committed more errors. There was no statistically significant difference between force-reflection and nonforce-reflection conditions for the M-2 manipulator for any of the performance criteria. Tasks and procedures used in this testing were not sensitive to differences within any single system. No inferences about the effect of force reflection on remote task performance should be made from these data. The two manipulator systems in switchbox mode had significantly slower times to completion than any system in master/slave mode, with approximately the same error rate per trial. There were no significant differences between the BILARM in switchbox mode and the PaR arm.

  1. The evolution of teleoperated manipulators at ORNL

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Noakes, M.W.; Herndon, J.N.

    1996-12-31

    ORNL has made significant contributions to teleoperator and telerobotics technology for two decades and continues with an aggressive program today. Examples of past projects are: (1) the M2 servomanipulator, which was the first digitally controlled teleoperator; (2) the Advanced Servomanipulator (ASM), which was the first remotely maintainable teleoperator; (3) the CESARm/Kraft dissimilar teleoperated system; and (4) the Laboratory Telerobotic Manipulator (LTM), a 7-Degree-of-Freedom (7-DOF) telerobot built as a prototype for work in space. More recently, ORNL has become heavily involved with Environmental Restoration and Waste Management (ERWM) robotics programs funded by the Department of Energy (DOE). The ERWM program requires high payloads and high dexterity. As a result, a hydraulically actuated, dual-arm system comprised of two 6-DOF arms mounted on a 5-DOF base has been constructed and is being used today for various research tasks and for decontamination and dismantlement activities. All of these teleoperated manipulator systems build upon the experiences gained throughout the almost two decades of development. Each system incorporates not only the latest technology in computers, sensors, and electronics, but each new . system also adds at least one new feature to the technologies already developed and demonstrated in the previous system(s). As a result of this process, a serious study of these manipulator systems is a study in the evolution of teleoperated manipulator the systems in general. This provides insight not only into the research and development paths chosen in the past, but also into the appropriate directions for future teleoperator and telerobotics research. This paper examines each of the teleoperated/telerobotic systems developed at ORNL, summarizes their features and capabilities, examines the state of the most current telerobotic system (the Dual Arm Work Module), PM provides direction for a Next Generation Telerobotic Manipulator system.

  2. Manipulator Performance Evaluation Using Fitts' Taping Task

    SciTech Connect

    Draper, J.V.; Jared, B.C.; Noakes, M.W.

    1999-04-25

    Metaphorically, a teleoperator with master controllers projects the user's arms and hands into a re- mote area, Therefore, human users interact with teleoperators at a more fundamental level than they do with most human-machine systems. Instead of inputting decisions about how the system should func- tion, teleoperator users input the movements they might make if they were truly in the remote area and the remote machine must recreate their trajectories and impedance. This intense human-machine inter- action requires displays and controls more carefully attuned to human motor capabilities than is neces- sary with most systems. It is important for teleoperated manipulators to be able to recreate human trajectories and impedance in real time. One method for assessing manipulator performance is to observe how well a system be- haves while a human user completes human dexterity tasks with it. Fitts' tapping task has been, used many times in the past for this purpose. This report describes such a performance assessment. The International Submarine Engineering (ISE) Autonomous/Teleoperated Operations Manipulator (ATOM) servomanipulator system was evalu- ated using a generic positioning accuracy task. The task is a simple one but has the merits of (1) pro- ducing a performance function estimate rather than a point estimate and (2) being widely used in the past for human and servomanipulator dexterity tests. Results of testing using this task may, therefore, allow comparison with other manipulators, and is generically representative of a broad class of tasks. Results of the testing indicate that the ATOM manipulator is capable of performing the task. Force reflection had a negative impact on task efficiency in these data. This was most likely caused by the high resistance to movement the master controller exhibited with the force reflection engaged. Measurements of exerted forces were not made, so it is not possible to say whether the force reflection helped partici- pants

  3. Medicolegal corner: Quadriplegia following chiropractic manipulation.

    PubMed

    Epstein, Nancy E; Forte Esq, Carol L

    2013-01-01

    A 45 year old male with multiple comorbidities presented to his internist with a 2 week history of right sided neck pain and tenderness, accompanied by tingling in the hand. The internists' neurological examination was normal, except for decreased range of motion of the right arm. He referred the patient to a chiropractor; he performed plain X rays which revealed mild spasm, but never ordered a magnetic resonance imaging study. The chiropractor manipulated the patient's neck on two successive days. By the morning of the third visit, the patient reported extreme pain and difficulty walking. Without performing a new neurological examination or obtaining an MR scan, the chiropractor again manipulated the patient's neck. He immediately became quadriplegic. Despite undergoing an emergency C5 C6 anterior cervical diskectomy/fusion to address a massive disc found on the MR scan (CT was negative), the patient remained quadriplegic (e.g., C4 sensory, C6 motor levels). A major point of negligence in this case was the failure of both the referring internist and chiropractor to order an MR of the cervical spine prior to the chiropractic manipulation. The internist claimed that there was no known report of permanent quadriplegia resulting from neck manipulation in any medical journal, article or book, or in any literature of any kind or on the internet and that the risk of this injury must be vanishingly small given the large numbers of manipulations performed annually. The total amount of the verdict was $14,596,000.00 the internist's liability was 5% ($759,181.65).

  4. Osteopathic Manipulative Treatment as a Useful Adjunctive Tool for Pneumonia

    PubMed Central

    Yao, Sheldon; Hassani, John; Gagne, Martin; George, Gebe; Gilliar, Wolfgang

    2014-01-01

    Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1) Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10. The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems

  5. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields.

    PubMed

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-03

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.

  6. Automated manipulation of carbon nanotubes using atomic force microscopy.

    PubMed

    Zhang, Chao; Wu, Sen; Fu, Xing

    2013-01-01

    The manipulation of carbon nanotubes is an important and essential step for carbon-based nanodevice or nanocircuit assembly. However, the conventional push-and-image approach of manipulating carbon nanotubes using atomic force microscopy has low efficiency on account of the reduplicated scanning process during manipulation. In this article, an automated manipulation system is designed and tested. This automated manipulation system, which includes an atomic force microscope platform and a self-developed computer program for one-dimensional manipulation, is capable of automatically moving any assigned individual carbon nanotube to a defined target location without any intermediate scanning procedure. To demonstrate the high-efficiency of this automated manipulation system and its potential applications in nanoassembly, two experiments were conducted. The first experiment used this system to manipulate a carbon nanotube to a defined target location. In the second experiment, this system was used to automatically manipulate several carbon nanotubes for generating and translating a defined pattern of nanotubes.

  7. Turbulent jet manipulation using two unsteady azimuthally separated radial minijets.

    PubMed

    Yang, H; Zhou, Y; So, R M C; Liu, Y

    2016-07-01

    The active manipulation of a turbulent round jet is experimentally investigated based on the injection of two radial unsteady minijets, prior to the issue of the main jet. The parametric study is conducted for the mass flow ratio Cm of the minijets to the main jet, and the ratio fe/f0 of the minijet frequency to the preferred-mode frequency of the main jet. It is found that the decay rate of the jet centreline mean velocity could be greatly increased if the two minijets are separated azimuthally by an angle θ=60°, instead of by θ=180°. This increase is a consequence of the flapping motion of the jet column, and the formation process and generation mechanism of this flapping motion are unveiled by careful analysis of the experimental data.

  8. Changes in H-reflex and V-waves following spinal manipulation.

    PubMed

    Niazi, Imran Khan; Türker, Kemal S; Flavel, Stanley; Kinget, Mat; Duehr, Jens; Haavik, Heidi

    2015-04-01

    This study investigates whether spinal manipulation leads to neural plastic changes involving cortical drive and the H-reflex pathway. Soleus evoked V-wave, H-reflex, and M-wave recruitment curves and maximum voluntary contraction (MVC) in surface electromyography (SEMG) signals of the plantar flexors were recorded from ten subjects before and after manipulation or control intervention. Dependent measures were compared with 2-way ANOVA and Tukey's HSD as post hoc test, p was set at 0.05. Spinal manipulation resulted in increased MVC (measured with SEMG) by 59.5 ± 103.4 % (p = 0.03) and force by 16.05 ± 6.16 4 % (p = 0.0002), increased V/M max ratio by 44.97 ± 36.02 % (p = 0.006), and reduced H-reflex threshold (p = 0.018). Following the control intervention, there was a decrease in MVC (measured with SEMG) by 13.31 ± 7.27 % (p = 0.001) and force by 11.35 ± 9.99 % (p = 0.030), decreased V/M max ratio (23.45 ± 17.65 %; p = 0.03) and a decrease in the median frequency of the power spectrum (p = 0.04) of the SEMG during MVC. The H-reflex pathway is involved in the neural plastic changes that occur following spinal manipulation. The improvements in MVC following spinal manipulation are likely attributed to increased descending drive and/or modulation in afferents. Spinal manipulation appears to prevent fatigue developed during maximal contractions. Spinal manipulation appears to alter the net excitability of the low-threshold motor units, increase cortical drive, and prevent fatigue.

  9. Scoliosis treatment using a combination of manipulative and rehabilitative therapy: a retrospective case series

    PubMed Central

    Morningstar, Mark W; Woggon, Dennis; Lawrence, Gary

    2004-01-01

    Background The combination of spinal manipulation and various physiotherapeutic procedures used to correct the curvatures associated with scoliosis have been largely unsuccessful. Typically, the goals of these procedures are often to relax, strengthen, or stretch musculotendinous and/or ligamentous structures. In this study, we investigate the possible benefits of combining spinal manipulation, positional traction, and neuromuscular reeducation in the treatment of idiopathic scoliosis. Methods A total of 22 patient files were selected to participate in the protocol. Of these, 19 met the study criterion required for analysis of treatment benefits. Anteroposterior radiographs were taken of each subject prior to treatment intervention and 4–6 weeks following the intervention. A Cobb angle was drawn and analyzed on each radiograph, so pre and post comparisons could be made. Results After 4–6 weeks of treatment, the treatment group averaged a 17° reduction in their Cobb angle measurements. None of the patients' Cobb angles increased. A total of 3 subjects were dismissed from the study for noncompliance relating to home care instructions, leaving 19 subjects to be evaluated post-intervention. Conclusions The combined use of spinal manipulation and postural therapy appeared to significantly reduce the severity of the Cobb angle in all 19 subjects. These results warrant further testing of this protocol. PMID:15363104

  10. Bioequivalence study between a fixed-dose single-pill formulation of nebivolol plus hydrochlorothiazide and separate formulations in healthy subjects using high-performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Vespasiano, Celso Francisco Pimentel; Laurito, Tiago Luders; Iwamoto, Renan Donomae; Moreno, Ronilson Agnaldo; Mendes, Gustavo D; De Nucci, Gilberto

    2016-11-03

    Systemic arterial hypertension is a major risk factor for cerebrovascular disease. Therefore, adequate control of blood pressure is of enormous importance. One of the many fixed-dose single-pill antihypertensive formulations available on the market is the combination of nebivolol and hydrochlorothiazide. The objective of this study was to develop two distinct high-performance liquid chromatography coupled to tandem mass spectrometry methods to simultaneously quantify nebivolol and hydrochlorothiazide in human plasma. The methods were employed in a bioequivalence study, the first assay involving a nebivolol fixed-dose single-pill formulation based on healthy Brazilian volunteers. Nebilet HCT™ (nebivolol 5 mg + hydrochlorothiazide 12.5 mg tablet, manufactured by Menarini) was the test formulation. The reference formulations were Nebilet™ (nebivolol 5 mg tablet, manufactured by Menarini) and Clorana™ (hydrochlorothiazide 25 mg tablet, manufactured by Sanofi). For both analytes, liquid-liquid extraction was employed for sample preparation and the chromatographic run time was 3.5 min. The limits of quantification validated were 0.02 ng/mL for nebivolol and 1 ng/mL for hydrochlorothiazide. Since the 90% CI for Cmax , AUC(0-last) and AUC(0-inf) individual test/reference ratios were within the 80-125% interval indicative of bioequivalence, it was concluded that Nebilet HCT™ is bioequivalent to Nebilet™ and Clorana™.

  11. Liquid chromatography-tandem mass spectrometric assay for aliskiren, a novel renin inhibitor in micro-volumes of human plasma: a pharmacokinetic application in healthy South Indian male subjects.

    PubMed

    Adireddy, Vinayender; Pilli, Nageswara Rao; Derangula, Venkata Ramu; Satla, Shobha Rani; Ganguri, Chinna Veera Badraiah; Ponneri, Venkateswarlu

    2013-08-01

    This paper describes a simple, rapid and sensitive liquid chromatography/tandem mass spectrometry assay for the determination of aliskiren in human plasma using nevirapine as an internal standard. Analyte and the internal standard were extracted from 100 μL of human plasma via liquid-liquid extraction using tert-butyl methyl ether. The chromatographic separation was achieved on a C18 column using a mixture of acetonitrile and 0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.9 mL/min. The calibration curve obtained was linear (r(2) ≥ 0.99) over the concentration range of 0.10-1013 ng/mL. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. A run time of 2.2 min for each sample made it possible to analyze a greater number of samples in a short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies.

  12. The Eppelsheimer Subject Catalog

    ERIC Educational Resources Information Center

    Stevenson, Gordon

    1971-01-01

    Since 1945, a method of catalog classification, originally devised by H.W. Eppelsheimer for the Mainz City Library, has found wide acceptance. It is a complex of catalogs which combines features of both subject classification and alphabetical subject indexing. (25 references) (Author/NH)

  13. Body as subject1

    PubMed Central

    MEIR, IRIT; PADDEN, CAROL A.; ARONOFF, MARK; SANDLER, WENDY

    2011-01-01

    The notion of subject in human language has a privileged status relative to other arguments. This special status is manifested in the behavior of subjects at the morphological, syntactic, semantic and discourse levels. Here we bring evidence that subjects have privileged status at the lexical level as well, by analyzing lexicalization patterns of verbs in three different sign languages. Our analysis shows that the sublexical structure of iconic signs denoting state of affairs in these languages manifests an inherent pattern of form–meaning correspondence: the signer’s body consistently represents one argument of the verb, the subject. The hands, moving in relation to the body, represent all other components of the event – including all other arguments. This analysis shows that sign languages provide novel evidence in support of the centrality of the notion of subject in human language. It also solves a typological puzzle about the apparent primacy of object in sign language verb agreement, a primacy not usually found in spoken languages, in which subject agreement ranks higher. Our analysis suggests that the subject argument is represented by the body and is part of the lexical structure of the verb. Because it is always inherently represented in the structure of the sign, the subject is more basic than the object, and tolerates the omission of agreement morphology. PMID:23066169

  14. Development and validation of a liquid chromatography/atmospheric pressure photoionization-tandem mass spectrometric method for the analysis of mycotoxins subjected to commission regulation (EC) No. 1881/2006 in cereals.

    PubMed

    Capriotti, Anna Laura; Foglia, Patrizia; Gubbiotti, Riccardo; Roccia, Claudia; Samperi, Roberto; Laganà, Aldo

    2010-09-24

    A sensitive and reliable liquid chromatography/photoionization (APPI) tandem mass spectrometry method has been developed for determining nine selected mycotoxins in wheat and maize samples. The analytes were chosen on the basis of the mycotoxins under EU Commission Regulation (EC) No. 1881/2006, i.e., deoxynivalenol (DON), zearalenone (ZON), aflatoxins (AFs), and ochratoxin A (OTA), and considering the possibility of a near future regulation for T-2 and HT-2 toxins. Mycotoxins were extracted from samples by means of an one-step solvent extraction without any cleanup. The developed multi-mycotoxin method permits simultaneous, simple, and rapid determination of several co-existing toxins separated in a single chromatographic run, in which AFs, T-2 and HT-2 toxin are acquired in positive, while OTA, DON and ZON in negative mode. Although a moderate signal suppression was noticeable, matrix effect did not give significant differences at p=0.05. Then, calibration in standard solution were used for quantitation. Based on the EU Commission Decision 2002/657/EC, the method was in-house validated in terms of ruggedness, specificity, linearity, trueness, within-laboratory reproducibility, decision limit (CCalpha) and detection capability (CCbeta). For all the analytes, the regression coefficient r ranged between 0.8752 (DON in wheat) and 0.9465 (ZON in maize), biases related to mean concentrations were from -13% to +12% of the nominal spiking level, and the overall within-laboratory reproducibility ranged 3-16%; finally, CCalpha values did not differ more than 20% and CCbeta not more than 42% from their respective maximum limit. Method quantification limits ranged from 1/20 (AFG1) to 1/4 (AFG2 and OTA) the maximum limit established by European Union in the Commission Regulation (EC) No. 1881/2006 and its subsequent amendments.

  15. Virtual and concrete manipulatives: a comparison of approaches for solving mathematics problems for students with autism spectrum disorder.

    PubMed

    Bouck, Emily C; Satsangi, Rajiv; Doughty, Teresa Taber; Courtney, William T

    2014-01-01

    Students with autism spectrum disorder (ASD) are included in general education classes and expected to participate in general education content, such as mathematics. Yet, little research explores academically-based mathematics instruction for this population. This single subject alternating treatment design study explored the effectiveness of concrete (physical objects that can be manipulated) and virtual (3-D objects from the Internet that can be manipulated) manipulatives to teach single- and double-digit subtraction skills. Participants in this study included three elementary-aged students (ages ranging from 6 to 10) diagnosed with ASD. Students were selected from a clinic-based setting, where all participants received medically necessary intensive services provided via one-to-one, trained therapists. Both forms of manipulatives successfully assisted students in accurately and independently solving subtraction problem. However, all three students demonstrated greater accuracy and faster independence with the virtual manipulatives as compared to the concrete manipulatives. Beyond correctly solving the subtraction problems, students were also able to generalize their learning of subtraction through concrete and virtual manipulatives to more real-world applications.

  16. Quasistatic manipulation with compliance and sliding

    SciTech Connect

    Kao, I. ); Cutkosky, M.R. )

    1992-02-01

    The authors propose a method for modeling dextrous manipulation with sliding fingers. The approach combines compliance and friction limit surfaces. The method is useful for describing how a grasp will behave in the presence of external forces (e.g., when and how the fingertips will slide) and for planning how to control the fingers so that the grasped object will follow a desired trajectory. The sliding trajectories are characterized by a transient and steady-state solution. The underlying theory is first discussed and illustrated with several single-finger examples. Experimental results are also presented. The analysis is then extended to grasps with multiple sliding and nonsliding fingers. The multifinger analysis is illustrated with an example of manipulating a card with two soft-contact fingers.

  17. Direct adaptive impedance control of manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Seraji, H.; Glass, K.

    1991-01-01

    An adaptive scheme for controlling the end-effector impedance of robot manipulators is presented. The proposed control system consists of three subsystems: a simple filter which characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller which produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics, and it is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a very general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter.

  18. Bone manipulation procedures in dental implants

    PubMed Central

    Mittal, Yuvika; Jindal, Govind; Garg, Sandeep

    2016-01-01

    The use of dental implants for the rehabilitation of missing teeth has broadened the treatment options for patients and clinicians equally. As a result of advances in research in implant design, materials, and techniques, the use of dental implants has increased dramatically in the past two decades and is expected to expand further in the future. Success of dental implants depends largely on the quality and quantity of the available bone in the recipient site. This however may be compromised or unavailable due to tumor, trauma, periodontal disease, etc., which in turn necessitates the need for additional bone manipulation. This review outlines the various bone manipulation techniques that are used to achieve a predictable long-term success of dental implants. PMID:27433052

  19. Neuronal chemotaxis by optically manipulated liposomes

    NASA Astrophysics Data System (ADS)

    Pinato, G.; Lien, L. T.; D'Este, E.; Torre, V.; Cojoc, D.

    2011-08-01

    We probe chemotaxis of single neurons, induced by signalling molecules which were optically delivered from liposomes in the neighbourhood of the cells. We implemented an optical tweezers setup combined with a micro-dissection system on an inverted microscope platform. Molecules of Netrin-1 protein were encapsulated into micron-sized liposomes and manipulated to micrometric distances from a specific growth cone of a hippocampal neuron by the IR optical tweezers. The molecules were then released by breaking the liposomes with UV laser pulses. Chemotaxis induced by the delivered molecules was confirmed by the migration of the growth cone toward the liposome position. Since the delivery can be manipulated with high temporal and spatial resolution and the number of molecules released can be controlled quite precisely by tuning the liposome size and the solution concentration, this technique opens new opportunities to investigate the effect of physiological active compounds as Netrin-1 to neuronal signalling and guidance, which represents an important issue in neurobiology.

  20. Graphene plasmonic lens for manipulating energy flow

    PubMed Central

    Wang, Guoxi; Liu, Xueming; Lu, Hua; Zeng, Chao

    2014-01-01

    Manipulating the energy flow of light is at the heart of modern information and communication technologies. Because photons are uncharged, it is still difficult to effectively control them by electrical means. Here, we propose a graphene plasmonic (GP) lens to efficiently manipulate energy flow by elaborately designing the thickness of the dielectric spacer beneath the graphene sheet. Different from traditional metal-based lenses, the proposed graphene plasmonic lens possesses the advantages of tunability and excellent confinement of surface plasmons. It is found that the proposed lens can be utilized to focus and collimate the GP waves propagating along the graphene sheet. Particularly, the lens is dispersionless over a wide frequency range and the performance of lens can be flexibly tuned by adjusting the bias voltage. As an application of such a lens, the image transfer of two point sources with a separation of λ0/30 is demonstrated. PMID:24517981

  1. Analyzing Array Manipulating Programs by Program Transformation

    NASA Technical Reports Server (NTRS)

    Cornish, J. Robert M.; Gange, Graeme; Navas, Jorge A.; Schachte, Peter; Sondergaard, Harald; Stuckey, Peter J.

    2014-01-01

    We explore a transformational approach to the problem of verifying simple array-manipulating programs. Traditionally, verification of such programs requires intricate analysis machinery to reason with universally quantified statements about symbolic array segments, such as "every data item stored in the segment A[i] to A[j] is equal to the corresponding item stored in the segment B[i] to B[j]." We define a simple abstract machine which allows for set-valued variables and we show how to translate programs with array operations to array-free code for this machine. For the purpose of program analysis, the translated program remains faithful to the semantics of array manipulation. Based on our implementation in LLVM, we evaluate the approach with respect to its ability to extract useful invariants and the cost in terms of code size.

  2. Reversible Bergman cyclization by atomic manipulation

    NASA Astrophysics Data System (ADS)

    Schuler, Bruno; Fatayer, Shadi; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2016-03-01

    The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C-C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

  3. Manipulator Controlled since a Smartphone by Bluetooth

    NASA Astrophysics Data System (ADS)

    Sánchez-Niño, F.; Rodríguez Pedroza, G.; Castillo Baldivia, E. G.

    2015-01-01

    We present the design of transmitter interface of data between a microcontroller and Smartphone to control a robot. We used a Bluetooth module to send the commands to control the moving of the manipulator. The system is formed by three parts: the first part, the program made in Android. It is run on the Smartphone that controls the position of the robot. The second part is the reception board based in the PIC18F4550 that energizes the joints of the manipulator. The last part is the driver. It use an integrated circuit L293D that is configured in two full bridges H. This system is a good tool for learning of programing, sensors, actuators, robotic, electronic and design electronic.

  4. Robotic-Movement Payload Lifter and Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); King, Bruce D. (Inventor); Collins, Timothy J. (Inventor); Dorsey, John T. (Inventor)

    2011-01-01

    A payload lifter/manipulator module includes a rotatable joint supporting spreader arms angularly spaced with respect to one another. A rigid arm is fixedly coupled to the joint and extends out therefrom to a tip. A tension arm has a first end and a second end with the first end being fixedly coupled to the tip of the rigid arm. The tension arm incorporates pivots along the length thereof. Each pivot can be engaged by or disengaged from the outboard end of a spreader arm based on a position of the spreader arm. A hoist, positioned remotely with respect to the module and coupled to the second end of the tension arm, controls the position of the spreader arms to thereby control the position of the rigid arm's tip. Payload lifter/manipulator assemblies can be constructed with one or more of the modules.

  5. Reversible Bergman cyclization by atomic manipulation.

    PubMed

    Schuler, Bruno; Fatayer, Shadi; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2016-03-01

    The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C-C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

  6. Repetitive control of electrically driven robot manipulators

    NASA Astrophysics Data System (ADS)

    Fateh, Mohammad Mehdi; Ahsani Tehrani, Hojjat; Karbassi, Seyed Mehdi

    2013-04-01

    This article presents a novel robust discrete repetitive control of electrically driven robot manipulators for tracking of a periodic trajectory. We propose a novel model, which presents the highly non-linear dynamics of robot manipulator in the form of linear discrete-time time-varying system. Based on the proposed model, we develop a two-term control law. The first term is an ordinary time-optimal and minimum-norm (TOMN) control by employing parametric controllers to guarantee stability. The second term is a novel robust control to improve the control performance in the face of uncertainties. The robust control estimates and compensates uncertainties including the parametric uncertainty, unmodelled dynamics and external disturbances. Performance of the proposed method is compared with two discrete methods, namely the TOMN control and an adaptive iterative learning (AIL) control. Simulation results confirm superiority of the proposed method in terms of the convergence speed and precision.

  7. QX MAN: Q and X file manipulation

    NASA Technical Reports Server (NTRS)

    Krein, Mark A.

    1992-01-01

    QX MAN is a grid and solution file manipulation program written primarily for the PARC code and the GRIDGEN family of grid generation codes. QX MAN combines many of the features frequently encountered in grid generation, grid refinement, the setting-up of initial conditions, and post processing. QX MAN allows the user to manipulate single block and multi-block grids (and their accompanying solution files) by splitting, concatenating, rotating, translating, re-scaling, and stripping or adding points. In addition, QX MAN can be used to generate an initial solution file for the PARC code. The code was written to provide several formats for input and output in order for it to be useful in a broad spectrum of applications.

  8. Light manipulation principles in biological photonic systems

    NASA Astrophysics Data System (ADS)

    Starkey, Tim; Vukusic, Pete

    2013-10-01

    The science of light and colour manipulation continues to generate interest across a range of disciplines, from mainstream biology, across multiple physics-based fields, to optical engineering. Furthermore, the study of light production and manipulation is of significant value to a variety of industrial processes and commercial products. Among the several key methods by which colour is produced in the biological world, this review sets out to describe, in some detail, the specifics of the method involving photonics in animal and plant systems; namely, the mechanism commonly referred to as structural colour generation. Not only has this theme been a very rapidly growing area of physics-based interest, but also it is increasingly clear that the biological world is filled with highly evolved structural designs by which light and colour strongly influence behaviours and ecological functions.

  9. Manipulation of vortices by magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Goa, P. E.; Hauglin, H.; Olsen, A.˚. A. F.; Shantsev, D.; Johansen, T. H.

    2003-01-01

    In a type-II superconductor, the magnetic field penetrates in the form of thin filaments called vortices. The controlled behavior of these vortices may provide the basis for a new generation of nanodevices. We present here a series of experiments showing simultaneous manipulation and imaging of individual vortices in a NbSe2 single crystal. The magnetic field from a Bloch wall in a ferrite garnet film (FGF) is used to manipulate the vortices. High-resolution magneto-optical imaging enables real-time observation of the vortex positions using the Faraday effect in the same FGF. Depending on the thickness of the sample, the vortices are either swept away or merely bent with the Bloch wall.

  10. Control strategy for cooperating disparate manipulators

    NASA Technical Reports Server (NTRS)

    Lew, Jae Young

    1989-01-01

    To manipulate large payloads typical of space construction, the concept of a small arm mounted on the end of a large arm is introduced. The main purposes of such a configuration are to increase the structural stiffness of the robot by bracing against or locking to a stationary frame, and to maintain a firm position constraint between the robot's base and workpieces by grasping them. Possible topologies for a combination of disparate large and small arms are discussed, and kinematics, dynamics, controls, and coordination of the two arms, especially when they brace at the tip of the small arm, are developed. The feasibility and improvement in performance are verified, not only with analytical work and simulation results but also with experiments on the existing arrangement Robotic Arm Large and Flexible and Small Articulated Manipulator.

  11. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  12. Adaptive control of space based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.

  13. Force override rate control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Driels, Morris

    1994-01-01

    The work reported deals with the problem of operating a robot manipulator under a rate control mode while the end effector is not in contact with the external environment, and then switching to a force control mode when contact is made. The paper details how the modal changeover may be accomplished in a manner transparent to the operator, and will allow operator applied forces to be reflected at the robot end effector. A one degree of freedom demonstration system is used to illustrate the concept, which is then applied to a PUMA manipulator. Sample code for the implementation of the control is provided, experimental results show that the optimum setting for the gain is a function of the compliance of the end effector, and the compliance of the external constraint.

  14. Manipulator control and mechanization: A telerobot subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Wilcox, B.

    1987-01-01

    The short- and long-term autonomous robot control activities in the Robotics and Teleoperators Research Group at the Jet Propulsion Laboratory (JPL) are described. This group is one of several involved in robotics and is an integral part of a new NASA robotics initiative called Telerobot program. A description of the architecture, hardware and software, and the research direction in manipulator control is given.

  15. Multivariable PID Controller For Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Tarokh, Mahmoud

    1990-01-01

    Gains updated during operation to cope with changes in characteristics and loads. Conceptual multivariable controller for robotic manipulator includes proportional/derivative (PD) controller in inner feedback loop, and proportional/integral/derivative (PID) controller in outer feedback loop. PD controller places poles of transfer function (in Laplace-transform space) of control system for linearized mathematical model of dynamics of robot. PID controller tracks trajectory and decouples input and output.

  16. Evolution and manipulation of parasitoid egg load.

    PubMed

    Gandon, Sylvain; Varaldi, Julien; Fleury, Frédéric; Rivero, Ana

    2009-11-01

    In proovigenic parasitoids such as Leptopilina boulardi, the female emerges with a limited egg load and no further eggs are produced during its adult life. A female thus runs the risk of exhausting this limited supply of eggs before the end of her life. Given that the production of an egg is costly, what is the evolutionarily stable egg load at emergence? This question has attracted a lot of attention in the last decade. Here, we analyze a model that allows us to track both the evolution and the population dynamics of a solitary, proovigenic parasitoid. First, we show how host-parasitoid dynamics feedbacks on the evolution of parasitoid egg load. Second, we use this model to consider the situation in which the parasitoid can be infected by a virus that manipulates the oviposition behavior of the females. In particular, we model the effect of the LbFV virus in L. boulardi, a virus that is known to enhance its horizontal transmission by increasing superparasitism (i.e., the laying of eggs in a host already parasitized). Specifically, we model (1) the effect of the virus on parasitoid egg load strategies, and (2) the evolution of egg load manipulation by the virus. This analysis yields two alternative, yet not mutually exclusive, adaptive explanations for the observation that females infected by the virus harbor higher egg loads than uninfected females. Infected females could either respond plastically to the infection status, or be manipulated by the virus. Further experimental work is required to distinguish between these two hypotheses. In a broader context, we present a general theoretical framework that allows us to study the epidemiology, the evolution, the coevolution, and the evolution of manipulation of various reproductive strategies of parasitoids.

  17. Mycobacterium tuberculosis: Manipulator of Protective Immunity

    PubMed Central

    Korb, Vanessa C.; Chuturgoon, Anil A.; Moodley, Devapregasan

    2016-01-01

    Mycobacterium tuberculosis (MTB) is one of the most successful pathogens in human history and remains a global health challenge. MTB has evolved a plethora of strategies to evade the immune response sufficiently to survive within the macrophage in a bacterial-immunological equilibrium, yet causes sufficient immunopathology to facilitate its transmission. This review highlights MTB as the driver of disease pathogenesis and presents evidence of the mechanisms by which MTB manipulates the protective immune response into a pathological productive infection. PMID:26927066

  18. Brotherly Love? The Manipulation of Body Boundaries

    ERIC Educational Resources Information Center

    Beck, Benjamin

    2011-01-01

    This article is about a street-wise boy who is unaware that his younger brother has been using clever manipulation to get him into trouble. Nicholas is a 12-year-old boy whose father was recently given a life sentence for murder. Nicholas is in a boxing league and uses his fighting skills on the streets. Angel is Nicholas' nine-year-old brother…

  19. Telerobotic operation of conventional robot manipulators

    SciTech Connect

    Boissiere, P.T.; Harrigan, R.W.

    1988-01-01

    This paper discusses a new telerobotic control concept and its implementation using a PUMA-560 robot manipulator. The control concept couples human supervisory commands with computer reasoning. The control system is responsive and accomplishes an operator's commands while providing obstacle avoidance and controlled interactions with the environment where desired. This provides a system which not only assists the operator in accomplishing tasks but modifies inappropriate operator commands which can result in safety hazards and/or equipment damage. 15 refs., 6 figs.

  20. Manipulations of vibrating micro magnetic particle chains

    NASA Astrophysics Data System (ADS)

    Li, Yan-Hom; Sheu, Shih-Tsung; Pai, Jay-Min; Chen, Ching-Yao

    2012-04-01

    We investigate the motion of a micro-chain consisting of several magnetic particles. The chain is firstly formed by a uniform directional field, and then manipulated by a vibrating field. We demonstrate where the chain appears to display distinct behaviors, from rigid body vibrations, bending distortions to breaking failures, by increasing either the chain's length or vibrating amplitude. In addition, the vibrating chain can be successfully driven forward, mimicking a micro-swimmer by connecting particles of different sizes.

  1. BASIC Data Manipulation And Display System (BDMADS)

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.

    1983-01-01

    BDMADS, a BASIC Data Manipulation and Display System, is a collection of software programs that run on an Apple II Plus personal computer. BDMADS provides a user-friendly environment for the engineer in which to perform scientific data processing. The computer programs and their use are described. Jet engine performance calculations are used to illustrate the use of BDMADS. Source listings of the BDMADS programs are provided and should permit users to customize the programs for their particular applications.

  2. Data structures for DNA sequence manipulation.

    PubMed Central

    Lawrence, C B

    1986-01-01

    Two data structures designated Fragment and Construct are described. The Fragment data structure defines a continuous nucleic acid sequence from a unique genetic origin. The Construct defines a continuous sequence composed of sequences from multiple genetic origins. These data structures are manipulated by a set of software tools to simulate the construction of mosaic recombinant DNA molecules. They are also used as an interface between sequence data banks and analytical programs. PMID:3753765

  3. Force feedback systems in undersea manipulator applications

    NASA Technical Reports Server (NTRS)

    Pesch, A. J.; Bertsche, W. R.; Winget, C. L.

    1975-01-01

    The manual control behavior of the operator with various levels of manipulator system complexity was studied in order to determine the relationships among control system dynamics, certain base engineering variables, controller designs and system performance. Based on the data obtained, a set of general transfer functions were prepared to provide a mathematical model of the various levels of potential force feedback fidelity as a function of force backlash present in alternate engineering designs.

  4. Control of a flexible bracing manipulator

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo

    1991-01-01

    Many applications of robotic manipulator arms require operation in contact and noncontact regimes. Control of impact between the arm's tip and the environment has been largely ignored in prior research. The impact phenomena was investigated through simulation and experiment for the realization of the bracing strategy, and the key factors of the behavior were understood well. The approaching velocity is dominant parameter for the magnitude of the impact force. The impact is also affected by the compliance of the environmental surface.

  5. Magnus force effect in optical manipulation

    NASA Astrophysics Data System (ADS)

    Cipparrone, Gabriella; Hernandez, Raul Josue; Pagliusi, Pasquale; Provenzano, Clementina

    2011-07-01

    The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

  6. Magnus force effect in optical manipulation

    SciTech Connect

    Cipparrone, Gabriella; Pagliusi, Pasquale; Hernandez, Raul Josue; Provenzano, Clementina

    2011-07-15

    The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

  7. Rainfall Manipulation Plot Study (RaMPS)

    DOE Data Explorer

    Blair, John [Kansas State University; Fay, Phillip [USDA-ARS; Knapp, Alan [Colorado State University; Collins, Scott [University of New Mexico; Smith, Melinda [Yale University

    Rainfall Manipulation Plots facility (RaMPs) is a unique experimental infrastructure that allows us to manipulate precipitation events and temperature, and assess population community, and ecosystem responses in native grassland. This facility allows us to manipulate the amount and timing of individual precipitation events in replicated field plots at the Konza Prairie Long-Term Ecological Research (LTER) site. Questions we are addressing include: • What is the relative importance of more extreme precipitation patterns (increased climatic variability) vs. increased temperatures (increased climatic mean) with regard to their impact on grassland ecosystem structure and function? Both projected climate change factors are predicted to decrease soil water availability, but the mechanisms by which this resource depletion occurs differ. • Will altered precipitation patterns, increased temperatures and their interaction increase opportunities for invasion by exotic species? • Will long-term (6-10 yr) trajectories of community and ecosystem change in response to more extreme precipitation patterns continue at the same rate as initial responses from years 1-6? Or will non-linear change occur as potential ecological thresholds are crossed? And will increased temperatures accelerate these responses? Data sets are available as ASCII files, in Excel spreadsheets, and in SAS format. (Taken from http://www.konza.ksu.edu/ramps/backgrnd.html

  8. Kinesthetic coupling between operator and remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Salisbury, J. K., Jr.

    1980-01-01

    A universal force-reflecting hand controller has been developed which allows the establishment of a kinesthetic coupling between the operator and a remote manipulator. The six-degree-of-freedom controller was designed to generate forces and torques on its three positional and three rotational axes in order to permit the operator to accurately feel the forces encountered by the manipulator and be as transparent to operate as possible. The universal controller has been used in an application involving a six-degree-of-freedom mechanical arm equipped with a six-dimensional force-torque sensor at its base. In this application, the hand controller acts as a position control input device to the arm, while forces and torques sensed at the base of the mechanical hand back drive the hand controller. The positional control relation and the back driving of the controller according to inputs experienced by the force-torque sensor are established through complex mathematical transformations performed by a minicomputer. The hand controller is intended as a development tool for investigating force-reflecting master-slave manipulator control technology.

  9. Biological cell manipulation by magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gertz, Frederick; Khitun, Alexander

    2016-02-01

    We report a manipulation of biological cells (erythrocytes) by magnetite (Fe3O4) nanoparticles in the presence of a magnetic field. The experiment was accomplished on the top of a micro-electromagnet consisting of two magnetic field generating contours. An electric current flowing through the contour(s) produces a non-uniform magnetic field, which is about 1.4 mT/μm in strength at 100 mA current in the vicinity of the current-carrying wire. In responses to the magnetic field, magnetic nanoparticles move towards the systems energy minima. In turn, magnetic nanoparticles drag biological cells in the same direction. We present experimental data showing cell manipulation through the control of electric current. This technique allows us to capture and move cells located in the vicinity (10-20 microns) of the current-carrying wires. One of the most interesting results shows a periodic motion of erythrocytes between the two conducting contours, whose frequency is controlled by an electric circuit. The obtained results demonstrate the feasibility of non-destructive cell manipulation by magnetic nanoparticles with micrometer-scale precision.

  10. The Spartacus telethesis: manipulator control studies.

    PubMed

    Guittet, J; Kwee, H H; Quetin, N; Yclon, J

    1979-01-01

    This paper describes a method and an experimental system permitting a severely handicapped operator, such as a quadriplegic, to control a telemanipulator. These developments form the first phase in the design of the Spartacus "telethesis". This is a manipulator system specifically developed for a quadriplegic person. Manipulator control experiments which are discussed concern four quadriplegics who have used the experimental system for significant periods of time. The present system is a laboratory simulation of a telethesis, consisting of an industrial manipulator controlled by a mini-computer. A flexible semi-sequential control and a variety of transducers permit the system to be adapted to the individual user. Thus far, the experiments performed have shown the feasibility for the four quadriplegics to effectively control a telemanipulator, using head movements and some remaining arm movements in various modes of end-point control. In particular, a position control and a "piloting" type of velocity control, both with the addition of some force limitation, have given promising results.

  11. Optogenetic Glia Manipulation: Possibilities and Future Prospects

    PubMed Central

    Cho, Woo-Hyun; Barcelon, Ellane

    2016-01-01

    Our brains are composed of two distinct cell types: neurons and glia. Emerging data from recent investigations show that glial cells, especially astrocytes and microglia, are able to regulate synaptic transmission and thus brain information processing. This suggests that, not only neuronal activity, but communication between neurons and glia also plays a key role in brain function. Thus, it is currently well known that the physiology and pathophysiology of brain function can only be completely understood by considering the interplay between neurons and glia. However, it has not yet been possible to dissect glial cell type-specific roles in higher brain functions in vivo. Meanwhile, the recent development of optogenetics techniques has allowed investigators to manipulate neural activity with unprecedented temporal and spatial precision. Recently, a series of studies suggested the possibility of applying this cutting-edge technique to manipulate glial cell activity. This review briefly discusses the feasibility of optogenetic glia manipulation, which may provide a technical innovation in elucidating the in vivo role of glial cells in complex higher brain functions. PMID:27790054

  12. Morphing electroadhesive interface to manipulate uncooperative objects

    NASA Astrophysics Data System (ADS)

    Savioli, Livia; Sguotti, Giovanni; Francesconi, Alessandro; Branz, Francesco; Krahn, Jeff; Menon, Carlo

    2014-03-01

    The possibility of handling uncooperative objects, i.e. objects not equipped with any features that can aid their manipulation, is of particular interest for both terrestrial and space robotic applications. In this framework, this paper deals with the development and testing of a smart material substrate, which can be integrated into an end-effector device, where morphing and electro-adhesive capabilities are combined to allow the manipulation of uncooperative objects of different shapes and materials. Compliance and adhesion properties are obtained by creating a conductive pattern of electrodes embodied on the surface of a polymeric substrate. On one hand, the polymeric material, activated by a change in temperature, can adapt to any shape when it is heated, and maintain the deformed shape after being cooled, even when the load is removed, becoming compliant with the objects surface. On the other hand, the conductive pattern is responsible for the adhesive effect: when a high voltage is applied, the electric field generated induces an opposite charge on the objects surface establishing reversible attraction forces. Furthermore, the conductive pattern could be used to activate the morphing behaviour when the manipulator and the target object come into contact. A resistiveelectroadhesive pad is realized and some tests are performed to verify the heating behavior of the electrodes and the electroadhesion forces achievable. Morphing tests are also performed to verify the ability of the polymeric substrate to maintain the deformed shape after cooling.

  13. Optofluidic cell manipulation for a biological microbeam

    NASA Astrophysics Data System (ADS)

    Grad, Michael; Bigelow, Alan W.; Garty, Guy; Attinger, Daniel; Brenner, David J.

    2013-01-01

    This paper describes the fabrication and integration of light-induced dielectrophoresis for cellular manipulation in biological microbeams. An optoelectronic tweezers (OET) cellular manipulation platform was designed, fabricated, and tested at Columbia University's Radiological Research Accelerator Facility (RARAF). The platform involves a light induced dielectrophoretic surface and a microfluidic chamber with channels for easy input and output of cells. The electrical conductivity of the particle-laden medium was optimized to maximize the dielectrophoretic force. To experimentally validate the operation of the OET device, we demonstrate UV-microspot irradiation of cells containing green fluorescent protein (GFP) tagged DNA single-strand break repair protein, targeted in suspension. We demonstrate the optofluidic control of single cells and groups of cells before, during, and after irradiation. The integration of optofluidic cellular manipulation into a biological microbeam enhances the facility's ability to handle non-adherent cells such as lymphocytes. To the best of our knowledge, this is the first time that OET cell handling is successfully implemented in a biological microbeam.

  14. A virtual manipulator model for space robotic systems

    NASA Technical Reports Server (NTRS)

    Dubowsky, S.; Vafa, Z.

    1987-01-01

    Future robotic manipulators carried by a spacecraft will be required to perform complex tasks in space, like repairing satellites. Such applications of robotic manipulators will encounter a number of kinematic, dynamic and control problems due to the dynamic coupling between the manipulators and the spacecraft. A new analytical modeling method for studying the kinematics and dynamics of manipulators in space is presented. The problem is treated by introducing the concept of a Virtual Manipulator (VM). The kinematic and dynamic motions of the manipulator, vehicle and payload, can be described relatively easily in terms of the Virtual Manipulator movements, which have a fixed base in inertial space at a point called a Virtual Ground. It is anticipated that the approach described here will aid in the design and development of future space manipulator systems.

  15. The use of hydralazine to manipulate tumour temperatures during hyperthermia.

    PubMed

    Dewhirst, M W; Prescott, D M; Clegg, S; Samulski, T V; Page, R L; Thrall, D E; Leopold, K; Rosner, G; Acker, J C; Oleson, J R

    1990-01-01

    Hydralazine is an antihypertensive drug which theoretically could increase tumour temperatures during hyperthermia via reduction in tumour blood flow from a vascular 'steal' phenomenon. Doses that are therapeutically effective in reducing blood pressure in hypertensive patients would probably cause postural hypotension and other side-effects in normotensive patients beyond the hyperthermia treatment session, however. This study was designed to evaluate whether hydralazine, when administered at a safe dose for normotensive patients (0.125 mg/kg, i.v.) would be effective in increasing tumour temperatures during hyperthermia. The working hypothesis was that hydralazine at a dose of 0.125 mg/kg would be effective in raising tumour temperatures during hyperthermia treatment with minimal change in blood pressure. Fourteen human and five canine subjects were given hydralazine (0.125 mg/kg, i.v.) at the midpoint of a hyperthermia session. Temperatures and blood pressures were monitored before and after drug administration. Although hydralazine resulted in slight reduction in blood pressure, it was ineffective in increasing tumour temperatures in human patients (average maximum rise in median temperature was 0.26 +/- 0.32 degrees C). In canine subjects the same dose of hydralazine was effective in reducing blood pressure in four of five subjects studied (mean maximum drop was 22.7 +/- 4.1 mmHg) and the median temperature rose 0.8 +/- 0.7 degrees C. In the canine subjects the greater the decrease in blood pressure, the greater the increase in temperature. These results suggest that a rise in tumour temperature induced by hydralazine is dependent on creating a drop in blood pressure. Future studies in this laboratory will include tumour blood flow manipulation with antihypertensives which have a shorter half-life and a titratable effect. Using this approach, hypotension, which seems to be required to raise tumour temperature, will be more controllable in terms of magnitude

  16. [Subjective sensitivity to noise].

    PubMed

    Belojević, G

    1991-01-01

    It is likely that individual variations in subjectively estimated noise sensitivity influence different social and psychophysiological reactions of people exposed to noise. Subjective noise sensitivity might be a relatively stable personal characteristic. A correlation have been found between high sensitiveness to noise and some medical symptoms (sleep disturbance, nervousness, depression), and worse work performance in noisy environments. An introvert person with neurotic symptoms is more frequently found in people highly sensitive to noise. Testing for subjective sensitivity to noise might be helpful in professional selection and orientation for noisy work-places as well as in housing advising.

  17. Kinematics and dynamics of a six-degree-of-freedom robot manipulator with closed kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.

  18. Mathematical Manipulative Models: In Defense of "Beanbag Biology"

    ERIC Educational Resources Information Center

    Jungck, John R.; Gaff, Holly; Weisstein, Anton E.

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process--1) use of physical manipulatives, 2) interactive exploration of computer…

  19. Experiential Learning of Mathematics: Using Manipulatives. ERIC Digest.

    ERIC Educational Resources Information Center

    Hartshorn, Robert; Boren, Sue

    This ERIC digest examines recent research about the use of manipulatives to teach mathematics. "Manipulatives" refers to objects that can be touched and moved by students to introduce or reinforce a mathematical concept. The digest also speculates on some of the challenges affecting future use of manipulatives. Since the 19th century,…

  20. Investigating Preservice Mathematics Teachers' Manipulative Material Design Processes

    ERIC Educational Resources Information Center

    Sandir, Hakan

    2016-01-01

    Students use concrete manipulatives to form an imperative affiliation between conceptual and procedural knowledge (Balka, 1993). Hence, it is necessary to design specific mathematics manipulatives that focus on different mathematical concepts. Preservice teachers need to know how to make and use manipulatives that stimulate students' thinking as…

  1. Virtual Manipulatives on the Interactive Whiteboard: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Mildenhall, Paula; Swan, Paul; Northcote, Maria; Marshall, Linda

    2008-01-01

    As part of the project titled "Hands-On Heads-On: The Effective Use of Manipulatives Both Virtual and Physical" being undertaken at Edith Cowan University, there was an investigation into the use of virtual manipulatives and the interactive whiteboard (IWB). Virtual manipulatives may be defined as a virtual representation of a physical…

  2. Physical versus Virtual Manipulative Experimentation in Physics Learning

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios

    2011-01-01

    The aim of this study was to investigate whether physical or virtual manipulative experimentation can differentiate physics learning. There were four experimental conditions, namely Physical Manipulative Experimentation (PME), Virtual Manipulative Experimentation (VME), and two sequential combinations of PME and VME, as well as a control condition…

  3. An Embedded and Embodied Cognition Review of Instructional Manipulatives

    ERIC Educational Resources Information Center

    Pouw, Wim T. J. L.; van Gog, Tamara; Paas, Fred

    2014-01-01

    Recent literature on learning with instructional manipulatives seems to call for a moderate view on the effects of perceptual and interactive richness of instructional manipulatives on learning. This "moderate view" holds that manipulatives' perceptual and interactive richness may compromise learning in two ways: (1) by imposing a…

  4. Joint Torque Reduction of a Three Dimensional Redundant Planar Manipulator

    PubMed Central

    Yahya, Samer; Moghavvemi, Mahmoud; Almurib, Haider Abbas F.

    2012-01-01

    Research on joint torque reduction in robot manipulators has received considerable attention in recent years. Minimizing the computational complexity of torque optimization and the ability to calculate the magnitude of the joint torque accurately will result in a safe operation without overloading the joint actuators. This paper presents a mechanical design for a three dimensional planar redundant manipulator with the advantage of the reduction in the number of motors needed to control the joint angle, leading to a decrease in the weight of the manipulator. Many efforts have been focused on decreasing the weight of manipulators, such as using lightweight joints design or setting the actuators at the base of the manipulator and using tendons for the transmission of power to these joints. By using the design of this paper, only three motors are needed to control any n degrees of freedom in a three dimensional planar redundant manipulator instead of n motors. Therefore this design is very effective to decrease the weight of the manipulator as well as the number of motors needed to control the manipulator. In this paper, the torque of all the joints are calculated for the proposed manipulator (with three motors) and the conventional three dimensional planar manipulator (with one motor for each degree of freedom) to show the effectiveness of the proposed manipulator for decreasing the weight of the manipulator and minimizing driving joint torques. PMID:22969326

  5. Improving Children's Listening Comprehension with a Manipulation Strategy

    ERIC Educational Resources Information Center

    Marley, Scott C.; Szabo, Zsuzsanna

    2010-01-01

    The authors examined the cognitive benefits of physical manipulation. Participants were 76 kindergarten and first-grade students randomly assigned to 2 strategies: stories with pictures or manipulation. In the pictures strategy, participants listened to story content and viewed pictures. In the manipulation strategy, participants moved…

  6. 19 CFR 146.33 - Temporary deposit for manipulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Temporary deposit for manipulation. 146.33 Section... deposit for manipulation. Imported merchandise for which an entry has been made and which has remained in continuous Customs custody may be brought temporarily to a zone for manipulation and return to...

  7. A Prototype Manipulation System for Mars Rover Science Operations

    NASA Technical Reports Server (NTRS)

    Volpe, R.; Ohm, T.; Petras, R.; Welch, R.; Ivlev, R.

    1997-01-01

    This paper provides an overview of a new manipulation system developed for sampling and instrument placement from small autonomous mobile robots for Mars exploration. Selected out of the design space, two manipulators have been constructed and integrated into the Rocky 7 Mars rover prototype. This paper describes objectives and constraints for these manipulators, and presents the finished system and some results from its operation.

  8. 17 CFR 180.2 - Prohibition on price manipulation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Prohibition on price manipulation. 180.2 Section 180.2 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION PROHIBITION AGAINST MANIPULATION § 180.2 Prohibition on price manipulation. It shall be unlawful for...

  9. 19 CFR 146.33 - Temporary deposit for manipulation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Temporary deposit for manipulation. 146.33 Section... deposit for manipulation. Imported merchandise for which an entry has been made and which has remained in continuous Customs custody may be brought temporarily to a zone for manipulation and return to...

  10. 19 CFR 146.33 - Temporary deposit for manipulation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Temporary deposit for manipulation. 146.33 Section... deposit for manipulation. Imported merchandise for which an entry has been made and which has remained in continuous Customs custody may be brought temporarily to a zone for manipulation and return to...

  11. 19 CFR 146.33 - Temporary deposit for manipulation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Temporary deposit for manipulation. 146.33 Section... deposit for manipulation. Imported merchandise for which an entry has been made and which has remained in continuous Customs custody may be brought temporarily to a zone for manipulation and return to...

  12. 17 CFR 180.2 - Prohibition on price manipulation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Prohibition on price manipulation. 180.2 Section 180.2 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION PROHIBITION AGAINST MANIPULATION § 180.2 Prohibition on price manipulation. It shall be unlawful for...

  13. 17 CFR 180.2 - Prohibition on price manipulation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Prohibition on price manipulation. 180.2 Section 180.2 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION (CONTINUED) PROHIBITION AGAINST MANIPULATION § 180.2 Prohibition on price manipulation. It shall be...

  14. 19 CFR 146.33 - Temporary deposit for manipulation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Temporary deposit for manipulation. 146.33 Section... deposit for manipulation. Imported merchandise for which an entry has been made and which has remained in continuous Customs custody may be brought temporarily to a zone for manipulation and return to...

  15. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles

    PubMed Central

    Haavik, Heidi; Niazi, Imran Khan; Jochumsen, Mads; Sherwin, Diane; Flavel, Stanley; Türker, Kemal S.

    2016-01-01

    This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP) amplitudes. In experiment one, transcranial magnetic stimulation input–output (TMS I/O) curves for an upper limb muscle (abductor pollicus brevis; APB) were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA) pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax) for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP), late bereitschafts potential (LBP) and also for peak negativity (PN). The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input–output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence) were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle and/or are

  16. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles.

    PubMed

    Haavik, Heidi; Niazi, Imran Khan; Jochumsen, Mads; Sherwin, Diane; Flavel, Stanley; Türker, Kemal S

    2016-12-23

    This study investigates whether spinal manipulation leads to changes in motor control by measuring the recruitment pattern of motor units in both an upper and lower limb muscle and to see whether such changes may at least in part occur at the cortical level by recording movement related cortical potential (MRCP) amplitudes. In experiment one, transcranial magnetic stimulation input-output (TMS I/O) curves for an upper limb muscle (abductor pollicus brevis; APB) were recorded, along with F waves before and after either spinal manipulation or a control intervention for the same subjects on two different days. During two separate days, lower limb TMS I/O curves and MRCPs were recorded from tibialis anterior muscle (TA) pre and post spinal manipulation. Dependent measures were compared with repeated measures analysis of variance, with p set at 0.05. Spinal manipulation resulted in a 54.5% ± 93.1% increase in maximum motor evoked potential (MEPmax) for APB and a 44.6% ± 69.6% increase in MEPmax for TA. For the MRCP data following spinal manipulation there were significant difference for amplitude of early bereitschafts-potential (EBP), late bereitschafts potential (LBP) and also for peak negativity (PN). The results of this study show that spinal manipulation leads to changes in cortical excitability, as measured by significantly larger MEPmax for TMS induced input-output curves for both an upper and lower limb muscle, and with larger amplitudes of MRCP component post manipulation. No changes in spinal measures (i.e., F wave amplitudes or persistence) were observed, and no changes were shown following the control condition. These results are consistent with previous findings that have suggested increases in strength following spinal manipulation were due to descending cortical drive and could not be explained by changes at the level of the spinal cord. Spinal manipulation may therefore be indicated for the patients who have lost tonus of their muscle and/or are

  17. The Effects of Different Sets of Disclosure Instructions on Subject Productivity and Rated Satisfaction.

    ERIC Educational Resources Information Center

    Berger, Sheldon Norman

    1978-01-01

    Investigated the effects of different sets of instructions (feeling disclosure, logical disclosure, placebo control, and control) to discuss personal concerns on subject productivity and subject satisfaction ratings. Analyses indicated the instructional manipulation was effective in producing different kinds and amounts of talk by condition.…

  18. Electro-optic bandwidth manipulation of quantum light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karpinski, Michal; Jachura, Michal; Wright, Laura J.; Smith, Brian J.

    2016-04-01

    Spectral-temporal manipulation of optical pulses has enabled numerous developments within a broad range of research topics, ranging from fundamental science to practical applications. Within quantum optics spectral-temporal degree of freedom of light offers a promising platform for integrated photonic quantum information processing. An important challenge in experimentally realizing spectral-temporal manipulation of quantum states of light is the need for highly efficient manipulation tools. In this context the intrinsically deterministic electro-optic methods show great promise for quantum applications. We experimentally demonstrate application of electro-optic platform for spectral-temporal manipulation of ultrashort pulsed quantum light. Using techniques analogous to serrodyne frequency shifting we show active spectral translation of few-picosecond single photon pulses by up to 0.5 THz. By employing an approach based on an electro-optic time lens we demonstrate up to 6-fold spectral compression of heralded single photon pulses with efficiency that enables us to significantly increase single photon flux through a narrow bandpass filter. We realize the required temporal phase manipulation by driving a lithium niobate waveguided electrooptic modulator with 33 dBm sinusoidal RF field at the frequency of either 10 GHz or 40 GHz. We use a phase lock loop to temporally lock the RF field to the 80 MHz repetition rate of approximately 1 ps long optical pulses. Heralded single photon wavepackets are generated by means of spontaneous parametric down-conversion in potassium dihydrogen phosphate (KDP) crystal, which enables preparation of spectrally pure single photon wavepackets without the need for spectral filtering. Spectral shifting is achieved by locking single-photon pulses to the linear slope of sinusoidal 40 GHz RF phase modulation. We verify the spectral shift by performing spectrally resolved heralded single photon counting, using frequency-to-time conversion by

  19. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2014-11-01

    The effort of carrying additional mass at different body locations is important in ergonomics and in designing wearable robotics. We investigate the metabolic rate of carrying a load as a function of its mass, its location on the body and the subject's walking speed. Novel metabolic rate prediction equations for walking while carrying loads at the ankle, knees and back were developed based on experiments where subjects walked on a treadmill at 4, 5 or 6km/h bearing different amounts of added mass (up to 2kg per leg and 22kg for back). Compared to previously reported equations, ours are 7-69% more accurate. Results also show that relative cost for carrying a mass at a distal versus a proximal location changes with speed and mass. Contrary to mass carried on the back, mass attached to the leg cannot be modeled as an increase in body mass.

  20. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.

    PubMed

    Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio

    2012-05-01

    In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.