Taxonomy based analysis of force exchanges during object grasping and manipulation
Martin-Brevet, Sandra; Jarrassé, Nathanaël; Burdet, Etienne
2017-01-01
The flexibility of the human hand in object manipulation is essential for daily life activities, but remains relatively little explored with quantitative methods. On the one hand, recent taxonomies describe qualitatively the classes of hand postures for object grasping and manipulation. On the other hand, the quantitative analysis of hand function has been generally restricted to precision grip (with thumb and index opposition) during lifting tasks. The aim of the present study is to fill the gap between these two kinds of descriptions, by investigating quantitatively the forces exerted by the hand on an instrumented object in a set of representative manipulation tasks. The object was a parallelepiped object able to measure the force exerted on the six faces and its acceleration. The grasping force was estimated from the lateral force and the unloading force from the bottom force. The protocol included eleven tasks with complementary constraints inspired by recent taxonomies: four tasks corresponding to lifting and holding the object with different grasp configurations, and seven to manipulating the object (rotation around each of its axis and translation). The grasping and unloading forces and object rotations were measured during the five phases of the actions: unloading, lifting, holding or manipulation, preparation to deposit, and deposit. The results confirm the tight regulation between grasping and unloading forces during lifting, and extend this to the deposit phase. In addition, they provide a precise description of the regulation of force exchanges during various manipulation tasks spanning representative actions of daily life. The timing of manipulation showed both sequential and overlapping organization of the different sub-actions, and micro-errors could be detected. This phenomenological study confirms the feasibility of using an instrumented object to investigate complex manipulative behavior in humans. This protocol will be used in the future to investigate upper-limb dexterity in patients with sensory-motor impairments. PMID:28562617
Forces exerted during microneurosurgery: a cadaver study
Marcus, Hani J; Zareinia, Kourosh; Gan, Liu Shi; Yang, Fang Wei; Lama, Sanju; Yang, Guang-Zhong; Sutherland, Garnette R
2014-01-01
Background A prerequisite for the successful design and use of robots in neurosurgery is knowledge of the forces exerted by surgeons during neurosurgical procedures. The aim of the present cadaver study was to measure the surgical instrument forces exerted during microneurosurgery. Methods An experimental apparatus was set up consisting of a platform for human cadaver brains, a Leica microscope to provide illumination and magnification, and a Quanser 6 Degrees-Of-Freedom Telepresence System for tissue manipulation and force measurements. Results The measured forces varied significantly depending on the region of the brain (P = 0.016) and the maneuver performed (P < 0.0001). Moreover, blunt arachnoid dissection was associated with greater force exertion than sharp dissection (0.22 N vs. 0.03 N; P = 0.001). Conclusions The forces necessary to manipulate brain tissue were surprisingly low and varied depending on the anatomical structure being manipulated, and the maneuver performed. Knowledge of such forces could well increase the safety of microsurgery. © 2014 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery published by John Wiley & Sons, Ltd. PMID:24431265
Children and Complementary Health Approaches
... were natural products 2 (fish oil, melatonin, and probiotics), and chiropractic or osteopathic manipulation. For children, complementary ... nih.gov E-mail: ods@nih.gov U.S. Food and Drug Administration (FDA) The FDA oversees the ...
A Note on Complementary Medicines
... Photo: iStock Herbal supplements, meditation, chiropractic manipulation, and acupuncture are types of complementary and alternative medicine (CAM) ... effective. For example, NCCAM studies have shown that: Acupuncture can provide pain relief and improve function for ...
Allen, Kathleen B; Layton, Bradley E
2009-11-01
Using micropipette-based probing methods and an image processing algorithm for measuring deformation, the bending energies of aspirated DOPC:DOPS liposomes were estimated both before and during manipulation with an injection pipette. We found that unlike cells, which are penetrable with pipettes as large as 2mum in diameter and at speeds as slow as 4mum/s, liposomes, without a cytoskeleton to resist deformation, are impenetrable with pipettes as small as 25nm in diameter and at speeds as great as 4000mum/s. Using energy calculations and the previously published mechanical properties of DOPC:DOPS liposomes, the forces that injection pipettes of various sizes can exert onto liposomes during probing were estimated. Forces ranged from approximately 1pN to 6pN, and the forces exerted onto these liposomes increased as pipette size diminished. The quantification of the amount of force exerted on liposomes or cells during manipulation can assist in minimizing the damage during single-liposome, single-cell, or single-organelle injections and surgeries.
Effect of Sacroiliac Joint Manipulation on Selected Gait Parameters in Healthy Subjects.
Wójtowicz, Sebastian; Sajko, Igor; Hadamus, Anna; Mosiołek, Anna; Białoszewski, Dariusz
2017-08-31
The sacroiliac joints have complicated biomechanics. While the movements in the joints are small, they exert a significant effect on gait. This study aimed to assess how sacroiliac joint manipulation influences selected gait parameters. The study enrolled 57 healthy subjects. The experimental group consisted of 26 participants diagnosed with dysfunction of one sacroiliac joint. The control group was composed of 31 persons. All subjects from the experimental group underwent sacroiliac joint manipulation. The experimental group showed significant lengthening of the step on both sides and the stride length in this group increased as well. Moreover, the duration of the stride increased (p=0.000826). The maximum midfoot pressure was higher and maximum heel pressure decreased. The differences were statistically significant. 1. Subclinical dysfunctions of the sacroiliac joints may cause functional gait disturbance. 2. Manipulation of the iliosacral joint exerts a significant effect on gait parameters, which may lead to improved gait economy and effec-tiveness. 3. Following manipulation of one iliosacral joint, altered gait parameters are noted on both the manipulated side and the contralateral side, which may translate into improved quality of locomotion.
The concomitant effects of phrase length and informational content in sentence comprehension.
Thornton, R; MacDonald, M C; Arnold, J E
2000-03-01
Recent evidence suggests that phrase length plays a crucial role in modification ambiguities. Using a self-paced reading task, we extended these results by examining the additional pragmatic effects that length manipulations may exert. The results demonstrate that length not only modulates modification preferences directly, but that it also necessarily changes the informational content of a sentence, which itself affects modification preferences. Our findings suggest that the same length manipulation affects multiple sources of constraints, both structural and pragmatic, which can each exert differing effects on processing.
Time to Talk: 5 Things To Know About Chronic Low-Back Pain and Complementary Health Practices
... even debilitating, and difficult to treat. Spinal manipulation, acupuncture, massage and yoga are complementary health approaches often ... and physical therapists. There is fair evidence that acupuncture is helpful in relieving chronic back pain. Current ...
Luo, Shi-Jian; Shu, Ge; Gong, Yan
2018-05-01
Individual finger force (FF) in a grip task is a vital concern in rehabilitation engineering and precise control of manipulators because disorders in any of the fingers will affect the stability or accuracy of the grip force (GF). To understand the functions of each finger in a dynamic grip exertion task, a GF following experiment with four individual fingers without thumb was designed. This study obtained four individual FFs from the distal phalanges with a cylindrical handle in dynamic GF following tasks. Ten healthy male subjects with similar hand sizes participated in the four-finger linear GF following tasks at different submaximal voluntary contraction (SMVC) levels. The total GF, individual FF, finger force contribution, and following error were subsequently calculated and analyzed. The statistics indicated the following: 1) the accuracy and stability of GF at low %MVC were significantly higher than those at high SMVC; 2) at low SMVC, the ability of the fingers to increase the GF was better than the ability to reduce it, but it was contrary at high SMVC; 3) when the target wave (TW) was changing, all four fingers strongly participated in the force exertion, but the participation of the little finger decreased significantly when TW remained stable; 4) the index finger and ring finger had a complementary relationship and played a vital role in the adjustment and control of GF. The middle finger and little finger had a minor influence on the force control and adjustment. In conclusion, each of the fingers had different functions in a GF following task. These findings can be used in the assessment of finger injury rehabilitation and for algorithms of precise control. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Diet and gut microbiota: two sides of the same coin?
Schiumerini, Ramona; Pasqui, Francesca; Festi, Davide
2018-01-01
Gut microbiota is a complex ecosystem, resident in the digestive tract, exerting multiple functions that can have a significant impact on the pathophysiology of the host organism. The composition and functions of this "superorganism" are influenced by many factors, and among them, the host's dietary habits seem to have a significant effect. Dietary changes in the evolution of human history and in the different stages of life of the human subjects are responsible for qualitative and functional modification of gut microbiota. At the same time, the different dietary models adopted in worldwide geographic areas take into account the inter-individual differences concerning composition and microbial function. This close relationship between diet, gut microbiota and host seems, in fact, to be responsible for the protection or predisposition to develop several metabolic, immunological, neoplastic and functional diseases. Thus, several studies have evaluated the impact of diet and lifestyle modification strategies on gut microbiota composition and functions which, in turn, seems to affect the effectiveness of such therapeutic measures. Gut microbiota manipulation strategies, as complementary to dietary modifications, represent a fascinating field of research, even if consolidated data are still lacking.
Spectral manipulation and complementary spectra with birefringence polarization control
NASA Astrophysics Data System (ADS)
Ding, Pan-Feng; Han, Pin
2017-03-01
A polarization control method using crystal birefringence is suggested to manipulate polychromatic light. This scheme can be used with narrower bandwidth to produce various spectral effects, such as a notch filter, a flat top, and triangle-type, nipple-type, and central-frequency-dominant distributions. A modulated spectrum with greater bandwidth can be used as an optical frequency ruler, and phenomena called complementary spectra are also proposed, where the two spectral distributions, produced by rotating the polarizer, complement each other in the sense that the peaks and valleys in one spectrum are the reverse in the other. These results benefit the controlling of the spectral shape and the measurement of an unknown optical frequency.
Position And Force Control For Multiple-Arm Robots
NASA Technical Reports Server (NTRS)
Hayati, Samad A.
1988-01-01
Number of arms increased without introducing undue complexity. Strategy and computer architecture developed for simultaneous control of positions of number of robot arms manipulating same object and of forces and torques that arms exert on object. Scheme enables coordinated manipulation of object, causing it to move along assigned trajectory and be subjected to assigned internal forces and torques.
Complementary and alternative medicine treatments for low back pain.
Marlowe, Dan
2012-09-01
Complementary and alternative medicine, often referred to as integrated medicine, is often used for the treatment of low back pain. This article presents 6 therapies (ie, behavioral treatment, acupuncture, manipulation, prolotherapy, neuroreflexotherapy, and herbal treatments), which are discussed in terms of the specifics of the modality, as well as the empirical evidence related to their effectiveness. Copyright © 2012 Elsevier Inc. All rights reserved.
Synergy optimization and operation management on syndicate complementary knowledge cooperation
NASA Astrophysics Data System (ADS)
Tu, Kai-Jan
2014-10-01
The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.
Displaying Force and Torque of A Manipulator
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Dotson, R. S.; Primus, H. C.
1984-01-01
Display combines bar charts, vector diagrams, and numerical values to inform operator of forces and torques exerted by end effector of manipulator. On voice or keyboard command, eight-channel strip-chart recorder traces force and torque components and claw position of raw measurements from eight strain gage sensors in end effector. Especially helpful when operator's view of end effector is obscured.
ELECTRONIC MASTER SLAVE MANIPULATOR
Goertz, R.C.; Thompson, Wm.M.; Olsen, R.A.
1958-08-01
A remote control manipulator is described in which the master and slave arms are electrically connected to produce the desired motions. A response signal is provided in the master unit in order that the operator may sense a feel of the object and may not thereby exert such pressures that would ordinarily damage delicate objects. This apparatus will permit the manipulation of objects at a great distance, that may be viewed over a closed TV circuit, thereby permitting a remote operator to carry out operations in an extremely dangerous area with complete safety.
Flow-assisted single-beam optothermal manipulation of microparticles.
Liu, Yangyang; Poon, Andrew W
2010-08-16
An optothermal tweezer was developed with a single-beam laser at 1550 nm for manipulation of colloidal microparticles. Strong absorption in water can thermally induce a localized flow, which exerts a Stokes' drag on the particles that complements the gradient force. Long-range capturing of 6 microm polystyrene particles over approximately 176 microm was observed with a tweezing power of approximately 7 mW. Transportation and levitation, targeted deposition and selective levitation of particles were explored to experimentally demonstrate the versatility of the optothermal tweezer as a multipurpose particle manipulation tool.
Publishing scientifically sound papers in Traditional and Complementary Medicine.
Isidoro, Ciro; Huang, Chia-Chi; Sheen, Lee-Yan
2016-01-01
Non-conventional medical practices that make use of dietary supplements, herbal extracts, physical manipulations, and other practices typically associated with folk and Traditional Medicine are increasingly becoming popular in Western Countries. These practices are commonly referred to by the generic, all-inclusive term "Complementary and Alternative Medicine." Scientists, practitioners, and medical institutions bear the responsibility of testing and proving the effectiveness of these non-conventional medical practices in the interest of patients. In this context, the number of peer-reviewed journals and published articles on this topic has greatly increased in the recent decades. In this editorial article, we illustrate the policy of the Journal of Traditional and Complementary Medicine for publishing solid and scientifically sound papers in the field of Traditional and Complementary Medicine.
Operation of controls on consumer products by physically impaired users.
Kanis, H
1993-06-01
The self-reliance of the physically impaired can be seriously jeopardized by their inability to operate everyday products, especially if both upper extremities are impaired. To determine the difficulties impaired users encounter in operating consumer product controls, on-site video recordings were made of subjects suffering from arthritis or a muscular disease. Subjects' force exertion was compared with that of a group of nonimpaired users. The resulting inventory allowed the analysis of the manipulation problems faced by impaired subjects and the development of design recommendations. In this study the force exerted by the subjects and that required to operate the controls were measured. A comparison of the results of these force measurements led to a number of conclusions. This study led to the following design recommendations: the amount of force required to operate controls should be kept as low as possible; the user should not be required to make two manipulations at the same time, such as simultaneously pushing and rotating a control device; pushing is preferable to rotating; and there should be a great degree of freedom to manipulate controls.
Implications of the Babinet Principle for Casimir interactions
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad F.; Jaffe, Robert L.; Abravanel, Ronen
2011-09-01
We formulate the Babinet Principle (BP) as a relation between scattering amplitudes and combine it with multiple scattering techniques to derive new properties of electromagnetic Casimir forces. We show that the Casimir force exerted by a planar conductor or dielectric on a self-complementary perforated planar mirror is approximately half that on a uniform mirror independent of the distance between them. Also, the BP suggests that Casimir edge effects are generically anomalously small. Furthermore, the BP can be used to relate any planar object to its complementary geometry, a relation we use to estimate Casimir forces between two screens with apertures.
Complementary and alternative medicine for pediatric otitis media.
Levi, Jessica R; Brody, Robert M; McKee-Cole, Katie; Pribitkin, Edmund; O'Reilly, Robert
2013-06-01
To review the literature involving complementary and alternative medicine (CAM) for pediatric otitis media. Multiple modalities are discussed, including prevention involving breastfeeding, nutrition, and vaccination; symptomatic treatment involving homeopathy, natural health products, and probiotics; manual manipulations involving osteopathy and chiropractics; and traditional Chinese and Japanese medicine. The information presented will assist physicians in advising patients on their decision-making during the early stages of otitis media when antibiotics and surgery are not yet indicated. A systematic literature search was conducted through January 2012 in PubMed using MESH term "otitis media" in conjunction with "complementary therapies," "homeopathy," "manipulation, osteopathic," "manipulation, chiropractic," "acupuncture therapy," "probiotics," "naturopathy," and "xylitol." Theses searches yielded 163 unique results. Abstracts and titles were evaluated for relevance. Case reports, case series, randomized controlled trials, and basic science research were included. Publications not relevant to the discussion of alternative medicine in otitis media were excluded. Bibliographies were checked for further publications. Thirty-six unique publications were reviewed. Of all therapies in complementary and alternative medicine, only xylitol has been studied in well-designed, randomized, blinded trials; it is likely effective, but compliance limits its applicability. Management of acute otitis media begins with watchful waiting. Herbal eardrops may help relieve symptoms. Homeopathic treatments may help decrease pain and lead to faster resolution. Prevention should be emphasized with elimination of risk factors, such as second hand smoke and bottle-feeding, as well as maintaining nutrition and vaccinations. Vitamin supplementation may be helpful. Probiotics and xylitol may be beneficial as well. Traditional Chinese/Japanese therapies show promising results but remain speculative until further research is conducted. Severe cases of otitis media with complications or those that fail to improve with observation or CAM (after 48-72h) should be treated with antibiotics and, in some cases, surgical intervention. It is best to consult a physician when making treatment decisions for full guidance on the risks and benefits of any treatment option. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
On-demand Droplet Manipulation via Triboelectrification
NASA Astrophysics Data System (ADS)
Wang, Wei; Vahabi, Hamed; Cackovic, Matthew; Jiang, Rui; Kota, Arun
2017-11-01
Controlled manipulation of liquid droplets has attracted tremendous interest across different scientific fields over the past two decades. To date, a variety of external stimuli-mediated methods such as magnetic field, electric field, and light have been developed for manipulating droplets on surfaces. However, these methods usually have drawbacks such as complex fabrication of manipulation platform, low droplet motility, expensive actuation system and lack of precise control. In this work, we demonstrate the controlled manipulation of liquid droplet with both high (e.g., water) and low (e.g., n-hexadecane) dielectric strengths on a smooth, slippery surface via triboelectric effect. Our highly simple, facile and portable methodology enables on-demand, precise manipulation of droplets using solely the electrostatic attraction or repulsion force, which is exerted on the droplet by a simple charged actuator (e.g., Teflon film). We envision that our triboelectric effect enabled droplet manipulation methodology will open a new avenue for droplet based lab-on-a-chip systems, energy harvesting devices and biomedical applications.
IBD and Complementary and Alternative Medicine (CAM)
... for cures; participate in a clinical trial of experimental treatments. Interactive Disease Tracker Use GI Buddy to ... a variety of ways. They may help to control symptoms and ease pain, enhance ... groups, are now offered as conventional therapies. Manipulative and ...
A global approach for using kinematic redundancy to minimize base reactions of manipulators
NASA Technical Reports Server (NTRS)
Chung, C. L.; Desa, S.
1989-01-01
An important consideration in the use of manipulators in microgravity environments is the minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the manipulator on its base as it performs its tasks. One approach which was proposed and implemented is to use the redundant degree of freedom in a kinematically redundant manipulator to plan manipulator trajectories to minimize base reactions. A global approach was developed for minimizing the magnitude of the base reactions for kinematically redundant manipulators which integrates the Partitioned Jacobian method of redundancy resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which is the time-integral of the magnitude of the base reactions. The global approach was also compared with a local approach developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one redundant degree-of-freedom. The results show that the global approach is more effective in reducing and smoothing the base force while the local approach is superior in reducing the base moment.
Porcino, Antony; MacDougall, Colleen
2009-01-01
Background: Since the late 1980s, several taxonomies have been developed to help map and describe the interrelationships of complementary and alternative medicine (CAM) modalities. In these taxonomies, several issues are often incompletely addressed: A simple categorization process that clearly isolates a modality to a single conceptual categoryClear delineation of verticality—that is, a differentiation of scale being observed from individually applied techniques, through modalities (therapies), to whole medical systemsRecognition of CAM as part of the general field of health care Methods: Development of the Integrated Taxonomy of Health Care (ITHC) involved three stages: Development of a precise, uniform health glossaryAnalysis of the extant taxonomiesUse of an iterative process of classifying modalities and medical systems into categories until a failure to singularly classify a modality occurred, requiring a return to the glossary and adjustment of the classifying protocol Results: A full vertical taxonomy was developed that includes and clearly differentiates between techniques, modalities, domains (clusters of similar modalities), systems of health care (coordinated care system involving multiple modalities), and integrative health care. Domains are the classical primary focus of taxonomies. The ITHC has eleven domains: chemical/substance-based work, device-based work, soft tissue–focused manipulation, skeletal manipulation, fitness/movement instruction, mind–body integration/classical somatics work, mental/emotional–based work, bio-energy work based on physical manipulation, bio-energy modulation, spiritual-based work, unique assessments. Modalities are assigned to the domains based on the primary mode of interaction with the client, according the literature of the practitioners. Conclusions: The ITHC has several strengths: little interpretation is used while successfully assigning modalities to single domains; the issue of taxonomic verticality is fully resolved; and the design fully integrates the complementary health care fields of biomedicine and CAM. PMID:21589735
Wolever, Ruth Q; Price, Rebecca; Hazelton, A Garrett; Dmitrieva, Natalia O; Bechard, Elizabeth M; Shaffer, Janet K; Tucci, Debara L
2015-01-01
Tinnitus is a prevalent and costly chronic condition; no universally effective treatment exists. Only 20% of patients who report tinnitus actually seek treatment, and when treated, most patients commonly receive sound-based and educational (SBE) therapy. Additional treatment options are necessary, however, for nonauditory aspects of tinnitus (e.g., anxiety, depression, and significant interference with daily life) and when SBE therapy is inefficacious or inappropriate. This paper provides a comprehensive review of (1) conventional tinnitus treatments and (2) promising complementary therapies that have demonstrated some benefit for severe dysfunction from tinnitus. While there has been no systematic study of the benefits of an Integrative Medicine approach for severe tinnitus, the current paper reviews emerging evidence suggesting that synergistic combinations of complementary therapies provided within a whole-person framework may augment SBE therapy and empower patients to exert control over their tinnitus symptoms without the use of medications, expensive devices, or extended programs.
Poder, Thomas G; Lemieux, Renald
2013-12-10
The effects of cancer and associated treatments have a considerable impact on the well-being and quality of life of pediatric oncology patients. To support children and their families, complementary and alternative medicines are seen by nurses and doctors as practical to integrate to the services offered by hospitals. The purpose of this paper is to examine if the practice of complementary and alternative medicine, specifically spiritual care and treatments based on body manipulation, is likely to improve the health and well-being of children suffering from cancer. This objective is achieved through a systematic review of the literature. The level of evidence associated with each practice of complementary and alternative medicine was assessed according to the methodological design used by the studies reviewed. Studies reviewed are of a methodological quality that could be described as fair due to the small sample size of patients and the existence of a number of biases in the conduct and analysis of these studies. However, results obtained are consistent from one study to another, allowing us to make certain recommendations. It is thus advisable to consider the introduction of hypnotherapy in pediatric oncology services. Based on the data collected, it is the complementary and alternative medicine with the most evidence in favor of effectiveness of the well-being of pediatric oncology patients, especially during painful procedures. It is also recommended to use art therapy and music therapy. Conversely, too little evidence is present to be able to recommend the use of acupuncture, chiropractic or osteopathy.
Poder, Thomas G.; Lemieux, Renald
2014-01-01
Background: The effects of cancer and associated treatments have a considerable impact on the well-being and quality of life of pediatric oncology patients. To support children and their families, complementary and alternative medicines are seen by nurses and doctors as practical to integrate to the services offered by hospitals. Objective: The purpose of this paper is to examine if the practice of complementary and alternative medicine, specifically spiritual care and treatments based on body manipulation, is likely to improve the health and well-being of children suffering from cancer. Method: This objective is achieved through a systematic review of the literature. The level of evidence associated with each practice of complementary and alternative medicine was assessed according to the methodological design used by the studies reviewed. Results and Conclusion: Studies reviewed are of a methodological quality that could be described as fair due to the small sample size of patients and the existence of a number of biases in the conduct and analysis of these studies. However, results obtained are consistent from one study to another, allowing us to make certain recommendations. It is thus advisable to consider the introduction of hypnotherapy in pediatric oncology services. Based on the data collected, it is the complementary and alternative medicine with the most evidence in favor of effectiveness of the well-being of pediatric oncology patients, especially during painful procedures. It is also recommended to use art therapy and music therapy. Conversely, too little evidence is present to be able to recommend the use of acupuncture, chiropractic or osteopathy. PMID:24576371
Inter- and intraspecific conflicts between parasites over host manipulation
Hafer, Nina; Milinski, Manfred
2016-01-01
Host manipulation is a common strategy by which parasites alter the behaviour of their host to enhance their own fitness. In nature, hosts are usually infected by multiple parasites. This can result in a conflict over host manipulation. Studies of such a conflict in experimentally infected hosts are rare. The cestode Schistocephalus solidus (S) and the nematode Camallanus lacustris (C) use copepods as their first intermediate host. They need to grow for some time inside this host before they are infective and ready to be trophically transmitted to their subsequent fish host. Accordingly, not yet infective parasites manipulate to suppress predation. Infective ones manipulate to enhance predation. We experimentally infected laboratory-bred copepods in a manner that resulted in copepods harbouring (i) an infective C plus a not yet infective C or S, or (ii) an infective S plus a not yet infective C. An infective C completely sabotaged host manipulation by any not yet infective parasite. An infective S partially reduced host manipulation by a not yet infective C. We hence show experimentally that a parasite can reduce or even sabotage host manipulation exerted by a parasite from a different species. PMID:26842574
Ultrathin nanoporous membranes for insulator-based dielectrophoresis
NASA Astrophysics Data System (ADS)
Mukaibo, Hitomi; Wang, Tonghui; Perez-Gonzalez, Victor H.; Getpreecharsawas, Jirachai; Wurzer, Jack; Lapizco-Encinas, Blanca H.; McGrath, James L.
2018-06-01
Insulator-based dielectrophoresis (iDEP) is a simple, scalable mechanism that can be used for directly manipulating particle trajectories in pore-based filtration and separation processes. However, iDEP manipulation of nanoparticles presents unique challenges as the dielectrophoretic force ({F}{{D}{{E}}{{P}}}) exerted on the nanoparticles can easily be overshadowed by opposing kinetic forces. In this study, a molecularly thin, SiN-based nanoporous membrane (NPN) is explored as a breakthrough technology that enhances {F}{{D}{{E}}{{P}}}. By numerically assessing the gradient of the electric field square ({{\
Adaptive supervisory control of remote manipulation
NASA Technical Reports Server (NTRS)
Ferrell, W. R.
1977-01-01
The command language by which an operator exerts supervisory control over a general purpose remote manipulator should be designed to accommodate certain characteristics of human performance if there is to be effective communication between the operator and the machine. Some of the ways in which people formulate tasks, use language, learn and make errors are discussed and design implications are drawn. A general approach to command language design is suggested, based on the notion matching the operator's current task schema or context by appropriate program structures or 'frames' in the machine.
Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.
Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2017-07-10
Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.
Independent effects of relevance and arousal on deductive reasoning.
Caparos, Serge; Blanchette, Isabelle
2017-08-01
Emotional content can have either a deleterious or a beneficial impact on logicality. Using standard deductive-reasoning tasks, we tested the hypothesis that the interplay of two factors - personal relevance and arousal - determines the nature of the effect of emotional content on logicality. Arousal was assessed using measures of skin conductance. Personal relevance was manipulated by asking participants to reason about semantic contents linked to an emotional event that they had experienced or not. Findings showed that (1) personal relevance exerts a positive effect on logicality while arousal exerts a negative effect, and that (2) these effects are independent of each other.
NASA Astrophysics Data System (ADS)
Korayem, M. H.; Saraee, M. B.; Mahmoodi, Z.; Dehghani, S.
2015-11-01
This paper has attempted to investigate the effective forces in 3D manipulation of biological micro/nano particles. Most of the recent researches have only examined 2D spherical geometries but in this paper, the cylindrical geometries, which are much closer to the real geometries, were considered. For achieving a more accurate modeling, manipulation dynamics was also considered to be three dimensional which have been done for the first time. Because of the sensibility to the amount of endurable applied forces, manipulation process of biological micro/nano particles has some restrictions. Therefore, applied forces exerted on the particles in all different directions were simulated in order to restrict all those possible damages cause by operator of the AFM. Those data from simulated forces will bring a more accurate and sensible understanding for the operator to operate. For the validation of results, the proposed model was compared with the model presented for manipulation of gold nanoparticle and then, by reducing the effective parameters in the 3D manipulation, the results were compared with those obtained for the 2D cylindrical model and with the experimental results of spherical nanoparticle in the 2D manipulation.
Rose, Kevin; Kadar, Gena E.
2014-01-01
Study Design: Systematic review of the literature. Objective: To evaluate whether an integrated approach that includes different Complementary and Alternative Medicine (CAM) therapies combined or CAM therapies combined with conventional medical care is more effective for the management of low back pain (LBP) than single modalities alone. Summary of Background Data: LBP is one of the leading causes of disability worldwide, yet its optimal management is still unresolved. Methods: The PRISMA Statement guidelines were followed. The Cochrane Back Review Group scale was used to rate the quality of the studies found. Results: Twenty-one studies were found that met the inclusion criteria. The CAM modalities used in the studies included spinal manipulative therapy, acupuncture, exercise therapy, physiotherapy, massage therapy, and a topical ointment. Twenty studies included acupuncture and/or spinal manipulative therapy. Nine high quality studies showed that integrative care was clinically effective for the management of LBP. Spinal manipulative therapy combined with exercise therapy and acupuncture combined with conventional medical care or with exercise therapy appears to be promising approaches to the management of chronic cases of LBP. Conclusions: There is support in the literature for integrated CAM and conventional medical therapy for the management of chronic LBP. Further research into the integrated management of LBP is clearly needed to provide better guidance for patients and clinicians. PMID:25568825
Nahin, Richard L.; Stussman, Barbara J.; Herman, Patricia M.
2015-01-01
National surveys suggest that millions of adults in the United States use complementary health approaches such as acupuncture, chiropractic manipulation, and herbal medicines to manage painful conditions such as arthritis, back pain and fibromyalgia. Yet, national and per person out-of-pocket (OOP) costs attributable to this condition-specific use are unknown. In the 2007 National Health Interview Survey, use of complementary health approaches, reasons for this use, and associated OOP costs were captured in a nationally representative sample of 5,467 adults. Ordinary least square regression models that controlled for co-morbid conditions were used to estimate aggregate and per person OOP costs associated with 14 painful health conditions. Individuals using complementary approaches spent a total of $14.9 billion (S.E. $0.9 billion) OOP on these approaches to manage these painful conditions. Total OOP expenditures seen in those using complementary approaches for their back pain ($8.7 billion, S.E. $0.8 billion) far outstripped that of any other condition, with the majority of these costs ($4.7 billion, S.E. $0.4 billion) resulting from visits to complementary providers. Annual condition-specific per-person OOP costs varied from a low of $568 (SE $144) for regular headaches, to a high of $895 (SE $163) for fibromyalgia. PMID:26320946
Basson, Abigail R; Lam, Minh; Cominelli, Fabio
2017-12-01
The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential. Copyright © 2017 Elsevier Inc. All rights reserved.
Complementary Hand Responses Occur in Both Peri- and Extrapersonal Space.
Faber, Tim W; van Elk, Michiel; Jonas, Kai J
2016-01-01
Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one's right finger upon observing a left finger movement; from a mirror perspective). Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting) responses instead (e.g., handing over a cup; shaking hands). Crucially, whereas mirror-congruent responses don't require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand) performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., 'hand-shaking') irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.
A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
Peternel, Luka; Tsagarakis, Nikos; Ajoudani, Arash
2017-07-01
This paper aims to improve the interaction and coordination between the human and the robot in cooperative execution of complex, powerful, and dynamic tasks. We propose a novel approach that integrates online information about the human motor function and manipulability properties into the hybrid controller of the assistive robot. Through this human-in-the-loop framework, the robot can adapt to the human motor behavior and provide the appropriate assistive response in different phases of the cooperative task. We experimentally evaluate the proposed approach in two human-robot co-manipulation tasks that require specific complementary behavior from the two agents. Results suggest that the proposed technique, which relies on a minimum degree of task-level pre-programming, can achieve an enhanced physical human-robot interaction performance and deliver appropriate level of assistance to the human operator.
Laser nanosurgery and manipulation in living cells
NASA Astrophysics Data System (ADS)
Sacconi, Leonardo; Tolic-Norrelykke, Iva M.; Antolini, Renzo; Pavone, Francesco S.
2005-03-01
We present a combination of nonlinear microscopy, laser nanosurgery and optical trapping applied to the 3D imaging and manipulation of intracellular structures in live cells. We use Titanium-sapphire laser pulses for a combined nonlinear microscopy and nanosurgery on microtubules tagged with green fluorescent protein (GFP) in fission yeast. The same laser source is also used to trap small round lipid droplets naturally present in the cell. The trapped droplets are used as handles to exert a pushing force on the nucleus, allowing for a displacement of the nucleus away from its normal position in the center of the cell. We show that nonlinear nanosurgery and optical manipulation can be performed with sub-micrometer precision and without visible collateral damage to the cell. We present this combination as an important tool in cell biology for the manipulation of specific structures in alternative to genetic methods or chemical agents. This technique can be applied to several fundamental problems in cell biology, including the study of dynamics processes in cell division.
Fundamentals of soft robot locomotion
2017-01-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483
Fundamentals of soft robot locomotion.
Calisti, M; Picardi, G; Laschi, C
2017-05-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).
Complementary and alternative medicine treatments for children with autism spectrum disorders.
Levy, Susan E; Hyman, Susan L
2008-10-01
Complementary and alternative medical (CAM) treatments are commonly used for children with autism spectrum disorders. This review discusses the evidence supporting the most frequently used treatments, including categories of mind-body medicine, energy medicine, and biologically based, manipulative, and body-based practices, with the latter two treatments the most commonly selected by families. Clinical providers need to understand the evidence for efficacy (or lack thereof) and potential side effects. Some CAM practices have evidence to reject their use, such as secretin, whereas others have emerging evidence to support their use, such as melatonin. Most treatments have not been adequately studied and do not have evidence to support their use.
Loba, P; Stewart, S H; Klein, R M; Blackburn, J R
2001-01-01
The present study was conducted to identify game parameters that would reduce the risk of abuse of video lottery terminals (VLTs) by pathological gamblers, while exerting minimal effects on the behavior of non-pathological gamblers. Three manipulations of standard VLT game features were explored. Participants were exposed to: a counter which displayed a running total of money spent; a VLT spinning reels game where participants could no longer "stop" the reels by touching the screen; and sensory feature manipulations. In control conditions, participants were exposed to standard settings for either a spinning reels or a video poker game. Dependent variables were self-ratings of reactions to each set of parameters. A set of 2(3) x 2 x 2 (game manipulation [experimental condition(s) vs. control condition] x game [spinning reels vs. video poker] x gambler status [pathological vs. non-pathological]) repeated measures ANOVAs were conducted on all dependent variables. The findings suggest that the sensory manipulations (i.e., fast speed/sound or slow speed/no sound manipulations) produced the most robust reaction differences. Before advocating harm reduction policies such as lowering sensory features of VLT games to reduce potential harm to pathological gamblers, it is important to replicate findings in a more naturalistic setting, such as a real bar.
Thomas, Frédéric; Fauchier, Jerome; Lafferty, Kevin D.
2002-01-01
Microphallus papillorobustus is a manipulative trematode that induces strong behavioural alterations in the gamaridean amphipod Gammarus insensibilis, making the amphipod more vulnerable to predation by aquatic birds (definitive hosts). Conversely, the sympatric nematodeGammarinema gammari uses Gammarus insensibilis as a habitat and a source of nutrition. We investigated the conflict of interest between these two parasite species by studying the consequences of mixed infection on amphipod behaviour associated with the trematode. In the field, some amphipods infected by the trematode did not display the altered behaviour. These normal amphipods also had more nematodes, suggesting that the nematode overpowered the manipulation of the trematode, a strategy that would prolong the nematode's life. We hypothesize that sabotage of the trematode by the nematode would be an adaptive strategy for the nematode consistent with recent speculation about co-operation and conflict in manipulative parasites. A behavioural test conducted in the laboratory from naturally infected amphipods yielded the same result. However, exposing amphipods to nematodes did not negate or decrease the manipulation exerted by the trematode. Similarly, experimental elimination of nematodes from amphipods did not permit trematodes to manipulate behaviour. These experimental data do not support the hypothesis that the negative association between nematodes and manipulation by the trematode is a result of the "sabotage" hypothesis.
NASA Astrophysics Data System (ADS)
Feuerstein, Sophie; Plevin, Michael J.; Willbold, Dieter; Brutscher, Bernhard
2012-01-01
An experiment, iHADAMAC, is presented that yields information on the amino-acid type of individual residues in a protein by editing the 1H- 15N correlations into seven different 2D spectra, each corresponding to a different class of amino-acid types. Amino-acid type discrimination is realized via a Hadamard encoding scheme based on four different spin manipulations as recently introduced in the context of the sequential HADAMAC experiment. Both sequential and intra-residue HADAMAC experiments yield highly complementary information that greatly facilitate resonance assignment of proteins with high frequency degeneracy, as demonstrated here for a 188-residue intrinsically disordered protein fragment of the hepatitis C virus protein NS5A.
Acoustic manipulation: Bessel beams and active carriers
NASA Astrophysics Data System (ADS)
Rajabi, Majid; Mojahed, Alireza
2017-10-01
In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.
Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael
2011-01-01
This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.
Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael
2011-01-01
This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation. PMID:22247677
Ng, Jeremy Y; Liang, Laurel; Gagliardi, Anna R
2016-10-29
Complementary and alternative medicine (CAM) use is often not disclosed by patients, and can be unfamiliar to health care professionals. This may lead to underuse of beneficial CAM therapies, and overuse of other CAM therapies with little proven benefit or known contraindications. No prior research has thoroughly evaluated the credibility of knowledge-based resources. The purpose of this research was to assess the quantity and quality of CAM guidelines. A systematic review was conducted to identify CAM guidelines. MEDLINE, EMBASE and CINAHL were searched in January 2016 from 2003 to 2015. The National Guideline Clearinghouse, National Center for Complementary and Integrative Health web site, and two CAM journals were also searched. Eligible guidelines published in English language by non-profit agencies on herbal medicine, acupuncture, or spinal manipulation for adults with any condition were assessed with the Appraisal of Guidelines, Research and Evaluation II (AGREE II) instrument. From 3,126 unique search results, 17 guidelines (two herbal medicine, three acupuncture, four spinal manipulation, eight mixed CAM therapies) published in 2003 or later and relevant to several clinical conditions were eligible. Scaled domain percentages from highest to lowest were clarity of presentation (85.3 %), scope and purpose (83.3 %), rigour of development (61.2 %), editorial independence (60.1 %), stakeholder involvement (52.0 %) and applicability (20.7 %). Quality varied within and across guidelines. None of the 17 guidelines were recommended by both appraisers; 14 were recommended as Yes or Yes with modifications. Guidelines that scored well could be used by patients and health care professionals as the basis for discussion about the use of these CAM therapies. In future updates, guidelines that achieved variable or lower scores could be improved according to specifications in the AGREE II instrument, and with insight from a large number of resources that are available to support guideline development and implementation. Future research should identify CAM therapies other than those reviewed here for which guidelines are available. Research is also needed on the safety and effectiveness of CAM therapies.
Defining the Focus of Attention: Effects of Attention on Perceived Exertion and Fatigue
Lohse, Keith R.; Sherwood, David E.
2011-01-01
This manuscript presents two experiments designed to explore the effects of attention on perceived exertion and time to failure in a fatiguing athletic task. There were two major motivating factors for these experiments. First, there are few studies evaluating attentional focus effects in endurance tasks and, second, there is a lack of integration between studies of attentional focus as external/internal (e.g., Wulf, 2007a) compared to associative/dissociative (e.g., Stevinson and Biddle, 1998). In Experiment 1, we used a fatiguing wall-sit posture (essentially a complex, isometric task) to compare two different types of external attention with an internal focus on the position of the legs. An external focus (regardless of type) increased the time taken to failure and reduced perceived exertion. In Experiment 2, we manipulated subjects’ expectancy of fatigue to test the interaction of attention and expectancy (both top-down factors) in this highly fatiguing task. Previous theories of attention during endurance tasks have suggested that as fatigue/pain increase, bottom-up factors begin to dominate subjects’ attention. While this may be true, Experiment 2 showed that even in a highly fatiguing task, attentional strategies, and expectancies affected the time to failure and perceived exertion. PMID:22102843
Brain Stimulation Over the Frontopolar Cortex Enhances Motivation to Exert Effort for Reward.
Soutschek, Alexander; Kang, Pyungwon; Ruff, Christian C; Hare, Todd A; Tobler, Philippe N
2018-07-01
Loss of motivation is a characteristic feature of several psychiatric and neurological disorders. However, the neural mechanisms underlying human motivation are far from being understood. Here, we investigate the role that the frontopolar cortex (FPC) plays in motivating cognitive and physical effort exertion by computing subjective effort equivalents. We manipulated neural processing with transcranial direct current stimulation targeting the FPC while 141 healthy participants decided whether or not to engage in cognitive or physical effort to obtain rewards. We found that brain stimulation targeting the FPC increased the amount of both types of effort participants were willing to exert for rewards. Our findings provide important insights into the neural mechanisms involved in motivating effortful behavior. Moreover, they suggest that considering the motivation-related activity of the FPC could facilitate the development of treatments for the loss of motivation commonly seen in psychiatric and other neurological disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Tensile stress stimulates microtubule outgrowth in living cells
NASA Technical Reports Server (NTRS)
Kaverina, Irina; Krylyshkina, Olga; Beningo, Karen; Anderson, Kurt; Wang, Yu-Li; Small, J. Victor
2002-01-01
Cell motility is driven by the sum of asymmetric traction forces exerted on the substrate through adhesion foci that interface with the actin cytoskeleton. Establishment of this asymmetry involves microtubules, which exert a destabilising effect on adhesion foci via targeting events. Here, we demonstrate the existence of a mechano-sensing mechanism that signals microtubule polymerisation and guidance of the microtubules towards adhesion sites under increased stress. Stress was applied either by manipulating the body of cells moving on glass with a microneedle or by stretching a flexible substrate that cells were migrating on. We propose a model for this mechano-sensing phenomenon whereby microtubule polymerisation is stimulated and guided through the interaction of a microtubule tip complex with actin filaments under tension.
Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng
2017-05-29
We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.
Impact of Chiropractic Manipulation on Bone and Skeletal Muscle of Ovariectomized Rats.
López-Herradón, A; Fujikawa, R; Gómez-Marín, M; Stedile-Lovatel, J P; Mulero, F; Ardura, J A; Ruiz, P; Muñoz, I; Esbrit, P; Mahíllo-Fernández, I; Ortega-de Mues, A
2017-11-01
Evidence suggests that chiropractic manipulation might exert positive effects in osteoporotic patients. The aim of this study was to evaluate the effects of chiropractic manipulation on bone structure and skeletal muscle in rats with bone loss caused by ovariectomy (OVX). The 6-month old Sprague-Dawley rats at 10 weeks following OVX or sham operation (Sh) did not suffer chiropractic manipulation (NM group) or were submitted to true chiropractic manipulation using the chiropractic adjusting instrument Activator V ® three times/week for 6 weeks as follows: Force 1 setting was applied onto the tibial tubercle of the rat right hind limb (TM group), whereas the corresponding left hind limb received a false manipulation (FM group) consisting of ActivatorV ® firing in the air and slightly touching the tibial tubercle. Bone mineral density (BMD) and bone mineral content (BMC) were determined in long bones and L3-L4 vertebrae in all rats. Femora and tibia were analyzed by μCT. Mechano growth factor (MGF) was detected in long bones and soleus, quadriceps and tibial muscles by immunohistochemistry and Western blot. The decrease of BMD and BMC as well as trabecular bone impairment in the long bones of OVX rats vs Sh controls was partially reversed in the TM group versus FM or NM rats. This bone improvement by chiropractic manipulation was associated with an increased MGF expression in the quadriceps and the anterior tibial muscle in OVX rats. These findings support the notion that chiropractic manipulation can ameliorate osteoporotic bone at least partly by targeting skeletal muscle.
Complementary and Alternative Medicine and Influenza Vaccine Uptake in US Children
Bleser, William K.; Elewonibi, Bilikisu Reni; Miranda, Patricia Y.
2016-01-01
BACKGROUND: Complementary and alternative medicine (CAM) is increasingly used in the United States. Although CAM is mostly used in conjunction with conventional medicine, some CAM practitioners recommend against vaccination, and children who saw naturopathic physicians or chiropractors were less likely to receive vaccines and more likely to get vaccine-preventable diseases. Nothing is known about how child CAM usage affects influenza vaccination. METHODS: This nationally representative study analyzed ∼9000 children from the Child Complementary and Alternative Medicine File of the 2012 National Health Interview Survey. Adjusting for health services use factors, it examined influenza vaccination odds by ever using major CAM domains: (1) alternative medical systems (AMS; eg, acupuncture); (2) biologically-based therapies, excluding multivitamins/multiminerals (eg, herbal supplements); (3) multivitamins/multiminerals; (4) manipulative and body-based therapies (MBBT; eg, chiropractic manipulation); and (5) mind–body therapies (eg, yoga). RESULTS: Influenza vaccination uptake was lower among children ever (versus never) using AMS (33% vs 43%; P = .008) or MBBT (35% vs 43%; P = .002) but higher by using multivitamins/multiminerals (45% vs 39%; P < .001). In multivariate analyses, multivitamin/multimineral use lost significance, but children ever (versus never) using any AMS or MBBT had lower uptake (respective odds ratios: 0.61 [95% confidence interval: 0.44–0.85]; and 0.74 [0.58–0.94]). CONCLUSIONS: Children who have ever used certain CAM domains that may require contact with vaccine-hesitant CAM practitioners are vulnerable to lower annual uptake of influenza vaccination. Opportunity exists for US public health, policy, and medical professionals to improve child health by better engaging parents of children using particular domains of CAM and CAM practitioners advising them. PMID:27940756
Manipulating line waves in flat graphene for agile terahertz applications
NASA Astrophysics Data System (ADS)
Bisharat, Dia'aaldin J.; Sievenpiper, Daniel F.
2018-05-01
Reducing open waveguides enabled by surface waves, such as surface plasmon polaritons, to a one-dimensional line is attractive due to the potentially enhanced control over light confinement and transport. This was recently shown to be possible by simply interfacing two co-planar surfaces with complementary surface impedances, which support transverse-magnetic and transverse-electric modes, respectively. Attractively, the resultant "line wave" at the interface line features singular field enhancement and robust direction-dependent polarizations. Current implementations, however, are limited to microwave frequencies and have fixed functionality due to the lack of dynamic control. In this article, we examine the potential of using gate-tunable graphene sheets for supporting line waves in the terahertz regime and propose an adequate graphene-metasurface configuration for operation at room temperature and low voltage conditions. In addition, we show the occurrence of quasi-line wave under certain conditions of non-complementary boundaries and qualify the degradation in line wave confinement due to dissipation losses. Furthermore, we show the possibility to alter the orientation of the line wave's spin angular momentum on demand unlike conventional surface waves. Our results on active manipulation of electromagnetic line waves in graphene could be useful for various applications including reconfigurable integrated circuits, modulation, sensing and signal processes.
Dual embedded agency: physicians implement integrative medicine in health-care organizations.
Keshet, Yael
2013-11-01
The paradox of embedded agency addresses the question of how embedded agents are able to conceive of new ideas and practices and then implement them in institutionalized organizations if social structures exert so powerful an influence on behavior, and agents operate within a framework of institutional constraints. This article proposes that dual embedded agency may provide an explanation of the paradox. The article draws from an ethnographic study that examined the ways in which dual-trained physicians, namely medical doctors trained also in some modality of complementary and alternative medicine, integrate complementary and alternative medicine into the biomedical fortress of mainstream health-care organizations. Participant observations were conducted during the years 2006-2011. The observed physicians were found to be embedded in two diverse medical cultures and to have a hybrid professional identity that comprised two sets of health-care values. Seeking to introduce new ideas and practices associated with complementary and alternative medicine to medical institutions, they maneuvered among the constraints of institutional structures while using these very structures, in an isomorphic mode of action, as a platform for launching complementary and alternative medicine practices and values. They drew on the complementary and alternative medicine philosophical principle of interconnectedness and interdependency of seemingly polar opposites or contrary forces and acted to achieve change by means of nonadversarial strategies. By addressing the structure-agency dichotomy, this study contributes to the literature on change in institutionalized health-care organizations. It likewise contributes both theoretically and empirically to the study of integrative medicine and to the further development of this relatively new area of inquiry within the sociology of medicine.
Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications
Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA
2009-01-06
The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.
ERIC Educational Resources Information Center
Zannino, Gian Daniele; Perri, Roberta; Salamone, Giovanna; Di Lorenzo, Concetta; Caltagirone, Carlo; Carlesimo, Giovanni A.
2010-01-01
There is now a large body of evidence suggesting that color and photographic detail exert an effect on recognition of visually presented familiar objects. However, an unresolved issue is whether these factors act at the visual, the semantic or lexical level of the recognition process. In the present study, we investigated this issue by having…
Building An Adaptive Cyber Strategy
2016-06-01
forces. The primary mission of the military in any domain, including cyber , should be readiness to exert force if needed during crisis . AU/ACSC/SMITH...of crisis . The military must be able to AU/ACSC/SMITH, FI/AY16 manipulate the cyber environment, but should avoid direct use of force against...operations focus on maintaining a manageable threat level. Cyberspace is a continually evolving domain, and nations throughout the world can join in cyber
The physiological basis of complementary and alternative medicines for polycystic ovary syndrome.
Raja-Khan, Nazia; Stener-Victorin, Elisabet; Wu, XiaoKe; Legro, Richard S
2011-07-01
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that is characterized by chronic hyperandrogenic anovulation leading to symptoms of hirsutism, acne, irregular menses, and infertility. Multiple metabolic and cardiovascular risk factors are associated with PCOS, including insulin resistance, obesity, type 2 diabetes, hypertension, inflammation, and subclinical atherosclerosis. However, current treatments for PCOS are only moderately effective at controlling symptoms and preventing complications. This article describes how the physiological effects of major complementary and alternative medicine (CAM) treatments could reduce the severity of PCOS and its complications. Acupuncture reduces hyperandrogenism and improves menstrual frequency in PCOS. Acupuncture's clinical effects are mediated via activation of somatic afferent nerves innervating the skin and muscle, which, via modulation of the activity in the somatic and autonomic nervous system, may modulate endocrine and metabolic functions in PCOS. Chinese herbal medicines and dietary supplements may also exert beneficial physiological effects in PCOS, but there is minimal evidence that these CAM treatments are safe and effective. Mindfulness has not been investigated in PCOS, but it has been shown to reduce psychological distress and exert positive effects on the central and autonomic nervous systems, hypothalamic-pituitary-adrenal axis, and immune system, leading to reductions in blood pressure, glucose, and inflammation. In conclusion, CAM treatments may have beneficial endocrine, cardiometabolic, and reproductive effects in PCOS. However, most studies of CAM treatments for PCOS are small, nonrandomized, or uncontrolled. Future well-designed studies are needed to further evaluate the safety, effectiveness, and mechanisms of CAM treatments for PCOS.
Manipulation of domain-wall solitons in bi- and trilayer graphene
NASA Astrophysics Data System (ADS)
Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng
2018-01-01
Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.
Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field
NASA Astrophysics Data System (ADS)
Xu, Zhen; Wang, Chunlei; Sheng, Nan; Hu, Guohui; Zhou, Zhewei; Fang, Haiping
2016-01-01
The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.
Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.
Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing
2016-01-01
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC.
Sensor-based fine telemanipulation for space robotics
NASA Technical Reports Server (NTRS)
Andrenucci, M.; Bergamasco, M.; Dario, P.
1989-01-01
The control of a multifingered hand slave in order to accurately exert arbitrary forces and impart small movements to a grasped object is, at present, a knotty problem in teleoperation. Although a number of articulated robotic hands have been proposed in the recent past for dexterous manipulation in autonomous robots, the possible use of such hands as slaves in teleoperated manipulation is hindered by the present lack of sensors in those hands, and (even if those sensors were available) by the inherent difficulty of transmitting to the master operator the complex sensations elicited by such sensors at the slave level. An analysis of different problems related to sensor-based telemanipulation is presented. The general sensory systems requirements for dexterous slave manipulators are pointed out and the description of a practical sensory system set-up for the developed robotic system is presented. The problem of feeding back to the human master operator stimuli that can be interpreted by his central nervous system as originated during real dexterous manipulation is then considered. Finally, some preliminary work aimed at developing an instrumented glove designed purposely for commanding the master operation and incorporating Kevlar tendons and tension sensors, is discussed.
Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte
2015-10-01
Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. (c) 2015 APA, all rights reserved).
Deception studies manipulating centrally acting performance modifiers: a review.
Williams, Emily L; Jones, Hollie S; Sparks, Sandy; Marchant, David C; Micklewright, Dominic; McNaughton, Lars R
2014-07-01
Athletes anticipatorily set and continuously adjust pacing strategies before and during events to produce optimal performance. Self-regulation ensures maximal effort is exerted in correspondence with the end point of exercise, while preventing physiological changes that are detrimental and disruptive to homeostatic control. The integration of feedforward and feedback information, together with the proposed brain's performance modifiers is said to be fundamental to this anticipatory and continuous regulation of exercise. The manipulation of central, regulatory internal and external stimuli has been a key focus within deception research, attempting to influence the self-regulation of exercise and induce improvements in performance. Methods of manipulating performance modifiers such as unknown task end point, deceived duration or intensity feedback, self-belief, or previous experience create a challenge within research, as although they contextualize theoretical propositions, there are few ecological and practical approaches which integrate theory with practice. In addition, the different methods and measures demonstrated in manipulation studies have produced inconsistent results. This review examines and critically evaluates the current methods of how specific centrally controlled performance modifiers have been manipulated, within previous deception studies. From the 31 studies reviewed, 10 reported positive effects on performance, encouraging future investigations to explore the mechanisms responsible for influencing pacing and consequently how deceptive approaches can further facilitate performance. The review acts to discuss the use of expectation manipulation not only to examine which methods of deception are successful in facilitating performance but also to understand further the key components used in the regulation of exercise and performance.
Strategies for outcrossing and genetic manipulation of Drosophila compound autosome stocks.
Martins, T; Kotadia, S; Malmanche, N; Sunkel, C E; Sullivan, W
2013-01-01
Among all organisms, Drosophila melanogaster has the most extensive well-characterized collection of large-scale chromosome rearrangements. Compound chromosomes, rearrangements in which homologous chromosome arms share a centromere, have proven especially useful in genetic-based surveys of the entire genome. However, their potential has not been fully realized because compound autosome stocks are refractile to standard genetic manipulations: if outcrossed, they yield inviable aneuploid progeny. Here we describe two strategies, cold-shock and use of the bubR1 mutant alleles, to produce nullo gametes through nondisjunction. These gametes are complementary to the compound chromosome-bearing gametes and thus produce viable progeny. Using these techniques, we created a compound chromosome two C(2)EN stock bearing a red fluorescent protein-histone transgene, facilitating live analysis of these unusually long chromosomes.
2013-01-01
Background Sensory disturbance is common following stroke and can exacerbate functional deficits, even in patients with relatively good motor function. In particular, loss of appropriate sensory feedback in severe sensory loss impairs manipulation capability. We hypothesized that task-oriented training with sensory feedback assistance would improve manipulation capability even without sensory pathway recovery. Methods We developed a system that provides sensory feedback by transcutaneous electrical nerve stimulation (SENS) for patients with sensory loss, and investigated the feasibility of the system in a stroke patient with severe sensory impairment and mild motor deficit. The electrical current was modulated by the force exerted by the fingertips so as to allow the patient to identify the intensity. The patient had severe sensory loss due to a right thalamic hemorrhage suffered 27 months prior to participation in the study. The patient first practiced a cylindrical grasp task with SENS for 1 hour daily over 29 days. Pressure information from the affected thumb was fed back to the unaffected shoulder. The same patient practiced a tip pinch task with SENS for 1 hour daily over 4 days. Pressure information from the affected thumb and index finger was fed back to the unaffected and affected shoulders, respectively. We assessed the feasibility of SENS and examined the improvement of manipulation capability after training with SENS. Results The fluctuation in fingertip force during the cylindrical grasp task gradually decreased as the training progressed. The patient was able to maintain a stable grip force after training, even without SENS. Pressure exerted by the tip pinch of the affected hand was unstable before intervention with SENS compared with that of the unaffected hand. However, they were similar to each other immediately after SENS was initiated, suggesting that the somatosensory information improved tip pinch performance. The patient’s manipulation capability assessed by the Box and Block Test score improved through SENS intervention and was partly maintained after SENS was removed, until at least 7 months after the intervention. The sensory test score, however, showed no recovery after intervention. Conclusions We conclude that the proposed system would be useful in the rehabilitation of patients with sensory loss. PMID:23764012
Kita, Kahori; Otaka, Yohei; Takeda, Kotaro; Sakata, Sachiko; Ushiba, Junichi; Kondo, Kunitsugu; Liu, Meigen; Osu, Rieko
2013-06-13
Sensory disturbance is common following stroke and can exacerbate functional deficits, even in patients with relatively good motor function. In particular, loss of appropriate sensory feedback in severe sensory loss impairs manipulation capability. We hypothesized that task-oriented training with sensory feedback assistance would improve manipulation capability even without sensory pathway recovery. We developed a system that provides sensory feedback by transcutaneous electrical nerve stimulation (SENS) for patients with sensory loss, and investigated the feasibility of the system in a stroke patient with severe sensory impairment and mild motor deficit. The electrical current was modulated by the force exerted by the fingertips so as to allow the patient to identify the intensity. The patient had severe sensory loss due to a right thalamic hemorrhage suffered 27 months prior to participation in the study. The patient first practiced a cylindrical grasp task with SENS for 1 hour daily over 29 days. Pressure information from the affected thumb was fed back to the unaffected shoulder. The same patient practiced a tip pinch task with SENS for 1 hour daily over 4 days. Pressure information from the affected thumb and index finger was fed back to the unaffected and affected shoulders, respectively. We assessed the feasibility of SENS and examined the improvement of manipulation capability after training with SENS. The fluctuation in fingertip force during the cylindrical grasp task gradually decreased as the training progressed. The patient was able to maintain a stable grip force after training, even without SENS. Pressure exerted by the tip pinch of the affected hand was unstable before intervention with SENS compared with that of the unaffected hand. However, they were similar to each other immediately after SENS was initiated, suggesting that the somatosensory information improved tip pinch performance. The patient's manipulation capability assessed by the Box and Block Test score improved through SENS intervention and was partly maintained after SENS was removed, until at least 7 months after the intervention. The sensory test score, however, showed no recovery after intervention. We conclude that the proposed system would be useful in the rehabilitation of patients with sensory loss.
Zhu, Yong; Romitti, Paul A; Conway, Kristin M; Andrews, Jennifer; Liu, Ke; Meaney, F John; Street, Natalie; Puzhankara, Soman; Druschel, Charlotte M; Matthews, Dennis J
2014-07-01
Complementary and alternative medicine is frequently used in the management of chronic pediatric diseases, but little is known about its use by those with Duchenne or Becker muscular dystrophy. Complementary and alternative medicine use by male patients with Duchenne or Becker muscular dystrophy and associations with characteristics of male patients and their caregivers were examined through interviews with 362 primary caregivers identified from the Muscular Dystrophy Surveillance, Tracking, and Research Network. Overall, 272 of the 362 (75.1%) primary caregivers reported that they had used any complementary and alternative medicine for the oldest Muscular Dystrophy Surveillance, Tracking, and Research Network male in their family. The most commonly reported therapies were from the mind-body medicine domain (61.0%) followed by those from the biologically based practice (39.2%), manipulative and body-based practice (29.3%), and whole medical system (6.9%) domains. Aquatherapy, prayer and/or blessing, special diet, and massage were the most frequently used therapies. Compared with nonusers, male patients who used any therapy were more likely to have an early onset of symptoms and use a wheel chair; their caregivers were more likely to be non-Hispanic white. Among domains, associations were observed with caregiver education and family income (mind-body medicines [excluding prayer and/or blessing only] and whole medical systems) and Muscular Dystrophy Surveillance, Tracking, and Research Network site (biologically based practices and mind-body medicines [excluding prayer and/or blessing only]). Complementary and alternative medicine use was common in the management of Duchenne and Becker muscular dystrophies among Muscular Dystrophy Surveillance, Tracking, and Research Network males. This widespread use suggests further study to evaluate the efficacy of integrating complementary and alternative medicine into treatment regimens for Duchenne and Becker muscular dystrophies. Copyright © 2014 Elsevier Inc. All rights reserved.
Rapid amplification of 5' complementary DNA ends (5' RACE).
2005-08-01
This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.
Nahin, Richard L; Boineau, Robin; Khalsa, Partap S; Stussman, Barbara J; Weber, Wendy J
2016-09-01
Although most pain is acute and resolves within a few days or weeks, millions of Americans have persistent or recurring pain that may become chronic and debilitating. Medications may provide only partial relief from this chronic pain and can be associated with unwanted effects. As a result, many individuals turn to complementary health approaches as part of their pain management strategy. This article examines the clinical trial evidence for the efficacy and safety of several specific approaches-acupuncture, manipulation, massage therapy, relaxation techniques including meditation, selected natural product supplements (chondroitin, glucosamine, methylsulfonylmethane, S-adenosylmethionine), tai chi, and yoga-as used to manage chronic pain and related disability associated with back pain, fibromyalgia, osteoarthritis, neck pain, and severe headaches or migraines. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost.
Zénon, Alexandre; Devesse, Sophie; Olivier, Etienne
2016-09-14
Dopamine is known to be involved in regulating effort investment in relation to reward, and the disruption of this mechanism is thought to be central in some pathological situations such as Parkinson's disease, addiction, and depression. According to an influential model, dopamine plays this role by encoding the opportunity cost, i.e., the average value of forfeited actions, which is an important parameter to take into account when making decisions about which action to undertake and how fast to execute it. We tested this hypothesis by asking healthy human participants to perform two effort-based decision-making tasks, following either placebo or levodopa intake in a double blind within-subject protocol. In the effort-constrained task, there was a trade-off between the amount of force exerted and the time spent in executing the task, such that investing more effort decreased the opportunity cost. In the time-constrained task, the effort duration was constant, but exerting more force allowed the subject to earn more substantial reward instead of saving time. Contrary to the model predictions, we found that levodopa caused an increase in the force exerted only in the time-constrained task, in which there was no trade-off between effort and opportunity cost. In addition, a computational model showed that dopamine manipulation left the opportunity cost factor unaffected but altered the ratio between the effort cost and reinforcement value. These findings suggest that dopamine does not represent the opportunity cost but rather modulates how much effort a given reward is worth. Dopamine has been proposed in a prevalent theory to signal the average reward rate, used to estimate the cost of investing time in an action, also referred to as opportunity cost. We contrasted the effect of dopamine manipulation in healthy participants in two tasks, in which increasing response vigor (i.e., the amount of effort invested in an action) allowed either to save time or to earn more reward. We found that levodopa-a synthetic precursor of dopamine-increases response vigor only in the latter situation, demonstrating that, rather than the opportunity cost, dopamine is involved in computing the expected value of effort. Copyright © 2016 the authors 0270-6474/16/369516-10$15.00/0.
NASA MSFC hardware in the loop simulations of automatic rendezvous and capture systems
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Naumann, Charles B.; Sutton, William; Bryan, Thomas C.
1991-01-01
Two complementary hardware-in-the-loop simulation facilities for automatic rendezvous and capture systems at MSFC are described. One, the Flight Robotics Laboratory, uses an 8 DOF overhead manipulator with a work volume of 160 by 40 by 23 feet to evaluate automatic rendezvous algorithms and range/rate sensing systems. The other, the Space Station/Station Operations Mechanism Test Bed, uses a 6 DOF hydraulic table to perform docking and berthing dynamics simulations.
A general framework for the manual teleoperation of kinematically redundant space-based manipulators
NASA Astrophysics Data System (ADS)
Dupuis, Erick
This thesis provides a general framework for the manual teleoperation of kinematically redundant space-based manipulators. It is proposed to break down the task of controlling the motion of a redundant manipulator into a sequence of manageable sub-tasks of lower dimension by imposing constraints on the motion of intermediate bodies of the manipulator. This implies that the manipulator then becomes a non-redundant kinematic chain and the operator only controls a reduced number of degrees of freedom at any time. However, by appropriately changing the imposed constraints, the operator can use the full capability of the manipulator throughout the task. Also, by not restricting the point of teleoperation to the end effector but effectively allowing direct control of intermediate bodies of the robot, it is possible to teleoperate a redundant robot of arbitrary kinematic architecture over its entire configuration space in a predictable and natural fashion. It is rigourously proven that this approach will always work for any kinematically redundant serial manipulator regardless of its topology, geometry and of the number of its excess degrees-of-freedom. Furthermore, a methodology is provided for the selection of task and constraint coordinates to ensure the absence of algorithmic rank-deficiencies. Two novel algorithms are provided for the symbolic determination of the rank-deficiency locus of rectangular Jacobian matrices: the Singular Vector Algorithm and the Recursive Sub-Determinant Algorithm. These algorithms are complementary to each other: the former being more computationally efficient and the latter more robust. The application of the methodology to sample cases of varying complexity has demonstrated its power and limitations: It has been shown to be powerful enough to generate complete sets of task/constraint coordinate pairs for realistic examples such as the Space Station Remote Manipulator System and a simplified version of the Special Purpose Dexterous Manipulator.
Stub, Trine; Foss, Nina; Liodden, Ingrid
2017-05-12
Complementary therapists spend considerable time with their patients, especially in the first consultation. The communication between patients and their therapists is important for raising consciousness and activation of the patient's self-healing power. Thus, the aims in this study were to delineate what complementary therapists regard as essential in patient consultations, their view of the healing process, and how the therapists understand the placebo effect and its position in the healing process. Semi-structured individual interviews (n = 4), focus group interview (n = 1) and participant observation were conducted among four different complementary therapists in a Norwegian community. The text data was transcribed verbatim and the analysis of the material was conducted according to conventional and direct content analysis. Some codes were predefined and others were defined during the analysis. The pilot study showed that the implemented methods seems feasible and fit well with the aims of this study. Complementary therapists (chiropractor, naprapath (musculoskeletal therapist), acupuncturist and acupuncturist/homeopath) representing four different complementary modalities participated. A combination of the conversation and examination during the first consultation formed the basis for the therapist's choice of treatment. A successful consultation was characterized by a fruitful relationship between the therapist and the patient. Moreover, the therapist needs to be humble and show the patient respect. Patients' positive beliefs and expectations about the treatment play a significant role in the healing process. The more hope the therapist can bring about, the more easily the patient can start believing that it is possible to get well. This was a pilot study. Therefore the findings should be appreciated as limited and preliminary. Therapists' and patients' mutual understanding and treatment goals were essential for a successful consultation. The therapists emphasized their professional skills and therapeutic competence as important when building fruitful relationships with their patients. Exerting authority and making the patient feel confident were essential factors for a successful healing process. The complementary therapists understood the placebo effect as the patient's self-healing power, resulting from establishing trust and belief in the treatment process.
Isidoro, Ciro; Huang, Chia-Chi; Sheen, Lee-Yan
2016-01-01
The Second International Conference of Traditional and Complementary Medicine on Health was held from October 24th through 27th at the GIS National Taiwan University Convention Center in Taipei. Twenty-seven invited speakers, representative of fourteen Countries, delivered their lecture in front of an audience of more than two hundreds of attendees. In addition, a poster exhibition with seventy-two presenters completed the scientific sessions. The leitmotif of the Conference was to promote a common platform in which all medical knowledge is integrated to improve the health care system. Traditional medicine and complementary medicine are characterized by a holistic approach to prevent and cure diseases, making use of natural products and/or physical manipulations. In this context, the Conference emphasized the importance of the Quality Control and of standardized methods for the authentication, preparation and characterization of the herbal products and nutrient supplements, as well as the need for controlled clinical trials and for experimental studies to demonstrate the efficacy and to understand the underlying mechanisms of the preventive and curative treatments. In this report, we highlight the novel findings and the perspectives in Traditional and Complementary Medicine (TCM; 傳統暨互補醫學 chuán tǒng jì hù bǔ yī xué) that emerged during the conference. PMID:26870692
Black, Lindsey I.; Clarke, Tainya C.; Barnes, Patricia M.; Stussman, Barbara J.; Nahin, Richard L.
2015-01-01
Objective This report presents national estimates of the use of complementary health approaches among children aged 4–17 years in the United States. Selected modalities are compared for 2007 and 2012 to examine changes over time. Methods Data from the 2007 and 2012 National Health Interview Survey (NHIS) were analyzed for this report. The combined sample included 17,321 interviews with knowledgeable adults about children aged 4–17 years. Point estimates and estimates of their variances were calculated using SUDAAN software to account for the complex sampling design of NHIS. Differences between percentages were evaluated using two-sided significance tests at the 0.05 level. Results The use of complementary health approaches among children did not change significantly since 2007 (from 12.0% in 2007 to 11.6% in 2012). However, one approach, the use of traditional healers, showed a statistically significant decrease in use, from 1.1% in 2007 to 0.1% in 2012. No other significant decreases were identified. An increase in the use of yoga was observed during this period (from 2.3% in 2007 to 3.1% in 2012). Nonvitamin, nonmineral dietary supplements; chiropractic or osteopathic manipulation; and yoga, tai chi, or qi gong were the most commonly used complementary health approaches in both 2007 and 2012. Also consistent between 2007 and 2012 was that complementary health approaches were most frequently used for back or neck pain, head or chest cold, anxiety or stress, and other musculoskeletal conditions. PMID:25671583
Crise, A; Kaberi, H; Ruiz, J; Zatsepin, A; Arashkevich, E; Giani, M; Karageorgis, A P; Prieto, L; Pantazi, M; Gonzalez-Fernandez, D; Ribera d'Alcalà, M; Tornero, V; Vassilopoulou, V; Durrieu de Madron, X; Guieu, C; Puig, P; Zenetos, A; Andral, B; Angel, D; Altukhov, D; Ayata, S D; Aktan, Y; Balcıoğlu, E; Benedetti, F; Bouchoucha, M; Buia, M-C; Cadiou, J-F; Canals, M; Chakroun, M; Christou, E; Christidis, M G; Civitarese, G; Coatu, V; Corsini-Foka, M; Cozzi, S; Deidun, A; Dell'Aquila, A; Dogrammatzi, A; Dumitrache, C; Edelist, D; Ettahiri, O; Fonda-Umani, S; Gana, S; Galgani, F; Gasparini, S; Giannakourou, A; Gomoiu, M-T; Gubanova, A; Gücü, A-C; Gürses, Ö; Hanke, G; Hatzianestis, I; Herut, B; Hone, R; Huertas, E; Irisson, J-O; İşinibilir, M; Jimenez, J A; Kalogirou, S; Kapiris, K; Karamfilov, V; Kavadas, S; Keskin, Ç; Kideyş, A E; Kocak, M; Kondylatos, G; Kontogiannis, C; Kosyan, R; Koubbi, P; Kušpilić, G; La Ferla, R; Langone, L; Laroche, S; Lazar, L; Lefkaditou, E; Lemeshko, I E; Machias, A; Malej, A; Mazzocchi, M-G; Medinets, V; Mihalopoulos, N; Miserocchi, S; Moncheva, S; Mukhanov, V; Oaie, G; Oros, A; Öztürk, A A; Öztürk, B; Panayotova, M; Prospathopoulos, A; Radu, G; Raykov, V; Reglero, P; Reygondeau, G; Rougeron, N; Salihoglu, B; Sanchez-Vidal, A; Sannino, G; Santinelli, C; Secrieru, D; Shapiro, G; Simboura, N; Shiganova, T; Sprovieri, M; Stefanova, K; Streftaris, N; Tirelli, V; Tom, M; Topaloğlu, B; Topçu, N E; Tsagarakis, K; Tsangaris, C; Tserpes, G; Tuğrul, S; Uysal, Z; Vasile, D; Violaki, K; Xu, J; Yüksek, A; Papathanassiou, E
2015-06-15
PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Approaches to chemical synthetic biology.
Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi
2012-07-16
Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Optofluidics incorporating actively controlled micro- and nano-particles
Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2012-01-01
The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925
Clinical presentation and manual therapy for upper quadrant musculoskeletal conditions
Isabel de-la-Llave-Rincón, Ana; Puentedura, Emilio J; Fernández-de-las-Peñas, César
2011-01-01
In recent years, increased knowledge of the pathogenesis of upper quadrant pain syndromes has translated to better management strategies. Recent studies have demonstrated evidence of peripheral and central sensitization mechanisms in different local pain syndromes of the upper quadrant such as idiopathic neck pain, lateral epicondylalgia, whiplash-associated disorders, shoulder impingement, and carpal tunnel syndrome. Therefore, a treatment-based classification approach where subjects receive matched interventions has been developed and, it has been found that these patients experience better outcomes than those receiving non-matched interventions. There is evidence suggesting that the cervical and thoracic spine is involved in upper quadrant pain. Spinal manipulation has been found to be effective for patients with elbow pain, neck pain, or cervicobrachial pain. Additionally, it is known that spinal manipulative therapy exerts neurophysiological effects that can activate pain modulation mechanisms. This paper exposes some manual therapies for upper quadrant pain syndromes, based on a nociceptive pain rationale for modulating central nervous system including trigger point therapy, dry needling, mobilization or manipulation, and cognitive pain approaches. PMID:23115473
An octopus-bioinspired solution to movement and manipulation for soft robots.
Calisti, M; Giorelli, M; Levy, G; Mazzolai, B; Hochner, B; Laschi, C; Dario, P
2011-09-01
Soft robotics is a challenging and promising branch of robotics. It can drive significant improvements across various fields of traditional robotics, and contribute solutions to basic problems such as locomotion and manipulation in unstructured environments. A challenging task for soft robotics is to build and control soft robots able to exert effective forces. In recent years, biology has inspired several solutions to such complex problems. This study aims at investigating the smart solution that the Octopus vulgaris adopts to perform a crawling movement, with the same limbs used for grasping and manipulation. An ad hoc robot was designed and built taking as a reference a biological hypothesis on crawling. A silicone arm with cables embedded to replicate the functionality of the arm muscles of the octopus was built. This novel arm is capable of pushing-based locomotion and object grasping, mimicking the movements that octopuses adopt when crawling. The results support the biological observations and clearly show a suitable way to build a more complex soft robot that, with minimum control, can perform diverse tasks.
Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
Yin, Di; Xu, Gangwei; Wang, Mengyuan; Shen, Mingwu; Xu, Tiegang; Zhu, Xiaoyue; Shi, Xiangyang
2017-09-01
We present a facile particle-based cell manipulation method using acoustic radiation forces. In this work, we selected several representative particles including poly(lactic-co-glycolic acid) (PLGA) microspheres, silica-coated magnetic microbeads, polydimethylsiloxane (PDMS) microspheres and investigated the responses of these particle systems to ultrasonic standing waves (USWs) in a microfluidic chip. We show that depending on the nature (positive or negative acoustic contrast factors) of the particles, these particle systems display different alignment behaviors along the microfluidic channel under USWs. Specifically, PLGA microspheres and silica-coated magnetic microbeads are able to be aligned in the middle of the microfluidic channel, while PDMS microspheres are translocated to the side walls of the channel, which is beneficial for cell trapping and manipulation. Further results demonstrate that the functional PDMS microspheres with a negative acoustic contrast factor can be used to trap cells to the pressure antinodes in the acoustofluidic chip. Cell viability tests reveal that the ultrasonic manipulation does not exert any harmful effect to the cells. This acoustic-based particle and cell manipulation technique may hold a great promise for the development of rapid, noninvasive, continuous assays for detecting of cells and separation of biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Defever, Emmy; Reynvoet, Bert; Gebuis, Titia
2013-10-01
Researchers investigating numerosity processing manipulate the visual stimulus properties (e.g., surface). This is done to control for the confound between numerosity and its visual properties and should allow the examination of pure number processes. Nevertheless, several studies have shown that, despite different visual controls, visual cues remained to exert their influence on numerosity judgments. This study, therefore, investigated whether the impact of the visual stimulus manipulations on numerosity judgments is dependent on the task at hand (comparison task vs. same-different task) and whether this impact changes throughout development. In addition, we examined whether the influence of visual stimulus manipulations on numerosity judgments plays a role in the relation between performance on numerosity tasks and mathematics achievement. Our findings confirmed that the visual stimulus manipulations affect numerosity judgments; more important, we found that these influences changed with increasing age and differed between the comparison and the same-different tasks. Consequently, direct comparisons between numerosity studies using different tasks and age groups are difficult. No meaningful relationship between the performance on the comparison and same-different tasks and mathematics achievement was found in typically developing children, nor did we find consistent differences between children with and without mathematical learning disability (MLD). Copyright © 2013 Elsevier Inc. All rights reserved.
Controlled Wake of a Moving Axisymmetric Bluff Body
NASA Astrophysics Data System (ADS)
Lee, E.; Vukasinovic, B.; Glezer, A.
2017-11-01
The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.
Results of telerobotic hand controller study using force information and rate control
NASA Technical Reports Server (NTRS)
Willshire, Kelli F.; Harrison, F. W.; Hogge, Edward F.; Williams, Robert L.; Soloway, Donald
1992-01-01
To increase quantified information about the effectiveness and subjective workload of force information relayed through manipulator input control devices, a space related task was performed by eight subjects with kinesthetic force feedback and/or local force accommodation through three different input control devices (i.e., hand controllers) operating in rate control mode. Task completion time, manipulator work, and subjective responses were measured. Results indicated a difference among the hand controllers. For the Honeywell six degree-of-freedom hand controller, the overall task completion times were shortest, the amount of work exerted was the least, and was the most preferred by test subjects. Neither force accommodation with or without reflection resulted in shorter task completion times or reduced work although those conditions were better than no force information for some aspects. Comparisons of results from previous studies are discussed.
Wang, Jianfei; Shen, Qirong
2006-11-01
Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.
Front-End Processing of Cell Lysates for Enhanced Chip-Based Detection
2006-07-28
manipulation used in lab-on-a-chip devices. A small unknown sample is first mixed with the PNA surfactants (“PNAA”) to tag the DNA targets, and then the...unknown sample is first mixed with the PNA surfactants (hereafter referred to as “PNA amphiphiles” or “PNAA”) to tag the DNA targets, and then the...prolate ellipsoid, and mixed PNAA/SDS micelles form spherical micelles. On addition of complementary DNA, the PNAA/DNA duplexes do not participate in
Electrostatically Driven Nanoballoon Actuator.
Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex
2016-11-09
We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.
Progress in the Correlative Atomic Force Microscopy and Optical Microscopy
Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda
2017-01-01
Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775
The Effects of Local Exertion and Anticipation on the Performance of a Discrete Skill.
1986-01-01
295-298. Davies, B.T. & Ward, H. (1978). The effect of physical work on a subsequent fine manipulative task. Ergonomics , 21, 939-944. Dechovitz, A.B...Lt Jaeger’s next assignment was at the Occupational Measurement Cente r, Lackland AFB, Texas, where for three years he wrote and edited achievement...psychology, and human factors engineering for two years, then was selected for advanced graduate work in ergonomics under the sponsorship of the Air
Optical force rectifiers based on PT-symmetric metasurfaces
NASA Astrophysics Data System (ADS)
Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer
2018-05-01
We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.
Sensing And Force-Reflecting Exoskeleton
NASA Technical Reports Server (NTRS)
Eberman, Brian; Fontana, Richard; Marcus, Beth
1993-01-01
Sensing and force-reflecting exoskeleton (SAFiRE) provides control signals to robot hand and force feedback from robot hand to human operator. Operator makes robot hand touch objects gently and manipulates them finely without exerting excessive forces. Device attaches to operator's hand; comfortable and lightweight. Includes finger exoskeleton, cable mechanical transmission, two dc servomotors, partial thumb exoskeleton, harness, amplifier box, two computer circuit boards, and software. Transduces motion of index finger and thumb. Video monitor of associated computer displays image corresponding to motion.
Dynamics of Cell Area and Force during Spreading
Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf
2014-01-01
Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. PMID:25517168
Acupuncture, chiropractic and osteopathy use in Australia: a national population survey
Xue, Charlie CL; Zhang, Anthony L; Lin, Vivian; Myers, Ray; Polus, Barbara; Story, David F
2008-01-01
Background There have been no published national studies on the use in Australia of the manipulative therapies, acupuncture, chiropractic or osteopathy, or on matters including the purposes for which these therapies are used, treatment outcomes and the socio-demographic characteristics of users. Methods This study on the three manipulative therapies was a component of a broader investigation on the use of complementary and alternative therapies. For this we conducted a cross-sectional, population survey on a representative sample of 1,067 adults from the six states and two territories of Australia in 2005 by computer-assisted telephone interviews. The sample was recruited by random digit dialling. Results Over a 12-month period, approximately one in four adult Australians used either acupuncture (9.2%), chiropractic (16.1%) or osteopathy (4.6%) at least once. It is estimated that, adult Australians made 32.3 million visits to acupuncturists, chiropractors and osteopaths, incurring personal expenditure estimated to be A$1.58 billion in total. The most common conditions treated were back pain and related problems and over 90% of the users of each therapy considered their treatment to be very or somewhat helpful. Adverse events are reported. Nearly one fifth of users were referred to manipulative therapy practitioners by medical practitioners. Conclusion There is substantial use of manipulative therapies by adult Australians, especially for back-related problems. Treatments incur considerable personal expenditure. In general, patient experience is positive. Referral by medical practitioners is a major determinant of use of these manipulative therapies. PMID:18377663
Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles
2014-04-30
While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Quantitative modeling and optimization of magnetic tweezers.
Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H
2009-06-17
Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply > or = 40 pN stretching forces on approximately 1-microm tethered beads.
Quantitative Modeling and Optimization of Magnetic Tweezers
Lipfert, Jan; Hao, Xiaomin; Dekker, Nynke H.
2009-01-01
Abstract Magnetic tweezers are a powerful tool to manipulate single DNA or RNA molecules and to study nucleic acid-protein interactions in real time. Here, we have modeled the magnetic fields of permanent magnets in magnetic tweezers and computed the forces exerted on superparamagnetic beads from first principles. For simple, symmetric geometries the magnetic fields can be calculated semianalytically using the Biot-Savart law. For complicated geometries and in the presence of an iron yoke, we employ a finite-element three-dimensional PDE solver to numerically solve the magnetostatic problem. The theoretical predictions are in quantitative agreement with direct Hall-probe measurements of the magnetic field and with measurements of the force exerted on DNA-tethered beads. Using these predictive theories, we systematically explore the effects of magnet alignment, magnet spacing, magnet size, and of adding an iron yoke to the magnets on the forces that can be exerted on tethered particles. We find that the optimal configuration for maximal stretching forces is a vertically aligned pair of magnets, with a minimal gap between the magnets and minimal flow cell thickness. Following these principles, we present a configuration that allows one to apply ≥40 pN stretching forces on ≈1-μm tethered beads. PMID:19527664
The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response
Dedic, Nina; Chen, Alon; Deussing, Jan M.
2018-01-01
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses. PMID:28260504
Pfammatter, Jesse A; Raffa, Kenneth F
2015-12-01
Ips grandicollis (Eichhoff) can be an important pest of plantation trees in the Great Lakes region. Mites commonly occur in phoretic association with this beetle, but little is known about their effects on beetle population dynamics. We assessed the effects of phoretic mites on the reproductive success of I. grandicollis using complementary correlative and manipulative approaches. First, we allowed beetles to colonize Pinus resinosa (Ait) logs from sites across Wisconsin, reared them in a common environment, and related the species identities and abundances of mites with beetle production from each log. We found a positive relationship between I. grandicollis abundance and the presence of five mite species, Histiostoma spp., Dendrolaelaps quadrisetus (Berlese), Iponemus confusus (Lindquist), Trichouropoda australis Hirschmann, and Tarsonemus spp. While the abundance of individual mite species was positively correlated with beetle abundance, assessments of mite community structure did not explain beetle reproduction. Next, we introduced beetles that either had a natural complement of mites or whose mites were mechanically reduced into logs, and compared reproductive success between these beetles. We found no difference in colonization rates or beetle emergence between mite-present and mite-reduced treatments. Collectively, these results suggest a correlative, rather than causal, link between beetle reproductive success and mite incidence and abundances. These mites and beetles likely benefit from mutually suitable environments rather than exerting strong reciprocal impacts. Although mites may have some effects on I. grandicollis reproductive success, they likely play a minimal role compared to factors such as tree quality, beetle predation, and weather. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts
Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav
2018-01-01
Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite–host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects. PMID:29765342
Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts.
Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav
2018-01-01
Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite-host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.
Local Heating of Discrete Droplets Using Magnetic Porous Silicon-Based Photonic Crystals
Park, Ji-Ho; Derfus, Austin M.; Segal, Ester; Vecchio, Kenneth S.; Bhatia, Sangeeta N.; Sailor, Michael J.
2012-01-01
This paper describes a method for local heating of discrete micro-liter scale liquid droplets. The droplets are covered with magnetic porous Si microparticles, and heating is achieved by application of an external alternating electromagnetic field. The magnetic porous Si microparticles consist of two layers: the top layer contains a photonic code and it is hydrophobic, with surface-grafted dodecyl moieties. The bottom layer consists of a hydrophilic Si oxide host layer that is infused with Fe3O4 nanoparticles. The amphiphilic microparticles spontaneously align at the interface of a water droplet immersed in mineral oil, allowing manipulation of the droplets by application of a magnetic field. Application of an oscillating magnetic field (338 kHz, 18A RMS current in a coil surrounding the experiment) generates heat in the superparamagnetic particles that can raise the temperature of the enclosed water droplet to >80 °C within 5 min. A simple microfluidics application is demonstrated: combining complementary DNA strands contained in separate droplets and then thermally inducing dehybridization of the conjugate. The complementary oligonucleotides were conjugated with the cyanine dye fluorophores Cy3 and Cy5 to quantify the melting/re-binding reaction by fluorescence resonance energy transfer (FRET). The magnetic porous Si microparticles were prepared as photonic crystals, containing spectral codes that allowed the identification of the droplets by reflectivity spectroscopy. The technique demonstrates the feasibility of tagging, manipulating, and heating small volumes of liquids without the use of conventional microfluidic channel and heating systems. PMID:16771508
Issues in human/computer control of dexterous remote hands
NASA Technical Reports Server (NTRS)
Salisbury, K.
1987-01-01
Much research on dexterous robot hands has been aimed at the design and control problems associated with their autonomous operation, while relatively little research has addressed the problem of direct human control. It is likely that these two modes can be combined in a complementary manner yielding more capability than either alone could provide. While many of the issues in mixed computer/human control of dexterous hands parallel those found in supervisory control of traditional remote manipulators, the unique geometry and capabilities of dexterous hands pose many new problems. Among these are the control of redundant degrees of freedom, grasp stabilization and specification of non-anthropomorphic behavior. An overview is given of progress made at the MIT AI Laboratory in control of the Salisbury 3 finger hand, including experiments in grasp planning and manipulation via controlled slip. It is also suggested how we might introduce human control into the process at a variety of functional levels.
Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts.
Wu, Aimin; Li, Hao; Du, Junjie; Ni, Xingjie; Ye, Ziliang; Wang, Yuan; Sheng, Zhen; Zou, Shichang; Gan, Fuwan; Zhang, Xiang; Wang, Xi
2015-03-11
Controlling an optical beam is fundamental in optics. Recently, unique manipulation of optical wavefronts has been successfully demonstrated by metasurfaces. However, these artificially engineered nanostructures have thus far been limited to operate on light beams propagating out-of-plane. The in-plane operation is critical for on-chip photonic applications. Here, we demonstrate an anomalous negative-angle refraction of a light beam propagating along the plane, by designing a thin dielectric array of silicon nanoposts. The circularly polarized dipoles induced by the high-permittivity nanoposts at the scattering resonance significantly shape the wavefront of the light beam and bend it anomalously. The unique capability of a thin line of the nanoposts for manipulating in-plane wavefronts makes the device extremely compact. The low loss all-dielectric structure is compatible with complementary metal-oxide semiconductor technologies, offering an effective solution for in-plane beam steering and routing for on-chip photonics.
CMOS capacitive biosensors for highly sensitive biosensing applications.
Chang, An-Yu; Lu, Michael S-C
2013-01-01
Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.
Tomography of a Probe Potential Using Atomic Sensors on Graphene.
Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A
2016-12-27
Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.
Douglas, Karen M.; De Inocencio, Clara
2017-01-01
Abstract A common assumption is that belief in conspiracy theories and supernatural phenomena are grounded in illusory pattern perception. In the present research we systematically tested this assumption. Study 1 revealed that such irrational beliefs are related to perceiving patterns in randomly generated coin toss outcomes. In Study 2, pattern search instructions exerted an indirect effect on irrational beliefs through pattern perception. Study 3 revealed that perceiving patterns in chaotic but not in structured paintings predicted irrational beliefs. In Study 4, we found that agreement with texts supporting paranormal phenomena or conspiracy theories predicted pattern perception. In Study 5, we manipulated belief in a specific conspiracy theory. This manipulation influenced the extent to which people perceive patterns in world events, which in turn predicted unrelated irrational beliefs. We conclude that illusory pattern perception is a central cognitive mechanism accounting for conspiracy theories and supernatural beliefs. PMID:29695889
The motivating operation and negatively reinforced problem behavior: a systematic review.
Langthorne, Paul; McGill, Peter; Oliver, Chris
2014-01-01
The concept of motivational operations exerts an increasing influence on the understanding and assessment of problem behavior in people with intellectual and developmental disability. In this systematic review of 59 methodologically robust studies of the influence of motivational operations in negative reinforcement paradigms in this population, we identify themes related to situational and biological variables that have implications for assessment, intervention, and further research. There is now good evidence that motivational operations of differing origins influence negatively reinforced problem behavior, and that these might be subject to manipulation to facilitate favorable outcomes. There is also good evidence that some biological variables warrant consideration in assessment procedures as they predispose the person's behavior to be influenced by specific motivational operations. The implications for assessment and intervention are made explicit with reference to variables that are open to manipulation or that require further research and conceptualization within causal models.
van Prooijen, Jan-Willem; Douglas, Karen M; De Inocencio, Clara
2018-04-01
A common assumption is that belief in conspiracy theories and supernatural phenomena are grounded in illusory pattern perception. In the present research we systematically tested this assumption. Study 1 revealed that such irrational beliefs are related to perceiving patterns in randomly generated coin toss outcomes. In Study 2, pattern search instructions exerted an indirect effect on irrational beliefs through pattern perception. Study 3 revealed that perceiving patterns in chaotic but not in structured paintings predicted irrational beliefs. In Study 4, we found that agreement with texts supporting paranormal phenomena or conspiracy theories predicted pattern perception. In Study 5, we manipulated belief in a specific conspiracy theory. This manipulation influenced the extent to which people perceive patterns in world events, which in turn predicted unrelated irrational beliefs. We conclude that illusory pattern perception is a central cognitive mechanism accounting for conspiracy theories and supernatural beliefs.
Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation.
Li, Jiaojiao; Li, Yikui; Cui, Zhiyong; Liang, Quanfeng; Qi, Qingsheng
2017-04-01
We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD + ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD + ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD + ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD + ratio and ATP level is an efficient strategy for succinate production.
Schilling, D; Küfer, R; Kruck, S; Stenzl, A; Kuczyk, M A; Merseburger, A S
2008-10-01
Almost all patients with hormone-refractory prostate cancer under primary androgen deprivation therapy will develop progression, frequently initially marked by an asymptomatic increase of prostate-specific antigen (PSA). Recent data showed that taxane-based chemotherapy offers significant survival benefit to patients with advanced prostate cancer; however, the toxic side effects frequently exert a significant negative impact on the quality of life. At the androgen-independent stage of the cancer, before becoming hormone refractory, progression might still be delayed by secondary manipulation of either androgen or confounding receptors and their signaling pathways. Secondary hormonal manipulations traditionally included antiandrogen withdrawal, second-line antiandrogens, direct adrenal androgen inhibitors, estrogens, and progestins.We discuss the mode of action and application of somatostatin analogs as an emerging secondary hormonal treatment concept in patients with advanced prostate cancer on the basis of the current literature.
Mącznik, Aleksandra K; Schneiders, Anthony G; Sullivan, S John; Athens, Josie
2014-04-01
Complementary and alternative medicine (CAM) is becoming increasingly accepted in modern western society, including amongst amateur and professional athletes, however, it has not yet been determined how CAM is reflected in scientific publications in sports and exercise medicine (SEM). The aim of this study was to identify trends in the levels of evidence for manipulative and body-based therapies within the SEM literature. The literature was systematically searched with no language restrictions in seven databases and retrieved articles were screened and classified according to their study design using the Oxford Centre for Evidence-Based Medicine system. From 6088 retrieved articles, 395 were retained for evaluation and these included 180 on massage, 96 on acupuncture and 95 on manipulation. The majority of the articles were published in English, with 88 in non-English languages. Level-1 evidence was available for acupuncture, manipulation, massage, and Pilates. From the nineteen-seventies onwards, a decreasing trend was observed for low evidence articles with a corresponding increasing trend for clinical trials. After the year 2000, over 50% of the published articles were clinical trials, RCTs or systematic reviews. This review revealed an increase in the quantity and quality of published manipulative and body-based therapy articles in SEM over the last 60 years with the evidence level varying considerably between therapies. The timeframe associated with the development of evidence in CAM may reflect the move to provide scientific support for therapies previously justified primarily by anecdotal evidence, or traditional and cultural use. Copyright © 2014. Published by Elsevier Ltd.
Dynamics of cell area and force during spreading.
Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf
2014-12-16
Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Roostalu, Johanna; Cade, Nicholas I.; Surrey, Thomas
2016-01-01
Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilises growing microtubule ends and stimulates microtubule nucleation by stabilising early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homolog) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking TPX2’s interaction with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells. PMID:26414402
Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas
2015-11-01
Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.
Lee, Young Bum; Kim, Seong Ku; Lim, Yi Rang; Jeon, In Su; Song, Wooseok; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok
2017-05-03
Complementary combination of heterostructures is a crucial factor for the development of 2D materials-based optoelectronic devices. Herein, an appropriate solution for fabricating complementary dimensional-hybrid nanostructures comprising structurally tailored ZnO nanostructures and 2D materials such as graphene and MoS 2 is suggested. Structural features of ZnO nanostructures hydrothermally grown on graphene and MoS 2 are deliberately manipulated by adjusting the pH value of the growing solution, which will result in the formation of ZnO nanowires, nanostars, and nanoflowers. The detailed growth mechanism is further explored for the structurally tailored ZnO nanostructures on the 2D materials. Furthermore, a UV photodetector based on the dimensional-hybrid nanostructures is fabricated, which demonstrates their excellent photocurrent and mechanical durability. This can be understood by the existence of oxygen vacancies and oxygen-vacancies-induced band narrowing in the ZnO nanostructures, which is a decisive factor for determining their photoelectrical properties in the hybrid system.
Brown, Denver M Y; Bray, Steven R
2017-12-01
Physical performance is impaired following cognitive control exertion. Incentives can ameliorate adverse carryover effects of cognitive control exertion but have not been investigated for physical endurance. This study examined the effect of monetary incentives on physical performance and muscle activation following exposure to a mentally fatiguing, cognitive control task. Participants (N = 82) performed two isometric endurance handgrip trials separated by a 12-min cognitive control manipulation using a 2 (high cognitive control [HCC]/low cognitive control [LCC]) × 2 (incentive/no incentive) design. Mental fatigue was significantly higher in the HCC conditions. Performance decreased in the HCC/no incentive condition but was unaffected in the HCC/incentive condition, which did not differ from the low cognitive control conditions. Electromyography data revealed increased muscle activation in the HCC/no incentive condition, which was also attenuated in the HCC/incentive condition. Findings show that incentives counteract the negative effects of HCC on physical endurance and alter central drive to motor units.
Ego depletion--is it all in your head? implicit theories about willpower affect self-regulation.
Job, Veronika; Dweck, Carol S; Walton, Gregory M
2010-11-01
Much recent research suggests that willpower--the capacity to exert self-control--is a limited resource that is depleted after exertion. We propose that whether depletion takes place or not depends on a person's belief about whether willpower is a limited resource. Study 1 found that individual differences in lay theories about willpower moderate ego-depletion effects: People who viewed the capacity for self-control as not limited did not show diminished self-control after a depleting experience. Study 2 replicated the effect, manipulating lay theories about willpower. Study 3 addressed questions about the mechanism underlying the effect. Study 4, a longitudinal field study, found that theories about willpower predict change in eating behavior, procrastination, and self-regulated goal striving in depleting circumstances. Taken together, the findings suggest that reduced self-control after a depleting task or during demanding periods may reflect people's beliefs about the availability of willpower rather than true resource depletion.
Gasper, Karen; Danube, Cinnamon L
2016-03-01
To determine how naturally arising affect alters judgment, we examined whether (a) affective states exert a specific, rather than a general, influence on valenced-specific judgments; (b) neutral affect is associated with increased neutral judgments, independent of positive, negative, and ambivalent affects, and whether neutral judgments are associated with behavioral disengagement; and (c) the informational value of naturally arising states may be difficult to alter via salience and relevance manipulations. The results support several conclusions: (a) Affective states exerted a judgment-specific effect-positive affect was most strongly associated with positive judgments, negative affect with negative judgments, and neutral affect with neutral judgments. (b) Neutral affect influenced judgments, taking into account positive, negative, and ambivalent affects; and neutral judgments predicted behavioral disengagement. (c) With the exception of negative affect, naturally arising affective states typically influenced judgments regardless of their salience and relevance. © 2016 by the Society for Personality and Social Psychology, Inc.
Core and Complementary Chiropractic: Lowering Barriers to Patient Utilization of Services.
Triano, John J; McGregor, Marion
2016-12-01
The use of chiropractic services has stalled while interest in accessing manipulation services is rising. The purpose of this paper is to consider this dilemma in the context of the dynamics of professional socialization, surveys of public attitudes, and a potential strategic action. This is a reflection work grounded in the literature on professional socialization and the attitudes held regarding chiropractic in modern society, to include its members, and in original data on training programs. Data were interpreted on the background of the authors' cross-cultural experiences spanning patient care, research, education, and interprofessional collaboration. Recommendation on a strategic action to counter barriers in patient referrals was synthesized. Professional socialization is the process by which society enables professional privilege. Illustration of typical and divergent professional socialization models emerged that explain cognitive dissonance toward the profession. Questions of trust are commensurate with the experiences during patient encounters rather than with a common identity for the profession. Diversity among encounters perpetuates the uncertainty that affects referral sources. Commonality as an anchor for consistent professional identity and socialization through the content of core chiropractic, defined by training and practice, offers a means to offset uncertainty. Complementary chiropractic, analogous to complementary medicine, provides an outlet under professional socialization for the interests to explore additional methods of care. The practice workplace is an effective lever for altering barriers to the use of services. Clarifying rhetoric through conceptualization of core and complementary practices simplifies the socialization dynamic. Further, it takes advantage of accepted cultural semantics in meaningful analogy while continuing to empower practical diversity in care delivery in response to evolving scientific evidence.
Manipulating Neutral Atoms in Chip-Based Magnetic Traps
NASA Technical Reports Server (NTRS)
Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James
2009-01-01
Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.
Lind, Erik; Welch, Amy S; Ekkekakis, Panteleimon
2009-01-01
Despite the well established physical and psychological benefits derived from leading a physically active life, rates of sedentary behaviour remain high. Dropout and non-compliance are major contributors to the problem of physical inactivity. Perceptions of exertion, affective responses (e.g. displeasure or discomfort), and physiological stress could make the exercise experience aversive, particularly for beginners. Shifting one's attentional focus towards environmental stimuli (dissociation) instead of one's body (association) has been theorized to enhance psychological responses and attenuate physiological stress. Research evidence on the effectiveness of attentional focus strategies, however, has been perplexing, covering the entire gamut of possible outcomes (association and dissociation having been shown to be both effective and ineffective). This article examines the effects of manipulations of attentional focus on exertional and affective responses, as well as on exercise economy and tolerance. The possible roles of the characteristics of the exercise stimulus (intensity, duration) and the exercise participants, methodological issues, and limitations of experimental designs are discussed. In particular, the critical role of exercise intensity is emphasized. Dissociative strategies may be more effective in reducing perceptions of exertion and enhancing affective responses at low to moderate exercise intensities, but their effectiveness may be diminished at higher and near-maximal levels, at which physiological cues dominate. Conversely, associative strategies could enable the exerciser to regulate intensity to avoid injury or overexertion. Thus, depending on intensity, both strategies have a place in the 'toolbox' of the public health or exercise practitioner as methods of enhancing the exercise experience and promoting long-term compliance.
A Novel Method Of Gradient Forming and Fluid Manipulation in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Ramachandran N.; Leslie, F.
1999-01-01
The use of magnetic fields to control the motion and position of non-conducting liquids has received growing interest in recent times. The possibility of using the forces exerted by a nonuniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for applications such as heat transfer in space systems. Terrestrial heat transfer equipment often relies on the normal gravitational force to hold liquid in a desired position or to provide a buoyant force to enhance the heat transfer rate. The residual gravitational force present in a space environment may no longer serve these useful functions and other forces, such as surface tension, can play a significant role in determining heat transfer rates. Although typically overwhelmed by gravitational forces in terrestrial applications, the body force induced in a ferrofluid by a nonuniform magnetic field can help to achieve these objectives in a microgravity environment. This paper will address the fluid manipulation aspect and will comprise of results from model fluid experiments and numerical modeling of the problem. Results from a novel method of forming concentration gradients that are applicable to low gravity applications will be presented. The ground based experiments are specifically tailored to demonstrate the magnetic manipulation capability of a ferrofluid and show that gravitational effects can be countered in carefully designed systems. The development of governing equations for the system will be presented along with a sampling of numerical results.
Williams, Daniel M.
1989-01-01
An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves on the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first.
Williams, D.M.
1988-01-21
An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves in the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first. 14 figs.
Biomechanical studies of spinal manipulative therapy
Herzog, Walter
1991-01-01
The purpose of this article is to present a review of our research related to spinal manipulative therapy (SMT). The first part of this review will concentrate on studies that were aimed at quantifying possible changes in the mechanics of locomotion associated with SMT. The second part will focus on studies that were aimed at measuring the forces exerted by chiropractors on patients during SMT. In the locomotion studies, we found that SMT was associated with changes in the mechanics of walking. In particular, sacroiliac joint patients were found to become more symmetrical in their ground reaction force patterns with increasing exposure to SMT. In the force studies we found that the force-time histories of SMT on the sacroiliac joint and thoracic spine were similar, however, the mean peak and preload forces recorded for SMT on the thoracic spine were about 60 N larger than those recorded on the sacroiliac joint. Treatments on the cervical spine were executed faster and with less force than treatments on the sacroiliac joint or the thoracic spine.
Multi-finger Prehension: An overview
Zatsiorsky, Vladimir M.; Latash, Mark L.
2009-01-01
This paper reviews the available experimental evidence on what people do when they grasp an object with several digits and then manipulate it. In addition to the Introduction, the paper includes three parts each addressing a specific aspect of multi-finger prehension. Part II discusses manipulation forces, i.e. the resultant force and moment of force exerted on the object, and the digits contribution to such force production. Part III deals with internal forces defined as forces that cancel each other and do not disturb object equilibrium. The role of the internal forces in maintaining the object stability is discussed with respect to such issues as slip prevention, tilt prevention and resistance to perturbations. Part IV is devoted to the motor control of prehension. It covers such topics as prehension synergies, chain effects, the principle of superposition, inter-finger connection matrices and reconstruction of neural commands, mechanical advantage of the fingers, and the simultaneous digit adjustment to several mutually reinforcing or conflicting demands. PMID:18782719
Freely chosen cadence during a covert manipulation of ambient temperature.
Hartley, Geoffrey L; Cheung, Stephen S
2013-01-01
The present study investigated relationships between changes in power output (PO) to torque (TOR) or freely chosen cadence (FCC) during thermal loading. Twenty participants cycled at a constant rating of perceived exertion while ambient temperature (Ta) was covertly manipulated at 20-min intervals of 20 °C, 35 °C, and 20 °C. The magnitude responses of PO, FCC and TOR were analyzed using repeated-measures ANOVA, while the temporal correlations were analyzed using Auto-Regressive Integrated Moving Averages (ARIMA). Increases in Ta caused significant thermal strain (p < .01), and subsequently, a decrease in PO and TOR magnitude (p < .01), whereas FCC remained unchanged (p = .51). ARIMA indicates that changes in PO were highly correlated to TOR (stationary r2 = .954, p = .04), while FCC was moderately correlated (stationary r2 = .717, p = .01) to PO. In conclusion, changes in PO are caused by a modulation in TOR, whereas FCC remains unchanged and therefore, unaffected by thermal stressors.
Hybrid bilayer plasmonic metasurface efficiently manipulates visible light.
Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei
2016-01-01
Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process.
Hybrid bilayer plasmonic metasurface efficiently manipulates visible light
Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei
2016-01-01
Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195
A modular assembling platform for manufacturing of microsystems by optical tweezers
NASA Astrophysics Data System (ADS)
Ksouri, Sarah Isabelle; Aumann, Andreas; Ghadiri, Reza; Prüfer, Michael; Baer, Sebastian; Ostendorf, Andreas
2013-09-01
Due to the increased complexity in terms of materials and geometries for microsystems new assembling techniques are required. Assembling techniques from the semiconductor industry are often very specific and cannot fulfill all specifications in more complex microsystems. Therefore, holographic optical tweezers are applied to manipulate structures in micrometer range with highest flexibility and precision. As is well known non-spherical assemblies can be trapped and controlled by laser light and assembled with an additional light modulator application, where the incident laser beam is rearranged into flexible light patterns in order to generate multiple spots. The complementary building blocks are generated by a two-photon-polymerization process. The possibilities of manufacturing arbitrary microstructures and the potential of optical tweezers lead to the idea of combining manufacturing techniques with manipulation processes to "microrobotic" processes. This work presents the manipulation of generated complex microstructures with optical tools as well as a storage solution for 2PP assemblies. A sample holder has been developed for the manual feeding of 2PP building blocks. Furthermore, a modular assembling platform has been constructed for an `all-in-one' 2PP manufacturing process as a dedicated storage system. The long-term objective is the automation process of feeding and storage of several different 2PP micro-assemblies to realize an automated assembly process.
Manipulator Performance Evaluation Using Fitts' Taping Task
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Jared, B.C.; Noakes, M.W.
1999-04-25
Metaphorically, a teleoperator with master controllers projects the user's arms and hands into a re- mote area, Therefore, human users interact with teleoperators at a more fundamental level than they do with most human-machine systems. Instead of inputting decisions about how the system should func- tion, teleoperator users input the movements they might make if they were truly in the remote area and the remote machine must recreate their trajectories and impedance. This intense human-machine inter- action requires displays and controls more carefully attuned to human motor capabilities than is neces- sary with most systems. It is important for teleoperatedmore » manipulators to be able to recreate human trajectories and impedance in real time. One method for assessing manipulator performance is to observe how well a system be- haves while a human user completes human dexterity tasks with it. Fitts' tapping task has been, used many times in the past for this purpose. This report describes such a performance assessment. The International Submarine Engineering (ISE) Autonomous/Teleoperated Operations Manipulator (ATOM) servomanipulator system was evalu- ated using a generic positioning accuracy task. The task is a simple one but has the merits of (1) pro- ducing a performance function estimate rather than a point estimate and (2) being widely used in the past for human and servomanipulator dexterity tests. Results of testing using this task may, therefore, allow comparison with other manipulators, and is generically representative of a broad class of tasks. Results of the testing indicate that the ATOM manipulator is capable of performing the task. Force reflection had a negative impact on task efficiency in these data. This was most likely caused by the high resistance to movement the master controller exhibited with the force reflection engaged. Measurements of exerted forces were not made, so it is not possible to say whether the force reflection helped partici- pants control force during testing.« less
Harte, John; Saleska, Scott R; Levy, Charlotte
2015-06-01
Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow-moving factors such as shifts in vegetation community composition. Long-term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long-term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales. © 2014 John Wiley & Sons Ltd.
Enriquez-Geppert, Stefanie; Konrad, Carsten; Pantev, Christo; Huster, René J
2010-06-01
Conflict and inhibition are considered to exert strong influences on the neurophysiological N200 and P300 brain responses as evoked in go/nogo and stop-signal tasks. In order to separate their underlying neural and functional mechanisms, the current experiment manipulated both conflict and inhibition. To do so, the go/nogo and stop-signal tasks were merged into one paradigm. Conflict was manipulated by varying go-trial frequencies across blocks (75% vs. 25%). Motor inhibition was manipulated by using go, nogo and stop trials each representing a different load of inhibition. Event-related potentials (ERPs) as well as current density reconstructions (CDRs) of fifteen healthy participants were analyzed. Overall, infrequent trials evoked significantly more pronounced N200s than frequent trials. The P300 predominantly revealed significant variations between trial types (go, nogo, stop). Estimated source activations of the MCC and the IFC supported the ERP results; N200-related effects were revealed in both regions, whereas the condition-specific variations of the P300 were only observed in the IFC. The results indicate that the N200 primarily reflects conflict-related effects whereas the P300 predominantly represents motor inhibition. Copyright 2010 Elsevier Inc. All rights reserved.
An Analysis of News Media Coverage of Complementary and Alternative Medicine
Bonevski, Billie; Wilson, Amanda; Henry, David A.
2008-01-01
Background To examine the accuracy and adequacy of lay media news stories about complementary and alternative medicines and therapies. Methodology/Principal Findings A descriptive analysis of news stories about complementary and alternative medicine (CAM) in the Australian media using a national medical news monitoring website, mediadoctor.org.au. Each story was rated against 10 criteria by two individuals. Consensus scores of 222 news articles reporting therapeutic claims about complementary medicines posted on mediadoctor.org.au between 1 January 2004 and 1 September 2007 were calculated. The overall rating score for 222 CAM articles was 50% (95% CI 47% to 53%). There was a statistically significant (F = 3.68, p = 0.006) difference in cumulative mean scores according to type of therapy: biologically based practices (54%, 95% CI 50% to 58%); manipulative body based practices (46%, 95% CI 39% to 54%), whole medical systems (45%, 95% CI 32% to 58%), mind body medicine (41%, 95% CI 31% to 50%) and energy medicine (33%, 95% CI 11% to 55%). There was a statistically significant difference in cumulative mean scores (F = 3.72, p = 0.0001) according to the clinical outcome of interest with stories about cancer treatments (62%, 95% CI 54% to 70%) scoring highest and stories about treatments for children's behavioural and mental health concerns scoring lowest (31%, 95% CI 19% to 43%). Significant differences were also found in scores between media outlets. Conclusions/Significance There is substantial variability in news reporting practices about CAM. Overall, although they may be improving, the scores remain generally low. It appears that much of the information the public receives about CAM is inaccurate or incomplete. PMID:18545688
Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy
Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Shi, Haoxia; Qu, Lingxia; Liu, Yongqiao; Xu, Tunhai; Liu, Tonghua
2017-01-01
Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithelial cells are yet to be defined. The present study investigated advanced glycation or glycoxidation end-product (AGE)-induced toxicity in renal tubular epithelial cells via several complementary assays, including cell viability, cell apoptosis and cell autophagy in the NRK-52E rat kidney tubular epithelial cell line. The extent of apoptosis was significantly increased in the NRK-52E cells following treatment with AGEs. The results also indicated that curcumin reversed this effect by promoting autophagy through the phosphoinositide 3-kinase/AKT serine/threonine kinase signaling pathway. These conclusions suggested that curcumin exerts a renoprotective effect in the presence of AGEs, at least in part by activating autophagy in NRK-52E cells. Collectively, these findings indicate that curcumin not only exerts renoprotective effects, however may also act as a novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:29285156
Cirulli, Francesca; Berry, Alessandra; Bonsignore, Luca Tommaso; Capone, Francesca; D'Andrea, Ivana; Aloe, Luigi; Branchi, Igor; Alleva, Enrico
2010-05-01
During the early post-natal phases the brain is experience-seeking and provided by a considerable plasticity which allows a fine tuning between the external environment and the developing organism. Since the early work of Seymour Levine, an impressive amount of research has clearly shown that stressful experiences exert powerful effects on the brain and body development. These effects can last throughout the entire life span influencing brain function and increasing the risk for depression and anxiety disorders. The mechanisms underlying the effects of early stress on the developing organism have been widely studied in rodents through experimental manipulations of the post-natal environment, such as handling, which have been shown to exert important effects on the emotional phenotype and the response to stress. In the present paper we review the relevant literature and present some original data indicating that, compared to handling, which imposes an external manipulation on the mother-infant relationship, social enrichment, in the form of communal rearing, in mice has very profound effects on animal's emotionality and the response to stress. These effects are also accompanied by important changes in central levels of brain-derived neurotrophic factor. The present data indicate that communal rearing has more pervasive effects than handling, strengthening previous data suggesting that it is a good animal model of reduced susceptibility to depression-like behavior. Overall, the availability of ever more sophisticated animal models represents a fundamental tool to translate basic research data into appropriate interventions for humans raised under traumatic or impoverished situations. (c) 2010 Elsevier Ltd. All rights reserved.
DNA–DNA kissing complexes as a new tool for the assembly of DNA nanostructures
Barth, Anna; Kobbe, Daniela; Focke, Manfred
2016-01-01
Kissing-loop annealing of nucleic acids occurs in nature in several viruses and in prokaryotic replication, among other circumstances. Nucleobases of two nucleic acid strands (loops) interact with each other, although the two strands cannot wrap around each other completely because of the adjacent double-stranded regions (stems). In this study, we exploited DNA kissing-loop interaction for nanotechnological application. We functionalized the vertices of DNA tetrahedrons with DNA stem-loop sequences. The complementary loop sequence design allowed the hybridization of different tetrahedrons via kissing-loop interaction, which might be further exploited for nanotechnology applications like cargo transport and logical elements. Importantly, we were able to manipulate the stability of those kissing-loop complexes based on the choice and concentration of cations, the temperature and the number of complementary loops per tetrahedron either at the same or at different vertices. Moreover, variations in loop sequences allowed the characterization of necessary sequences within the loop as well as additional stability control of the kissing complexes. Therefore, the properties of the presented nanostructures make them an important tool for DNA nanotechnology. PMID:26773051
Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing.
Lawrence, Kate; Hyde, Jeannette
2017-01-01
Manipulating gut bacteria in the microbiome, through the use of probiotics and prebiotics, has been found to have an influence on both physical and emotional wellbeing. This study uses a dietary manipulation 'The Gut Makeover' designed to elicit positive changes to the gut bacteria within the microbiome. 21 healthy participants undertook 'The Gut Makeover' for a four week period. Weight and various aspects of health were assessed pre and post intervention using the Functional Medicine Medical Symptoms Questionnaire (MSQ). Paired sample t-tests revealed a significant reduction in self-reported weight at the end of the intervention. Adverse medical symptoms related to digestion, cognition and physical and emotional wellbeing, were also significantly reduced during the course of the dietary intervention. The intervention, designed to manipulate gut bacteria, had a significant impact on digestion, reducing IBS type symptoms in this non-clinical population. There was also a striking reduction in negative symptoms related to cognition, memory and emotional wellbeing, including symptoms of anxiety and depression. Dietary gut microbiome manipulations may have the power to exert positive physical and psychological health benefits, of a similar nature to those reported in studies using pre and probiotics. The small sample size and lack of control over confounding variables means that it will be important to replicate these findings in larger-scale controlled, prospective, clinical trials. This dietary microbiome intervention has the potential to improve physical and emotional wellbeing in the general population but also to be investigated as a treatment option for individuals with conditions as diverse as IBS, anxiety, depression and Alzheimer's disease.
Paiva, Joana S; Jorge, Pedro A S; Rosa, Carla C; Cunha, João P S
2018-05-01
The tip of an optical fiber has been considered an attractive platform in Biology. The simple cleaved end of an optical fiber can be machined, patterned and/or functionalized, acquiring unique properties enabling the exploitation of novel optical phenomena. Prompted by the constant need to measure and manipulate nanoparticles, the invention of the Scanning Near-field Optical Microscopy (SNOM) triggered the optimization and development of novel fiber tip microfabrication methods. In fact, the fiber tip was soon considered a key element in SNOM by confining light to sufficiently small extensions, challenging the diffraction limit. As result and in consequence of the newly proposed "Lab On Tip" concept, several geometries of fiber tips were applied in three main fields: imaging (in Microscopy/Spectroscopy), biosensors and micromanipulation (Optical Fiber Tweezers, OFTs). These are able to exert forces on microparticles, trap and manipulate them for relevant applications, as biomolecules mechanical study or protein aggregates unfolding. This review presents an overview of the main achievements, most impactful studies and limitations of fiber tip-based configurations within the above three fields, along the past 10 years. OFTs could be in future a valuable tool for studying several cellular phenomena such as neurodegeneration caused by abnormal protein fibrils or manipulating organelles within cells. This could contribute to understand the mechanisms of some diseases or biophenomena, as the axonal growth in neurons. To the best of our knowledge, no other review article has so far provided such a broad view. Despite of the limitations, fiber tips have key roles in Biology/Medicine. Copyright © 2018 Elsevier B.V. All rights reserved.
Moreno-Sánchez, R; Bravo, C; Westerhoff, H V
1999-09-01
Two complementary methods were used to determine how the rate of respiration and that of ATP hydrolysis were controlled in rat liver submitochondrial particles. In the first, 'direct control analysis' method, respiration was titrated with malonate, antimycin or cyanide at 20, 30 and 37 degrees C, to determine the flux control exerted by succinate dehydrogenase, cytochrome bc1 complex and cytochrome c oxidase, respectively. Together, the three respiratory complexes only controlled the flux by about 50%, leaving the other 50% of flux control to the H+ leak. In the second, 'elasticity based' method, the elasticity coefficients of the respiratory chain or the H+-ATPase and the H+ leak towards the H+ gradient were determined. Then, the flux control coefficients were calculated using the connectivity and summation laws of metabolic control theory. The correspondence between the flux control coefficients determined in the two ways validated the two methods. This allowed us to use the second method to analyse what was the kinetic origin of the observed distribution of control. Control of ATP hydrolysis by the ATPase decreased with increasing ATPase activity; hence, the control exerted by the H+ leak increased with increasing ATPase activity, due to a diminishing elasticity towards the H+ gradient. Reverse electron transport was mainly controlled by the ATPase; the sum of flux control coefficients of succinate dehydrogenase, NADH-CoQ oxidoreductase, and H+-ATPase yielded a value greater than one, indicating that the H+ leak exerted a significant negative control on this pathway.
Huang, Yingyan; Ho, Seng-Tiong
2008-10-13
We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.
CMOS-compatible photonic devices for single-photon generation
NASA Astrophysics Data System (ADS)
Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.
2016-09-01
Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.
Numerical modelling of electromagnetic loads on fusion device structures
NASA Astrophysics Data System (ADS)
Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben
2014-03-01
In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.
The mechanics of development: models and methods for tissue morphogenesis
Gjorevski, Nikolce; Nelson, Celeste M.
2011-01-01
Embryonic development is a physical process during which masses of cells are sculpted into functional organs. The mechanical properties of tissues and the forces exerted on them serve as epigenetic regulators of morphogenesis. Understanding these mechanobiological effects in the embryo requires new experimental approaches. Here we focus on branching of the lung airways and bending of the heart tube to describe examples of mechanical and physical cues that guide cell fate decisions and organogenesis. We highlight recent technological advances to measure tissue elasticity and endogenous mechanical stresses in real time during organ development. We also discuss recent progress in manipulating forces in intact embryos. PMID:20860059
Persistent effects of information about internal reactions: ineffectiveness of debriefing.
Valins, Stuart
2005-01-01
A process of self-persuasion has been advanced to account for the effects of information about internal reactions on attitudes toward emotional stimuli. To determine whether the results of this cognitive activity would be resistant to debriefing, Ss were shown slides of female nudes while hearing their alleged heart-rate reactions and were subsequently informed that these reactions were part of a deception manipulation. It was found that, although Ss accepted the debriefing, the false information continued to exert an influence on their attitudes toward the nudes. The attitudes of these Ss toward the nudes were the same as those of Ss who were not debriefed.
Self-Rotation of Cells in an Irrotational AC E-Field in an Opto-Electrokinetics Chip
Chau, Long-Ho; Liang, Wenfeng; Cheung, Florence Wing Ki; Liu, Wing Keung; Li, Wen Jung; Chen, Shih-Chi; Lee, Gwo-Bin
2013-01-01
The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells. PMID:23320067
Percutaneous transfemoral repositioning of malpositioned central venous catheters.
Hartnell, G G; Roizental, M
1995-04-01
Central venous catheters inserted by blind surgical placement may not advance into a satisfactory position and may require repositioning. Malpositioning via surgical insertion is common in patients in whom central venous catheters have previously been placed, as these patients are more likely to have central venous thrombosis and distortion of central venous anatomy. This is less of a problem when catheter placement is guided by imaging; however, even when insertion is satisfactory, central venous catheters may become displaced spontaneously after insertion (Fig. 1). Repositioning can be effected by direct manipulation using guidewires or tip-deflecting wires [1, 2], by manipulation via a transfemoral venous approach [3-5], and by injection of contrast material or saline [6]. Limitations of the direct approach include (1) the number and type of maneuvers that can be performed to effect repositioning when anatomy is distorted, (2) difficulty in accessing the catheter, and (3) the risk of introducing infection. Moreover, these patients are often immunosuppressed, and there is a risk of introducing infection by exposing and directly manipulating the venous catheter. Vigorous injection of contrast material or saline may be unsuccessful for the same reasons: It seldom exerts sufficient force to reposition large-caliber central venous catheters and may cause vessel damage or rupture if injection is made into a small or thrombosed vessel. We illustrate several alternative methods for catheter repositioning via a transfemoral venous approach.
Rauner, Gat; Barash, Itamar
2014-10-15
The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine׳s effect on defined stem cells in the mammary gland of heifers-which are candidates for increased prospective milk production following such manipulation-bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.
Phenotypic engineering unveils the function of genital morphology.
Hotzy, Cosima; Polak, Michal; Rönn, Johanna L; Arnqvist, Göran
2012-12-04
The rapidly evolving and often extraordinarily complex appearance of male genital morphology of internally fertilizing animals has been recognized for centuries. Postcopulatory sexual selection is regarded as the likely evolutionary engine of this diversity, but direct support for this hypothesis is limited. We used two complementary approaches, evolution through artificial selection and microscale laser surgery, to experimentally manipulate genital morphology in an insect model system. We then assessed the competitive fertilization success of these phenotypically manipulated males and studied the fate of their ejaculate in females using high-resolution radioisotopic labeling of ejaculates. Males with longer genital spines were more successful in gaining fertilizations, providing experimental evidence that male genital morphology influences success in postcopulatory reproductive competition. Furthermore, a larger proportion of the ejaculate moved from the reproductive tract into the female body following mating with males with longer spines, suggesting that genital spines increase the rate at which seminal fluid passes into the female hemolymph. Our results show that genital morphology affects male competitive fertilization success and imply that sexual selection on genital morphology may be mediated in part through seminal fluid. Copyright © 2012 Elsevier Ltd. All rights reserved.
Contextual fear conditioning in zebrafish.
Kenney, Justin W; Scott, Ian C; Josselyn, Sheena A; Frankland, Paul W
2017-10-01
Zebrafish are a genetically tractable vertebrate that hold considerable promise for elucidating the molecular basis of behavior. Although numerous recent advances have been made in the ability to precisely manipulate the zebrafish genome, much less is known about many aspects of learning and memory in adult fish. Here, we describe the development of a contextual fear conditioning paradigm using an electric shock as the aversive stimulus. We find that contextual fear conditioning is modulated by shock intensity, prevented by an established amnestic agent (MK-801), lasts at least 14 d, and exhibits extinction. Furthermore, fish of various background strains (AB, Tu, and TL) are able to acquire fear conditioning, but differ in fear extinction rates. Taken together, we find that contextual fear conditioning in zebrafish shares many similarities with the widely used contextual fear conditioning paradigm in rodents. Combined with the amenability of genetic manipulation in zebrafish, we anticipate that our paradigm will prove to be a useful complementary system in which to examine the molecular basis of vertebrate learning and memory. © 2017 Kenney et al.; Published by Cold Spring Harbor Laboratory Press.
Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L
2002-01-01
As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881
Electrical control of antiferromagnetic metal up to 15 nm
NASA Astrophysics Data System (ADS)
Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng
2016-08-01
Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.
Amoroso Borges, Bruno Luis; Bortolazzo, Gustavo Luiz; Neto, Hugo Pasin
2018-01-01
The analysis of heart rate variability is important to the investigation of stimuli from the autonomic nervous system. Osteopathy is a form of treatment that can influence this system in healthy individuals as well as those with a disorder or disease. The aim of the present study was to perform a systematic review of the literature regarding the effect of spinal manipulation and myofascial techniques on heart rate variability. Searches were performed of the Pubmed, Scielo, Lilacs, PEDro, Ibesco, Cochrane and Scopus databases for relevant studies. The PEDro scale was used to assess the methodological quality of each study selected. A total of 505 articles were retrieved during the initial search. After an analysis of the abstracts, nine studies were selected for the present review. Based on the findings, osteopathy exerts an influence on the autonomic nervous system depending on the stimulation site and type. A greater parasympathetic response was found when stimulation was performed in the cervical and lumbar regions, whereas a greater sympathetic response was found when stimulation was performed in the thoracic region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Campbell, D R; Bischoff, M; Lord, J M; Robertson, A W
2012-02-01
Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.
Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli
2018-01-01
Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.
The role of attention in binding visual features in working memory: evidence from cognitive ageing.
Brown, Louise A; Brockmole, James R
2010-10-01
Two experiments were conducted to assess the costs of attentional load during a feature (colour-shape) binding task in younger and older adults. Experiment 1 showed that a demanding backwards counting task, which draws upon central executive/general attentional resources, reduced binding to a greater extent than individual feature memory, but the effect was no greater in older than in younger adults. Experiment 2 showed that presenting memory items sequentially rather than simultaneously, such that items are required to be maintained while new representations are created, selectively affects binding performance in both age groups. Although this experiment exhibited an age-related binding deficit overall, both age groups were affected by the attention manipulation to an equal extent. While a role for attentional processes in colour-shape binding was apparent across both experiments, manipulations of attention exerted equal effects in both age groups. We therefore conclude that age-related binding deficits neither emerge nor are exacerbated under conditions of high attentional load. Implications for theories of visual working memory and cognitive ageing are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony L. Crawford
MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedommore » during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the traditional linear scaling techniques used by other systems. Key Words: Teleoperation, Robotic Hand, Robotic Force Scaling« less
Flombaum, Pedro; Yahdjian, Laura; Sala, Osvaldo E
2017-02-01
Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land use. To address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N), and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was as follows: biodiversity>grazing>precipitation>N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is as follows: precipitation>grazing>temperature>biodiversity>N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global-change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers. © 2016 John Wiley & Sons Ltd.
Campbell, D R; Forster, M; Bischoff, M
2014-02-01
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator-mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Fabrication and Operation of a Nano-Optical Conveyor Belt
Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus
2015-01-01
The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed. PMID:26381708
Fabrication and Operation of a Nano-Optical Conveyor Belt.
Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus
2015-08-26
The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.
González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Sánchez-Martínez, Ruth; Vargas, Teodoro; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana
2014-06-01
Breast cancer is the leading cause of cancer-related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER-α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER-α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen-dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reproductive research on farm animals for Australia--some long-distance goals.
Martin, G B
1995-01-01
In Australia, much of the research on the reproduction of farm animals has emphasised the technological manipulation of the reproductive tract, gametes and embryos. However, most of the animal production in Australia is still based on sheep and beef cattle enterprises that are managed on an extensive scale; the managers need technologies that can be easily and cheaply implemented on a large scale, and that are aimed at extensive control rather than intensive manipulation. For example, for synchronizing oestrus in the wool flocks the "ram effect' has, and probably always will have, far more impact on extensive grazing systems than technologies based on exogenous prostaglandins or progestagens. This can also apply to the newer animal industries (such as emu farming), to human problems (such as population control), and to environmental problems (such as control of feral animals). Moreover, under the pressure of public opinion, the industries that are currently intensive are going 'free range'. In addition, surgical managerial tools (such as castration) will probably have to be abandoned or replaced. To cope with such profound influences, new types of reproductive management systems will be needed. This paper is an attempt to broaden our research horizons by developing the concept of 'control systems technologies', aimed at controlling reproductive performance rather than simply improving it. Ideas for such technologies already exist and are evident in the responses to environmental factors that our farm animals developed under the pressure of natural selection (before domestication). Stress, nutrition, photoperiod, lactation, and socio-sexual cues (e.g. pheromones) can all exert profound effects on reproductive activity. We already have a good grasp of the final common pathway through which the brain responses to these factors affect gonadal activity, namely the hypothalamic system that generates pulses of gonadotrophin-releasing hormone. All we need to do is learn how the major environmental cues exert their impact on the systems that control the final common pathway. When we understand them, we shall be able to manipulate them. This is not too speculative; we already have several technologies that take advantage of this approach, including steroid-based contraceptives, the "ram effect', a vaccine-based antifertility treatment for rangeland cattle and the melatonin formulation used to control seasonal breeding in sheep. These and the other pathways linking environmental inputs to reproductive output are waiting to be explored, explained and exploited.
Within-group behavioural consequences of between-group conflict: a prospective review.
Radford, Andrew N; Majolo, Bonaventura; Aureli, Filippo
2016-11-30
Conflict is rife in group-living species and exerts a powerful selective force. Group members face a variety of threats from extra-group conspecifics, from individuals looking for reproductive opportunities to rival groups seeking resources. Theory predicts that such between-group conflict should influence within-group behaviour. However, compared with the extensive literature on the consequences of within-group conflict, relatively little research has considered the behavioural impacts of between-group conflict. We give an overview of why between-group conflict is expected to influence subsequent behaviour among group members. We then use what is known about the consequences of within-group conflict to generate testable predictions about how between-group conflict might affect within-group behaviour in the aftermath. We consider the types of behaviour that could change and how the role of different group members in the conflict can exert an influence. Furthermore, we discuss how conflict characteristics and outcome, group size, social structure and within-group relationship quality might modulate post-conflict behavioural changes. Finally, we propose the need for consistent definitions, a broader range of examined behaviours and taxa, individual-focused data collection, complementary observational and experimental approaches, and a consideration of lasting effects if we are to understand fully the significant influence of between-group conflict on social behaviour. © 2016 The Author(s).
Within-group behavioural consequences of between-group conflict: a prospective review
Aureli, Filippo
2016-01-01
Conflict is rife in group-living species and exerts a powerful selective force. Group members face a variety of threats from extra-group conspecifics, from individuals looking for reproductive opportunities to rival groups seeking resources. Theory predicts that such between-group conflict should influence within-group behaviour. However, compared with the extensive literature on the consequences of within-group conflict, relatively little research has considered the behavioural impacts of between-group conflict. We give an overview of why between-group conflict is expected to influence subsequent behaviour among group members. We then use what is known about the consequences of within-group conflict to generate testable predictions about how between-group conflict might affect within-group behaviour in the aftermath. We consider the types of behaviour that could change and how the role of different group members in the conflict can exert an influence. Furthermore, we discuss how conflict characteristics and outcome, group size, social structure and within-group relationship quality might modulate post-conflict behavioural changes. Finally, we propose the need for consistent definitions, a broader range of examined behaviours and taxa, individual-focused data collection, complementary observational and experimental approaches, and a consideration of lasting effects if we are to understand fully the significant influence of between-group conflict on social behaviour. PMID:27903869
Maduna, Tando; Lelievre, Vincent
2016-12-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Liu, Jing; Li, Yao; Ding, Xiao-Rong; Dai, Wen-Xuan; Zhang, Yuan-Ting
2015-01-01
Pulse transit time (PTT), which refers to the time it takes a pulse wave to travel between two arterial sites is a promising index for cuff-less blood pressure (BP) estimation, as well as non-invasive assessment of arterial functions. However, it has not been investigated whether PTTs measured from ECG and different wavelength PPG are equally affected by the arterial status. Furthermore, comparison between the changes of different PTTs can provide enlightenment on the hardware implementation of the PTT-based BP estimation method. This work mainly studied the changes of PTTs calculated from electrocardiogram (ECG) and multi-wavelength photoplethysmogram (PPG) after exerting cuff pressure on the upper arm. A four-channel PPG acquisition system was developed to collect the multi-wavelength PPG signals of red, yellow, green and blue light at the fingertip simultaneously. Ten subjects participated in the experiment and their PTTs measured from different PPG and ECG signals before and after exerting cuff pressure were compared. This study found that within one minute after the four-minute cuff inflation and deflation process, the PTT measured from ECG and yellow PPG experienced a significant increase (p<;0.05) while the PTT from ECG and blue PPG had no statistical difference (p>0.9) compared with that before exerting cuff pressure. This indicates that PTTs calculated from different wavelength PPG have different recoverability from smooth muscle relaxation. Another interesting finding is that the PTT calculated from ECG and yellow PPG had a strong correlation (|r|>0.7) with the time difference between yellow PPG and other PPG signals, which implies the potential of the time difference between yellow PPG and other PPGs as a complementary to PTT-based model for blood pressure estimation.
Cholinergic and serotonergic modulation of visual information processing in monkey V1.
Shimegi, Satoshi; Kimura, Akihiro; Sato, Akinori; Aoyama, Chisa; Mizuyama, Ryo; Tsunoda, Keisuke; Ueda, Fuyuki; Araki, Sera; Goya, Ryoma; Sato, Hiromichi
2016-09-01
The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
An independent review of NCCAM-funded studies of chiropractic.
Ernst, Edzard; Posadzki, Paul
2011-05-01
To promote an independent and critical evaluation of 11 randomised clinical trials (RCTs) of chiropractic funded by the National Centre for Complementary and Alternative Medicine (NCCAM). Electronic searches were conducted to identify all relevant RCTs. Key data were extracted and the risk of bias of each study was determined. Ten RCTs were included, mostly related to chiropractic spinal manipulation for musculoskeletal problems. Their quality was frequently questionable. Several RCTs failed to report adverse effects and the majority was not described in sufficient detail to allow replication. The criticism repeatedly aimed at NCCAM seems justified, as far as their RCTs of chiropractic is concerned. It seems questionable whether such research is worthwhile.
Poulcharidis, Dimitrios; Belfor, Kimberley
2017-01-01
Membrane-compound exchange is vital for cell-to-cell communication, yet quantification of this process is difficult. Here we present a method using flow cytometry in combination with bioorthogonal and fluorescent labelling techniques to quantify the amount of exchange of cholesterol and sialylated compounds between cells. We demonstrate that direct cell–cell contact is the likely mechanism of sterol-exchange and show that by manipulating the contact time between cells using complementary coiled-coil peptides results in an enhanced exchange rate of membrane components between cells. PMID:28970937
Xu, Chang; Li, Siyi; Wang, Kui; Hou, Zengguang; Yu, Ningbo
2017-07-01
In neuro-rehabilitation after stroke, the conventional constrained induced movement therapy (CIMT) has been well-accepted. Existing bilateral trainings are mostly on mirrored symmetrical motion. However, complementary bilateral movements are dominantly involved in activities of daily living (ADLs), and functional bilateral therapies may bring better skill transfer from trainings to daily life. Neurophysiological evidence is also growing. In this work, we firstly introduce our bilateral arm training system realized with a haptic interface and a motion sensor, as well as the tasks that have been designed to train both the manipulation function of the paretic arm and coordination of bilateral upper limbs. Then, we propose quantitative measures for functional assessment of complementary bilateral training performance, including kinematic behavior indices, smoothness, submovement and bimanual coordination. After that, we describe the experiments with healthy subjects and the results with respect to these quantitative measures. Feasibility and sensitivity of the proposed indices were evaluated through comparison of unilateral and bilateral training outcomes. The proposed bilateral training system and tasks, as well as the quantitative measures, have been demonstrated effective for training and assessment of unilateral and bilateral arm functions.
Graded-index optical dimer formed by optical force
Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria; ...
2016-05-30
We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less
Graded-index optical dimer formed by optical force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria
We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less
Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder
NASA Astrophysics Data System (ADS)
Liang, Shen; Chaohui, Wang
2018-03-01
In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.
Gamus, Dorit
2015-01-01
This article assesses the evidence for effectiveness, adverse effects and cost-effectiveness of complementary therapies, as reflected in publications in high impact factor medical journals during the years 2012-2014. The search detected 13 randomized controlled studies (RCTs) and 14 meta-analyses, which collectively assessed results of 191 RCTs involving the participation of several thousand patients. Pain was the major focus of acupuncture research in both clinical and fMRI studies, which demonstrated that the effect of acupuncture is beyond the placebo effect. In addition, RCTs supported the use of acupuncture as an adjunctive therapy in chronic obstructive pulmonary disease and in moderate to severe depression. A promising trend was reported for the ameliorating effect of acupuncture in gout. Spinal manipulations may be helpful in cervical pain and yoga may be a useful treatment option for chronic neck pain, chronic low back pain and for pain-related disability. Beneficial effects of adding hypnosis and massage therapy to the treatment of fibromyalgia patients were also documented. Tai-chi may reduce balance impairment in mild-to-moderate Parkinson's disease and improve symptoms in patients with osteoarthritis. Products containing cranberry are associated with protective effects in some subgroups of patients with recurrent urinary tract infections. Chinese herbs may assist in glycemic control of diabetes patients and improve survival rate of patients with non-small cell lung cancer. Some of the complementary therapies were found to be cost-effective. Physicians should be aware of the possible adverse effects of these treatments and of possible drug-herb interactions. Further larger scale trials are justified.
Tobner, Cornelia M; Paquette, Alain; Reich, Peter B; Gravel, Dominique; Messier, Christian
2014-03-01
Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species' functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity-ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.
Tang, Mingguo; Guschina, Irina A; O'Hara, Paul; Slabas, Antoni R; Quant, Patti A; Fawcett, Tony; Harwood, John L
2012-10-01
Metabolic control analysis allows the study of metabolic regulation. We applied both single- and double-manipulation top-down control analysis to examine the control of lipid accumulation in developing oilseed rape (Brassica napus) embryos. The biosynthetic pathway was conceptually divided into two blocks of reactions (fatty acid biosynthesis (Block A), lipid assembly (Block B)) connected by a single system intermediate, the acyl-coenzyme A (acyl-CoA) pool. Single manipulation used exogenous oleate. Triclosan was used to inhibit specifically Block A, whereas diazepam selectively manipulated flux through Block B. Exogenous oleate inhibited the radiolabelling of fatty acids from [1-(14)C]acetate, but stimulated that from [U-14C]glycerol into acyl lipids. The calculation of group flux control coefficients showed that c. 70% of the metabolic control was in the lipid assembly block of reactions. Monte Carlo simulations gave an estimation of the error of the resulting group flux control coefficients as 0.27±0.06 for Block A and 0.73±0.06 for Block B. The two methods of control analysis gave very similar results and showed that Block B reactions were more important under our conditions. This contrasts notably with data from oil palm or olive fruit cultures and is important for efforts to increase oilseed rape lipid yields. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Biophotonics for imaging and cell manipulation: quo vadis?
NASA Astrophysics Data System (ADS)
Serafetinides, Alexandros A.; Makropoulou, Mirsini; Kotsifaki, Domna G.; Tsigaridas, Giorgos
2016-01-01
As one of the major health problems for mankind is cancer, any development for the early detection and effective treatment of cancer is crucial to saving lives. Worldwide, the dream for the anti-cancer procedure of attack is the development of a safe and efficient early diagnosis technique, the so called "optical biopsy". As early diagnosis of cancer is associated with improved prognosis, several laser based optical diagnostic methods were developed to enable earlier, non-invasive detection of human cancer, as Laser Induced Fluorescence spectroscopy (LIFs), Diffuse Reflectance spectroscopy (DRs), confocal microscopy, and Optical Coherence Tomography (OCT). Among them, Optical Coherence Tomography (OCT) imaging is considered to be a useful tool to differentiate healthy from malignant (e.g. basal cell carcinoma, squamous cell carcinoma) skin tissue. If the demand is to perform imaging in sub-tissular or even sub-cellular level, optical tweezers and atomic force microscopy have enabled the visualization of molecular events underlying cellular processes in live cells, as well as the manipulation and characterization of microscale or even nanoscale biostructures. In this work, we will present the latest advances in the field of laser imaging and manipulation techniques, discussing some representative experimental data focusing on the 21th century biophotonics roadmap of novel diagnostic and therapeutical approaches. As an example of a recently discussed health and environmental problem, we studied both experimentally and theoretically the optical trapping forces exerted on yeast cells and modified with estrogen-like acting compounds yeast cells, suspended in various buffer media.
Hosking, Jay G; Floresco, Stan B; Winstanley, Catharine A
2015-03-01
Successful decision making often requires weighing a given option's costs against its associated benefits, an ability that appears perturbed in virtually every severe mental illness. Animal models of such cost/benefit decision making overwhelmingly implicate mesolimbic dopamine in our willingness to exert effort for a larger reward. Until recently, however, animal models have invariably manipulated the degree of physical effort, whereas human studies of effort have primarily relied on cognitive costs. Dopamine's relationship to cognitive effort has not been directly examined, nor has the relationship between individuals' willingness to expend mental versus physical effort. It is therefore unclear whether willingness to work hard in one domain corresponds to willingness in the other. Here we utilize a rat cognitive effort task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, and a previously established physical effort-discounting task (EDT) to examine dopaminergic and noradrenergic contributions to effort. The dopamine antagonists eticlopride and SCH23390 each decreased willingness to exert physical effort on the EDT; these drugs had no effect on willingness to exert mental effort for the rCET. Preference for the high effort option correlated across the two tasks, although this effect was transient. These results suggest that dopamine is only minimally involved in cost/benefit decision making with cognitive effort costs. The constructs of mental and physical effort may therefore comprise overlapping, but distinct, circuitry, and therapeutic interventions that prove efficacious in one effort domain may not be beneficial in another.
Stabilization of perturbed Boolean network attractors through compensatory interactions
2014-01-01
Background Understanding and ameliorating the effects of network damage are of significant interest, due in part to the variety of applications in which network damage is relevant. For example, the effects of genetic mutations can cascade through within-cell signaling and regulatory networks and alter the behavior of cells, possibly leading to a wide variety of diseases. The typical approach to mitigating network perturbations is to consider the compensatory activation or deactivation of system components. Here, we propose a complementary approach wherein interactions are instead modified to alter key regulatory functions and prevent the network damage from triggering a deregulatory cascade. Results We implement this approach in a Boolean dynamic framework, which has been shown to effectively model the behavior of biological regulatory and signaling networks. We show that the method can stabilize any single state (e.g., fixed point attractors or time-averaged representations of multi-state attractors) to be an attractor of the repaired network. We show that the approach is minimalistic in that few modifications are required to provide stability to a chosen attractor and specific in that interventions do not have undesired effects on the attractor. We apply the approach to random Boolean networks, and further show that the method can in some cases successfully repair synchronous limit cycles. We also apply the methodology to case studies from drought-induced signaling in plants and T-LGL leukemia and find that it is successful in both stabilizing desired behavior and in eliminating undesired outcomes. Code is made freely available through the software package BooleanNet. Conclusions The methodology introduced in this report offers a complementary way to manipulating node expression levels. A comprehensive approach to evaluating network manipulation should take an "all of the above" perspective; we anticipate that theoretical studies of interaction modification, coupled with empirical advances, will ultimately provide researchers with greater flexibility in influencing system behavior. PMID:24885780
Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L
2002-01-01
Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops. PMID:12023882
Genetic manipulation of carotenoid biosynthesis and photoprotection.
Pogson, B J; Rissler, H M
2000-10-29
There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size.
Genetic manipulation of carotenoid biosynthesis and photoprotection.
Pogson, B J; Rissler, H M
2000-01-01
There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size. PMID:11127994
Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu
2018-03-01
Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-refractive index particles in counter-propagating optical tweezers - manipulation and forces
NASA Astrophysics Data System (ADS)
van der Horst, Astrid
2006-09-01
With a tightly focused single laser beam, also called optical tweezers, particles of a few nanometers up to several micrometers in size can be trapped and manipulated in 3D. The size, shape and refractive index of such colloidal particles are of influence on the optical forces exerted on them in the trap. A higher refractive-index difference between a particle and the surrounding medium will increase the forces. The destabilizing scattering force, however, pushing the particle in the direction of the beam, increases more than the gradient force, directed towards the focus. As a consequence, particles with a certain refractive index cannot be trapped in a single-beam gradient trap, and a limit is set to the force that can be exerted. We developed an experimental setup with two opposing high-numerical objectives. By splitting the laser beam, we created counter-propagating tweezers in which the scattering forces were canceled in the axial direction and high-refractive index and metallic particles could also be trapped. With the use of a separate laser beam combined with a quadrant photodiode, accurate position detection on a trapped particle in the counter-propagating tweezers is possible. We used this to determine trap stiffnesses, and show, with measurements and calculations, an enhancement in trap stiffness of at least 3 times for high-index 1.1-micrometer-diameter titania particles as compared to 1.4-micrometer-diameter silica particles under the same conditions. The ability to exert higher forces with lower laser power finds application in biophysical experiments, where laser damage and heating play a role. The manipulation of high-index and metallic particles also has applications in materials and colloid science, for example to incorporate high-index defects in colloidal photonic crystals. We demonstrate the patterning of high-index particles onto a glass substrate. The sample cell was mounted on a high-accuracy piezo stage combined with a long-range stage with motorized actuators. Because we used image analysis of the patterned structure to accurately find back the starting position and compensate for drift of the sample, we could move far away from the patterning region. This enabled us to select particles from a separate reservoir of a mixture of particles, and, one-by-one, position them at chosen locations. By time-sharing the laser beam using acousto-optic deflectors, we created multiple counter-propagating tweezers. We trapped an array of high-refractive index particles, and were able to move those particles individually. We used such a dynamic array of counter-propagating tweezers to create line-optical tweezers in which we trapped semi-conducting high-refractive index nanorods in three dimensions. We demonstrate full 3D translational and in-plane rotational control over the rods, which could not be held in single-beam line-tweezers. The configuration of two opposing objectives was also used for simultaneous trapping with one objective and confocal imaging of the fluorescently labeled particles using the other objective. By trapping particles with a refractive index contrast in a dispersion of index-matched particles, crystallization could be induced, which was imaged in three dimensions using confocal microscopy.
Oliva, Carlos; Sierralta, Jimena
2010-08-15
The molecules and networks involved in the process of acquisition and maintenance of the form of a mature neuron are not completely known. Using a misexpression screen we identified the gene hindsight as a gene involved in the process of acquisition of the neuronal morphogenesis in the Drosophila adult nervous system. hindsight encodes a transcription factor known for its role in early developmental processes such as embryonic germ band retraction and dorsal closure, as well as in the establishment of cell morphology, planar cell polarity, and epithelial integrity during retinal development. We describe here a novel function for HNT by showing that both loss and gain of function of HNT affects the pathfinding of the photoreceptors axons. By manipulating the timing and level of HNT expression, together with the number of cells manipulated we show here that the function of HNT in axonal guidance is independent of the HNT functions previously reported in retinal cells. Based on genetic interaction experiments we show that part of HNT function in axonal development is exerted through the regulation of genes involved in the dynamics of the actin cytoskeleton. Copyright 2010 Elsevier Inc. All rights reserved.
Wu, Zhenlong; Chen, Yu; Wang, Moran; Chung, Aram J
2016-02-07
Fluid inertia which has conventionally been neglected in microfluidics has been gaining much attention for particle and cell manipulation because inertia-based methods inherently provide simple, passive, precise and high-throughput characteristics. Particularly, the inertial approach has been applied to blood separation for various biomedical research studies mainly using spiral microchannels. For higher throughput, parallelization is essential; however, it is difficult to realize using spiral channels because of their large two dimensional layouts. In this work, we present a novel inertial platform for continuous sheathless particle and blood cell separation in straight microchannels containing microstructures. Microstructures within straight channels exert secondary flows to manipulate particle positions similar to Dean flow in curved channels but with higher controllability. Through a balance between inertial lift force and microstructure-induced secondary flow, we deterministically position microspheres and cells based on their sizes to be separated downstream. Using our inertial platform, we successfully sorted microparticles and fractionized blood cells with high separation efficiencies, high purities and high throughputs. The inertial separation platform developed here can be operated to process diluted blood with a throughput of 10.8 mL min(-1)via radially arrayed single channels with one inlet and two rings of outlets.
Gene doping: possibilities and practicalities.
Wells, Dominic J
2009-01-01
Our ever-increasing understanding of the genetic control of cardiovascular and musculoskeletal function together with recent technical improvements in genetic manipulation generates mounting concern over the possibility of such technology being abused by athletes in their quest for improved performance. Genetic manipulation in the context of athletic performance is commonly referred to as gene doping. A review of the literature was performed to identify the genes and methodologies most likely to be used for gene doping and the technologies that might be used to identify such doping. A large number of candidate performance-enhancing genes have been identified from animal studies, many of them using transgenic mice. Only a limited number have been shown to be effective following gene transfer into adults. Those that seem most likely to be abused are genes that exert their effects locally and leave little, if any, trace in blood or urine. There is currently no evidence that gene doping has yet been undertaken in competitive athletes but the anti-doping authorities will need to remain vigilant in reviewing this rapidly emerging technology. The detection of gene doping involves some different challenges from other agents and a number of promising approaches are currently being explored. 2009 S. Karger AG, Basel
Gibo, Tricia L; Bastian, Amy J; Okamura, Allison M
2014-03-01
When grasping and manipulating objects, people are able to efficiently modulate their grip force according to the experienced load force. Effective grip force control involves providing enough grip force to prevent the object from slipping, while avoiding excessive force to avoid damage and fatigue. During indirect object manipulation via teleoperation systems or in virtual environments, users often receive limited somatosensory feedback about objects with which they interact. This study examines the effects of force feedback, accuracy demands, and training on grip force control during object interaction in a virtual environment. The task required subjects to grasp and move a virtual object while tracking a target. When force feedback was not provided, subjects failed to couple grip and load force, a capability fundamental to direct object interaction. Subjects also exerted larger grip force without force feedback and when accuracy demands of the tracking task were high. In addition, the presence or absence of force feedback during training affected subsequent performance, even when the feedback condition was switched. Subjects' grip force control remained reminiscent of their employed grip during the initial training. These results motivate the use of force feedback during telemanipulation and highlight the effect of force feedback during training.
Smith, Brian T.; Hess, Thomas M.
2018-01-01
This study examined whether the level of cognitive engagement older adults were willing to invest is disproportionately influenced by the personal implications of the task, as suggested by Selective Engagement Theory. We experimentally altered the personal implications of the task by manipulating participants accountability for their performance. Young (N = 50) and older (N = 50) adults performed a memory-search task of moderate difficulty but within the capabilities of both age groups. Both physiological (systolic blood pressure responsivity; SBP-R) and subjective (NASA-TLX) measures of cognitive effort were assessed across all difficulty levels. The results replicated findings from previous research that indicated older adults must exert more effort than younger adults to achieve the same level of objective performance. Most importantly, our results showed that older adults were especially sensitive to our accountability manipulation, with the difference in SBP-R between accountability conditions being greater for older than for young adults. Finally, we found that there was little relation between subjective measures of workload and our physiological measures of task engagement. Together, the results of this study provide continued support for the Selective Engagement Theory. PMID:29670932
Mohd Effendy, Nadia; Mohamed, Norazlina; Muhammad, Norliza; Naina Mohamad, Isa; Shuid, Ahmad Nazrun
2012-01-01
Osteoporosis in elderly men is now becoming an alarming health issue due to its relation with a higher mortality rate compared to osteoporosis in women. Androgen deficiency (hypogonadism) is one of the major factors of male osteoporosis and it can be treated with testosterone replacement therapy (TRT). However, one medicinal plant, Eurycoma longifolia Jack (EL), can be used as an alternative treatment to prevent and treat male osteoporosis without causing the side effects associated with TRT. EL exerts proandrogenic effects that enhance testosterone level, as well as stimulate osteoblast proliferation and osteoclast apoptosis. This will maintain bone remodelling activity and reduce bone loss. Phytochemical components of EL may also prevent osteoporosis via its antioxidative property. Hence, EL has the potential as a complementary treatment for male osteoporosis. PMID:22844328
NASA Astrophysics Data System (ADS)
Randau, C.; Brokmeier, H. G.; Gan, W. M.; Hofmann, M.; Voeller, M.; Tekouo, W.; Al-hamdany, N.; Seidl, G.; Schreyer, A.
2015-09-01
The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC.
The relationship between social status and the components of agency.
Louvet, Eva; Cambon, Laurent; Milhabet, Isabelle; Rohmer, Odile
2018-02-20
Building on the two fundamental dimensions of social judgment distinguishing communion from agency, the purpose of the present work was to show that the strength of the relationship between social status and agency depends on specific components at issue: assertiveness, competence, and effort. Four experimental studies were conducted using two complementary paradigms. In Studies 1 and 2, we manipulated social status, and participants had to rate the target on competence, assertiveness, and effort. In Studies 3 and 4, we reversed the design. Results consistently showed that social status was primarily related to assertiveness, somewhat related to competence, and only slightly related to effort. The present research provides a better understanding of how the dimensions of social judgment are used to explain differences in social status.
3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.
Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong
2008-09-01
We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.
Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease.
Le Heron, Campbell; Plant, Olivia; Manohar, Sanjay; Ang, Yuen-Siang; Jackson, Matthew; Lennox, Graham; Hu, Michele T; Husain, Masud
2018-05-01
Effort-based decision-making is a cognitive process crucial to normal motivated behaviour. Apathy is a common and disabling complication of Parkinson's disease, but its aetiology remains unclear. Intriguingly, the neural substrates associated with apathy also subserve effort-based decision-making in animal models and humans. Furthermore, the dopaminergic system plays a core role in motivating effortful behaviour for reward, and its dysfunction has been proposed to play a crucial role in the aetiology of apathy in Parkinson's disease. We hypothesized that disrupted effort-based decision-making underlies the syndrome of apathy in Parkinson's disease, and that this disruption may be modulated by the dopaminergic system. An effort-based decision-making task was administered to 39 patients with Parkinson's disease, with and without clinical apathy, ON and OFF their normal dopaminergic medications across two separate sessions, as well as 32 healthy age- and gender-matched controls. On a trial-by-trial basis, participants decided whether to accept or reject offers of monetary reward in return for exerting different levels of physical effort via handheld, individually calibrated dynamometers. Effort and reward were manipulated independently, such that offers spanned the full range of effort/reward combinations. Apathy was assessed using the Lille apathy rating scale. Motor effects of the dopamine manipulation were assessed using the Unified Parkinson's Disease Rating Scale part three motor score. The primary outcome variable was choice (accept/decline offer) analysed using a hierarchical generalized linear mixed effects model, and the vigour of squeeze (Newtons exerted above required force). Both apathy and dopamine depletion were associated with reduced acceptance of offers. However, these effects were driven by dissociable patterns of responding. While apathy was characterized by increased rejection of predominantly low reward offers, dopamine increased responding to high effort, high reward offers, irrespective of underlying motivational state. Dopamine also exerted a main effect on motor vigour, increasing force production independently of reward offered, while apathy did not affect this measure. The findings demonstrate that disrupted effort-based decision-making underlies Parkinson's disease apathy, but in a manner distinct to that caused by dopamine depletion. Apathy is associated with reduced incentivization by the rewarding outcomes of actions. In contrast, dopamine has a general effect in motivating behaviour for high effort, high reward options without altering the response pattern that characterizes the apathetic state. Thus, the motivational deficit observed in Parkinson's disease appears not to be simply secondary to dopaminergic depletion of mesocorticolimbic pathways, suggesting non-dopaminergic therapeutic strategies for apathy may be important future targets.
Xing, Liyang; Qu, Liuxin; Chen, Hong; Gao, Song
2017-06-01
To evaluate the clinical effect of Traditional Chinese Spinal Orthopedic Manipulation (TCSOM) in treating Functional Abdominal Pain Syndrome (FAPS) in comparison with Pinaverium Bromide (Dicetel, PBD), and to assess a possible cause for FAPS. 60 cases of FAPS patients were randomly assigned to the TCSOM group and PBD group according to the random number table method. The TCSOM group was treated with thumb pressing manipulation, every other day in the first week, and once every three days in the second week, for 5 times treatments. Patients in the PBD group were instructed to take 50mg 3 times a day, consistently for 2 weeks. The symptoms of pre-treatment and post-treatment were assessed on a visual analog scale (VAS) pain score. A symptom improvement rating (SIR) was implemented in order to evaluate the effects of the treatments, and to statistically compare the two groups. The symptoms of 21 patients of the TCSOM group were resolved soon after the first spinal manipulation treatment and 4 cases were significantly improved. The VAS pain scores in the TCSOM group were significantly lower than those in the PBD group after 2 weeks treatment. According to the SIR based on VAS, the TCSOM research group included 20 cases with excellent results, 8 cases with good, and 2 cases with poor. There were no side effects in the TCSOM group after treatment. Based on VAS, the PBD research group reported 6 cases with excellent results, 8 cases with good and 16 cases with poor. All cases were statistically analyzed, revealing a significant difference (P<0.001) between the two groups. TCSOM group performed much better than PBD group for relief of the symptoms of FAPS. Thumb pressing manipulation on the thoracic and/or lumbar region can correct the displacement of inter-vertebral discs and/or vertebra, resolving the stimuli caused by pressure exerting on the nerves and vessels around the spine. with thumb pressing manipulation on the Back-Shu acupoints, the Jiaji (EX-B2) and the governor vessel acupoint had a very good clinical effect for abdominal pain indicating that it is an effective treatment for FAPS. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
2015-01-01
Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group – with free access of spiders and ants; exclusion group – spiders and ants excluded; ant group – absence of spiders; and spider group – absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage. PMID:26168036
Stefani, Vanessa; Pires, Tayna Lopes; Torezan-Silingardi, Helena Maura; Del-Claro, Kleber
2015-01-01
Predators affect plant fitness when they forage on them and reduce the action of herbivores. Our study evaluates the complementary effects of spiders and ants that visit the extrafloral nectaries of Eriotheca gracilipes (Malvaceae) on the production of fruits and viable seeds of these savanna trees. Four experimental groups were established: control group - with free access of spiders and ants; exclusion group - spiders and ants excluded; ant group - absence of spiders; and spider group - absence of ants. The presence of ants reduced the spider richness; however, the presence of spiders did not affect the ant richness. A significantly higher number of fruits per buds were found in the presence of spiders alone or spiders and ants together (control group) compared with the absence of both predators (exclusion group). The number of seeds per fruits and seed viability were higher in the control group. This is the first study showing that spiders and ants may exert a positive and complementary effect on the reproductive value of an extrafloral nectaried plant. Mostly the impact of ants and/or spiders on herbivores is considered, whereas our study reinforces the importance of evaluating the effect of multiple predators simultaneously, exploring how the interactions among predators with distinct skills may affect the herbivores and the plants on which they forage.
A neurocomputational system for relational reasoning.
Knowlton, Barbara J; Morrison, Robert G; Hummel, John E; Holyoak, Keith J
2012-07-01
The representation and manipulation of structured relations is central to human reasoning. Recent work in computational modeling and neuroscience has set the stage for developing more detailed neurocomputational models of these abilities. Several key neural findings appear to dovetail with computational constraints derived from a model of analogical processing, 'Learning and Inference with Schemas and Analogies' (LISA). These include evidence that (i) coherent oscillatory activity in the gamma and theta bands enables long-distance communication between the prefrontal cortex and posterior brain regions where information is stored; (ii) neurons in prefrontal cortex can rapidly learn to represent abstract concepts; (iii) a rostral-caudal abstraction gradient exists in the PFC; and (iv) the inferior frontal gyrus exerts inhibitory control over task-irrelevant information. Copyright © 2012. Published by Elsevier Ltd.
THE MYSTERIOUS MOTIVATIONAL FUNCTIONS OF MESOLIMBIC DOPAMINE
Salamone, John D.; Correa, Mercè
2012-01-01
Summary Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as “reward” neurons, this is an over-generalization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation. PMID:23141060
The use of multisensor data for robotic applications
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Gonzalez, R. C.
1990-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is shown through two experiments involving a fluid interchange system and a module interchange system. In both cases, autonomous location of the mating element, autonomous location of the guiding light target, mating, and demating of the system were performed. Specifically, vision-driven techniques were implemented to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. The robotic system was also equipped with a force/torque sensor that continuously monitored the six components of force and torque exerted on the end effector. Using vision, force, torque, proximity, and touch sensors, the two experiments were completed successfully and autonomously.
NASA Astrophysics Data System (ADS)
Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.
2018-04-01
Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.
Radiation torque on nonspherical particles in the transition matrix formalism
NASA Astrophysics Data System (ADS)
Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Iatì, Maria A.
2006-10-01
The torque exerted by radiation on small particles is recognized to have a considerable relevance, e.g., on the dynamics of cosmic dust grains and for the manipulation of micro and nanoparticles under controlled conditions. In the present paper we derive, in the transition matrix formalism, the radiation torque applied by a plane polarized wave on nonspherical particles. In case of circularly polarized waves impinging on spherical particles our equations reproduce the findings of Marston and Crichton [Phys. Rev. A 30, 2508 2516 (1984)]. Our equations were applied to calculate the torque on a few model particles shaped as aggregates of identical spheres, both axially symmetric and lacking any symmetry, and the conditions for the stability of the induced rotational motion are discussed.
Coulter, Ian D; Crawford, Cindy; Hurwitz, Eric L; Vernon, Howard; Khorsan, Raheleh; Suttorp Booth, Marika; Herman, Patricia M
2018-05-01
Mobilization and manipulation therapies are widely used to benefit patients with chronic low back pain. However, questions remain about their efficacy, dosing, safety, and how these approaches compare with other therapies. The present study aims to determine the efficacy, effectiveness, and safety of various mobilization and manipulation therapies for treatment of chronic low back pain. This is a systematic literature review and meta-analysis. The present study measures self-reported pain, function, health-related quality of life, and adverse events. We identified studies by searching multiple electronic databases from January 2000 to March 2017, examining reference lists, and communicating with experts. We selected randomized controlled trials comparing manipulation or mobilization therapies with sham, no treatment, other active therapies, and multimodal therapeutic approaches. We assessed risk of bias using Scottish Intercollegiate Guidelines Network criteria. Where possible, we pooled data using random-effects meta-analysis. Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was applied to determine the confidence in effect estimates. This project is funded by the National Center for Complementary and Integrative Health under Award Number U19AT007912. Fifty-one trials were included in the systematic review. Nine trials (1,176 patients) provided sufficient data and were judged similar enough to be pooled for meta-analysis. The standardized mean difference for a reduction of pain was SMD=-0.28, 95% confidence interval (CI) -0.47 to -0.09, p=.004; I 2 =57% after treatment; within seven trials (923 patients), the reduction in disability was SMD=-0.33, 95% CI -0.63 to -0.03, p=.03; I 2 =78% for manipulation or mobilization compared with other active therapies. Subgroup analyses showed that manipulation significantly reduced pain and disability, compared with other active comparators including exercise and physical therapy (SMD=-0.43, 95% CI -0.86 to 0.00; p=.05, I 2 =79%; SMD=-0.86, 95% CI -1.27 to -0.45; p<.0001, I 2 =46%). Mobilization interventions, compared with other active comparators including exercise regimens, significantly reduced pain (SMD=-0.20, 95% CI -0.35 to -0.04; p=.01; I 2 =0%) but not disability (SMD=-0.10, 95% CI -0.28 to 0.07; p=.25; I 2 =21%). Studies comparing manipulation or mobilization with sham or no treatment were too few or too heterogeneous to allow for pooling as were studies examining relationships between dose and outcomes. Few studies assessed health-related quality of life. Twenty-six of 51 trials were multimodal studies and narratively described. There is moderate-quality evidence that manipulation and mobilization are likely to reduce pain and improve function for patients with chronic low back pain; manipulation appears to produce a larger effect than mobilization. Both therapies appear safe. Multimodal programs may be a promising option. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Langhorst, J; Wulfert, H; Lauche, R; Klose, P; Cramer, H; Dobos, G J; Korzenik, J
2015-01-01
We performed a systematic review for Complementary and Alternative Medicine [CAM] as defined by the National Institute of Health in Inflammatory Bowel Disease [IBD], ie Crohn's disease [CD] and ulcerative colitis [UC], with the exception of dietary and nutritional supplements, and manipulative therapies. A computerized search of databases [Cochrane Library, Pubmed/Medline, PsychINFO, and Scopus] through March 2014 was performed. We screened the reference sections of original studies and systematic reviews in English language for CAM in IBD, CD and UC. Randomized controlled trials [RCT] and controlled trials [CT] were referred and assessed using the Cochrane risk of bias tool. A total of: 26 RCT and 3 CT for herbal medicine, eg aloe-vera gel, andrographis paniculata, artemisia absinthium, barley foodstuff, boswellia serrata, cannabis, curcumin, evening primrose oil, Myrrhinil intest®, plantago ovata, silymarin, sophora, tormentil, wheatgrass-juice and wormwood; 1 RCT for trichuris suis ovata; 7 RCT for mind/body interventions such as lifestyle modification, hypnotherapy, relaxation training and mindfulness; and 2 RCT in acupuncture; were found. Risk of bias was quite heterogeneous. Best evidence was found for herbal therapy, ie plantago ovata and curcumin in UC maintenance therapy, wormwood in CD, mind/body therapy and self-intervention in UC, and acupuncture in UC and CD. Complementary and alternative therapies might be effective for the treatment of inflammatory bowel diseases; however, given the low number of trials and the heterogeneous methodological quality of trials, further in-depth research is necessary. Copyright © 2014 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Neuhouser, Marian L; Smith, Ashley Wilder; George, Stephanie M; Gibson, James T; Baumgartner, Kathy B; Baumgartner, Richard; Duggan, Catherine; Bernstein, Leslie; McTiernan, Anne; Ballard, Rachel
2016-12-01
Use of complementary and alternative medicine (CAM) is common among breast cancer patients, but less is known about whether CAM influences breast cancer survival. Health Eating, Activity, and Lifestyle (HEAL) Study participants (n = 707) were diagnosed with stage I-IIIA breast cancer. Participants completed a 30-month post-diagnosis interview including questions on CAM use (natural products such as dietary and botanical supplements, alternative health practices, and alternative medical systems), weight, physical activity, and comorbidities. Outcomes were breast cancer-specific and total mortality, which were ascertained from the Surveillance Epidemiology and End Results registries in Western Washington, Los Angeles County, and New Mexico. Cox proportional hazards regression models were fit to data to estimate hazard ratios (HR) and 95 % confidence intervals (CI) for mortality. Models were adjusted for potential confounding by sociodemographic, health, and cancer-related factors. Among 707 participants, 70 breast cancer-specific deaths and 149 total deaths were reported. 60.2 % of participants reported CAM use post-diagnosis. The most common CAM were natural products (51 %) including plant-based estrogenic supplements (42 %). Manipulative and body-based practices and alternative medical systems were used by 27 and 13 % of participants, respectively. No associations were observed between CAM use and breast cancer-specific (HR 1.04, 95 % CI 0.61-1.76) or total mortality (HR 0.91, 95 % CI 0.63-1.29). Complementary and alternative medicine use was not associated with breast cancer-specific mortality or total mortality. Randomized controlled trials may be needed to definitively test whether there is harm or benefit from the types of CAM assessed in HEAL in relation to mortality outcomes in breast cancer survivors.
Wills, Olivia; Reynolds, Gemma; Puustinen-Hopper, Kaisa; Roberts, Jennifer
2018-01-01
In this paper we explored the effects of exposure to images of the suffering and vulnerability of others on altruistic, trust-based, and reciprocated incentivized economic decisions, accounting for differences in participants’ dispositional empathy and reported in-group trust for their recipient(s). This was done using a pictorial priming task, framed as a memory test, and a triadic economic game design. Using the largest experimental sample to date to explore this issue, our integrated analysis of two online experiments (total N = 519), found statistically consistent evidence that exposure to images of suffering and vulnerability (vs. neutral images) increased altruistic in-group giving as measured by the “triple dictator game”, and that the manipulation was significantly more effective in those who reported lower trust for their recipients. The experimental manipulation also significantly increased altruistic giving in the standard “dictator game” and trust-based giving in the “investment game”, but only in those who were lower in in-group trust and also high in affective or cognitive empathy. Complementary qualitative evidence revealed the strongest motivations associated with increased giving in the experimental condition were greater assumed reciprocation and a lower aversion to risk. However, no consistent effects of the experimental manipulation on participants’ reciprocated decisions were observed. These findings suggest that, as well as altruistic decision-making in the “triple dictator game”, collaboratively witnessing the suffering of others may heighten trust-based in-group giving in the “investment game” for some people, but the effects are heterogeneous and sensitive to context. PMID:29561883
Lee, Who-Seung; Monaghan, Pat; Metcalfe, Neil B
2016-04-01
Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence.Using three-spined sticklebacks ( Gasterosteus aculeatus ), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls.However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation.Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season.Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation.These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction.
Powell, Philip A; Wills, Olivia; Reynolds, Gemma; Puustinen-Hopper, Kaisa; Roberts, Jennifer
2018-01-01
In this paper we explored the effects of exposure to images of the suffering and vulnerability of others on altruistic, trust-based, and reciprocated incentivized economic decisions, accounting for differences in participants' dispositional empathy and reported in-group trust for their recipient(s). This was done using a pictorial priming task, framed as a memory test, and a triadic economic game design. Using the largest experimental sample to date to explore this issue, our integrated analysis of two online experiments (total N = 519), found statistically consistent evidence that exposure to images of suffering and vulnerability (vs. neutral images) increased altruistic in-group giving as measured by the "triple dictator game", and that the manipulation was significantly more effective in those who reported lower trust for their recipients. The experimental manipulation also significantly increased altruistic giving in the standard "dictator game" and trust-based giving in the "investment game", but only in those who were lower in in-group trust and also high in affective or cognitive empathy. Complementary qualitative evidence revealed the strongest motivations associated with increased giving in the experimental condition were greater assumed reciprocation and a lower aversion to risk. However, no consistent effects of the experimental manipulation on participants' reciprocated decisions were observed. These findings suggest that, as well as altruistic decision-making in the "triple dictator game", collaboratively witnessing the suffering of others may heighten trust-based in-group giving in the "investment game" for some people, but the effects are heterogeneous and sensitive to context.
Scaramuzzi, R J; Martin, G B
2008-07-01
Around the world, consumers are demanding animal products that are produced to agreed standards for human health, environmental management and animal welfare. This has led to the development in Australia of the concept of 'clean, green and ethical' (CGE) animal production based on the manipulation of nutrition ('focus feeding') and the application of phenomena, such as the 'male effect', to provide 'natural' methods for managing small ruminant production systems. With respect to the management of fertility, CGE involves utilization of the inherited responses of animals to environmental factors to manipulate their reproductive processes. The successful development and implementation of this new generation of management tools depends on a thorough yet holistic understanding of the interactions among environmental factors and the ways these interactions affect reproductive physiology and behaviour of the animal. For sheep and goats, a central aspect of CGE management is the way in which ovarian function is affected by three major factors (nutrition, photoperiod and socio-sexual signals) and by interactions among them. Nutrition can exert two profound yet contrasting types of effect on ovarian activity: (i) the complete inhibition of reproduction by undernutrition through the hypothalamic mechanism that controls ovulation and (ii) the enhancement of fecundity by nutritional supplementation, through a direct ovarian mechanism, in females that are already ovulating. A similarly profound control over ovarian function in female sheep and goats is exerted by the well-known endocrine responses to photoperiod (seasonality) and to male socio-sexual signals. The 'male effect' already has a long history as a valuable technique for inducing a synchronized fertile ovulation during seasonal and post-partum anoestrus in sheep and goats. Importantly, experimentation has shown that these three major environmental factors interact, synergistically and antagonistically, but the precise nature of these interactions and their significance to reproductive outcomes are not well understood. Most research to date has been with small ruminants but CGE principles can be applied to any species in a managed environment. For example, a male effect has been reported for lactating cattle and, in the horse, the pattern of seasonality of oestrus can be altered by nutrition. Well-fed mares have a longer breeding season and some animals become non-seasonal. Similar observations have been reported for sheep and goats. By working towards a holistic perspective of the physiology, nutrition, genetics and behaviour of our animals, we will be able to formulate ways to manipulate the animals' environment that will improve management, productivity and profitability and, simultaneously, promote a CGE industry.
Häuser, Winfried; Dobos, Gustav; Langhorst, Jost
2015-01-01
Objectives. This systematic overview of reviews aimed to summarize evidence and methodological quality from systematic reviews of complementary and alternative medicine (CAM) for the fibromyalgia syndrome (FMS). Methods. The PubMed/MEDLINE, Cochrane Library, and Scopus databases were screened from their inception to Sept 2013 to identify systematic reviews and meta-analyses of CAM interventions for FMS. Methodological quality of reviews was rated using the AMSTAR instrument. Results. Altogether 25 systematic reviews were found; they investigated the evidence of CAM in general, exercised-based CAM therapies, manipulative therapies, Mind/Body therapies, acupuncture, hydrotherapy, phytotherapy, and homeopathy. Methodological quality of reviews ranged from lowest to highest possible quality. Consistently positive results were found for tai chi, yoga, meditation and mindfulness-based interventions, hypnosis or guided imagery, electromyogram (EMG) biofeedback, and balneotherapy/hydrotherapy. Inconsistent results concerned qigong, acupuncture, chiropractic interventions, electroencephalogram (EEG) biofeedback, and nutritional supplements. Inconclusive results were found for homeopathy and phytotherapy. Major methodological flaws included missing details on data extraction process, included or excluded studies, study details, and adaption of conclusions based on quality assessment. Conclusions. Despite a growing body of scientific evidence of CAM therapies for the management of FMS systematic reviews still show methodological flaws limiting definite conclusions about their efficacy and safety. PMID:26246841
Lauche, Romy; Cramer, Holger; Häuser, Winfried; Dobos, Gustav; Langhorst, Jost
2015-01-01
Objectives. This systematic overview of reviews aimed to summarize evidence and methodological quality from systematic reviews of complementary and alternative medicine (CAM) for the fibromyalgia syndrome (FMS). Methods. The PubMed/MEDLINE, Cochrane Library, and Scopus databases were screened from their inception to Sept 2013 to identify systematic reviews and meta-analyses of CAM interventions for FMS. Methodological quality of reviews was rated using the AMSTAR instrument. Results. Altogether 25 systematic reviews were found; they investigated the evidence of CAM in general, exercised-based CAM therapies, manipulative therapies, Mind/Body therapies, acupuncture, hydrotherapy, phytotherapy, and homeopathy. Methodological quality of reviews ranged from lowest to highest possible quality. Consistently positive results were found for tai chi, yoga, meditation and mindfulness-based interventions, hypnosis or guided imagery, electromyogram (EMG) biofeedback, and balneotherapy/hydrotherapy. Inconsistent results concerned qigong, acupuncture, chiropractic interventions, electroencephalogram (EEG) biofeedback, and nutritional supplements. Inconclusive results were found for homeopathy and phytotherapy. Major methodological flaws included missing details on data extraction process, included or excluded studies, study details, and adaption of conclusions based on quality assessment. Conclusions. Despite a growing body of scientific evidence of CAM therapies for the management of FMS systematic reviews still show methodological flaws limiting definite conclusions about their efficacy and safety.
Christopher, Jack; Beato, Marco; Hulton, Andrew T
2016-08-01
Training practices for elite soccer players should take into account specific technical, tactical and physical components. As a consequence of these demands small-sided games (SSGs) have become a popular conditioning tool that replicate the demands encountered during match play. The aim of this investigation was to examine how the manipulation of exercise to rest ratio, within the same overall duration, affected both physical and technical outcomes during SSGs in elite youth soccer. Twelve elite youth soccer players participated in three variations of eight minute 6v6 SSGs. The three variations included eight minutes continuous, 2×4min and 4×2min. Players perceived the continuous 8min block as the hardest (4.5±1.5AU), followed by the 2×4min (3.9±1.4AU) and the 4×2min (3.3±1.4AU), although no difference in mean HR or physical measures via GPS analysis between SSGs was evident. From the technical perspective, only goals scored reached significance, with post hoc analysis identifying the number of goals scored were significantly higher during the 4×2min and 2×4min SSGs compared to 8min continuous block. These results show that subjective ratings of exertion differed between conditions, but only minor technical manipulations were observed by adjusting work to rest ratios, with no significant effect on physical performance. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Altering Pace Control and Pace Regulation: Attentional Focus Effects during Running.
Brick, Noel E; Campbell, Mark J; Metcalfe, Richard S; Mair, Jacqueline L; Macintyre, Tadhg E
2016-05-01
To date, there are no published studies directly comparing self-controlled (SC) and externally controlled (EC) pace endurance tasks. However, previous research suggests pace control may impact on cognitive strategy use and effort perceptions. The primary aim of this study was to investigate the effects of manipulating perception of pace control on attentional focus, physiological, and psychological outcomes during running. The secondary aim was to determine the reproducibility of self-paced running performance when regulated by effort perceptions. Twenty experienced endurance runners completed four 3-km time trials on a treadmill. Subjects completed two SC pace trials, one perceived exertion clamped (PE) trial, and one EC pace time trial. PE and EC were completed in a counterbalanced order. Pacing strategy for EC and perceived exertion instructions for PE replicated the subjects' fastest SC time trial. Subjects reported a greater focus on cognitive strategies such as relaxing and optimizing running action during EC than during SC. The mean HR was 2% lower during EC than that during SC despite an identical pacing strategy. Perceived exertion did not differ between the three conditions. However, increased internal sensory monitoring coincided with elevated effort perceptions in some subjects during EC and a 10% slower completion time for PE (13.0 ± 1.6 min) than that for SC (11.8 ± 1.2 min). Altering pace control and pace regulation impacted on attentional focus. External control over pacing may facilitate performance, particularly when runners engage attentional strategies conducive to improved running efficiency. However, regulating pace based on effort perceptions alone may result in excessive monitoring of bodily sensations and a slower running speed. Accordingly, attentional focus interventions may prove beneficial for some athletes to adopt task-appropriate attentional strategies to optimize performance.
Ostafin, Brian D; Marlatt, G Alan; Greenwald, Anthony G
2008-11-01
Addiction is characterized by dyscontrol - substance use despite intentions to restrain. Using a sample of at-risk drinkers, the present study examined whether an implicit measure of alcohol motivation (the Implicit Association Test [IAT]; Greenwald, A.G., McGhee, D.E., & Schwartz, J.L.K. (1998). Measuring individual differences in implicit cognition: the Implicit Association Test. Journal of Personality and Social Psychology, 74, 1464-1480) would predict dyscontrol of alcohol use. Participants completed an IAT and, to elicit motivation to restrain alcohol use, were instructed that greater consumption in a taste test would impair performance on a later task for which they could win a prize. All participants viewed aversive slides and then completed a thought-listing task. Participants either exerted self-control by suppressing negative affect and thoughts regarding the slides or did not exert self-control. Post-manipulation, the groups did not differ in mood, urge to drink or motivation to restrain consumption. During the subsequent taste test, participants whose self-control resources were depleted consumed more alcohol than did those in the control group. Additionally, the IAT, but not an explicit measure of alcohol motivation, more strongly predicted alcohol use when self-control resources were depleted. The results indicate that the IAT may have utility in predicting dyscontrolled alcohol use.
NASA Astrophysics Data System (ADS)
Bai, J.; Wu, Z. S.; Ge, C. X.; Li, Z. J.; Qu, T.; Shang, Q. C.
2018-07-01
Based on the generalized multi-particle Mie equation (GMM) and Electromagnetic Momentum (EM) theory, the lateral binding force (BF) exerted on bi-sphere induced by an arbitrary polarized high-order Bessel beam (HOBB) is investigated with particular emphasis on the half-conical angle of the wave number components and the order (or topological charge) of the beam. The illuminating HOBB with arbitrary polarization angle is described in terms of beam shape coefficients (BSCs) within the framework of generalized Lorenz-Mie theories (GLMT). Utilizing the vector addition theorem of the spherical vector wave functions (SVWFs), the interactive scattering coefficients are derived through the continuous boundary conditions on which the interaction of the bi-sphere is considered. Numerical effects of various parameters such as beam polarization angles, incident wavelengths, particle sizes, material losses and the refractive index, including the cases of weak, moderate, and strong than the surrounding medium are numerically analyzed in detail. The observed dependence of the separation of optically bound particles on the incidence of HOBB is in agreement with earlier theoretical prediction. Accurate investigation of BF induced by HOBB could provide an effective test for further research on BF between more complex particles, which plays an important role in using optical manipulation on particle self-assembly.
PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro
Fukaya, Takashi; Tomari, Yukihide
2011-01-01
MicroRNAs silence their complementary target genes via formation of the RNA-induced silencing complex (RISC) that contains an Argonaute (Ago) protein at its core. It was previously proposed that GW182, an Ago-associating protein, directly binds to poly(A)-binding protein (PABP) and interferes with its function, leading to silencing of the target mRNAs. Here we show that Drosophila Ago1-RISC induces silencing via two independent pathways: shortening of the poly(A) tail and pure repression of translation. Our data suggest that although PABP generally modulates poly(A) length and translation efficiency, neither PABP function nor GW182–PABP interaction is a prerequisite for these two silencing pathways. Instead, we propose that each of the multiple functional domains within GW182 has a potential for silencing, and yet they need to act together in the context of full-length GW182 to exert maximal silencing. PMID:22117217
Mining the Human Gut Microbiota for Immunomodulatory Organisms.
Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L
2017-02-23
Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.
CBR1 rs9024 genotype status impacts the bioactivation of loxoprofen in human liver.
Lombraña, Adolfo Quiñones; Li, Nasi; Del Solar, Virginia; Ekin Atilla-Gokcumen, G; Blanco, Javier G
2018-05-31
Loxoprofen is an anti-inflammatory drug that requires bioactivation into the trans-OH metabolite to exert pharmacological activity. Evidence suggests that carbonyl reductase 1 (CBR1) is important during the bioactivation of loxoprofen. Here, we examined the impact of the functional single nucleotide polymorphism CBR1 rs9024 on the bioactivation of loxoprofen in a collection of human liver samples. The synthesis ratios of trans-OH loxoprofen/cis-OH loxoprofen were 33% higher in liver cytosols from donors homozygous for the CBR1 rs9024 G allele in comparison to the ratios in samples from donors with heterozygous GA genotypes. Complementary studies examined the impact of CBR1 rs9024 on the bioactivation of loxoprofen in lymphoblastoid cell lines. CBR1 rs9024 genotype status impacts the synthesis of the bioactive trans-OH metabolite of loxoprofen in human liver. This article is protected by copyright. All rights reserved.
Interventions for Tobacco Smoking
Schlam, Tanya R.; Baker, Timothy B.
2017-01-01
Around 19% of U.S. adults smoke cigarettes, and smoking remains the leading avoidable cause of death in this country. Without treatment only ~5% of smokers who try to quit achieve long-term abstinence, but evidence-based cessation treatment increases this figure to 10-30%. The process of smoking cessation comprises different pragmatically defined phases, and these can help guide smoking treatment development and evaluation. This review evaluates the effectiveness of smoking interventions for smokers who are unwilling to make a quit attempt (Motivation Phase), who are willing to make a quit attempt (Cessation Phase), who have recently quit (Maintenance Phase), and who have recently relapsed (Relapse Recovery Phase). Multiple effective treatments exist for some phases (Cessation), but not others (Relapse Recovery). A chronic care approach to treating smoking requires effective interventions for every phase, especially interventions that exert complementary effects both within and across phases, and that can be disseminated broadly and cost-effectively. PMID:23297788
EVIDENCE FOR BASE EXCISION REPAIR PROCESSING OF DNA INTERSTRAND CROSSLINKS
Kothandapani, Anbarasi; Patrick, Steve M
2013-01-01
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed. PMID:23219605
Ultralow-Loss CMOS Copper Plasmonic Waveguides.
Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S
2016-01-13
Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips.
Notch signaling in lung diseases: focus on Notch1 and Notch3
Zong, Dandan; Ouyang, Ruoyun; Li, Jinhua; Chen, Yan; Chen, Ping
2016-01-01
Notch signaling is an evolutionarily conserved cell–cell communication mechanism that plays a key role in lung homeostasis, injury and repair. The loss of regulation of Notch signaling, especially Notch1 and Notch3, has recently been linked to the pathogenesis of important lung diseases, in particular, chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, pulmonary arterial hypertension (PAH), lung cancer and lung lesions in some congenital diseases. This review focuses on recent advances related to the mechanisms and the consequences of aberrant or absent Notch1/3 activity in the initiation and progression of lung diseases. Our increasing understanding of this signaling pathway offers great hope that manipulating Notch signaling may represent a promising alternative complementary therapeutic strategy in the future. PMID:27378579
How do protozoa respond to intense magnetic fields?
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
2005-03-01
Most microorganisms such as Paramecium Caudatum, swim in helical paths in nature. In the absence of any external stimuli (e.g. obstacles, electric field, heat, etc.) the axes of these helical paths, which define the trajectories, are straight lines and are distributed in random directions. Our experiments reveal that these trajectories can be manipulated by applying intense DC magnetic fields of the order of several Tesla. Swimming paramecia, for example, align their trajectories with magnetic fields in excess of about 7 Tesla in fraction of a second. We will describe this phenomenon in fields up to 25 T. We will address whether this effect is an active or passive response to the magnetic torque exerted on the diamagnetically anisotropic structures in Paramecium. In addition we will present results for other species as they are obtained.
NASA Astrophysics Data System (ADS)
Monticelli, M.; Albisetti, E.; Petti, D.; Conca, D. V.; Falcone, M.; Sharma, P. P.; Bertacco, R.
2015-05-01
In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field.
Moore, Adam B; Clark, Brian A; Kane, Michael J
2008-06-01
Recent findings suggest that exerting executive control influences responses to moral dilemmas. In our study, subjects judged how morally appropriate it would be for them to kill one person to save others. They made these judgments in 24 dilemmas that systematically varied physical directness of killing, personal risk to the subject, inevitability of the death, and intentionality of the action. All four of these variables demonstrated main effects. Executive control was indexed by scores on working-memory-capacity (WMC) tasks. People with higher WMC found certain types of killing more appropriate than did those with lower WMC and were more consistent in their judgments. We also report interactions between manipulated variables that implicate complex emotion-cognition integration processes not captured by current dual-process views of moral judgment.
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less
STM/STS study of ridges on epitaxial graphene/SiC
NASA Astrophysics Data System (ADS)
Li, Y. Y.; Liu, Y.; Weinert, M.; Li, L.
2012-02-01
The graphitization of hexagonal SiC surfaces provides a viable alternative for the synthesis of wafer-sized graphene for mass device production. During later stages of growth, ridges are often observed on the graphene layers as a result of bending and buckling to relieve the strain between the graphene and SiC substrate. In this work, we show, by atomic resolution STM/STS, that these ridges are in fact bulged regions of the graphene layer, forming one-dimentional (nanowire) and zero-dimentional (quantum dot) nanostructures. We further show that their structures can be manipulated by the pressure exerted by the STM tip during imaging. These results and their impact on the electronic properties of epitaxial graphene on SiC(0001) will be presented at the meeting.
Chacko, A; Bedard, A-C V; Marks, D; Gopalan, G; Feirsen, N; Uderman, J; Chimiklis, A; Heber, E; Cornwell, M; Anderson, L; Zwilling, A; Ramon, M
2018-05-01
The present study examines the potential of sequencing a neurocognitive intervention with behavioral parent training (BPT) to improve executive functions (EFs), psychiatric symptoms, and multiple indices of functional impairment in school-age children aged 7 to 11 years who have been diagnosed with attention-deficit/hyperactivity disorder (ADHD). Specifically, in a randomized controlled trial design, 85 children were assigned to either Cogmed Working Memory Training (CWMT) followed by an empirically supported, manualized BPT intervention, or to a placebo version of CWMT followed by the same BPT intervention. Working memory maintenance (i.e., attention control/short-term memory), working memory processing and manipulation, ADHD and oppositional defiant disorder (ODD) symptoms, impairment in parent-child dynamics, familial impairment, and overall functional compromise were evaluated as outcomes. The results suggest specific effects of the combined CWMT and BPT program on verbal and nonverbal working memory storage and nonverbal working memory processing and manipulation but no incremental benefits in regard to ADHD symptoms, ODD symptoms, and functional outcomes. The present findings do not support the hypothesis regarding the complementary and augmentative benefits of sequenced neurocognitive and BPT interventions for the treatment of ADHD. These results, the study's limitations, and future directions for research are further discussed.
Furlan, Andrea D; Yazdi, Fatemeh; Tsertsvadze, Alexander; Gross, Anita; Van Tulder, Maurits; Santaguida, Lina; Gagnier, Joel; Ammendolia, Carlo; Dryden, Trish; Doucette, Steve; Skidmore, Becky; Daniel, Raymond; Ostermann, Thomas; Tsouros, Sophia
2012-01-01
Background. Back pain is a common problem and a major cause of disability and health care utilization. Purpose. To evaluate the efficacy, harms, and costs of the most common CAM treatments (acupuncture, massage, spinal manipulation, and mobilization) for neck/low-back pain. Data Sources. Records without language restriction from various databases up to February 2010. Data Extraction. The efficacy outcomes of interest were pain intensity and disability. Data Synthesis. Reports of 147 randomized trials and 5 nonrandomized studies were included. CAM treatments were more effective in reducing pain and disability compared to no treatment, physical therapy (exercise and/or electrotherapy) or usual care immediately or at short-term follow-up. Trials that applied sham-acupuncture tended towards statistically nonsignificant results. In several studies, acupuncture caused bleeding on the site of application, and manipulation and massage caused pain episodes of mild and transient nature. Conclusions. CAM treatments were significantly more efficacious than no treatment, placebo, physical therapy, or usual care in reducing pain immediately or at short-term after treatment. CAM therapies did not significantly reduce disability compared to sham. None of the CAM treatments was shown systematically as superior to one another. More efforts are needed to improve the conduct and reporting of studies of CAM treatments.
Field-programmable lab-on-a-chip based on microelectrode dot array architecture.
Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi
2014-09-01
The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.
Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.
Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor
2004-01-01
Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337
Power-assistive finger exoskeleton with a palmar opening at the fingerpad.
Heo, Pilwon; Kim, Jung
2014-11-01
This paper presents a powered finger exoskeleton with an open fingerpad, named the Open Fingerpad eXoskeleton (OFX). The palmar opening at the fingerpad allows for direct contact between the user's fingerpad and objects in order to make use of the wearer's own tactile sensation for dexterous manipulation. Lateral side walls at the end of the OFX's index finger module are equipped with custom load cells for estimating the wearer's pinch grip force. A pneumatic cylinder generates assistance force, which is determined according to the estimated pinch grip force. The OFX transmits the assistance force directly to the objects without exerting pressure on the wearer's finger. The advantage of the OFX over an exoskeleton with a closed fingerpad was validated experimentally. During static and dynamic manipulation of a test object, the OFX exhibited a lower safety margin than the closed exoskeleton, indicating a higher ability to adjust the grip force within an appropriate range. Furthermore, the benefit of force assistance in reducing the muscular burden was observed in terms of muscle fatigue during a static pinch grip. The median frequency (MDF) of the surface electromyography (sEMG) signal from the first dorsal interosseous (FDI) muscle displayed a lower reduction rate for the assisted condition, indicating a lower accumulation rate of muscle fatigue.
Health behaviours and their facilitation under depletion conditions: the case of snacking.
Sellahewa, Dilan A; Mullan, Barbara
2015-07-01
Previous research suggests that depletion (the state ensuing from self-control exertion) engenders lapses in health behaviours. The present study tested for that effect in relation to the health behaviour of limiting snacking, and investigated whether health goal-priming might facilitate such health behaviours even under depletion conditions. A laboratory study was conducted involving an analytic sample of 85 undergraduates (mean age = 20.08, SD = 3.96; female: n= 63). Depletion was manipulated by having participants watch a humorous video while suppressing their responses (depletion condition) or remaining natural (non-depletion condition). The activation of participants' health goals was then manipulated by subtly exposing (goal-priming condition) or not exposing (non-priming condition) participants to health-related words in a Scrambled Sentence Task. Finally, snacking was measured using a bogus taste-test. Controlling for initial hunger, snacking was higher among depleted compared to non-depleted participants. Snacking was lower among primed compared to non-primed participants. The interaction between depletion and goal-priming was not significant. These findings suggest that depletion should be recognised as a risk factor for lapses in health behaviours, and that health goal-priming may be a useful technique for facilitating such behaviours even when individuals are depleted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.
Huang, Hayden; Dong, Chen Y; Kwon, Hyuk-Sang; Sutin, Jason D; Kamm, Roger D; So, Peter T C
2002-04-01
The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.
Ribeiro, Rita S. R.; Cunha, João P. S.; Rosa, Carla C.; Jorge, Pedro A. S.
2018-01-01
Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies. PMID:29495502
Pusceddu, M M; Murray, K; Gareau, M G
2018-03-01
The crosstalk between the gut and the brain has revealed a complex communication system responsible for maintaining a proper gastrointestinal homeostasis as well as affect emotional mood and cognitive functions. Recent research has revealed that beneficial manipulation of the microbiota by probiotics and prebiotics represent an emerging and novel strategy for the treatment of a large spectrum of diseases ranging from visceral pain to mood disorders. The review critically evaluates current knowledge of the effects exerted by both probiotics and prebiotics in irritable bowel syndrome (IBS) and mood disorders such as anxiety and depression. Relevant literature was identified through a search of MEDLINE via PubMed using the following words, "probiotics", "prebiotics", "microbiota", and "gut-brain axis" in combination with "stress", "depression", "IBS", and "anxiety". A number of trials have shown efficacy of probiotics and prebiotics in ameliorating both IBS related symptoms and emotional states. However, limitations have been found especially due to the small number of clinical studies, studies design, patient sample size, and placebo effect. Nonetheless, current finding supports the view that beneficial manipulation of the microbiota through both probiotics and prebiotics intake represents a novel attractive strategy to treat gut-brain axis disorders such as IBS and depression.
Ke, Zhi-Xin; Xie, Ping; Guo, Long-Gen; Xu, Jun; Zhou, Qiong
2012-08-01
In 2005, a large bio-manipulation pen with the stock of silver carp and bighead carp was built to control the cyanobacterial bloom in Meiliang Bay of Taihu Lake. This paper investigated the seasonal variation of the community structure of crustacean zooplankton and the water quality within and outside the pen. There were no significant differences in the environmental parameters and phytoplankton biomass within and outside the pen. The species composition and seasonal dynamics of crustacean zooplankton within and outside the pen were similar, but the biomass of crustacean zooplankton was greatly suppressed by silver carp and bighead carp. The total crustacean zooplankton biomass and cladocerans biomass were significantly lower in the pen (P < 0.05). In general, silver carp and bighead carp exerted more pressure on cladoceran species than on copepod species. A distinct seasonal succession of crustacean zooplankton was observed in the Bay. Many crustacean species were only dominated in given seasons. Large-sized crustacean (mainly Daphnia sp. and Cyclops vicnus) dominated in winter and spring, while small-sized species (mainly Bosmina sp., Ceriodaphnia cornuta, and Limnoithona sinensis) dominated in summer and autumn. Canonical correspondence analysis showed that water transparency, temperature, and phytoplankton biomass were the most important factors affecting the seasonal succession of the crustacean.
Friesen, Christopher R; Uhrig, Emily J; Squire, Mattie K; Mason, Robert T; Brennan, Patricia L R
2014-01-07
Sexual conflict over mating can result in sex-specific morphologies and behaviours that allow each sex to exert control over the outcome of reproduction. Genital traits, in particular, are often directly involved in conflict interactions. Via genital manipulation, we experimentally investigated whether genital traits in red-sided garter snakes influence copulation duration and formation of a copulatory plug. The hemipenes of male red-sided garter snakes have a large basal spine that inserts into the female cloaca during mating. We ablated the spine and found that males were still capable of copulation but copulation duration was much shorter and copulatory plugs were smaller than those produced by intact males. We also anaesthetized the female cloacal region and found that anaesthetized females copulated longer than control females, suggesting that female cloacal and vaginal contractions play a role in controlling copulation duration. Both results, combined with known aspects of the breeding biology of red-sided garter snakes, strongly support the idea that sexual conflict is involved in mating interactions in this species. Our results demonstrate the complex interactions among male and female traits generated by coevolutionary processes in a wild population. Such complexity highlights the importance of simultaneous examination of male and female traits.
Clinical Outcomes of Different Tempos of Music During Exercise in Cardiac Rehabilitation Patients.
Miller, Jarad S; Terbizan, Donna J
2017-01-01
This study examined the effects of stimulating and sedative music on ratings of perceived exertion (RPE), heart rate (HR), blood pressure (BP), and feeling status during exercise in cardiac rehabilitation (CR) patients. Twenty-two male and female older adults age 64 ± 8.0 y currently enrolled in phase III CR completed the study. Repeated measures crossover designs guided data collection. The manipulated independent variable was music condition (sedative, stimulating, and non-music control). The dependent variables were RPE, BP, HR, and feeling status with each represented by four repeated measures ANOVAs over time via SAS 9.3. Data analysis indicated significant differences for all exercise related variables besides BP. While standardizing the exercise, we observed that sedative music is the best choice to manipulate for decreases in RPE (p=.0019), increases in feeling status (p=.0192), and decreases in HR (p<.0001). While standardizing the exercise, sedative music is the best choice to observe decreases in RPE, increases in feeling status, and decreases HR. Stimulating music would only be the correct choice to observe increases in HR, and does not have as much of a beneficial effect on RPE and feeling status as sedative music. There were no significant effects of either type of music on BP.
Elliott, Mark A; Lee, Emme; Robertson, Jamie S; Innes, Rhona
2015-01-01
According to the MODE model of attitude-to-behavior processes, attitude accessibility augments attitude-behavior correspondence, reflecting an automatic influence of attitudes on behavior. We therefore tested whether attitude accessibility moderates the attitude-behavior relationship in a context that is governed by characteristically automatic behavior, namely driving. In study 1 (correlational design), participants (N=130) completed online questionnaire measures of the valences and accessibilities of their attitudes towards speeding. Two weeks later, online questionnaire measures of subsequent speeding behavior were obtained. Attitude valence was a significantly better predictor of behavior at high (mean+1SD) versus low (mean-1SD) levels of attitude accessibility. In study 2 (experimental design), attitude accessibility was manipulated with a repeated attitude expression task. Immediately after the manipulation, participants (N=122) completed online questionnaire measures of attitude valence and accessibility, and two weeks later, subsequent speeding behavior. Increased attitude accessibility in the experimental (versus control) condition generated an increase in attitude-behavior correspondence. The findings are consistent with the MODE model's proposition that attitudes can exert an automatic influence on behavior. Interventions to reduce speeding could usefully increase the accessibility of anti-speeding attitudes and reduce the accessibility of pro-speeding attitudes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S
2018-02-27
Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.
Bremner, Marie; Blake, Barbara; Stiles, Cheryl
2015-10-01
The purpose of this systematic review is to explore the experiences and perceptions of persons living with HIV who participate in mind-body and energy therapies. The review will focus on the use of mind-body medicine and energy therapies that include meditation, prayer, mental healing, Tai Chi, yoga, art therapy, music therapy, dance therapy, Qigong, reiki, therapeutic touch, healing touch and electromagnetic therapy. These mind-body and energy therapies are selected categories because they do not involve options that might be contraindicated to an individual's current treatment regime. More specifically, the review questions are: Complementary and alternative medicine (CAM) is a popular adjunct to conventional medicine across global populations. Complementary generally refers to a non-mainstream approach together with conventional medicine whereas alternative refers to a non-mainstream approach in place of conventional medicine. Most people use non-mainstream approaches along with conventional treatments. The World Health Organization [WHO] defines CAM as distinct health-care practices that have not been assimilated into a country's mainstream health care system.The USA's National Center for Complementary and Integrative Health (NCCIH), formerly National Center for Complementary and Alternative Medicine (NCCAM), organizes CAM into five medical system categories: whole medical systems, mind-body medicine, biologically based practices, manipulative and body-based practices, and energy therapies. Whole medical systems include homeopathy, naturopathy, traditional Chinese medicine and Ayurveda. Mind-body medicine includes meditation, prayer, mental healing, Tai Chi, yoga, art therapy, music therapy and dance therapy. Biologically based practices include dietary supplements, herbal supplements and a few scientifically unproven therapies. Manipulative and body-based practices include massage and spinal manipulation such as chiropractic and osteopathic. Energy therapies include Qigong, reiki, therapeutic touch, healing touch and electromagnetic therapy.The NCCAM, the Alternative Medicine's Strategic Plan for 2011-2015 and the Healthy People 2020 envision a society in which all people have the opportunity to live long, healthy lives. In most countries, life expectancy has increased, but unfortunately, the incidence of chronic illnesses such as cardiovascular disease, cancer, hypertension, diabetes and depression continues to increase. Research findings indicate that the use of CAM is often greater among people living with a chronic or life threatening illness compared with the general population,Until the development of highly active antiretroviral medications (ARVs) in 1996, a diagnosis of human immunodeficiency virus (HIV) was considered to be a death sentence. The human immunodeficiency virus attacks the immune system and weakens a person's ability to combat infections and some types of cancer. Currently, there is no cure for HIV but because of lifesaving medications, the mortality rate has declined significantly. The disease is now considered a chronic illness and highly manageable. Effective treatment has resulted in approximately 35 million people worldwide still living with HIV at the end of 2012.Because HIV is no longer a death sentence but a chronic illness, there is a need to evaluate the experiences and perceptions of people using CAM, considering the prevalence of CAM use within this population. In the United States and Canada, the rate of CAM use among HIV positive persons is approximately 50% to 70%, whereas in Africa, rates of CAM use range from 36% to 68%. Popular forms of CAM among persons living with HIV include herbal or nutritional supplements, mind and body practices, and spiritual or religious healing. Worldwide, only a small percentage of persons who have access to ARVs refuse to take them and utilize CAM exclusively to treat their HIV infection.People living with HIV often report using CAM because they believe that these therapies will improve their overall health and well-being and provides them an opportunity to take some responsibility in managing their personal health, which includes medication side effects. However, the effect of CAM on an individual's physical health often cannot be measured physiologically, but may be felt or experienced.Understanding CAM use is essential so that health professionals will have the most accurate information about which integrative therapies may or may not be helpful for people living with HIV. As recommended by the Institute of Medicine report entitled, 'Integrative Medicine and Patient Centered Care', health professionals have a moral commitment to find innovative ways of obtaining evidence and expanding knowledge about diverse interpretations of health and healing. Research aimed at exploring patients' experiences and perceptions of mind-body and energy therapies is imperative so asto offer comprehensive care and promote shared decision making regarding complementary therapeutic options.
Complementary molecular information changes our perception of food web structure
Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas
2014-01-01
How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902
Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi
2016-01-01
The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.
Ramsden, Christopher E; Zamora, Daisy; Makriyannis, Alexandros; Wood, JodiAnne T; Mann, J Douglas; Faurot, Keturah R; MacIntosh, Beth A; Majchrzak-Hong, Sharon F; Gross, Jacklyn R; Courville, Amber B; Davis, John M; Hibbeln, Joseph R
2015-08-01
Omega-3 and omega-6 fatty acids are biosynthetic precursors of endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties. We recently reported that targeted dietary manipulation-increasing omega-3 fatty acids while reducing omega-6 linoleic acid (the H3-L6 intervention)-reduced headache pain and psychological distress among chronic headache patients. It is not yet known whether these clinical improvements were due to changes in endocannabinoids and related mediators derived from omega-3 and omega-6 fatty acids. We therefore used data from this trial (N = 55) to investigate 1) whether the H3-L6 intervention altered omega-3- and omega-6-derived endocannabinoids in plasma and 2) whether diet-induced changes in these bioactive lipids were associated with clinical improvements. The H3-L6 intervention significantly increased the omega-3 docosahexaenoic acid derivatives 2-docosahexaenoylglycerol (+65%, P < .001) and docosahexaenoylethanolamine (+99%, P < .001) and reduced the omega-6 arachidonic acid derivative 2-arachidonoylglycerol (-25%, P = .001). Diet-induced changes in these endocannabinoid derivatives of omega-3 docosahexaenoic acid, but not omega-6 arachidonic acid, correlated with reductions in physical pain and psychological distress. These findings demonstrate that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids in humans and suggest that 2-docosahexaenoylglycerol and docosahexaenoylethanolamine could have physical and/or psychological pain modulating properties. ClinicalTrials.gov (NCT01157208) PERSPECTIVE: This article demonstrates that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids and that these changes are related to reductions in headache pain and psychological distress. These findings suggest that dietary interventions could provide an effective, complementary approach for managing chronic pain and related conditions. Published by Elsevier Inc.
Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.
Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer
2016-02-01
Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications.
Jeunet, Camille; Albert, Louis; Argelaguet, Ferran; Lecuyer, Anatole
2018-04-01
While the Sense of Agency (SoA) has so far been predominantly characterised in VR as a component of the Sense of Embodiment, other communities (e.g., in psychology or neurosciences) have investigated the SoA from a different perspective proposing complementary theories. Yet, despite the acknowledged potential benefits of catching up with these theories a gap remains. This paper first aims to contribute to fill this gap by introducing a theory according to which the SoA can be divided into two components, the feeling and the judgment of agency, and relies on three principles, namely the principles of priority, exclusivity and consistency. We argue that this theory could provide insights on the factors influencing the SoA in VR systems. Second, we propose novel approaches to manipulate the SoA in controlled VR experiments (based on these three principles) as well as to measure the SoA, and more specifically its two components based on neurophysiological markers, using ElectroEncephaloGraphy (EEG). We claim that these approaches would enable us to deepen our understanding of the SoA in VR contexts. Finally, we validate these approaches in an experiment. Our results (N=24) suggest that our approach was successful in manipulating the SoA as the modulation of each of the three principles induced significant decreases of the SoA (measured using questionnaires). In addition, we recorded participants' EEG signals during the VR experiment, and neurophysiological markers of the SoA, potentially reflecting the feeling and judgment of agency specifically, were revealed. Our results also suggest that users' profile, more precisely their Locus of Control (LoC), influences their level of immersion and SoA.
Hare, Nathan J; Lee, Ling Y; Loke, Ian; Britton, Warwick J; Saunders, Bernadette M; Thaysen-Andersen, Morten
2017-01-06
Tuberculosis (TB) remains a prevalent and lethal infectious disease. The glycobiology associated with Mycobacterium tuberculosis infection of frontline alveolar macrophages is still unresolved. Herein, we investigated the regulation of protein N-glycosylation in human macrophages and their secreted microparticles (MPs) used for intercellular communication upon M. tb infection. LC-MS/MS-based proteomics and glycomics were performed to monitor the regulation of glycosylation enzymes and receptors and the N-glycome in in vitro-differentiated macrophages and in isolated MPs upon M. tb infection. Infection promoted a dramatic regulation of the macrophage proteome. Most notably, significant infection-dependent down-regulation (4-26 fold) of 11 lysosomal exoglycosidases, e.g., β-galactosidase, β-hexosaminidases and α-/β-mannosidases, was observed. Relative weak infection-driven transcriptional regulation of these exoglycosidases and a stronger augmentation of the extracellular hexosaminidase activity demonstrated that the lysosome-centric changes may originate predominantly from infection-induced secretion of the lysosomal content. The macrophages showed heterogeneous N-glycan profiles and displayed significant up-regulation of complex-type glycosylation and concomitant down-regulation of paucimannosylation upon infection. Complementary intact N-glycopeptide analysis supported a subcellular-specific manipulation of the glycosylation machinery and altered glycosylation patterns of lysosomal N-glycoproteins within infected macrophages. Interestingly, the corresponding macrophage-derived MPs displayed unique N-glycome and proteome signatures supporting a preferential packaging from plasma membranes. The MPs were devoid of infection-dependent N-glycosylation signatures, but interestingly displayed increased levels of the glyco-initiating oligosaccharyltransferase complex and associated α-glucosidases that correlated with increased formation, N-glycan precursor levels and N-glycan density of infected MPs. In conclusion, this system-wide study provides new insight into the host- and pathogen-driven N-glycoproteome manipulation of macrophages in TB.
Zack, Martin; Woodford, Tracy M; Tremblay, Anne M; Steinberg, Lindsay; Zawertailo, Laurie A; Busto, Usoa E
2011-01-01
Stress, cues, and pharmacological priming are linked with relapse to addictive behavior. Increased salience and decreased inhibitory control are thought to mediate the effects of relapse-related stimuli. However, the functional relationship between these two processes is unclear. To address this issue, a modified Stop Signal Task was employed, which used Alcohol, Neutral, and Non-Words as Go stimuli, and lexical decision as the Go response. Subjects were 38 male problem drinkers (mean Alcohol Dependence Scale (ADS) score: 18.0). Uncontrollable noise (∼ 10 min at 110 dB) was the stressor; nonalcoholic placebo beer (P-Beer) was the cue manipulation, and alcohol (0.7 g/kg), the pharmacological prime. Half the sample received alcohol, and half P-Beer. Stress and beverage (test drink vs soft drink) were manipulated within subjects on two sessions, with half the sample receiving active manipulations together and half receiving them separately. Go response time (RT) and Stop Signal RT (SSRT) were slower to Alcohol than Neutral words. Stress augmented this bias. Alcohol and P-Beer impaired overall SSRT. Stress impaired neither overall SSRT nor Go RT. SSRT to Neutral words and Non-Words correlated inversely with Go RT to Alcohol and Neutral words, and Non-Words. ADS correlated directly with SSRT to Alcohol words. A resource allocation account was proposed, whereby diversion of limited resources to salient cues effectively yoked otherwise independent Go and Stop processes. Disturbances of prefrontal norepinephrine and dopamine were cited as possibly accounting for these effects. Treatments that optimize prefrontal catecholamine transmission may deter relapse by reducing disinhibitory effects of salient eliciting stimuli.
Zack, Martin; Woodford, Tracy M; Tremblay, Anne M; Steinberg, Lindsay; Zawertailo, Laurie A; Busto, Usoa E
2011-01-01
Stress, cues, and pharmacological priming are linked with relapse to addictive behavior. Increased salience and decreased inhibitory control are thought to mediate the effects of relapse-related stimuli. However, the functional relationship between these two processes is unclear. To address this issue, a modified Stop Signal Task was employed, which used Alcohol, Neutral, and Non-Words as Go stimuli, and lexical decision as the Go response. Subjects were 38 male problem drinkers (mean Alcohol Dependence Scale (ADS) score: 18.0). Uncontrollable noise (∼10 min at 110 dB) was the stressor; nonalcoholic placebo beer (P-Beer) was the cue manipulation, and alcohol (0.7 g/kg), the pharmacological prime. Half the sample received alcohol, and half P-Beer. Stress and beverage (test drink vs soft drink) were manipulated within subjects on two sessions, with half the sample receiving active manipulations together and half receiving them separately. Go response time (RT) and Stop Signal RT (SSRT) were slower to Alcohol than Neutral words. Stress augmented this bias. Alcohol and P-Beer impaired overall SSRT. Stress impaired neither overall SSRT nor Go RT. SSRT to Neutral words and Non-Words correlated inversely with Go RT to Alcohol and Neutral words, and Non-Words. ADS correlated directly with SSRT to Alcohol words. A resource allocation account was proposed, whereby diversion of limited resources to salient cues effectively yoked otherwise independent Go and Stop processes. Disturbances of prefrontal norepinephrine and dopamine were cited as possibly accounting for these effects. Treatments that optimize prefrontal catecholamine transmission may deter relapse by reducing disinhibitory effects of salient eliciting stimuli. PMID:20927046
Varker, Kimberly A; Ansel, Adam; Aukerman, Glen; Carson, William E
2012-01-01
As commonly defined, complementary and alternative medicine (CAM) is a broad category that includes biologically based practices, mind-body medicine, manipulative and bodybased practices, and energy medicine as well as complete medical systems such as naturopathy, homeopathy, Ayurvedic medicine, and traditional Chinese medicine. Several CAM methodologies show promise for the treatment of chronic conditions such as depression and pain disorders or have demonstrated effects upon the immune response in experimental studies. There is growing interest in the use of integrative medicine the combination of CAM methodologies with a conventional medical approach-for the optimization of treatment of various cancers. The Ohio State University Center for Integrative Medicine has developed a specialized nutrigenomic protocol for integrative cancer care. The center uses a comprehensive nutritional and medical evaluation, including a panel of proinflammatory molecules and physiologic parameters, to guide a program of individualized dietary interventions. Dietary supplementation is a current focus of study, including: (1) Omega-3 fatty acids and B vitamins, which are thought to play important roles in immunomodulation; (2) Magnesium oxide, which has been shown to decrease inflammation and improve insulin resistance and lipid profiles; and (3) Cinnamon extract, which reportedly decreases serum glucose levels. This article presents a brief overview of CAM and integrative medicine and a discussion of the relevant nutraceuticals.
Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei
2017-03-01
A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zagon, Ian S; Sassani, Joseph W; Malefyt, Kristin J; McLaughlin, Patricia J
2006-11-01
To determine whether molecular manipulation of the opioid growth factor receptor (OGFr) alters corneal reepithelialization following central corneal abrasion in rats. The plasmid pcDNA3.1 + OGFr, carrying the rat OGFr complementary DNA in both the sense and antisense orientations, and empty vector (EV), were delivered by gene gun to the rat cornea. After 24 hours, corneas were abraded and reepithelialization was documented by fluorescein photography. Twenty-four hours after wounding, DNA synthesis (with bromodeoxyuridine) was examined. Eyes transfected with sense constructs of OGFr had corneal defects that were 24%, 52%, and 50% larger than the EV group at 16, 24, and 28 hours, respectively. Conversely, corneas transfected with antisense constructs of OGFr had corneal defects that were 56% and 48% smaller than the EV group at 16 and 24 hours, respectively. Bromodeoxyuridine labeling in the basal and suprabasal layers of the antisense group were increased 3.3- and 3.7-fold, respectively, in DNA synthesis from corresponding EV layers; DNA synthesis was comparable in the sense and EV groups. Excess OGFr delays reepithelialization, whereas attenuation of OGFr accelerates repair of the corneal surface. Clinical Relevance Inhibition of opioid growth factor action using gene therapy could be important in the treatment of corneal diseases such as nonhealing and recurrent erosions, diabetic keratopathy, and neurotrophic keratitis.
Zivkovic, Irena; Scheffler, Klaus
2015-08-01
We have developed a single-channel, box-shaped, monopole-type antenna which, if used in two different configurations, excites complementary B1+ field distributions in the traveling-wave setup. A new monopole-type, single-channel antenna for RF excitation in 9.4 T magnetic resonance imaging is proposed. The antenna is entirely made of copper without lumped elements. Two complementary B1+ field distributions of two different antenna configurations were measured and combined as a root sum of squares. B1+ field inhomogeneity of the combined maps was calculated and compared with published results. By combining B1+ field distributions generated by two antenna configurations, a "no voids" pattern was achieved for the entire upper brain. B1+ inhomogeneity of approximately 20 % was achieved for sagittal and transverse slices; it was <24 % for coronal slices. The results were comparable with those from CP, with "no voids" in slice B1+ inhomogeneity of multichannel loop arrays. The efficiency of the proposed antenna was lower than that of a multichannel array but comparable with that of a patch antenna. The proposed single-channel antenna is a promising candidate for traveling-wave brain imaging. It can be combined with the time-interleaved acquisition of modes (TIAMO) concept if reconfigurability is obtained with a single-antenna element.
Strunk, Richard G
2017-06-01
The purpose of this article is to describe the clinical response to multimodal chiropractic treatment of a patient diagnosed with Ehlers-Danlos syndrome, hypermobility type (EDS-HT), and chronic pain. A 22-year-old woman presented with severe chronic neck and low back pain, headaches, and bilateral hand pain and stiffness. In addition to these pain complaints, the patient had a family history of EDS, weekly or daily recurring joint dislocations, and upper and lower extremity joint hypermobility. As a result of her significant history and examination findings, which met the Brighton and Villefranche criteria, she was diagnosed with EDS-HT. Treatment primarily consisted of low force joint manipulative therapy and soft tissue therapy intermittently over 21 months concurrently with conventional and complementary medical care. Multiple outcome questionnaires were administered pragmatically at follow-up intervals of 3, 5½, 8½, 19, and 21 months, including but not limited to the Headache and Neck Disability Indices and the Oswestry Low Back Questionnaire. The patient had clinically meaningful improvements on the Neck Disability Index, the Headache Disability Index, and the Revised Oswestry after 3, 5½, 8½, and 21 months from baseline. This patient with EDS-HT had clinically meaningful decreases in disability, headache, and spine pain after a course of multimodal chiropractic care combined with conventional and complementary medical care.
Su, Hongyan; Li, Jingyuan; Chen, Tongshuai; Li, Na; Xiao, Jie; Wang, Shujian; Guo, Xiaobin; Yang, Yi; Bu, Peili
2016-11-01
Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.
Passenger strand loading in overexpression experiments using microRNA mimics.
Søkilde, Rolf; Newie, Inga; Persson, Helena; Borg, Åke; Rovira, Carlos
2015-01-01
MicroRNAs (miRNAs) are important regulators of gene function and manipulation of miRNAs is a central component of basic research. Modulation of gene expression by miRNA gain-of-function can be based on different approaches including transfection with miRNA mimics; artificial, chemically modified miRNA-like small RNAs. These molecules are intended to mimic the function of a miRNA guide strand while bypassing the maturation steps of endogenous miRNAs. Due to easy accessibility through commercial providers this approach has gained popularity, and accuracy is often assumed without prior independent testing. Our in silico analysis of over-represented sequence motifs in microarray expression data and sequencing of AGO-associated small RNAs indicate, however, that miRNA mimics may be associated with considerable side-effects due to the unwanted activity of the miRNA mimic complementary strand.
Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes
Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph
2016-01-01
Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatio-temporal control. Here, we present a novel and generalizable approach, referred to as ‘Chemo-Optical Modulation of Epigenetically-regulated Transcription’ (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may translate into novel therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814
Vandellen, Michelle; Knowles, Megan L; Krusemark, Elizabeth; Sabet, Raha F; Campbell, W Keith; McDowell, Jennifer E; Clementz, Brett A
2012-03-01
In the current paper, the authors posit that trait self-esteem moderates the relationship between social rejection and decrements in self-control, propose an information-processing account of trait self-esteem's moderating influence and discuss three tests of this theory. The authors measured trait self-esteem, experimentally manipulated social rejection and assessed subsequent self-control in Studies 1 and 2. Additionally, Study 3 framed a self-control task as diagnostic of social skills to examine motivational influences. Together, the results reveal that rejection impairs self-control, but only among low self-esteem individuals. Moreover, this decrement in self-control only emerged when the task had no social implications-suggesting that low self-esteem individuals exert effort on tasks of social value and are otherwise preoccupied with belonging needs when completing nonsocial tasks.
Optical properties of relativistic plasma mirrors
Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.
2014-01-01
The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748
Phosphorylation mechanisms in dopamine transporter regulation.
Foster, James D; Vaughan, Roxanne A
2017-10-01
The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake. Copyright © 2016. Published by Elsevier B.V.
Vandellen, Michelle; Knowles, Megan L.; Krusemark, Elizabeth; Sabet, Raha F.; Campbell, W. Keith; McDowell, Jennifer E.; Clementz, Brett A.
2012-01-01
In the current paper, the authors posit that trait self-esteem moderates the relationship between social rejection and decrements in self-control, propose an information-processing account of trait self-esteem’s moderating influence and discuss three tests of this theory. The authors measured trait self-esteem, experimentally manipulated social rejection and assessed subsequent self-control in Studies 1 and 2. Additionally, Study 3 framed a self-control task as diagnostic of social skills to examine motivational influences. Together, the results reveal that rejection impairs self-control, but only among low self-esteem individuals. Moreover, this decrement in self-control only emerged when the task had no social implications—suggesting that low self-esteem individuals exert effort on tasks of social value and are otherwise preoccupied with belonging needs when completing nonsocial tasks. PMID:22611304
Frass, Michael; Strassl, Robert Paul; Friehs, Helmut; Müllner, Michael; Kundi, Michael; Kaye, Alan D.
2012-01-01
Background The interest in complementary and alternative medicine (CAM) has increased during the past decade and the attitude of the general public is mainly positive, but the debate about the clinical effectiveness of these therapies remains controversial among many medical professionals. Methods We conducted a systematic search of the existing literature utilizing different databases, including PubMed/Medline, PSYNDEX, and PsycLit, to research the use and acceptance of CAM among the general population and medical personnel. A special focus on CAM-referring literature was set by limiting the PubMed search to “Complementary Medicine” and adding two other search engines: CAMbase (www.cambase.de) and CAMRESEARCH (www.camresearch.net). These engines were used to reveal publications that at the time of the review were not indexed in PubMed. Results A total of 16 papers met the scope criteria. Prevalence rates of CAM in each of the included studies were between 5% and 74.8%. We found a higher utilization of homeopathy and acupuncture in German-speaking countries. Excluding any form of spiritual prayer, the data demonstrate that chiropractic manipulation, herbal medicine, massage, and homeopathy were the therapies most commonly used by the general population. We identified sex, age, and education as predictors of CAM utilization: More users were women, middle aged, and more educated. The ailments most often associated with CAM utilization included back pain or pathology, depression, insomnia, severe headache or migraine, and stomach or intestinal illnesses. Medical students were the most critical toward CAM. Compared to students of other professions (ie, nursing students: 44.7%, pharmacy students: 18.2%), medical students reported the least consultation with a CAM practitioner (10%). Conclusions The present data demonstrate an increase of CAM usage from 1990 through 2006 in all countries investigated. We found geographical differences, as well as differences between the general population and medical personnel. PMID:22438782
Complementary and alternative medicine usage among cardiac patients: a descriptive study.
Bahall, Mandreker
2015-03-31
The use of complementary and alternative medicine (CAM) persists, despite the availability of conventional medicine (CM), modernisation, globalisation, technological advancement, and limited scientific evidence supporting CAM. People with cardiovascular diseases often use CAM, despite possible major adverse effects and lack of evidence supporting CAM claims. This study explored CAM use among cardiac patients, the types of CAM used, reasons and factors that influence its use, and the association between patient demographics and CAM use. This cross-sectional quantitative study was conducted using quota sampling to survey 329 public clinic adult cardiac patients within the South-West Regional Health Authority (SWRHA) of Trinidad and Tobago. From 1 July 2012 to 31August 2012, each participant completed questionnaires, after consenting to participate. Data analysis included χ(2) tests and binary logistic regression. One hundred eighty-five (56.2%; standard error [SE] = 2.74%) patients used CAM. Herbal medicine was the most common CAM (85.9%; SE = 2.56%), followed by spiritual therapy/mind-body systems (61.6%; SE = 3.58%), physical therapy/body manipulation (13.5%; SE = 2.51%), alternative systems (8.1%; SE = 2.01%), and other methods (3.8%; SE = 1. 41%). The patients believed that CAM promotes health and wellness (79.5%; SE = 2.97%), assists in fighting illness (78.9%; SE = 3.00%), addresses the limitations of CM (69.2%; SE = 3.56%), alleviates symptoms (21.6%; SE = 6.51%), costs less than CM (21.6 %, SE = 3.03), and has fewer adverse/damaging effects than CM (29.7, SE =3.36), or they were disappointed with CM (12.4%, SE = 2.42). Ethnicity and religion were associated with CAM usage, but only ethnicity was a useful predictor of CAM use. Complementary and alternative medicine use was high among cardiac patients (56.2%, SE = 2.74%), and associated with ethnicity and religion. Friends, family, and perceived mode of action influenced a patient's use of CAM.
Development of common neural representations for distinct numerical problems
Chang, Ting-Ting; Rosenberg-Lee, Miriam; Metcalfe, Arron W. S.; Chen, Tianwen; Menon, Vinod
2015-01-01
How the brain develops representations for abstract cognitive problems is a major unaddressed question in neuroscience. Here we tackle this fundamental question using arithmetic problem solving, a cognitive domain important for the development of mathematical reasoning. We first examined whether adults demonstrate common neural representations for addition and subtraction problems, two complementary arithmetic operations that manipulate the same quantities. We then examined how the common neural representations for the two problem types change with development. Whole-brain multivoxel representational similarity (MRS) analysis was conducted to examine common coding of addition and subtraction problems in children and adults. We found that adults exhibited significant levels of MRS between the two problem types, not only in the intra-parietal sulcus (IPS) region of the posterior parietal cortex (PPC), but also in ventral temporal-occipital, anterior temporal and dorsolateral prefrontal cortices. Relative to adults, children showed significantly reduced levels of MRS in these same regions. In contrast, no brain areas showed significantly greater MRS between problem types in children. Our findings provide novel evidence that the emergence of arithmetic problem solving skills from childhood to adulthood is characterized by maturation of common neural representations between distinct numerical operations, and involve distributed brain regions important for representing and manipulating numerical quantity. More broadly, our findings demonstrate that representational analysis provides a powerful approach for uncovering fundamental mechanisms by which children develop proficiencies that are a hallmark of human cognition. PMID:26160287
Furlan, Andrea D.; Yazdi, Fatemeh; Tsertsvadze, Alexander; Gross, Anita; Van Tulder, Maurits; Santaguida, Lina; Gagnier, Joel; Ammendolia, Carlo; Dryden, Trish; Doucette, Steve; Skidmore, Becky; Daniel, Raymond; Ostermann, Thomas; Tsouros, Sophia
2012-01-01
Background. Back pain is a common problem and a major cause of disability and health care utilization. Purpose. To evaluate the efficacy, harms, and costs of the most common CAM treatments (acupuncture, massage, spinal manipulation, and mobilization) for neck/low-back pain. Data Sources. Records without language restriction from various databases up to February 2010. Data Extraction. The efficacy outcomes of interest were pain intensity and disability. Data Synthesis. Reports of 147 randomized trials and 5 nonrandomized studies were included. CAM treatments were more effective in reducing pain and disability compared to no treatment, physical therapy (exercise and/or electrotherapy) or usual care immediately or at short-term follow-up. Trials that applied sham-acupuncture tended towards statistically nonsignificant results. In several studies, acupuncture caused bleeding on the site of application, and manipulation and massage caused pain episodes of mild and transient nature. Conclusions. CAM treatments were significantly more efficacious than no treatment, placebo, physical therapy, or usual care in reducing pain immediately or at short-term after treatment. CAM therapies did not significantly reduce disability compared to sham. None of the CAM treatments was shown systematically as superior to one another. More efforts are needed to improve the conduct and reporting of studies of CAM treatments. PMID:22203884
AMI: Augmented Michelson Interferometer
NASA Astrophysics Data System (ADS)
Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel
2015-10-01
Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.
An imperative need for global change research in tropical forests.
Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi
2013-09-01
Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.
Vera, Jesús; Jiménez, Raimundo; García, José Antonio; Perales, José Cesar; Cárdenas, David
2018-03-01
The purposes of this study were to (a) investigate the effect of physical effort (cycling for 60 min at 60 ± 5% of individually computed reserve heart-rate capacity), combined with 2 different levels of cognitive demand (2-back, oddball), on intraocular pressure (IOP) and subjective judgments of perceived exertion (ratings of perceived exertion [RPE]), affect (Affective Valence subscale of the Self-Assessment Manikin [SAM]), and mental workload (National Aeronautics and Space Administration Task Load Index [NASA-TLX]); and (b) ascertain whether baseline IOP, measured before exercise, is associated with individual differences in subjective assessments of effort and affective response during exercise. Seventeen participants (M age = 23.28 ± 2.37 years) performed 2 physical/cognitive dual tasks, matched in physical demand but with different mental requirements (2-back, oddball). We assessed IOP before exercise, after 2 min of active recovery, and after 15 min of passive recovery, and we also collected RPE and SAM measures during the sessions (28 measurement points). We used NASA-TLX and cognitive performance as checks of the mental manipulation. (a) Intraocular pressure increased after concomitant physical/mental effort, with the effect reaching statistical significance after the 2-back task (p = .002, d = 0.35) but not after the oddball condition (p = .092, d = 0.29). (b) Baseline IOP was associated with subjective sensitivity to effort and showed statistical significance for the oddball condition (p = .03, ƞ p 2 = .622) but not for the 2-back task (F < 1). Results suggest a relationship between IOP and physical/cognitive effort, which could have implications for the management of glaucoma. Additionally, a rapid measure of IOP could be used as a marker of individual effort sensitivity in applied settings.
Iveson, Matthew H; Della Sala, Sergio; Anderson, Mike; MacPherson, Sarah E
2017-05-01
Goal maintenance is the process where task rules and instructions are kept active to exert their control on behavior. When this process fails, an individual may ignore a rule while performing the task, despite being able to describe it after task completion. Previous research has suggested that the goal maintenance system is limited by the number of concurrent rules which can be maintained during a task, and that this limit is dependent on an individual's level of fluid intelligence. However, the speed at which an individual can process information may also limit their ability to use task rules when the task demands them. In the present study, four experiments manipulated the number of instructions to be maintained by younger and older adults and examined whether performance on a rapid letter-monitoring task was predicted by individual differences in fluid intelligence or processing speed. Fluid intelligence played little role in determining how frequently rules were ignored during the task, regardless of the number of rules to be maintained. In contrast, processing speed predicted the rate of goal neglect in older adults, where increasing the presentation rate of the letter-monitoring task increased goal neglect. These findings suggest that goal maintenance may be limited by the speed at which it can operate. Copyright © 2017. Published by Elsevier B.V.
Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices
NASA Technical Reports Server (NTRS)
Khusid, Boris; Acrivos, Andreas
2004-01-01
Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. We present the results of our experimental and theoretical studies which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.
Acoustic metamaterials with circular sector cavities and programmable densities.
Akl, W; Elsabbagh, A; Baz, A
2012-10-01
Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.
Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient
Wu, Zhuoting; Koch, George W.; Dijkstra, Paul; Bowker, Matthew A.; Hungate, Bruce A.
2011-01-01
Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant–soil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.
Wilson, Mark; Smith, Nickolas C; Chattington, Mark; Ford, Mike; Marple-Horvat, Dilwyn E
2006-11-01
We tested some of the key predictions of processing efficiency theory using a simulated rally driving task. Two groups of participants were classified as either dispositionally high or low anxious based on trait anxiety scores and trained on a simulated driving task. Participants then raced individually on two similar courses under counterbalanced experimental conditions designed to manipulate the level of anxiety experienced. The effort exerted on the driving tasks was assessed though self-report (RSME), psychophysiological measures (pupil dilation) and visual gaze data. Efficiency was measured in terms of efficiency of visual processing (search rate) and driving control (variability of wheel and accelerator pedal) indices. Driving performance was measured as the time taken to complete the course. As predicted, increased anxiety had a negative effect on processing efficiency as indexed by the self-report, pupillary response and variability of gaze data. Predicted differences due to dispositional levels of anxiety were also found in the driving control and effort data. Although both groups of drivers performed worse under the threatening condition, the performance of the high trait anxious individuals was affected to a greater extent by the anxiety manipulation than the performance of the low trait anxious drivers. The findings suggest that processing efficiency theory holds promise as a theoretical framework for examining the relationship between anxiety and performance in sport.
Effects of drugs of abuse on the central neuropeptide Y system.
Gonçalves, Joana; Martins, João; Baptista, Sofia; Ambrósio, António Francisco; Silva, Ana Paula
2016-07-01
Neuropeptide Y (NPY), which is widely expressed in the central nervous system is involved in several neuropathologies including addiction. Here we comprehensively and systematically review alterations on the central NPY system induced by several drugs. We report on the effects of psychostimulants [cocaine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and nicotine], ethanol, and opioids on NPY protein levels and expression of different NPY receptors. Overall, expression and function of NPY and its receptors are changed under conditions of drug exposure, thus affecting several physiologic behaviors, such as feeding, stress and anxiety. Drugs of abuse differentially affect the components of the NPY system. For example methamphetamine and nicotine lead to a consistent increase in NPY mRNA and protein levels in different brain sites whereas ethanol and opioids decrease NPY mRNA and protein expression. Drug-induced alterations on the different NPY receptors show more complex regulation pattern. Manipulation of the NPY system can have opposing effects on reinforcing and addictive properties of drugs of abuse. NPY can produce pro-addictive effects (nicotine and heroin), but can also exert inhibitory effects on addictive behavior (AMPH, ethanol). Furthermore, NPY can act as a neuroprotective agent in chronically methamphetamine and MDMA-treated rodents. In conclusion, manipulation of the NPY system seems to be a potential target to counteract neural alterations, addiction-related behaviors and cognitive deficits induced by these drugs. © 2015 Society for the Study of Addiction.
Fortini, Lucas Berio; Bruna, Emilio M; Zarin, Daniel J; Vasconcelos, Steel S; Miranda, Izildinha S
2010-04-01
Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.
Social Origins of Developmental Risk for Mental and Physical Illness.
Cameron, Judy L; Eagleson, Kathie L; Fox, Nathan A; Hensch, Takao K; Levitt, Pat
2017-11-08
Adversity in early childhood exerts an enduring impact on mental and physical health, academic achievement, lifetime productivity, and the probability of interfacing with the criminal justice system. More science is needed to understand how the brain is affected by early life stress (ELS), which produces excessive activation of stress response systems broadly throughout the child's body (toxic stress). Our research examines the importance of sex, timing and type of stress exposure, and critical periods for intervention in various brain systems across species. Neglect (the absence of sensitive and responsive caregiving) or disrupted interaction with offspring induces robust, lasting consequences in mice, monkeys, and humans. Complementary assessment of internalizing disorders and brain imaging in children suggests that early adversity can interfere with white matter development in key brain regions, which may increase risk for emotional difficulties in the long term. Neural circuits that are most plastic during ELS exposure in monkeys sustain the greatest change in gene expression, offering a mechanism whereby stress timing might lead to markedly different long-term behaviors. Rodent models reveal that disrupted maternal-infant interactions yield metabolic and behavioral outcomes often differing by sex. Moreover, ELS may further accelerate or delay critical periods of development, which reflect GABA circuit maturation, BDNF, and circadian Clock genes. Such factors are associated with several mental disorders and may contribute to a premature closure of plastic windows for intervention following ELS. Together, complementary cross-species studies are elucidating principles of adaptation to adversity in early childhood with molecular, cellular, and whole organism resolution. Copyright © 2017 the authors 0270-6474/17/3710783-09$15.00/0.
Neuro-estrogens rapidly regulate sexual motivation but not performance
Seredynski, Aurore L.; Balthazart, Jacques; Christophe, Virginie J.; Ball, Gregory F.; Cornil, Charlotte A.
2013-01-01
Estrogens exert pleiotropic effects on reproductive traits, which include differentiation and activation of reproductive behaviors and the control of the secretion of gonadotropins. Estrogens also profoundly affect non-reproductive traits such as cognition and neuroprotection. These effects are usually attributed to nuclear receptor binding and subsequent regulation of target gene transcription. Estrogens also affect neuronal activity and cell-signaling pathways via faster, membrane-initiated events. How these two types of actions that operate in distinct time scales interact in the control of complex behavioral responses is poorly understood. Here, we show that the central administration of estradiol rapidly increases the expression of sexual motivation, as assessed by several measures of sexual motivation produced in response to the visual presentation of a female but not sexual performance in male Japanese quail. This effect is mimicked by membrane-impermeable analogs of estradiol, indicating that it is initiated at the cell membrane. Conversely, blocking the action of estrogens or their synthesis by a single intracereboventricular injection of estrogen receptor antagonists or aromatase inhibitors respectively decreases sexual motivation within minutes without affecting performance. The same steroid has thus evolved complementary mechanisms to regulate different behavioral components (motivation vs. performance) in distinct temporal domains (long- vs. short-term) so that diverse reproductive activities can be properly coordinated to improve reproductive fitness. Given the pleiotropic effects exerted by estrogens, other responses controlled by these steroids might also depend on a slow genomic regulation of neuronal plasticity underlying behavioral activation and an acute control of motivation to engage in behavior. PMID:23283331
Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi
2016-01-01
Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122
Svoboda, Jan; Lobellová, Veronika; Popelíková, Anna; Ahuja, Nikhil; Kelemen, Eduard; Stuchlík, Aleš
2017-03-01
Although animals often learn and monitor the spatial properties of relevant moving objects such as conspecifics and predators to properly organize their own spatial behavior, the underlying brain substrate has received little attention and hence remains elusive. Because the anterior cingulate cortex (ACC) participates in conflict monitoring and effort-based decision making, and ACC neurons respond to objects in the environment, it may also play a role in the monitoring of moving cues and exerting the appropriate spatial response. We used a robot avoidance task in which a rat had to maintain at least a 25cm distance from a small programmable robot to avoid a foot shock. In successive sessions, we trained ten Long Evans male rats to avoid a fast-moving robot (4cm/s), a stationary robot, and a slow-moving robot (1cm/s). In each condition, the ACC was transiently inactivated by bilateral injections of muscimol in the penultimate session and a control saline injection was given in the last session. Compared to the corresponding saline session, ACC-inactivated rats received more shocks when tested in the fast-moving condition, but not in the stationary or slow robot conditions. Furthermore, ACC-inactivated rats less frequently responded to an approaching robot with appropriate escape responses although their response to shock stimuli remained preserved. Since we observed no effect on slow or stationary robot avoidance, we conclude that the ACC may exert cognitive efforts for monitoring dynamic updating of the position of an object, a role complementary to the dorsal hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.
Mierop, Adrien; Hütter, Mandy; Stahl, Christoph; Corneille, Olivier
2018-02-05
Research that dissociates different types of processes within a given task using a processing tree approach suggests that attitudes may be acquired through evaluative conditioning in the absence of explicit encoding of CS-US pairings in memory. This research distinguishes explicit memory for the CS-US pairings from CS-liking acquired without encoding of CS-US pairs in explicit memory. It has been suggested that the latter effect may be due to an implicit misattribution process that is assumed to operate when US evocativeness is low. In the present research, the latter assumption was supported neither by two high-powered experiments nor by complementary meta-analytic evidence, whereas evocativeness exerted an influence on explicit memory. This pattern of findings is inconsistent with the view that CS-liking acquired without encoding of CS-US pairs in explicit memory reflects an implicit misattribution process at learning. Hence, the underlying learning process is awaiting further empirical scrutiny.
Eaves, Emery R; Ritenbaugh, Cheryl; Nichter, Mark; Hopkins, Allison L.; Sherman, Karen J
2014-01-01
This article explores the role of hope in participants’ assessments of their expectations, experiences and treatment outcomes. Data analysis focused on semi-structured, open-ended interviews with 44 participants, interviewed 3-5 times each over the course of a study evaluating Traditional Chinese Medicine (TCM) for Temporomandibular Disorders (TMD, a form of chronic orofacial pain). Transcripts were coded and analyzed using qualitative and ethnographic methods. A “Modes of Hoping”1 framework informed our analysis. Five modes of hoping emerged from participant narratives: Realistic Hope; Wishful Hope; Utopian Hope; Technoscience Hope; and Transcendent Hope. Using this framework, hope is demonstrated as exerting a profound influence over how participants assess and report their expectations. This suggests that researchers interested in measuring expectations and understanding their role in treatment outcomes should consider hope as exercising a multifaceted and dynamic influence on participants’ reporting of expectations and their experience and evaluation of treatment. PMID:25037665
Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis.
Houdebine, Léo; Gallelli, Cristina Anna; Rastelli, Marialetizia; Sampathkumar, Nirmal Kumar; Grenier, Julien
2017-10-01
Multiple sclerosis (MS) is a central nervous demyelinating disease characterized by cyclic loss and repair of myelin sheaths associated with chronic inflammation and neuronal loss. This degenerative pathology is accompanied by modified levels of oxysterols (oxidative derivatives of cholesterol, implicated in cholesterol metabolism), highlighted in the brain, blood and cerebrospinal fluid of MS patients. The pathological accumulation of such derivatives is thought to participate in the onset and progression of the disease through their implication in inflammation, oxidative stress, demyelination and neurodegeneration. In this context, physical exercise is envisaged as a complementary resource to ameliorate therapeutic strategies. Indeed, physical activity exerts beneficial effects on neuronal plasticity, decreases inflammation and oxidative stress and improves blood-brain integrity in extents that could be beneficial for brain health. The present review attempts to summarize the available data on the positive effect of physical exercise to highlight possible links between physical activity and modulation of cholesterol/oxysterol homeostasis in MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Eaves, Emery R; Ritenbaugh, Cheryl; Nichter, Mark; Hopkins, Allison L; Sherman, Karen J
2014-01-01
This article explores the role of hope in participants' assessments of their expectations, experiences and treatment outcomes. Data analysis focused on semi-structured, open-ended interviews with 44 participants, interviewed 3-5 times each over the course of a study evaluating Traditional Chinese Medicine (TCM) for temporomandibular disorders (TMD), a form of chronic orofacial pain. Transcripts were coded and analyzed using qualitative and ethnographic methods. A "Modes of Hoping" (Webb, 2007)(1) framework informed our analysis. Five modes of hoping emerged from participant narratives: Realistic Hope, Wishful Hope, Utopian Hope, Technoscience Hope, and Transcendent Hope. Using this framework, hope is demonstrated as exerting a profound influence over how participants assess and report their expectations. This suggests that researchers interested in measuring expectations and understanding their role in treatment outcomes should consider hope as exercising a multi-faceted and dynamic influence on participants' reporting of expectations and their experience and evaluation of treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
MiR-17-92 cluster and immunity.
Kuo, George; Wu, Chao-Yi; Yang, Huang-Yu
2018-05-29
MicroRNAs (MiR, MiRNA) are small single-stranded non-coding RNAs that play an important role in the regulation of gene expression. MircoRNAs exert their effect by binding to complementary nucleotide sequences of the targeted messenger RNA, thus forming an RNA-induced silencing complex. The mircoRNA-17-92 cluster encoded by the miR-17-92 host gene is first found in malignant B-cell lymphoma. Recent research identifies the miR-17-92 cluster as a crucial player in the development of the immune system, the heart, the lung, and oncogenic events. In light of the miR-17-92 cluster's increasing role in regulating the immune system, our review will discuss the latest knowledge regarding its involvement in cells of both innate and adaptive immunity, including B cells, subsets of T cells such as Th1, Th2, T follicular helper cells, regulatory T cells, monocytes/macrophages, NK cells, and dendritic cells, and the possible targets that are regulated by its members. Copyright © 2018. Published by Elsevier B.V.
Henry, Molly J.; Herrmann, Björn; Kunke, Dunja; Obleser, Jonas
2017-01-01
Healthy aging is accompanied by listening difficulties, including decreased speech comprehension, that stem from an ill-understood combination of sensory and cognitive changes. Here, we use electroencephalography to demonstrate that auditory neural oscillations of older adults entrain less firmly and less flexibly to speech-paced (∼3 Hz) rhythms than younger adults’ during attentive listening. These neural entrainment effects are distinct in magnitude and origin from the neural response to sound per se. Non-entrained parieto-occipital alpha (8–12 Hz) oscillations are enhanced in young adults, but suppressed in older participants, during attentive listening. Entrained neural phase and task-induced alpha amplitude exert opposite, complementary effects on listening performance: higher alpha amplitude is associated with reduced entrainment-driven behavioural performance modulation. Thus, alpha amplitude as a task-driven, neuro-modulatory signal can counteract the behavioural corollaries of neural entrainment. Balancing these two neural strategies may present new paths for intervention in age-related listening difficulties. PMID:28654081
Hyperbolic spoof plasmonic metasurfaces
Yang, Yihao; Jing, Liqiao; Shen, Lian; ...
2017-08-25
Hyperbolic metasurfaces have recently emerged as a new research frontier because of the unprecedented capabilities to manipulate surface plasmon polaritons (SPPs) and many potential applications. But, thus far, the existence of hyperbolic metasurfaces has neither been observed nor predicted at low frequencies because noble metals cannot support SPPs at longer wavelengths. Here, we propose and experimentally demonstrate spoof plasmonic metasurfaces with a hyperbolic dispersion, where the spoof SPPs propagate on complementary H-shaped, perfectly conducting surfaces at low frequencies. Therefore, non-divergent diffractions, negative refraction and dispersion-dependent spin-momentum locking are observed as the spoof SPPs travel over the hyperbolic spoof plasmonic metasurfacesmore » (HSPMs). The HSPMs provide fundamental new platforms to explore the propagation and spin of spoof SPPs. They show great capabilities for designing advanced surface wave devices such as spatial multiplexers, focusing and imaging devices, planar hyperlenses, and dispersion-dependent directional couplers, at both microwave and terahertz frequencies.« less
A Novel Method for Rapid Hybridization of DNA to a Solid Support
Pettersson, Erik; Ahmadian, Afshin; Ståhl, Patrik L.
2013-01-01
Here we present a novel approach entitled Magnetic Forced Hybridization (MFH) that provides the means for efficient and direct hybridization of target nucleic acids to complementary probes immobilized on a glass surface in less than 15 seconds at ambient temperature. In addition, detection is carried out instantly since the beads become visible on the surface. The concept of MFH was tested for quality control of array manufacturing, and was combined with a multiplex competitive hybridization (MUCH) approach for typing of Human Papilloma Virus (HPV). Magnetic Forced Hybridization of bead-DNA constructs to a surface achieves a significant reduction in diagnostic testing time. In addition, readout of results by visual inspection of the unassisted eye eliminates the need for additional expensive instrumentation. The method uses the same set of beads throughout the whole process of manipulating and washing DNA constructs prior to detection, as in the actual detection step itself. PMID:23950946
Neurons for hunger and thirst transmit a negative-valence teaching signal.
Betley, J Nicholas; Xu, Shengjin; Cao, Zhen Fang Huang; Gong, Rong; Magnus, Christopher J; Yu, Yang; Sternson, Scott M
2015-05-14
Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics of two separate neuron populations that regulate energy and fluid homeostasis by using cell-type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis.
Learning, remembering, and predicting how to use tools: Distributed neurocognitive mechanisms
Buxbaum, Laurel J.
2016-01-01
The reasoning-based approach championed by Francois Osiurak and Arnaud Badets (Osiurak & Badets, 2016) denies the existence of sensory-motor memories of tool use except in limited circumstances, and suggests instead that most tool use is subserved solely by online technical reasoning about tool properties. In this commentary, I highlight the strengths and limitations of the reasoning-based approach and review a number of lines of evidence that manipulation knowledge is in fact used in tool action tasks. In addition, I present a “two route” neurocognitive model of tool use called the “Two Action Systems Plus (2AS+)” framework that posits a complementary role for online and stored information and specifies the neurocognitive substrates of task-relevant action selection. This framework, unlike the reasoning based approach, has the potential to integrate the existing psychological and functional neuroanatomic data in the tool use domain. PMID:28358565
[Phenomenology and phenomenological method: their usefulness for nursing knowledge and practice].
Vellone, E; Sinapi, N; Rastelli, D
2000-01-01
Phenomenology is a thought movement the main aim of which is to study human fenomena as they are experienced and lived. Key concepts of phenomenology are: the study of lived experience and subjectivity of human beings, the intentionality of consciousness, perception and interpretation. Phenomenological research method has nine steps: definition of the research topic; superficial literature searching; sample selection; gathering of lived experiences; analysis of lived experiences; written synthesis of lived experiences; validation of written synthesis; deep literature searching; writing of the scientific document. Phenomenology and phenomenological method are useful for nursing either to develop knowledge or to guide practice. Qualitative-phenomenological and quantitative-positivistic research are complementary: the first one guides clinicians towards a person-centered approach, the second one allows the manipulation of phenomena which can damage health, worsen illness or decrease the quality of life of people who rely on nursing care.
Joint forensics and watermarking approach for video authentication
NASA Astrophysics Data System (ADS)
Thiemert, Stefan; Liu, Huajian; Steinebach, Martin; Croce-Ferri, Lucilla
2007-02-01
In our paper we discuss and compare the possibilities and shortcomings of both content-fragile watermarking and digital forensics and analyze if the combination of both techniques allows the identification of more than the sum of all manipulations identified by both techniques on their own due to synergetic effects. The first part of the paper discusses the theoretical possibilities offered by a combined approach, in which forensics and watermarking are considered as complementary tools for data authentication or deeply combined together, in order to reduce their error rate and to enhance the detection efficiency. After this conceptual discussion the paper proposes some concrete examples in which the joint approach is applied to video authentication. Some specific forensics techniques are analyzed and expanded to handle efficiently video data. The examples show possible extensions of passive-blind image forgery detection to video data, where the motion and time related characteristics of video are efficiently exploited.
Protein design in systems metabolic engineering for industrial strain development.
Chen, Zhen; Zeng, An-Ping
2013-05-01
Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Health and healing: spiritual, pharmaceutical, and mechanical medicine.
Hutch, Richard A
2013-09-01
Modern medical practice is identified as a relatively recent way of approaching human ill health in the wide scope of how people have addressed sickness throughout history and across a wide range of cultures. The ideological biases of medical or "allopathic" (disease as "other" or "outsider") practice are identified and grafted onto other perspectives on how people not engaged in modern medicine have achieved healing and health. Alternative forms of healing and health open a consideration of ethnomedicine, many forms of which are unknown and, hence, untested by modern medical research. Ethnomedicine the world over and throughout human history has displayed unique spiritual (vitalism), pharmaceutical (herbs/drugs), and mechanical (manipulation/surgery) approaches to treating illness. The argument is that modern allopathic medicine would do well to consider such "world medicine" as having valuable alternative and complementary therapies, the use of which could enhance contemporary medical advice and practice.
Magnetic biosensors: Modelling and simulation.
Nabaei, Vahid; Chandrawati, Rona; Heidari, Hadi
2018-04-30
In the past few years, magnetoelectronics has emerged as a promising new platform technology in various biosensors for detection, identification, localisation and manipulation of a wide spectrum of biological, physical and chemical agents. The methods are based on the exposure of the magnetic field of a magnetically labelled biomolecule interacting with a complementary biomolecule bound to a magnetic field sensor. This Review presents various schemes of magnetic biosensor techniques from both simulation and modelling as well as analytical and numerical analysis points of view, and the performance variations under magnetic fields at steady and nonstationary states. This is followed by magnetic sensors modelling and simulations using advanced Multiphysics modelling software (e.g. Finite Element Method (FEM) etc.) and home-made developed tools. Furthermore, outlook and future directions of modelling and simulations of magnetic biosensors in different technologies and materials are critically discussed. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Creating complex molecular topologies by configuring DNA four-way junctions
NASA Astrophysics Data System (ADS)
Liu, Di; Chen, Gang; Akhter, Usman; Cronin, Timothy M.; Weizmann, Yossi
2016-10-01
The realization of complex topologies at the molecular level represents a grand challenge in chemistry. This necessitates the manipulation of molecular interactions with high precision. Here we show that single-stranded DNA (ssDNA) knots and links can be created by utilizing the inherent topological properties that pertain to the DNA four-way junction, at which the two helical strands form a node and can be configured conveniently and connected for complex topological construction. Using this strategy, we produced series of ssDNA topoisomers with the same sequences. By finely designing the curvature and torsion, double-stranded DNA knots were accessed by hybridizing and ligating the complementary strands with the knotted ssDNA templates. Furthermore, we demonstrate the use of a constructed ssDNA knot both to probe the topological conversion catalysed by DNA topoisomerase and to study the DNA replication under topological constraint.
Assessing the secretory capacity of pancreatic acinar cells.
Geron, Erez; Schejter, Eyal D; Shilo, Ben-Zion
2014-08-28
Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.
[Physical methods and molecular biology].
Serdiuk, I N
2009-01-01
The review is devoted to the description of the current state of physical and chemical methods used for studying the structural and functional bases of living processes. Special attention is focused on the physical methods that have opened a new page in the research of the structure of biological macromolecules. They include primarily the methods of detecting and manipulating single molecules using optical and magnetic traps. New physical methods, such as two-dimensional infrared spectroscopy, fluorescence correlation spectroscopy and magnetic resonance microscopy are also analyzed briefly in the review. The path that physics and biology have passed for the latest 55 years shows that there is no single method providing all necessary information on macromolecules and their interactions. Each method provides its space-time view of the system. All physical methods are complementary. It is just complementarity that is the fundamental idea justifying the existence in practice of all physical methods, whose description is the aim of the review.
When size matters: attention affects performance by contrast or response gain.
Herrmann, Katrin; Montaser-Kouhsari, Leila; Carrasco, Marisa; Heeger, David J
2010-12-01
Covert attention, the selective processing of visual information in the absence of eye movements, improves behavioral performance. We found that attention, both exogenous (involuntary) and endogenous (voluntary), can affect performance by contrast or response gain changes, depending on the stimulus size and the relative size of the attention field. These two variables were manipulated in a cueing task while stimulus contrast was varied. We observed a change in behavioral performance consonant with a change in contrast gain for small stimuli paired with spatial uncertainty and a change in response gain for large stimuli presented at one location (no uncertainty) and surrounded by irrelevant flanking distracters. A complementary neuroimaging experiment revealed that observers' attention fields were wider with than without spatial uncertainty. Our results support important predictions of the normalization model of attention and reconcile previous, seemingly contradictory findings on the effects of visual attention.
Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics
NASA Astrophysics Data System (ADS)
Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing
2014-03-01
Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Bluethmann, William; Rochlis, Jennifer; Huber, Eric; Ambrose, Robert
2003-01-01
NASA's Human Space Flight program depends heavily on spacewalks performed by human astronauts. These so-called extra-vehicular activities (EVAs) are risky, expensive and complex. Work is underway to develop a robotic astronaut's assistant that can help reduce human EVA time and workload by delivering human-like dexterous manipulation capabilities to any EVA worksite. An experiment is conducted to evaluate human-robot teaming strategies in the context of a simplified EVA assembly task in which Robonaut, a collaborative effort with the Defense Advanced Research Projects Agency (DARPA), an anthropomorphic robot works side-by-side with a human subject. Team performance is studied in an effort to identify the strengths and weaknesses of each teaming configuration and to recommend an appropriate division of labor. A shared control approach is developed to take advantage of the complementary strengths of the human teleoperator and robot, even in the presence of significant time delay.
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
NASA Astrophysics Data System (ADS)
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-08-01
The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.
Cholinergic Mesopontine Signals Govern Locomotion and Reward Through Dissociable Midbrain Pathways
Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B.; Chan, Ken; McKinney, Sheri L.; Yang, Bin; Gradinaru, Viviana
2016-01-01
The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons, however although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197
3D nano-structures for laser nano-manipulation
Seniutinas, Gediminas; Gervinskas, Gediminas; Brasselet, Etienne; Juodkazis, Saulius
2013-01-01
Summary The resputtering of gold films from nano-holes defined in a sacrificial PMMA mask, which was made by electron beam lithography, was carried out with a dry plasma etching tool in order to form well-like structures with a high aspect ratio (height/width ≈ 3–4) at the rims of the nano-holes. The extraordinary transmission through the patterns of such nano-wells was investigated experimentally and numerically. By doing numerical simulations of 50-nm and 100-nm diameter polystyrene beads in water and air, we show the potential of such patterns for self-induced back-action (SIBA) trapping. The best trapping conditions were found to be a trapping force of 2 pN/W/μm2 (numerical result) exerted on a 50-nm diameter bead in water. The simulations were based on the analytical Lorentz force model. PMID:24062979
Martusevich, A A; Martusevich, A K; Peretiagin, S P
2013-09-01
The aim of this work was the analysis of singlet oxygen and the ozone effect on lipid peroxidation and antioxidant activity of rat organs and blood. Wistar rats were randomly divided into five groups: control group (without any manipulations; n = 10) and four main groups (n = 10 in each group) with inhalations by dry, moisture and oil-processed ozone-oxygen mixture (ozone concentration 60 micro g/l) or singlet oxygen, respectively. Activity of pro- and antioxidant systems was estimated in blood and tissues (lungs, heart, liver and kidney) by inducing biochemiluminescence. Singlet oxygen was shown to exert the "mildest" effect with stimulation of blood antioxidant potential and saving tissue oxidative potential without hyperactivation of lipid peroxidation. Use of moistened ozone-oxygen mixture caused moderate stimulating action on antioxidant re serves of blood and tissues. Dry ozone-oxygen mixture clearly decreased lipid peroxidation intensity.
Current-induced switching in a magnetic insulator
NASA Astrophysics Data System (ADS)
Avci, Can Onur; Quindeau, Andy; Pai, Chi-Feng; Mann, Maxwell; Caretta, Lucas; Tang, Astera S.; Onbasli, Mehmet C.; Ross, Caroline A.; Beach, Geoffrey S. D.
2017-03-01
The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.
Gillan, Claire M.; Morein-Zamir, Sharon; Durieux, Alice M. S.; Fineberg, Naomi A.; Sahakian, Barbara J.; Robbins, Trevor W.
2014-01-01
There is disagreement regarding the role of perceived control in obsessive–compulsive disorder (OCD). The present study used a traditional illusion of control paradigm (Alloy and Abramson, 1979) to empirically test control estimation in OCD. Twenty-six OCD patients and 26 matched comparison subjects completed an illusion of control task wherein their goal was to attempt to exert control over a light bulb. The density of reinforcement (high, low) and the valence of trials (gain, loss) were experimentally manipulated within subjects. Unbeknownst to participants, the illumination of the light bulb was predetermined and irrespective of their behavior. OCD patients exhibited lower estimates of control compared with healthy comparison subjects. There were no interactions between group and outcome density or group and valence. We found that OCD patients endorse lower estimates of control than comparison subjects. This finding highlights a potential role for contingency learning in the disorder. PMID:24659974
Systematic cloning of an ORFeome using the Gateway system.
Matsuyama, Akihisa; Yoshida, Minoru
2009-01-01
With the completion of the genome projects, there are increasing demands on the experimental systems that enable to exploit the entire set of protein-coding open reading frames (ORFs), viz. ORFeome, en masse. Systematic proteomic studies based on cloned ORFeomes are called "reverse proteomics," and have been launched in many organisms in recent years. Cloning of an ORFeome is such an attractive way for comprehensive understanding of biological phenomena, but is a challenging and daunting task. However, recent advances in techniques for DNA cloning using site-specific recombination and for high-throughput experimental techniques have made it feasible to clone an ORFeome with the minimum of exertion. The Gateway system is one of such the approaches, employing the recombination reaction of the bacteriophage lambda. Combining traditional DNA manipulation methods with modern technique of the recombination-based cloning system, it is possible to clone an ORFeome of an organism on an individual level.
Multisensor robotic system for autonomous space maintenance and repair
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.
1988-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.
Can high-intensity exercise be more pleasant?: attentional dissociation using music and video.
Jones, Leighton; Karageorghis, Costas I; Ekkekakis, Panteleimon
2014-10-01
Theories suggest that external stimuli (e.g., auditory and visual) may be rendered ineffective in modulating attention when exercise intensity is high. We examined the effects of music and parkland video footage on psychological measures during and after stationary cycling at two intensities: 10% of maximal capacity below ventilatory threshold and 5% above. Participants (N = 34) were exposed to four conditions at each intensity: music only, video only, music and video, and control. Analyses revealed main effects of condition and exercise intensity for affective valence and perceived activation (p < .001), state attention (p < .05), and exercise enjoyment (p < .001). The music-only and music-and-video conditions led to the highest valence and enjoyment scores during and after exercise regardless of intensity. Findings indicate that attentional manipulations can exert a salient influence on affect and enjoyment even at intensities slightly above ventilatory threshold.
NASA Astrophysics Data System (ADS)
De Acutis, A.; Calabrese, L.; Bau, A.; Tincani, V.; Pugno, N. M.; Bicchi, A.; De Rossi, D. E.
2018-07-01
In this article we present an upgraded design of the existing push–pull hydrostatically coupled dielectric elastomer actuator (HC-DEA) for use in the field of soft manipulators. The new design has segmented electrodes, which stand as four independent elements on the active membrane of the actuator. When properly operated, the actuator can generate both out of plane and in-plane motions resulting in a multi-degrees of freedom soft actuator able to exert both normal pushes (like a traditional HC-DEA) and tangential thrusts. This novel design makes the actuator suitable for delicate flat object transportation. In order to use the actuator in soft systems, we experimentally characterized its electromechanical transduction and modeled its contact mechanics. Finally, we show that the proposed actuator can be employed as a modular unit to develop active surfaces for flat object roto-translation.
Regeneration of hair cells in the mammalian vestibular system.
Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei
2016-06-01
Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.
An isolated long thoracic nerve injury in a Navy Airman.
Oakes, Michael J; Sherwood, Daniel L
2004-09-01
A palsy of the long thoracic nerve of Bell is a cause of scapular winging that has been reported after trauma, surgery, infection, electrocution, chiropractic manipulation, exposure to toxins, and various sports-related injuries that include tennis, hockey, bowling, soccer, gymnastics, and weight lifting. Scapular winging can result from repetitive or sudden external biomechanical forces that may either exert compression or place extraordinary traction in the distribution of the long thoracic nerve. We describe an active duty Navy Airman who developed scapular winging secondary to traction to the long thoracic nerve injury while working on the flight line. A thorough history and physical is essential in determining the mechanism of injury. Treatment should initially include refraining from strenuous use of the involved extremity, avoidance of the precipitating activity, and physical therapy to focus on maintaining range of motion and strengthening associated muscles, with most cases resolving within 9 months.
The Medicinal Rod: Slave Health and Redhibition Law in George Washington Cable's The Grandissimes.
Chacón, Heather
The economic transactions and litigation necessary for slavery to function, coupled with the South's honor culture, meant skepticism and posturing frequently attended the buying and selling of enslaved people. This atmosphere provided opportunities for enslaved individuals familiar with the symbiotic ways their health and value intertwined to manipulate owners by feigning illness or adopting behaviors contrary to those of a "sound and sane" captive under Louisiana's redhibitory (slave warranty) law. Such actions offered a chance at preserving that which slavery denied its victims: proximity to family, a reduced chance of being sold, and an opportunity to exert agency within a strictly oppressive system. In dramatizing these paradoxes, George Washington Cable's The Grandissimes illustrates the vile hollowness of owners' paternalistic attitudes towards the enslaved, acknowledges the subjectivity and will of enslaved individuals, and castigates the return of slavery-like conditions in the form of the convict lease system.
Efficient Jacobian inversion for the control of simple robot manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1988-01-01
Symbolic inversion of the Jacobian matrix for spherical wrist arms is investigated. It is shown that, taking advantage of the simple geometry of these arms, the closed-form solution of the system Q = J-1X, representing a transformation from task space to joint space, can be obtained very efficiently. The solutions for PUMA, Stanford, and a six-revolute-joint coplanar arm, along with all singular points, are presented. The solution for each joint variable is found as an explicit function of the singular points which provides a better insight into the effect of different singular points on the motion and force exertion of each individual joint. For the above arms, the computation cost of the solution is on the same order as the cost of forward kinematic solution and it is significantly reduced if forward kinematic solution is already obtained. A comparison with previous methods shows that this method is the most efficient to date.
Habitat Management to Suppress Pest Populations: Progress and Prospects.
Gurr, Geoff M; Wratten, Steve D; Landis, Douglas A; You, Minsheng
2017-01-31
Habitat management involving manipulation of farmland vegetation can exert direct suppressive effects on pests and promote natural enemies. Advances in theory and practical techniques have allowed habitat management to become an important subdiscipline of pest management. Improved understanding of biodiversity-ecosystem function relationships means that researchers now have a firmer theoretical foundation on which to design habitat management strategies for pest suppression in agricultural systems, including landscape-scale effects. Supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen (SNAP) has emerged as a major research topic and applied tactic with field tests and adoption often preceded by rigorous laboratory experimentation. As a result, the promise of habitat management is increasingly being realized in the form of practical worldwide implementation. Uptake is facilitated by farmer participation in research and is made more likely by the simultaneous delivery of ecosystem services other than pest suppression.
van Koningsbruggen, Guido M; Stroebe, Wolfgang; Aarts, Henk
2012-04-01
We examined whether exposure to cues of attractive food reduces effortful behavior toward healthy foods for restrained eaters. After manipulating food pre-exposure, we recorded handgrip force while presenting participants with pictures of healthy food objects. Because participants were led to expect that they could obtain each object (not specified beforehand) by squeezing the handgrip as forcefully as possible while the object was displayed on the screen, the recorded handgrip force constitutes a measure of spontaneous effortful behavior. Results show that restrained eaters, but not unrestrained eaters, displayed less forceful action toward healthy food objects (i.e., lower exertion of force) when pre-exposed to tempting food cues. No effects were found on palatability perceptions of the healthy foods. The results provide further insight into why restrained eaters have difficulties in maintaining a low-calorie diet in food-rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.
The future of EPAC-targeted therapies: agonism versus antagonism.
Parnell, Euan; Palmer, Timothy M; Yarwood, Stephen J
2015-04-01
Pharmaceutical manipulation of cAMP levels exerts beneficial effects through the regulation of the exchange protein activated by cAMP (EPAC) and protein kinase A (PKA) signalling routes. Recent attention has turned to the specific regulation of EPAC isoforms (EPAC1 and EPAC2) as a more targeted approach to cAMP-based therapies. For example, EPAC2-selective agonists could promote insulin secretion from pancreatic β cells, whereas EPAC1-selective agonists may be useful in the treatment of vascular inflammation. By contrast, EPAC1 and EPAC2 antagonists could both be useful in the treatment of heart failure. Here we discuss whether the best way forward is to design EPAC-selective agonists or antagonists and the current strategies being used to develop isoform-selective, small-molecule regulators of EPAC1 and EPAC2 activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
An integrated control scheme for space robot after capturing non-cooperative target
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich
2018-06-01
How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.
Autocracy bias in informal groups under need for closure.
Pierro, Antonio; Mannetti, Lucia; De Grada, Eraldo; Livi, Stefano; Kruglanski, Arie W
2003-03-01
Two experiments investigated the tendency of groups with members under high (vs. low) need for cognitive closure to develop an autocratic leadership structure in which some members dominate the discussion, constitute the "hubs" of communication, and influence the group more than other members. The first experiment found that high (vs. low) need for closure groups, as assessed via dispositional measure of the need for closure, manifested greater asymmetry of conversational floor control, such that members with autocratic interactional style were more conversationally dominant and influential than less autocratic members. The second experiment manipulated the need for closure via time pressure and utilized a social network analysis. Consistent with expectation, groups under time pressure (vs. no pressure) showed a greater asymmetry of participation, of centrality, and of prestige among the group members, such that the more focal members were perceived to exert the greater influence over the groups' decisions.
Regulatory immune cells in regulation of intestinal inflammatory response to microbiota
Cong, Y; Liu, Z
2015-01-01
The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708
Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.
Sun, M; He, C; Cong, Y; Liu, Z
2015-09-01
The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.
Regulation of centriolar satellite integrity and its physiology.
Hori, Akiko; Toda, Takashi
2017-01-01
Centriolar satellites comprise cytoplasmic granules that are located around the centrosome. Their molecular identification was first reported more than a quarter of a century ago. These particles are not static in the cell but instead constantly move around the centrosome. Over the last decade, significant advances in their molecular compositions and biological functions have been achieved due to comprehensive proteomics and genomics, super-resolution microscopy analyses and elegant genetic manipulations. Centriolar satellites play pivotal roles in centrosome assembly and primary cilium formation through the delivery of centriolar/centrosomal components from the cytoplasm to the centrosome. Their importance is further underscored by the fact that mutations in genes encoding satellite components and regulators lead to various human disorders such as ciliopathies. Moreover, the most recent findings highlight dynamic structural remodelling in response to internal and external cues and unexpected positive feedback control that is exerted from the centrosome for centriolar satellite integrity.
Two-dimensional self-assembly of DNA-functionalized gold nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Zhang, Honghu; Hagen, Noah; Kuzmenko, Ivan; Akinc, Mufit; Travesset, Alex; Mallapragada, Surya; Vaknin, David
2D superlattices of nanoparticles (NPs) are promising candidates for nano-devices. It is still challenging to develop a simple yet efficient protocol to assemble NPs in a controlled manner. Here, we report on formation of 2D Gibbs monolayers of single-stranded DNA-coated gold nanoparticles (ssDNA-AuNPs) at the air-water interface by manipulation of salts contents. MgCl2 and CaCl2 in solutions facilitate the accumulation of the non-complementary ssDNA-AuNPs on aqueous surfaces. Grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity show that the surface AuNPs assembly forms a mono-particle layer and undergoes a transformation from short-range to long-range (hexagonal) order above a threshold of [MgCl2] or [CaCl2]. For solutions that include two kinds of ssDNA-AuNPs with complementary base-pairing, the surface AuNPs form a thicker film and only in-plane short-range order is observed. By using other salts (NaCl or LaCl3) at concentrations of similar ionic strength to those of MgCl2 or CaCl2, we find that surface adsorbed NPs lack any orders. X-ray fluorescence measurements provide direct evidence of surface enrichment of AuNPs and divalent ions (Ca2 +) . The work was supported by the Office of Basic Energy Sciences, USDOE under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.
Kinetics and Thermodynamics of Watson-Crick Base Pairing Driven DNA Origami Dimerization.
Zenk, John; Tuntivate, Chanon; Schulman, Rebecca
2016-03-16
We investigate the kinetics and thermodynamics of DNA origami dimerization using flat rectangle origami components and different architectures of Watson-Crick complementary single-stranded DNA ("sticky end") linking strategies. We systematically vary the number of linkers, the length of the sticky ends on the linker, and linker architecture and measure the corresponding yields as well as forward and reverse reaction rate constants through fluorescence quenching assays. Yields were further verified using atomic force microscopy. We calculate values of H° and ΔS° for various interface designs and find nonlinear van't Hoff behavior, best described by two linear equations, suggesting distinct regimes of dimerization between those with and those without well-formed interfaces. We find that self-assembly reactions can be tuned by manipulating the interface architecture without suffering a loss in yield, even when yield is high, ∼75-80%. We show that the second-order forward reaction rate constant (k(on)) depends on both linker architecture and number of linkers used, with typical values on the order of 10(5)-10(6) (M·s)(-1), values that are similar to those of bimolecular association of small, complementary DNA strands. The k(on) values are generally non-Arrhenius, tending to increase with decreasing temperature. Finally, we use kinetic and thermodynamic information about the optimal linking architecture to extend the system to an infinite, two-component repeating lattice system and show that we can form micron-sized lattices, with well-formed structures up to 8 μm(2).
Complementary medicine for axial spondyloarthritis: is there any scientific evidence?
Danve, Abhijeet; Deodhar, Atul A
2018-07-01
Majority of patients with axial spondyloarthritis (axSpA) report use of complementary and alternative medicine (CAM) therapies before and even after the diagnosis, due to perceived efficacy and wide-spread belief that these modalities lack side effects. In this review, we describe the available scientific evidence for the CAM therapies in axSpA. Clinical trials of the CAM therapies in axSpA are generally hampered by small sample size, short duration, difficulties in blinding, lack of control groups and strong placebo effect. Nonetheless, exercise programs like Pilates and mind-body techniques such as Tai Chi may have favorable effect on the disease activity and function. Although not yet confirmed, the modulation of the microbiome with the help of probiotics or fecal transplant has face validity given the evolving scientific rationale. Diet has only limited role in the management of axSpA. Deep tissue massage, omega-3 fatty acids and Stanger bath were found to be useful in small studies. CAM therapies are not always entirely well tolerated, particularly the manipulative techniques like chiropractic and Tui-na in patients with advanced disease and osteoporosis. There are no trials of yoga in axSpA despite the wider acceptance and use of yoga as an effective mind-body technique. Larger and better quality clinical trials of CAM therapies are needed to confirm their efficacy and safety in the management of axSpA and to include them in the 'mainstream' medicine.
Chen, Yun; Tsai, Ya-Hui; Tseng, Bor-Jiun; Pan, Hsin-Yen; Tseng, Sheng-Hong
2016-11-01
Mammalian target of rapamycin (mTOR) inhibitors exert significant antitumor effects on several cancer cell types. In this study, we investigated the effects of mTOR inhibitors, in particular the regulation of the microRNA, in neuroblastoma cells. AZD8055 (a new mTOR inhibitor)- or rapamycin-induced cytotoxic effects on neuroblastoma cells were studied. Western blotting was used to investigate the expression of various proteins in the mTOR pathway. MicroRNA precursors and antagomirs were transfected into cells to manipulate the expression of target microRNA. AZD8055 exerted stronger cytotoxic effects than rapamycin in neuroblastoma cells (p<0.03). In addition, AZD8055 suppressed the mTOR pathway and increased the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in the neuroblastoma cells. AZD8055 significantly decreased miR-19b expression (p<0.005); in contrast, rapamycin increased miR-19b expression (p<0.05). Transfection of miR-19b antagomir into the neuroblastoma cells mimicked the effects of AZD8055 treatment, whereas miR-19b overexpression reversed the effects of AZD8055. Combination of miR-19b knockdown and rapamycin treatment significantly improved the sensitivity of neuroblastoma cells to rapamycin (p<0.02). Suppression of miR-19b may enhance the cytotoxic effects of mTOR inhibitors in neuroblastoma cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Perry, Rachel; Leach, Verity; Davies, Philippa; Penfold, Chris; Ness, Andy; Churchill, Rachel
2017-05-15
Fibromyalgia (FM) is a chronic, debilitating pain disorder. Dissatisfaction with conventional medicine can lead people with FM to turn to complementary and alternative medicine (CAM). Two previous overviews of systematic reviews of CAM for FM have been published, but they did not assessed for risk of bias in the review process. Five databases Medline, Embase, AMED (via OVID), Web of Science and Central were searched from their inception to December 2015. Reference lists were hand-searched. We had two aims: the first was to provide an up-to-date and rigorously conducted synthesis of systematic reviews of CAM literature on FM; the second was to evaluate the quality of the available systematic review evidence using two different tools: AMSTAR (Shea et al. BMC Med Res Methodol 15; 7:10, 2007) and a more recently developed tool ROBIS (Whiting et al. J Clin Epidemiol 69:225-34, 2016) specifically designed to assess risk of bias in systematic reviews. Any review that assessed one of eight CAM therapies for participants diagnosed with FM was considered. The individual studies had to be randomised controlled trials where the intervention was compared to placebo, treatment as usual or waitlist controls to be included. The primary outcome measure was pain, and the secondary outcome measure was adverse events. We identified 15 reviews that met inclusion criteria. There was low-quality evidence that acupuncture improves pain compared to no treatment or standard treatment, but good evidence that it is no better than sham acupuncture. The evidence for homoeopathy, spinal manipulation and herbal medicine was limited. Overall, five reviews scored 6 or above using the AMSTAR scale and the inter-rater agreement was good (83.6%), whereas seven reviews achieved a low risk of bias rating using ROBIS and the inter-rater agreement was fair (60.0%). No firm conclusions were drawn for efficacy of either spinal manipulation or homoeopathy for FM. There is limited evidence for topical Capsicum, but further research is required. There is some evidence to support the effectiveness of acupuncture for FM, but further high-quality trials are needed to investigate its benefits, harms and mechanisms of action, compared with no or standard treatment. PROSPERO CRD42016035846 .
Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice.
Ferrere, Gladys; Wrzosek, Laura; Cailleux, Frédéric; Turpin, Williams; Puchois, Virginie; Spatz, Madeleine; Ciocan, Dragos; Rainteau, Dominique; Humbert, Lydie; Hugot, Cindy; Gaudin, Françoise; Noordine, Marie-Louise; Robert, Véronique; Berrebi, Dominique; Thomas, Muriel; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie
2017-04-01
Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Basso, Frédéric; Petit, Olivia; Le Bellu, Sophie; Lahlou, Saadi; Cancel, Aïda; Anton, Jean-Luc
2018-06-12
Every day, people are exposed to images of appetizing foods that can lead to high-calorie intake and contribute to overweight and obesity. Research has documented that manipulating the visual perspective from which eating is viewed helps resist temptation by altering the appraisal of unhealthy foods. However, the neural basis of this effect has not yet been examined using neuroimaging methods. Moreover, it is not known whether the benefits of this strategy can be observed when people, especially overweight, are not explicitly asked to imagine themselves eating. Last, it remains to be investigated if visual perspective could be used to promote healthy foods. The present work manipulated camera angles and tested whether visual perspective modulates activity in brain regions associated with taste and reward processing while participants watch videos featuring a hand grasping (unhealthy or healthy) foods from a plate during functional magnetic resonance imagining (fMRI). The plate was filmed from the perspective of the participant (first-person perspective; 1PP), or from a frontal view as if watching someone else eating (third-person perspective; 3PP). Our findings reveal that merely viewing unhealthy food cues from a 1PP (vs. 3PP) increases activity in brain regions that underlie representations of rewarding (appetitive) experiences (amygdala) and food intake (superior parietal gyrus). Additionally, our results show that ventral striatal activity is positively correlated with body mass index (BMI) during exposure to unhealthy foods from a 1PP (vs. 3PP). These findings suggest that unhealthy foods should be promoted through third-person (video) images to weaken the reward associated with their simulated consumption, especially amongst overweight people. It appears however that, as such, manipulating visual perspective fails to enhance the perception of healthy foods. Their promotion thus requires complementary solutions. Copyright © 2018. Published by Elsevier Ltd.
de Freitas, Paulo B; Jaric, Slobodan
2009-04-01
We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.
Force-based learning curve tracking in fundamental laparoscopic skills training.
Hardon, Sem F; Horeman, Tim; Bonjer, H Jaap; Meijerink, W J H Jeroen
2018-02-08
Within minimally invasive surgery (MIS), structural implementation of courses and structured assessment of skills are challenged by availability of trainers, time, and money. We aimed to establish and validate an objective measurement tool for preclinical skills acquisition in a basic laparoscopic at-home training program. A mobile laparoscopic simulator was equipped with a state-of-the-art force, motion, and time tracking system (ForceSense, MediShield B.V., Delft, the Netherlands). These performance parameters respectively representing tissue manipulation and instrument handling were continuously tracked during every trial. Proficiency levels were set by clinical experts for six different training tasks. Resident's acquisition and development of fundamental skills were evaluated by comparing pre- and post-course assessment measurements and OSATS forms. A questionnaire was distributed to determine face and content validity. Out of 1842 captured attempts by novices, 1594 successful trials were evaluated. A decrease in maximum exerted absolute force was shown in comparison of four training tasks (p ≤ 0.023). Three of the six comparisons also showed lower mean forces during tissue manipulation (p ≤ 0.024). Lower instrument handling outcomes (i.e., time and motion parameters) were observed in five tasks (resp. (p ≤ 0.019) and (p ≤ 0.025)). Simultaneously, all OSATS scores increased (p ≤ 0.028). Proficiency levels for all tasks can be reached in 2 weeks of at home training. Monitoring force, motion, and time parameters during training showed to be effective in determining acquisition and development of basic laparoscopic tissue manipulation and instrument handling skills. Therefore, we were able to gain insight into the amount of training needed to reach certain levels of competence. Skills improved after sufficient amount of training at home. Questionnaire outcomes indicated that skills and self-confidence improved and that this training should therefore be part of the regular residency training program.
Wang, Shuai; Fu, Wen-Long; Du, Wei; Zhang, Qi; Li, Ya; Lyu, Yu-Shu; Wang, Xiao-Fan
2018-03-01
Floral nectaries are closely associated with biotic pollination, and the nectar produced by corolla nectaries is generally enclosed in floral structures. Although some Swertia spp. (Gentianaceae), including S. bimaculata , evolved a peculiar form of corolla nectaries (known as "gland patches") arranged in a conspicuous ring on the rotate corolla and that completely expose their nectar, little is known about the pollination of these plants. Two hypotheses were made concerning the possible effects of gland patches: visual attraction and visitor manipulation. The floral traits, mating system, and insect pollination of S. bimaculata were examined, and the pollination effects of gland patches were evaluated. A comparative study was made using Swertia kouitchensis , a species with fimbriate nectaries. Swertia bimaculata flowers were protandrous, with obvious stamen movement leading to herkogamy in the female phase and to a significant reduction in nectary-anther distance. The species is strongly entomophilous and facultatively xenogamous. The daily reward provided per flower decreased significantly after the male phase. The most effective pollinators were large dipterans, and the visiting proportion of Diptera was significantly higher in S. bimaculata than in S. kouitchensis . Most visitors performed "circling behavior" in S. bimaculata flowers. Removing or blocking the nectaries caused no reduction in visiting frequency but a significant reduction in visit duration, interrupting the circling behavior. The circling behavior was encouraged by nectar abundance and promoted pollen dispersal. Visitor species with small body size had little chance to contact the anthers or stigma, revealing a filtration effect exerted by the floral design. These results rejected the "visual attraction" hypothesis and supported the "visitor manipulation" hypothesis. The nectary whorl within a flower acted like a ring-shaped track that urged nectar foragers to circle on the corolla, making pollination in S. bimaculata flowers more orderly and selective than that in classically generalist flowers.
Hosseini, A; Philpott, D N; Soleymani, L
2017-11-21
The active transport of analytes inside biosensing systems is important for reducing the response time and enhancing the limit-of-detection of these systems. Due to the ease of functionalization with bio-recognition agents and manipulation with magnetic fields, magnetic particles are widely used for active and directed transport of biological analytes. On-chip active electromagnets are ideally suited for manipulating magnetic particles in an automated and miniaturized fashion inside biosensing systems. Unfortunately, the magnetic force exerted by these devices decays rapidly as we move away from the device edges, and increasing the generated force to the levels necessary for particle manipulation requires a parallel increase in the applied current and the resultant Joule heating. In this paper, we designed a study to understand the combined role of thermal and magnetic forces on the movement of magnetic particles in order to extend the interaction distance of on-chip magnetic devices beyond the device edges. For this purpose, we used a rapid prototyping method to create an active/passive on-chip electromagnet with a micro/nano-structured active layer and a patterned ferromagnetic passive layer. We demonstrated that the measured terminal velocities of particles positioned near the electromagnet edge (∼5.5 μm) closely reflect the values obtained by multi-physics modelling. Interestingly, we observed a two orders of magnitude deviation between the experimental and modelling results for the terminal velocities of particles far from the electromagnet edge (∼55.5 μm). Heat modelling of the system using experimentally-measured thermal gradients indicates that this discrepancy is related to the enhanced fluid movement caused by thermal forces. This study enables the rational design of thermo-magnetic systems for thermally driving and magnetically capturing particles that are positioned at distances tens to hundreds of microns away from the edges of on-chip magnetic devices.
Best Practices for Chiropractic Care of Children: A Consensus Update.
Hawk, Cheryl; Schneider, Michael J; Vallone, Sharon; Hewitt, Elise G
2016-01-01
Chiropractic care is the most common complementary and integrative medicine practice used by children in the United States, and it is used frequently by children internationally as well. The purpose of this project was to update the 2009 recommendations on best practices for chiropractic care of children. A formal consensus process was completed based on the existing recommendations and informed by the results of a systematic review of relevant literature from January 2009 through March 2015. The primary search question for the systematic review was, "What is the effectiveness of chiropractic care, including spinal manipulation, for conditions experienced by children (<18 years of age)?" A secondary search question was, "What are the adverse events associated with chiropractic care including spinal manipulation among children (<18 years of age)?" The consensus process was conducted electronically, by e-mail, using a multidisciplinary Delphi panel of 29 experts from 5 countries and using the RAND Corporation/University of California, Los Angeles, consensus methodology. Only 2 statements from the previous set of recommendations did not reach 80% consensus on the first round, and revised versions of both were agreed upon in a second round. All of the seed statements in this best practices document achieved a high level of consensus and thus represent a general framework for what constitutes an evidence-based and reasonable approach to the chiropractic management of infants, children, and adolescents. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Lacking control over the trade-off between quality and quantity in visual short-term memory.
Murray, Alexandra M; Nobre, Anna C; Astle, Duncan E; Stokes, Mark G
2012-01-01
Visual short-term memory (VSTM) is limited in the quantity and quality of items that can be retained over time. Importantly, these two mnemonic parameters interact: increasing the number of items in VSTM reduces the quality with which they are represented. Here, we ask whether this trade-off is under top-down control. Specifically, we test whether participants can strategically optimise the trade-off between quality and quantity for VSTM according to task demands. We manipulated strategic trade-off by varying expectations about the number of to-be-remembered items (Experiments 1-2) or the precision required for the memory-based judgement (Experiment 3). In a final experiment, we manipulated both variables in a complementary way to maximise the motivation to strategically control the balance between number and the quality of items encoded into VSTM. In different blocks, performance would benefit most either by encoding a large number of items with low precision or by encoding a small number of items with high precision (Experiment 4). In all experiments, we compared VSTM performance on trials matched for mnemonic demand, but within contexts emphasising the quality or quantity of VSTM representations. Across all four experiments, we found no evidence to suggest that participants use this contextual information to bias the balance between the number and precision of items in VSTM. Rather, our data suggest that the trade-off may be determined primarily by stimulus-driven factors at encoding.
Propagule pressure governs establishment of an invasive herb
NASA Astrophysics Data System (ADS)
Ramula, Satu; Jauni, Miia; van Ooik, Tapio
2015-10-01
The success of plant invasions may be limited by the availability of propagules and/or of suitable microsites, with microsite availability being affected by, for example, disturbance and interspecific competition. A mechanistic understanding of the contributions of propagule pressure and microsite limitation to plant invasions is therefore required to minimise future invasions. Here, we investigated the relative roles of propagule pressure, the availability of microsites, and their interaction on the establishment of an invasive herb, Lupinus polyphyllus, in two geographic regions representing different climate and growth conditions in Finland (a more productive southern region and a harsher central region). We carried out a field experiment in 14 L. polyphyllus populations, in which we manipulated both propagule pressure and disturbance. In a complementary greenhouse experiment, we manipulated propagule pressure and interspecific competition. Seedling establishment of L. polyphyllus was higher in the more productive southern region than in the harsher central region. The number of L. polyphyllus seedlings increased with increasing propagule pressure regardless of disturbance or interspecific competition. However, the number of L. polyphyllus seedlings per sown seed (relative establishment) tended to decrease with increasing propagule pressure, indicating that the positive effect of propagule pressure on early invasion is partially counteracted by density-dependent mortality at high seed densities. Our results highlight the dominant role of propagule pressure over disturbance and interspecific competition in the establishment of L. polyphyllus, suggesting that the early stage of invasion is limited by the availability of propagules rather than the availability of suitable microsites.
Multiple brain atlas database and atlas-based neuroimaging system.
Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A
1997-01-01
For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.
Kopp, A; Blackman, R K; Duncan, I
1999-08-01
Adult abdominal segments of Drosophila are subdivided along the dorso-ventral axis into a dorsal tergite, a ventral sternite and ventro-lateral pleural cuticle. We report that this pattern is largely specified during the pupal stage by Wingless (Wg), Decapentaplegic (Dpp) and Drosophila EGF Receptor (DER) signaling. Expression of wg and dpp is activated at the posterior edge of the anterior compartment by Hedgehog signaling. Within this region, wg and dpp are expressed in domains that are mutually exclusive along the dorso-ventral axis: wg is expressed in the sternite and medio-lateral tergite, whereas dpp expression is confined to the pleura and the dorsal midline. Neither gene is expressed in the lateral tergite. Shirras and Couso (1996, Dev. Biol. 175, 24-36) have shown that tergite and sternite cell fates are specified by Wg signaling. We find that DER acts synergistically with Wg to promote tergite and sternite identities, and that Wg and DER activities are opposed by Dpp signaling, which promotes pleural identity. Wg and Dpp interact antagonistically at two levels. First, their expression is confined to complementary domains by mutual transcriptional repression. Second, Wg and Dpp compete directly with one another by exerting opposite effects on cell fate. DER signaling does not affect the expression of wg or dpp, indicating that it interacts with Wg and Dpp at the level of cell fate determination. Within the tergite, the requirements for Wg and DER function are roughly complementary: Wg is required mainly in the medial region, whereas DER is most important laterally. Finally, we show that Dpp signaling at the dorsal midline controls dorso-ventral patterning within the tergite by promoting pigmentation in the medial region.
Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J; Perkins, Matthew H; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S; Cropper, Elizabeth C; Weiss, Klaudiusz R; Jing, Jian
2014-05-07
Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity.
Langguth, Berthold; Schecklmann, Martin; Lehner, Astrid; Landgrebe, Michael; Poeppl, Timm Benjamin; Kreuzer, Peter Michal; Schlee, Winfried; Weisz, Nathan; Vanneste, Sven; De Ridder, Dirk
2012-01-01
An inherent limitation of functional imaging studies is their correlational approach. More information about critical contributions of specific brain regions can be gained by focal transient perturbation of neural activity in specific regions with non-invasive focal brain stimulation methods. Functional imaging studies have revealed that tinnitus is related to alterations in neuronal activity of central auditory pathways. Modulation of neuronal activity in auditory cortical areas by repetitive transcranial magnetic stimulation (rTMS) can reduce tinnitus loudness and, if applied repeatedly, exerts therapeutic effects, confirming the relevance of auditory cortex activation for tinnitus generation and persistence. Measurements of oscillatory brain activity before and after rTMS demonstrate that the same stimulation protocol has different effects on brain activity in different patients, presumably related to interindividual differences in baseline activity in the clinically heterogeneous study cohort. In addition to alterations in auditory pathways, imaging techniques also indicate the involvement of non-auditory brain areas, such as the fronto-parietal “awareness” network and the non-tinnitus-specific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdale. Involvement of the hippocampus and the parahippocampal region putatively reflects the relevance of memory mechanisms in the persistence of the phantom percept and the associated distress. Preliminary studies targeting the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the parietal cortex with rTMS and with transcranial direct current stimulation confirm the relevance of the mentioned non-auditory networks. Available data indicate the important value added by brain stimulation as a complementary approach to neuroimaging for identifying the neuronal correlates of the various clinical aspects of tinnitus. PMID:22509155
Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J.; Perkins, Matthew H.; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S.; Cropper, Elizabeth C.; Weiss, Klaudiusz R.
2014-01-01
Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity. PMID:24806677
Hodgkin, Jonathan; Félix, Marie-Anne; Clark, Laura C.; Stroud, Dave; Gravato-Nobre, Maria J.
2013-01-01
Summary The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine [1, 2], while others attack via its external surface [1, 3–6]. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses [7, 8]. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated “worm-stars.” Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection [6]. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi [4]. PMID:24206844
Hodgkin, Jonathan; Félix, Marie-Anne; Clark, Laura C; Stroud, Dave; Gravato-Nobre, Maria J
2013-11-04
The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine, while others attack via its external surface. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Johansson, Petter; Hall, Lars; Segnini, Rodrigo; Mercadié, Lolita; Watanabe, Katsumi
2016-01-01
Research has shown that people often exert control over their emotions. By modulating expressions, reappraising feelings, and redirecting attention, they can regulate their emotional experience. These findings have contributed to a blurring of the traditional boundaries between cognitive and emotional processes, and it has been suggested that emotional signals are produced in a goal-directed way and monitored for errors like other intentional actions. However, this interesting possibility has never been experimentally tested. To this end, we created a digital audio platform to covertly modify the emotional tone of participants’ voices while they talked in the direction of happiness, sadness, or fear. The result showed that the audio transformations were being perceived as natural examples of the intended emotions, but the great majority of the participants, nevertheless, remained unaware that their own voices were being manipulated. This finding indicates that people are not continuously monitoring their own voice to make sure that it meets a predetermined emotional target. Instead, as a consequence of listening to their altered voices, the emotional state of the participants changed in congruence with the emotion portrayed, which was measured by both self-report and skin conductance level. This change is the first evidence, to our knowledge, of peripheral feedback effects on emotional experience in the auditory domain. As such, our result reinforces the wider framework of self-perception theory: that we often use the same inferential strategies to understand ourselves as those that we use to understand others. PMID:26755584
Macrì, Simone
2017-02-01
Neonatal experiences exert persistent influences on individual development. These influences encompass numerous domains including emotion, cognition, reactivity to external stressors and immunity. The comprehensive nature of the neonatal programming of individual phenotype is reverberated in the large amount of experimental data collected by many authors in several scientific fields: biomedicine, evolutionary and molecular biology. These data support the view that variations in precocious environmental conditions may calibrate the individual phenotype at many different levels. Environmental influences have been traditionally addressed through experimental paradigms entailing the modification of the neonatal environment and the multifactorial (e.g. behaviour, endocrinology, cellular and molecular biology) analysis of the developing individual's phenotype. These protocols suggested that the role of the mother in mediating the offspring's phenotype is often associated with the short-term effects of environmental manipulations on dam's physiology. Specifically, environmental manipulations may induce fluctuations in maternal corticosteroids (corticosterone in rodents) which, in turn, are translated to the offspring through lactation. Herein, I propose that this mother-offspring transfer mechanism can be leveraged to devise experimental protocols based on the exogenous administration of corticosterone during lactation. To support this proposition, I refer to a series of studies in which these protocols have been adopted to investigate the neonatal programming of individual phenotype at the level of emotional and immune regulations. While these paradigms cannot replace traditional studies, I suggest that they can be considered a valid complement.
Immunity and Immunopathology in the Tuberculous Granuloma
Pagán, Antonio J.; Ramakrishnan, Lalita
2015-01-01
Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which “walls-off” mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models—rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century. PMID:25377142
Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption
NASA Astrophysics Data System (ADS)
Wang, Yu; Li, Xiaoguang; Zheng, Xiao; Yang, Jinlong
2017-10-01
The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.
Xu, Li; Zhao, Lixia; Gao, Yandi; Xu, Jing; Han, Renzhi
2017-03-17
Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system has emerged in recent years as a highly efficient RNA-guided gene manipulation platform. Simultaneous editing or transcriptional activation/suppression of different genes becomes feasible with the co-delivery of multiple guide RNAs (gRNAs). Here, we report that multiple gRNAs linked with self-cleaving ribozymes and/or tRNA could be simultaneously expressed from a single U6 promoter to exert genome editing of dystrophin and myosin binding protein C3 in human and mouse cells. Moreover, this strategy allows the expression of multiple gRNAs for synergistic transcription activation of follistatin when used with catalytically inactive dCas9-VP64 or dCas9-p300core fusions. Finally, the gRNAs linked by the self-cleaving ribozymes and tRNA could be expressed from RNA polymerase type II (pol II) promoters such as generic CMV and muscle/heart-specific MHCK7. This is particularly useful for in vivo applications when the packaging capacity of recombinant adeno-associated virus is limited while tissue-specific delivery of gRNAs and Cas9 is desired. Taken together, this study provides a novel strategy to enable tissue-specific expression of more than one gRNAs for multiplex gene editing from a single pol II promoter. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin
2009-11-01
Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Restoring the sense of touch with a prosthetic hand through a brain interface.
Tabot, Gregg A; Dammann, John F; Berg, Joshua A; Tenore, Francesco V; Boback, Jessica L; Vogelstein, R Jacob; Bensmaia, Sliman J
2013-11-05
Our ability to manipulate objects dexterously relies fundamentally on sensory signals originating from the hand. To restore motor function with upper-limb neuroprostheses requires that somatosensory feedback be provided to the tetraplegic patient or amputee. Given the complexity of state-of-the-art prosthetic limbs and, thus, the huge state space they can traverse, it is desirable to minimize the need for the patient to learn associations between events impinging on the limb and arbitrary sensations. Accordingly, we have developed approaches to intuitively convey sensory information that is critical for object manipulation--information about contact location, pressure, and timing--through intracortical microstimulation of primary somatosensory cortex. In experiments with nonhuman primates, we show that we can elicit percepts that are projected to a localized patch of skin and that track the pressure exerted on the skin. In a real-time application, we demonstrate that animals can perform a tactile discrimination task equally well whether mechanical stimuli are delivered to their native fingers or to a prosthetic one. Finally, we propose that the timing of contact events can be signaled through phasic intracortical microstimulation at the onset and offset of object contact that mimics the ubiquitous on and off responses observed in primary somatosensory cortex to complement slowly varying pressure-related feedback. We anticipate that the proposed biomimetic feedback will considerably increase the dexterity and embodiment of upper-limb neuroprostheses and will constitute an important step in restoring touch to individuals who have lost it.
Ultra-fast three terminal perpendicular spin-orbit torque MRAM (Presentation Recording)
NASA Astrophysics Data System (ADS)
Boulle, Olivier; Cubukcu, Murat; Hamelin, Claire; Lamard, Nathalie; Buda-Prejbeanu, Liliana; Mikuszeit, Nikolai; Garello, Kevin; Gambardella, Pietro; Langer, Juergen; Ocker, Berthold; Miron, Mihai; Gaudin, Gilles
2015-09-01
The discovery that a current flowing in a heavy metal can exert a torque on a neighboring ferromagnet has opened a new way to manipulate the magnetization at the nanoscale. This "spin orbit torque" (SOT) has been demonstrated in ultrathin magnetic multilayers with structural inversion asymmetry (SIA) and high spin orbit coupling, such as Pt/Co/AlOx multilayers. We have shown that this torque can lead to the magnetization switching of a perpendicularly magnetized nanomagnet by an in-plane current injection. The manipulation of magnetization by SOT has led to a novel concept of magnetic RAM memory, the SOT-MRAM, which combines non volatility, high speed, reliability and large endurance. These features make the SOT-MRAM a good candidate to replace SRAM for non-volatile cache memory application. We will present the proof of concept of a perpendicular SOT-MRAM cell composed of a Ta/FeCoB/MgO/FeCoB magnetic tunnel junction and demonstrate ultra-fast (down to 300 ps) deterministic bipolar magnetization switching. Macrospin and micromagnetic simulations including SOT cannot reproduce the experimental results, which suggests that additional physical mechanisms are at stacks. Our results show that SOT-MRAM is fast, reliable and low power, which is promising for non-volatile cache memory application. We will also discuss recent experiments of magnetization reversal in ultrathin multilayers Pt/Co/AlOx by very short (<200 ps) current pulses. We will show that in this material, the Dzyaloshinskii-Moryia interaction plays a key role in the reversal process.
Exploiting significance of physical exercise in prevention of gastrointestinal disorders.
Bilski, Jan; Mazur-Bialy, Agnieszka; Magierowski, Marcin; Kwiecien, Slawomir; Wojcik, Dagmara; Ptak-Belowska, Agata; Surmiak, Marcin; Targosz, Aneta; Magierowska, Katarzyna; Brzozowski, Tomasz
2018-05-21
Physical activity can be involved in the prevention of gastrointestinal (GI)-tract diseases, however, the results regarding the volume and the intensity of exercise considered as beneficial for protection of gastrointestinal organs are conflicting. The main objective of this review is to provide a comprehensive and updated overview on the beneficial and harmful effects of physical activity on the gastrointestinal tract. We attempted to discuss recent evidence regarding the association between different modes and intensity levels of exercise and physiological functions of the gut and gut pathology. The regular, moderate exercise can exert a beneficial effect on GI-tract disorders such as reflux esophagitis, peptic ulcers, cholelithiasis, constipation and inflammatory bowel disease (IBD) leading to the attenuation of the symptoms. This voluntary exercise has been shown to reduce the risk of colorectal cancer. On the other hand, there is considerable evidence that the high-intensity training or prolonged endurance training can exert a negative influence on GI-tract resulting in the exacerbation of symptoms. Physical activity can exhibit a beneficial effect on a variety of gastrointestinal diseases, however, this effect depends upon the exercise mode, duration and intensity. The accumulated evidence indicate that management of gastrointestinal problems and their relief by the exercise seems to be complicated and require adjustments of physical activity training, dietary measures and medical monitoring of symptoms. More experimental and clinical studies on the effects of physical activity on GI-tract disorders are warranted. Especially, the association between the exercise intensity and data addressing the underlying mechanism(s) of the exercise as the complementary therapy in the treatment of gastrointestinal disorders, require further determination in animal models and humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Teodorczyk-Injeyan, Julita A; McGregor, Marion; Triano, John J; Injeyan, Stephen H
2018-01-01
The involvement of inflammatory components in the pathophysiology of low back pain (LBP) is poorly understood. It has been suggested that spinal manipulative therapy (SMT) may exert anti-inflammatory effects. The purpose of this study was to determine the involvement of inflammation-associated chemokines (CC series) in the pathogenesis of nonspecific LBP and to evaluate the effect of SMT on that process. Patients presenting with nonradicular, nonspecific LBP (minimum pain score 3 on 10-point visual analog scale) were recruited according to stringent inclusion criteria. They were evaluated for appropriateness to treat using a high velocity low amplitude manipulative thrust in the lumbar-lumbosacral region. Blood samples were obtained at baseline and following the administration of a series of 6 high velocity low amplitude manipulative thrusts on alternate days over the period of 2 weeks. The in vitro levels of CC chemokine ligands (CCL2, CCL3, and CCL4) production and plasma levels of an inflammatory biomarker, soluble E-selectin (sE-selectin), were determined at baseline and at the termination of treatments 2 weeks later. Compared with asymptomatic controls baseline production of all chemokines was significantly elevated in acute (P=0.004 to <0.0001), and that of CCL2 and CCL4 in chronic LBP patients (P<0.0001). Furthermore, CCL4 production was significantly higher (P<0.0001) in the acute versus chronic LBP group. sE-selectin levels were significantly higher (P=0.003) in chronic but not in acute LBP patients. Following SMT, patient-reported outcomes showed significant (P<0.0001) improvements in visual analog scale and Oswestry Disability Index scores. This was accompanied by a significant decline in CCL3 production (P<0.0001) in both groups of patients. Change scores for CCL4 production differed significantly (P<0.0001) only for the acute LBP cohort, and no effect on the production of CCL2 or plasma sE-selectin levels was noted in either group. The production of chemotactic cytokines is significantly and protractedly elevated in LBP patients. Changes in chemokine production levels, which might be related to SMT, differ in the acute and chronic LBP patient cohorts.
Looking for new treatments of Infantile Colic
2014-01-01
Infantile colic is a common disturbance occurring in the first three months of life. It is a benign condition and one of the main causes of pediatric consultation in the early part of life because of its great impact on family life. Some pediatricians are prone to undervalue this issue mainly because of the lack of evidence based medicine guidelines. Up to now, there is no consensus concerning management and treatment. Literature reports growing evidence about the effectiveness of dietary, pharmacological, complementary and behavioral therapies as options for the management of infantile colic. Dietary approach, usually based on the avoidance of cow’s milk proteins in breast-feeding mothers and bottle-fed infants, more recently has seen the rise of new special formulas, such as partially hydrolyzed proteins and low lactose added with prebiotics or probiotics: their efficacy needs to be further documented. Investigated pharmacological agents are Simethicone and Cimetropium Bromide: the first is able to reduce bloating while the second could reduce fussing crying, but it has been tested only for severe infantile colic. No other pain relieving agents have been proposed until now, but some clinical trials are ongoing for new drugs. There is limited evidence supporting the use of complementary and alternative treatments (herbal supplements, manipulative approach and acupuncture) or behavioral interventions. Recent studies have focused the role of microbiota in the pathogenesis of this disturb and so new treatments, such as probiotics, have been proposed, but only few strains have been tested. Further investigations are needed in order to provide evidence-based guidelines. PMID:24898541
Use of complementary and alternative medicine before and after organ removal due to urologic cancer
Mani, Jens; Juengel, Eva; Arslan, Ilhan; Bartsch, Georg; Filmann, Natalie; Ackermann, Hanns; Nelson, Karen; Haferkamp, Axel; Engl, Tobias; Blaheta, Roman A
2015-01-01
Objective Many patients use complementary and alternative medicine (CAM) as primary treatment or symptom relief for a variety of illnesses. This study was designed to investigate the influence of surgical removal of a tumor-bearing urogenital organ on CAM use. Methods From 2007 to 2011, 350 patients underwent major urological surgery for kidney, prostate, or bladder cancer at the Goethe-University Hospital, Frankfurt, Germany. Data from 172 patients (49%), who returned a questionnaire, were retrospectively evaluated using the hospital information system along with the questionnaire to objectify CAM use 2 years before and after surgery. Results From the 172 patients returning questionnaires, 56 (33%) used CAM before and/or after surgery and 116 (67%) never used CAM. Of the 56 CAM users, 30 (54%) used CAM presurgery and 53 (95%) used CAM postsurgery, indicating a significant change of mind about CAM use. Patients of German nationality used CAM significantly more than patients of other nationalities. Higher educational status (high-school diploma or higher) was a significant factor in favor of CAM use. The most common type of CAM used before/after surgery was an alternative medical system (63/49%), a manipulative and body-based method (50/19%), and a biological-based therapy (37/32%). Information about CAM, either provided by medical professionals or by other sources, was the main reason determining whether patients used CAM or not. Conclusion The number of patients using CAM almost doubled after surgical removal of a cancer-bearing organ. Better awareness and understanding of CAM use by medical professionals could improve patient counseling. PMID:26491269
Lucas, S; Leach, M; Kumar, S
2018-04-01
As many as one in two children across the globe use complementary and alternative medicine (CAM) to manage a health condition. Despite the high prevalence of use, there is still limited information on the types of CAM used in children, particularly for the management of one of the most common childhood health complaints - acute respiratory tract infection (ARTI). This systematic review was undertaken to address this knowledge gap. Eligible studies reporting the use of CAM in children with ARTI were identified using a targeted search of seven electronic databases and the grey literature. Data were extracted using a customised data extraction form and appraised using the McMaster critical review forms for quantitative and qualitative studies. Findings were synthesised in narrative form. The search identified 2261 papers, of which 22 studies were eligible for inclusion. The 22 studies reported the use of 118 distinct CAM interventions for the management of ARTI in children. Most (53%, n = 63) of these interventions represented biologically-based therapies, followed by whole medical systems/alternative medical systems (46%, n = 55). No studies reported the use of energy therapies, or manipulative and body-based methods, or mind-body therapies. A diverse range of CAM interventions are used in the management of ARTI in children. These interventions largely represent CAM use in the southern region of Asia - India, Pakistan and Bangladesh. Further research is needed to better understand the types of CAM used among children with ARTI in western countries. Copyright © 2018 Elsevier Ltd. All rights reserved.
The use of complementary and alternative medicines by patients with peripheral neuropathy.
Brunelli, Brian; Gorson, Kenneth C
2004-03-15
Complementary and alternative medicine (CAM) therapies have become increasingly popular and are used regularly by patients with chronic neurological disorders. The prevalence and characteristics of CAM use by patients with peripheral neuropathy is unknown. We performed a prospective, questionnaire-based study to determine the prevalence and patterns of use of CAM therapies in 180 consecutive outpatients with peripheral neuropathy. The use of CAM was reported by 77 patients (43%) with neuropathy. The most frequent were megavitamins (35%), magnets (30%), acupuncture (30%), herbal remedies (22%), and chiropractic manipulation (21%); 37 (48%) tried more than one form of alternative treatment. Seventeen respondents (27%) thought their neuropathy symptoms improved with these approaches. Those who used CAM were slightly younger (mean age 62 vs. 65 years, p = 0.05) and more often college educated (39% vs. 24%, p = 0.03) compared to CAM nonusers. They also more often reported burning neuropathic pain (62% vs. 44%, p = 0.01). Patients with diabetic neuropathy used CAM more frequently than others (p = 0.03). The most common reason for using CAM was inadequate pain control (32%). Almost half of patients did not consult a physician before starting CAM. We conclude that there is a high prevalence of CAM use in our patients with neuropathy, and one-quarter reported that their symptoms improved. CAM users were better educated than nonusers, but most did not discuss CAM treatments with their physician. Neuropathic pain was substantially more common in CAM users, and lack of pain control was the most common reason for CAM use.
Judson, Patricia L; Abdallah, Reem; Xiong, Yin; Ebbert, Judith; Lancaster, Johnathan M
2017-03-01
To define the use of complementary and alternative medicine (CAM) in individuals presenting for care at a comprehensive cancer center. A total of 17 639 individuals presenting to an NCI-designated Comprehensive Cancer Center (and consortium sites) completed a questionnaire regarding CAM use. Data were analyzed using the univariate χ 2 test to assess CAM use associated with a number of variables, including cancer status, age, gender, marital status, ethnicity, race, employment, and education level. Eighty-seven percent of individuals who completed the CAM survey acknowledged CAM therapy use within the previous 12 months. Of the 5 broad categories of CAM, the most commonly used were biologically based approaches (14 759/17 639 [83.67%]), mind-body interventions (4624/17 485 [26.45%]), manipulative and body-based therapies (3957/17 537 [22.56%]), alternative medical systems (429/15 952 [2.69%]), and energy therapies (270/15 872 [1.7%]). CAM use was more prevalent among women, non-Hispanics, Caucasians, patients 60 to 69 years of age, and those who are married, have a higher level of education, and are employed ( P < .005). This is the largest report of CAM use in individuals presenting for care at a comprehensive cancer center. Our analysis revealed that a very high percentage of patients utilize CAM. Because many of these CAM interventions are not studied in oncology patients, additional research on safety, efficacy, and mechanisms of action are essential. Furthermore, it is important that oncologists understand CAM modalities and counsel their patients about their use.
Pressure to cooperate: is positive reward interdependence really needed in cooperative learning?
Buchs, Céline; Gilles, Ingrid; Dutrévis, Marion; Butera, Fabrizio
2011-03-01
BACKGROUND. Despite extensive research on cooperative learning, the debate regarding whether or not its effectiveness depends on positive reward interdependence has not yet found clear evidence. AIMS. We tested the hypothesis that positive reward interdependence, as compared to reward independence, enhances cooperative learning only if learners work on a 'routine task'; if the learners work on a 'true group task', positive reward interdependence induces the same level of learning as reward independence. SAMPLE. The study involved 62 psychology students during regular workshops. METHOD. Students worked on two psychology texts in cooperative dyads for three sessions. The type of task was manipulated through resource interdependence: students worked on either identical (routine task) or complementary (true group task) information. Students expected to be assessed with a Multiple Choice Test (MCT) on the two texts. The MCT assessment type was introduced according to two reward interdependence conditions, either individual (reward independence) or common (positive reward interdependence). A follow-up individual test took place 4 weeks after the third session of dyadic work to examine individual learning. RESULTS. The predicted interaction between the two types of interdependence was significant, indicating that students learned more with positive reward interdependence than with reward independence when they worked on identical information (routine task), whereas students who worked on complementary information (group task) learned the same with or without reward interdependence. CONCLUSIONS. This experiment sheds light on the conditions under which positive reward interdependence enhances cooperative learning, and suggests that creating a real group task allows to avoid the need for positive reward interdependence. © 2010 The British Psychological Society.
Phang, Jie Kie; Kwan, Yu Heng; Goh, Hendra; Tan, Victoria Ie Ching; Thumboo, Julian; Østbye, Truls; Fong, Warren
2018-04-01
To summarize all good quality randomized controlled trials (RCTs) using complementary and alternative medicine (CAM) interventions in patients with rheumatic diseases. A systematic literature review guided by the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) was performed. We excluded non-English language articles and abstract-only publications. Due to the large number of RCTs identified, we only include "good quality" RCTs with Jadad score of five. We identified 60 good quality RCTs using CAM as intervention for patients with rheumatic diseases: acupuncture (9), Ayurvedic treatment (3), homeopathic treatment (3), electricity (2), natural products (31), megavitamin therapies (8), chiropractic or osteopathic manipulation (3), and energy healing therapy (1). The studies do not seem to suggest a particular type of CAM is effective for all types for rheumatic diseases. However, some CAM interventions appear to be more effective for certain types of rheumatic diseases. Acupuncture appears to be beneficial for osteoarthritis but not rheumatoid arthritis. For the other therapeutic modalities, the evidence base either contains too few trials or contains trials with contradictory findings which preclude any definitive summary. There were only minor adverse reactions observed for CAM interventions presented. We identified 60 good quality RCTs which were heterogenous in terms of interventions, disease, measures used to assess outcomes, and efficacy of CAM interventions. Evidence indicates that some CAM therapies may be useful for rheumatic diseases, such as acupuncture for osteoarthritis. Further research with larger sample size is required for more conclusive evidence regarding efficacy of CAM interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of radiant heat exposure on pacing pattern during a 15-km cycling time trial.
Levels, Koen; de Koning, Jos; Broekhuijzen, Iris; Zwaan, Tamara; Foster, Carl; Daanen, Hein
2014-01-01
The goal of this study was to investigate the effects of different durations of skin temperature manipulation on pacing patterns and performance during a 15-km cycling time trial. Nineteen well-trained men completed three 15-km cycling time trials in 18 °C and 50% relative humidity with 4.5-km (short-heat), 9.0-km (long-heat) or without (control) radiant heat exposure applied by infrared heaters after 1.5 km in the time trial. During the time trials, power output, mean skin temperature, rectal temperature, heart rate and rating of perceived exertion were assessed. The radiant heat exposure resulted in higher mean skin temperature during the time trial for short-heat (35.0 ± 0.6 °C) and long-heat (35.3 ± 0.5 °C) than for control (32.5 ± 1.0 °C; P < 0.001), whereas rectal temperature was similar (P = 0.55). The mean power output was less for short-heat (273 ± 8 W; P = 0.001) and long-heat (271 ± 9 W; P = 0.02) than for control (287 ± 7 W), but pacing patterns did not differ (P = 0.55). Heart rate was greatest in control (177 ± 9 beats · min(-1); P < 0.001), whereas the rating of perceived exertion remained similar. We concluded that a radiant heat exposure and associated higher skin temperature reduced overall performance, but did not modify pacing pattern during a 15-km cycling time trial, regardless of the duration of the exposure.
Darmani, Nissar A; Izzo, Angelo A; Degenhardt, Brian; Valenti, Marta; Scaglione, Giuseppe; Capasso, Raffaele; Sorrentini, Italo; Di Marzo, Vincenzo
2005-06-01
The endogenous cannabimimetic compound, and anandamide analogue, N-palmitoyl-ethanolamine (PEA), was shown to exert potent anti-inflammatory and analgesic effects in experimental models of visceral, neuropathic and inflammatory pain by acting via several possible mechanisms. However, only scant data have been reported on the regulation of PEA levels during pathological conditions in animals or, particularly, humans. We review the current literature on PEA and report the results of three separate studies indicating that its concentrations are significantly increased during three different inflammatory and neuropathic conditions, two of which have been assessed in humans, and one in a mouse model. In patients affected with chronic low back pain, blood PEA levels were not significantly different from those of healthy volunteers, but were significantly and differentially increased (1.6-fold, P<0.01, N=10 per group) 30 min following an osteopathic manipulative treatment. In the second study, the paw skin levels of PEA in mice with streptozotocin-induced diabetic neuropathic pain were found to be significantly higher (1.5-fold, P<0.005, N=5) than those of control mice. In the third study, colonic PEA levels in biopsies from patients with ulcerative colitis were found to be 1.8-fold higher (P<0.05, N=8-10) than those in healthy subjects. These heterogeneous data, together with previous findings reviewed here, substantiate the hypothesis that PEA is an endogenous mediator whose levels are increased following neuroinflammatory or neuropathic conditions in both animals and humans, possibly to exert a local anti-inflammatory and analgesic action.
The Effects of Man-Marking on Work Intensity in Small-Sided Soccer Games
Ngo, Jake K.; Tsui, Man-Chung; Smith, Andrew W.; Carling, Christopher; Chan, Gar-Sun; Wong, Del P.
2012-01-01
The aim of this study was to examine the effect of manipulating defensive rules: with and without man-marking (MM and NMM) on exercise intensity in 3 vs. 3 small- sided games (SSGs). Twelve adolescent soccer players (age: 16.2 ± 0.7 years; body mass: 55.7 ± 6.4 kg; body height: 1.70 ± 0.07 m) participated in this repeated measures study. Each participant performed in four different SSGs formats: 3 vs. 3 MM with and without goals and 3 vs. 3 NMM with and without goals. Each SSG lasted 3 x 4 minutes interspersed with 4 minutes passive recovery. The percentage heart rate reserve (%HRreserve) was recorded continuously during SSG and session-rating of perceived exertion (session-RPE) after the SSG. MANOVA showed that defensive rule had significant effects on intensity (F = 5.37, p < 0.01). Specifically, MM during SSG induced significantly higher %HRreserve compared to NMM (Goal: 80.5 vs. 75.7%; No goal: 80.5 vs. 76.1%; p < 0.05, effect size = 0.91-1.06), irrespective of the presence or absence of goals. However, only MM with the presence of goals induced significant higher session-RPE compared to NMM (7.1 vs. 6. 0; p < 0.05, effect size = 1.36), whereas no difference in session-RPE was observed between MM and NMM (7.4 vs. 6.9; p > 0.05, effect size = 0.63) when no goals were used. Higher intra-class reliability and lower coefficient of variation values were also reported in MM as compared to NMM. This study in youth soccer players shows there is ~4.5% increase in heart rate response by using the man-marking in 3 vs. 3 SSG thus the intensity of SSG can be significantly increased when using man-marking tactics. Key pointsIntensity level of exercise during games can be raised if man-marking rule is adopted.No significant differences in perceived exertion were found in no goal SSG with and without man-marking.Adding goals in 3 vs. 3 SSG can lower perceived exertion without leading to large variations in intensity level. PMID:24149127
Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto
2014-04-17
Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs. Copyright © 2014 Elsevier Inc. All rights reserved.
The multifaceted interplay between lipids and epigenetics.
Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T
2016-06-01
The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.
Salicylic Acid Biosynthesis and Metabolism
Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.
2011-01-01
Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280
Ortuño Sahagún, D.; Márquez-Aguirre, A. L.; Quintero-Fabián, S.; López-Roa, R. I.; Rojas-Mayorquín, A. E.
2012-01-01
A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods. PMID:23251142
MicroRNA in Glioblastoma: An Overview
Banelli, Barbara; Forlani, Alessandra; Allemanni, Giorgio; Morabito, Anna; Pistillo, Maria Pia
2017-01-01
Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor. PMID:29234674
Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells
Tysnes, Berit B; Maurer, H Rainer; Porwol, Torsten; Probst, Beatrice; Bjerkvig, Rolf; Hoover, Frank
2001-01-01
Abstract Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, and invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that α3 and β1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a trans-activating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, and translational attenuation. PMID:11774029
Persistent sulfate formation from London Fog to Chinese haze
Wang, Gehui; Zhang, Renyi; Gomez, Mario E.; Yang, Lingxiao; Levy Zamora, Misti; Hu, Min; Lin, Yun; Peng, Jianfei; Guo, Song; Meng, Jingjing; Li, Jianjun; Cheng, Chunlei; Hu, Tafeng; Ren, Yanqin; Wang, Yuesi; Gao, Jian; Cao, Junji; An, Zhisheng; Zhou, Weijian; Li, Guohui; Wang, Jiayuan; Tian, Pengfei; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zeng, Limin; Shao, Min; Wang, Weigang; Huang, Yao; Wang, Yuan; Zhu, Yujiao; Li, Yixin; Hu, Jiaxi; Pan, Bowen; Cai, Li; Cheng, Yuting; Ji, Yuemeng; Zhang, Fang; Rosenfeld, Daniel; Liss, Peter S.; Duce, Robert A.; Kolb, Charles E.; Molina, Mario J.
2016-01-01
Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world. PMID:27849598
Somatosensory pleasure circuit: from skin to brain and back.
Lloyd, Donna M; McGlone, Francis P; Yosipovitch, Gil
2015-05-01
The skin senses serve a discriminative function, allowing us to manipulate objects and detect touch and temperature, and an affective/emotional function, manifested as itch or pain when the skin is damaged. Two different classes of nerve fibre mediate these dissociable aspects of cutaneous somatosensation: (i) myelinated A-beta and A-delta afferents that provide rapid information about the location and physical characteristics of skin contact; and (ii) unmyelinated, slow-conducting C-fibre afferents that are typically associated with coding the emotional properties of pain and itch. However, recent research has identified a third class of C-fibre afferents that code for the pleasurable properties of touch - c-tactile afferents or CTs. Clinical application of treatments that target pleasant, CT-mediated touch (such as massage therapy) could, in the future, provide a complementary, non-pharmacological means of treating both the physical and psychological aspects of chronic skin conditions such as itch and eczema. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.
Weber, Michael; Huisken, Jan
2015-01-01
Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development.
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-01-01
The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493
Neurons for hunger and thirst transmit a negative-valence teaching signal
Gong, Rong; Magnus, Christopher J.; Yu, Yang; Sternson, Scott M.
2015-01-01
Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis. PMID:25915020
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1997-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1996-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
Semantic and phonological schema influence spoken word learning and overnight consolidation.
Havas, Viktória; Taylor, Jsh; Vaquero, Lucía; de Diego-Balaguer, Ruth; Rodríguez-Fornells, Antoni; Davis, Matthew H
2018-06-01
We studied the initial acquisition and overnight consolidation of new spoken words that resemble words in the native language (L1) or in an unfamiliar, non-native language (L2). Spanish-speaking participants learned the spoken forms of novel words in their native language (Spanish) or in a different language (Hungarian), which were paired with pictures of familiar or unfamiliar objects, or no picture. We thereby assessed, in a factorial way, the impact of existing knowledge (schema) on word learning by manipulating both semantic (familiar vs unfamiliar objects) and phonological (L1- vs L2-like novel words) familiarity. Participants were trained and tested with a 12-hr intervening period that included overnight sleep or daytime awake. Our results showed (1) benefits of sleep to recognition memory that were greater for words with L2-like phonology and (2) that learned associations with familiar but not unfamiliar pictures enhanced recognition memory for novel words. Implications for complementary systems accounts of word learning are discussed.
Enhanced emotional responses during social coordination with a virtual partner
Dumas, Guillaume; Kelso, J.A. Scott; Tognoli, Emmanuelle
2016-01-01
Emotion and motion, though seldom studied in tandem, are complementary aspects of social experience. This study investigates variations in emotional responses during movement coordination between a human and a Virtual Partner (VP), an agent whose virtual finger movements are driven by the Haken-Kelso-Bunz (HKB) equations of Coordination Dynamics. Twenty-one subjects were instructed to coordinate finger movements with the VP in either inphase or antiphase patterns. By adjusting model parameters, we manipulated the ‘intention’ of VP as cooperative or competitive with the human's instructed goal. Skin potential responses (SPR) were recorded to quantify the intensity of emotional response. At the end of each trial, subjects rated the VP's intention and whether they thought their partner was another human being or a machine. We found greater emotional responses when subjects reported that their partner was human and when coordination was stable. That emotional responses are strongly influenced by dynamic features of the VP's behavior, has implications for mental health, brain disorders and the design of socially cooperative machines. PMID:27094374
Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.
2017-01-01
Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867
Cooperative microbial tolerance behaviors in host-microbiota mutualism
Ayres, Janelle S.
2016-01-01
Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146
Genetic dissection of cardiac growth control pathways
NASA Technical Reports Server (NTRS)
MacLellan, W. R.; Schneider, M. D.
2000-01-01
Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.
Sun, Jingjing; Tang, Xinjing
2015-01-01
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure PMID:26020694
NASA Astrophysics Data System (ADS)
Neves, Rui Gomes; Teodoro, Vítor Duarte
2012-09-01
A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.
Sun, Jingjing; Tang, Xinjing
2015-05-28
DNA cross-linking technology is an attractive tool for the detection, regulation, and manipulation of genes. In this study, a series of photolabile 4-oxo-enal-modified oligonucleotides functionalized with photosensitive ο-nitrobenzyl derivatives were rationally designed as a new kind of photocaged cross-linking agents. A comprehensive evaluation of cross-linking reactions for different nucleobases in complementary strands under different conditions suggested that the modified DNA oligonucleotides tended to form interstrand cross-linking to nucleobases with the potential of thymidine > guanosine » cytidine ~ adenosine. Different from previous literature reports that cytidine and adenosine were preferential cross-linked nucleobases with 4-oxo-enal moieties, our study represents the first example of DNA cross-linking for T and G selectivity using 4-oxo-enal moiety. The cross-linked adducts were identified and their cross-linking mechanism was also illustrated. This greatly expands the applications of 4-oxo-enal derivatives in the studies of DNA damage and RNA structure.
Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.
Xiu, Faxian; Wang, Yong; Kim, Jiyoung; Hong, Augustin; Tang, Jianshi; Jacob, Ajey P; Zou, Jin; Wang, Kang L
2010-04-01
Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group IV elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn(0.05)Ge(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.
NASA Technical Reports Server (NTRS)
Newman, Wyatt S.; Anderson, William J.; Shipitalo, William; Rohn, Douglas
1992-01-01
The design philosophy and measurements performed on a new roller-gear transmission prototype for a robotic manipulator are described. The design incorporates smooth rollers in a planetary configuration integrated with conventional toothed gears. The rollers were designed to handle low torque with low backlash and friction while the complementary gears support higher torques and prevent accumulated creep or slip of the rollers. The introduction of gears with finite numbers of teeth to function in parallel with the rollers imposes severe limits on available designs. Solutions for two-planet row designs are discussed. A two-planet row, four-planet design was conceived, fabricated, and tested. Detailed calculations of cluster geometry, gear stresses, and gear geometry are given. Measurement data reported here include transmission linearity, static and dynamic friction, inertia, backlash, stiffness, and forward and reverse efficiency. Initial test results are reported describing performance of the transmission in a servomechanism with torque feedback.
Next Generation Driver for Attosecond and Laser-plasma Physics.
Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L
2017-07-12
The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20 W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.
Manipulating the ABCs of self-assembly via low-χ block polymer design
Chang, Alice B.; Lee, Byeongdu; Garland, Carol M.; Jones, Simon C.; Matsen, Mark W.
2017-01-01
Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χij). In this article, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χAC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology, which we designate LAMP. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM3) with ABCB periods. Complementary small-angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations and predicts that LAMP is thermodynamically stable below a critical χAC, above which LAM3 emerges. Both experiments and theory expose close analogies to ABA′ triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. These conclusions provide fresh opportunities for block polymer design with potential consequences spanning all self-assembling soft materials. PMID:28588139
Hsu, Mei-Chi; Moyle, Wendy; Creedy, Debra; Venturato, Lorraine; Ouyang, Wen-Chen; Sun, Gwo-Ching
2010-04-01
To investigate patients' attitudes toward complementary and alternative medicine, the education nurses provided about complementary and alternative medicine for treating depression and to test whether such education mediates the effect of complementary and alternative medicine use and attitudes toward complementary and alternative medicine. Although we know that attitudes influence behaviour, very few studies simultaneously explore the relationship between attitudes, education and complementary and alternative medicine use. Survey. This study was conducted as part of a larger survey, using face-to-face survey interviews with 206 adult patients aged 50 years or over and hospitalised in conventional hospitals in Taiwan for treatment of depression. The attitudes toward complementary and alternative medicine and patient education about complementary and alternative medicine instruments were specially developed for the study. Participants expressed slightly favourable attitudes toward complementary and alternative medicine. Many participants (50%) expressed that they were willing to try any potential treatment for depression. They believed that complementary and alternative medicine helped them to feel better and to live a happier life. However, 66.5% of participants reported that they had inadequate knowledge of complementary and alternative medicine. Participants with a higher monthly income, longer depression duration and religious beliefs hold more positive attitudes toward complementary and alternative medicine. Most participants were not satisfied with the education they received about complementary and alternative medicine. Patient education about complementary and alternative medicine was found to be a mediator for the use of complementary and alternative medicine. Patient education from nurses may predict patients' attitudes toward complementary and alternative medicine. Continuing nursing education is needed to enable nurses to respond knowledgeably to concerns patients may have about complementary and alternative medicine and treatment options. This study highlights the potential role of patient education about complementary and alternative medicine as an effective way of adjusting patients' attitudes toward complementary and alternative medicine and to link both patients' preferences for complementary and alternative medicine and health professionals' concerns about the proper use of complementary and alternative medicine for depression management and adverse drug interactions.
NASA Astrophysics Data System (ADS)
Suja, S.; Anusuya, N.
2018-03-01
Tomato is one of the most popular vegetable in subtropics and tropics. Plant growth regulators have potential for manipulating growth of many agricultural crops. Among the plant growth retardants, paclobutrazol (PP333) has been reported to exert profound effects on improving the yield of certain vegetables. Aminoacids are essential prerequisite for plant growth. Sridiamin a natural blend of 17 essential L-aminoacids, fortified with vitamins ensuring better crop growth and higher productivity. Therefore the present study was designed with 5mg and 10 mg concentration of PP333 as soil drench and a foliar spray of sridiamin of 0.5% and 1% concentration as individual and as combined treatment improved the yield and quality of tomato PKM1. Various biometric parameters, along with chlorophyll, starch, aminoacid and protein content were analysed in the leaves. In fruit analysis like titrable acidity, total soluble solids, ascorbic acid, lycopene, total sugars, macronutrients and micronutrients were analysed.
Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds.
Neelkantan, Nikhil; Mikhaylova, Alina; Stewart, Adam Michael; Arnold, Raymond; Gjeloshi, Visar; Kondaveeti, Divya; Poudel, Manoj K; Kalueff, Allan V
2013-08-21
Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs' action. The utility of zebrafish ( Danio rerio ) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans.
The influence of sagittal position of the mandible in facial attractiveness and social perception.
Sena, Lorena Marques Ferreira de; Damasceno E Araújo, Lislley Anne Lacerda; Farias, Arthur Costa Rodrigues; Pereira, Hallissa Simplício Gomes
2017-01-01
This study aims at comparing the perception of orthodontists, maxillofacial surgeons, visual artists and laypersons when evaluating the influence of sagittal position of the mandible - in lateral view - in facial attractiveness; at a job hiring; and in the perception of socioeconomic profile. A black male, a white male, a black female and a white female with harmonic faces served as models to obtain a facial profile photograph. Each photograph was digitally manipulated to obtain seven facial profiles: an ideal, three simulating mandibular advancement and three simulating mandibular retrusion, producing 28 photographs. These photographs were evaluated through a questionnaire by orthodontists, maxillofacial surgeons, visual artists and laypersons. The anteroposterior positioning of the mandible exerted strong influence on the level of facial attractiveness, but few significant differences between the different groups of evaluators were observed (p < 0.05). The profiles pointed as the most attractive were also pointed as more favorable to be hired to a job position and pointed also as having the best socioeconomic condition.
Direct and Indirect Influence of Altruistic Behavior in a Social Network.
Liu, Pei-Pei; Safin, Vasiliy; Yang, Barry; Luhmann, Christian C
2015-01-01
Prior research has suggested that recipients of generosity behave more generously themselves (a direct social influence). In contrast, there is conflicting evidence about the existence of indirect influence (i.e., whether interacting with a recipient of generosity causes one to behave more generously), casting doubt on the possibility that altruistic behavior can cascade through social networks. The current study investigated how far selfish and generous behavior can be transmitted through social networks and the cognitive mechanisms that underlie such transmission. Participants played a sequence of public goods games comprising a chain network. This network is advantageous because it permits only a single, unambiguous path of influence. Furthermore, we experimentally manipulated the behavior of the first link in the chain to be either generous or selfish. Results revealed the presence of direct social influence, but no evidence for indirect influence. Results also showed that selfish behavior exerted a substantially greater influence than generous behavior. Finally, expectations about future partners' behavior strongly mediated the observed social influence, suggesting an adaptive basis for such influence.
Perspectives on Zebrafish Models of Hallucinogenic Drugs and Related Psychotropic Compounds
2013-01-01
Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs’ action. The utility of zebrafish (Danio rerio) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans. PMID:23883191
See hear: psychological effects of music and music-video during treadmill running.
Hutchinson, Jasmin C; Karageorghis, Costas I; Jones, Leighton
2015-04-01
There is a paucity of work addressing the distractive, affect-enhancing, and motivational influences of music and video in combination during exercise. We examined the effects of music and music-and-video on a range of psychological and psychophysical variables during treadmill running at intensities above and below ventilatory threshold (VT). Participants (N = 24) exercised at 10 % of maximal capacity below VT and 10 % above under music-only, music-and-video, and control conditions. There was a condition × intensity × time interaction for perceived activation and state motivation, and an intensity × time interaction for state attention, perceived exertion (RPE), and affective valence. The music-and-video condition elicited the highest levels of dissociation, lowest RPE, and most positive affective responses regardless of exercise intensity. Attentional manipulations influence psychological and psychophysical variables at exercise intensities above and below VT, and this effect is enhanced by the combined presentation of auditory and visual stimuli.
Gut microbiota and metabolic syndrome.
Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio
2014-11-21
Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.
Cardiopulmonary baroreceptors affect reflexive startle eye blink.
Richter, S; Schulz, A; Port, J; Blumenthal, T D; Schächinger, H
2009-12-07
Baroafferent signals originating from the 'high pressure' arterial vascular system are known to impact reflexive startle eye blink responding. However, it is not known whether baroafferent feedback of the 'low pressure' cardiopulmonary system loading status exerts a similar effect. Lower Body Negative Pressure (LBNP) at gradients of 0, -10, -20, and -30mm Hg was applied to unload cardiopulmonary baroreceptors. Acoustic startle noise bursts were delivered 230 and 530ms after spontaneous R-waves, when arterial baroreceptors are either loaded or unloaded. Eye blink responses were measured by EMG, and psychomotor reaction time by button pushes to startle stimuli. The new finding of this study was that unloading of cardiopulmonary baroreceptors increases startle eye blink responsiveness. Furthermore, we replicated the effect of relative loading/unloading of arterial baroreceptors on startle eye blink responsiveness. Effects of either arterial or cardiopulmonary baroreceptor manipulations were not present for psychomotor reaction times. These results demonstrate that the loading status of cardiopulmonary baroreceptors has an impact on brainstem-based CNS processes.
Spin currents and spin-orbit torques in ferromagnetic trilayers.
Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin
2018-06-01
Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.
Dissociable Contributions of Imagination and Willpower to the Malleability of Human Patience.
Jenkins, Adrianna C; Hsu, Ming
2017-07-01
The ability to exercise patience is important for human functioning. Although it is known that patience can be promoted by using top-down control, or willpower, to override impatient impulses, patience is also malleable-in particular, susceptible to framing effects-in ways that are difficult to explain using willpower alone. So far, the mechanisms underlying framing effects on patience have been elusive. We investigated the role of imagination in these effects. In a behavioral experiment (Experiment 1), a classic framing manipulation (sequence framing) increased self-reported and independently coded imagination during intertemporal choice. In an investigation of neural responses during decision making (Experiment 2), sequence framing increased the extent to which patience was related to activation in brain regions associated with imagination, relative to activation in regions associated with willpower, and increased functional connectivity of brain regions associated with imagination, but not willpower, relative to regions associated with valuation. Our results suggest that sequence framing can increase the role of imagination in decision making without increasing the exertion of willpower.
Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas
2015-04-01
Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.
SimanTov-Nachlieli, Ilanit; Shnabel, Nurit; Mori-Hoffman, Anael
2017-02-01
Conflicting parties experience threats to both their agency and morality, but the experience of agency-threat exerts more influence on their behavior, leading to relationship-destructive tendencies. Whereas high-commitment relationships facilitate constructive tendencies despite the conflict, we theorized that in low-commitment relationships, affirming the adversary's agency is a prerequisite for facilitating more constructive tendencies. Focusing on sibling conflicts, Study 1 found that when commitment was low (rather than high), agency-affirmation increased participants' constructive tendencies toward their brother/sister compared with a control/no-affirmation condition. A corresponding morality-affirmation did not affect participants' tendencies. Study 2 replicated these results in workplace conflicts and further found that the positive effect of agency-affirmation in low-commitment relationships was mediated by participants' wish to restore their morality. Study 3 induced a conflict between lab participants and manipulated their commitment. Again, in the low- (rather than high-) commitment condition, agency-affirmation increased participants' wish to restore their morality, leading to constructive behavior.
Manufacturing Natural Killer Cells as Medicinal Products
Chabannon, Christian; Mfarrej, Bechara; Guia, Sophie; Ugolini, Sophie; Devillier, Raynier; Blaise, Didier; Vivier, Eric; Calmels, Boris
2016-01-01
Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic. PMID:27895646
Backert, Steffen; Schmidt, Thomas P; Harrer, Aileen; Wessler, Silja
2017-01-01
Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.
Pollinators exert natural selection on flower size and floral display in Penstemon digitalis.
Parachnowitsch, Amy L; Kessler, André
2010-10-01
• A major gap in our understanding of floral evolution, especially micro-evolutionary processes, is the role of pollinators in generating patterns of natural selection on floral traits. Here we explicitly tested the role of pollinators in selecting floral traits in a herbaceous perennial, Penstemon digitalis. • We manipulated the effect of pollinators on fitness through hand pollinations and compared phenotypic selection in open- and hand-pollinated plants. • Despite the lack of pollen limitation in our population, pollinators mediated selection on floral size and floral display. Hand pollinations removed directional selection for larger flowers and stabilizing selection on flower number, suggesting that pollinators were the agents of selection on both of these traits. • We reviewed studies that measured natural selection on floral traits by biotic agents and generally found stronger signatures of selection imposed by pollinators than by herbivores and co-flowering plant species. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Wilson, Mark; Smith, Nickolas C; Holmes, Paul S
2007-08-01
The aim of this study was to test the conflicting predictions of processing efficiency theory (PET) and the conscious processing hypothesis (CPH) regarding effort's role in influencing the effects of anxiety on a golf putting task. Mid-handicap golfers made a series of putts to target holes under two counterbalanced conditions designed to manipulate the level of anxiety experienced. The effort exerted on each putting task was assessed though self-report, psychophysiological (heart rate variability) and behavioural (pre-putt time and glances at the target) measures. Performance was assessed by putting error. Results were generally more supportive of the predictions of PET rather than the CPH as performance was maintained for some performers despite increased state anxiety and a reduction in processing efficiency. The findings of this study support previous research suggesting that both theories offer useful theoretical frameworks for examining the relationship between anxiety and performance in sport.
Lindballe, Thue B; Kristensen, Martin V G; Berg-Sørensen, Kirstine; Keiding, Søren R; Stapelfeldt, Henrik
2013-01-28
An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 μm polystyrene bead, the laser pulse-bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our experimental method may have implications for microrheology.
Structuring effects of chemicals from the sea fan Phyllogorgia dilatata on benthic communities.
Ribeiro, Felipe V; da Gama, Bernardo A P; Pereira, Renato C
2017-01-01
Despite advances in understanding the ecological functions of secondary metabolites from marine organisms, there has been little focus on the influence of chemically-defended species at the community level. Several compounds have been isolated from the gorgonian octocoral Phyllogorgia dilatata , a conspicuous species that forms dense canopies on rocky reefs of northern Rio de Janeiro State, Brazil. Manipulative experiments were performed to study: (1) the effects of live colonies of P. dilatata (physical presence and chemistry) on recruitment of sympatric benthic organisms; (2) the allelopathic effects of its chemicals on competitors; and (3) chemotactic responses of the non-indigenous brittle star, Ophiothela mirabilis . Early establishment of benthic species was influenced on substrates around live P. dilatata colonies and some effects could be attributed to the gorgonian's secondary metabolites . In addition, the gorgonian chemicals also exerted an allelopathic effect on the sympatric zoanthid Palythoa caribaeorum, and positive chemotaxis upon O. mirabilis . These results indicate multiple ecological roles of a chemically-defended gorgonian on settlement, sympatric competitors, and non-indigenous species.
NASA Astrophysics Data System (ADS)
Chen, Bo; Li, Yi; Sun, Zhen-Ya
2018-06-01
In this study, PbSe bulk samples were prepared by a high-pressure high-temperature (HPHT) sintering technique, and the phase compositions, band gaps and thermoelectric properties of the samples were systematically investigated. The sintering pressure exerts a significant influence on the preferential orientation, band gap and thermoelectric properties of PbSe. With increasing pressure, the preferential orientation decreases, mainly due to the decreased crystallinity, while the band gap first decreases and then increases. The electrical conductivity and power factor decrease gradually with increasing pressure, mainly attributed to the decreased carrier concentration and mobility. Consequently, the sample prepared by 2 GPa shows the highest thermoelectric figure-of-merit, ZT, of 0.55 at ˜ 475 K. The ZT of the HPHT-sintered PbSe could be further improved by properly doping or optimizing the HPHT parameters. This study further demonstrates that the sintering pressure could be another degree of freedom to manipulate the band structure and thermoelectric properties of materials.
Physical demand of seven closed agility drills.
Atkinson, Mark; Rosalie, Simon; Netto, Kevin
2016-11-01
The present study aimed to quantify the demand of seven generic, closed agility drills. Twenty males with experience in invasion sports volunteered to participate in this study. They performed seven, closed agility drills over a standardised 30-m distance. Physical demand measures of peak velocity, total foot contacts, peak impacts, completion time, and maximum heart rate were obtained via the use of wearable sensor technologies. A subjective rating of perceived exertion (RPE) was also obtained. All measures, with the exception of maximum heart rates and RPE were able to delineate drills in terms of physical and physiological demand. The findings of this study exemplify the differences in demand of agility-type movements. Drill demand was dictated by the type of agility movement initiated with the increase in repetitiveness of a given movement type also contributing to increased demand. Findings from this study suggest agility drills can be manipulated to vary physical and physiological demand. This allows for the optimal application of training principles such as overload, progression, and periodisation.
Levinson, Cheri A.; Rodebaugh, Thomas L.
2014-01-01
Social anxiety and eating disorders are highly comorbid, suggesting there are shared vulnerabilities that underlie the development of these disorders. Two proposed vulnerabilities are fear of negative evaluation and social appearance anxiety (i.e., fear of negative evaluation regarding one's appearance). In the current experimental study (N=160 women) we measured these fears: (a) through a manipulation comparing fear conditions, (b) with trait fears, and (c) state fears. Results indicated that participants in the fear of negative evaluation condition increased food consumption, whereas participants in the social appearance anxiety condition and high in trait social appearance anxiety experienced the highest amounts of body dissatisfaction. Participants in the fear of evaluation and social appearance anxiety conditions experienced elevated social anxiety. These results support the idea that negative evaluation fears are shared vulnerabilities for eating and social anxiety disorders, but that the way these variables exert their effects may lead to disorder specific behaviors. PMID:26504674
Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing
Lu, Jia; Zhao, Chen; Zhao, Yingze; Zhang, Jingfang; Zhang, Yue; Chen, Li; Han, Qiyuan; Ying, Yue; Peng, Shuai; Ai, Runna; Wang, Yu
2018-01-01
Abstract Precise investigation and manipulation of dynamic biological processes often requires molecular modulation in a controlled inducible manner. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) has emerged as a versatile tool for targeted gene editing and transcriptional programming. Here, we designed and vigorously optimized a series of Hybrid drug Inducible CRISPR/Cas9 Technologies (HIT) for transcriptional activation by grafting a mutated human estrogen receptor (ERT2) to multiple CRISPR/Cas9 systems, which renders them 4-hydroxytamoxifen (4-OHT) inducible for the access of genome. Further, extra functionality of simultaneous genome editing was achieved with one device we named HIT2. Optimized terminal devices herein delivered advantageous performances in comparison with several existing designs. They exerted selective, titratable, rapid and reversible response to drug induction. In addition, these designs were successfully adapted to an orthogonal Cas9. HIT systems developed in this study can be applied for controlled modulation of potentially any genomic loci in multiple modes. PMID:29237052
Respiratory pattern changes during costovertebral joint movement.
Shannon, R
1980-05-01
Experiments were conducted to determine if costovertebral joint manipulation (CVJM) could influence the respiratory pattern. Phrenic efferent activity (PA) was monitored in dogs that were anesthetized with Dial-urethane, vagotomized, paralyzed, and artificially ventilated. Ribs 6-10 (bilaterally) were cut and separated from ribs 5-11. Branches of thoracic nerves 5-11 were cut, leaving only the joint nerve supply intact. Manual joint movement in an inspiratory or expiratory direction had an inhibitory effect on PA. Sustained displacement of the ribs could inhibit PA for a duration equal to numerous respiratory cycles. CVJM in synchrony with PA resulted in an increased respiratory rate. The inspiratory inhibitory effect of joint receptor stimulation was elicited with manual chest compression in vagotomized spontaneously breathing dogs, but not with artificial lung inflation or deflation. It is concluded that the effect of CVJM on the respiratory pattern is due to stimulation of joint mechanoreceptors, and that they exert their influence in part via the medullary-pontine rhythm generator.
Microbiome Therapeutics – Advances and Challenges
Mimee, Mark; Citorik, Robert J.; Lu, Timothy K.
2016-01-01
The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. PMID:27158095
Microbiome therapeutics - Advances and challenges.
Mimee, Mark; Citorik, Robert J; Lu, Timothy K
2016-10-01
The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota. Copyright © 2016. Published by Elsevier B.V.
Gut microbiota and metabolic syndrome
Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio
2014-01-01
Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use. PMID:25473159
From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers.
MacEwan, Sarah R; Chilkoti, Ashutosh
2017-06-06
The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The neural correlates of cognitive effort in anxiety: effects on processing efficiency.
Ansari, Tahereh L; Derakshan, Nazanin
2011-03-01
We investigated the neural correlates of cognitive effort/pre-target preparation (Contingent Negative Variation activity; CNV) in anxiety using a mixed antisaccade task that manipulated the interval between offset of instructional cue and onset of target (CTI). According to attentional control theory (Eysenck et al., 2007) we predicted that anxiety should result in increased levels of compensatory effort, as indicated by greater frontal CNV, to maintain comparable levels of performance under competing task demands. Our results showed that anxiety resulted in faster antisaccade latencies during medium compared with short and long CTIs. Accordingly, high-anxious individuals compared with low-anxious individuals showed greater levels of CNV activity at frontal sites during medium CTI suggesting that they exerted greater cognitive effort and invested more attentional resources in preparation for the task goal. Our results are the first to demonstrate the neural correlates of processing efficiency and compensatory effort in anxiety and are discussed within the framework of attentional control theory. Copyright © 2011 Elsevier B.V. All rights reserved.
Sayers, W Michael; Sayette, Michael A
2013-09-01
Research on emotion suppression has shown a rebound effect, in which expression of the targeted emotion increases following a suppression attempt. In prior investigations, participants have been explicitly instructed to suppress their responses, which has drawn the act of suppression into metaconsciousness. Yet emerging research emphasizes the importance of nonconscious approaches to emotion regulation. This study is the first in which a craving rebound effect was evaluated without simultaneously raising awareness about suppression. We aimed to link spontaneously occurring attempts to suppress cigarette craving to increased smoking motivation assessed immediately thereafter. Smokers (n = 66) received a robust cued smoking-craving manipulation while their facial responses were videotaped and coded using the Facial Action Coding System. Following smoking-cue exposure, participants completed a behavioral choice task previously found to index smoking motivation. Participants evincing suppression-related facial expressions during cue exposure subsequently valued smoking more than did those not displaying these expressions, which suggests that internally generated suppression can exert powerful rebound effects.
Stub, Trine; Quandt, Sara A; Arcury, Thomas A; Sandberg, Joanne C; Kristoffersen, Agnete E
2017-06-08
Effective interdisciplinary communication is important to achieve better quality in health care. The aims of this study were to compare conventional and complementary providers' experience of communication about complementary therapies and conventional medicine with their cancer patients, and to investigate how they experience interdisciplinary communication and cooperation. This study analyzed data from a self-administrated questionnaire. A total of 606 different health care providers, from four counties in Norway, completed the questionnaire. The survey was developed to describe aspects of the communication pattern among oncology doctors, nurses, family physicians and complementary therapists (acupuncturists, massage therapists and reflexologists/zone-therapists). Between-group differences were analyzed using chi-square, ANOVA and Fisher's exact tests. Significance level was defined as p < 0.05 without adjustment for multiple comparisons. Conventional providers and complementary therapists had different patterns of communication with their cancer patients regarding complementary therapies. While complementary therapists advised their patients to apply both complementary and conventional modalities, medical doctors were less supportive of their patients' use of complementary therapies. Of conventional providers, nurses expressed more positive attitudes toward complementary therapies. Opportunities to improve communication between conventional and complementary providers were most strongly supported by complementary providers and nurses; medical doctors were less supportive of such attempts. A number of doctors showed lack of respect for complementary therapists, but asked for more research, guidelines for complementary modalities and training in conventional medicine for complementary therapists. For better quality of care, greater communication about complementary therapy use is needed between cancer patients and their conventional and complementary providers. In addition, more communication between conventional and complementary providers is needed. Nurses may have a crucial role in facilitating communication, as they are positive toward complementary therapies and they have more direct communication with patients about their treatment preferences.
Arend, Peter
2016-01-01
The formation of a histo (blood) group) ABO phenotype and the exclusion of an autoreactive IgM or isoagglutinin activity arise apparently in identical glycosylation of complementary domains on cell surfaces and plasma proteins. The fundamental O-glycan emptiness of the circulating IgM, which during the neonatal amino acid sequencing of the variable regions is exerting germline-specific O-GalNAc glycan-reactive serine/threonine residues that in the plasma of the adult human blood group O individuals apparently remain associated with the open glycosidic sites on the ABOH convertible red cell surface, must raise suggestions on a transient expression of developmental glycans, which have been "lost" over the course of maturation. In fact, while the mammalian non-somatic, embryogenic stem cell (ESC)- germ cell (GC) transformation is characterized by a transient and genetically as-yet-undefined trans-species-functional O-GalNAc glycan expression, in the C57BL/10 mouse such expression was potentially identified in growth-dependent, blood group A-like GalNAc glycan-bearing, ovarian glycolipids complementary with the syngeneic anti-A reactive IgM, which does not appear in early ovariectomized animals. This non-somatically encoded, polyreactive, ancestral IgM molecule has not undergone clonal selection and does primarily not differentiate between self and non-self and might, due to amino acid hydroxyl groups, highly suggest substrate competition with subsequent O-glycosylations in ongoing ESC-GC transformations and affecting GC maturation. However, the membrane-bound somatic N/O-glycotransferases, which initiate, after formation of the zygote, the complex construction of the human ABO phenotypes in the trans cisternae of the Golgi apparatus, are associated and/or completed with soluble enzyme versions exerting identical specificities in plasma and likely competing vice versa by glycosylation of neonatal IgM amino acids, where they suggest to accomplish the clearance of anti-A autoreactivity at germline serine and threonine residues. Sustaining the lineage-maintaining position of the classic A allele and the discovery of the OA hybrid alleles at the normal ABO locus and in heterozygous ESC lines have, together with clinical observations, raised discussions about a silent A-allelic support within blood group O reproduction. However, the question of whether a fictional "continued blood group O inbreeding" ultimately occurs without the A-allelic or somatic function remains unanswered because the genetic relationship between non-somatic O-GalNAc-glycosylations that operate before sperm-egg recognition and somatic O-GalNAc-glycosylations that arise after the formation of the zygote remains to be elucidated. Copyright © 2015 Elsevier GmbH. All rights reserved.
Complementary and alternative therapies for back pain II.
Furlan, Andrea D; Yazdi, Fatemeh; Tsertsvadze, Alexander; Gross, Anita; Van Tulder, Maurits; Santaguida, Lina; Cherkin, Dan; Gagnier, Joel; Ammendolia, Carlo; Ansari, Mohammed T; Ostermann, Thomas; Dryden, Trish; Doucette, Steve; Skidmore, Becky; Daniel, Raymond; Tsouros, Sophia; Weeks, Laura; Galipeau, James
2010-10-01
Back and neck pain are important health problems with serious societal and economic implications. Conventional treatments have been shown to have limited benefit in improving patient outcomes. Complementary and Alternative Medicine (CAM) therapies offer additional options in the management of low back and neck pain. Many trials evaluating CAM therapies have poor quality and inconsistent results. To systematically review the efficacy, effectiveness, cost-effectiveness, and harms of acupuncture, spinal manipulation, mobilization, and massage techniques in management of back, neck, and/or thoracic pain. MEDLINE, Cochrane Central, Cochrane Database of Systematic Reviews, CINAHL, and EMBASE were searched up to 2010; unpublished literature and reference lists of relevant articles were also searched. study selection: All records were screened by two independent reviewers. Primary reports of comparative efficacy, effectiveness, harms, and/or economic evaluations from randomized controlled trials (RCTs) of the CAM therapies in adults (age ≥ 18 years) with back, neck, or thoracic pain were eligible. Non-randomized controlled trials and observational studies (case-control, cohort, cross-sectional) comparing harms were also included. Reviews, case reports, editorials, commentaries or letters were excluded. Two independent reviewers using a predefined form extracted data on study, participants, treatments, and outcome characteristics. 265 RCTs and 5 non-RCTs were included. Acupuncture for chronic nonspecific low back pain was associated with significantly lower pain intensity than placebo but only immediately post-treatment (VAS: -0.59, 95 percent CI: -0.93, -0.25). However, acupuncture was not different from placebo in post-treatment disability, pain medication intake, or global improvement in chronic nonspecific low back pain. Acupuncture did not differ from sham-acupuncture in reducing chronic non-specific neck pain immediately after treatment (VAS: 0.24, 95 percent CI: -1.20, 0.73). Acupuncture was superior to no treatment in improving pain intensity (VAS: -1.19, 95 percent CI: 95 percent CI: -2.17, -0.21), disability (PDI), functioning (HFAQ), well-being (SF-36), and range of mobility (extension, flexion), immediately after the treatment. In general, trials that applied sham-acupuncture tended to produce negative results (i.e., statistically non-significant) compared to trials that applied other types of placebo (e.g., TENS, medication, laser). Results regarding comparisons with other active treatments (pain medication, mobilization, laser therapy) were less consistent Acupuncture was more cost-effective compared to usual care or no treatment for patients with chronic back pain. For both low back and neck pain, manipulation was significantly better than placebo or no treatment in reducing pain immediately or short-term after the end of treatment. Manipulation was also better than acupuncture in improving pain and function in chronic nonspecific low back pain. Results from studies comparing manipulation to massage, medication, or physiotherapy were inconsistent, either in favor of manipulation or indicating no significant difference between the two treatments. Findings of studies regarding costs of manipulation relative to other therapies were inconsistent. Mobilization was superior to no treatment but not different from placebo in reducing low back pain or spinal flexibility after the treatment. Mobilization was better than physiotherapy in reducing low back pain (VAS: -0.50, 95 percent CI: -0.70, -0.30) and disability (Oswestry: -4.93, 95 percent CI: -5.91, -3.96). In subjects with acute or subacute neck pain, mobilization compared to placebo significantly reduced neck pain. Mobilization and placebo did not differ in subjects with chronic neck pain. Massage was superior to placebo or no treatment in reducing pain and disability only amongst subjects with acute/sub-acute low back pain. Massage was also significantly better than physical therapy in improving back pain (VAS: -2.11, 95 percent CI: -3.15, -1.07) or disability. For subjects with neck pain, massage was better than no treatment, placebo, or exercise in improving pain or disability, but not neck flexibility. Some evidence indicated higher costs for massage use compared to general practitioner care for low back pain. Reporting of harms in RCTs was poor and inconsistent. Subjects receiving CAM therapies reported soreness or bleeding on the site of application after acupuncture and worsening of pain after manipulation or massage. In two case-control studies cervical manipulation was shown to be significantly associated with vertebral artery dissection or vertebrobasilar vascular accident. Evidence was of poor to moderate grade and most of it pertained to chronic nonspecific pain, making it difficult to draw more definitive conclusions regarding benefits and harms of CAM therapies in subjects with acute/subacute, mixed, or unknown duration of pain. The benefit of CAM treatments was mostly evident immediately or shortly after the end of the treatment and then faded with time. Very few studies reported long-term outcomes. There was insufficient data to explore subgroup effects. The trial results were inconsistent due probably to methodological and clinical diversity, thereby limiting the extent of quantitative synthesis and complicating interpretation of trial results. Strong efforts are warranted to improve the conduct methodology and reporting quality of primary studies of CAM therapies. Future well powered head to head comparisons of CAM treatments and trials comparing CAM to widely used active treatments that report on all clinically relevant outcomes are needed to draw better conclusions.
Bagagiolo, Donatella; Didio, Alessia; Sbarbaro, Marco; Priolo, Claudio Giuseppe; Borro, Tiziana; Farina, Daniele
2016-09-01
Osteopathic medicine is a form of complementary and alternative medicine. Osteopathic practitioners treat patients of all ages: according to the Osteopathic International Alliance's 2012 survey, about one-third of all treated patients are aged between 31 and 50 years and nearly a quarter (23.4%) are pediatric patients, with 8.7% of them being younger than 2 years. In 2013 a systematic review evaluated the effectiveness of osteopathic manipulative treatment (OMT) in pediatric patients with different underlying disorders, but due to the paucity and low methodological quality of the primary studies the results were inconclusive. The aim of this review is therefore to update the evidence concerning OMT in perinatal and pediatric disorders and to assess its clinical impact. Most published studies favor OMT, but the generally small sample sizes in these studies cannot support ultimate conclusions about the efficacy of osteopathic therapy in pediatric age. In turn, clinical trials of OMT in premature infants might represent an important step in the osteopathic research because they can address both cost-effectiveness issues, and an innovative, multidisciplinary approach to the management of specific pediatric diseases cared for by the same, common health care system. The available studies in neonatal settings provide evidence that OMT is effective in reducing the hospital length of stay of the treated infants, therefore, suggesting that robust cost-effectiveness analyses should be included in the future clinical trials' design to establish new possible OMT-shared strategies within the health care services provided to newborns. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild
2015-01-01
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Marchant, Natalie L; Trawley, Steven; Rusted, Jennifer M
2008-05-01
Previous studies have reported that nicotine, a cholinergic agonist, could improve prospective memory (PM) - memory for a delayed intention - in healthy young adults. In the present study, we asked whether nicotine effects on PM performance were attributable to a drug-induced non-specific increase in arousal. Therefore, a double-blind, placebo-controlled study compared the effect of nicotine to the effect of an arousal manipulation on PM performance. All participants were non-smokers; half received 1 mg nicotine via a nasal spray and half received a matched placebo. Within these groups, half of the volunteers were exposed to hard anagrams and exhibited heightened tense arousal, while half of the volunteers were given easy anagrams and showed no change in arousal. These manipulations resulted in four conditions, placebo/low-arousal (n=12), placebo/high-arousal (n=10), nicotine/low-arousal (n=12), nicotine/high-arousal (n=13). All participants completed an ongoing lexical decision task while maintaining a PM intention (to make a separate, non-focal, response to certain items embedded within the ongoing task). When introduced separately, both nicotine and high tense arousal improved PM performance, but when combined, this improvement was eliminated. It is argued that both nicotine and high tense arousal increase attentional resources, specifically improving monitoring of the PM targets, but when combined they no longer produce beneficial effects. Additionally, given that nicotine exerted no effect on physiological or subjective measures of arousal, we conclude that the observed effects of nicotine and of arousal on PM performance are driven by different pharmacological mechanisms.
Tsai, Sung-Lin; Hong, Jhih-Lin; Chen, Ming-Kun; Jang, Ling-Sheng
2011-06-01
This work presents a microfluidic system that can transport, concentrate, and capture particles in a controllable droplet. Dielectrophoresis (DEP), a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field, is used to manipulate particles. Liquid dielectrophoresis (LDEP), a phenomenon in which a liquid moves toward regions of high electric field strength under a non-uniform electric field, is used to manipulate the fluid. In this study, a mechanism of droplet creation presented in a previous work that uses DEP and LDEP is improved. A driving electrode with a DEP gap is used to prevent beads from getting stuck at the interface between air and liquid, which is actuated with an AC signal of 200 V(pp) at a frequency of 100 kHz. DEP theory is used to calculate the DEP force in the liquid, and LDEP theory is used to analyze the influence of the DEP gap. The increment of the actuation voltage due to the electrode with a DEP gap is calculated. A set of microwell electrodes is used to capture a bead using DEP force, which is actuated with an AC signal of 20 V(pp) at a frequency of 5 MHz. A simulation is carried out to investigate the dimensions of the DEP gap and microwell electrodes. Experiments are performed to demonstrate the creation of a 100-nL droplet and the capture of individual 10-μm polystyrene latex beads in the droplet. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meng, Jianxin; Mei, Deqing; Jia, Kun; Fan, Zongwei; Yang, Keji
2014-07-01
In the existing acoustic micro-particle delivery methods, the micro-particles always lie and slide on the surface of platform in the whole delivery process. To avoid the damage and contamination of micro-particles caused by the sliding motion, this paper deals with a novel approach to trap micro-particles from non-customized rigid surfaces and freely manipulate them. The delivery process contains three procedures: detaching, transporting, and landing. Hence, the micro-particles no longer lie on the surface, but are levitated in the fluid, during the long range transporting procedure. It is very meaningful especially for the fragile and easily contaminated targets. To quantitatively analyze the delivery process, a theoretical model to calculate the acoustic radiation force exerting upon a micro-particle near the boundary in half space is built. An experimental device is also developed to validate the delivery method. A 100 μm diameter micro-silica bead adopted as the delivery target is detached from the upper surface of an aluminum platform and levitated in the fluid. Then, it is transported along the designated path with high precision in horizontal plane. The maximum deviation is only about 3.3 μm. During the horizontal transportation, the levitation of the micro-silica bead is stable, the maximum fluctuation is less than 1 μm. The proposed method may extend the application of acoustic radiation force and provide a promising tool for microstructure or cell manipulation. Copyright © 2014 Elsevier B.V. All rights reserved.
Jin, Xin; Uygur, Mehmet; Getchell, Nancy; Hall, Susan J; Jaric, Slobodan
2011-10-31
The force applied upon a vertically oriented hand-held object could be decomposed into two orthogonal and highly coordinated components: the grip force (GF; the component perpendicular to the hand-object contact area that provides friction) and the load force (LF; the parallel component that can move the object or support the body). The aim of this study was to investigate the underexplored effects of task instruction and hand dominance on GF-LF coordination. Sixteen right-handed subjects performed bimanual manipulation against a horizontally oriented instrumented device under different sets of instructions. The tasks involved exertion of ramp-and-hold or oscillation patterns of LF performed symmetrically with two hands, while the instructions regarding individual actions were either similar (pull with both hands) or dissimilar (pull with one hand and hold with another). The results revealed that the instruction "to pull" leads to higher indices of GF-LF coordination than the instruction "to hold", as evidenced by a lower GF-LF ratio, higher GF-LF coupling, and higher GF modulation. The only effect of hand dominance was a moderate time lag of GF relative to LF changes observed in the non-dominant hand. We conclude that the instructions could play an important role in GF-LF coordination and, therefore, they should be taken into account when exploring or routinely testing hand function. Additionally, the results suggest that the neural control of GF of the non-dominant hand could involve some feedback mechanisms. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Modulations of the executive control network by stimulus onset asynchrony in a Stroop task
2013-01-01
Background Manipulating task difficulty is a useful way of elucidating the functional recruitment of the brain’s executive control network. In a Stroop task, pre-exposing the irrelevant word using varying stimulus onset asynchronies (‘negative’ SOAs) modulates the amount of behavioural interference and facilitation, suggesting disparate mechanisms of cognitive processing in each SOA. The current study employed a Stroop task with three SOAs (−400, -200, 0 ms), using functional magnetic resonance imaging to investigate for the first time the neural effects of SOA manipulation. Of specific interest were 1) how SOA affects the neural representation of interference and facilitation; 2) response priming effects in negative SOAs; and 3) attentional effects of blocked SOA presentation. Results The results revealed three regions of the executive control network that were sensitive to SOA during Stroop interference; the 0 ms SOA elicited the greatest activation of these areas but experienced relatively smaller behavioural interference, suggesting that the enhanced recruitment led to more efficient conflict processing. Response priming effects were localized to the right inferior frontal gyrus, which is consistent with the idea that this region performed response inhibition in incongruent conditions to overcome the incorrectly-primed response, as well as more general action updating and response preparation. Finally, the right superior parietal lobe was sensitive to blocked SOA presentation and was most active for the 0 ms SOA, suggesting that this region is involved in attentional control. Conclusions SOA exerted both trial-specific and block-wide effects on executive processing, providing a unique paradigm for functional investigations of the cognitive control network. PMID:23902451
The role of medial prefrontal cortex in extinction and reinstatement of alcohol-seeking in rats.
Willcocks, Andrea L; McNally, Gavan P
2013-01-01
The prelimbic (PL) and infralimbic (IL) medial prefrontal cortex (mPFC) are thought to play opposing roles in drug-seeking behaviour. Specifically, the PL promotes drug-seeking whereas the IL is necessary for the inhibition of drug-seeking during extinction. We studied the roles of the PL, IL and dorsal peduncular PFC (DP) in the expression of context-induced reinstatement, reacquisition and extinction of alcoholic beer-seeking. In context-induced reinstatement (renewal), animals were trained to nosepoke for alcoholic beer (context A), extinguished (context B) and then tested in context A and B. In reacquisition, animals received the same instrumental training and extinction without any contextual manipulation. On test, alcoholic beer was again available and responding was compared with naive controls. Just prior to the test, rats received bilateral infusion of baclofen/muscimol into the PL, IL or DP. Reversible inactivation of the PL attenuated ABA renewal but augmented reacquisition. Reversible inactivation of IL had no effect on the reinstatement or reacquisition of alcoholic beer-seeking and had no effect on extinction expression (ABB and AAA). IL inactivation did, however, increase the latencies with which animals responded on test but only when animals were tested in the extinction context. DP inactivation had no effect on reinstatement or reacquisition. These studies are inconsistent with the view that PL and IL exert opposing effects on drug-seeking. Rather, they support the view that PL is important for retrieval of drug-seeking contingency information and that the use of contextual information is enhanced with IL manipulation. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Gender-Specific Correlates of Complementary and Alternative Medicine Use for Knee Osteoarthritis
Yang, Shibing; Eaton, Charles B.; McAlindon, Timothy; Lapane, Kate L.
2012-01-01
Abstract Background Knee osteoarthritis (OA) increases healthcare use and cost. Women have higher pain and lower quality of life measures compared to men even after accounting for differences in age, body mass index (BMI), and radiographic OA severity. Our objective was to describe gender-specific correlates of complementary and alternative medicine (CAM) use among persons with radiographically confirmed knee OA. Methods Using data from the Osteoarthritis Initiative, 2,679 women and men with radiographic tibiofemoral OA in at least one knee were identified. Treatment approaches were classified as current CAM therapy (alternative medical systems, mind-body interventions, manipulation and body-based methods, energy therapies, and three types of biologically based therapies) or conventional medication use (over-the-counter or prescription). Gender-specific multivariable logistic regression models identified sociodemographic and clinical/functional correlates of CAM use. Results CAM use, either alone (23.9% women, 21.9% men) or with conventional medications (27.3% women, 19.0% men), was common. Glucosamine use (27.2% women, 28.2% men) and chondroitin sulfate use (24.8% women; 25.7% men) did not differ by gender. Compared to men, women were more likely to report use of mind-body interventions (14.1% vs. 5.7%), topical agents (16.1% vs. 9.5%), and concurrent CAM strategies (18.0% vs. 9.9%). Higher quality of life measures and physical function indices in women were inversely associated with any therapy, and higher pain scores were positively associated with conventional medication use. History of hip replacement was a strong correlate of conventional medication use in women but not in men. Conclusions Women were more likely than men to use CAM alone or concomitantly with conventional medications. PMID:22946630
A qualitative insight on complementary and alternative medicines used by hypertensive patients.
Ibrahim, Inas Rifaat; Hassali, Mohamed Azmi; Saleem, Fahad; Al Tukmagi, Haydar F
2016-01-01
The self-treatment with complementary and alternative medicines (CAMs) in chronic diseases is portraying an expanding trend worldwide. Yet, little is known concerning patients' motives to use CAM in the control of blood pressure. This study aims to explore the self-use of CAM in the management of hypertension and explore patients' attitudes, perceived benefits, and disclosure to the physician. A qualitative technique was adopted and face-to-face interviews, using a validated interview guide, were carried out among twenty hypertensive patients. A purposive sampling method was used to recruit patients at Al-Karama Teaching Hospital in Baghdad; the capital of Iraq; from January to April 2015. All the interviews were audio-recorded, then transcribed verbatim and examined for thematic relationships. Three major themes were identified through thematic content analysis of the interviews. These encompassed patients' understanding of CAM; experience and perceived benefits; and communication with the doctors. The use of CAM was prevalent among the majority of the respondents. The most commonly used therapies were biological-based practices (herbal remedies, special diet, vitamins, and dietary supplements); traditional therapies (Al-Hijama or cupping); and to a less extent of manipulative body-based therapies (reflexology). Factors influencing the use of CAM were traditions, social relationships, religious beliefs, low-cost therapy, and safety of natural products. The use of CAM was common as a practice of self-treatment among hypertensive patients in Iraq. This was underpinned by the cultural effects, social relationships, religious beliefs, and the perception that natural products are effective and safe. Understanding patients' usage of CAM is of great importance as long as patient's safety and interaction with the standard prescribed treatment are major concerns.
Greenlee, Heather; Molmenti, Christine Sardo; Falci, Laura; Ulmer, Ross; Deming-Halverson, Sandra; DeRoo, Lisa A.; Sandler, Dale P.
2016-01-01
Purpose Use of complementary and alternative medicine (CAM) is high among U.S. women, yet information is limited on use among women at increased breast cancer risk. We analyzed CAM use among women with a family history of breast cancer. Methods CAM use was analyzed among women enrolled 2003–2009 in the Sister Study cohort. Eligible women were age 35–74, U.S. or Puerto Rican residents, no personal history of breast cancer, and had ≥1 sister with breast cancer. Baseline data on CAM use in the past year was available for 49,734 women. Logistic regression models examined the association between CAM use and Gail Model breast cancer risk score. Results were compared to female participants in the 2007 National Health Interview Survey (n=7,965). Results Among Sister Study participants, there was high use of vitamin/mineral supplements (78.8%), mind/body practices (41.4%), manipulative/body-based practices (31.5%), and botanicals (22.8%). Overall use was higher than the U.S. female population. No association was observed between familial breast cancer risk and CAM use. Black women were more likely to use spirituality/meditation-based CAM modalities, while non-Hispanic white and Asian women were high users of dietary supplements. Conclusions In a cohort of women with increased breast cancer risk due to family history, CAM use is higher than women in the general U.S. population and is associated with race/ethnicity. Use was not associated with breast cancer risk. Given the high prevalence of CAM use among women at risk for breast caner, research on the effectiveness of CAM use for disease prevention is needed. PMID:27017506
Vlieger, Arine M; Blink, Marjolein; Tromp, Ellen; Benninga, Marc A
2008-08-01
Many pediatric patients use complementary and alternative medicine, especially when facing a chronic illness for which treatment options are limited. So far, research on the use of complementary and alternative medicine in patients with functional gastrointestinal disease has been scarce. This study was designed to assess complementary and alternative medicine use in children with different gastrointestinal diseases, including functional disorders, to determine which factors predicted complementary and alternative medicine use and to assess the willingness of parents to participate in future studies on complementary and alternative medicine efficacy and safety. The prevalence of complementary and alternative medicine use was assessed by using a questionnaire for 749 children visiting pediatric gastroenterology clinics of 9 hospitals in the Netherlands. The questionnaire consisted of 35 questions on the child's gastrointestinal disease, medication use, health status, past and future complementary and alternative medicine use, reasons for its use, and the necessity of complementary and alternative medicine research. In this study population, the frequency of complementary and alternative medicine use was 37.6%. A total of 60.3% of this group had used complementary and alternative medicine specifically for their gastrointestinal disease. This specific complementary and alternative medicine use was higher in patients with functional disorders than organic disorders (25.3% vs 17.2%). Adverse effects of allopathic medication, school absenteeism, age
Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts
Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto
2015-01-01
Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503
Holzmuller, Philippe; Geiger, Anne; Nzoumbou-Boko, Romaric; Pissarra, Joana; Hamrouni, Sarra; Rodrigues, Valérie; Dauchy, Frédéric-Antoine; Lemesre, Jean-Loup; Vincendeau, Philippe; Bras-Gonçalves, Rachel
2018-01-01
Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted–secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage’s inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches. PMID:29731753
Higashi, Clesson H V; Bressan, Alberto
2013-07-01
To maximize fitness, plant pathogenic viruses may manipulate their arthropod vectors through direct and indirect (via the host plant) interactions. For many virus-vector-plant associations, insect feeding does not always lead to virus acquisition. In fact, many plant viruses, especially those that propagate into their vectors, are acquired at low rates. Although the majority of insects colonizing an infected plant escape from viral infection, they are still exposed to the indirect effects (i.e. the effect of plant metabolism modification following virus infection). Little information has been reported on the effects of plant viruses on insects that become infected versus those that do not (here referred to as "exposed"). The effect that the Maize mosaic virus (MMV) (Rhabdoviridae) exerts on the fitness and wing dimorphism of the planthopper vector, Peregrinus maidis (Hemiptera, Delphacidae), that developed on leaves from either young or old corn plants was examined. MMV exerted non-consistent to minimal direct effects on developmental time, longevity, nymphal mortality and fecundity. In addition, some small yet significant fitness costs were encountered by exposed planthoppers to escape MMV infection. Furthermore, a significantly higher proportion of macropters over brachypters were produced on MMV-infected old leaves compared with healthy leaves of a similar age. We conclude that the virus influences the dispersal of the vector, promoting a larger production of macropters at the costs of brachypters at a late stage of the plant infection. Because MMV infection in planthoppers did not segregate by wing morphotype, our results indicate that the dispersal of both infected and exposed planthoppers was a likely consequence of the indirect effects of MMV.
Cathcart, George R A; Quinn, Derek; Greer, Brett; Harriott, Pat; Lynas, John F; Gilmore, Brendan F; Walker, Brian
2011-06-01
Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial biofilm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed "second-generation" antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB, N-mercaptoacetyl-Phe-Tyr-amide (K(i) = 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in biofilm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal biofilms, and to eradicate biofilm completely when used in combination with conventional antibiotics.
The role of acetylcholine in cocaine addiction.
Williams, Mark J; Adinoff, Bryon
2008-07-01
Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery. Ultimately, ACh modulation may be a potential target for pharmacological treatment interventions in cocaine-addicted subjects. However, the complicated neurocircuitry of the cholinergic system, the multiple ACh receptor subtypes, the confluence of excitatory and inhibitory ACh inputs, and the unique properties of the striatal cholinergic interneurons suggest that a precise target of cholinergic manipulation will be required to impact substance use in the clinical population.
Geuss, Laura R.; Wu, Douglas C.; Ramamoorthy, Divya; Alford, Corinne D.; Suggs, Laura J.
2014-01-01
Mechanical forces play an important role in proper embryologic development, and similarly such forces can directly impact pluripotency and differentiation of mouse embryonic stem cells (mESC) in vitro. In addition, manipulation of the embryoid body (EB) microenvironment, such as by incorporation of microspheres or microparticles, can similarly influence fate determination. In this study, we developed a mechanical stimulation regimen using permanent neodymium magnets to magnetically attract cells within an EB. Arginine-Glycine-Aspartic Acid (RGD)-conjugated paramagnetic beads were incorporated into the interior of the EBs during aggregation, allowing us to exert force on individual cells using short-term magnetization. EBs were stimulated for one hour at different magnetic field strengths, subsequently exerting a range of force intensity on the cells at different stages of early EB development. Our results demonstrated that following exposure to a 0.2 Tesla magnetic field, ESCs respond to magnetically mediated strain by activating Protein Kinase A (PKA) and increasing phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression. The timing of stimulation can also be tailored to guide ESC differentiation: the combination of bone morphogenetic protein 4 (BMP4) supplementation with one hour of magnetic attraction on Day 3 enhances cardiomyogenesis by increasing contractile activity and the percentage of sarcomeric α-actin-expressing cells compared to control samples with BMP4 alone. Interestingly, we also observed that the beads alone had some impact on differentiation by increasingly slightly, albeit not significantly, the percentage of cardiomyocytes. Together these results suggest that magnetically mediated strain can be used to enhance the percentage of mouse ESC-derived cardiomyocytes over current differentiation protocols. PMID:25501004
Rating of Perceived Exertion During Circuit Weight Training: A Concurrent Validation Study.
Aniceto, Rodrigo R; Ritti-Dias, Raphael M; Dos Prazeres, Thaliane M P; Farah, Breno Q; de Lima, Fábio F M; do Prado, Wagner L
2015-12-01
The aim of this study was to determine whether rating of perceived exertion (RPE) is a valid method to control the effort during the circuit weight training (CWT) in trained men. Ten men (21.3 ± 3.3 years) with previous experience in resistance training (13.1 ± 6.3 months) performed 3 sessions: 1 orientation session and 2 experimental sessions. The subjects were randomly counterbalanced to 2 experimental sessions: CWT or multiple-set resistance training (control). In both sessions, 8 exercises (bench press, leg press 45°, seated row, leg curl, triceps pulley, leg extension, biceps curl, and adductor chair) were performed with the same work: 60% of 1 repetition maximum, 24 stations (3 circuits) or 24 sets (3 sets/exercise), 10 repetitions, 1 second in the concentric and eccentric phases, and rest intervals between sets and exercise of 60 seconds. Active muscle RPEs were measured after each 3 station/sets using the OMNI-Resistance Exercise Scale (OMNI-RES). In this same time, blood lactate was collected. Compared with baseline, both levels of blood lactate and RPE increased during whole workout in both sessions, the RPE at third, 23rd, and 27th minute and the blood lactate at third, seventh, 11th, 15th, 27th, and 31st minute were higher in multiple set compared with CWT. Positive correlation between blood lactate and RPE was observed in both experimental sessions. The results indicated that the RPE is a valid method to control the effort during the CWT in trained men and can be used to manipulate the intensity without the need to perform invasive assessments.
Crundwell, G; Baguley, D M
2016-08-01
Literature indicates that complementary and alternative medicine is used by patients with auditory and vestibular symptoms. This study sought to determine the prevalence of complementary and alternative medicine uptake, and examine attitudes towards complementary and alternative medicine in clinicians working with audiovestibular disorder patients. The Holistic Complementary and Alternative Medicine Questionnaire and a devised questionnaire about recent and lifetime use of complementary and alternative medicine were used. Fifty-four individuals, including audiologists, ENT surgeons, nurses and rehabilitationists, completed the questionnaires (67 per cent response rate). Lifetime prevalence of complementary and alternative medicine uptake was 44 per cent, and 12-month prevalence was 22 per cent. Uptake was more common in females, but there was no significant difference in use when comparing age, seniority or profession. Attitudes towards complementary and alternative medicine were mildly adverse, but sizeable standard deviation indicates wide-ranging attitudes. Clinicians working with patients with audiovestibular disorders have a range of attitudes towards complementary and alternative medicine. Personal uptake of complementary and alternative medicine was lower than that of the general UK population, but remains sizeable.
Aydin Avci, Ilknur; Koç, Zeliha; Sağlam, Zeynep
2012-03-01
The aims of this study were to determine (1) the prevalence of complementary and alternative medicine use among patients with cancer, (2) the method of use of the particular therapy, (3) the reasons for using complementary and alternative medicine therapies, (4) the benefits experienced by the use of complementary and alternative medicine, (5) the source of information about complementary and alternative medicine therapies and, (6) the satisfaction and cost of complementary and alternative medicine. Complementary and alternative medicine consists of diverse medical and healthcare systems, practices and products that are not considered at present to be a part of conventional medicine. The majority of patients who use complementary and alternative medicine use more than one method. Complementary and alternative medicine use is more common in cases of advanced disease or poor prognosis. This is a descriptive study of complementary and alternative medicine. This study was conducted in the Chemotherapy Unit at Ondokuz Mayıs University, Faculty of Medicine, Samsun, Turkey, between 18 March 2008-30 June 2008. Two hundred fifty-three patients with cancer, among 281 patients who applied to the chemotherapy clinic between these dates, agreed to take part in the study with whom contact could be made were included. A questionnaire including descriptive characteristics in collecting data, characteristics about diseases and their treatments, complementary and alternative medicine information and implementation situations and a control list about complementary and alternative medicine implementations were given. The collected data were evaluated by computer using descriptive statistics, the chi-square test and Student's t-test. In this study, 94·1% of the patients were content with medical treatment, 58·9% of them used complementary and alternative medicine treatments, 41·1% did not use any complementary and alternative medicine treatments. The satisfaction level of the patients with complementary and alternative medicine methods was slightly above mediocre (2·33 SD 0·64, on a scale of 1-3). The average cost per capita spent by the patients using complementary and alternative medicine for all the different methods was US$288·26. It was determined that although patients did not have enough knowledge about complementary and alternative medicine methods, the prevalence of complementary and alternative medicine and satisfaction levels are high that complementary and alternative medicine users spend substantial sums of money for these methods. To sustain medical treatment and prognosis of cancer, it is important for nurses to consult with their patients regarding the use and potential risks of some complementary and alternative medicine. © 2011 Blackwell Publishing Ltd.
American Academy of Pediatrics. The use of complementary and alternative medicine in pediatrics.
Kemper, Kathi J; Vohra, Sunita; Walls, Richard
2008-12-01
The American Academy of Pediatrics is dedicated to optimizing the well-being of children and advancing family-centered health care. Related to these goals, the American Academy of Pediatrics recognizes the increasing use of complementary and alternative medicine in children and, as a result, the need to provide information and support for pediatricians. From 2000 to 2002, the American Academy of Pediatrics convened and charged the Task Force on Complementary and Alternative Medicine to address issues related to the use of complementary and alternative medicine in children and to develop resources to educate physicians, patients, and families. One of these resources is this report describing complementary and alternative medicine services, current levels of utilization and financial expenditures, and associated legal and ethical considerations. The subject of complementary and alternative medicine is large and diverse, and consequently, an in-depth discussion of each method of complementary and alternative medicine is beyond the scope of this report. Instead, this report will define terms; describe epidemiology; outline common types of complementary and alternative medicine therapies; review medicolegal, ethical, and research implications; review education and training for complementary and alternative medicine providers; provide resources for learning more about complementary and alternative medicine; and suggest communication strategies to use when discussing complementary and alternative medicine with patients and families.
Exertion Testing in Youth with Mild Traumatic Brain Injury/Concussion.
Dematteo, Carol; Volterman, Kimberly A; Breithaupt, Peter G; Claridge, Everett A; Adamich, John; Timmons, Brian W
2015-11-01
The decision regarding return to activity (RTA) after mild traumatic brain injuries/concussion is one of the most difficult and controversial areas in concussion management, particularly for youth. This study investigated how youth with postconcussion syndrome (PCS) are affected by exertion and whether standardized exertion testing using the McMaster All-Out Progressive Continuous Cycling Test can contribute to clinical decision making for safe RTA. Fifty-four youth (8.5-18.3 yr) with a previously confirmed concussion participated in the study. Each participant performed exertion testing on a cycle ergometer and completed a Postconcussion Symptom scale at the following time points: before exertion (baseline), 5 and 30 min, and 24 h after exertion. A modified Postconcussion Symptom scale was administered at 2-min intervals during exertion. Participants had a mean ± SD symptom duration of 6.3 ± 6.9 months after the most recent concussive injury, with a median of 4.1 months (range, 0.7-35 months). Sixty-three percent of participants had symptoms during exertion testing. Symptom profile (number and severity) significantly affected perception of exertion at 50% peak mechanical power. During acute assessment of symptoms (30-min after exertion), headache (P = 0.39), nausea (P = 0.63), and dizziness (P = 0.35) did not change. However, both the number and severity of symptoms significantly improved over 24 h, with 56.8% of youth showing improvements. The time from the most recent injury had a significant effect on the symptom score at baseline, 30 min after exertion, and 24 h after exertion. Exertion testing has an important role in the evaluation of symptoms and readiness to RTA, particularly in youth who are slow to recover. Overall, controlled exertion seemed to lesson symptoms for most youth.
Wyatt, Gwen; Sikorskii, Alla; You, Mei
2013-01-01
According to the National Center for Complementary and Alternative Medicine (NCCAM), about one-third of American cancer patients have used complementary and alternative medicine (CAM). The objective of this secondary analysis was an assessment of the use of other CAM by women with advanced breast cancer who were undergoing chemotherapy and who participated in a randomized clinical trial (RCT) studying the safety and efficacy of reflexology. For this secondary analysis, the research team hypothesized an increased CAM use due to exposure to the reflexology trial. For this secondary analysis, the team conducted telephone interviews at baseline, wk 5, and wk 11 to assess the use of 23 common CAM therapies. The study took place at 14 medical oncology clinics across the Midwestern United States. Participants included women with advanced breast cancer who were undergoing chemotherapy and/or hormonal therapy. In the study related to this secondary analysis, the research team randomly assigned the women to one of three primary groups: (1) reflexology; (2) lay foot manipulation (LFM); and (3) control. In addition, the research team used two test groups to establish the study's protocol: (1) test reflexology and (2) test LFM. For this secondary analysis, the research team considered the two reflexology groups (test and intervention) and the two LFM groups (test and intervention) to be the active groups, comparing their use of CAM to the control group's use at the selected time points. The research team used a linear, mixed-effects model to analyze the number of therapies used at the three time points. The team performed t tests to compare therapy use at baseline for those women who completed the study vs those who dropped out. The team used the CAM-use instrument. In total, 385 women participated. The research team found no differences in CAM use for the active groups vs the control group over time or in those women who stayed in the study vs those who dropped out. The team found an increase in CAM use at wk 5 compared to baseline, followed by a decrease at wk 11; however, the time trends were the same in the active groups and the control group In women with advanced breast cancer, researchers can rely upon one assessment of CAM use during an RCT of a CAM therapy.
Cancer and Complementary Health Approaches
... Cancer Institute's activities in research on complementary health approaches. Toll-free in the U.S.: 1-800-4-CANCER (1-800-422-6237) Web ... complementary health approaches. Information on complementary health approaches in cancer treatment: ...
Complementary and Alternative Medicine for Patients
... Ask about Your Treatment Research Complementary and Alternative Medicine for Patients Complementary and alternative medicine (CAM) is ... based on scientific evidence from research studies. Complementary medicine refers to treatments that are used with standard ...
Carpal tunnel syndrome and computer exposure at work in two large complementary cohorts.
Mediouni, Z; Bodin, J; Dale, A M; Herquelot, E; Carton, M; Leclerc, A; Fouquet, N; Dumontier, C; Roquelaure, Y; Evanoff, B A; Descatha, A
2015-09-09
The boom in computer use and concurrent high rates in musculoskeletal complaints and carpal tunnel syndrome (CTS) among users have led to a controversy about a possible link. Most studies have used cross-sectional designs and shown no association. The present study used longitudinal data from two large complementary cohorts to evaluate a possible relationship between CTS and the performance of computer work. The Cosali cohort is a representative sample of a French working population that evaluated CTS using standardised clinical examinations and assessed self-reported computer use. The PrediCTS cohort study enrolled newly hired clerical, service and construction workers in several industries in the USA, evaluated CTS using symptoms and nerve conduction studies (NCS), and estimated exposures to computer work using a job exposure matrix. During a follow-up of 3-5 years, the association between new cases of CTS and computer work was calculated using logistic regression models adjusting for sex, age, obesity and relevant associated disorders. In the Cosali study, 1551 workers (41.8%) completed follow-up physical examinations; 36 (2.3%) participants were diagnosed with CTS. In the PrediCTS study, 711 workers (64.2%) completed follow-up evaluations, whereas 31 (4.3%) had new cases of CTS. The adjusted OR for the group with the highest exposure to computer use was 0.39 (0.17; 0.89) in the Cosali cohort and 0.16 (0.05; 0.59) in the PrediCTS cohort. Data from two large cohorts in two different countries showed no association between computer work and new cases of CTS among workers in diverse jobs with varying job exposures. CTS is far more common among workers in non-computer related jobs; prevention efforts and work-related compensation programmes should focus on workers performing forceful hand exertion. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Carpal tunnel syndrome and computer exposure at work in two large complementary cohorts
Mediouni, Z; Bodin, J; Dale, A M; Herquelot, E; Carton, M; Leclerc, A; Fouquet, N; Dumontier, C; Roquelaure, Y; Evanoff, B A; Descatha, A
2015-01-01
Objectives The boom in computer use and concurrent high rates in musculoskeletal complaints and carpal tunnel syndrome (CTS) among users have led to a controversy about a possible link. Most studies have used cross-sectional designs and shown no association. The present study used longitudinal data from two large complementary cohorts to evaluate a possible relationship between CTS and the performance of computer work. Settings and participants The Cosali cohort is a representative sample of a French working population that evaluated CTS using standardised clinical examinations and assessed self-reported computer use. The PrediCTS cohort study enrolled newly hired clerical, service and construction workers in several industries in the USA, evaluated CTS using symptoms and nerve conduction studies (NCS), and estimated exposures to computer work using a job exposure matrix. Primary and secondary outcome measures During a follow-up of 3–5 years, the association between new cases of CTS and computer work was calculated using logistic regression models adjusting for sex, age, obesity and relevant associated disorders. Results In the Cosali study, 1551 workers (41.8%) completed follow-up physical examinations; 36 (2.3%) participants were diagnosed with CTS. In the PrediCTS study, 711 workers (64.2%) completed follow-up evaluations, whereas 31 (4.3%) had new cases of CTS. The adjusted OR for the group with the highest exposure to computer use was 0.39 (0.17; 0.89) in the Cosali cohort and 0.16 (0.05; 0.59) in the PrediCTS cohort. Conclusions Data from two large cohorts in two different countries showed no association between computer work and new cases of CTS among workers in diverse jobs with varying job exposures. CTS is far more common among workers in non-computer related jobs; prevention efforts and work-related compensation programmes should focus on workers performing forceful hand exertion. PMID:26353869
Goschke, Thomas; Bolte, Annette
2014-09-01
Goal-directed action in changing environments requires a dynamic balance between complementary control modes, which serve antagonistic adaptive functions (e.g., to shield goals from competing responses and distracting information vs. to flexibly switch between goals and behavioral dispositions in response to significant changes). Too rigid goal shielding promotes stability but incurs a cost in terms of perseveration and reduced flexibility, whereas too weak goal shielding promotes flexibility but incurs a cost in terms of increased distractibility. While research on cognitive control has long been conducted relatively independently from the study of emotion and motivation, it is becoming increasingly clear that positive affect and reward play a central role in modulating cognitive control. In particular, evidence from the past decade suggests that positive affect not only influences the contents of cognitive processes, but also modulates the balance between complementary modes of cognitive control. In this article we review studies from the past decade that examined effects of induced positive affect on the balance between cognitive stability and flexibility with a focus on set switching and working memory maintenance and updating. Moreover, we review recent evidence indicating that task-irrelevant positive affect and performance-contingent rewards exert different and sometimes opposite effects on cognitive control modes, suggesting dissociations between emotional and motivational effects of positive affect. Finally, we critically review evidence for the popular hypothesis that effects of positive affect may be mediated by dopaminergic modulations of neural processing in prefrontal and striatal brain circuits, and we refine this "dopamine hypothesis of positive affect" by specifying distinct mechanisms by which dopamine may mediate effects of positive affect and reward on cognitive control. We conclude with a discussion of limitations of current research, point to central unresolved questions and outline perspective for future research on affective and motivational modulations of cognitive control modes. Copyright © 2014. Published by Elsevier Ltd.
López-Aguilar, Celeste; Romero-López, Cristina; Espinosa, Manuel; Berzal-Herranz, Alfredo; del Solar, Gloria
2015-01-01
Rolling-circle replication of streptococcal plasmid pMV158 is controlled by the concerted action of two trans-acting elements, namely transcriptional repressor CopG and antisense RNAII, which inhibit expression of the repB gene encoding the replication initiator protein. The pMV158-encoded antisense RNAII exerts its activity of replication control by inhibiting translation of the essential repB gene. RNAII is the smallest and simplest among the characterized antisense RNAs involved in control of plasmid replication. Structure analysis of RNAII revealed that it folds into an 8-bp-long stem containing a 1-nt bulge and closed by a 6-nt apical loop. This hairpin is flanked by a 17-nt-long single-stranded 5′-tail and an 8-nt-long 3′-terminal U-rich stretch. Here, the 3′ and 5′ regions of the 5′-tail of RNAII are shown to play a critical role in the binding to the target mRNA and in the inhibition of repB translation, respectively. In contrast, the apical loop of the single hairpin of RNAII plays a rather secondary role and the upper stem region hardly contributes to the binding or inhibition processes. The entire 5′-tail is required for efficient inhibition of repB translation, though only the 8-nt-long region adjacent to the hairpin seems to be essential for rapid binding to the mRNA. These results show that a “kissing” interaction involving base-pairing between complementary hairpin loops in RNAII and mRNA is not critical for efficient RNA/RNA binding or repB translation inhibition. A singular binding mechanism is envisaged whereby initial pairing between complementary single-stranded regions in the antisense and sense RNAs progresses upwards into the corresponding hairpin stems to form the intermolecular duplex. PMID:26175752
The Multiplex Network of EU Lobby Organizations.
Zeng, An; Battiston, Stefano
2016-01-01
The practice of lobbying in the interest of economic or social groups plays an important role in the policy making process of most economies. While no data is available at this stage to examine the success of lobbies in exerting influence on specific policy issues, we perform a first systematic multi-layer network analysis of a large lobby registry. Here we focus on the domains of finance and climate and we combine information on affiliation and client relations from the EU transparency register with information about shareholding and interlocking directorates of firms. We find that the network centrality of lobby organizations has no simple relation with their lobbying budget. Moreover, different layers of the multiplex network provide complementary information to characterize organizations' potential influence. At the aggregate level, it appears that while the domains of finance and climate are separated on the layer of affiliation relations, they become intertwined when economic relations are considered. Because groups of interest differ not only in their budget and network centrality but also in terms of their internal cohesiveness, drawing a map of both connections across and within groups is a precondition to better understand the dynamics of influence on policy making and the forces at play.
Picha, Kelsey J; Howell, Dana M
2018-03-01
Patient adherence to rehabilitation programmes is frequently low - particularly adherence to home exercise programmes. Home exercise programmes have been identified as complementary to clinic-based physical therapy in an orthopaedic setting. Barriers to patient adherence have previously been identified within the literature. Low self-efficacy is a barrier to adherence that clinicians have the ability to have an impact on and improve. The theory of self-efficacy is defined as a person's confidence in their ability to perform a task. This theory examines the ability of a person to change through exerting control over inner processes of goal setting, self-monitoring, feedback, problem solving and self-evaluation. If clinicians are able to identify patients with low self-efficacy prior to the prescription of a home exercise programme, adjustments to individualized care can be implemented. Individualized care based on improving self-efficacy for home exercise programmes may improve patient adherence to these programmes. The purpose of this article was to use the theory of self-efficacy to direct clinicians in providing individualized programmes to patients with varying levels of self-efficacy. Copyright © 2017 John Wiley & Sons, Ltd.
Yoga and immune system functioning: a systematic review of randomized controlled trials.
Falkenberg, R I; Eising, C; Peters, M L
2018-02-10
Yoga is an ancient mind-body practice that is increasingly recognized to have health benefits in a variety of clinical and non-clinical conditions. This systematic review summarizes the findings of randomized controlled trials examining the effects of yoga on immune system functioning which is imperative to justify its application in the clinic. Fifteen RCTs were eligible for the review. Even though the existing evidence is not entirely consistent, a general pattern emerged suggesting that yoga can downregulate pro-inflammatory markers. In particular, the qualitative evaluation of RCTs revealed decreases in IL-1beta, as well as indications for reductions in IL-6 and TNF-alpha. These results imply that yoga may be implemented as a complementary intervention for populations at risk or already suffering from diseases with an inflammatory component. Beyond this, yoga practice may exert further beneficial effects by enhancing cell-mediated and mucosal immunity. It is hypothesized that longer time spans of yoga practice are required to achieve consistent effects especially on circulating inflammatory markers. Overall, this field of investigation is still young, hence the current body of evidence is small and for most immune parameters, more research is required to draw distinct conclusions.
A new age in functional genomics using CRISPR/Cas9 in arrayed library screening.
Agrotis, Alexander; Ketteler, Robin
2015-01-01
CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.
Tupe, Rashmi S; Kemse, Nisha G; Khaire, Amrita A; Shaikh, Shamim A
2017-12-01
Protein glycation is the major contributing factor in the development of diabetic complications. The antiglycation potential of medicinal plants provides a promising opportunity as complementary interventions for complications. To investigate the antiglycation potential of 19 medicinal plants extracts using albumin by estimating different indicators: (1) glycation (early and late), (2) albumin oxidation, and (3) amyloid aggregation. The effect of aqueous plant extracts (1% w/v) on protein glycation was assessed by incubating albumin (10 mg/mL) with fructose (250 mM) for 4 days. Degree of protein glycation in the absence and presence of plant extracts was assessed by estimating fructosamine, advanced glycation end products (AGEs), carbonyls, free thiol group and β-amyloid aggregation. Petroselinum crispum, Boerhavia diffusa, Terminalia chebula, Swertia chirayita and Glycyrrhiza glabra showed significant antiglycating activity. P. crispum and A. barbadensis inhibited the carbonyl stress and protected the thiol group from oxidative damage. There was significant correlation between protein thiols and amyloid inhibition (R = -.69, p < .001). P. crispum, B. diffusa and T. chebula had the most potent antiglycation activity. These plant exerted noticeable antiglycation activity at different glycation modifications of albumin. These findings are important for identifying plants with potential to combat diabetic complications.
Chan, Carmen W H; Choi, Kai Chow; Wong, Rosa S; Chow, Ka Ming; So, Winnie K W; Leung, Doris Y P; Lam, Wendy W T; Goggins, William
2016-12-02
Under-screening may increase the risk of cervical cancer in middle-aged women. This study aimed to investigate cervical cancer screening behaviour and its predictors among women aged 50 years or above. A population-based sample of 959 women was recruited by telephone from domestic households in Hong Kong, using random methods, and a structured questionnaire developed to survey participants. Multivariable logistic regressions were performed to examine the factors independently associated with cervical screening behaviour. Nearly half the sample (48%) had never had a cervical smear test. Multivariable analyses showed that age, educational level, marital status, family history of cancer, smoking status, use of complementary therapy, recommendation from health professionals, and believing that regular visits to a doctor or a Chinese herbalist were good for their health were predictors of cervical screening behaviour. Misconceptions concerned with menopause may reduce women's perceived susceptibility to cervical cancer, especially if they are 50 or above, and exert a negative effect on their screening behaviour. Healthcare professionals should actively approach these high-risk groups-older unmarried women, smokers, those less educated and who are generally not much concerned with their health.
A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.
Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa
2009-04-01
Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.
Tepe, Bektas; Sokmen, Atalay
2007-11-01
Methanolic extracts of three different Tanacetum subspecies [Tanacetum densum (Lab.) Schultz Bip. subsp. sivasicum Hub-Mor and Grierson, Tanacetum densum (Lab.) Schultz Bip. subsp. eginense Heywood and Tanacetum densum (Lab.) Schultz Bip. subsp. amani Heywood] which are endemic to Turkish flora were screened for their possible antioxidant activities by two complementary test systems namely DPPH free radical scavenging and beta-carotene/linoleic acid. In DPPH system, the most active plant was T. densum subsp. amani with an IC(50) value of 69.30+/-0.37 microg/ml. On the other hand, T. densum subsp. sivasicum exerted greater antioxidant activity than those of other subspecies in beta-carotene/linoleic acid system (79.10%+/-1.83). Antioxidant activities of BHT, curcumine and ascorbic acid were also determined as positive controls in parallel experiments. Total phenolic constituents of the extracts of Tanacetum subspecies were performed employing the literature methods involving Folin-Ciocalteu reagent and gallic acid as standard. The amount of total phenolics was highest in subsp. sivasicum (162.33+/-3.57 microg/mg), followed by subsp. amani (158.44+/-2.17 microg/mg). Especially, a positive correlation was observed between total phenolic content and antioxidant activity of the extracts.
The Multiplex Network of EU Lobby Organizations
Zeng, An; Battiston, Stefano
2016-01-01
The practice of lobbying in the interest of economic or social groups plays an important role in the policy making process of most economies. While no data is available at this stage to examine the success of lobbies in exerting influence on specific policy issues, we perform a first systematic multi-layer network analysis of a large lobby registry. Here we focus on the domains of finance and climate and we combine information on affiliation and client relations from the EU transparency register with information about shareholding and interlocking directorates of firms. We find that the network centrality of lobby organizations has no simple relation with their lobbying budget. Moreover, different layers of the multiplex network provide complementary information to characterize organizations’ potential influence. At the aggregate level, it appears that while the domains of finance and climate are separated on the layer of affiliation relations, they become intertwined when economic relations are considered. Because groups of interest differ not only in their budget and network centrality but also in terms of their internal cohesiveness, drawing a map of both connections across and within groups is a precondition to better understand the dynamics of influence on policy making and the forces at play. PMID:27792734
Weighted and directed interactions in evolving large-scale epileptic brain networks
NASA Astrophysics Data System (ADS)
Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus
2016-10-01
Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only - in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.
Terminations of DNA synthesis on 'proflavine and light'-treated phi X174 single-stranded DNA.
Piette, J; Calberg-Bacq, C M; Lopez, M; van de Vorst, A
1984-04-05
Bacteriophage phi X174 single-stranded DNA molecules were primed with five different restriction fragments and irradiated with visible light in the presence of proflavine. This photodamaged DNA was used as template for the in vitro complementary chain synthesis by E. coli DNA polymerase I (Klenow fragment). Chain terminations were observed by polyacrylamide gel electrophoresis of the synthesized products and localized by comparison with standard sequencing performed simultaneously on the untreated template. 90% of the chain terminations occurred one nucleotide before a guanine residue in the template strand. More than 80% of the sequenced guanine residues were blocking lesions demonstrating the absence of 'hot-spots' for the photodamaging effect of proflavine. At a defined position, the chain termination frequency increased linearly with the irradiation time and was directly influenced by the proflavine concentration present. An important part of lesions resulted from the action of singlet oxygen produced by excited proflavine as shown by the effect that both NaN3 and 2H2O exerted on the reaction. The induced blocking lesions must be important in vivo since no complete replicative forms could be extracted from cell infected with bacteriophages inactivated by 'proflavine and light' treatment.
Anitua, Eduardo; Pascual, Consuelo; Antequera, Desiree; Bolos, Marta; Padilla, Sabino; Orive, Gorka; Carro, Eva
2014-07-01
Impaired growth factor function is thought to drive many of the alterations observed in Alzheimer's disease (AD) patients. Endogenous regenerative technology, PRGF (plasma rich in growth factor)-Endoret, is designed for the delivery of a complex pool of patient's own active morphogens that may stimulate tissue regeneration. We obtained and characterized PRGF-Endoret preparations from human blood. We used, as experimental approach in vivo, APP/PS1 mice, characterized by age-dependent brain amyloid-β (Aβ) accumulation. Intranasal administration of PRGF-Endoret to APP/PS1 mice resulted in an important decrease in brain Aβ deposition and tau phosphorylation. PRGF-Endoret-treated APP/PS1 mice also showed decreased astrocyte reactivity, and prevented protein synaptic loss. In vitro approaches demonstrated that PRGF-Endoret treatment modulated astrocyte activation, reducing inflammatory responses, and promoted Aβ degradation. Furthermore, PRGF-Endoret stimulated global improvements in anxiety, learning, and memory behaviors. Our findings show that PRGF-Endoret exerts multifunctional and complementary effects that result in the reversal of the broad range of cognitive deficits in AD, suggesting that PRGF-Endoret may hold promise as an innovative therapy in AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Laughter and positive therapies: modern approach and practical use in medicine.
Ripoll, Ramon Mora; Casado, Isabel Quintana
2010-01-01
The exploration of the possible strategies centered in positive emotions is a suggestion to investigate and probably useful to raise the efficiency of therapeutic interventions. Laughter and humor have been classified as part of the 24 personal strengths and are considered as one of the activities that encourage personal well-being, savoring, and promoting flow states. Laughter therapy, classified within alternative or complementary therapies in medicine, includes a group of techniques and therapeutic interventions aimed to achieve laughter experiences which result in health-related outcomes, both physiological and psychological. Recent advent of positive psychology has developed high interest and expectations in the benefits of adding positive techniques to laughter therapy (and to other mind-body therapies). Consequently with this modern approach positive laughter therapy was born, as add-on to conventional laughter therapy and positive psychology, with its contributions and limitations. Health professionals can exert an important role in order to disseminate overall benefits of "positive therapies" while applying them in real-world clinical settings, for both patients and themselves. Copyright © 2010 Sociedad Española de Psiquiatría and Sociedad Española de Psiquiatría Biológica. Published by Elsevier Espana. All rights reserved.
Stefano, George B; Esch, Tobias
2005-10-01
Relaxation techniques are part of the integrative medicine movement that is of growing importance for mainstream medicine. Complementary medical therapies have the potential to affect many physiological systems. Repeatedly studies show the benefits of the placebo response and relaxation techniques in the treatment of hypertension, cardiac arrhythmias, chronic pain, insomnia, anxiety and mild and moderate depression, premenstrual syndrome, and infertility. In itself, relaxation is characterized by a decreased metabolism, heart rate, blood pressure, and rate of breathing as well as an increase in skin temperature. Relaxation approaches, such as progressive muscle relaxation, autogenic training, meditation and biofeedback, are effective in lowering systolic and diastolic blood pressure in hypertensive patients by a significant margin. Given this association with changes in vascular tone, we have hypothesized that nitric oxide, a demonstrated vasodilator substance, contribute to physiological activity of relaxation approaches. We examined the scientific literature concerning the disorders noted earlier for their nitric oxide involvement in an attempt to provide a molecular rationale for the positive effects of relaxation approaches, which are physiological and cognitive process. We conclude that constitutive nitric oxide may crucially contribute to potentially beneficial outcomes and effects in diverse pathologies, exerting a global healing effect.
Li, Jie; Yu, Zhenjia; Wang, Xiaofeng; Li, Jiaanfang; Li, Chen; Yan, Min; Zhu, Zhenggang; Liu, Bingya; Su, Liping
2017-01-01
Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. However, the molecular mechanisms underlying the tumor-promoting properties of CAFs in gastric cancer remain unclear. Here, we show that CAFs isolated from gastric cancer produce significant amounts of interleukin-6 (IL-6). CAFs enhances the migration and EMT of gastric cancer cells through the secretion of IL-6 that activates Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in gastric cancer cells, while deprivation of IL-6 using a neutralizing antibody or inhibition of JAK/STAT3 pathway with specific inhibitor AG490 markedly attenuates these phenotypes in gastric cancer cells induced by CAFs. Moreover, silencing IL-6 expression in CAFs or inhibiting JAK2/STAT3 pathway in gastric cancer cells impairs tumor peritoneal metastasis induced by CAFs in vivo. Taken together, these results suggest that CAFs in the tumor microenvironment promote the progression of gastric cancer through IL-6/JAK2/STAT3 signaling, and IL-6 targeted therapy could be a complementary approach against gastric cancer by exerting their action on stromal fibroblasts. PMID:28186964
Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...
2016-08-25
Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less
Cerritelli, Francesco; Pizzolorusso, Gianfranco; Renzetti, Cinzia; D'Incecco, Carmine; Fusilli, Paola; Perri, Paolo Francesco; Tubaldi, Lucia; Barlafante, Gina
2013-01-01
Introduction Neonatal care has been considered as one of the first priorities for improving quality of life in children. In 2010, 10% of babies were born prematurely influencing national healthcare policies, economic action plans and political decisions. The use of complementary medicine has been applied to the care of newborns. One previous study documented the positive effect of osteopathic manipulative treatment (OMT) in reducing newborns’ length of stay (LOS). Aim of this multicentre randomised controlled trial is to examine the association between OMT and LOS across three neonatal intensive care units (NICUs). Methods and analysis 690 preterm infants will be recruited from three secondary and tertiary NICUs from north and central Italy and allocated into two groups, using permuted-block randomisation. The two groups will receive standard medical care and OMT will be applied, twice a week, to the experimental group only. Outcome assessors will be blinded of study design and group allocation. The primary outcome is the mean difference in days between discharge and entry. Secondary outcomes are difference in daily weight gain, number of episodes of vomit, regurgitation, stooling, use of enema, time to full enteral feeding and NICU costs. Statistical analyses will take into account the intention-to-treat method. Missing data will be handled using last observation carried forward (LOCF) imputation technique. Ethics and dissemination Written informed consent will be obtained from parents or legal guardians at study enrolment. The trial has been approved by the ethical committee of Macerata hospital (n°22/int./CEI/27239) and it is under review by the other regional ethics committees. Results Dissemination of results from this trial will be through scientific medical journals and conferences. Trial registration This trial has been registered at http://www.clinicaltrials.org (identifier NCT01645137). PMID:23430598
Cellular Automata Generalized To An Inferential System
NASA Astrophysics Data System (ADS)
Blower, David J.
2007-11-01
Stephen Wolfram popularized elementary one-dimensional cellular automata in his book, A New Kind of Science. Among many remarkable things, he proved that one of these cellular automata was a Universal Turing Machine. Such cellular automata can be interpreted in a different way by viewing them within the context of the formal manipulation rules from probability theory. Bayes's Theorem is the most famous of such formal rules. As a prelude, we recapitulate Jaynes's presentation of how probability theory generalizes classical logic using modus ponens as the canonical example. We emphasize the important conceptual standing of Boolean Algebra for the formal rules of probability manipulation and give an alternative demonstration augmenting and complementing Jaynes's derivation. We show the complementary roles played in arguments of this kind by Bayes's Theorem and joint probability tables. A good explanation for all of this is afforded by the expansion of any particular logic function via the disjunctive normal form (DNF). The DNF expansion is a useful heuristic emphasized in this exposition because such expansions point out where relevant 0s should be placed in the joint probability tables for logic functions involving any number of variables. It then becomes a straightforward exercise to rely on Boolean Algebra, Bayes's Theorem, and joint probability tables in extrapolating to Wolfram's cellular automata. Cellular automata are seen as purely deductive systems, just like classical logic, which probability theory is then able to generalize. Thus, any uncertainties which we might like to introduce into the discussion about cellular automata are handled with ease via the familiar inferential path. Most importantly, the difficult problem of predicting what cellular automata will do in the far future is treated like any inferential prediction problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mockler, Todd C.
Plant growth and development, including stem elongation, flowering time, and shade-avoidance habits, are affected by wavelength composition (i.e., light quality) of the light environment. the molecular mechanisms underlying light perception and signaling pathways in plants have been best characterized in Arabidopsis thaliana where dozens of genes have been implicated in converging, complementary, and antagonistic pathways communicating light quality cues perceived by the phytochrome (red/far-red) cryptochrome (blue) and phototropin (blue) photorecptors. Light perception and signaling have been studied in grasses, including rice and sorghum but in much less detail than in Arabidopsis. During the course of the Mocker lab's DOE-funded wrokmore » generating a gene expression atlas in Brachypodium distachyon we observed that Brachypodium plants grown in continuous monochromatic red light or continuous white light enriched in far-red light accumulated significantly more biomass and exhibited significantly greater seed yield than plants grown in monochromatic blue light or white light. This phenomenon was also observed in two other grasses, switchgrass and rice. We will systematically manipulate the expression of genes predicted to function in Brachypodium phytochrome signaling and assess the phenotypic consequences in transgenic Brachypodium plants in terms of morphology, stature, biomass accumulation, and cell wall composition. We will also interrogate direct interactions between candidate phytochrome signaling transcription factors and target promoters using a high-throughput yeast one-hybrid system. Brachypodium distachyon has emerged as a model grass species and is closely related to candidate feedstock crops for bioethanol production. Identification of genes capable of modifying growth characteristics of Brachypodium, when misexpressed, in particular increasing biomass accumulation, by modulating photoreceptor signaling will provide valuable candidates for manipulation in biomass and biofuel feedstock grass crops through targeted breeding or engineering efforts.« less
2011-01-01
Background DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. Results We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2. Conclusions The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting. PMID:21447194
The heuristic value of redundancy models of aging.
Boonekamp, Jelle J; Briga, Michael; Verhulst, Simon
2015-11-01
Molecular studies of aging aim to unravel the cause(s) of aging bottom-up, but linking these mechanisms to organismal level processes remains a challenge. We propose that complementary top-down data-directed modelling of organismal level empirical findings may contribute to developing these links. To this end, we explore the heuristic value of redundancy models of aging to develop a deeper insight into the mechanisms causing variation in senescence and lifespan. We start by showing (i) how different redundancy model parameters affect projected aging and mortality, and (ii) how variation in redundancy model parameters relates to variation in parameters of the Gompertz equation. Lifestyle changes or medical interventions during life can modify mortality rate, and we investigate (iii) how interventions that change specific redundancy parameters within the model affect subsequent mortality and actuarial senescence. Lastly, as an example of data-directed modelling and the insights that can be gained from this, (iv) we fit a redundancy model to mortality patterns observed by Mair et al. (2003; Science 301: 1731-1733) in Drosophila that were subjected to dietary restriction and temperature manipulations. Mair et al. found that dietary restriction instantaneously reduced mortality rate without affecting aging, while temperature manipulations had more transient effects on mortality rate and did affect aging. We show that after adjusting model parameters the redundancy model describes both effects well, and a comparison of the parameter values yields a deeper insight in the mechanisms causing these contrasting effects. We see replacement of the redundancy model parameters by more detailed sub-models of these parameters as a next step in linking demographic patterns to underlying molecular mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, I-Wen; Papagiakoumou, Eirini; Emiliani, Valentina
2018-06-01
Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility. Copyright © 2018 Elsevier Ltd. All rights reserved.
Uncoupling clutch size, prolactin, and luteinizing hormone using experimental egg removal.
Ryan, Calen P; Dawson, Alistair; Sharp, Peter J; Williams, Tony D
2015-03-01
Clutch size is a key avian fitness and life history trait. A physiological model for clutch size determination (CSD), involving an anti-gonadal effect of prolactin (PRL) via suppression of luteinizing hormone (LH), was proposed over 20 years ago, but has received scant experimental attention since. The few studies looking at a PRL-based mechanistic hypothesis for CSD have been equivocal, but recent experiments utilizing a pharmacological agent to manipulate PRL in the zebra finch (Taeniopygia guttata) found no support for a role of this hormone in clutch size determination. Here, we take a complementary approach by manipulating clutch size through egg removal, examining co-variation in PRL and LH between two breeding attempts, as well as through experimentally-extended laying. Clutch size increased for egg removal females, but not controls, but this was not correlated with changes in PRL or LH. There were also no differences in PRL between egg removal females and controls, nor did PRL levels during early, mid- or late-laying of supra-normal clutches predict clutch size. By uncoupling PRL, LH and clutch size in our study, several key predictions of the PRL-based mechanistic model for CSD were not supported. However, a positive correlation between PRL levels late in laying and days relative to the last egg (clutch completion) provides an alternative explanation for the equivocal results surrounding the conventional PRL-based physiological model for CSD. We suggest that females coordinate PRL-mediated incubation onset with clutch completion to minimize hatching asynchrony and sibling hierarchy, a behavior that is amplified in females laying larger clutches. Copyright © 2015 Elsevier Inc. All rights reserved.
Novel Interventions for Heat/Exercise Induced Sudden Death and Fatigue
2013-10-01
mutations associated with enhanced susceptibility to Exertional Heat Stroke (EHS), Exertional Rhabdomyolysis (ER), and Malignant Hyperthermia (MH) by...reduces the probability of a hypermetabolic response in YS mice. 15. SUBJECT TERMS: Exertional Heat Stroke, Exertional Rhabdomyolysis ...and exertional rhabdomyolysis (ER) have been reported in subjects with diagnosis of Malignant Hyperthermia (MH). MH is a life- threatening
Pena-Miller, Rafael; Laehnemann, David; Jansen, Gunther; Fuentes-Hernandez, Ayari; Rosenstiel, Philip; Schulenburg, Hinrich; Beardmore, Robert
2013-01-01
Conventional wisdom holds that the best way to treat infection with antibiotics is to 'hit early and hit hard'. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However, as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load, a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon. When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem; Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il
The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases.more » No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.« less
Biswas, Jayanta K; Hazra, Saumen; Majumdar, Jayjit; Mandal, Sushil K; Shaheen, Sabry M; Sarkar, Santosh K; Meissner, Ralph; Meers, Erik; Rinklebe, Jörg
2017-12-01
The study examined the impact of raking and fish bioturbation on modulating phosphorus (P) concentrations in the water and sediment under different trophic conditions. An outdoor experiment was set to monitor physicochemical and microbiological parameters of water and sediment influencing P diagenesis. A pilot study with radioactive 32 P was also performed under the agency of raking and bacteria (Bacillus sp.). Raking was more effective in release of P under unfertilized conditions by significantly enhancing orthophosphate (35%) and soluble reactive phosphate (31.8%) over respective controls. Bioturbation increased total and available P in sediments significantly as compared to control. The rates of increase were higher in the unfertilized conditions (17.6-28.4% for total P and 12.2 to 23.2% for available P) than the fertilized ones (6.5-12.4% for total P and 9.1 to 15% for available P). The combined effects of raking and bioturbation on orthophosphate and soluble reactive phosphate were also stronger under unfertilized state (54.5 and 81.8%) than fertilized ones (50 and 70%). The tracer signature showed that coupled action of introduced bacteria and repeated raking resulted in 59.2, 23 and 16% higher counts of radioactive P than the treatments receiving raking once, repeated raking and bacteria inoculation, respectively. Raking alone or in sync with bioturbation exerted pronounced impact on P diagenesis through induction of coupled mineralization and nutrient release. It has significant implication for performing regular raking of fish-farm sediments and manipulation of bottom-grazing fish to regulate mineralization of organic matter and release of obnoxious gases from the system. Further, they synergistically can enhance the buffering capacity against organic overload and help to maintain aquatic ecosystem health.
Covelo, Ignacio R; Patel, Zaid I; Luviano, Jennifer A; Stratford, Thomas R; Wirtshafter, David
2014-08-15
Injections of the GABAA antagonist bicuculline into the medial ventral pallidum (VPm) induce marked increases in food intake, but nothing is known about the way in which these injections alter the distribution of intake in a macronutrient selection situation. We investigated this topic by adapting rats to a diet containing independent sources of protein, carbohydrate and fat, and then examining the effects of intra-VPm bicuculline on diet selection. Under these conditions, bicuculline produced a massive, preferential increase in fat intake with subjects consuming a mean of 97% of their calories from fat. Furthermore, all treated subjects ate fat before any other macronutrient, suggesting that the animals' behavior was directed selectively toward this dietary component even before consumption had begun. Similar effects were not observed following food deprivation, which exerted its largest effect on carbohydrate intake. To compare the intra-VPm bicuculline response to that seen after activation of GABA receptors in the nucleus accumbens shell (AcbSh), a major source of projections to the VPm, we conducted similar experiments with intra-AcbSh injections of muscimol and baclofen. These injections also enhanced food intake, but did not reproduce the selective preference for fat seen after intra-VPm bicuculline. These experiments provide the first demonstration of preferential enhancement of fat intake following manipulations of a nonpeptide neurotransmitter. Since mean intakes of fat under baseline conditions and after deprivation tended to be lower than those of carbohydrates, it seems unlikely that the effects of intra-VPm bicuculline are related to the intrinsic "rewarding" properties of fat, but might rather reflect the induction of a state of "fat craving." Copyright © 2014 Elsevier B.V. All rights reserved.
The influence of object shape and center of mass on grasp and gaze
Desanghere, Loni; Marotta, Jonathan J.
2015-01-01
Recent experiments examining where participants look when grasping an object found that fixations favor the eventual index finger landing position on the object. Even though the act of picking up an object must involve complex high-level computations such as the visual analysis of object contours, surface properties, knowledge of an object’s function and center of mass (COM) location, these investigations have generally used simple symmetrical objects – where COM and horizontal midline overlap. Less research has been aimed at looking at how variations in object properties, such as differences in curvature and changes in COM location, affect visual and motor control. The purpose of this study was to examine grasp and fixation locations when grasping objects whose COM was positioned to the left or right of the objects horizontal midline (Experiment 1) and objects whose COM was moved progressively further from the midline of the objects based on the alteration of the object’s shape (Experiment 2). Results from Experiment 1 showed that object COM position influenced fixation locations and grasp locations differently, with fixations not as tightly linked to index finger grasp locations as was previously reported with symmetrical objects. Fixation positions were also found to be more central on the non-symmetrical objects. This difference in gaze position may provide a more holistic view, which would allow both index finger and thumb positions to be monitored while grasping. Finally, manipulations of COM distance (Experiment 2) exerted marked effects on the visual analysis of the objects when compared to its influence on grasp locations, with fixation locations more sensitive to these manipulations. Together, these findings demonstrate how object features differentially influence gaze vs. grasp positions during object interaction. PMID:26528207
Deparle, L A; Gupta, R C; Canerdy, T D; Goad, J T; D'Altilio, M; Bagchi, M; Bagchi, D
2005-08-01
DeParle L. A., Gupta R. C., Canerdy T. D., Goad J. T., D'Altilio M., Bagchi M., Bagchi D. Efficacy and safety of glycosylated undenatured type-II collagen (UC-II) in therapy of arthritic dogs. J. vet. Pharmacol. Therap.28, 385-390. In large breed dogs, arthritis is very common because of obesity, injury, aging, immune disorder, or genetic predispositions. This study was therefore undertaken to evaluate clinical efficacy and safety of undenatured type-II collagen (UC-II) in obese-arthritic dogs. Fifteen dogs in three groups received either no UC-II (Group I) or UC-II with 1 mg/day (Group II) or 10 mg/day (Group III) for 90 days. Lameness and pain were measured on a weekly basis for 120 days (90 days treatment plus 30 days post-treatment). Blood samples were assayed for creatinine and blood urea nitrogen (markers of renal injury); and alanine aminotransferase and aspartate aminotransferase (evidence of hepatic injury). Dogs receiving 1 mg or 10 mg UC-II/day for 90 days showed significant declines in overall pain and pain during limb manipulation and lameness after physical exertion, with 10 mg showed greater improvement. At either dose of UC-II, no adverse effects were noted and no significant changes were noted in serum chemistry, suggesting that UC-II was well tolerated. In addition, dogs receiving UC-II for 90 days showed increased physical activity level. Following UC-II withdrawal for a period of 30 days, all dogs experienced a relapse of overall pain, exercise-associated lameness, and pain upon limb manipulation. These results suggest that daily treatment of arthritic dogs with UC-II ameliorates signs and symptoms of arthritis, and UC-II is well tolerated as no adverse effects were noted.
Schuh, Jillian M; Eigsti, Inge-Marie; Mirman, Daniel
2016-12-01
Pragmatic language impairments are nearly universal in autism spectrum disorders (ASD). Discourse requires that we monitor information that is shared or mutually known, called "common ground." While many studies have examined the role of Theory of Mind (ToM) in such impairments, few have examined working memory (WM). Common ground impairments in ASD could reflect limitations in both WM and ToM. This study explored common ground use in youth ages 8-17 years with high-functioning ASD (n = 13) and typical development (n = 22); groups did not differ on age, gender, IQ, or standardized language. We tracked participants' eye movements while they performed a discourse task in which some information was known only to the participant (e.g., was privileged; a manipulation of ToM). In addition, the amount of privileged information varied (a manipulation of WM). All participants were slower to fixate the target when considering privileged information, and this effect was greatest during high WM load trials. Further, the ASD group was more likely to fixate competing (non-target) shapes. Predictors of fixation patterns included ASD symptomatology, language ability, ToM, and WM. Groups did not differ in ToM. Individuals with better WM fixated the target more rapidly, suggesting an association between WM capacity and efficient discourse. In addition to ToM knowledge, WM capacity constrains common ground representation and impacts pragmatic skills in ASD. Social impairments in ASD are thus associated with WM capacity, such that deficits in domain-general, nonsocial processes such as WM exert an influence during complex social interactions. Autism Res 2016, 9: 1340-1352. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Domain-Specific Control of Selective Attention
Lin, Szu-Hung; Yeh, Yei-Yu
2014-01-01
Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977
The acute physiological and mood effects of tea and coffee: the role of caffeine level.
Quinlan, P T; Lane, J; Moore, K L; Aspen, J; Rycroft, J A; O'Brien, D C
2000-05-01
The objective of this study was to determine the effect of caffeine level in tea and coffee on acute physiological responses and mood. Randomised full crossover design in subjects after overnight caffeine abstention was studied. In study 1 (n = 17) the caffeine level was manipulated naturalistically by preparing tea and coffee at different strengths (1 or 2 cups equivalent). Caffeine levels were 37.5 and 75 mg in tea, 75 and 150 mg in coffee, with water and no-drink controls. In study 2 (n = 15) caffeine level alone was manipulated (water, decaffeinated tea, plus 0, 25, 50, 100, and 200 mg caffeine). Beverage volume and temperature (55 degrees C) were constant. SBP, DBP, heart rate, skin temperature, skin conductance, and mood were monitored over each 3-h study session. In study 1, tea and coffee produced mild autonomic stimulation and an elevation in mood. There were no effects of tea vs. coffee or caffeine dose, despite a fourfold variation in the latter. Increasing beverage strength was associated with greater increases in DBP and energetic arousal. In study 2, caffeinated beverages increased SBP, DBP, and skin conductance and lowered heart rate and skin temperature compared to water. Significant dose-response relationships to caffeine were seen only for SBP, heart rate, and skin temperature. There were significant effects of caffeine on energetic arousal but no consistent dose-response effects. Caffeinated beverages acutely stimulate the autonomic nervous system and increase alertness. Although caffeine can exert dose-dependent effects on a number of acute autonomic responses, caffeine level is not an important factor. Factors besides caffeine may contribute to these acute effects.
Patient Use of Complementary and Alternative Medicines in an Outpatient Pediatric Neurology Clinic.
Kenney, Daniel; Jenkins, Sarah; Youssef, Paul; Kotagal, Suresh
2016-05-01
This article describes the use of complementary and alternative medicines in an outpatient pediatric neurology clinic, and assesses family attitudes toward the efficacy of complementary and alternative medicines versus prescription medications. Complementary and alternative medicine is an important element of the modern health care landscape. There is limited information about whether, and to what extent, families perceive its utility in childhood neurological disorders. Surveys were distributed to 500 consecutive patients at a child neurology clinic in Rochester, Minnesota. Questions pertained to the child's diagnoses, use of complementary and alternative medicines, and the specific complementary and alternative medicine modalities that were used. Opinions were also gathered on the perceived efficacy of complementary and alternative medicines and prescription medications. Data were compared using χ(2) or Fisher exact tests as indicated. A total of 484 surveys were returned, of which 327 were usable. Only 17.4% admitted to use of complementary and alternative medicine to treat neurological problems. However, in follow-up questioning, actually 41.6% of patients recognized that they were using one or more types of complementary and alternative medicines. Disorders associated with a statistically significant increased prevalence of complementary and alternative medicine use were headache (50.8% with headache used complementary and alternative medicine versus 35.7% without headache; P = 0.008, Fisher exact test), chronic fatigue (63.2% vs 38.8%; P = 0.005, Fisher exact test), and sleep disorders (77.1% vs 37.3%; P < 0.0001, Fisher exact test). A large proportion of pediatric neurology patients in our clinic are also using complementary and alternative medicine. Only 38.5% of these recognize themselves as using complementary and alternative medicine, underlining the need to inquire in-depth about its use. Patients who are less satisfied with their prescription medications are more likely to use complementary and alternative medicine, perhaps reflecting the less tractable nature of their disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Spiegler, J; Eisemann, N; Ehlers, S; Orlikowsky, T; Kannt, O; Herting, E; Göpel, W
2015-06-01
We analysed at what age parents start complementary food in very low birth weight infants, determined risk factors for early introduction of complementary food (post-term age) and analysed whether the age at introduction of complementary food influences height or weight at 2 years of age. Parents of premature infants born in 2009-2011 answered questionnaires regarding introduction of complementary food in the first year of life (N=2262) and were followed up at a post-term age of 2 years (N=981). Length and weight were compared with full-term infants from the KiGGs study. Logistic and linear regression analyses were conducted to study predictors for early introduction of complementary food and the influence of age at introduction of complementary food on later height and weight. Average age at introduction of complementary food was 3.5 months post-term age. The lower the gestational age at birth, the earlier (post-term age) vegetables and meat were introduced. Age at introduction of complementary food was influenced by intrauterine growth restriction, gestational age at birth, maternal education and a developmental delay perceived by the parents. Length and weight at a post-term age of 2 years was not negatively influenced by early introduction of complementary food. VLBW infants are introduced to complementary food on average before a post-term age of 4 months. There was no negative effect of early introduction of complementary food on height and weight at 2 years of age.
Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions.
Andia, Isabel; Abate, Michele
2018-04-01
Current research on common musculoskeletal problems, including osteoarticular conditions, tendinopathies, and muscle injuries, focuses on regenerative translational medicine. Platelet-rich plasma therapies have emerged as a potential approach to enhance tissue repair and regeneration. Platelet-rich plasma application aims to provide supraphysiological concentrations of platelets and optionally leukocytes at injured/pathological tissues mimicking the initial stages of healing. However, the efficacy of platelet-rich plasma is controversial in chronic diseases because patients' outcomes show partial improvements. Platelet-rich plasma can be customized to specific conditions by selecting the most appropriate formulation and timing for application or by combining platelet-rich plasma with synergistic or complementary treatments. To achieve this goal, researchers should identify and enhance the main mechanisms of healing. In this review, the interactions between platelet-rich plasma and healing mechanisms were addressed and research opportunities for customized treatment modalities were outlined. The development of combinational platelet-rich plasma treatments that can be used safely and effectively to manipulate healing mechanisms would be valuable and would provide insights into the processes involved in physiological healing and pathological failure.
Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza
2017-01-01
A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.
Wang, Z; Hennion, B; Urruty, L; Montury, M
2000-11-01
Solid-phase microextraction coupled with high performance liquid chromatography has been studied for the analysis of methiocarb, napropamide, fenoxycarb and bupirimate in strawberries. The strawberries were blended and centrifuged. Then, an aliquot of the resulting extracting solution was subjected to solid-phase microextraction (SPME) on a 60 microns polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 45 min at room temperature. The extracted pesticides on the SPME fibre were desorbed into SPME/high performance liquid chromatography (HPLC) interface for HPLC analysis with diode-array detection (DAD). The method is organic solvent-free for the whole extraction process and is simple and easy to manipulate. The detection limits were shown to be at low microgram kg-1 level and the linear response covered the range from 0.05 to 2 mg kg-1 of pesticides in strawberries with a regression coefficient larger than 0.99. A good repeatability with RSDs between 2.92 and 9.25% was obtained, depending on compounds.
Manipulating the ABCs of self-assembly via low-χ block polymer design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Alice B.; Bates, Christopher M.; Lee, Byeongdu
Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χ ij). In this report, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χ AC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology which we designate LAM P. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM 3) with ABCB periods. Complementary small angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations andmore » predicts that LAM P is thermodynamically stable below a critical χ AC, above which LAM 3 emerges. Both experiments and theory expose close analogies to ABA triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. Furthermore, these conclusions provide new opportunities in block polymer design with potential consequences spanning all self-assembling soft materials.« less
Manipulating the ABCs of self-assembly via low-χ block polymer design
Chang, Alice B.; Bates, Christopher M.; Lee, Byeongdu; ...
2017-06-06
Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χ ij). In this report, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χ AC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology which we designate LAM P. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM 3) with ABCB periods. Complementary small angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations andmore » predicts that LAM P is thermodynamically stable below a critical χ AC, above which LAM 3 emerges. Both experiments and theory expose close analogies to ABA triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. Furthermore, these conclusions provide new opportunities in block polymer design with potential consequences spanning all self-assembling soft materials.« less
Tunneling through superlattices: the effect of anisotropy and kinematic coupling.
Halilov, S V; Huang, X Y; Hytha, M; Stephenson, R; Yiptong, A; Takeuchi, H; Cody, N; Mears, R J
2012-12-12
The tunneling of carriers in stratified superlattice systems is analyzed in terms of the constituent effective mass tensor. The focus is on the effects on the tunneling which are caused by the side regions of an intervening barrier. Depending on the covalency and work function in the constituent layers of a superlattice, it is concluded that the kinematics in the regions on either side determined by the effective carrier mass and its interference with the band offset at heterojunctions leads to either a constructive or a destructive effect on the tunneling current. As an example, Si(1-x)Ge(x)/Si and Al(x)Ga(1-x)As/GaAs superlattices are demonstrated to reduce the tunneling current at certain fractional thicknesses and stoichiometries of the constituent slabs without affecting the lateral mobility. The findings show, in general, how manipulation of the carrier's effective mass tensor through stoichiometric/structural modulation of the heterostructure may be used to control the tunneling current through a given potential barrier, given that the characteristic de Broglie wavelength exceeds all the constituent dimensions, thus offering a method complementary to high-k technologies.
Topology, localization, and quantum information in atomic, molecular and optical systems
NASA Astrophysics Data System (ADS)
Yao, Norman Ying
The scientific interface between atomic, molecular and optical (AMO) physics, condensed matter, and quantum information science has recently led to the development of new insights and tools that bridge the gap between macroscopic quantum behavior and detailed microscopic intuition. While the dialogue between these fields has sharpened our understanding of quantum theory, it has also raised a bevy of new questions regarding the out-of-equilibrium dynamics and control of many-body systems. This thesis is motivated by experimental advances that make it possible to produce and probe isolated, strongly interacting ensembles of disordered particles, as found in systems ranging from trapped ions and Rydberg atoms to ultracold polar molecules and spin defects in the solid state. The presence of strong interactions in these systems underlies their potential for exploring correlated many-body physics and this thesis presents recent results on realizing fractionalization and localization. From a complementary perspective, the controlled manipulation of individual quanta can also enable the bottom-up construction of quantum devices. To this end, this thesis also describes blueprints for a room-temperature quantum computer, quantum credit cards and nanoscale quantum thermometry.