Teleoperator systems for manned space missions
NASA Technical Reports Server (NTRS)
Interian, A.
1972-01-01
The development of remote mechanical systems to augment man's capabilities in our manned space effort is considered. A teleoperator system extends man's innate intelligence and sensory capabilities to distant hostile and hazardous environments through a manipulator-equipped spacecraft and an RF link. Examined are space teleoperator system applications in the space station/space shuttle program, which is where the most immediate need exists and the potential return is greatest.
Man-systems distributed system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Lewis, J. L.
1990-01-01
Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.
33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?
Code of Federal Regulations, 2014 CFR
2014-07-01
... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...
33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...
33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?
Code of Federal Regulations, 2012 CFR
2012-07-01
... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...
33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?
Code of Federal Regulations, 2011 CFR
2011-07-01
... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...
33 CFR 149.413 - On a manned deepwater port, what spaces require a fixed fire extinguishing system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... capacity of more than 200 cubic feet, and similar spaces containing flammable liquids. (b) Galley ranges or... spaces require a fixed fire extinguishing system? 149.413 Section 149.413 Navigation and Navigable Waters... manned deepwater port, what spaces require a fixed fire extinguishing system? The manned deepwater port...
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
Roles and needs of man in space
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1983-01-01
Human capabilities and requirements on space missions are discussed. Utilitarian and humanistic motivations for manned missions are considered, and a general program of development from easy space access and return, to a permanent LEO presence, to the limited self-sufficiency of man in space, is proposed. Man's potential as scientific observer, operator, and engineer/technician is illustrated with examples from the Apollo and Skylab missions. It is shown that future increases in man's space presence will require significant improvements in habitation technology, crew comfort and safety, operational effectiveness and reliability, and man/machine interactions: man-tended systems must be standardized and adapted to (mainly EVA) human servicing; permanently manned systems must be designed to attain levels of comfort, privacy, and overall habitability more like those expected on the ground.
Spacecraft Power Systems Engineering: Solutions for NASA's Manned Space Program
NASA Technical Reports Server (NTRS)
Scott, John H.
2007-01-01
An overview of spacecraft power systems is presented, with a focus on applications in the manned space program. The topics include: 1) History; 2) State-of-the-art; 3) Development directions; 4) Focus on applications in the manned space program led from JSC; 5) Power Systems Engineering Trade Space; 6) Power Generation and Energy Storage; 7) Power Distribution and Control; and 8) Actuation
Exploration of the utility of military man in space in the year 2025
NASA Astrophysics Data System (ADS)
Hansen, Daniel L.
1992-03-01
It is absolutely essential for the well being of today's space forces as well as the future space forces of 2025, that DOD develop manned advanced technology space systems in lieu of or in addition to unmannned systems to effectively utilize mulitary man's compelling and aggressive warfighting abilities to accomplish the critical wartime mission elements of space control and force application. National space policy, military space doctrine and common all dictate they should do so if space superiority during future, inevitable conflict with enemy space forces is the paramount objective. Deploying military man in space will provide that space superiority and he will finally become the 'center of gravity' of the U.S. space program.
NASA Technical Reports Server (NTRS)
Spears, L. T.; Kramer, R. D.
1990-01-01
The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.
NASA Technical Reports Server (NTRS)
1975-01-01
Mission planning, systems analysis, and design concepts for the Space Shuttle/Spacelab system for extended manned operations are described. Topics discussed are: (1) payloads, (2) spacecraft docking, (3) structural design criteria, (4) life support systems, (5) power supplies, and (6) the role of man in long duration orbital operations. Also discussed are the assembling of large structures in space. Engineering drawings are included.
Manned orbital systems concepts study. Book 2: Requirements for extended-duration missions
NASA Technical Reports Server (NTRS)
1975-01-01
In order to provide essential data needed in long-range program planning, the Manned Orbital Systems Concepts (MOSC) study attempted to define, evaluate, and compare concepts for manned orbital systems that provide extended experiment mission capabilities in space, flexibility of operation, and growth potential. Specific areas discussed include roles and requirements for man in future space missions, requirements for extended capability, mission/payload concepts, and preliminary design and operational requirements.
Human capabilities in space. [man machine interaction
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.
1984-01-01
Man's ability to live and perform useful work in space was demonstrated throughout the history of manned space flight. Current planning envisions a multi-functional space station. Man's unique abilities to respond to the unforeseen and to operate at a level of complexity exceeding any reasonable amount of previous planning distinguish him from present day machines. His limitations, however, include his inherent inability to survive without protection, his limited strength, and his propensity to make mistakes when performing repetitive and monotonous tasks. By contrast, an automated system does routine and delicate tasks, exerts force smoothly and precisely, stores, and recalls large amounts of data, and performs deductive reasoning while maintaining a relative insensitivity to the environment. The establishment of a permanent presence of man in space demands that man and machines be appropriately combined in spaceborne systems. To achieve this optimal combination, research is needed in such diverse fields as artificial intelligence, robotics, behavioral psychology, economics, and human factors engineering.
Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts
NASA Technical Reports Server (NTRS)
1982-01-01
Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.
The evolution of automation and robotics in manned spaceflight
NASA Technical Reports Server (NTRS)
Moser, T. L.; Erickson, J. D.
1986-01-01
The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
Flight telerobotic servicer legacy
NASA Astrophysics Data System (ADS)
Shattuck, Paul L.; Lowrie, James W.
1992-11-01
The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.
[Application prospect of human-artificial intelligence system in future manned space flight].
Wei, Jin-he
2003-01-01
To make the manned space flight more efficient and safer, a concept of human-artificial (AI) system is proposed in the present paper. The task of future manned space flight and the technique requirement with respect to the human-AI system development were analyzed. The main points are as follows: 1)Astronaut and AI are complementary to each other functionally; 2) Both symbol AI and connectionist AI should be included in the human-AI system, but expert system and Soar-like system are used mainly inside the cabin, the COG-like robots are mainly assigned for EVA either in LEO flight or on the surface of Moon or Mars; 3) The human-AI system is hierarchical in nature with astronaut at the top level; 4) The complex interfaces between astronaut and AI are the key points for running the system reliably and efficiently. As the importance of human-AI system in future manned space flight and the complexity of related technology, it is suggested that the R/D should be planned as early as possible.
Use of IPsec by Manned Space Missions
NASA Technical Reports Server (NTRS)
Pajevski, Michael J.
2009-01-01
NASA's Constellation Program is developing its next generation manned space systems for missions to the International Space Station (ISS) and the Moon. The Program is embarking on a path towards standards based Internet Protocol (IP) networking for space systems communication. The IP based communications will be paired with industry standard security mechanisms such as Internet Protocol Security (IPsec) to ensure the integrity of information exchanges and prevent unauthorized release of sensitive information in-transit. IPsec has been tested in simulations on the ground and on at least one Earth orbiting satellite, but the technology is still unproven in manned space mission situations and significant obstacles remain.
Distribution of man-machine controls in space teleoperation
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1982-01-01
The distribution of control between man and machine is dependent on the tasks, available technology, human performance characteristics and control goals. This dependency has very specific projections on systems designed for teleoperation in space. This paper gives a brief outline of the space-related issues and presents the results of advanced teleoperator research and development at the Jet Propulsion Laboratory (JPL). The research and development work includes smart sensors, flexible computer controls and intelligent man-machine interface devices in the area of visual displays and kinesthetic man-machine coupling in remote control of manipulators. Some of the development results have been tested at the Johnson Space Center (JSC) using the simulated full-scale Shuttle Remote Manipulator System (RMS). The research and development work for advanced space teleoperation is far from complete and poses many interdisciplinary challenges.
NASA Technical Reports Server (NTRS)
Hammack, Jerome B.; Heberlig, Jack C.
1961-01-01
The Mercury-Redstone program is reviewed as to its intended mission and its main results. The progressive results of unmanned, animal, and manned flights of this over-all Project Mercury ballistic training program are presented. A technical description of the major spacecraft systems is presented with some analysis of flight performance. Performance of the spacecraft with and without pilot input is discussed. The influence of the astronaut as an operating link in the over-all system is presented, and relative difficulties of manned versus unmanned flight are briefly commented upon. The program provided information on man as an integral part of a space flight system, demonstrating that man can assume a primary role in space as he does in other realms of flight. The Mercury-Redstone program demonstrated that the Mercury spacecraft was capable of manned space flight, and succeeded in partially qualifying the spacecraft for orbital flight.
Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions
NASA Technical Reports Server (NTRS)
Silverman, S. W.; Willenberg, H. J.; Robertson, C.
1985-01-01
An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.
NASA Technical Reports Server (NTRS)
Freitag, R. F.
1976-01-01
Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.
1971-08-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, was one of four major components comprising the Skylab (1973-1979). The ATM housed the first manned scientific telescope in space. This photograph is of the ATM thermal systems unit undergoing testing in the Space Environment Simulation Laboratory of the Manned Spacecraft Center (MSC). The ATM thermal systems unit was used to control the temperatures of space instrument's subsystems during a mission. The MSC was renamed the Johnson Space Center (JSC) in early 1973.
A survey of life support system automation and control
NASA Technical Reports Server (NTRS)
Finn, Cory K.
1993-01-01
The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.
Conceptual design of a manned orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark
1988-01-01
With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.
The application of micromachined sensors to manned space systems
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Havey, Gary; Wald, Jerry; Nasr, Hatem
1993-01-01
Micromachined sensors promise significant system advantages to manned space vehicles. Vehicle Health Monitoring (VHM) is a critical need for most future space systems. Micromachined sensors play a significant role in advancing the application of VHM in future space vehicles. This paper addresses the requirements that future VHM systems place on micromachined sensors such as: system integration, performance, size, weight, power, redundancy, reliability and fault tolerance. Current uses of micromachined sensors in commercial, military and space systems are used to document advantages that are gained and lessons learned. Based on these successes, the future use of micromachined sensors in space programs is discussed in terms of future directions and issues that need to be addressed such as how commercial and military sensors can meet future space system requirements.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.
Space station needs, attributes, and architectural options study
NASA Technical Reports Server (NTRS)
1983-01-01
The top level, time-phased total space program support system architecture is described including progress from the use of ground-based space shuttle, teleoperator system, extended duration orbiter, and multimission spacecraft, to an initial 4-man crew station at 29 deg inclination in 1991, to a growth station with an 8-man crew with capabilities for OTV high energy orbit payload placement and servicing, assembly, and construction of mission payloads in 1994. System Z, proposed for Earth observation missions in high inclination orbit, can be accommodated in 1993 using a space station derivative platform. Mission definition, system architecture, and benefits are discussed.
Proceedings of the NASA Conference on Space Telerobotics, volume 1
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Pickett, S. J.; Sage, K. H.
1984-01-01
A computer program for assessing manned space station environmental control and life support systems technology is described. The methodology, mission model parameters, evaluation criteria, and data base for 17 candidate technologies for providing metabolic oxygen and water to the crew are discussed. Examples are presented which demonstrate the capability of the program to evaluate candidate technology options for evolving space station requirements.
Human performance issues arising from manned space station missions
NASA Technical Reports Server (NTRS)
Douglas, William K.
1986-01-01
Ten former NASA astronauts were interviewed using a set of 51 questions developed to encourage the contacts to discuss any thoughts, opinions, conclusions, or suggestions which might have evolved since they left the astronaut program. Strict confidentiality was maintained. At least one astronaut from each of the NASA manned space flight programs, excluding the Space Transportation System (Shuttle), was interviewed. The report records the answers to the questions asked, spontaneous comments, and the investigator's own personal evaluations of the material obtained. No statistical analysis of the material was attempted. The professional opinions of these ten experienced astronauts will be of value to persons concerned with the design and operation of manned spacecraft and manned space stations.
[CAT system and its application in training for manned space flight].
Zhu, X Q; Chen, D M
2000-02-01
As aerospace missions get increasingly frequent and complex, training becomes ever more critical. Training devices in all levels are demanded. Computer-Aided Training (CAT) system, because its economic, efficient and flexible, is attracting more and more attention. In this paper, the basic factors of CAT system were discussed; the applications of CAT system in training for manned space flight were illustrated. Then we prospected further developments of CAT system.
Space station systems analysis study. Part 1, volume 1: Executive study
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.
Life support system definition for a low cost shuttle launched space station.
NASA Technical Reports Server (NTRS)
Nelson, W. G.; Cody, J.
1972-01-01
Discussion of the tradeoffs and EC/LS definition for a low cost shuttle launched space station to be launched in the late 1970s for use as a long-term manned scientific laboratory. The space station consists of 14-ft-diam modules, clustered together to support a six-man crew at the initial space station (ISS) level and a 12-man crew at the growth space station (GSS) level. Key design guidelines specify low initial cost and low total program cost and require two separate pressurized habitable compartments with independent lift support capability. The methodology used to select the EC/LS design consisted of systematically reducing quantitative parameters to a common denominator of cost. This approach eliminates many of the inconsistencies that can occur in such decision making. The EC/LS system selected is a partially closed system which recovers urine, condensate, and wash water and concentrates crew expired CO2 for use in a low thrust resistojet propulsion system.
FARMS: The Flexible Agricultural Robotics Manipulator
NASA Technical Reports Server (NTRS)
Gill, Paul S.
1991-01-01
A technology utilization project was established with the Marshall Space Flight Center and the University of Georgia to develop an Earth-based, robotic end effector to process live plant (geranium) material which will improve productivity and efficiency in agricultural systems such as commercial nurseries and greenhouse systems. The aim is to apply this technology to NASA's presence in space, including permanently manned space stations and manned planetary communities requiring large scale food production needs.
Teleoperators - Manual/automatic system requirements.
NASA Technical Reports Server (NTRS)
Janow, C.; Malone, T. B.
1973-01-01
The teleoperator is defined as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and cognitive capabilities. The teleoperator system incorporates the decision making, adaptive intelligence without requiring its presence. The man and the machine work as a team, each contributing unique and significant capabilities, and each depending on the other to achieve a common goal. Some of the more significant requirements associated with the development of teleoperator systems technology for space, industry, and medicine are examined. Emphasis is placed on the requirement to more effectively use the man and the machine in any man-machine system.
A voyage to Mars: A challenge to collaboration between man and machines
NASA Technical Reports Server (NTRS)
Statler, Irving C.
1991-01-01
A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given.
NASA Technical Reports Server (NTRS)
Booher, Cletis R.; Goldsberry, Betty S.
1994-01-01
During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.
Space Station man-machine automation trade-off analysis
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Bard, J.; Feinberg, A.
1985-01-01
The man machine automation tradeoff methodology presented is of four research tasks comprising the autonomous spacecraft system technology (ASST) project. ASST was established to identify and study system level design problems for autonomous spacecraft. Using the Space Station as an example spacecraft system requiring a certain level of autonomous control, a system level, man machine automation tradeoff methodology is presented that: (1) optimizes man machine mixes for different ground and on orbit crew functions subject to cost, safety, weight, power, and reliability constraints, and (2) plots the best incorporation plan for new, emerging technologies by weighing cost, relative availability, reliability, safety, importance to out year missions, and ease of retrofit. A fairly straightforward approach is taken by the methodology to valuing human productivity, it is still sensitive to the important subtleties associated with designing a well integrated, man machine system. These subtleties include considerations such as crew preference to retain certain spacecraft control functions; or valuing human integration/decision capabilities over equivalent hardware/software where appropriate.
Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
Manned space flight nuclear system safety. Volume 6: Space base nuclear system safety plan
NASA Technical Reports Server (NTRS)
1972-01-01
A qualitative identification of the steps required to assure the incorporation of radiological system safety principles and objectives into all phases of a manned space base program are presented. Specific areas of emphasis include: (1) radiological program management, (2) nuclear system safety plan implementation, (3) impact on program, and (4) summary of the key operation and design guidelines and requirements. The plan clearly indicates the necessity of considering and implementing radiological system safety recommendations as early as possible in the development cycle to assure maximum safety and minimize the impact on design and mission plans.
NASA Technical Reports Server (NTRS)
Freitag, R. F.
1975-01-01
Studies evaluating potential operational and commercial uses of space are being conducted, taking into account astronomy, astrophysics, manned bases and laboratories in earth orbit, space colonization, terrestrial communications, space processing and manufacturing, interstellar probes, planetary exploration, and the use of space for terrestrial energy supply. The present status in the exploration of the solar system is examined, giving attention to Jupiter, Venus, Mars, and Mercury. A brief outline of the development of human colonies on Mars is presented.
The Manned Spacecraft Center and medical technology
NASA Technical Reports Server (NTRS)
Johnston, R. S.; Pool, S. L.
1974-01-01
A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
Photovoltaics for high capacity space power systems
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays or storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.
The case for Mars III: Strategies for exploration - General interest and overview
NASA Technical Reports Server (NTRS)
Stoker, Carol R. (Editor)
1989-01-01
Papers on the possibilities for manned Mars missions are presented, covering topics such as space policy, space education and Mars exploration, economic issues, international cooperation, life support, biomedical factors, human factors, the Mars Rover Sample Return Mission, and possible unmanned precursor missions to Mars. Other topics include the scientific objectives for human exploration of Mars, mission strategies, possible transportation systems for manned Mars flight, advanced propulsion techniques, and the utilization of Mars resources. Additional subjects include the construction and maintenance of a Martian base, possible systems for mobility on the Martian surface, space power systems, and the use of the Space Station for a Mars mission.
Marned Orbital Systems Concept
NASA Technical Reports Server (NTRS)
1975-01-01
Despite the indefinite postponement of the Space Station in 1972, Marshall Space Flight Center (MSFC) continued to look to the future for some type of orbital facility during the post-Skylab years. In 1975, the MSFC directed a contract with the McDonnel Douglas Aerospace Company for the Manned Orbital Systems Concept (MOSC) study. This 9-month effort examined the requirements for, and defined a cost-effective orbital facility concept capable of, supporting extended manned missions in Earth orbit. The capabilities of this concept exceeded those envisioned for the Space Shuttle and Spacelab, both of which were limited by a 7 to 30-day orbital time constraint. The MOSC's initial operating capability was to be achieved in late 1984. A crew of four would man a four-module configuration. During its five-year orbital life the MOSC would have the capability to evolve into a larger 12-to-24-man facility. This is an artist's concept of MOSC.
Biomedical results of the Skylab Program.
Michel, E L; Johnston, R S; Dietlein, L F
1976-01-01
Skylab, the fourth in a logical sequence of USA manned space flight projects following Mercury, Gemini and Apollo, presented life scientists with their first opportunity for an in-depth study of man's response to the space environment. Extensive medical investigations were undertaken to increase our understanding of man's adaptation to the space environment and his readaptation to gravity upon return to earth. The flight durations of the three Skylab missions were progressively increased from 28 days to 59 days and, finally, 84 days. The results of these investigations of the various body systems clearly demonstrated that man can adapt to zero gravity and perform useful work during long-duration space flight. However, definite changes (some unexpected) in the vestibular, cardiovascular, musculo-skeletal, renal and electrolyte areas were documented. The most significant were: the occurrence of space motion sickness early in the missions; diminished orthostatic tolerance, both in-flight and post-flight; moderate losses of calcium, phosphorus and nitrogen; and decreased tolerance for exercise post-flight. The mechanisms responsible for these physiological responses must be understood and, if necessary, effective countermeasures developed before man can endure unlimited exposure to space flight.
Nuclear power--key to man's extraterrestrial civilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelo, J.A.; Buden, D.
1982-08-01
The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are the availability of compact energy sources for power and propulsion, the creation of permanent manned habitats in space, and the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear powermore » plant technologies are discussed, with emphasis on derivatives from the nuclear rocket technology.« less
Environmental control and life support technologies for advanced manned space missions
NASA Technical Reports Server (NTRS)
Powell, F. T.; Wynveen, R. A.; Lin, C.
1986-01-01
Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.
Intelligent Systems Technologies for Ops
NASA Technical Reports Server (NTRS)
Smith, Ernest E.; Korsmeyer, David J.
2012-01-01
As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.
Manned geosynchronous mission requirements and systems analysis study extension
NASA Technical Reports Server (NTRS)
1981-01-01
Turnaround requirements for the manned orbital transfer vehicle (MOTV) baseline and alternate concepts with and without a space operations center (SOC) are defined. Manned orbital transfer vehicle maintenance, refurbishment, resupply, and refueling are considered as well as the most effective combination of ground based and space based turnaround activities. Ground and flight operations requirements for abort are identified as well as low cost approaches to space and ground operations through maintenance and missions sensitivity studies. The recommended turnaround mix shows that space basing MOTV at SOC with periodic return to ground for overhaul results in minimum recurring costs. A pressurized hangar at SOC reduces labor costs by approximately 50%.
The 2nd Conference on Remotely Manned Systems (RMS): Technology and Applications
NASA Technical Reports Server (NTRS)
1975-01-01
Control theory and the design of manipulators, teleoperators, and robots are considered. Applications of remotely manned vehicles to space maintenance and orbital assembly, industry and productivity, undersea operations, and rehabilitation systems are emphasized.
Elementary school aerospace activities: A resource for teachers
NASA Technical Reports Server (NTRS)
1977-01-01
The chronological development of the story of man and flight, with emphasis on space flight, is presented in 10 units designed as a resource for elementary school teachers. Future exploration of space and the utlization of space flight capabilities are included. Each unit contains an outline, a list of suggested activities for correlation, a bibliography, and a list of selected audiovisual materials. A glossary of aerospace terms is included. Topics cover: earth characteristics that affect flight; flight in atmosphere, rockets, technological advances, unmanned Earth satellites, umanned exploration of the solar system, life support systems; astronauts, man in space, and projections for the future.
Proceedings of the NASA Conference on Space Telerobotics, volume 3
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.
DART: Delta Advanced Reusable Transport. An alternate manned space system proposal
NASA Technical Reports Server (NTRS)
1991-01-01
The Delta Advanced Reusable Transport (DART) craft is being developed to add, multiple, rapid, and cost effective space access to the U.S. capability and to further the efforts towards a permanent space presence. The DART craft provides an augmentative and an alternative system to the Shuttle. As a supplement launch vehicle, the DART adds low cost and easily accessible transport of crew and cargo to specific space destinations to the U.S. program. This adds significant opportunities for manned rated missions that do not require Shuttle capabilities. In its alternative role, the DART can provide emergency space access and satellite repair, the continuation of scientific research, and the furthering of U.S. manned efforts in the event of Shuttle incapabilities. In addition, the DART is being designed for Space Station Freedom compatibility, including its use as a 'lifeboat' emergency reentry craft for Freedom astronauts, as well as the transport of crew and cargo for station resupply.
Advanced Manned Launch System (AMLS) study
NASA Technical Reports Server (NTRS)
Ehrlich, Carl F., Jr.; Potts, Jack; Brown, Jerry; Schell, Ken; Manley, Mary; Chen, Irving; Earhart, Richard; Urrutia, Chuck; Randolph, Ray; Morris, Jim
1992-01-01
To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed.
The development status of candidate life support technology for a space station
NASA Technical Reports Server (NTRS)
Samonski, F. H., Jr.
1984-01-01
The establishment of a permanently-manned Space Station has recently been selected as the next major step in the U.S. space program. The requirements of a manned operations base in space appear to be best satisfied by on-board Environmental Control/Life Support Systems (ECLSS) which are free from, or have minimum dependence on, use of expendables and the frequent earth resupply missions which are part of systems using expendables. The present investigation is concerned with the range of regenerative life support system options which NASA is developing to be available for the Space Station designer. An air revitalization system is discussed, taking into account devices concerned with the carbon dioxide concentration, approaches of CO2 reduction, oxygen generation, trace contaminant control, and atmospheric quality monitoring. Attention is also given to an independent air revitalization system, nitrogen generation, a water reclamation system, a waste management system, applications of the technology, and future development requirements.
Space food systems - Mercury through Apollo.
NASA Technical Reports Server (NTRS)
Roth, N. G.; Smith, M. C.
1972-01-01
Major achievements which characterized the development of food systems used by American astronauts in manned space flight are reviewed throughout a period spanning the Mercury, Gemini, and Apollo programs up to and including the Apollo 11 lunar landing mission. Lists of food types are accompanied by information on packaging, storage, preparation, consumption, and quality of particular products. Experience gained from development efforts for the Manned Orbiting Laboratory Program is also discussed.
The manned transportation system study - Defining human pathways into space
NASA Technical Reports Server (NTRS)
Lance, Nick; Geyer, Mark S.; Gaunce, Michael T.; Anson, H. W.; Bienhoff, D. G.; Carey, D. A.; Emmett, B. R.; Mccandless, B.; Wetzel, E. D.
1992-01-01
Substantiating data developed by a NASA-industry team (NIT) for subsequent NASA decisions on the 'right' set of manned transportation elements needed for human access to space are discussed. Attention is given to the framework for detailed definition of these manned transportation elements. Identifying and defining architecture evaluation criteria, i.e., attributes, specified the amount and type of data needed for each concept under consideration. Several architectures, each beginning with today's transportation systems, were defined using representative systems to explore future options and address specific questions currently being debated. The present solutions emphasize affordability, safety, routineness, and reliability. Key issues associated with current business practices were challenged and the impact associated with these practices quantified.
Proceedings of the NASA Conference on Space Telerobotics, volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.
Taurus lightweight manned spacecraft Earth orbiting vehicle
NASA Technical Reports Server (NTRS)
Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris
1991-01-01
The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.
Potable water supply in U.S. manned space missions
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Straub, John E., II
1992-01-01
A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.
Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.
2008-01-01
A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.
Earth orbital experiment program and requirements study, volume 1, sections 1 - 6
NASA Technical Reports Server (NTRS)
1971-01-01
A reference manual for planners of manned earth-orbital research activity is presented. The manual serves as a systems approach to experiment and mission planning based on an integrated consideration of candidate research programs and the appropriate vehicle, mission, and technology development requirements. Long range goals and objectives for NASA activities during the 1970 to 1980 time period are analyzed. The useful and proper roles of manned and automated spacecraft for implementing NASA experiments are described. An integrated consideration of NASA long range goals and objectives, the system and mission requirements, and the alternative implementation plans are developed. Specific areas of investigation are: (1) manned space flight requirements, (2) space biology, (3) spaceborne astronomy, (4) space communications and navigation, (5) earth observation, (6) supporting technology development requirements, (7) data management system matrices, (8) instrumentation matrices, and (9) biotechnology laboratory experiments.
Manipulator system man-machine interface evaluation program. [technology assessment
NASA Technical Reports Server (NTRS)
Malone, T. B.; Kirkpatrick, M.; Shields, N. L.
1974-01-01
Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.
Microbiology operations and facilities aboard restructured Space Station Freedom
NASA Technical Reports Server (NTRS)
Cioletti, Louis A.; Mishra, S. K.; Pierson, Duane L.
1992-01-01
With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.
Taurus Lightweight Manned Spacecraft Earth orbiting vehicle
NASA Technical Reports Server (NTRS)
Bosset, M.
1991-01-01
The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.
An overview of Korean astronaut’s space experiments
NASA Astrophysics Data System (ADS)
Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.
2010-10-01
The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.
Engineering Resilience Into The Marine Expeditionary Units Resupply System Through Military Foraging
2017-09-01
19 Figure 7. Solar Portable Alternative Communications Energy System ( SPACES ) Source...sustained operations ashore SPACES solar portable alternative communications energy system STOM ship-to-objective maneuver STSM ship-to-shore movement... Communications Energy System Solar Portable Alternative Communications Energy System ( SPACES ) is a man-portable energy generation system for mounted
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
Habitability in long-term space missions
NASA Technical Reports Server (NTRS)
Mount, Frances E.
1987-01-01
The research (both in progress and completed) conducted for the U.S. Space Station in relation to the crew habitability and crew productivity is discussed. Methods and tasks designed to increase the data base of the man/system information are described. The particular research areas discussed in this paper include human productivity, on-orbit maintenance, vewing requirements, fastener types, and crew quarters. This information (along with data obtained on human interaction with command/control work station, anthropometic factors, crew equipment, galley/wardroom, restraint systems, etc) will be integrated into the common data base for the purpose of assisting the design of the Space Station and other future manned space missions.
Summary results of the first United States manned orbital space flight
NASA Technical Reports Server (NTRS)
Glenn, J. H. Jr
1963-01-01
This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.
NASA Technical Reports Server (NTRS)
Johannes, J. D.
1974-01-01
Techniques, methods, and system requirements are reported for an onboard computerized communications system that provides on-line computing capability during manned space exploration. Communications between man and computer take place by sequential execution of each discrete step of a procedure, by interactive progression through a tree-type structure to initiate tasks or by interactive optimization of a task requiring man to furnish a set of parameters. Effective communication between astronaut and computer utilizes structured vocabulary techniques and a word recognition system.
Fifth Symposium on the Role of the Vestibular Organs in Space Exploration
NASA Technical Reports Server (NTRS)
1973-01-01
Vestibular problems of manned space flight are investigated for weightlessness and reduced gravity conditions with emphasis on space station development. Intensive morphological studies on the vestibular system and its central nervous system connections are included.
Life sciences - On the critical path for missions of exploration
NASA Technical Reports Server (NTRS)
Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen
1988-01-01
Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
ECLS systems for a lunar base - A baseline and some alternate concepts
NASA Technical Reports Server (NTRS)
Hypes, Warren D.; Hall, John B., Jr.
1988-01-01
A baseline ECLS system for a lunar base manned intermittently by four crewmembers and later permanently occupied by eight crewmembers has been designed. A summary of the physical characteristics for the intermittently manned and the continuously manned bases is given. Since Space Station inheritance is a key assumption in the mission models, the ECLS system components are distributed within Space Station modules and nodes. A 'core assembly' concept is then developed to meet the objectives of both phases of the ECLS system. A supplementary study is discussed which assessed tankage requirements, penalties incurred by adding subsystem redundancy and by pressurizing large surface structures, and difficulties imposed by intermittent occupancy. Alternate concepts using lunar-derived oxygen, the gravitational field as a design aid, and a city utility-type ECLS system are also discussed.
Space Station Human Factors Research Review. Volume 1: EVA Research and Development
NASA Technical Reports Server (NTRS)
Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)
1988-01-01
An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.
Agenda of the Fourth Annual Summer Conference, NASA/USRA University Advanced Design Program
NASA Technical Reports Server (NTRS)
1988-01-01
Presentations given by the participants at the fourth annual summer conference of the NASA/USRA University Advanced Design Program are summarized. The study topics include potential space and aeronautics projects which could be undertaken during a 20 to 30 year period beginning with the Space Station Initial Operating Configuration (IOC) scheduled for the early to mid-1990's. This includes system design studies for both manned and unmanned endeavors; e.g., lunar launch and landing facilities and operations, variable artificial gravity facility for the Space Station, manned Mars aircraft and delivery system, long term space habitat, construction equipment for lunar bases, Mars oxygen production system, trans-Pacific high speed civil transport, V/STOL aircraft concepts, etc.
Methods of space radiation dose analysis with applications to manned space systems
NASA Technical Reports Server (NTRS)
Langley, R. W.; Billings, M. P.
1972-01-01
The full potential of state-of-the-art space radiation dose analysis for manned missions has not been exploited. Point doses have been overemphasized, and the critical dose to the bone marrow has been only crudely approximated, despite the existence of detailed man models and computer codes for dose integration in complex geometries. The method presented makes it practical to account for the geometrical detail of the astronaut as well as the vehicle. Discussed are the major assumptions involved and the concept of applying the results of detailed proton dose analysis to the real-time interpretation of on-board dosimetric measurements.
Food technology in space habitats
NASA Technical Reports Server (NTRS)
Karel, M.
1979-01-01
The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.
Advanced engineering software for in-space assembly and manned planetary spacecraft
NASA Technical Reports Server (NTRS)
Delaquil, Donald; Mah, Robert
1990-01-01
Meeting the objectives of the Lunar/Mars initiative to establish safe and cost-effective extraterrestrial bases requires an integrated software/hardware approach to operational definitions and systems implementation. This paper begins this process by taking a 'software-first' approach to systems design, for implementing specific mission scenarios in the domains of in-space assembly and operations of the manned Mars spacecraft. The technological barriers facing implementation of robust operational systems within these two domains are discussed, and preliminary software requirements and architectures that resolve these barriers are provided.
Orion FSW V and V and Kedalion Engineering Lab Insight
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.
2010-01-01
NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.
Space vehicle electrical power processing distribution and control study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Krausz, A.
1972-01-01
A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).
Effects of space flights on human allergic status (IgE-mediated sensitivity)
NASA Astrophysics Data System (ADS)
Buravkova, L. B.; Rykova, M. P.; Gertsik, Y. G.; Antropova, E. N.
2007-02-01
Suppression of the immune system after space flights of different duration has been reported earlier by Konstantinova [Immune system in extreme conditions, Space immunology. B. 59. M. Science 1988. 289p. (in Russian) [4]; Immunoresistance of man in space flight, Acta Astronautica 23 (1991) 123-127 [5
The Space Station Freedom - International cooperation and innovation in space safety
NASA Technical Reports Server (NTRS)
Rodney, George A.
1989-01-01
The Space Station Freedom (SSF) being developed by the United States, European Space Agency (ESA), Japan, and Canada poses novel safety challenges in design, operations, logistics, and program management. A brief overview discloses many features that make SSF a radical departure from earlier low earth orbit (LEO) space stations relative to safety management: size and power levels; multiphase manned assembly; 30-year planned lifetime, with embedded 'hooks and scars' forevolution; crew size and skill-mix variability; sustained logistical dependence; use of man, robotics and telepresence for on-orbit maintenance of station and free-flyer systems; closed-environment recycling; use of automation and expert systems; long-term operation of collocated life-sciences and materials-science experiments, requiring control and segregation of hazardous and chemically incompatible materials; and materials aging in space.
Space station support of manned Mars missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1986-01-01
The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.
Space station: Cost and benefits
NASA Technical Reports Server (NTRS)
1983-01-01
Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.
Diverse applications of advanced man-telerobot interfaces
NASA Technical Reports Server (NTRS)
Mcaffee, Douglas A.
1991-01-01
Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.
NASA Technical Reports Server (NTRS)
1972-01-01
A review of the literature used in conducting the manned space flight nuclear system safety study is presented. The objectives of the presentation are to identify and evaluate for potential application to study the existing related literature and to provide the information required to include the related literature in the NASA Aerospace Safety Research and Data Institute. More than 15,000 documents were evaluated and identification forms were prepared for 850 reports.
NASA Technical Reports Server (NTRS)
Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.
1989-01-01
The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.
NASA Technical Reports Server (NTRS)
1975-01-01
The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.
Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.
2008-01-01
A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.
NASA Technical Reports Server (NTRS)
Clark, John F.; Haggerty, James J.; Woodburn, John H.
1961-01-01
In this twentieth century, we are privileged to witness the first steps toward realization of an age-old dream: the exploration of space. Already, in the first few years of the Space Age, man has been able to penetrate the layer of atmosphere which surrounds his planet and to venture briefly into space. Scores of man-made objects have been thrust into space, some of them to roam the solar system forever. Behind each space mission are years of patient research, thousands of man-hours of labor, and large sums of money. Because the sums involved are so enormous, the question is frequently asked, "Is it worth it?" Many people want to know what return this huge investment will bring to mankind. The return on the investment is knowledge. The accumulation of knowledge over the centuries has made possible our advanced way of life. As we unlock more and more of the secrets of the universe through space exploration, we add new volumes to the encyclopedia of man's knowledge. This will be applied to the benefit of mankind. For the practical-minded, there are concrete benefits to our way of life. Although we are still in the Stone Age of space exploration, a number of immediate applications of space technology are already apparent. For instance, imagine the benefits of an absolutely perfect system of predicting the weather. Or, going a step further, even changing the weather. And wouldn't it be fascinating to watch the next Olympic games, telecast from Tokyo, on your TV set? These are just a few of the practical benefits made possible by space technology.
Orion: Design of a system for assured low-cost human access to space
NASA Technical Reports Server (NTRS)
Elvander, Josh; Heifetz, Andy; Hunt, Teresa; Zhu, Martin
1994-01-01
In recent years, Congress and the American people have begun to seriously question the role and importance of future manned spaceflight. This is mainly due to two factors: a decline in technical competition caused by the collapse of communism, and the high costs associated with the Space Shuttle transportation system. With these factors in mind, the ORION system was designed to enable manned spaceflight at a low cost, while maintaining the ability to carry out diverse missions, each with a high degree of flexibility. It is capable of performing satellite servicing missions, supporting a space station via crew rotation and resupply, and delivering satellites into geosynchronous orbit. The components of the system are a primary launch module, an upper stage, and a manned spacecraft capable of dynamic reentry. For satellite servicing and space station resupply missions, the ORION system utilizes three primary modules, an upper stage, and the spacecraft, which is delivered to low earth orbit and used to rendezvous, transfer materials, and make repairs. For launching a geosynchronous satellite, one primary module and an upper stage are used to deliver the satellite, along with an apogee kick motor, into orbit. The system is designed with reusability and modularity in mind in an attempt to lower cost.
Space station prototype Sabatier reactor design verification testing
NASA Technical Reports Server (NTRS)
Cusick, R. J.
1974-01-01
A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.
Man-machine interface issues in space telerobotics: A JPL research and development program
NASA Technical Reports Server (NTRS)
Bejczy, A. K.
1987-01-01
Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.
Autonomy and the human element in space
NASA Technical Reports Server (NTRS)
1985-01-01
NASA is contemplating the next logical step in the U.S. space program - the permanent presence of humans in space. As currently envisioned, the initial system, planned for the early 1990's, will consist of manned and unmanned platforms situated primarily in low Earth orbit. The manned component will most likely be inhabited by 6-8 crew members performing a variety of tasks such as materials processing, satellite servicing, and life science experiments. The station thus has utility in scientific and commercial enterprises, in national security, and in the development of advanced space technology. The technical foundations for this next step have been firmly established as a result of unmanned spacecraft missions to other planets, the Apollo program, and Skylab. With the shuttle, NASA inaugurates a new era of frequent flights and more routine space operations supporting a larger variety of missions. A permanently manned space system will enable NASA to expand the scope of its activities still further. Since NASA' s inception there has been an intense debate over the relative merits of manned and unmanned space systems. Despite the generally higher costs associated with manned components, astronauts have accomplished numerous essential, complex tasks in space. The unique human talent to evaluate and respond inventively to unanticipated events has been crucial in many missions, and the presence of crews has helped arouse and sustain public interest in the space program. On the other hand, the hostile orbital environment affects astronaut physiology and productivity, is dangerous, and mandates extensive support systems. Safety and cost factors require the entire station complex, both space and ground components, to be highly automated to free people from mundane operational chores. Recent advances in computer technology, artificial intelligence (AI), and robotics have the potential to greatly extend space station operations, offering lower costs and superior productivity. Extended operations can in turn enhance critical technologies and contribute to the competitive economic abilities of the United States. A high degree of automation and autonomy may be required to reduce dependence on ground systems, reduce mission costs, diminish complexity as perceived by the crew, increase mission lifetime and expand mission versatility. However, technologies dealing with heavily automated, long duration habitable spacecraft have not yet been thoroughly investigated by NASA. A highly automated station must amalgamate the diverse capabilities of people, machines, and computers to yield an efficient system which capitalizes on unique human characteristics. The station also must have an initial design which allows evolution to a larger and more sophisticated space presence. In the early years it is likely that AI-based subsystems will be used primarily in an advisory or planning capacity. As human confidence in automated systems grows and as technology advances, machines will take on more critical and interdependent roles. The question is whether, and how much, system autonomy will lead to improved station effectiveness.
L1 libration point manned space habitat
NASA Technical Reports Server (NTRS)
Luttges, Marvin; Johnson, Steve; Banks, Gary; Johnson, Richard; Meyer, Christian; Pepin, Scott; Macelroy, Robert
1989-01-01
Second generation stations or Manned Space Habitats (MSHs) are discussed for an Earth-Moon libration point and in lunar orbit. The conceptual design of such a station is outlined. Systems and subsystems described reflect anticipation of moderate technology growth. The evolution of the L1 environments is discussed, several selected subsystems are outlined, and how the L1 MSH will complete some of its activities is described.
Advanced Regenerative Environmental Control and Life Support Systems: Air and Water Regeneration
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.
1985-01-01
Extended manned space missions will require regenerative life support techniques. Past manned missions used nonregenerative expendables, except for a molecular sieve based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The Space Station scheduled to be operational in the 1990's is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The techniques to be used in the requirements for the space station are addressed.
Advanced regenerative environmental control and life support systems - Air and water regeneration
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.
1984-01-01
Extended manned space missions will require regenerative life support techniques. Past U.S. manned missions used nonregenerative expendables, except for a molecular sieve-based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expandables becomes prohibitive as crew size and mission duration increase. The U.S. Space Station, scheduled to be operational in the 1990's, is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The paper uses the requirements for the Space Station to address these techniques.
Space Station thermal management system development status and plans
NASA Technical Reports Server (NTRS)
Rankin, J. G.
1985-01-01
The manned Space Station, as currently designed, contains a baseline thermal management system (TMS) which uses components and subsystems never before employed in manned spacecraft. The basis for the technology used in the TMS design is the result of a long-term TMS Technology Development Plan which was initiated in 1979. Rankin and Marshall (1983) have discussed the history and progress of that plan from its beginnings to early 1983. The present paper is concerned with the status of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) under this plan since 1983, taking into account also a summary of activities planned for the next several years.
Maintainability Program Requirements for Space Systems
NASA Technical Reports Server (NTRS)
1987-01-01
This document is established to provide common general requirements for all NASA programs to: design maintainability into all systems where maintenance is a factor in system operation and mission success; and ensure that maintainability characteristics are developed through the systems engineering process. These requirements are not new. Design for ease of maintenance and minimization of repair time have always been fundamental requirements of the systems engineering process. However, new or reusable orbital manned and in-flight maintainable unmanned space systems demand special emphasis on maintainability, and this document has been prepared to meet that need. Maintainability requirements on many NASA programs differ in phasing and task emphasis from requirements promulgated by other Government agencies. This difference is due to the research and development nature of NASA programs where quantities produced are generally small; therefore, the depth of logistics support typical of many programs is generally not warranted. The cost of excessive maintenance is very high due to the logistics problems associated with the space environment. The ability to provide timely maintenance often involves safety considerations for manned space flight applications. This document represents a basic set of requirements that will achieve a design for maintenance. These requirements are directed primarily at manned and unmanned orbital space systems. To be effective, maintainability requirements should be tailored to meet specific NASA program and project needs and constraints. NASA activities shall invoke the requirements of this document consistent with program planning in procurements or on inhouse development efforts.
NASA Technical Reports Server (NTRS)
Yuen, Vincent K.
1989-01-01
The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.
Technology demonstrator program for Space Station Environmental Control Life Support System
NASA Technical Reports Server (NTRS)
Adams, Alan M.; Platt, Gordon K.; Claunch, William C.; Humphries, William R.
1987-01-01
The main objectives and requirements of the NASA/Marshall Space Flight Center Technology Demonstration Program are discussed. The program consists of a comparative test and a 90-day manned system test to evaluate an Environmental Control and Life Support System (ECLSS). In the comparative test phase, 14 types of subsystems which perform oxygen and water reclamation functions are to be examined in terms of performance maintenance/service requirements, reliability, and safety. The manned chamber testing phase involves a four person crew using a partial ECLSS for 90 days. The schedule for the program and the program hardware requirements are described.
Structural Design of Glass and Ceramic Components for Space System Safety
NASA Technical Reports Server (NTRS)
Bernstein, Karen S.
2007-01-01
Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.
Using computer graphics to enhance astronaut and systems safety
NASA Technical Reports Server (NTRS)
Brown, J. W.
1985-01-01
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 395)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 82 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes: general life sciences; aerospace medicine (including physiological factors, biological effects of radiation, and effects of weightlessness on man and animals); behavioral sciences (including psychological factors, individual and group behavior, crew training and evaluation, and psychic research); man/system technology and life support (including human engineering, biotechnology, and space suits and protective clothing) and space biology (including exobiology, planetary biology, and extraterrestrial life).
Health care delivery system for long duration manned space operations
NASA Technical Reports Server (NTRS)
Logan, J. S.; Shulman, E. L.; Johnson, P. C.
1983-01-01
Specific requirements for medical support of a long-duration manned facility in a low earth orbit derive from inflight medical experience, projected medical scenarios, mission related spacecraft and environmental hazards, health maintenance, and preventive medicine. A sequential buildup of medical capabilities tailored to increasing mission complexity is proposed. The space station health maintenance facility must provide preventive, diagnostic, and therapeutic medical support as immediate rescue capability may not exist.
Project Mercury: NASA's first manned space programme
NASA Astrophysics Data System (ADS)
Catchpole, John
Project Mercury will offer a developmental resume of the first American manned spaceflight programme and its associated infrastructure, including accounts of space launch vehicles. The book highlights the differences in Redstone/Atlas technology, drawing similar comparisons between ballistic capsules and alternative types of spacecraft. The book also covers astronaut selection and training, as well as tracking systems, flight control, basic principles of spaceflight and detailed accounts of individual flights.
NASA'S second decade in space.
NASA Technical Reports Server (NTRS)
Manganiello, E. J.
1972-01-01
Advances in space science during the last decade are reviewed. The basic scientific goals of NASA's Planetary Program are to increase man's understanding of the origin and evolution of the solar system, the origin and evolution of life, and the earth, through a comparative study of the other planets. Studies of the planets will be continued during the second decade. Aspects of manned space flights are discussed, giving attention to the Skylab workshop, and the Space Shuttle. The applications program is divided into four major areas including meteorology, communications and navigation, geodesy, and earth resources. Areas of aeronautical research are also examined.
Space Operations Center - A concept analysis
NASA Technical Reports Server (NTRS)
1980-01-01
The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.
Space Environment Effects on Materials : An Overview
NASA Technical Reports Server (NTRS)
Garrett, Henry B.
2006-01-01
A general overview on the space environment and its effects on materials is presented. The topics include: 1) Impact of Space Effects on Spacecraft Costs; 2) Space Environment Effects on Spacecraft by Source; 3) Primary Source of Space Effects: The Sun; 4) The Earth's Environment; 5) Trapped Radiation Belts; 6) Aurora Are Everywhere; 7) Spacecraft Interactions; 8) Atmospheric Effects; 9) Contaminant Effects on Materials; 10) Meteoroid/Debris Effects on Materials; 11) Spacecraft Surface Charging; 12) Surface Discharge Effects; 13) Internal Electrostatic Discharge--Satellite Killer; 14) Plasma Interactions DS-1 Ion Engines; 15) Radiation Effects on Spacecraft Systems and Materials; 16) Total Ionizing Dose Effects Total Ionizing Dose Effects; 17) Man-Made Sources of Space Effects Man-Made Sources of Space Effects; and 18) Space Environments Versus Interactions.
Third Conference on Artificial Intelligence for Space Applications, part 1
NASA Technical Reports Server (NTRS)
Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)
1987-01-01
The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.
Research in space commercialization, technology transfer, and communications, volume 2
NASA Technical Reports Server (NTRS)
Dunn, D. A.; Agnew, C. E.
1983-01-01
Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.
The Human in Space: Lesson from ISS
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2009-01-01
This viewgraph presentation reviews the lessons learned from manned space flight on the International Space Station. The contents include: 1) Overview of space flight effects on crewmembers; 2) General overview of immune system; 3) How does space flight alter immune system? 4) What factors associated with space flight inteact with crewmember immune function and impact health risks? 5) What is the current understanding of space flight effects on the immune system? and 6) Why should NASA be interested in immunology? Why is it significant?
NASA Technical Reports Server (NTRS)
Heer, E.
1973-01-01
Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.
Water-propellant resistojets for man-tended platforms
NASA Technical Reports Server (NTRS)
Louviere, Allen J.; Jones, Robert E.; Morren, W. Earl; Sovey, James S.
1987-01-01
The selection of a propulsion system for a man-tended platform has been influenced by the planned use of resistojets for drag make-up on the manned space station. For that application a resistojet has been designed that is capable of operation with a wide variety of propellants, including water. The reasons for the selection of water as the propellant and the performance of water as a propellant are discussed. The man-tended platform and its mission requirements are described.
Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frischauf, Norbert; Hamilton, Booz Allen
2004-07-01
Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as themore » initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission- and fusion-based Nuclear Power and Propulsion system concepts and tries to compare these systems' different working principles and technical implementations with each other. The overview and comparison will be complemented by a closer look at ongoing activities related to research and development in this area and by an outlook on what kind of systems might be employed to carry the first astronauts to Mars and beyond. (autho0008.« less
Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 259)
NASA Technical Reports Server (NTRS)
1984-01-01
A bibliography containing 476 documents introduced into the NASA scientific and technical information system in May 1984 is presented. The primary subject categories included are: life sciences, aerospace medicine, behavioral sciences, man/system technology, life support, and planetary biology. Topics extensively represented were space flight stress, man machine systems, weightlessness, human performance, mental performance, and spacecraft environments. Abstracts for each citation are given.
Space station needs, attributes and architectural options study. Volume 1: Executive study
NASA Technical Reports Server (NTRS)
1983-01-01
Mission identification and validation, the benefits of a manned presence in space; attributes and architectures; time-phased mission and system requirements imposed on the space station; orbit selection; space station architectural options; technology selection; and program planning are addressed.
NASA Technical Reports Server (NTRS)
Ahmadi, Mashid; Bottelli, Alejandro Horacio; Brave, Fernando Luis; Siddiqui, Muhammad Ali
1988-01-01
The notion of using Antarctica as a planetary analog is not new. Ever since the manned space program gained serious respect in the 1950's, futurists have envisioned manned exploration and ultimate colonization of the moon and other extraterrestrial bodies. In recent years, much attention has been focused on a permanently manned U.S. space station, a manned Lunar outpost and a manned mission to Mars and its vicinity. When such lofty goals are set, it is only prudent to research, plan and rehearse as many aspects of such a mission as possible. The concept of the Antarctic Planetary Testbed (APT) project is intended to be a facility that will provide a location to train and observe potential mission crews under conditions of isolation and severity, attempting to simulate an extraterrestrial environment. Antarctica has been considered as an analog by NASA for Lunar missions and has also been considered by many experts to be an excellent Mars analog. Antarctica contains areas where the environment and terrain are more similar to regions on the Moon and Mars than any other place on Earth. These features offer opportunities for simulations to determine performance capabilities of people and machines in harsh, isolated environments. The initial APT facility, conceived to be operational by the year 1991, will be constructed during the summer months by a crew of approximately twelve. Between six and eight of these people will remain through the winter. As in space, structures and equipment systems will be modular to facilitate efficient transport to the site, assembly, and evolutionary expansion. State of the art waste recovery/recycling systems are also emphasized due to their importance in space.
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
The application of intelligent process control to space based systems
NASA Technical Reports Server (NTRS)
Wakefield, G. Steve
1990-01-01
The application of Artificial Intelligence to electronic and process control can help attain the autonomy and safety requirements of manned space systems. An overview of documented applications within various industries is presented. The development process is discussed along with associated issues for implementing an intelligence process control system.
NASA Technical Reports Server (NTRS)
Sword, A. J.; Park, W. T.
1975-01-01
A teleoperator system with a computer for manipulator control to combine the capabilities of both man and computer to accomplish a task is described. This system allows objects in unpredictable locations to be successfully located and acquired. By using a method of characterizing the work-space together with man's ability to plan a strategy and coarsely locate an object, the computer is provided with enough information to complete the tedious part of the task. In addition, the use of voice control is shown to be a useful component of the man/machine interface.
Personnel occupied woven envelope robot power
NASA Technical Reports Server (NTRS)
1987-01-01
The Human Occupied Space Teleoperator (HOST) system currently under development utilizes a flexible tunnel/Stewart table structure to provide crew access to a pressurized manned work station or POD on the space station without extravehicular activity (EVA). The HOST structure facilitates moving a work station to multiple space station locations. The system has applications to orbiter docking, space station assembly, satellite servicing, space station maintenance, and logistics support. The conceptual systems design behind HOST is described in detail.
History of Reliability and Quality Assurance at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Childers, Frank M.
2004-01-01
This Kennedy Historical Document (KHD) provides a unique historical perspective of the organizational and functional responsibilities for the manned and un-manned programs at Kennedy Space Center, Florida. As systems become more complex and hazardous, the attention to detailed planning and execution continues to be a challenge. The need for a robust reliability and quality assurance program will always be a necessity to ensure mission success. As new space missions are defined and technology allows for continued access to space, these programs cannot be compromised. The organizational structure that has provided the reliability and quality assurance functions for both the manned and unmanned programs has seen many changes since the first group came to Florida in the 1950's. The roles of government and contractor personnel have changed with each program and organizational alignment has changed based on that responsibility. The organizational alignment of the personnel performing these functions must ensure independent assessment of the processes.
Radiation protection for manned space activities
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1983-01-01
The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.
Ethical problems of interaction between ground-based personnel and orbital station crewmembers.
Grigoriev, A I; Kozerenko, O P; Myasnikov, V I; Egorov, A D
1988-02-01
Manned missions onboard orbital stations Salyut-6 and Salyut-7 have led us to the conclusion that a long-term space mission can be viewed as a complex socio-man-machine system whose effectiveness largely depends on the quality of interaction between its subsystems. When analyzing and assessing the reliability of this system, it is important to consider ethical aspects, because they concern human relations, permeating its very component and in the long run determining its efficiency. Psychological and medical examinations before, during and after manned missions have helped us to identify the major points of interaction of the subsystems which require adequate monitoring and optimization using socio-psychological and organization-technical approaches: arrangement and evaluation of the quality of work, arrangement of proper leisure, psychological comfort in the interpersonality and intergroup relations during prolonged space missions. This paper also discusses adaptive changes in the mental and physical state due to prolonged exposure to space flight factors such as microgravity and confinement.
STV engine design considerations
NASA Technical Reports Server (NTRS)
1991-01-01
The topics covered include the following: (1) engine design criteria and issues; (2) design requirements for man rating; (3) test requirements for man rating; (4) design requirements for space basing; (5) engine operation requirements; (6) health monitoring; (7) lunar transfer vehicle (LTV) feed system; (8) lunar excursion vehicle (LEV) propellant system; (9) area ratio gimbal angle limits; (10) reaction control system; and (11) engine configuration and characteristics. This document is presented in viewgraph form.
EVA assembly of large space structure element
NASA Technical Reports Server (NTRS)
Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.
1981-01-01
The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.
Space Station Freedom avionics technology
NASA Technical Reports Server (NTRS)
Edwards, A.
1990-01-01
The Space Station Freedom Program (SSFP) encompasses the design, development, test, evaluation, verification, launch, assembly, and operation and utilization of a set of spacecraft in low earth orbit (LEO) and their supporting facilities. The spacecraft set includes: the Space Station Manned Base (SSMB), a European Space Agency (ESA) provided Man-Tended Free Flyer (MTFF) at an inclination of 28.5 degrees and nominal attitude of 410 km, a USA provided Polar Orbiting Platform (POP), and an ESA provided POP in sun-synchronous, near polar orbits at a nominal altitude of 822 km. The SSMB will be assembled using the National Space Transportation System (NSTS). The POPs and the MTFF will be launched by Expendable Launch Vehicles (ELVs): a Titan 4 for the US POP and an Ariane for the ESA POP and MTFF. The US POP will for the most part use derivatives of systems flown on unmanned LEO spacecraft. The SSMB portion of the overall program is presented.
Manned space programs accident/incident summaries (1963 - 1969)
NASA Technical Reports Server (NTRS)
1970-01-01
This summary is a compilation of 508 mishaps assembled from company and NASA records which cover several years of manned space flight activity. The purpose is to provide information to be applied towards accident prevention. The accident/incident summaries are categorized by the following ten systems: cryogenic; electrical; facility/GSE; fuel and propellant; life support; ordnance; pressure; propulsion; structural; and transport/handling. Each accident/incident summary has been summarized by description, cause and recommended preventive action.
Computer simulation of on-orbit manned maneuvering unit operations
NASA Technical Reports Server (NTRS)
Stuart, G. M.; Garcia, K. D.
1986-01-01
Simulation of spacecraft on-orbit operations is discussed in reference to Martin Marietta's Space Operations Simulation laboratory's use of computer software models to drive a six-degree-of-freedom moving base carriage and two target gimbal systems. In particular, key simulation issues and related computer software models associated with providing real-time, man-in-the-loop simulations of the Manned Maneuvering Unit (MMU) are addressed with special attention given to how effectively these models and motion systems simulate the MMU's actual on-orbit operations. The weightless effects of the space environment require the development of entirely new devices for locomotion. Since the access to space is very limited, it is necessary to design, build, and test these new devices within the physical constraints of earth using simulators. The simulation method that is discussed here is the technique of using computer software models to drive a Moving Base Carriage (MBC) that is capable of providing simultaneous six-degree-of-freedom motions. This method, utilized at Martin Marietta's Space Operations Simulation (SOS) laboratory, provides the ability to simulate the operation of manned spacecraft, provides the pilot with proper three-dimensional visual cues, and allows training of on-orbit operations. The purpose here is to discuss significant MMU simulation issues, the related models that were developed in response to these issues and how effectively these models simulate the MMU's actual on-orbiter operations.
The space shuttle launch vehicle aerodynamic verification challenges
NASA Technical Reports Server (NTRS)
Wallace, R. O.; Austin, L. D.; Hondros, J. G.; Surber, T. E.; Gaines, L. M.; Hamilton, J. T.
1985-01-01
The Space Shuttle aerodynamics and performance communities were challenged to verify the Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements. Historically, launch vehicle flight test programs which faced these same challenges were unmanned instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight test program made these challenges more complex because of the unique aerodynamic configuration powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not verify the aerodynamics or performance preflight predictions of the first flight of the Space Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and verified system performance. The aerodynamics community also was challenged to understand the discrepancy between the wind tunnel and flight defined aerodynamics. The preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses challenges which led to the SSV system performance verification and which will lead to the verification of the operational ascent aerodynamics data base are presented.
Large space systems technology electronics: Data and power distribution
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1980-01-01
The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.
Manned spacecraft automation and robotics
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1987-01-01
The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.
Soviet space flight: the human element.
Garshnek, V
1988-05-01
Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 days) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight ito the possibility of extended missions beyond Earth, such as a voyage to Mars.
NASA Astrophysics Data System (ADS)
Zhou, Qianxiang; Liu, Zhongqi
With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Astrophysics Data System (ADS)
Lewerenz, T.; Kosha, M.; Magazu, H.
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Technical Reports Server (NTRS)
Lewerenz, T.; Kosha, M.; Magazu, H.
1991-01-01
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
A phase one AR/C system design
NASA Technical Reports Server (NTRS)
Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises
1991-01-01
The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.
This report, the second of a three-part study of Soviet space programs, examines their manned space programs and reviews their quest for a permanently manned presence in space. Also included is information concerning the physiological and psychological findings related to the extended duration of Soviet manned flights and an executive summary.…
NASA Technical Reports Server (NTRS)
Karl, D. R.
1972-01-01
An evaluation was made of the feasibility of utilizing a simplified man machine interface concept to manage and control a complex space system involving multiple redundant computers that control multiple redundant subsystems. The concept involves the use of a CRT for display and a simple keyboard for control, with a tree-type control logic for accessing and controlling mission, systems, and subsystem elements. The concept was evaluated in terms of the Phase B space shuttle orbiter, to utilize the wide scope of data management and subsystem control inherent in the central data management subsystem provided by the Phase B design philosophy. Results of these investigations are reported in four volumes.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)
NASA Technical Reports Server (NTRS)
Savely, Robert T. (Editor)
1991-01-01
The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle.
CELSS experiment model and design concept of gas recycle system
NASA Technical Reports Server (NTRS)
Nitta, K.; Oguchi, M.; Kanda, S.
1986-01-01
In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.
Columbus future evolution potential
NASA Astrophysics Data System (ADS)
Altmann, G.; Rausch, G.; Sax, H.
Europe is at a crossroads in the evolution of manned space flight. Following the invitation of President Reagan to participate in the US Space Station Programme, Europe is now to decide on the content and financial envelope for such a programme. The actual path chosen will determine the way forward to the end of this century and beyond. The preparatory Columbus programme initiated in 1985 and planned to be completed by the end of 1987 has now reached a critical point with the definition of a new programme baseline for further study in phase B2 running from November 1986 to May 1987. The new programme baseline as described in chapter 3 covers the following elements: ∘ A pressurised module for permanent attachment to the NASA Space Station, to be launched by the NASA STS. ∘ A man-tended free flyer (MTFF) consisting of a pressurised module and a resource module to be designed and developed for a launch by ARIANE 5. ∘ A polar platform primarily dedicated to Earth Observation user requirements designed for launch by ARIANE 5. ∘ As an option an enhanced version of the present EURECA carrier to be deployed as a coorbiting platform dedicated primarily to microgravity and space sciences. The planned contribution to the international Space Station based on the above space segment definition must be viewed in the light of a European long term plan, the ultimate goal of which is an autonomous capability. Considering that the core element of a potential European Space Station is the MTFF the paper will describe in more detail how the presently defined MTFF capability could grow further to satisfy the needs of interested user communities in the long term. The evolution of this element will essentially pass through two stages, the man-tended stage during which automated systems (robotics) will assist with the implementation of research and commercial processes and the manned stage where permanent presence of man in combination with automated systems will bring about the degree of flexibility needed for efficient operations in space. The present assumptions made in the context of describing the future potential of the MTFF are subject to revision as further results become available from the ongoing COLUMBUS programme definition process.
Orbital construction support equipment - Manned remote work station
NASA Technical Reports Server (NTRS)
Nassiff, S. H.
1978-01-01
The Manned Remote Work Station (MRWS) is a versatile piece of orbital construction support equipment which can support in-space construction in various modes of operation. Proposed near-term Space Shuttle mission support and future large orbiting systems support, along with the various construction modes of MRWS operation, are discussed. Preliminary flight subsystems requirements and configuration design are presented. Integration of the MRWS development test article with the JSC Mockup and Integration Facility, including ground-test objectives and techniques for zero-g simulations, is also presented.
NASA Technical Reports Server (NTRS)
Brown, N. E.
1973-01-01
Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.
1969-03-03
S69-25861 (3 March 1969) --- The Apollo 9 (Spacecraft 104/Lunar Module 3/ Saturn 504) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC) at 11 a.m. (EST), March 3, 1969. Aboard the spacecraft are astronauts James A. McDivitt, commander; David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight. Apollo 9 is the second manned Saturn V mission.
Life sciences utilization of Space Station Freedom
NASA Technical Reports Server (NTRS)
Chambers, Lawrence P.
1992-01-01
Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.
1981-12-01
During 1980 and the first half of 1981, the Marshall Space Flight Center conducted studies concerned with a relatively low-cost, near-term, manned space platform to satisfy current user needs, yet capable of evolutionary growth to meet future needs. The Science and Application Manned Space Platform (SAMSP) studies were to serve as a test bed for developing scientific and operational capabilities required by later, more advanced manned platforms while accomplishing early science and operations. This concept illustrates a manned space platform.
Life support for aquatic species - past; present; future
NASA Astrophysics Data System (ADS)
Slenzka, K.
Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.
NASA Astrophysics Data System (ADS)
Speyerer, E. J.; Ferrari, K. A.; Lowes, L. L.; Raad, P. E.; Cuevas, T.; Purdy, J. A.
2006-03-01
With advances in computers, graphics, and especially video games, manned space exploration can become real, by creating a safe, fun learning environment that allows players to explore the solar system from the comfort of their personal computers.
NASA Technical Reports Server (NTRS)
1983-01-01
Space station systems characteristics and architecture are described. A manned space station operational analysis is performed to determine crew size, crew task complexity and time tables, and crew equipment to support the definition of systems and subsystems concepts. This analysis is used to select and evaluate the architectural options for development.
Definition study for an extended manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
1971-01-01
A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.
NASA Technical Reports Server (NTRS)
Johnson, R. D.
1977-01-01
Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.
A space systems perspective of graphics simulation integration
NASA Technical Reports Server (NTRS)
Brown, R.; Gott, C.; Sabionski, G.; Bochsler, D.
1987-01-01
Creation of an interactive display environment can expose issues in system design and operation not apparent from nongraphics development approaches. Large amounts of information can be presented in a short period of time. Processes can be simulated and observed before committing resources. In addition, changes in the economics of computing have enabled broader graphics usage beyond traditional engineering and design into integrated telerobotics and Artificial Intelligence (AI) applications. The highly integrated nature of space operations often tend to rely upon visually intensive man-machine communication to ensure success. Graphics simulation activities at the Mission Planning and Analysis Division (MPAD) of NASA's Johnson Space Center are focusing on the evaluation of a wide variety of graphical analysis within the context of present and future space operations. Several telerobotics and AI applications studies utilizing graphical simulation are described. The presentation includes portions of videotape illustrating technology developments involving: (1) coordinated manned maneuvering unit and remote manipulator system operations, (2) a helmet mounted display system, and (3) an automated rendezous application utilizing expert system and voice input/output technology.
Research on oxygen recovery systems for use in space capsules
NASA Technical Reports Server (NTRS)
Selman, J. R.; Steunenberg, R. K.; Cairns, E. J.
1973-01-01
An improved electrochemical process was investigated for the recovery of oxygen from the atmospheres of manned space capsules. The objective of the proposed system is to recover the oxygen from CO2 with high efficiency and to recover the additional amount of oxygen from water that is required to provide a total oxygen makeup stream of about 2.0 lb/man-day. The carbon from the CO2 must be converted into a readily disposable or usable form. The results are given of initial experiments with a porous stainless steel cathode in a LiCl-KCl electrolyte with small additions of oxide, carbonate, and hydroxide.
Space station needs, attributes, and architectural options: Commercial opportunities in space
NASA Technical Reports Server (NTRS)
Wolbers, H. L., Jr.
1983-01-01
The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.
Design criteria for payload workstation accommodations
NASA Technical Reports Server (NTRS)
Watters, H. H.; Stokes, J. W.
1975-01-01
Anticipated shuttle sortie payload man-system design criteria needs are investigated. Man-system interactions for the scientific disciplines are listed and the extent is assessed to which documented Skylab experience is expected to provide system design guidance for each of the identified interactions. Where the analysis revealed that the reduced Skylab data does not answer the anticipated needs candidate criteria, based on unreduced Skylab data, available prior research, original analysis, or related requirements derived from previous space programs, are provided.
NASA Technical Reports Server (NTRS)
Steinbronn, O.
1983-01-01
The following types of space missions were evaluated to determine those that require, or will be benefited materially, by a manned space station: (1) science and applications, (2) commercial, (3) technology development, (4) space operations, and (5) national security. Integrated mission requirements for man-operated and man-tended free-flying missions were addressed. A manned space station will provide major performance and economic benefits to a wide range of missions planned for the 1990s.
Advanced Platform Systems Technology study. Volume 2: Trade study and technology selection
NASA Technical Reports Server (NTRS)
1983-01-01
Three primary tasks were identified which include task 1-trade studies, task 2-trade study comparison and technology selection, and task 3-technology definition. Task 1 general objectives were to identify candidate technology trade areas, determine which areas have the highest potential payoff, define specific trades within the high payoff areas, and perform the trade studies. In order to satisfy these objectives, a structured, organized approach was employed. Candidate technology areas and specific trades were screened using consistent selection criteria and considering possible interrelationships. A data base comprising both manned and unmanned space platform documentation was used as a source of system and subsystem requirements. When requirements were not stated in the data base documentation, assumptions were made and recorded where necessary to characterize a particular spacecraft system. The requirements and assumptions were used together with the selection criteria to establish technology advancement goals and select trade studies. While both manned and unmanned platform data were used, the study was focused on the concept of an early manned space station.
On the use of Space Station Freedom in support of the SEI - Life science research
NASA Technical Reports Server (NTRS)
Leath, K.; Volosin, J.; Cookson, S.
1992-01-01
The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.
Advanced Data Collection for Inventory Management
NASA Technical Reports Server (NTRS)
Opresko, G. A.; Leet, J. H.; Mcgrath, D. F.; Eidson, J.
1987-01-01
Bar-coding, radio-frequency, and voice-operated systems selected. Report discusses study of state-of-the-art in automated collection of data for management of large inventories. Study included comprehensive search of literature on data collection and inventory management, visits to existing automated inventory systems, and tours of selected supply and transportation facilities at Kennedy Space Center. Information collected analyzed in view of needs of conceptual inventory-management systems for Kennedy Space Center and for manned space station and other future space projects.
Man-systems requirements for the control of teleoperators in space
NASA Technical Reports Server (NTRS)
Shields, Nicholas L., Jr.
1988-01-01
The microgravity of the space environment has profound effects on humans and, consequently, on the design requirements for subsystems and components with which humans interact. There are changes in the anthropometry, vision, the perception of orientation, posture, and the ways in which we exert energy. The design requirements for proper human engineering must reflect each of the changes that results, and this is especially true in the exercise of control over remote and teleoperated systems where the operator is removed from any direct sense of control. The National Aeronautics and Space Administration has recently completed the first NASA-wide human factors standard for microgravity. The Man-Systems Integration Standard, NASA-STD-3000, contains considerable information on the appropriate design criteria for microgravity, and there is information that is useful in the design for teleoperated systems. There is not, however, a dedicated collection of data which pertains directly to the special cases of remote and robotic operations. The design considerations for human-system interaction in the control of remote systems in space are discussed, with brief details on the information to be found in the NASA-STD-3000, and arguments for a dedicated section within the Standard which deals with robotic, teleoperated and remote systems and the design requirements for effective human control of these systems in the space environment, and from the space environment.
Wang, Linjie; Li, Zhili; Tan, Cheng; Liu, Shujuan; Zhang, Jianfeng; He, Siyang; Zou, Peng; Liu, Weibo; Li, Yinghui
2018-04-25
The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.
NASA Technical Reports Server (NTRS)
1982-01-01
The programmatic data for the reference concept of the Manned Space Platform is presented. Details regarding work breakdown structure (WBS) and dictionary, the facilities and equipment required to produce the modules, the project schedule and logic diagram, a preliminary assessment of environmental impacts and details regarding the estimated costs for the reference concept are included. The proposed WBS which was developed to provide summary and system level segregation of the nonrecurring and recurring portions of the Manned Space Platform project is also included. The accompanying dictionary outlines the function and activities contained within each WBS element. The facility and equipment required to produce the various modules is discussed. Generally, required equipment is within the existing state of the art although the size of some of the items to be manufactured is a consideration. A preliminary manufacturing flow was also provided. The project schedules presented consist of the Master Project Summary Schedule, the Master Project Phasing Chart and the Logic Network.
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
Application of Telemedicine Technologies to Long Term Spaceflight Support
NASA Astrophysics Data System (ADS)
Orlov, O. I.; Grigoriev, A. I.
Space medicine passed a long way of search for informative methods of medical data collection and analysis and worked out a complex of effective means of countermeasures and medical support. These methods and means aimed at optimization of the habitation conditions and professional activity of space crews enabled space medicine specialists to create a background for the consecutive prolongation of manned space flights and providing their safety and effectiveness. To define support systems perspectives we should consider those projects on which bases the systems are implemented. According to the set opinion manned spaceflights programs will develop in two main directions. The first one is connected with the near space exploration, first of all with the growing interest in scientific-applied and in prospect industrial employment of large size orbit manned complexes, further development of transport systems and in long-run prospect - reclamation of Lunar surface. The second direction is connected with the perspectives of interplanetary missions. There's no doubt that the priority project of the near-earth space exploration in the coming decenaries will be building up of the International Space Station. This trend characteristics prove the necessity to provide crews whose members may differ in health with individual approach to the schedule of work, rest, nutrition and training, to the medical control and therapeutic-prophylactic procedures. In these conditions the importance of remote monitoring and distance support of crew members activities by the earth- based medical control services will increase. The response efficiency in such cases can only be maintained by means of advanced telemedicine systems. The international character of the International Space Station (ISS) gives a special importance to the current activities on integrating medical support systems of the participating countries. Creation of such a system will allow to coordinate international research projects on space biology and medicine at the modern high level. In spite of the ISS international cooperation transparency space research programs require to follow the biomedicine ethics and provide confidentiality of the special medical information exchange. That can be achieved in the telemedicine support system built on the network principle. Presently we have all technical facilities needed to create such a system. In Russia activities on space telemedicicine support improvement are carried out by the State Scientific Center of the Russian Federation - Institute for Biomedical Problems of the Russian Academy of Sciences, Mission Control Center of the Russian Aviation and Space Agency, Space Biomedical Center for Training and Research and Yu. Gagarin Cosmonaut Training Center. Communications development and next generation Internet systems creation almost eliminate differences in the types of information technologies implementation both in the earth-based and near-earth space conditions. In prospect of the information community creation the telecommunication system of the near-earth space objects and its telemedicine element will become a natural part of the Earth unified information field that will open unlimited perspectives for flight support system improvement and space biomedical research conducting. Russia has unique data of numerous investigations on simulation of long, up to a year, effects of space flight factors on the human body. The sphere of situations studied by space medicine specialists embraced orbit manned space flights of the escalating duration (438 days in 1995). However a number of biomedical problems related to space flights didn't face optimal solutions. It's evident that during a space flight to Mars biomedical problems will be much more difficult in comparison with those of the orbit flights of the same duration. The summed up factors of such flights specify a level of the total medical risk that require assessment and application of effective means lowering the risk level. The characteristics of the interplanetary flights projects make it necessary to develop a special system of telemedicine support with an accent on the onboard facilities. Space crew medical support systems must be "intellectual". The telemedicine system of the interplanetary spacecraft should be based on the extremely large data bank, it's better say "knowledge bank", i.e. it should contain the mankind medical knowledge in miniature. At the same time the system capacity is determined by the flight conditions and existing or supposed factors of the effect on the crew. It can be complemented and concretized from the Earth during the flight. Crew interaction with this system will be built on symbiotic "man-machine" combination where a man has a creative inception, adaptability, common sense and intuition, he or she is irreplaceable in situations when nonstandard decisions should be taken in conditions of time and ingoing parameters shortage. A physician's presence in the crew of the spacecraft will decrease the medical risk of the mission. It's quite natural that the effective operations of this knowledge system carried out autonomously by the crew physician or earth-based service can function only if the system is based on the artificial intelligence principles, neuro information systems with the highest degree of analytical functions and prognostical capabilities of the models. Development of telemedicine technologies will greatly change an extent and level of the interference into a crewmember organism. Interplanetary flight support telemedicine solutions present a new quality of simulation and influence systems. They're not simply a new instrument opening promising opportunities to improve flight medical support systems. They integrate information technologies with biology, physics and chemistry. It's a new interdisciplinary technological breakthrough.
Evolutionary space platform concept study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The Evolutionary Space Platform Concept Study encompassed a 10 month effort to define, evaluate and compare approaches and concepts for evolving unmanned and manned capability platforms beyond the current Space Platform concepts to an evolutionary goal of establishing a permanent manned presence in space. Areas addressed included: special emphasis trade studies on the current unmanned concept, assessment of manned platform concepts, and utility analysis of a manned platform for defense related missions.
NASA Technical Reports Server (NTRS)
1977-01-01
Power levels up to 100 kWe average were baselined for the electrical power system of the space construction base, a long-duration manned facility capable of supporting manufacturing and large scale construction projects in space. Alternatives to the solar array battery systems discussed include: (1) solar concentrator/brayton; (2) solar concentrator/thermionic; (3) isotope/brayton; (4) nuclear/brayton; (5) nuclear thermoelectric; and (6) nuclear thermionic.
NASA Astrophysics Data System (ADS)
D'silva, Oneil; Kerrison, Roger
2013-09-01
A key feature for the increased utilization of space robotics is to automate Extra-Vehicular manned space activities and thus significantly reduce the potential for catastrophic hazards while simultaneously minimizing the overall costs associated with manned space. The principal scope of the paper is to evaluate the use of industry standard accepted Probability risk/safety assessment (PRA/PSA) methodologies and Hazard Risk frequency Criteria as a hazard control. This paper illustrates the applicability of combining the selected Probability risk assessment methodology and hazard risk frequency criteria, in order to apply the necessary safety controls that allow for the increased use of the Mobile Servicing system (MSS) robotic system on the International Space Station. This document will consider factors such as component failure rate reliability, software reliability, and periods of operation and dormancy, fault tree analyses and their effects on the probability risk assessments. The paper concludes with suggestions for the incorporation of existing industry Risk/Safety plans to create an applicable safety process for future activities/programs
New crystal forms of Diocleinae lectins in the presence of different dimannosides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Frederico Bruno Mendes Batista; Bezerra, Gustavo Arruda; Oliveira, Taianá Maia de
2006-11-01
The crystallization and preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3{sub 2} and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2{sub 1}2{sub 1}2 for CML and C222 for CGL), are reported. Studying the interactions between lectins and sugars is important in order to explain the differences observed in the biological activities presented by the highly similar proteins of the Diocleinae subtribe. Here, the crystallization andmore » preliminary X-ray data of Canavalia gladiata lectin (CGL) and C. maritima lectin (CML) complexed with Man(α1-2)Man(α1)OMe, Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe in two crystal forms [the complexes with Man(α1-3)Man(α1)OMe and Man(α1-4)Man(α1)OMe crystallized in space group P3{sub 2} and those with Man(α1-2)Man(α1)OMe crystallized in space group I222], which differed from those of the native proteins (P2{sub 1}2{sub 1}2 for CML and C222 for CGL), are reported. The crystal complexes of ConA-like lectins with Man(α1-4)Man(α1)OMe are reported here for the first time.« less
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
Free-space optical communications in support of future manned space flight
NASA Technical Reports Server (NTRS)
Stephens, Elaine M.
1990-01-01
Four areas of research in optical communications in support of future manned space missions being carried out at Johnson Space Center are discussed. These are the Space Station Freedom proximity operations, direct LEO-to-ground communications, IR voice communications inside manned spacecraft, and deep space and lunar satellite operations. The background, requirements, and scenario for each of these areas of research are briefly described.
The administration of the NASA space tracking system and the NASA space tracking system in Australia
NASA Technical Reports Server (NTRS)
Hollander, N.
1973-01-01
The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.
Computer-aided controllability assessment of generic manned Space Station concepts
NASA Technical Reports Server (NTRS)
Ferebee, M. J.; Deryder, L. J.; Heck, M. L.
1984-01-01
NASA's Concept Development Group assessment methodology for the on-orbit rigid body controllability characteristics of each generic configuration proposed for the manned space station is presented; the preliminary results obtained represent the first step in the analysis of these eight configurations. Analytical computer models of each configuration were developed by means of the Interactive Design Evaluation of Advanced Spacecraft CAD system, which created three-dimensional geometry models of each configuration to establish dimensional requirements for module connectivity, payload accommodation, and Space Shuttle berthing; mass, center-of-gravity, inertia, and aerodynamic drag areas were then derived. Attention was also given to the preferred flight attitude of each station concept.
NASA Technical Reports Server (NTRS)
Kimzey, S. L.; Burns, L. C.; Fischer, C. L.
1974-01-01
The significance of the transformations in red cell shape observed during the Skylab study must be considered relative to the limitation of man's participation in extended space flight missions. The results of this one study are not conclusive with respect to this question. Based on these examinations of red cells in normal, healthy men and based on other Skylab experiment data relative to the functional capacity of the red cells in vitro and the performance capacity of man as an integrated system, the changes observed would not appear to be the limiting factor in determining man's stay in space. However, the results of this experiment and the documented red cell mass loss during space flight raise serious questions at this time relative to the selection criteria utilized for passengers and crews of future space flights. Until the specific cause and impact of the red cell shape change on cell survival in vivo can be resolved, individuals with diagnosed hematologic abnormalities should not be considered as prime candidates for missions, especially those of longer duration.
Functional Mobility Testing: A Novel Method to Establish Human System Interface Design Requirements
NASA Technical Reports Server (NTRS)
England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar
2008-01-01
Across all fields of human-system interface design it is vital to posses a sound methodology dictating the constraints on the system based on the capabilities of the human user. These limitations may be based on strength, mobility, dexterity, cognitive ability, etc. and combinations thereof. Data collected in an isolated environment to determine, for example, maximal strength or maximal range of motion would indeed be adequate for establishing not-to-exceed type design limitations, however these restraints on the system may be excessive over what is basally needed. Resources may potentially be saved by having a technique to determine the minimum measurements a system must accommodate. This paper specifically deals with the creation of a novel methodology for establishing mobility requirements for a new generation of space suit design concepts. Historically, the Space Shuttle and the International Space Station vehicle and space hardware design requirements documents such as the Man-Systems Integration Standards and International Space Station Flight Crew Integration Standard explicitly stated that the designers should strive to provide the maximum joint range of motion capabilities exhibited by a minimally clothed human subject. In the course of developing the Human-Systems Integration Requirements (HSIR) for the new space exploration initiative (Constellation), an effort was made to redefine the mobility requirements in the interest of safety and cost. Systems designed for manned space exploration can receive compounded gains from simplified designs that are both initially less expensive to produce and lighter, thereby, cheaper to launch.
The future of human spaceflight.
Reichert, M
2001-01-01
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available. c 2001. Elsevier Science Ltd. All rights reserved.
The future of human spaceflight
NASA Astrophysics Data System (ADS)
Reichert, M.
2001-08-01
After the Apollo Moon program, the international space station represents a further milestone of humankind in space. International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST ( Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. 50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about 2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.
Technology assessment of advanced automation for space missions
NASA Technical Reports Server (NTRS)
1982-01-01
Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.
Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight
NASA Technical Reports Server (NTRS)
1975-01-01
The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).
Mission to Mars: food production and processing for the final frontier.
Perchonok, Michele H; Cooper, Maya R; Catauro, Patricia M
2012-01-01
The food systems of the National Aeronautics and Space Administration (NASA) have evolved tremendously since the early manned spaceflights of the 1960s. To date, NASA's mission focus has been limited to exploration of low Earth orbit (LEO), and the agency's prepackaged food systems have been adequate to enable success of their parent programs. With NASA's mission focus increasing to achieve manned space exploration of the Martian surface, the agency is considering a significant departure from the prepackaged food systems of current and past space programs. NASA's Advanced Food Technology (AFT) project is presently investigating the introduction of a bioregenerative food system to support long duration habitat missions to the Martian surface. A bioregenerative food system is expected to impart less of a burden on critical mission resources, such as mass and volume, than a prepackaged, shelf-stable system. This review provides an introduction to past and present spaceflight food systems, and provides a broad examination of the research conducted to date to enable crop production and food processing on the Martian surface.
1969-03-03
S69-25862 (3 March 1969) --- Framed by palm trees in the foreground, the Apollo 9 (Spacecraft 104/Lunar Module 3/ Saturn 504) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC) at 11 a.m. (EST), March 3, 1969. Aboard the spacecraft are astronauts James A. McDivitt, commander; David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight. Apollo 9 is the second manned Saturn V mission.
On the Shoulders of Titans: A History of Project Gemini
NASA Technical Reports Server (NTRS)
Hacker, B. C.
1977-01-01
Gemini was the intermediate manned space flight program between America's first steps into space with Mercury and the manned lunar expeditions of Apollo. Because of its position between these two other efforts, Gemini is probably less remembered. Still, it more than had its place in man's progress into this new frontier. Gemini accomplishments were manyfold. They included many firsts: first astronaut-controlled maneuvering in space; first rendezvous in space of one spacecraft with another; first docking of one spacecraft with a propulsive stage and use of that stage to transfer man to high altitude; first traverse of man into the earth's radiation belts; first extended manned flights of a week or more in duration; first extended stays of man outside his spacecraft; first controlled reentry and precision landing; and many more. These achievements were significant in ways one cannot truly evaluate even today, but two things stand out: (1) it was the time when America caught up and surpassed the Soviet Union in manned space flight, and (2) these demonstrations of capability were an absolute prerequisite to the phenomenal Apollo accomplishments then yet to come.
Space station freedom resource nodes internal thermal control system
NASA Technical Reports Server (NTRS)
Merhoff, Paul; Dellinger, Brent; Taggert, Shawn; Cornwell, John
1993-01-01
This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2. A SINDA/FLUINT math model of the ITCS is described, and results of analyses for an MTC and a PMC case are shown and discussed.
NASA's Space Launch Initiative Targets Toxic Propellants
NASA Technical Reports Server (NTRS)
Hurlbert, Eric; McNeal, Curtis; Davis, Daniel J. (Technical Monitor)
2001-01-01
When manned and unmanned space flight first began, the clear and overriding design consideration was performance. Consequently, propellant combinations of all kinds were considered, tested, and, when they lifted the payload a kilometer higher, or an extra kilogram to the same altitude, they became part of our operational inventory. Cost was not considered. And with virtually all of the early work being performed by the military, safety was hardly a consideration. After all, fighting wars has always been dangerous. Those days are past now. With space flight, and the products of space flight, a regular part of our lives today, safety and cost are being reexamined. NASA's focus turns naturally to its Shuttle Space Transportation System. Designed, built, and flown for the first time in the 1970s, this system remains today America's workhorse for manned space flight. Without its tremendous lift capability and mission flexibility, the International Space Station would not exist. And the Hubble telescope would be a monument to shortsighted management, rather than the clear penetrating eye on the stars it is today. But the Shuttle system fully represents the design philosophy of its period: it is too costly to operate, and not safe enough for regular long term access to space. And one of the key reasons is the utilization of toxic propellants. This paper will present an overview of the utilization of toxic propellants on the current Shuttle system.
Advanced automation for space missions: Technical summary
NASA Technical Reports Server (NTRS)
1980-01-01
Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.
Space Weather and the Ground-Level Solar Proton Events of the 23rd Solar Cycle
NASA Astrophysics Data System (ADS)
Shea, M. A.; Smart, D. F.
2012-10-01
Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth's surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.
Long range planning for the development of space flight emergency systems.
NASA Technical Reports Server (NTRS)
Bolger, P. H.; Childs, C. W.
1972-01-01
The importance of long-range planning for space flight emergency systems is pointed out. Factors in emergency systems planning are considered, giving attention to some of the mission classes which have to be taken into account. Examples of the hazards in space flight include fire, decompression, mechanical structure failures, radiation, collision, and meteoroid penetration. The criteria for rescue vehicles are examined together with aspects regarding the conduction of rescue missions. Future space flight programs are discussed, taking into consideration low earth orbit space stations, geosynchronous orbit space stations, lunar operations, manned planetary missions, future space flight vehicles, the space shuttle, special purpose space vehicles, and a reusable nuclear shuttle.
Electrochemical processing of solid waste
NASA Technical Reports Server (NTRS)
Bockris, John OM.
1987-01-01
An investigation of electrochemical waste treatment methods suitable for closed, or partially closed, life support systems for manned space exploration is discussed. The technique being investigated involves the electrolysis of solid waste where the aim is to upgrade waste material (mainly fecal waste) to generate gases that can be recycled in a space station or planetary space environment.
Space Operations Center system analysis study extension. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1982-01-01
The analysis fo Space Operations Center (SOC) systems is summarized. Design considerations, configurations of the manned orbital space station, planned operational and research missions, and subsystem tradeoffs are considered. Integration into the space transportation system is discussed. A modular design concept permitting growth of the SOC as its functions are expanded is described. Additional considerations are special requirements for habitat modules, design modifications needed to operate in geosynchronous orbits, and use of the external tank for cryogenic propellant storage or as a pressurized hangar. A cost summary is presented.
Automation, robotics, and inflight training for manned Mars missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1986-01-01
The automation, robotics, and inflight training requirements of manned Mars missions will be supported by similar capabilities developed for the space station program. Evolutionary space station onboard training facilities will allow the crewmembers to minimize the amount of training received on the ground by providing extensive onboard access to system and experiment malfunction procedures, maintenance procedures, repair procedures, and associated video sequences. Considerable on-the-job training will also be conducted for space station management, mobile remote manipulator operations, proximity operations with the Orbital Maneuvering Vehicle (and later the Orbit Transfer Vehicle), and telerobotics and mobile robots. A similar approach could be used for manned Mars mission training with significant additions such as high fidelity image generation and simulation systems such as holographic projection systems for Mars landing, ascent, and rendezvous training. In addition, a substantial increase in the use of automation and robotics for hazardous and tedious tasks would be expected for Mars mission. Mobile robots may be used to assist in the assembly, test and checkout of the Mars spacecraft, in the handling of nuclear components and hazardous chemical propellent transfer operations, in major spacecraft repair tasks which might be needed (repair of a micrometeroid penetration, for example), in the construction of a Mars base, and for routine maintenance of the base when unmanned.
History of Manned Space Flight
NASA Technical Reports Server (NTRS)
1975-01-01
U.S. manned space projects from Mercury Redstone 3 through Skylab 4 are briefly described including dates, flight duration, crew, and number of earth/moon orbits. The flight costs of each project are itemized. Highlights in the history of the manned space program from 1957 to February, 1974 are included.
USSR Space Life Sciences Digest, issue 1
NASA Technical Reports Server (NTRS)
Hooke, L. R.; Radtke, M.; Rowe, J. E.
1985-01-01
The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.
Applications of space teleoperator technology to the problems of the handicapped
NASA Technical Reports Server (NTRS)
Malone, T. B.; Deutsch, S.; Rubin, G.; Shenk, S. W.
1973-01-01
The identification of feasible and practical applications of space teleoperator technology for the problems of the handicapped were studied. A teleoperator system is defined by NASA as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and locomotive capabilities. Based on a consideration of teleoperator systems, the scope of the study was limited to an investigation of these handicapped persons limited in sensory, manipulative, and locomotive capabilities. If the technology being developed for teleoperators has any direct application, it must be in these functional areas. Feasible and practical applications of teleoperator technology for the problems of the handicapped are described, and design criteria are presented with each application. A development plan is established to bring the application to the point of use.
Intrigue and potential of space exploration
NASA Technical Reports Server (NTRS)
Losh, H.
1972-01-01
A brief history of astronomy is presented. A chronology of events in the space program is summarized. The possibilities of interplanetary exploration are postulated. The accomplishments of astronomy in pointing the way to manned spaceflight and improved understanding of the solar system are examined.
Biotelemetry and computer analysis of sleep processes on earth and in space.
NASA Technical Reports Server (NTRS)
Adey, W. R.
1972-01-01
Developments in biomedical engineering now permit study of states of sleep, wakefulness, and focused attention in man exposed to rigorous environments, including aerospace flight. These new sensing devices, data acquisition systems, and computational methods have also been extensively applied to clinical problems of disordered sleep. A 'library' of EEG data has been prepared for sleep in normal man, and characterized for its group features by computational analysis. Sleep in an astronaut in space flight has been examined for the first and second 'nights' of space flight. Normal 90-min cycles were detected during the second night. Sleep patterns in quadriplegic patients deprived of all sensory inputs below the neck have indicated major deviations.
NASA Astrophysics Data System (ADS)
Silin, D. V.
Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the stars in the observable Universe will become valid targets for interstellar missions.
Space: exploration-exploitation and the role of man.
Loftus, J P
1986-10-01
The early years of space activity have emphasized a crew role similar to that of the test pilot or the crew of a high performance aircraft; even the Apollo lunar exploration missions were dominated by the task of getting to and from the moon. Skylab was a prototype space station and began to indicate the range of other functional roles man will play in space. The operation of the Space Shuttle has the elements of the operation of any other high performance flight vehicle during launch and landing; but in its on-orbit operations, it is often a surrogate space station, developing techniques and demonstrating the role of a future space station in various functions. In future space systems, the role of the crew will encompass all of the activities pursued in research laboratories, manufacturing facilities, maintenance shops, and construction sites. The challenge will be to design the tasks and the tools so that the full benefit of the opportunities offered by performing these functions in space can be attained.
The development of a cislunar space infrastructure
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective of the University of Colorado Advanced Mission Design Program is to define the characteristics and evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, an L1 space station, and a transportation system that anchors these elements to a low Earth orbit (LEO) station. The motivation of this project was based on the idea that a near-Earth space infrastructure is not an end but an important step in a larger plan to expand man's capabilities in space science and technology. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as facilitating the full exploration of the potential for science and industry on the lunar surface. This paper will provide a sound rationale and a detailed scenario in support of the cislunar infrastructure design.
Achieving Supportability on Exploration Missions with In-Space Servicing
NASA Technical Reports Server (NTRS)
Bacon, Charles; Pellegrino, Joseph F.; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas
2015-01-01
One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface sample to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that utilizes the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.
Apollo experience report: Lunar module communications system
NASA Technical Reports Server (NTRS)
Dietz, R. H.; Rhoades, D. E.; Davidson, L. J.
1972-01-01
The development of the lunar module communications system is traced from the initial concept to the operational system used on manned lunar missions. The problems encountered during the development, the corrective actions taken, and recommendations for similar equipment in future programs are included. The system was designed to provide communications between the lunar module and the manned space flight network, between the lunar module and the command and service module, and between the lunar module and the extravehicular crewmen. The system provided the equipment necessary for voice, telemetry, and television communications; ranging information; and various communications links.
Space station orbit maintenance
NASA Technical Reports Server (NTRS)
Kaplan, D. I.; Jones, R. M.
1983-01-01
The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.
Safety and environmental constraints on space applications of fusion energy
NASA Technical Reports Server (NTRS)
Roth, J. Reece
1990-01-01
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.
NASA Technical Reports Server (NTRS)
Olson, R. L.; Gustan, E. A.; Vinopal, T. J.
1985-01-01
Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenthaler, G.W.; Koster, J.N.
1987-01-01
Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
International Cooperation of Space Science and Application in Chinese Manned Space Program
NASA Astrophysics Data System (ADS)
Gao, Ming; Guo, Jiong; Yang, Yang
Early in China Manned Space Program, lots of space science and application projects have been carried out by utilizing the SZ series manned spaceships and the TG-1 spacelab, and remarkable achievements have been attained with the efforts of international partners. Around 2020, China is going to build its space station and carry out space science and application research of larger scale. Along with the scientific utilization plan for Chinese space station, experiment facilities are considered especially for international scientific cooperation, and preparations on international cooperation projects management are made as well. This paper briefs the international scientific cooperation history and achievement in the previous missions of China Manned Space Program. The general resources and facilities that will support potential cooperation projects are then presented. Finally, the international cooperation modes and approaches for utilizing Chinese Space Station are discussed.
NASA Astrophysics Data System (ADS)
Johnson, Bradley; May, Gayle L.; Korn, Paula
A recent symposium produced papers in the areas of solar system exploration, man machine interfaces, cybernetics, virtual reality, telerobotics, life support systems and the scientific and technology spinoff from the NASA space program. A number of papers also addressed the social and economic impacts of the space program. For individual titles, see A95-87468 through A95-87479.
NASA Space Flight Human System Standards
NASA Technical Reports Server (NTRS)
Tillman, Barry; Pickett, Lynn; Russo, Dane; Stroud, Ken; Connolly, Jan; Foley, Tico
2007-01-01
NASA has begun a new approach to human factors design standards. For years NASA-STD-3000, Manned Systems Integration Standards, has been a source of human factors design guidance for space systems. In order to better meet the needs of the system developers, NASA is revising its human factors standards system. NASA-STD-3000 will be replaced by two documents: set of broad human systems specifications (including both human factors and medical topics) and a human factors design handbook
Issues and status of power distribution options for space exploration
NASA Technical Reports Server (NTRS)
Bercaw, Robert W.; Cull, Ronald C.; Kenny, Barbara H.
1991-01-01
The Space Exploration Initiative (SEI) will need a wide variety of manned systems with requirements significantly different than those for existing systems. The concept of a space power utility is discussed and the impact of this concept on the engineering of space power systems is examined. Almost all existing space power systems use low voltage direct current. Although they have been very succesful, increasing power system requirements in recent years have exposed their inherent limitations and led to the proposal of a number of alternatives including high voltage DC and AC at various frequencies. Drawing on the experience gained from Space Station Freedom and SEI systems studies, factors that may affect the choice of frequency standards on which to build such a space power utility are discussed.
Air Evaporation closed cycle water recovery technology - Advanced energy saving designs
NASA Technical Reports Server (NTRS)
Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert
1986-01-01
The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
Crew emergency return vehicle - Electrical power system design study
NASA Technical Reports Server (NTRS)
Darcy, E. C.; Barrera, T. P.
1989-01-01
A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.
Human factors in long-duration space flight
NASA Technical Reports Server (NTRS)
1972-01-01
A study, covering the behavioral, psychological, physiological, and medical factors of long duration manned space flight, is presented. An attempt was made to identify and resolve major obstacles and unknowns associated with such a flight. The costs and maintenance of the spacecraft system are also explored.
Manned space flight nuclear system safety. Volume 1: base nuclear system safety
NASA Technical Reports Server (NTRS)
1972-01-01
The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.
Results of the First US Manned Orbital Space Flight
NASA Technical Reports Server (NTRS)
1962-01-01
The results of the first United States manned orbital space flight conducted on February 20, 1962 are presented. The prelaunch activities, spacecraft description, flight operations, flight data, and postflight analyses presented form a continuation of the information previously published for the two United States manned suborbital space flights conducted on May 5, 1961, and July 21, 1961, respectively, by the National Aeronautics and Space Administration.
Space station environmental control and life support systems conceptual studies
NASA Technical Reports Server (NTRS)
Humphries, W. R.; Powell, L. E.
1985-01-01
It is pointed out that the establishment of a permanent manned Space Station requires the development of a comprehensive approach which combines new technologies and existing spacecraft subsystem capabilities into an optimum design. The present paper is concerned with studies which were conducted in connection with the development of the regenerative Environmental Control and Life Support Systems (ECLSS) for the Space Station. Attention is given to the current state of the ECLSS subsystems and system level analytical selection and group studies related to the integrated system conceptual design.
USSR Space Life Sciences Digest, issue 25
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1990-01-01
This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.
Space Debris and Space Safety - Looking Forward
NASA Astrophysics Data System (ADS)
Ailor, W.; Krag, H.
Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.
Manned Space Exploration Can Provide Great Scientific Benefits
NASA Astrophysics Data System (ADS)
Singer, S. Fred
2005-08-01
An AGU Council statement (NASA: Earth and space sciences at risk, available at http:// www.agu.org/sci_soc/policy/positions/ earthspace_risk.shtml) and an Eos editorial [Barron, 2005], addressing NASA's envisioned manned Moon-Mars initiative, implicitly assume a zero-sum situation between manned and unmanned space programs. They also imply that the NASA initiative will not contribute significantly to science but will ``impact on the current and future health of Earth and space science research.'' I wish to respond to these concerns. It is generally agreed that the International Space Station and shuttle program have limited value and need to be terminated. But one should not assume that funds freed up by elimination of manned programs will accrue to unmanned programs. On the contrary, without a manned component, NASA will probably cease to exist. Congress likely will not continue to fund unmanned planetary exploration over the long term, and Earth and space researchers will then have to compete for support with scientists using non-space techniques.
NASA Technical Reports Server (NTRS)
Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.
1991-01-01
An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.
Spaceport Command and Control System Automated Testing
NASA Technical Reports Server (NTRS)
Stein, Meriel
2017-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.
Spaceport Command and Control System Automation Testing
NASA Technical Reports Server (NTRS)
Hwang, Andrew
2017-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.
Proposal for a remotely manned space station
NASA Technical Reports Server (NTRS)
Minsky, Marvin
1990-01-01
The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.
Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters
NASA Technical Reports Server (NTRS)
1975-01-01
The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.
Manned Mars mission accommodation: Sprint mission
NASA Technical Reports Server (NTRS)
Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.
1988-01-01
The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.
Proceedings of the NASA Conference on Space Telerobotics, volume 5
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center.
Space Station Freedom (SSF) Data Management System (DMS) performance model data base
NASA Technical Reports Server (NTRS)
Stovall, John R.
1993-01-01
The purpose of this document was originally to be a working document summarizing Space Station Freedom (SSF) Data Management System (DMS) hardware and software design, configuration, performance and estimated loading data from a myriad of source documents such that the parameters provided could be used to build a dynamic performance model of the DMS. The document is published at this time as a close-out of the DMS performance modeling effort resulting from the Clinton Administration mandated Space Station Redesign. The DMS as documented in this report is no longer a part of the redesigned Space Station. The performance modeling effort was a joint undertaking between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Flight Data Systems Division (FDSD) and the NASA Ames Research Center (ARC) Spacecraft Data Systems Research Branch. The scope of this document is limited to the DMS core network through the Man Tended Configuration (MTC) as it existed prior to the 1993 Clinton Administration mandated Space Station Redesign. Data is provided for the Standard Data Processors (SDP's), Multiplexer/Demultiplexers (MDM's) and Mass Storage Units (MSU's). Planned future releases would have added the additional hardware and software descriptions needed to describe the complete DMS. Performance and loading data through the Permanent Manned Configuration (PMC) was to have been included as it became available. No future releases of this document are presently planned pending completion of the present Space Station Redesign activities and task reassessment.
Computers for Manned Space Applications Base on Commercial Off-the-Shelf Components
NASA Astrophysics Data System (ADS)
Vogel, T.; Gronowski, M.
2009-05-01
Similar to the consumer markets there has been an ever increasing demand in processing power, signal processing capabilities and memory space also for computers used for science data processing in space. An important driver of this development have been the payload developers for the International Space Station, requesting high-speed data acquisition and fast control loops in increasingly complex systems. Current experiments now even perform video processing and compression with their payload controllers. Nowadays the requirements for a space qualified computer are often far beyond the capabilities of, for example, the classic SPARC architecture that is found in ERC32 or LEON CPUs. An increase in performance usually demands costly and power consuming application specific solutions. Continuous developments over the last few years have now led to an alternative approach that is based on complete electronics modules manufactured for commercial and industrial customers. Computer modules used in industrial environments with a high demand for reliability under harsh environmental conditions like chemical reactors, electrical power plants or on manufacturing lines are entered into a selection procedure. Promising candidates then undergo a detailed characterisation process developed by Astrium Space Transportation. After thorough analysis and some modifications, these modules can replace fully qualified custom built electronics in specific, although not safety critical applications in manned space. This paper focuses on the benefits of COTS1 based electronics modules and the necessary analyses and modifications for their utilisation in manned space applications on the ISS. Some considerations regarding overall systems architecture will also be included. Furthermore this paper will also pinpoint issues that render such modules unsuitable for specific tasks, and justify the reasons. Finally, the conclusion of this paper will advocate the implementation of COTS based electronics for a range of applications within specifically adapted systems. The findings in this paper are extrapolated from two reference computer systems, both having been launched in 2008. One of those was a LEON-2 based computer installed onboard the Columbus Orbital Facility while the other system consisted mainly of a commercial Power-PC module that was modified for a launch mounted on the ICC pallet in the Space Shuttle's cargo bay. Both systems are currently upgraded and extended for future applications.
America in Space: The First Decade - Spacecraft Power
NASA Technical Reports Server (NTRS)
Corliss, William R.
1970-01-01
Electrical power is necessary for every manned and unmanned spacecraft, with the exception of a few special-purpose Earth satellites. It is the reliable flow and availability of electrical power that allows man to extend his personal ventures safely beyond the atmosphere and keeps unmanned scientific payloads serving as useful tools for space exploration and applications. Electric power is essential to space communications, guidance, control, tracking, telemetry, life-support systems, sensors, data handling and storage, and to assure the proper functioning of countless experimental and housekeeping systems and subsystems aboard operating spacecraft. It remains the task of the National Aeronautics and Space Administration, since NASA's founding in 1958, to fully investigate the chemical, nuclear and solar sources of energy and to see how best they can be converted to reliable spacecraft power. The research and technology of power-generating systems illustrates a seldom recognized goal of NASA - to assure this Nation a freedom of choice; the choice, in this case, being that of going where we wish to go in the atmosphere or in space. Technical capability is the key to such freedom. Power requirements and profiles are reviewed and power sources, including batteries, fuel cells, solar cell, RTGs and nuclear fission power plants in space, are highlighted.
Proceedings of the Second Manned Space Flight Meeting
NASA Technical Reports Server (NTRS)
1964-01-01
The papers presented in this report represent the classified portion of the Second Manned Space Flight Meeting which was held in Dallas, TX, on April 22-24, 1963. The meeting was co-sponsored by the American Institute of Aeronautics and Astronautics and the National Aeronautics and Space Administration. The following subjects are discussed in the report: Manned Space Flight Programs, Launch Vehicles, Spacecraft Design, and Guidance and Control.
Space safety and rescue 1984-1985
NASA Astrophysics Data System (ADS)
Heath, G. W.
The present conference on spacecraft crew safety and rescue technologies and operations considers safety aspects of Space Shuttle ground processing, the Inmarsat and COSPAS/SARSAT emergency location satellite systems, emergency location and rescue communications using Geosat, the use of the Manned Maneuvering Unit for on-orbit rescue operations, NASA Space Station safety design and operational considerations, and the medico-legal implications of space station operation. Also discussed are the operational and environmental aspects of EPIRBS, mobile satellites for safety and disaster response, Inmarsat's role in the Future Global Maritime Distress and Safety System, and test results of the L-band satellite's EPIRB system.
USSR Space Life Sciences Digest. Index to issues 15-20
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor)
1989-01-01
This bibliography provides an index to issues 15 through 20 of the USSR Space Life Sciences Digest. There are two sections. The first section lists bibliographic citations of abstracts in these issues, grouped by topic area categories. The second section provides a key word index for the same abstracts. The topic categories include exobiology, space medicine and psychology, human performance and man-machine systems, various life/body systems, human behavior and adaptation, biospherics, and others.
USSR Space Life Sciences Digest. Index to issues 21-25
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor)
1990-01-01
This bibliography provides an index to issues 21 through 25 of the USSR Space Life Sciences Digest. There are two sections. The first section lists bibliographic citations of abstracts in these issues, grouped by topic area categories. The second section provides a key word index for the same abstracts. The topic categories include exobiology, space medicine and psychology, human performance and man-machine systems, various life/body systems, human behavior and adaptation, biospherics, and others.
USSR Space Life Sciences Digest. Index to issues 26-29
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor)
1991-01-01
This bibliography provides an index to issues 26 through 29 of the USSR Space Life Sciences Digest. There are two sections. The first section lists bibliographic citations of abstracts in these issues, grouped by topic area categories. The second section provides a key word index for the same abstracts. The topic categories include exobiology, space medicine and psychology, human performance and man-machine systems, various life/body systems, human behavior and adaptation, biospherics, and others.
ecoSPEARS License Signing with Kelvin Manning
2017-12-19
NASA Kennedy Space Center's Associate Director Kelvin Manning, center, signs a license agreement with the President and CEO of ecoSPEARS, which allows the company to commercially sell a soil remediation technology developed by a research team at Kennedy. The technology, known as Sorbent Polymer Extraction And Remediation System, is designed to capture and remove polychlorinated biphenyls (PCBs) from contaminated sediments in waterways and wetlands.
How human sleep in space — investigations during space flights
NASA Astrophysics Data System (ADS)
Stoilova, I. M.; Zdravev, T. K.; Yanev, T. K.
Sleep problems have been observed during many of the space flights. The existence of poor quality of sleep, fatigue, insomnia or different alterations in sleep structure, organization and sleep cyclicity have been established. Nevertheless results obtained from investigations of human sleep on board manned space vehicles show that it is possible to keep sleep patterns related to the restorative and adaptive processes. For the first time in the frame of the "Intercosmos" program a multi-channel system for recording and analysis of sleep in space was constructed by scientists of the Bulgarian Academy of Sciences and was installed on board the manned Mir orbiting station. In 1988 during the joint Bulgarian-Russian space flight continues recording of electro-physiological parameters necessary to estimate the sleep stages and sleep organization was made. These investigations were continued in next space flights of different prolongation. The results were compared with the findings obtained under the conditions during the pre- and post-flight periods.
The development of a cislunar space infrastructure
NASA Technical Reports Server (NTRS)
Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.
1989-01-01
The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.
Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.
Electronics systems test laboratory testing of shuttle communications systems
NASA Technical Reports Server (NTRS)
Stoker, C. J.; Bromley, L. K.
1985-01-01
Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.
Automation study for space station subsystems and mission ground support
NASA Technical Reports Server (NTRS)
1985-01-01
An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.
A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.
2003-01-01
The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.
Aerodynamics of Reentry Vehicle Clipper at Descent Phase
NASA Astrophysics Data System (ADS)
Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.
2005-02-01
From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and Mars.. Logistics spacecraft Progress have been flying regularly since 1978. The tasks of these unmanned spacecraft include supplying the space station with all the necessities for long-duration missions, such as propellant for the space station propulsion system, crew life support consumables, scientific equipment for conducting experiments. Various modifications of the spacecraft have expanded the space station capabilities. 1988 saw the first, and, much to our regret, the last flight of the reusable orbiter Buran.. Buran could deliver to orbit up to 30 tons of cargo, return 20 tons to Earth and have a crew of up to 10. However, due to our country's economic situation the project was suspended.
Technology developments integrating a space network communications testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.
Automated Rendezvous and Capture System Development and Simulation for NASA
NASA Technical Reports Server (NTRS)
Roe, Fred D.; Howard, Richard T.; Murphy, Leslie
2004-01-01
The United States does not have an Automated Rendezvous and Capture Docking (AR&C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. T h i s reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR&C) system for U.S. space vehicles. This A M C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized as the primary navigation sensor on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004. Realtime closed-loop simulations will be performed to validate the improved AR&C systems prior to flight.
Manned Space Flight Experiments Symposium: Gemini Missions III and IV
NASA Technical Reports Server (NTRS)
1965-01-01
This is a compilation of papers on in-flight experiments presented at the first symposium of a series, Manned Space Flight Experiments Symposium, sponsored by the National Aeronautics and Space Administration. The results of experiments conducted during the Gemini Missions III and IV are covered. These symposiums are to be conducted for the scientific community at regular intervals on the results of experiments carried out in conjunction with manned space flights.
Human factors - Man-machine symbiosis in space
NASA Technical Reports Server (NTRS)
Brown, Jeri W.
1987-01-01
The relation between man and machine in space is studied. Early spaceflight and the goal of establishing a permanent space presence are described. The need to consider the physiological, psychological, and social integration of humans for each space mission is examined. Human factors must also be considered in the design of spacecraft. The effective utilization of man and machine capabilities, and research in anthropometry and biomechanics aimed at determining the limitations of spacecrews are discussed.
The Scent of the Future: Manned Space Travel and the Soviet Union.
1981-06-01
AND ECONOMIC APPLICATIONS 56 GREENHOUSES , BOOSTERS, AND SPACE PLANES: SOVIET SPACE-RELATED RESEARCH AND DEVELOPMENT 72 R.U.R. REVISITED: MANNED VERSUS... greenhouse that was part of their 12-square-meter closed environment.9 6 The successful conclusion of this test demonstrated the feasibility of a manned...will probably be timed to coincide with the XXVI Party Congress which convenes in February 1981. 71 GREENHOUSES , BOOSTERS, AND SPACE PLANES: SOVIET
Database Tool for Master Console Operators
NASA Technical Reports Server (NTRS)
Ferrell, Sean
2018-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires highly trained and knowledgeable personnel. Master Console Operators (MCO) are currently working on familiarizing themselves with any possible scenario that they may encounter. An intern was recruited to help assist them with creating a tool to use for the process.
Lunar habitat concept employing the space shuttle external tank.
King, C B; Butterfield, A J; Hypes, W D; Nealy, J E; Simonsen, L C
1990-01-01
The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.
NASA Technical Reports Server (NTRS)
1975-01-01
Experiments proposed for the Apollo-Soyuz space mission are discussed. Data focus of space processing and manufacturing, earth surveys, and life sciences. Special efforts were made to test the compatibility of the rendezvous and docking systems for manned spacecraft. Mission planning programs, personnel training, and spacecraft modifications for both spacecraft are included.
JPL space station telerobotic engineering prototype development FY 91 status/achievements
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne
1991-01-01
The topics covered are presented in view graph form and include: (1) streamlining intravehicular activity (IVA) teleoperation activities on the Space Station Freedom (SSF); (2) enhancing SSF utilization during the man-tended phase; (3) telerobotic ground remote operations (TGRO); and (4) advanced telerobotics system technology (shared control).
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 11: Life support panel
NASA Technical Reports Server (NTRS)
1975-01-01
Life support technology requirements for long-term space habitation are identified with emphasis on regeneration capabilities and biological life support systems. Other topics discussed include: water recovery, oxygen recovery, waste management recycle, and a man-made closed ecology with selected biological species.
1979-05-07
S79-31775 (29 April 1979) --- These two astronauts are the prime crewmen for the first flight in the Space Transportation System (STS-1) program. Astronauts John W. Young, left, commander, and Robert L. Crippen, pilot, will man the space shuttle orbiter 102 Columbia for the first orbital flight test. Photo credit: NASA
The deep space network, volume 10
NASA Technical Reports Server (NTRS)
1972-01-01
Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.
Results of the Second U.S. Manned Suborbital Space Flight, July 21, 1961
NASA Technical Reports Server (NTRS)
1961-01-01
This document presents the results of the second United States manned suborbital space flight. The data and flight description presented form a continuation of the information provided at an open conference held under the auspices of the National Aeronautics and Space Administration, in cooperation with the National Institutes of Health and the National Academy of Sciences, at the U.S. Department of State Auditorium on June 6, 1961. The papers presented herein generally parallel the presentations of the first report and were prepared by the personnel of the NASA Manned Spacecraft Center in collaboration with personnel from other government agencies, participating industry, and universities. The second successful manned suborbital space flight on July 21, 1961, in which Astronaut Virgil I. Grissom was the pilot was another step in the progressive research, development, and training program leading to the study of man's capabilities in a space environment during manned orbital flight. Data and operational experiences gained from this flight were in agreement with and supplemented the knowledge obtained from the first suborbital flight of May 5, 1961, piloted by Astronaut Alan B. Shepard, Jr. The two recent manned suborbital flights, coupled with the unmanned research and development flights, have provided valuable engineering nd scientific data on which the program can progress. The successful active participation of the pilots, in much the same way as in the development and testing of high performance aircraft, has. greatly increased our confidence in giving man a significant role in future space flight activities. It is the purpose of this report to continue the practice of providing data to the scientific community interested in activities of this nature. Brief descriptions are presented of the Project Mercury spacecraft and flight plan. Papers are provided which parallel the presentations of data published for the first suborbital space flight. Additional information is given relating to the operational aspects of the medical support activities for the two manned suborbital space flights.
NASA Technical Reports Server (NTRS)
Tri, Terry O.; Thompson, Clifford D.
1992-01-01
Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.
In-flight testing of the space shuttle orbiter thermal control system
NASA Technical Reports Server (NTRS)
Taylor, J. T.
1985-01-01
In-flight thermal control system testing of a complex manned spacecraft such as the space shuttle orbiter and the considerations attendant to the definition of the tests are described. Design concerns, design mission requirements, flight test objectives, crew vehicle and mission risk considerations, instrumentation, data requirements, and real-time mission monitoring are discussed. An overview of the tests results is presented.
Space Station Systems Analysis Study. Volume 2: Program review report
NASA Technical Reports Server (NTRS)
1977-01-01
Major growth options for tended and manned space stations in LEO and GEO are examined including increased orbiter augmentation and habitation requirements. Approaches for providing power supplies, construction aids needed to assemble support platforms, transportation system constraints, and the hardware required for various missions categories are defined. Subsystem requirements are analyzed for structure; flight control; power generation and storage; avionic; life support systems; personnel provisions; and environmental control. Tradeoffs are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herndon, J.N.
1992-05-01
The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. Remote technology has roots which reach into the early history of man. Fireplace pokers, blacksmith`s tongs, and periscopes are examples of the beginnings of remote technology. The technology which we recognize today has evolved over the last 45-plus years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extendedmore » reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Work for space applications has been primarily research oriented with few successful space applications, although the shuttle`s remote manipulator system has been successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus. This document consists of viewgraphs and subtitled figures.« less
NASA Astrophysics Data System (ADS)
Halprin, L.
Manned space flight has stagnated for over forty years. No humans have travelled beyond LEO since 1972. This paper examines the historical reasons for this situation, postulates a possible explanation and proposes a potential way forward. The science required for manned space flight has existed for a very long time. The Chinese first developed rockets almost a millennium ago. The Laws of Universal Gravitation were described by Newton in the 17th century, and the rocket equation was formulated by Tsiolkovsky over a hundred years ago. Advances in chemical, electronic and materials technologies enabled manned space flight fifty years ago. But it still required the political will to authorise the enormous expense of the undertaking. Since the original political impetus for manned space flight evaporated after men reached the moon, the enterprise has stagnated. A three stage model linking (a) the science and technology, (b) the economic resources and (c) the will or motivation is presented as a possible explanation. A way for progressing the enterprise of manned space flight beyond this three-way nexus is proposed. By accepting the propositions put forward in this paper, it is plausible that stakeholders may be empowered to push beyond the excuses that have retarded manned space flight for so long.
Preliminary study of the space adaptation of the MELiSSA life support system
NASA Astrophysics Data System (ADS)
Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent
MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.
Artificial gravity in space and in medical research
NASA Technical Reports Server (NTRS)
Cardus, D.
1994-01-01
The history of manned space flight has repeatedly documented the fact that prolonged sojourn in space causes physiological deconditioning. Physiological deterioration has raised a legitimate concern about man's ability to adequately perform in the course of long missions and even the possibility of leading to circumstances threatening survival. One of the possible countermeasures of physiological deconditioning, theoretically more complete than others presently used since it affects all bodily systems, is artificial gravity. Space stations and spacecrafts can be equipped with artificial gravity, but is artificial gravity necessary? The term "necessary" must be qualified because a meaningful answer to the question depends entirely on further defining the purpose of space travel. If man intends to stay only temporarily in space, then he must keep himself in good physical condition so as to be able to return to earth or to land on any other planetary surface without undue exposure to major physiological problems resulting from transition through variable gravitational fields. Such a situation makes artificial gravity highly desirable, although perhaps not absolutely necessary in the case of relative short exposure to microgravity, but certainly necessary in interplanetary flight and planetary landings. If the intent is to remain indefinitely in space, to colonize space, then artificial gravity may not be necessary, but in this case the consequences of long term effects of adaptation to weightlessness will have to be weighed against the biological evolutionary outcomes that are to be expected. At the moment, plans for establishing permanent colonies in space seem still remote. More likely, the initial phase of exploration of the uncharted solar system will take place through successive, scope limited, research ventures ending with return to earth. This will require man to be ready to operate in gravitational fields of variable intensity. Equipping spacecrafts or space stations with some means of artificial gravity in this initial phase is, therefore, necessary without question. In a strict sense artificial gravity is conceived as a means of replacing natural gravity in space by the centripetal acceleration generated by some sort of rotating device. Rotating devices create an inertial force which has effects on bodies similar to those caused by terrestrial gravity, but artificial gravity by a rotation device is not the same as terrestrial gravity, as we shall see. Present research in artificial gravity for space exploration is projected in two main directions: artificial gravity for whole space stations and artificial gravity produced by short arm centrifuges designed for human use in space.
Artificial gravity in space and in medical research.
Cardús, D
1994-05-01
The history of manned space flight has repeatedly documented the fact that prolonged sojourn in space causes physiological deconditioning. Physiological deterioration has raised a legitimate concern about man's ability to adequately perform in the course of long missions and even the possibility of leading to circumstances threatening survival. One of the possible countermeasures of physiological deconditioning, theoretically more complete than others presently used since it affects all bodily systems, is artificial gravity. Space stations and spacecrafts can be equipped with artificial gravity, but is artificial gravity necessary? The term "necessary" must be qualified because a meaningful answer to the question depends entirely on further defining the purpose of space travel. If man intends to stay only temporarily in space, then he must keep himself in good physical condition so as to be able to return to earth or to land on any other planetary surface without undue exposure to major physiological problems resulting from transition through variable gravitational fields. Such a situation makes artificial gravity highly desirable, although perhaps not absolutely necessary in the case of relative short exposure to microgravity, but certainly necessary in interplanetary flight and planetary landings. If the intent is to remain indefinitely in space, to colonize space, then artificial gravity may not be necessary, but in this case the consequences of long term effects of adaptation to weightlessness will have to be weighed against the biological evolutionary outcomes that are to be expected. At the moment, plans for establishing permanent colonies in space seem still remote. More likely, the initial phase of exploration of the uncharted solar system will take place through successive, scope limited, research ventures ending with return to earth. This will require man to be ready to operate in gravitational fields of variable intensity. Equipping spacecrafts or space stations with some means of artificial gravity in this initial phase is, therefore, necessary without question. In a strict sense artificial gravity is conceived as a means of replacing natural gravity in space by the centripetal acceleration generated by some sort of rotating device. Rotating devices create an inertial force which has effects on bodies similar to those caused by terrestrial gravity, but artificial gravity by a rotation device is not the same as terrestrial gravity, as we shall see. Present research in artificial gravity for space exploration is projected in two main directions: artificial gravity for whole space stations and artificial gravity produced by short arm centrifuges designed for human use in space.
Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine
NASA Technical Reports Server (NTRS)
Rodenberg, H.; Myers, K. J.
1995-01-01
The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.
Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine.
Rodenberg, H; Myers, K J
1995-01-01
The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.
Sunlight supply and gas exchange systems in microalgal bioreactor
NASA Technical Reports Server (NTRS)
Mori, K.; Ohya, H.; Matsumoto, K.; Furune, H.
1987-01-01
The bioreactor with sunlight supply system and gas exchange systems presented has proved feasible in ground tests and shows much promise for space use as a closed ecological life support system device. The chief conclusions concerning the specification of total system needed for a life support system for a man in a space station are the following: (1) Sunlight supply system - compactness and low electrical consumption; (2) Bioreactor system - high density and growth rate of chlorella; and (3) Gas exchange system - enough for O2 production and CO2 assimilation.
Automated Rendezvous and Capture System Development and Simulation for NASA
NASA Technical Reports Server (NTRS)
Roe, Fred D.; Howard, Richard T.; Murphy, Leslie
2004-01-01
The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.
14 CFR 31.46 - Pressurized fuel systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...
14 CFR 31.46 - Pressurized fuel systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...
14 CFR 31.46 - Pressurized fuel systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressurized fuel systems. 31.46 Section 31... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.46 Pressurized fuel systems. For pressurized fuel systems, each element and its connecting fittings and lines must be tested to an ultimate...
NASA Technical Reports Server (NTRS)
Roos, Darrell; Cheng, Chieh-San; Newsome, Penny; Nath, Nitya
1989-01-01
A feasible, top-level data system is defined that could accomplish and support the Astromag Data System functions and interfaces necessary to support the scientific objectives of Astromag. This data system must also be able to function in the environment of the Space Station Freedom Manned Base (SSFMB) and other anticipated NASA elements.
Biomedical and Human Factors Requirements for a Manned Earth Orbiting Station
NASA Technical Reports Server (NTRS)
Helvey, W.; Martell, C.; Peters, J.; Rosenthal, G.; Benjamin, F.; Albright, G.
1964-01-01
The primary objective of this study is to determine which biomedical and human factors measurements must be made aboard a space station to assure adequate evaluation of the astronaut's health and performance during prolonged space flights. The study has employed, where possible, a medical and engineering systems analysis to define the pertinent life sciences and space station design parameters and their influence on a measurement program. The major areas requiring evaluation in meeting the study objectives include a definition of the space environment, man's response to the environment, selection of measurement and data management techniques, experimental program, space station design requirements, and a trade-off analysis with final recommendations. The space environment factors that are believed to have a significant effect on man were evaluated. This includes those factors characteristic of the space environment (e. g. weightlessness, radiation) as well as those created within the space station (e. g. toxic contaminants, capsule atmosphere). After establishing the general features of the environment, an appraisal was made of the anticipated response of the astronaut to each of these factors. For thoroughness, the major organ systems and functions of the body were delineated, and a determination was made of their anticipated response to each of the environmental categories. A judgment was then made on the medical significance or importance of each response, which enabled a determination of which physiological and psychological effects should be monitored. Concurrently, an extensive list of measurement techniques and methods of data management was evaluated for applicability to the space station program. The various space station configurations and design parameters were defined in terms of the biomedical and human factors requirements to provide the measurements program. Research design of experimental programs for various station configurations, mission durations, and crew sizes were prepared, and, finally, a trade-off analysis of the critical variables in the station planning was completed with recommendations to enhance the confidence in the measurement program.
Apollo experience report: Protection against radiation
NASA Technical Reports Server (NTRS)
English, R. A.; Benson, R. E.; Bailey, J. V.; Barnes, C. M.
1973-01-01
Radiation protection problems on earth and in space are discussed. Flight through the Van Allen belts and into space beyond the geomagnetic shielding was recognized as hazardous before the advent of manned space flight. Specialized dosimetry systems were developed for use on the Apollo spacecraft, and systems for solar-particle-event warning and dose projection were devised. Radiation sources of manmade origin on board the Apollo spacecraft present additional problems. Methods applied to evaluate and control or avoid the various Apollo radiation hazards are discussed.
Integration and Testing of LCS Software
NASA Technical Reports Server (NTRS)
Wang, John
2014-01-01
Kennedy Space Center is in the midst of developing a command and control system for the launch of the next generation manned space vehicle. The Space Launch System (SLS) will launch using the new Spaceport Command and Control System (SCCS). As a member of the Software Integration and Test (SWIT) Team, command scripts, and bash scripts were written to assist in integration and testing of the Launch Control System (LCS), which is a component of SCCS. The short term and midterm tasks are for the most part completed. The long term tasks if time permits will require a presentation and demonstration.
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
Solovjev, V A
1987-09-01
Today, more than 20 years after the first in the world man's space walk, soviet cosmonautics gained large experience of extravehicular activity (EVA). Space suits of high reliability, onboard facilities for passing through the airlock, sets of special tools and technological rigging, as well as procedures for carrying out various EVA's were developed. In the course of the Salyut-7 space station orbital operation the EVA's have become regular. The author of the report as the participant of the EVA's considers the main steps of man activities in space and analyzes specific problems arised in performing such activities.
NASA Technical Reports Server (NTRS)
1981-01-01
The primary change in crew capsule definition is a smaller MOTV crew capsule, switching from a 3-man capsule to a 2-man capsule. A second change permitted crew accommodations for sleeping and privacy to be combined with the flight station. The current baseline DRM, ER1, requires 2 men for 3 to 4 days to repair a multi-disciplined GOE Platform and a modest amount of mission dedicated hardware. A 2-man MOTV crew capsule to be used as a design reference point for the OTV, and its interfaces between the STS and other associated equipment or facilities are described in detail. The functional capabilities of the 2-man capsule, as well as its application to a wide range of generic missions, is also presented. The MOTV turnaround is addressed and significant requirements for both space based and ground based scenarios are summarized.
NASA Technical Reports Server (NTRS)
Aten, Laurie A.; Crump, William J.; Sauer, Richard L.
1992-01-01
Among the challenges of designing and constructing Space Station Freedom is the development of the water system. A review of past efforts in reclaiming waste water in enclosed environments reveals that there are many gaps in the biomedical understanding of this process. Some of the key uncertainties of human interaction with a closed water system include determining potential contaminants and establishing safe levels of multiple compounds in the enclosed system of Space Station. Another uncertainty is the microbial constituency of such a system and what impact it could have on crew health and performance. The use of iodine as the passive biocide may have both an indirect and direct impact on the crew. In this paper the initial results of the Water Recovery Test are reviewed from a biomedical perspective, revealing areas where more information is needed to develop the ECLSS water system. By including the approach of 'man as a subsystem', consideration is given to how man interacts with the total water system. Taking this systems approach to providing the crew with a safe source of water gives useful insight into the most efficient design and utilization of closed system testbeds.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 401)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 140 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May 1995. Subject coverage includes: aerospace medicine, behavioral sciences, man/system technology and life support, and space biology.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 390)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 102 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System. Subject coverage includes: life sciences (general), aerospace medicine, behavioral sciences, man/system technology and life support, and space biology.
Free-flying teleoperator requirements and conceptual design.
NASA Technical Reports Server (NTRS)
Onega, G. T.; Clingman, J. H.
1973-01-01
A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.
Program operational summary: Operational 90 day manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
Jackson, J. K.; Wamsley, J. R.; Bonura, M. S.; Seeman, J. S.
1972-01-01
An operational 90-day manned test of a regenerative life support system was successfully completed. This test was performed with a crew of four carefully selected and trained men in a space station simulator (SSS) which had a two gas atmosphere maintained at a total pressure of 68.9, 10 psia, and composed of oxygen at a partial pressure of 3.05 psia with nitrogen as the diluent. The test was planned to provide data on regenerative life support subsystems and on integrated system operations in a closed ecology, similar to that of a space station. All crew equipment and expendables were stored onboard at the start of the mission to eliminate the need for pass-in operations. The significant accomplishments of the test, some of the pertinent test results, some of the problem areas, and conclusions are presented.
The NASA/OAST telerobot testbed architecture
NASA Technical Reports Server (NTRS)
Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.
1989-01-01
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.
NASA Technical Reports Server (NTRS)
Reynolds, R. C.; Ruck, G. T.
1983-01-01
Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.
Toward large space systems. [Space Construction Base development from shuttles
NASA Technical Reports Server (NTRS)
Daros, C. J.; Freitag, R. F.; Kline, R. L.
1977-01-01
The design of the Space Transportation System, consisting of the Space Shuttle, Spacelab, and upper stages, provides experience for the development of more advanced space systems. The next stage will involve space stations in low earth orbit with limited self-sufficiency, characterized by closed ecological environments, space-generated power, and perhaps the first use of space materials. The third phase would include manned geosynchronous space-station activity and a return to lunar operations. Easier access to space will encourage the use of more complex, maintenance-requiring satellites than those currently used. More advanced space systems could perform a wide range of public services such as electronic mail, personal and police communication, disaster control, earthquake detection/prediction, water availability indication, vehicle speed control, and burglar alarm/intrusion detection. Certain products, including integrated-circuit chips and some enzymes, can be processed to a higher degree of purity in space and might eventually be manufactured there. Hardware including dishes, booms, and planar surfaces necessary for advanced space systems and their development are discussed.
NASA Technical Reports Server (NTRS)
Burchard, E. C.
1975-01-01
The physiological and psychological factors of manned space flight had a particular significance in the Skylab missions during which astronauts were subjected to a life in a space environment for longer periods of time than on previous space missions. The Skylab missions demonstrated again the great adaptability of human physiology to the environment of man. The results of Skylab have indicated also approaches for enhancing the capability of man to tolerate the physiological and psychological stresses of space flight.
Space station assembly/servicing capabilities
NASA Technical Reports Server (NTRS)
Joyce, Joseph
1986-01-01
The aim is to place a permanently manned space station on-orbit around the Earth, which is international in scope. The program is nearing the close of the system definition and preliminary design phase. The first shuttle launch for space station assembly on-orbit is estimated for January 1993. Topics perceived to be important to on-orbit assembly and servicing are discussed. This presentation is represented by charts.
An alternate concept for expanding man's presence in space
NASA Technical Reports Server (NTRS)
Hook, W. R.; Osborne, R. S.
1983-01-01
A logical next step after shuttle is a manned orbital service system (MOSS) consisting of a two-man crew module mated with a propulsion module. The resulting spacecraft would remain in low Earth orbit for months or years at a time conducting civil or military satellite servicing, experimental, or applications missions while being periodically supplied and refueled by Shuttle flights from the ground. The system would accumulate experience invaluable to the design of future large and more expensive spacecraft. Key features of the vehicle are versatility and mobility. With Centaur-type propulsion and a large payload, the MOSS could leave an initial orbit of 370 km (200 nmi) altitude and inclinations up to 56 deg, make a plane change of up to + or - 14 deg, reach altitudes to 5500 km (2970 nmi), and then return the payload to the original orbit altitude and inclination. Obviously, the size of the performance envelope varies with the payload and propulsion-unit selected. The MOSS can reach orbits and perform tasks not possible with Shuttle alone or with the much larger space stations currently being proposed.
The Cambridge encyclopedia of space (revised edition)
NASA Technical Reports Server (NTRS)
D'Allest, Frederic; Arets, Jean; Baker, Phillip J.; Balmino, Georges; Barth, Hans; Benson, Robert H.
1990-01-01
A comprehensive and intensively illustrated development history is presented for spaceflight, ranging over its basic concepts' speculative and fictional origins, the historical roots of rocket-related technologies, and the scientific accomplishments of earth orbit and interplanetary missions to date. Attention is given to propulsion systems, spaceflight launch centers, satellite systems, and solar system exploration by the U.S. and the Soviet Union. Current space-related activities encompass the meteorology, remote sensing, telecommunications and direct broadcasting, and navigation functions of unmanned satellites, as well as such manned spacecraft roles as medical and materials science research. The military uses of space, and increasingly important space industrialization concepts, are discussed as well.
NASA Technical Reports Server (NTRS)
Keyes, Gilbert
1991-01-01
Information is given in viewgraph form on Space Station Freedom. Topics covered include future evolution, man-tended capability, permanently manned capability, standard payload rack dimensions, the Crystals by Vapor Transport Experiment (CVTE), commercial space projects interfaces, and pricing policy.
Alternatives for Future U.S. Space-Launch Capabilities
2006-10-01
directive issued on January 14, 2004—called the new Vision for Space Exploration (VSE)—set out goals for future exploration of the solar system using...of the solar system using manned spacecraft. Among those goals was a proposal to return humans to the moon no later than 2020. The ultimate goal...U.S. launch capacity exclude the Sea Launch system operated by Boeing in partnership with RSC- Energia (based in Moscow), Kvaerner ASA (based in Oslo
Biomedical systems analysis program
NASA Technical Reports Server (NTRS)
1979-01-01
Biomedical monitoring programs which were developed to provide a system analysis context for a unified hypothesis for adaptation to space flight are presented and discussed. A real-time system of data analysis and decision making to assure the greatest possible crew safety and mission success is described. Information about man's abilities, limitations, and characteristic reactions to weightless space flight was analyzed and simulation models were developed. The predictive capabilities of simulation models for fluid-electrolyte regulation, erythropoiesis regulation, and calcium regulation are discussed.
Manned maneuvering unit: User's guide
NASA Technical Reports Server (NTRS)
Lenda, J. A.
1978-01-01
The space shuttle will provide an opportunity to extend and enhance the crew's inherent capabilities in orbit by allowing them to operate effectively outside of their spacecraft by means of extravehicular activity. For this role, the shuttle crew will have a new, easier to don and operate space suit with integral life support system, and a self-contained propulsive backpack. The backpack, called the manned maneuvering unit, will allow the crew to operate beyond the confines of the Shuttle cargo bay and fly to any part of their own spacecraft or to nearby free-flying payloads or structure. This independent mobility will be used to support a wide variety of activities including free-space transfer of cargo and personnel, inspection and monitoring of orbital operations, and construction and assembly of large structures in orbit.
Orbital operation study. Volume 3: Basic vehicle summaries
NASA Technical Reports Server (NTRS)
Anderson, N. R.; Gianformaggio, A.
1972-01-01
The vehicle related data developed during the orbital operations study are described. The interfacing activity findings have been realigned into the four basic vehicle systems as follows: (1) earth orbital shuttle (EOS), (2) research and applications module (RAM), (3) space based, ground based, manned and unmanned tugs, and (4) modular space station (MSS).
Space-Proven Medical Monitor: The Total Patient-Care Package
NASA Technical Reports Server (NTRS)
2006-01-01
The primary objective of the Gemini Program was to develop techniques that would allow for advanced, long-duration space travel, a prerequisite of the ensuing Apollo Program that would put man safely on the Moon before the end of the decade. In order to carry out this objective, NASA worked with a variety of innovative companies to develop propulsion systems, onboard computers, and docking capabilities that were critical to the health of Gemini spacecraft, as well as life-support systems and physiological-monitoring devices that were critical to the health of Gemini astronauts. One of these companies was Spacelabs Medical, Inc., the pioneer of what is commonly known today as medical telemetry. Spacelabs Medical helped NASA better understand man s reaction to space through a series of bioinstrumentation devices that, for the first time ever, were capable of monitoring orbiting astronauts physical conditions in real time, from Earth. The company went on to further expand its knowledge of monitoring and maintaining health in space, and then brought it down to Earth, to dramatically change the course of patient monitoring in the field of health care.
Estimating the Reliability of a Soyuz Spacecraft Mission
NASA Technical Reports Server (NTRS)
Lutomski, Michael G.; Farnham, Steven J., II; Grant, Warren C.
2010-01-01
Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA s next manned rocket and spacecraft development project is currently underway. Though the projects ultimate goal is to return to the Moon and then to Mars, the launch vehicle and spacecraft s first mission will be for crew transportation to and from the ISS. The reliability targets are currently several times higher than the Shuttle and possibly even the Soyuz. Can these targets be compared to the reliability of the Soyuz to determine whether they are realistic and achievable? To help answer these questions this paper will explore how to estimate the reliability of the Soyuz Launcher/Spacecraft system, compare it to the Space Shuttle, and its potential impacts for the future of manned spaceflight. Specifically it will look at estimating the Loss of Mission (LOM) probability using historical data, reliability growth, and Probabilistic Risk Assessment techniques
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
NASA Technical Reports Server (NTRS)
Stahr, J. D.; Auslander, D. M.; Spear, R. C.; Young, G. E.
1982-01-01
Life support systems for manned space missions are discussed. A scenario analysis method was proposed for the initial step of comparing possible partial or total recycle scenarios. The method is discussed in detail.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 398)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 66 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Feb. 1995. Subject coverage includes: aerospace medicine, life sciences, behavioral sciences, man/system technology and life support, and space biology.
Urine sampling and collection system
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Reinhardt, C. G.
1971-01-01
This specification defines the performance and design requirements for the urine sampling and collection system engineering model and establishes requirements for its design, development, and test. The model shall provide conceptual verification of a system applicable to manned space flight which will automatically provide for collection, volume sensing, and sampling of urine.
1982-01-01
McDornel Douglas performed an Evolutionary Space Platform Concept Study for the Marshall Space Flight Center in the early 1980's. The 10-month study was designed to define, evaluate, and compare approaches and concepts for evolving unmanned and manned capability platforms beyond the then current space platform concepts to an evolutionary goal of establishing a permanent-manned presence in space.
Hybrid propulsion technology program: Phase 1, volume 2
NASA Technical Reports Server (NTRS)
Schuler, A. L.; Wiley, D. R.
1989-01-01
The program objectives of developing hybrid propulsion technology (HPT) to enable its application for manned and unmanned high thrust, high performance space launch vehicles are examined. The studies indicate that the hybrid propulsion (HP) is very attractive, especially when applied to large boosters for programs such as the Advanced Launch System (ALS) and the second generation Space Shuttle. Some of the advantages of HP are identified. Space launch vehicles using HP are less costly than those flying today because their propellant and insulation costs are much less and there are fewer operational restraints due to reduced safety requirements. Boosters using HP have safety features that are highly desirable, particularly for manned flights. HP systems will have a clean exhaust and high performance. Boosters using HP readily integrate with launch vehicles and their launch operations, because they are very compact for the amount of energy contained. Hybrid propulsion will increase the probability of mission success. In order to properly develop the technologies of HP, preliminary HP concepts are evaluated. System analyses and trade studies were performed to identify technologies applicable to HP.
NASA Technical Reports Server (NTRS)
1971-01-01
In 1973 three Americans will embark on the first of a series of Earth orbiting missions using Skylab, the first United States vehicle created specifically to enable man to live and work in space for extended periods. Sky lab is a program dedicated to the use of space and its unique environment and vantage point to increase our knowledge and understanding of the Earth's importance to man's well-being and man's influence on Earth's ecology. Sky lab will also be a major step in manned space flight. Habitation by the first crew will double our previous man-in-space duration (Gemini VII) and the second visit will redouble that duration. It will, in effect, create a bridge between the development flights of the 60s and the long duration operational space flights of the future. To accomplish its mission, Sky lab will be placed in Earth orbit and will be visited and inhabited by three different crews during an eight-month period. While successfully inhabiting and operating the vehicle for one- and two-month continuous periods, these crews will obtain data in areas pertinent to the man/Earth relationship and to long duration space flight. Data will be acquired by Skylab primarily through the conduct of "experiments." Four categories of investigation are planned. These are summarized in the following paragraphs.
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1990-01-01
As telescience systems become more and more complex, autonomous, and opaque to their operators it becomes increasingly difficult to determine whether the total system is performing as it should. Some of the complex and interrelated human performance measurement issues are addressed as they relate to total system validation. The assumption is made that human interaction with the automated system will be required well into the Space Station Freedom era. Candidate human performance measurement-validation techniques are discussed for selected ground-to-space-to-ground and space-to-space situations. Most of these measures may be used in conjunction with an information throughput model presented elsewhere (Haines, 1990). Teleoperations, teleanalysis, teleplanning, teledesign, and teledocumentation are considered, as are selected illustrative examples of space related telescience activities.
Manned Mission Space Exploration Utilizing a Flexible Universal Module
NASA Astrophysics Data System (ADS)
Humphries, P.; Barez, F.; Gowda, A.
2018-02-01
The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoff
The Sun’s continuous bombardment of the Earth with high-energy electrons, protons, and other nuclei results in space weather that can wreak havoc on the nation’s satellites, aircraft, communications networks, navigation systems, and the electric power grid. Because of the potential for space weather to so critically impact national security, Los Alamos National Laboratory has been studying it for decades, designing and building space-based sensors to detect emissions from potential nuclear events here on Earth and to study natural and man-made radiation in space.
Space transportation, satellite services, and space platforms
NASA Technical Reports Server (NTRS)
Disher, J. H.
1979-01-01
The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).
A manned-machine space station construction concept
NASA Technical Reports Server (NTRS)
Mikulas, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Dorsey, J. T.; Rhodes, M. D.
1984-01-01
A design concept for the construction of a permanent manned space station is developed and discussed. The main considerations examined in developing the design concept are: (1) the support structure of the station be stiff enough to preclude the need for an elaborate on-orbit system to control structural response, (2) the station support structure and solar power system be compatible with existing technology, and (3) the station be capable of growing in a systematic modular fashion. The concept is developed around the assembly of truss platforms by pressure-suited astronauts operating in extravehicular activity (EVA), assisted by a machine (Assembly and Transport Vehicle, ATV) to position the astronauts at joint locations where they latch truss members in place. The ATV is a mobile platform that is attached to and moves on the station support structure using pegs attached to each truss joint. The operation of the ATV is described and a number of conceptual configurations for potential space stations are developed.
The potential impact of new power system technology on the design of a manned space station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis is placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
The potential impact of new power system technology on the design of a manned Space Station
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Schwartz, H. J.
1984-01-01
Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.
Technology transfer from the viewpoint of a NASA prime contractor
NASA Technical Reports Server (NTRS)
Dyer, Gordon
1992-01-01
Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.
Spaceport Command and Control System Software Development
NASA Technical Reports Server (NTRS)
Glasser, Abraham
2017-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.
Manned Mars missions: A working group report
NASA Technical Reports Server (NTRS)
Duke, Michael B. (Editor); Keaton, Paul W. (Editor)
1986-01-01
The discussions of the Working Group (based in large part on working papers, which will shortly be published separately) are summarized. These papers cover a broad range of subjects which need to be addressed in the formulation of such a formidable enterprise as a manned Mars program. Science objective and operations; Mars surface infrastructure and activities; mission and system concepts and configurations; life sciences; impacts on the space infrastructure; and costs, schedules, and organizations are addressed.
ERIC Educational Resources Information Center
Bourbonnais, Mary Kathryn
Research and study of economic discoveries, inventions, improvements, and man's use of natural and human resources and capital goods from the Stone Age to the present helped fifth graders understand and appreciate the foundation and structure of the U.S. economic system and today's standards of living. The year-long study, which was integrated…
Proceedings of the NASA Conference on Space Telerobotics, volume 4
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)
1989-01-01
Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center.
Solar electric propulsion and interorbital transportation
NASA Technical Reports Server (NTRS)
Austin, R. E.
1978-01-01
In-house MSFC and contracted systems studies have evaluated the requirements associated with candidate SEP missions and the results point to a standard system approach for both program flexibility and economy. The prospects for economical space transportation in the 1980s have already provided a stimulus for Space Industrialization (SI) planning. Two SI initiatives that are used as examples for interorbital transportation requirements are discussed - Public Service Platforms and Satellite Power System. The interorbital requirements for SI range from support of manned geosynchronous missions to transfers of bulk cargo and large-delicate space structures from low earth orbit to geosynchronous orbit.
Space Radiation and Manned Mission: Interface Between Physics and Biology
NASA Astrophysics Data System (ADS)
Hei, Tom
2012-07-01
The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.
To be at the right place at the right time
2011-01-01
Aim To analyze the hypothesis of events or neighborhood interactions that is based upon recognizable structures of systems which possess a surface in a four dimensional space - time constellation {x, y, z, t}. To include the theory of hierarchic order of structures and aspects of thermodynamically open systems, especially entropy, structural entropy and entropy flow. Hypothesis Any structure is a space - time constellation that occupies a unique space in its environment. The environment can be a system too, and is assumed to be (nearly) constant. Structures can interact in their environment and create a new structure at a higher order level. Interacting structures that create a surface are called a system. Starting from the bottom, such a system is characterized by its inner structures, its surface function, and its neighborhood. Interaction with a neighboring system is called an event. An event can alter a system, create new systems or induce the decay of a system, dependent upon the surrounding lower level system (background). Results The hypothesis results in a uniform theory about matter, life, diseases, or behavior. Concrete applications permit the estimation of duration of life in man, for example the effect of solid cancer in man, or appearance of protozoans in sexual or asexual reduplication. In addition, it can successfully describe the development of the universe (small exceed of matter above antimatter at the big bang), or the increase of structures (and systems) with increasing time (development of intelligent systems). The three dimensional space possesses the lowest number of mandatory dimensions to implement such a system. PMID:21781323
To be at the right place at the right time.
Kayser, Klaus; Borkenfeld, Stephan; Goldmann, Torsten; Kayser, Gian
2011-07-22
To analyze the hypothesis of events or neighborhood interactions that is based upon recognizable structures of systems which possess a surface in a four dimensional space-time constellation {x, y, z, t}. To include the theory of hierarchic order of structures and aspects of thermodynamically open systems, especially entropy, structural entropy and entropy flow. Any structure is a space-time constellation that occupies a unique space in its environment. The environment can be a system too, and is assumed to be (nearly) constant. Structures can interact in their environment and create a new structure at a higher order level. Interacting structures that create a surface are called a system. Starting from the bottom, such a system is characterized by its inner structures, its surface function, and its neighborhood. Interaction with a neighboring system is called an event. An event can alter a system, create new systems or induce the decay of a system, dependent upon the surrounding lower level system (background). The hypothesis results in a uniform theory about matter, life, diseases, or behavior. Concrete applications permit the estimation of duration of life in man, for example the effect of solid cancer in man, or appearance of protozoans in sexual or asexual reduplication. In addition, it can successfully describe the development of the universe (small exceed of matter above antimatter at the big bang), or the increase of structures (and systems) with increasing time (development of intelligent systems). The three dimensional space possesses the lowest number of mandatory dimensions to implement such a system.
First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)
NASA Technical Reports Server (NTRS)
Griffin, Sandy (Editor)
1987-01-01
Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.
Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air
NASA Technical Reports Server (NTRS)
1997-01-01
This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.
Computer graphic of Lockheed Martin Venturestar Reusable Launch Vehicle (RLV) releasing a satellite
NASA Technical Reports Server (NTRS)
1997-01-01
This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the earth. NASA's Dryden Flight Research Center, Edwards, California, was to play a key role in the development and flight testing of the X-33, which is a technology demonstrator vehicle for the RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that were to improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.
Small space station electrical power system design concepts
NASA Technical Reports Server (NTRS)
Jones, G. M.; Mercer, L. N.
1976-01-01
A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.
Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule
NASA Astrophysics Data System (ADS)
Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong
2018-06-01
To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.
MSFC Skylab mission report: Saturn workshop
NASA Technical Reports Server (NTRS)
1974-01-01
The Skylab's Saturn Workshop mission performance is presented. Experiments were conducted to determine man's ability to live and work in space for extended periods, to make sun and earth investigations, and to advance science and technology in several areas of space applications. Performance is compared with design parameters, and problem causes and solutions are treated. The Saturn Workshop successfully performed its role and advanced the technology of space systems design.
Advanced space power and propulsion based on lasers
NASA Astrophysics Data System (ADS)
Roth, M.; Logan, B. G.
2015-10-01
One of the key components for future space exploration, manned or unmanned, is the availability of propulsion systems beyond the state of the art. The rapid development in conventional propulsion systems since the middle of the 20th century has already reached the limits of chemical propulsion technology. To enhance mission radius, shorten the transit time and also extend the lifetime of a spacecraft more efficient, but still powerful propulsion system must be developed. Apart from the propulsion system a major weight contribution arises from the required energy source. Envisioning rapid development of future high average power laser systems and especially the ICAN project we review the prospect of advanced space propulsion based on laser systems.
Space station analysis study. Part 2, Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
Objectives of the space station program requiring the support of man in space, either in the shuttle sortie mode or in extended duration facilities are identified and analyzed. A set of functional requirements was derived to identify specific technology advancement needs, tests to be conducted, and processes to be developed. Program options are summarized for: (1) satellite power system; (2) earth services; (3) space cosmological research and development; (4) space processing and manufacturing; (5) multidiscipline science laboratory; (6) sensor development facility; (7) living and working in space; and (8) orbital depot.
Design of a fast Mars space transfer system
NASA Astrophysics Data System (ADS)
Woo, Henry H.; Glass, James F.; Roy, Claude
1992-02-01
Architecture strategies and concepts for manned missions to Mars are being developed by NASA and industry. This paper addresses the key Mars transfer vehicle (MTV) design requirements which include surface payload mass, MTV mass, propulsion system characteristics, launch vehicle capability, in-space operations, abort considerations, crew exposure to interplanetary environments, and crew reconditioning for planetary entry. Different mission strategies are presented along with their implications. A representative artificial-g MTV using nuclear thermal propulsion is defined to show concepts which minimize extravehicular activity operations for in-space assembly, inspection, and maintenance.
Manned Space Programs Accident/Incident Summaries (1970 - 1971)
NASA Technical Reports Server (NTRS)
1972-01-01
A compilation of 223 mishaps assembled from company and NASA records covering the Accident/Incident experience in 1970-1971 in the Manned Space Flight Programs is presented. It is the companion volume to NASA-CR-120998 which covered the years 1963-1969. The objectives of this summary is to make available to Government agencies and industrial firms the lessons learned from these mishaps. Each accident/incident summary has been reviewed by description, cause and recommended preventive action. The summaries have been categorized by the following ten systems: (1) Cryogenic; (2) Electrical; (3) Facility/GSE; (4) Fuel and Propellant; (5) Life Support; (6) Ordnance; (7) Pressure; (8) Propulsion; (9) Structural; and (10) Transport/Handling.
NASA Technical Reports Server (NTRS)
1969-01-01
Postflight analysis of Apollo 8 mission. Apollo 8 was the second manned flight in the program and the first manned lunar orbit mission. The crew were Frank Borman, Commander; James A. Lovell, Command Module Pilot; and William A. Anders, Lunar Module Pilot. The Apollo 8 space vehicle was launched on time from Kennedy Space Center, Florida, at 7:51:00 AM, EST, on December 21, 1968. Following a nominal boost phase, the spacecraft and S-IVB combination was inserted - into a parking orbit of 98 by 103 nautical miles. After a post-insertion checkout of spacecraft systems, the 319-second translunar injection maneuver was initiated at 2:50:37 by reignition of the S-IVB engine.
An approach toward function allocation between humans and machines in space station activities
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G.
1982-01-01
Basic guidelines and data to assist in the allocation of functions between humans and automated systems in a manned permanent space station are provided. Human capabilities and limitations are described. Criteria and guidelines for various levels of automation and human participation are described. A collection of human factors data is included.
Specialized physiological studies in support of manned space flight
NASA Technical Reports Server (NTRS)
Luft, U. C.
1980-01-01
The reversible changes that take place in the cardiovascular system during weightlessness were investigated. Particular attention was given to the assessment of cardiovascular functions during and after space missions. One of the most important of these functions is the amount of blood pumped by the heart per min at rest and during exercise of gravitational stress.
Study of solid rocket motor for space shuttle booster, volume 2, book 2
NASA Technical Reports Server (NTRS)
1972-01-01
A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.
Spacelab: An International Success Story.
ERIC Educational Resources Information Center
Lord, Douglas R.
The Spacelab program was a unique endeavor. For the first time in the history of the United States space effort, the design and development of a major element of a manned space vehicle was entrusted to a foreign agency and to a group of countries which had never before built such a system. This book tells of this cooperative effort between the…
The human role in space (THURIS) applications study. Final briefing
NASA Technical Reports Server (NTRS)
Maybee, George W.
1987-01-01
The THURIS (The Human Role in Space) application is an iterative process involving successive assessments of man/machine mixes in terms of performance, cost and technology to arrive at an optimum man/machine mode for the mission application. The process begins with user inputs which define the mission in terms of an event sequence and performance time requirements. The desired initial operational capability date is also an input requirement. THURIS terms and definitions (e.g., generic activities) are applied to the input data converting it into a form which can be analyzed using the THURIS cost model outputs. The cost model produces tabular and graphical outputs for determining the relative cost-effectiveness of a given man/machine mode and generic activity. A technology database is provided to enable assessment of support equipment availability for selected man/machine modes. If technology gaps exist for an application, the database contains information supportive of further investigation into the relevant technologies. The present study concentrated on testing and enhancing the THURIS cost model and subordinate data files and developing a technology database which interfaces directly with the user via technology readiness displays. This effort has resulted in a more powerful, easy-to-use applications system for optimization of man/machine roles. Volume 1 is an executive summary.
International Collaboration in Space Weather Situational Awareness
NASA Astrophysics Data System (ADS)
Boteler, David; Trichtchenko, Larisa; Danskin, Donald
Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.
System definition study of deployable, non-metallic space structures
NASA Technical Reports Server (NTRS)
Stimler, F. J.
1984-01-01
The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.
Operations planning for Space Station Freedom - And beyond
NASA Technical Reports Server (NTRS)
Gibson, Stephen S.; Martin, Thomas E.; Durham, H. J.
1992-01-01
The potential of automated planning and electronic execution systems for enhancing operations on board Space Station Freedom (SSF) are discussed. To exploit this potential the Operations Planning and Scheduling Subsystem is being developed at the NASA Johnson Space Center. Such systems may also make valuable contributions to the operation of resource-constrained, long-duration space habitats of the future. Points that should be considered during the design of future long-duration manned space missions are discussed. Early development of a detailed operations concept as an end-to-end mission description offers a basis for iterative design evaluation, refinement, and option comparison, particularly when used with an advanced operations planning system capable of modeling the operations and resource constraints of the proposed designs.
Preparing a health care delivery system for Space Station
NASA Technical Reports Server (NTRS)
Logan, J. S.; Stewart, G. R.
1985-01-01
NASA's Space Station is viewed as the beginning of man's permanent presence in space. This paper presents the guidelines being developed by NASA's medical community in preparing a quality, permanent health care delivery system for Space Station. The guidelines will be driven by unique Space Station requirements such as mission duration, crew size, orbit altitude and inclination, EVA frequency and rescue capability. The approach will emphasize developing a health care system that is modular and flexible. It will also incorporate NASA's requirements for growth capability, commonality, maintainability, and advanced technology development. Goals include preventing unnecessary rescue attempts, as well as maintaining the health and safety of the crew. Proper planning will determine the levels of prevention, diagnosis, and treatment necessary to achieve these goals.
Advanced water iodinating system. [for potable water aboard manned spacecraft
NASA Technical Reports Server (NTRS)
Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.
1975-01-01
Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.
NASA Technical Reports Server (NTRS)
Roberts, Barney B.; Bland, Dan
1988-01-01
The Office of Exploration (OEXP) at NASA has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of manned exploration of the Solar System. The Mission analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process used to conduct exploration studies and discusses the mission developed in a case study approach. The four case studies developed in FY88 include: (1) a manned expedition to PHOBOS; (2) a manned expedition to MARS; (3) a lunar surface observatory; and a lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.
NASA Astrophysics Data System (ADS)
Harvey, B.
1993-10-01
The Soviet Union used animals in the exploration of space from 1949 onwards. Russia has continued the use of animals in the exploration of space with the launch on 30 December 1992 of Bion-10 (Cosmos 2229). Animals in the space program is an important theme in the Soviet exploration of space. The use of animals in the exploration of space has four main phases: (1) Suborbital missions 1949-1959; (2) Preparation for man's first flight into space 1960-1; (3) Preparation for man's flight to the Moon 1968-1970; (4) The international biomedical program 1962- . Each is dealt with in turn. The use of animals or biological specimens on board manned orbital space stations is not discussed.
Vehicle health management for guidance, navigation and control systems
NASA Technical Reports Server (NTRS)
Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don
1993-01-01
The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.
Automated Data Management Information System (ADMIS)
NASA Technical Reports Server (NTRS)
Blackstone, C.; Dunn, D.; Sullivan, E.; Whitlock, J.; Buehler, D.; Pratt, L.; Hoffiditz, T.; Rose, J.; Smithson, M.; Feeley, J.
1974-01-01
ADMIS stores and controls data and documents associated with manned space flight effort. System contains all data oriented toward a specific document; it is primary source of reports generated by the system. Each group of records is composed of one document record, one distribution record for each recipient of the document, and one summary record.
Cybernetic anthropomorphic machine systems
NASA Technical Reports Server (NTRS)
Gray, W. E.
1974-01-01
Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.
Man and Space. The Global System, Level 1.
ERIC Educational Resources Information Center
Spicer, Brian, Ed.; And Others
Part of a geography series which stresses understanding of the environment through mastery of specific skills and concepts, the secondary level textbook examines environmental systems as they exist at present. A system is defined as one of a large number of elements (people, cities, rocks, soils, air, clouds) which make up the environment.…
Medical and technology requirements for human solar system exploration missions
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld; Harris, Leonard; Couch, Lana; Sulzman, Frank; Gaiser, Karen
1989-01-01
Measures that need to be taken to cope with the health problems posed by zero gravity and radiation in manned solar system exploration missions are discussed. The particular systems that will be used aboard Space Station Freedom are addressed, and relevant human factors problems are examined. The development of a controlled ecological life support system is addressed.
Design and test of a 100 ampere-hour nickel cadmium battery module
NASA Technical Reports Server (NTRS)
Gaston, S.; Wertheim, M.; Burgess, F. S.; Lehrfeld, D.; Winegard, A.
1973-01-01
A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module.
NASA Technical Reports Server (NTRS)
Grigor'ev, A. I. (Editor); Klein, K. E. (Editor); Nicogossian, A. (Editor)
1991-01-01
The present conference on findings from space life science investigations relevant to long-term earth orbit and planetary exploration missions, as well as considerations for future research projects on these issues, discusses the cardiovascular system and countermeasures against its deterioration in the microgravity environment, cerebral and sensorimotor functions, findings to date in endocrinology and immunology, the musculoskeletal system, and health maintenance and medical care. Also discussed are radiation hazards and protective systems, life-support and habitability factors, and such methodologies and equipment for long space mission research as the use of animal models, novel noninvasive techniques for space crew health monitoring, and an integrated international aerospace medical information system.
Space station WP-04 power system. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.
EVA Roadmap: New Space Suit for the 21st Century
NASA Technical Reports Server (NTRS)
Yowell, Robert
1998-01-01
New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.
[Habitability and biological life support systems for man].
Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia
1990-01-01
This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.
Space debris protection: A standard procedure in future?
NASA Astrophysics Data System (ADS)
Yasaka, Tetsuo
2003-08-01
The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris. Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left unprotected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.
Space Debris Protection: A Standard Procedure in Future?
NASA Astrophysics Data System (ADS)
Yasaka, Tetsuo
2002-01-01
The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris.Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left un-protected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.
Space transportation systems within ESA programmes: Current status and perspectives
NASA Astrophysics Data System (ADS)
Delahais, Maurice
1993-03-01
An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.
NASA Technical Reports Server (NTRS)
Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)
1992-01-01
The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.
Tethered nuclear power for the Space Station
NASA Technical Reports Server (NTRS)
Bents, D. J.
1985-01-01
A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.
Tethered nuclear power for the space station
NASA Technical Reports Server (NTRS)
Bents, D. J.
1985-01-01
A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.
National Space Transportation System (NSTS) technology needs
NASA Technical Reports Server (NTRS)
Winterhalter, David L.; Ulrich, Kimberly K.
1990-01-01
The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).
On the forecasting the unfavorable periods in the technosphere by the space weather factors
NASA Astrophysics Data System (ADS)
Lyakhov, N. N.
2002-12-01
There is the considerable progress in development of geomagnetic disturbances forecast technique, in the necessary time, by solar activity phenomena last years. The possible relationship between violations of the traffic safety terms (VTS) in East Siberian Railway during 1986-1999 and the space weather factors was investigated. The overall number of cases under consideration is equal to 11575. By methods of correlation and spectral analysis it was shown, that statistics of VTS has not a random and it's character is probably caused by space weather factors. The principal difference between rhythmic of VTS by purely technical reasons (MECH) (failures in mechanical systems) and, that of VTS caused by wrong operations of a personnel (MAN), is noted. Increase of sudden storm commencements number results in increase of probability of mistakable actions of an operator. Probability of violations in mechanical systems increases with increase of number of quiet geomagnetic conditions. This, in its turn, dictate different approach to the ordered rows of MECH and MAN data when forecasting the unfavourable periods as the priods of increased risk in working out a wrong decision by technological process participants. The advances in forecasting of geomagnetic environment technique made possible to start construction of systems of the operative informing about unfavourable factors of space weather for the interested organizations.
Maggi, Federico; Tang, Fiona H M; Pallud, Céline; Gu, Chuanhui
2018-05-01
A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions. Copyright © 2018 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
An improved waste collection system for space flight
NASA Technical Reports Server (NTRS)
Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry
1986-01-01
Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.
NASA Technical Reports Server (NTRS)
1989-01-01
Project Argo is the design of a manned Space Transportation Vehicle (STV) that would transport payloads between LEO (altitude lying between 278 to 500 km above the Earth) and GEO (altitude is approximately 35,800 km above the Earth) and would be refueled and refurbished at the Space Station Freedom. Argo would be man's first space-based manned vehicle and would provide a crucial link to geosynchronous orbit where the vast majority of satellites are located. The vehicle could be built and launched shortly after the space station and give invaluable space experience while serving as a workhorse to deliver and repair satellites. Eventually, if a manned space station is established in GEO, then Argo could serve as the transport between the Space Station Freedom and a Geostation. If necessary, modifications could be made to allow the vehicle to reach the moon or possibly Mars. Project Argo is unique in that it consists of the design and comparison of two different concepts to accomplish the same mission. The first is an all-propulsive vehicle which uses chemical propulsion for all of its major maneuvers between LEO and GEO. The second is a vehicle that uses aeroassisted braking during its return from GEO to LEO by passing through the upper portions of the atmosphere.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision-making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
Hendrickx, Larissa; De Wever, Heleen; Hermans, Veronik; Mastroleo, Felice; Morin, Nicolas; Wilmotte, Annick; Janssen, Paul; Mergeay, Max
2006-01-01
MELiSSA is a bioregenerative life support system designed by the European Space Agency (ESA) for the complete recycling of gas, liquid and solid wastes during long distance space exploration. The system uses the combined activity of different living organisms: microbial cultures in bioreactors, a plant compartment and a human crew. In this minireview, the development of a short-cut ecological system for the biotransformation of organic waste is discussed from a microorganism's perspective. The artificial ecological model--still in full development--that is inspired by Earth's own geomicrobiological ecosystem serves as an ideal study object on microbial ecology and will become an indispensable travel companion in manned space exploration.
Operability of Space Station Freedom's meteoroid/debris protection system
NASA Technical Reports Server (NTRS)
Kahl, Maggie S.; Stokes, Jack W.
1992-01-01
The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.
"50 Cents, 50 Years": Finding the Value of the Space Program on the Back of a Quarter
NASA Technical Reports Server (NTRS)
Horack, John M.
2008-01-01
Brief presentation highlighting the accomplishments of NASA upon its 50th anniversary. NASA's first manned space flight, voyage to the moon, planetary exploration, space station construction, international cooperation, space habitat construction and the deployment of multiple satellites including the Hubble Space Telescope, Gamma Ray Observatory, Magellan and Galileo. More recent efforts include the construction of the Ares transportation system and a return to human exploration beyond low-Earth orbit. The author also urges for continued space exploration via the National Space Policy through the authorization of Congress.
Space Nuclear Thermal Propulsion Test Facilities Subpanel
NASA Technical Reports Server (NTRS)
Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David
1993-01-01
On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report summarizes its endeavor and conclusions.
Space Fission Propulsion System Development Status
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana;
2001-01-01
The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.
Some problems of selection and evaluation of the Martian suit enclosure concept
NASA Astrophysics Data System (ADS)
Abramov, Isaak; Moiseyev, Nikolay; Stoklitsky, Anatoly
2005-12-01
One of the most important tasks for preparation of a future manned mission to Mars is to create a space suit, which ensures efficient and safe operation of the man on the planet surface. The concept of space suit (SS) utilisation on the Mars surface will be determined mainly by the Mars mission scenario. Currently the preference is given to utilisation of robotics with the crew driving a Mars rover vehicle, whereby the suit will be used solely as an additional safety means. However, one cannot exclude the necessity of a durable self-contained stay of the man outside a pressurised compartment, to pick up, for instance, soil samples or do certain repair work in case of an emergency. The requirements to the Mars suit and especially to the personal self-contained life support system (LSS) will depend in many respects on the Mars environmental conditions, the space vehicle system concept and performance characteristics, the airlock and its interface design, the availability of expendable elements for the LSS, etc. The paper reviews principal problems, which have to be solved during development of the Martian suit. A special attention is paid to the issue of suited man mobility during traversing on the planet surface. The paper also reviews the arguments for application of a suit semi-rigid design concept and evaluates potentialities of using certain elements of the existing "Orlan" type suit. The paper presents results of a number of studies on selection of the planetary SS enclosure concept and on experimental evaluation of mobility of the lower torso and leg enclosures in conjunction with a specially designed prototype model (tentative model) of the SS enclosure.
ERTS-A: a new apogee for mineral finding
Carter, William D.
1971-01-01
The EROS Program will continue investigations to select or develop optimum, economical airborne and space systems that will expand man's ability to observe and profit from natural resources. It is to be hoped that several of these systems will eventually prove useful supplements to current and developing mineral exploration technology.
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.
National Aeronautics and Space Administration Manned Spacecraft Center data based requirements study
NASA Technical Reports Server (NTRS)
1971-01-01
The results are summarized of a study to determine the requirements of a data management system to meet the needs of MSC in mission planning and program and resource management during the 1975 time frame. The study addresses overall system requirements, implementation considerations, and cost/benefit comparisions.
NASA Technical Reports Server (NTRS)
Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.
1980-01-01
The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.
Material Analysis and System Design for Exploration Life Support Systems 2017
NASA Technical Reports Server (NTRS)
Knox, Jim; Cmarik, Gregory E.
2017-01-01
Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.
1971-11-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, was one of four major components comprising the Skylab (1973-1979). The ATM housed the first manned scientific telescope in space. This photograph shows the ATM rigged for altitude and space simulation tests at the Space Environment Simulation Laboratory of the Manned Spacecraft Center (MSC). The MSC was renamed the Johnson Space Center (JSC) in early 1973.
Pathology of trauma attributed to restraint systems in crash impacts.
DOT National Transportation Integrated Search
1969-02-01
Considerable attention has been focused on the sophisticated restraint and ejection protection of rigidly selected occupants of military aircraft and manned space vehicles. However, the vast majority of occupants of military and both civil transport ...
Marshall Space Flight Center 1960-1985: 25th anniversary report
NASA Technical Reports Server (NTRS)
1985-01-01
The Marshall Space FLight Center marks its 25th aniversary with a record of notable achievements. These accomplishments are the essence of the Marshall Center's history. Behind the scenes of the space launches and missions, however, lies the story of challenges faced and problems solved. The highlights of that story are presented. The story is organized not as a straight chronology but as three parallel reviews of the major assignments: propulsion systems and launch vehicles, space science research and technology, and manned space systems. The general goals were to reach space, to know and understand the space environment, and to inhabit and utilize space for the benefit of mankind. Also included is a chronology of major events, presented as a fold-out chart for ready reference.
Human factors in space telepresence
NASA Technical Reports Server (NTRS)
Akin, D. L.; Howard, R. D.; Oliveria, J. S.
1983-01-01
The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing.
Status of the Space Station environmental control and life support system design concept
NASA Technical Reports Server (NTRS)
Ray, C. D.; Humphries, W. R.
1986-01-01
The current status of the Space Station (SS) environmental control and life support system (ECLSS) design is outlined. The concept has been defined at the subsystem level. Data supporting these definitions are provided which identify general configuratioons for all modules. Requirements, guidelines and assumptions used in generating these configurations are detailed. The basic 2 US module 'core' Space Station is addressed along with system synergism issues and early man-tended and future growth considerations. Along with these basic studies, also addressed here are options related to variation in the 'core' module makeup and more austere Station concepts such as commonality, automation and design to cost.
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2007-01-01
In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments
A simulation system for Space Station extravehicular activity
NASA Technical Reports Server (NTRS)
Marmolejo, Jose A.; Shepherd, Chip
1993-01-01
America's next major step into space will be the construction of a permanently manned Space Station which is currently under development and scheduled for full operation in the mid-1990's. Most of the construction of the Space Station will be performed over several flights by suited crew members during an extravehicular activity (EVA) from the Space Shuttle. Once fully operational, EVA's will be performed from the Space Station on a routine basis to provide, among other services, maintenance and repair operations of satellites currently in Earth orbit. Both voice recognition and helmet-mounted display technologies can improve the productivity of workers in space by potentially reducing the time, risk, and cost involved in performing EVA. NASA has recognized this potential and is currently developing a voice-controlled information system for Space Station EVA. Two bench-model helmet-mounted displays and an EVA simulation program have been developed to demonstrate the functionality and practicality of the system.
NASA Technical Reports Server (NTRS)
Dutton, Kevin E.
1994-01-01
The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.
Telecommunications and navigation systems design for manned Mars exploration missions
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.
1989-06-01
This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.
Telecommunications and navigation systems design for manned Mars exploration missions
NASA Technical Reports Server (NTRS)
Hall, Justin R.; Hastrup, Rolf C.
1989-01-01
This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.
The automation of remote vehicle control. [in Mars roving vehicles
NASA Technical Reports Server (NTRS)
Paine, G.
1977-01-01
The automation of remote vehicles is becoming necessary to overcome the requirement of having man present as a controller. By removing man, remote vehicles can be operated in areas where the environment is too hostile for man, his reaction times are too slow, time delays are too long, and where his presence is too costly, or where system performance can be improved. This paper addresses the development of automated remote vehicle control for nonspace and space tasks from warehouse vehicles to proposed Mars rovers. The state-of-the-art and the availability of new technology for implementing automated control are reviewed and the major problem areas are outlined. The control strategies are divided into those where the path is planned in advance or constrained, or where the system is a teleoperator, or where automation or robotics have been introduced.
NASA Technical Reports Server (NTRS)
1971-01-01
The functional program element for the life sciences facilities to operate aboard manned space stations is presented. The life sciences investigations will consist of the following subjects: (1) medical research, (2) vertebrate research, (3) plant research, (4) cells and tissue research, (5) invertebrate research, (6) life support and protection, and (7) man-system integration. The equipment required to provide the desired functional capability for the research facilities is defined. The goals and objectives of each research facility are described.
Six-man, self-contained carbon dioxide concentrator system
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schubert, F. H.; Marshall, R. D.; Shumar, J. W.
1974-01-01
A six man, self contained electrochemical carbon dioxide concentrating subsystem was successfully designed and fabricated. It was a preprototype engineering model designed to nominally remove 6.0 kg (13.2 lb) CO2/day with an inlet air CO2 partial pressure of 400 N/sq m (3 mm Hg) and an overcapacity removal capability of 12.0 kg (26.4 lb) CO2/day. The design specifications were later expanded to allow operation at space station prototype CO2 collection subsystem operating conditions.
NASA Technical Reports Server (NTRS)
Sprott, Richard L. (Editor); Combs, Carol A. (Editor)
1991-01-01
This volume includes papers on correlations between aging effects and space effects on biosystems, with particular attention given to the effects on the cardiovascular system, bone, sleep, cellular systems, immunological system, and genetics. Papers are presented on NASA and NIA plans and opportunities, the age effect on the posture and circulation, the cardiovascular physiology in space flight, and age-related bone changes. Attention is given to research on sleep, circulation rhythms, and aging and its applications to manned spaceflight; sleep and circadian rhythms; altered cell function in microgravity; and the heterogeneity of changes in lymphoproliferative ability with increasing age. Also included is a review of cellular immunosenescence, a paper on the immune response during space flight, and a paper on Caenorhabditis elegans as a model system for space biology studies.
Artificial intelligence - NASA. [robotics for Space Station
NASA Technical Reports Server (NTRS)
Erickson, J. D.
1985-01-01
Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.
Previous experience in manned space flight: A survey of human factors lessons learned
NASA Technical Reports Server (NTRS)
Chandlee, George O.; Woolford, Barbara
1993-01-01
Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.
NASA Astrophysics Data System (ADS)
Maggi, Federico; Tang, Fiona H. M.; Pallud, Céline; Gu, Chuanhui
2018-05-01
A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions.
Managing NASA's International Space Station Logistics and Maintenance Program
NASA Technical Reports Server (NTRS)
Butina, Anthony
2001-01-01
The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.
Non-ionising electromagnetic environments on manned spacecraft.
Murphy, J R
1989-08-01
Future space travellers and settlers will be exposed to a variety of electromagnetic fields (EMFs). Extrinsic sources will include solar and stellar fluxes, planetary fluxes, and supernovae. Intrinsic sources may include fusion and ion engines, EMFs from electrical equipment, radar, lighting, superconduction energy storage systems, magnetic bearings on gyroscopic control and orientation systems, and magnetic rail microprobe launch systems. Communication sources may include radio and microwave frequencies, and laser generating systems. Magnetic fields may also be used for deflection of radiation. There is also a loss of the normal Geomagnetic field (GMF) which includes static, alternating, and time-varying components. This paper reviews exposure limits and the biological effects of EMFs, and evidence for an electromagnetic sense organ and a relationship between man and the Geomagnetic field.
NASA Medical Response to Human Spacecraft Accidents
NASA Technical Reports Server (NTRS)
Patlach, Robert
2010-01-01
Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.
NASA Technical Reports Server (NTRS)
1983-01-01
The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.
NASA Astrophysics Data System (ADS)
1983-04-01
The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.
NASA Technical Reports Server (NTRS)
Huddleston, J. D.; Aylward, J. R.
1973-01-01
The investigations and testing associated with the CO2 removal efficiency and voltage degradation of a hydrogen depolarized carbon oxide concentrator are reported. Also discussed is the vibration testing of a water vapor electrolysis cell pair. Performance testing of various HDC cell pairs with Cs2CO3 electrolyte provided sufficient parametric and endurance data to size a six man space station prototype CO2 removal system as having 36 HDC cell pairs, and to verify a life capability exceeding six moths. Testing also demonstrated that tetramethylammonium carbonate is an acceptable HDC electrolyte for operating over the relative humidity range of 30 to 90 percent and over a temperature range of 50 to 80 F.
7.3 Communications and Navigation
NASA Technical Reports Server (NTRS)
Manning, Rob
2005-01-01
This presentation gives an overview of the networks NASA currently uses to support space communications and navigation, and the requirements for supporting future deep space missions, including manned lunar and Mars missions. The presentation addresses the Space Network, Deep Space Network, and Ground Network, why new support systems are needed, and the potential for catastrophic failure of aging antennas. Space communications and navigation are considered during Aerocapture, Entry, Descent and Landing (AEDL) only in order to precisely position, track and interact with the spacecraft at its destination (moon, Mars and Earth return) arrival. The presentation recommends a combined optical/radio frequency strategy for deep space communications.
Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2016-2017
NASA Technical Reports Server (NTRS)
Knox, Jim; Cmarik, Gregory E.
2017-01-01
Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.
Reference earth orbital research and applications investigations (blue book). Volume 7: Technology
NASA Technical Reports Server (NTRS)
1971-01-01
The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.
Nuclear Thermal Rocket - Arc Jet Integrated System Model
NASA Technical Reports Server (NTRS)
Taylor, Brian D.; Emrich, William
2016-01-01
In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.
NASA Technical Reports Server (NTRS)
Wells, H. B.
1972-01-01
A preliminary study of the environmental control and life support subsystems (EC/LSS) necessary for an earth orbital spacecraft to conduct biological experiments is presented. The primary spacecraft models available for conducting these biological experiments are the space shuttle and modular space station. The experiments would be housed in a separate module that would be contained in either the shuttle payload bay or attached to the modular space station. This module would be manned only for experiment-related tasks, and would contain a separate EC/LSS for the crew and animals. Metabolic data were tabulated on various animals that are considered useful for a typical experiment program. The minimum payload for the 30-day space shuttle module was found to require about the equivalent of a one-man EC/LSS; however, the selected two-man shuttle assemblies will give a growth and contingency factor of about 50 percent. The maximum payloads for the space station mission will require at least a seven-man EC/LSS for the laboratory colony and a nine-man EC/LSS for the centrifuge colony. There is practically no room for growth or contingencies in these areas.
The role of bioregenerative life-support systems in a manned future in space.
Mitchell, C A
1993-04-01
Thus far in the manned space program, human life support has depended on storage of air, water, food, and energy. There are no refrigerators on Shuttle, and fresh foods are limited to what can be stowed in lockers for the first 3 days of a mission, when spoilage becomes a factor. Oxygen is stored, CO2 is scrubbed, and water is stored and treated. As we approach the Space Station era, life support will be a combination of storage and resupply. Duty cycles will be 90 days, and physico-chemical (P/C) systems will be important for recycling oxygen and water. Nutritionists seek a capability for refrigerated storage of fresh food on Station. However, most food still will be thermostabilized, rehydratables that can be stored at room temperature. Present Shuttle food is not much more sophisticated than repackaged camp food, and tends to be high in salt content. Hopefully, menus will be healthier on Station, where dietary countermeasures against biomedical responses to chronic microgravity might be implemented, and certainly need to be studied.
CCSDS telemetry systems experience at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carper, Richard D.; Stallings, William H., III
1990-01-01
NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.
High data rate modem simulation for the space station multiple-access communications system
NASA Technical Reports Server (NTRS)
Horan, Stephen
1987-01-01
The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.
Environmental Control and Life Support Systems technology options for Space Station application
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.
1985-01-01
Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.
Space station operations management
NASA Technical Reports Server (NTRS)
Cannon, Kathleen V.
1989-01-01
Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.
New horizons. [assessment of technology developed and utilized under various NASA programs
NASA Technical Reports Server (NTRS)
1975-01-01
The contribution of space exploration and space related research to the future of man and the accomplishments of the space program are assessed. Topics discussed include: the role of applications satellites in crop surveillance, land use surveys, weather forecasting, education, communications, and pollution monitoring; planetary studies which examine the origin and evolution of the solar system, including dynamic processes that bear directly on earth's environment; and fuel conservation and development of new energy sources.
KC-135 materials handling robotics
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.
NASA Technical Reports Server (NTRS)
Martinez, Pedro A.; Dunn, Kevin W.
1987-01-01
This paper examines the fundamental problems and goals associated with test, verification, and flight-certification of man-rated distributed data systems. First, a summary of the characteristics of modern computer systems that affect the testing process is provided. Then, verification requirements are expressed in terms of an overall test philosophy for distributed computer systems. This test philosophy stems from previous experience that was gained with centralized systems (Apollo and the Space Shuttle), and deals directly with the new problems that verification of distributed systems may present. Finally, a description of potential hardware and software tools to help solve these problems is provided.
Vehicle for Space Transfer and Recovery (VSTAR), volume 2: Substantiating analyses and data
NASA Technical Reports Server (NTRS)
1988-01-01
The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). Reference materials, calculations and trade studies used in the analysis and selection of VSTAR components. Each major VSTAR system is examined separately. Simple graphs and tables are used to make qualitative comparisons of various VSTAR component candidates. Equations and/or calculations used for a particular analysis are also included where applicable.
Orbital transportation in the 1980's and beyond
NASA Technical Reports Server (NTRS)
Davis, H. P.
1975-01-01
Orbital transportation beyond the low earth orbit operating regime of the Space Shuttle will be required for the 1980's and beyond. The characteristics and first order requirements of the mission arenas are discussed in context with a broad spectrum of future space transportation systems. Several concepts are highlighted and identify the distinctly different requirements imposed by manned vehicles versus unmanned vehicles. Considerable analytic and design activities are necessary prior to selection of orbital transportation systems to be developed after the Interim Upper Stage (IUS).
A view toward future launch vehicles - A civil perspective
NASA Technical Reports Server (NTRS)
Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn
1989-01-01
Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.
Planetary exploration with nanosatellites: a space campus for future technology development
NASA Astrophysics Data System (ADS)
Drossart, P.; Mosser, B.; Segret, B.
2017-09-01
Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.
AMTEC: High efficiency static conversion for space power
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Shirbacheh, M.
1986-01-01
Future manned and unmanned space missions will require reliable, high efficiency energy conversion systems. For a manned Mars mission, power levels in the range of 10 to 100 kWe will be needed. The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion technology with the potential to meet these needs. The AMTEC is a thermally regenerative electrochemical device that derives its operation from the sodium ion conducting properties of beta-alumina solid electrolyte (BASE). To date, an efficiency of 19%, area power density of 1 W/sq cm, and a lifetime of 10,000 hours at high temperature were demonstrated in laboratory devices. Systems studies show that projected AMTEC systems equal or surpass the performance of other static or dynamic systems in applications of 1 kWe-1 MWe. Thus, the laboratory experiments and applications studies conducted to date have shown that the AMTEC posseses great potential. In order to bring this technology to the stage where prototype units can be built and operated, several technical issues must be addressed. These include the need for long life, high power electrodes, minimization of radiative parasitic losses, and high temperature seals. In summary, the evidence shows that if AMTEC is developed, it can play a significant role in future space power applications.
NASA Technical Reports Server (NTRS)
Lushbaugh, C. C.
1972-01-01
Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.
USSR Space Life Sciences Digest, Issue 18
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.
USSR Space Life Sciences Digest, issue 16
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.
NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology
NASA Technical Reports Server (NTRS)
Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William
1987-01-01
A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.
Radiation hazard during a manned mission to Mars.
Jäkel, Oliver
2004-01-01
The radiation hazard of interplanetary flights is currently one of the major obstacles to manned missions to Mars. Highly energetic, heavy-charged particles from galactic cosmic radiation can not be sufficiently shielded in space vehicles. The long-term radiation effects to humans of these particles are largely unknown. In addition, unpredictable storms of solar particles may expose the crew to doses that lead to acute radiation effects. A manned flight to Mars currently seems to be a high-risk adventure. This article provides an overview on the radiation sources and risks for a crew on a manned flight to Mars, as currently estimated by scientists of the US National Administration for Space and Aeronautics (NASA) and the Space Studies Board (SSB) of the US National Research Council.
NASA Technical Reports Server (NTRS)
Mckee, J. W.
1974-01-01
Experiments are performed during manned space flights in an attempt to acquire knowledge that can advance science and technology or that can be applied to operational techniques for future space flights. A description is given of the procedures that the personnel who are directly assigned to the function of crew support at the NASA Lyndon B. Johnson Space Center use to prepare for and to conduct experiments during space flight.
Human factor roles in design of teleoperator systems
NASA Technical Reports Server (NTRS)
Janow, C.; Malone, T. B.
1973-01-01
Teleoperator systems are considered, giving attention to types of teleoperators, a manned space vehicle attached manipulator, a free-flying teleoperator, a surface exploration roving vehicle, the human factors role in total system design, the manipulator system, the sensor system, the communication system, the control system, and the mobility system. The role of human factors in the development of teleoperator systems is also discussed, taking into account visual systems, an operator control station, and the manipulators.
Ukrainian network of Optical Stations for man-made space objects observation
NASA Astrophysics Data System (ADS)
Sybiryakova, Yevgeniya
2016-07-01
The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.
Optimizing Orbital Debris Monitoring with Optical Telescopes
2010-09-01
poses an increasing risk to manned space missions and operational satellites ; however, the majority of debris large enough to cause catastrophic...cameras hosted on GEO- based satellites for monitoring GEO. Performance analysis indicates significant potential contributions of these systems as a...concerns over the long term-viability of the space environment and the resulting economic impacts. The 2007 China anti- satellite test and the 2009
STS-97 (4A) EVA training in NBL pool
2000-10-23
JSC2000-07082 (October 2000)--- Wearing a training version of the shuttle extravehicular mobility unit (EMU) space suit, astronaut Joseph R. Tanner, STS-97 mission specialist, simulates a space walk underwater in the giant Neutral Buoyancy Laboratory (NBL). Tanner was there, along with astronaut Carlos I. Noriega, to rehearse one of three scheduled space walks to make additions to the International Space Station (ISS). The five-man crew in early December will deliver the P6 Integrated Truss Segment, which includes the first US Solar arrays and a power distribution system.
Panel summary of recommendations
NASA Technical Reports Server (NTRS)
Dunbar, Bonnie J.; Coleman, Martin E.; Mitchell, Kenneth L.
1990-01-01
The following Space Station internal contamination topics were addressed: past flight experience (Skylab and Spacelab missions); present flight activities (Spacelabs and Soviet Space Station Mir); future activities (materials science and life science experiments); Space Station capabilities (PPMS, FMS, ECLSS, and U.S. Laboratory overview); manned systems/crew safety; internal contamination detection; contamination control - stowage and handling; and contamination control - waste gas processing. Space Station design assumptions are discussed. Issues and concerns are discussed as they relate to (1) policy and management, (2) subsystem design, (3) experiment design, and (4) internal contamination detection and control. The recommendations generated are summarized.
Achievements and challenges of Space Station Freedom's safety review process
NASA Technical Reports Server (NTRS)
Robinson, David W.
1993-01-01
The most complex space vehicle in history, Space Station Freedom, is well underway to completion, and System Safety is a vital part of the program. The purpose is to summarize and illustrate the progress that over one-hundred System Safety engineers have made in identifying, documenting, and controlling the hazards inherent in the space station. To date, Space Station Freedom has been reviewed by NASA's safety panels through the first six assembly flights, when Freedom achieves a configuration known as Man Tended Capability. During the eight weeks of safety reviews spread out over a year and a half, over 200 preliminary hazard reports were presented. Along the way NASA and its contractors faced many challenges, made much progress, and even learned a few lessons.
Achievements and challenges of Space Station Freedom's safety review process
NASA Astrophysics Data System (ADS)
Robinson, David W.
1993-07-01
The most complex space vehicle in history, Space Station Freedom, is well underway to completion, and System Safety is a vital part of the program. The purpose is to summarize and illustrate the progress that over one-hundred System Safety engineers have made in identifying, documenting, and controlling the hazards inherent in the space station. To date, Space Station Freedom has been reviewed by NASA's safety panels through the first six assembly flights, when Freedom achieves a configuration known as Man Tended Capability. During the eight weeks of safety reviews spread out over a year and a half, over 200 preliminary hazard reports were presented. Along the way NASA and its contractors faced many challenges, made much progress, and even learned a few lessons.
NASA Technical Reports Server (NTRS)
1977-01-01
Topics discussed include: (1) design considerations for a MARS sample return laboratory module for space station investigations; (2) crew productivity as a function of work shift arrangement; (3) preliminary analysis of the local logistics problem on the space construction base; (4) mission hardware construction operational flows and timelines; (5) orbit transfer vehicle concept definition; (6) summary of results and findings of space processing working review; (7) crew and habitability subsystem (option L); (8) habitability subsystem considerations for shuttle tended option L; (9) orbiter utilization in manned sortie missions; (10) considerations in definition of space construction base standard module configuration (option L); (11) guidance, control, and navigation subsystems; and (12) system and design tradeoffs.
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Miley, George H.; Santarius, John F.
1991-01-01
The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.
The 1994 NASA/USRA/ADP Design Projects
NASA Technical Reports Server (NTRS)
Cruse, Thomas; Richardson, Joseph; Tryon, Robert
1994-01-01
The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.
Design options for advanced manned launch systems
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.
1995-03-01
Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.
Analysis of a space debris laser removal system
NASA Astrophysics Data System (ADS)
Gjesvold, Evan; Straub, Jeremy
2017-05-01
As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan
2013-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
USSR Space Life Sciences Digest, issue 19
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.
NASA Technical Reports Server (NTRS)
Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony
2012-01-01
Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.
Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket
NASA Technical Reports Server (NTRS)
Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael
2012-01-01
The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.
Space artificial gravity facilities - An approach to their construction
NASA Technical Reports Server (NTRS)
Wercinski, P. F.; Searby, N. D.; Tillman, B. W.
1988-01-01
In the course of adaptation to a space microgravity environment, humans experience cardiovascular deconditioning, loss of muscle mass, and loss of bone minerals. One possible solution to these space adaptation problems is to simulate earth's gravity using the centripetal acceleration created by a rotating system. The design and construction of rotating space structures pose many challenges. Before committing to the use of artificial gravity in future space missions, a man-rated Variable Gravity Research Facility (VGRF) should be developed in earth orbit as a gravitational research tool and testbed. This paper addresses the requirements and presents preliminary concepts for such a facility.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Paniagua, John; Rather, John
2007-01-01
MIC (Magnetically Inflated Cables) is a new approach for robotically erecting very large, strong, rigid, and ultra-lightweight structures in space. MIC structures use a network of high current (SC) cables with attached high tensile strength Kevlar or Spectra tethers. MIC is launched as a compact package of coiled SC cables and tethers on a conventional launch vehicle. Once in space the SC cables are electrically energized. The resultant strong outwards magnetic forces expand them and the restraining tethers into a large structure, which can be 100's of meters in size. MIC structures can be configured for many different applications, including solar electric generation, solar thermal propulsion, energy storage, large space telescopes, magnetic shielding for astronauts, etc. The MIC technology components, including high temperature superconductors (HTS), thermal insulation, high strength tethers, and cryogenic refrigerators all exist commercially. Refrigeration requirements are very modest, on the order of 100 watts thermal per kilometer of MIC cable, with an input electric power to the refrigeration system of ~5 kW(e) per km. baseline MIC designs are described for a manned lunar base, including: 1) a 1 MW(e) solar electric system, 2) a high Isp (~900 seconds) solar thermal tug to transport 30 ton payloads between the Earth and the Moon, 3) a 2000 Megajoule electric energy storage system for peaking and emergency power, and 4) a large (~1 km) space telescope.
Voluntary immunomodulation: potentiality and implications for long-duration manned space-flights
NASA Astrophysics Data System (ADS)
Geuna, Stefano
The influence of psychological and neural factors on immunologic activity has been dedicated a growing interest over the past fifteen years, since the publication ofPsychoneuroimmunology by Robert Ader in 1981. Studies on this topic gave evidence for bi-directional communication between psychosocial, behavioural, neuroanatomical and neuroendocrine processes with the immune system and the detrimental effects of various stressors, physical and psychological, on immune reactions were widely investigated with reports of stress-induced changes in immune paramenters and immunocompetence. Much of the evidence support the notion that stress is associated with an increase in those diseases against which the immune system defends. Recently, several studies showed that immune functions can be influenced voluntarily and the term voluntary immunomodulation was coined to describe the use of various hypnosis-like and relaxation/imagery techniques for the self-regulation of immune activity. Alterations in the immune regulatory system are one of the most critical issues to be addressed in relation to crew health management during space missions, especially long-term ones. Providing crewmembers with a tool to enhance immunocompetence might be of great value to defend against some severe diseases, such as cancer and infectious illness, which may be elicited in outer space. In this view, a critical assessment of the potential usefulness of voluntary immunomodulation for crew health maintenance during manned space-flight is presented and discussed.
Apollo 13 - Mission Control Console
1970-04-15
S70-35096 (16 April 1970) --- As the problem-plagued Apollo 13 crewmen entered their final 24 hours in space, several persons important to the mission remained attentive at consoles in the Mission Operations Control Room of the Mission Control Center at Manned Spacecraft Center. Among those monitoring communications and serving in supervisory capacities were these four officials from National Aeronautics and Space Administration Headquarters, Washington, D.C.: (from left) Thomas H. McMullen, Office of Manned Space Flight, who served as Shift 1 mission director; Dale Myers, associate administrator, Manned Space Flight; Chester M. Lee of the Apollo Program Directorate, OMSF, Apollo 13 mission director; and Dr. Rocco A. Petrone, Apollo program director, OMSF.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1978-01-01
Manned spaceflight is considered within the framework of two broad categories: human exploitation of space for economic or scientific gain, and human habitation of space as a place where man may live, grow, and actualize himself. With the advent of the Space Shuttle, exploitation of space will take the form of new product development. This will continue during the 1990s as the new products are manufactured on a scale large enough to be profitable. The turn of the century should see major industries in space, and large space habitats. Thus, the question of mankind's existential needs arises. In addition to basic physical needs, the spiritual and cultural requirements of human beings must be considered. The impact of man's presence in space upon human culture in general is discussed with reference to international cooperation, public interest in space programs, scientific advancement, the basic urge to explore, and the density of mankind as a whole; which will become free of external constraints as we step into the cosmos.
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Design of Test Support Hardware for Advanced Space Suits
NASA Technical Reports Server (NTRS)
Watters, Jeffrey A.; Rhodes, Richard
2013-01-01
As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step was to certify the equipment for manned used, which included generating a Hazard Analysis and giving a presentation to the Test Readiness Review Board. Both of these test support systems will perform critical roles in the development of next-generation space suits. They will used on a regular basis to test the NASA's new Z-2 Space Suit. The Space Suit Cooling System is now the primary cooling system for all advanced suit tests.
FEMME: a precursor experiment for the evaluation of bioregenerative life support systems
NASA Astrophysics Data System (ADS)
Paille, Ch.; Albiol, J.; Curwy, R.; Lasseur, Ch.; Godia, F.
2000-04-01
In long term manned space missions, oxygen, water and food supplies are a critical issue. Bioregenerative systems, and among them those relying on microbial processes, represent one of the most promising alternatives. Studies of these systems from the engineering point of view, requires the development of mathematical models and their validation with small scale experimental systems (breadboards, pilot plants, etc.). Usually, these studies do not take into account the effects of space environment (i.e. reduced gravity or microgravity, radiation, direct sunlight, temperature, etc …). Despite several scientific experiments, intending to qualify such effects, only few quantitative results are available. In this paper, the possibility of an autonomous off-board experiment, named the First Extraterrestrial Man Made Ecosystem, is investigated. The experiment is based on a very simplified ecosystem consisting in a photoautotrophic compartment and a heterotrophic one, linked by their gas phase. According to its biological concept, this experiment should provide data on microbial growth kinetics in space, and the effects of radiation and gravity. It has been conceived as an entirely automatic device. Its design involves several technological concepts such as thermal control, the use of direct sunlight and radiation shielding. This work is done under the framework of ESA biological life support systems research program. The aim of this document is to provide a preliminary concept of the experiment.
Skylab hardware report operational bioinstrumentation system
NASA Technical Reports Server (NTRS)
Luczkowski, S.
1977-01-01
The Skylab Operational Bioinstrumentation System is a personal, individually adjustable biomedical system designed to monitor the basic physiological functions of each suited crewman during specified periods of a manned space mission. The basic physiological functions of this system include electrocardiogram, respiration by impedance pneumogram, body temperature, cardiotachometer, and subject identification. The Operational Bioinstrumentation System was scheduled to monitor each crewman during launch, extravehicular activities, suited intravehicular experiments, and undocking and return.
Intelligent man/machine interfaces on the space station
NASA Technical Reports Server (NTRS)
Daughtrey, Rodney S.
1987-01-01
Some important topics in the development of good, intelligent, usable man/machine interfaces for the Space Station are discussed. These computer interfaces should adhere strictly to three concepts or doctrines: generality, simplicity, and elegance. The motivation for natural language interfaces and their use and value on the Space Station, both now and in the future, are discussed.
Shielding of manned space vehicles against protons and alpha particles
NASA Technical Reports Server (NTRS)
Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.
1972-01-01
The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.
The Silver Bird story: A memoir
NASA Technical Reports Server (NTRS)
Saenger-Bredt, I.
1977-01-01
A manned recoverable flying machine that operates both in air and space was discussed. This space shuttle precursor was proposed in the early 1900's by Eugen Sanger. The vehicle was especially to be used as the first stage of booster rockets or to ferry, supply and furnish rescue equipment for manned space stations. Basic concepts of the space aircraft, a cross between a powered booster rocket and an aerodynamic glider, are presented.
Automated Platform Management System Scheduling
NASA Technical Reports Server (NTRS)
Hull, Larry G.
1990-01-01
The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our work and results may be outdated when this paper is published.
ERIC Educational Resources Information Center
Waters, W. G., II
1973-01-01
Analyzes the urban transport problems in comparison with those involved in a journey to the Moon. Indicates that the problem of enabling man to travel through the inner space of conurbations may prove to be more difficult than the transport problem of space travel. (CC)
NASA Astrophysics Data System (ADS)
Maksimov, A. I.
2011-06-01
Development of cosmonautics and preparation to the first manned space flights are briefly observed. Details of the development of the first Soviet intercontinental ballistic missile R-7, which served as a basis for creating Sputnik, Vostok, Voskhod, Molniya, and Soyuz launchers, are given. The contributions of the outstanding designers of space engineering, W. von Braun, S.P. Korolev, V.P. Glushko, and academician M.V. Keldysh, to the development of astronautics and first manned space missions are demonstrated. A list of test launches and manned flights of Vostok and Mercury spacecrafts and the basic characteristics of Vostok, Redstone, Atlas-D, Voskhod, and Soyuz launchers are presented.
Space Station Mission Planning System (MPS) development study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Klus, W. J.
1987-01-01
The basic objective of the Space Station (SS) Mission Planning System (MPS) Development Study was to define a baseline Space Station mission plan and the associated hardware and software requirements for the system. A detailed definition of the Spacelab (SL) payload mission planning process and SL Mission Integration Planning System (MIPS) software was derived. A baseline concept was developed for performing SS manned base payload mission planning, and it was consistent with current Space Station design/operations concepts and philosophies. The SS MPS software requirements were defined. Also, requirements for new software include candidate programs for the application of artificial intelligence techniques to capture and make more effective use of mission planning expertise. A SS MPS Software Development Plan was developed which phases efforts for the development software to implement the SS mission planning concept.
Astrophysical payload accommodation on the space station
NASA Technical Reports Server (NTRS)
Woods, B. P.
1985-01-01
Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.
1963-03-01
S63-03964 (1963) --- Al Rochford, Crew Systems, Manned Space Center, assists astronaut L. Gordon Cooper Jr., in checking his life vest, normally stowed in a pocket in the lower left leg. Photo credit: NASA
NASA Technical Reports Server (NTRS)
1968-01-01
Contents include the following: General release. Mission objectives. Mission description. Flight plan. Alternate missions. Experiments. Abort model. Spacecraft structure system. The Saturn 1B launch vehicle. Flight sequence. Launch preparations. Mission control center-Houston. Manned space flight network. Photographic equipment. Apollo 7 crew. Apollo 7 test program.
NASA Astrophysics Data System (ADS)
Rappenglück, Michael A.
2015-05-01
Persistence and change are necessary for the stability and development of both the human individual and the human society, since the beginnings of human history. Man needs a static framework which, related to his self-awareness, defines a topocentric system of perception, evaluation, order, and meaning. He also requires a dynamic impetus, which allows exceeding the limits of special world views, shifting of perspectives and transformations of individual as well as social approaches to life. Travelling especially helped to broaden man's horizon and mind. Across cultures voyages guided by the skies are linked with practical concepts of exploring and domesticating time and space, but also figuratively with the life's journey and with other worlds, being expressed by mythic, ritual and later scientific language.
Spaceport operations for deep space missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1990-01-01
Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.
NASA Technical Reports Server (NTRS)
Brown, J. W. (Editor)
1983-01-01
Selected papers from the 1979, 1980, and 1981 IAA symposia on space safety and rescue and on worldwide disaster response, safety, and rescue employing spaceborne systems are presented. Available papers published elsewhere and those presented at the 1976, 1977, and 1978 symposia are presented in abstract form. Subjects discussed include man-made space debris, nuclear-waste disposal in space, space-station safety design, psychological training, the introduction of female crewmembers, analysis of the November 23, 1980 earthquake as a design basis for satellite emergency communication, disaster warning using the GOES satellite, and satellite communications for disaster relief operations. Three reviews of the application of space technology to emergency and disaster relief and prevention, given at other symposia in 1981, are presented in an appendix. No individual items are abstracted in this volume
Recent advances in technologies required for a "Salad Machine".
Kliss, M; Heyenga, A G; Hoehn, A; Stodieck, L S
2000-01-01
Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the "Salad Machine" concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility.
Environmental Control System Development
NASA Technical Reports Server (NTRS)
Stewart, Raymond
2017-01-01
With the ever-growing desire for mankind to reach destinations whose distances had been deemed impossible to transit, the largest rocket known to man was designed and is being developed. The Space Launch System (SLS), National Aeronautics and Space Administration’s (NASA) solution for deep space travel, will begin its missions with the launch of Exploration Mission 1 (EM-1) and Exploration Mission 2 (EM-2). In order to accommodate the larger rocket, Kennedy Space Center made crucial upgrades to its existing facilities. At Launch Complex 39B, an entirely new Environmental Control System (ECS) was developed to supply the vehicle with the appropriate air or nitrogen gas mixture for launch. The new ECS displays must undergo Validation and Verification (V&V) using testing procedures developed to meet this requirement.
Recent Advances in Technologies Required for a ``Salad Machine''
NASA Astrophysics Data System (ADS)
Kliss, M.; Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.
Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the ``Salad Machine'' concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility
Ariane Transfer Vehicle in service of man in orbit
NASA Astrophysics Data System (ADS)
Deutscher, N.; Schefold, K.; Cougnet, C.
1988-10-01
The Ariane Transfer Vehicle (ATV), an unmanned propulsion system that is designed to be carried by the Ariane 5 launch vehicle, will undertake the logistical support required by the International Space Station and the Man-Tended Free Flyer, carrying both pressurized and unpressurized cargo to these spacecraft and carrying away wastes. The ATV is an expendable vehicle, disposed of by burn-up during reentry, and will be available for initial operations in 1996. In order to minimize development costs and recurrent costs, the ATV design will incorporate existing hardware and software.
Effects of weightlessness in man.
NASA Technical Reports Server (NTRS)
Berry, C. A.
1973-01-01
The program for the Apollo 16 flight was designed to include both safeguards against and investigations of the physiological problems arising from increase in the period of manned space flight. Precautions included the provision of a controlled diet with high potassium content, carefully controlled work loads and work-rest cycles, and an emergency cardiology consultation service, and investigations were made to enable preflight vs postflight comparisons of metabolic, cardiovascular, and central nervous system data. Results of these investigations indicate that adjustment to weightlessness can be satisfactorily assisted by appropriate countermeasures, including attention to diet.
View of White Room atop Pad A during Apollo 9 Countdown Demonstration Test
1969-02-23
S69-25884 (23 Feb. 1969) --- Interior view of the white room atop Pad A, Launch Complex 39, Kennedy Space Center, during Apollo 9 Countdown Demonstration Test activity. Standing next to spacecraft hatch is astronaut James A. McDivitt, commander. Also, taking part in the training exercise were astronauts David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight. Apollo 9 will be the second manned Saturn V mission.
United States/Russia space cooperation documentary
NASA Astrophysics Data System (ADS)
1993-12-01
This video documents the initiative to develop a multinational, permanent space research laboratory. Historical background on the U.S. and Soviet manned space flight program as well as joint efforts such as the Apollo-Soyuz link up is shown. The current initiative will begin with collaborative missions involving NASA's space shuttle and Russia's Mir space station, and culminate in a permanently manned space station involving the U.S., Russia, Japan, Canada, and ESA. Shown are computer simulations of the proposed space station. Commentary is provided by the NASA administrator, former astronauts, cosmonauts, and Russian and American space experts.
United States/Russia Space Cooperation Documentary
NASA Technical Reports Server (NTRS)
1993-01-01
This video documents the initiative to develop a multinational, permanent space research laboratory. Historical background on the U.S. and Soviet manned space flight program as well as joint efforts such as the Apollo-Soyuz link up is shown. The current initiative will begin with collaborative missions involving NASA's space shuttle and Russia's Mir space station, and culminate in a permanently manned space station involving the U.S., Russia, Japan, Canada, and ESA. Shown are computer simulations of the proposed space station. Commentary is provided by the NASA administrator, former astronauts, cosmonauts, and Russian and American space experts.
NASA Technical Reports Server (NTRS)
Porter, F. J., Jr.
1972-01-01
Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.
Development of deployable structures for large space platforms. Volume 2: Design development
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1983-01-01
Design evolution, test article design, test article mass properties, and structural analysis of deployable platform systems are discussed. Orbit transfer vehicle (OTV) hangar development, OTV hangar concept selection, and manned module development are discussed. Deployable platform systems requirements, material data base, technology development needs, concept selection and deployable volume enclosures are also discussed.
AAFE man-made noise experiment project. Volume 2: Project and experiment discussions
NASA Technical Reports Server (NTRS)
1974-01-01
An experiment for the acquisition and processing of man-made noise interference data on earth orbital altitudes is discussed. The objectives of the project are to confirm the results of analytical studies concerning radio frequency man-made noise in space. It is stated that the measurements of the amounts and types of noise in frequency bands of interest could allow the allocation and utilization of frequencies to be optimized and would also contribute to the engineering objective of optimizing flight receiving systems. A second objective of the project was to design and fabricate a noise measuring receiver which would demonstrate the feasibility of the experiment design under the project. The procedures for acquiring and processing the electromagnetic radiation data are discussed.
1986-01-01
Columbia, which opened the era of the Space Transportation System with four orbital flight tests, is featured in re-entry in the emblem designed by the STS-61C crew representing the seven team members who manned the vehicle for its seventh STS mission. Gold lettering against black background honors the astronaut crewmembers on the delta pattern surrounding colorful re-entry shock waves, and the payload specialists are honored similarly below the sphere
RIO+10 = Concept of synergetic cosmoecology
NASA Astrophysics Data System (ADS)
Alekseev, A. S.; Vedernikov, Y. A.; Dulov, V. G.
The dynamic concept of synergetic ecology of the near space as the Earth's civilization living space is discussed. It is proposed to formulate the scientific problem of protection of the Earth, orbital stations, and flyers from meteoroids and plasmoids of natural and artificial origin. Natural meteoroids intersect the Earth's orbit once in five years, whereas flyers often hit on natural plasmoids, sometimes even once a year. In contrast to nuclear, kinetic, and gravitational actions on threatening meteoroids, free electron lasers are used for protection against plasmoids. Some complementarity between cosmophysics and biology is revealed, and mathematical models of biosphere are constructed. Mathematical-synergetic modeling in the "man-environment" system is performed. Certain ways for improving noosphere on the basis of synergetics are determined. The principles of work of the social Institutes of Cosmic Anthropoecology and the University of Man and Planet Ecology are presented. References 1. A. S. Alekseev, Yu. .A. Vedernikov, I.I. Velichko, and V.A. Volkov, The rocket conception of cumulative impact defense of the Earth against dangerous space objects, Impact Engineering, 1997, V. 20, No. 1-5, 1-12. 2. A.S. Alekseev, Yu.A. Vedernikov et al., Computer Detection and Rocket Interception of Asteroids at an Atmospheric Boundary, 5th Cranfield Conference on Dynamics and Control of Systems and Structures in Space 2002, King's College, Cambridge, 185-193 pp.
Earth orbit navigation study. Volume 2: System evaluation
NASA Technical Reports Server (NTRS)
1972-01-01
An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.
External airlock assembly/Mir docking system being loaded
1994-11-15
S95-00057 (15 Nov 1994) --- In Rockwell's Building 290 at Downey, California, the external airlock assembly/Mir docking system is rotated into position for crating up for shipment to the Kennedy Space Center (KSC) in Florida. Jointly developed by Rockwell and RSC Energia, the external airlock assembly and Mir docking system will be mounted in the cargo bay of the Space Shuttle Atlantis to enable the shuttle to link up to Russia's Mir space station. The docking system contains hooks and latches compatible with the system currently housed on the Mir's Krystall module, to which Atlantis will attach for the first time next spring. STS-71 will carry two Russian cosmonauts, who will replace a three-man crew aboard Mir including Norman E. Thagard, a NASA astronaut. The combined 10-person crew will conduct almost five days of joint life sciences investigations both aboard Mir and in the Space Shuttle Atlantis's Spacelab module.
Knowledge representation in space flight operations
NASA Technical Reports Server (NTRS)
Busse, Carl
1989-01-01
In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.
Understanding climate: A strategy for climate modeling and predictability research, 1985-1995
NASA Technical Reports Server (NTRS)
Thiele, O. (Editor); Schiffer, R. A. (Editor)
1985-01-01
The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.
Feasibility of Space Disposal of Radioactive Nuclear Waste. 1: Executive Summary
NASA Technical Reports Server (NTRS)
1973-01-01
This NASA study, performed at the request of the AEC, concludes that transporting radioactive waste (primarily long-lived isotopes) into space is feasible. Tentative solutions are presented for technical problems involving safe packaging. Launch systems (existing and planned), trajectories, potential hazards, and various destinations were evaluated. Solar system escape is possible and would have the advantage of ultimate removal of the radioactive waste from man's environment. Transportation costs would be low (comparable to less than a 5 percent increase in the cost of electricity) even though more than 100 space shuttle launches per year would be required by the year 2000.
Experimental evaluation of three leak detection and location concepts for space stations
NASA Technical Reports Server (NTRS)
Scherb, M. V.; Kazokas, G. P.; Zelik, J. A.; Mastandrea, J. R.; Mackallor, D. C.
1972-01-01
Three leak (or precursor damage modes) detection and location concepts for space station overboard leakage were evaluated experimentally. The techniques are: (1) static and dynamic seal leak detector sensing of moisture or all gases in space cabin atmosphere, (2) active ultrasonic Lamb-wave detection of flaws or cracks in cabin wall, and (3) impact gage detection of stress waves induced in cabin pressure wall by meteoroid or orbital impact. The experimental results obtained in the program demonstrated that all three leak detection and location concepts are feasible. With further development, the methods can be integrated into an effective damage control system for advanced manned earth-orbital systems.
The Use of Software Agents for Autonomous Control of a DC Space Power System
NASA Technical Reports Server (NTRS)
May, Ryan D.; Loparo, Kenneth A.
2014-01-01
In order to enable manned deep-space missions, the spacecraft must be controlled autonomously using on-board algorithms. A control architecture is proposed to enable this autonomous operation for an spacecraft electric power system and then implemented using a highly distributed network of software agents. These agents collaborate and compete with each other in order to implement each of the control functions. A subset of this control architecture is tested against a steadystate power system simulation and found to be able to solve a constrained optimization problem with competing objectives using only local information.
Propulsion issues for advanced orbit transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1984-01-01
Studies of the United States Space Transportation System show that in the mid to late 1990s expanded capabilities for orbital transfer vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possibly men to geosynchronous orbit. Discussion and observations relative to the propulsion system issues of space basing, aeroassist compatibility, man ratability and enhanced payload delivery capability are presented. These issues will require resolution prior to the development of a propulsion system for the advanced OTV. The NASA program in support of advanced propulsion for an OTV is briefly described along with conceptual engine design characteristics.
A candidate architecture for monitoring and control in chemical transfer propulsion systems
NASA Technical Reports Server (NTRS)
Binder, Michael P.; Millis, Marc G.
1990-01-01
To support the exploration of space, a reusable space-based rocket engine must be developed. This engine must sustain superior operability and man-rated levels of reliability over several missions with limited maintenance or inspection between flights. To meet these requirements, an expander cycle engine incorporating a highly capable control and health monitoring system is planned. Alternatives for the functional organization and the implementation architecture of the engine's monitoring and control system are discussed. On the basis of this discussion, a decentralized architecture is favored. The trade-offs between several implementation options are outlined and future work is proposed.
NASA Technical Reports Server (NTRS)
Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.
1974-01-01
A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This booklet describes the manned space flight record of the National Aeronautics and Space Administration (NASA). Sections include: (1) "The Early Days" (describing the Mercury and Gemini missions); (2) "Going to the Moon" (summarizing the Apollo missions); (3) "An Orbital Workshop" (discussing three manned skylab…