Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, G.; Solomon, Sean C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1993-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle and mantle heat production. Geological, geophysical, and geochemical observations of the composition and structure of the interior and of the timing of major events in Martian evolution, such as global differentiation, atmospheric outgassing and the formation of the hemispherical dichotomy and Tharsis, are used to constrain the model computations. Isotope systematics of SNC meteorites suggest core formation essentially contemporaneously with the completion of accretion. Other aspects of this investigation are discussed.
Geochemical and Rheological Constraints on the Dynamics of the Oceanic Upper Mantle
2007-09-01
405-412. 201 Dick, H. J. B., Natland, J., Party, L. . S., 1994. Melt transport and evolution in the shallow mantle beneath the East Pacific Rise ...in the shallow mantle beneath the East Pacific Rise . In: M6vel, C., Gillis, K. M., Allan, J. F., Meyer, P. S. (Eds.), Proceedings of the Ocean...according to ridge location: East Pacific Rise (EPR), Mid-Cayman Rise (MCR), Central Indian Ridge/Carlsberg Ridge (CIR/Carl), Mid-Atlantic Ridge (MAR
Origin and evolution of the deep thermochemical structure beneath Eurasia.
Flament, N; Williams, S; Müller, R D; Gurnis, M; Bower, D J
2017-01-18
A unique structure in the Earth's lowermost mantle, the Perm Anomaly, was recently identified beneath Eurasia. It seismologically resembles the large low-shear velocity provinces (LLSVPs) under Africa and the Pacific, but is much smaller. This challenges the current understanding of the evolution of the plate-mantle system in which plumes rise from the edges of the two LLSVPs, spatially fixed in time. New models of mantle flow over the last 230 million years reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. The anomaly formed in isolation within a closed subduction network ∼22,000 km in circumference prior to 150 million years ago before migrating ∼1,500 km westward at an average rate of 1 cm year -1 , indicating a greater mobility of deep mantle structures than previously recognized. We hypothesize that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, Gerald; Soloman, S. C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1990-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.
Mantle transition zone discontinuities beneath the Tien Shan
NASA Astrophysics Data System (ADS)
Yu, Youqiang; Zhao, Dapeng; Lei, Jianshe
2017-10-01
To better understand geodynamic processes of intracontinental mountain building, we conduct a systematic investigation of the mantle transition zone (MTZ) beneath the Tien Shan and its surrounding areas using a receiver function method under non-plane wave front assumption. The resulting apparent depths of the 410 km (d410) and 660 km (d660) discontinuities and the MTZ thickness display significant lateral variations. Both the central Tien Shan and the Pamir Plateau are characterized by a thick MTZ, which can be well explained by the existence of lithospheric segments resulted from possible break-off of the subducted slab or lithosphere delamination. A thin MTZ and an obviously depressed d410, which may be induced by asthenosphere upwelling associated with the dropping lithospheric segment, are revealed beneath the Kazakh Shield. Seismic evidence is obtained for the potential existence of lower mantle upwelling beneath the Tarim Basin based on the observed thin MTZ and relatively significant uplift of d660. The subduction of the Kazakh Shield and Tarim lithosphere driven by the India-Eurasia collision possibly plays an essential role in the formation and evolution of the Tien Shan orogenic belt, and the lower mantle upwelling revealed beneath the Tarim Basin may promote the uplift of the Tien Shan by softening the upper mantle.
Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)
NASA Astrophysics Data System (ADS)
Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.
2010-12-01
The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.
Continental margin subsidence from shallow mantle convection: Example from West Africa
NASA Astrophysics Data System (ADS)
Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair J.; Fishwick, Stewart; Goes, Saskia; Jarvis, Jerry
2018-01-01
Spatial and temporal evolution of the uppermost convecting mantle plays an important role in determining histories of magmatism, uplift, subsidence, erosion and deposition of sedimentary rock. Tomographic studies and mantle flow models suggest that changes in lithospheric thickness can focus convection and destabilize plates. Geologic observations that constrain the processes responsible for onset and evolution of shallow mantle convection are sparse. We integrate seismic, well, gravity, magmatic and tomographic information to determine the history of Neogene-Recent (<23 Ma) upper mantle convection from the Cape Verde swell to West Africa. Residual ocean-age depths of +2 km and oceanic heat flow anomalies of +16 ± 4 mW m-2 are centered on Cape Verde. Residual depths decrease eastward to zero at the fringe of the Mauritania basin. Backstripped wells and mapped seismic data show that 0.4-0.8 km of water-loaded subsidence occurred in a ∼500 × 500 km region centered on the Mauritania basin during the last 23 Ma. Conversion of shear wave velocities into temperature and simple isostatic calculations indicate that asthenospheric temperatures determine bathymetry from Cape Verde to West Africa. Calculated average excess temperatures beneath Cape Verde are > + 100 °C providing ∼103 m of support. Beneath the Mauritania basin average excess temperatures are < - 100 °C drawing down the lithosphere by ∼102 to 103 m. Up- and downwelling mantle has generated a bathymetric gradient of ∼1/300 at a wavelength of ∼103 km during the last ∼23 Ma. Our results suggest that asthenospheric flow away from upwelling mantle can generate downwelling beneath continental margins.
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro M.
2014-03-01
The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle evolution thus suggest that mantle plumes play a key role in driving surface tectonic processes and large-scale volcanism.
NASA Astrophysics Data System (ADS)
Guo, Peng; Xu, Wen-Liang; Wang, Chun-Guang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.; Wang, Zhi-Wei
2017-06-01
New geochemical and Re-Os isotopic data of mantle xenoliths entrained in Cenozoic Sviyagino alkali basalts from the Russian Far East provide insights into the age and evolution of the sub-continental lithospheric mantle (SCLM) beneath the Khanka Massif, within the Central Asian Orogenic Belt (CAOB). These mantle xenoliths are predominantly spinel lherzolites with minor spinel harzburgite. The lherzolites contain high whole-rock concentrations of Al2O3 and CaO, with low forsterite content in olivine (Fo = 89.5-90.3%) and low Cr# in spinel (0.09-0.11). By contrast, the harzburgite is more refractory, containing lower whole rock Al2O3 and CaO contents, with higher Fo (91.3%) and spinel Cr# (0.28). Their whole rock and mineral compositions suggest that the lherzolites experienced low-degree (1-4%) batch melting and negligible metasomatism, whereas the harzburgite underwent a higher degree (10%) of fractional melting, and experienced minor post-melting silicate metasomatism. Two-pyroxene rare earth element (REE)-based thermometry (TREE) yields predominant equilibrium temperatures of 884-1043 °C, similar to values obtained from two-pyroxene major element-based thermometry (TBKN = 942-1054 °C). Two lherzolite samples yield high TREE relative to TBKN (TREE - TBKN ≥ 71 °C), suggesting that they cooled rapidly as a result of the upwelling of hot asthenospheric mantle material that underplated a cold ancient lithosphere. The harzburgite with a low Re/Os value has an 187Os/188Os ratio of 0.11458, yielding an Os model age (TMA) relative to the primitive upper mantle (PUM) of 2.09 Ga, and a Re depletion ages (TRD) of 1.91 Ga; both of which record ancient melt depletion during the Paleoproterozoic ( 2.0 Ga). The 187Os/188Os values of lherzolites (0.12411-0.12924) correlate well with bulk Al2O3 concentrations and record the physical mixing of ancient mantle domains and PUM-like ambient mantle material within the asthenosphere. This indicates that the SCLM beneath the Khanka Massif had been formed since at least the Paleoproterozoic ( 2.0 Ga), and was replaced by juvenile (Phanerozoic) mantle material accreted from the asthenosphere. The synthesis of available TRD ages for mantle-derived rocks and sulfides in xenoliths is consistent with the prior existence of a common Paleoproterozoic ( 2.0 Ga) SCLM beneath the eastern CAOB. Finally, comparing of mantle TRD ages and the ages of crustal rocks suggests temporal and genetic links between crust and mantle formation during the evolution of the CAOB.
Borgeaud, Anselme F E; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J
2017-11-01
D″ (Dee double prime), the lowermost layer of the Earth's mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth's liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth's evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004-2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth's surface might control the modality of convection in the lower mantle.
Seismological Constraints on Lithospheric Evolution in the Appalachian Orogen
NASA Astrophysics Data System (ADS)
Fischer, K. M.; Hopper, E.; Hawman, R. B.; Wagner, L. S.
2017-12-01
Crust and mantle structures beneath the Appalachian orogen, recently resolved by seismic data from the EarthScope SESAME Flexible Array and Transportable Array, provide new constraints on the scale and style of the Appalachian collision and subsequent lithospheric evolution. In the southern Appalachians, imaging with Sp and Ps phases reveals the final (Alleghanian) suture between the crusts of Laurentia and the Gondwanan Suwannee terrane as a low angle (<15°) southward-dipping interface that soles into a flat-lying mid-crustal detachment. The suture location near the top of the crust coincides closely with the northern limit of the Suwannee terrane reconstructed from its lower Paleozoic shelf strata (Boote and Knapp, 2016). The observed suture geometry implies over 300 km of head-on shortening across a plate boundary structure similar in scale to the Himalayan mid-crustal detachment. While the suture and other structures from the Alleghanian collision are preserved in the upper and mid-crust, the lower crust and mantle lithosphere beneath this region have been significantly modified by later processes. Ps receiver functions, wavefield migration and SsPmp modeling reveal that crustal thickness reaches a maximum of 58 km (beneath high elevations in the Blue Ridge terrane) and decreases to 29-35 km (beneath lower elevations in the Carolina and Suwannee terranes). Given metamorphic estimates of unroofing (Duff and Kellogg, 2017) isostatic arguments indicate crustal thicknesses were 15-25 km larger at the end of the orogeny, indicating a thick crustal root across the region. The present-day residual crustal root beneath the Blue Ridge mountains is estimated to have a density contrast with the mantle of only 104±20 kg/m3. This value is comparable to other old orogens but lower than values typical of young or active orogens, indicating a loss of lower crustal buoyancy over time. At mantle depths, the negative shear velocity gradient that marks the transition from lithosphere to asthenosphere, as illuminated by Sp phases, varies across the Appalachian orogen. This boundary is shallow beneath the northeastern U.S. and in the zone of Eocene volcanism in Virginia, where low velocity anomalies occur in the upper mantle. These correlations suggest recent active lithosphere-asthenosphere interaction.
Borgeaud, Anselme F. E.; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J.
2017-01-01
D″ (Dee double prime), the lowermost layer of the Earth’s mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth’s liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth’s evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004–2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth’s surface might control the modality of convection in the lower mantle. PMID:29209659
The effect of plate motion history on the longevity of deep mantle heterogeneities
NASA Astrophysics Data System (ADS)
Bull, Abigail L.; Domeier, Mathew; Torsvik, Trond H.
2014-09-01
Understanding the first-order dynamical structure and evolution of Earth's mantle is a fundamental goal in solid-earth geophysics. Tomographic observations reveal a lower mantle characterised by higher-than-average shear-wave speeds beneath Asia and encircling the Pacific, consistent with cold slabs beneath regions of ancient subduction, and lower-than-average shear-wave speeds in broad regional areas beneath Africa and the Central Pacific (termed LLSVPs). The LLSVPs are not well understood from a dynamical perspective and their origin and evolution remain enigmatic. Some numerical studies propose that the LLSVP beneath Africa is post-Pangean in origin, formed as a result of return flow in the mantle due to circum-Pangean subduction, countered by an older Pacific LLSVP, suggested to have formed during the break up of Rodinia. This propounds that, prior to the formation of Pangea, the lower mantle was dominated by a degree-1 convection pattern with a major upwelling centred close to the present-day Pacific LLSVP and subduction concentrated mainly in the antipodal hemisphere. In contrast, palaeomagnetic observations which proffer a link between the reconstructed eruption sites of Phanerozoic kimberlites and Large Igneous Provinces with regions on the margins of the present-day LLSVPs suggest that the anomalies may have remained stationary for at least the last 540 Myr and further that the anomalies were largely insensitive to the formation and subsequent break-up of Pangea. Here we investigate the evolution and long-term stability of LLSVP-like structures in Earth's mantle by integrating plate tectonics and numerical models of global thermochemical mantle dynamics. We explore the possibility that either one or both LLSVPs existed prior to the formation of Pangea and improve upon previous studies by using a new, true polar wander-corrected global plate model to impose surface velocity boundary conditions for a time interval that spans the amalgamation and subsequent break-up of the supercontinent. We find that, were only the Pacific LLSVP to exist prior to the formation of Pangea, the African LLSVP would not have been created within the lifetime of the supercontinent. We also find that, were the mantle to be dominated by two antipodal LLSVP-like structures prior to the formation of Pangea, the structures would remain relatively unchanged to the present day and would be insensitive to the formation and break-up of the supercontinent. Our results suggest that both the African and Pacific LLSVPs have remained close to their present-day positions for at least the past 410 Myr.
NASA Technical Reports Server (NTRS)
Toksoez, M. N.
1981-01-01
The seismic wave velocity structure in the crust and upper mantle region beneath the Tibetan plateau was studied in detail. Also, a preliminary study of the uppermost mantle P wave velocity beneath Iran and Turkey was carried out, and the results are compared with those for the Tibetan plateau. These two studies compose the bulk of the efforts on the observational aspects of continental collision zones in addition to satellite derived data. On the theoretical aspects the thermal evolution of converging plate boundaries was explored using a finite difference scheme.
Layered Crustal and Mantle Structure and Anisotropy beneath the Afar Depression and Malawi Rift Zone
NASA Astrophysics Data System (ADS)
Reed, Cory Alexander
Although a wealth of geophysical data sets have been acquired within the vicinity of continental rift zones, the mechanisms responsible for the breakup of stable continental lithosphere are ambiguous. Eastern Africa is host to the largest contemporary rift zone on Earth, and is thus the most prominent site with which to investigate the processes which govern the rupture of continental lithosphere. The studies herein represent teleseismic analyses of the velocity and thermomechanical structure of the crust and mantle beneath the Afar Depression and Malawi Rift Zone (MRZ) of the East African Rift System. Within the Afar Depression, the first densely-spaced receiver function investigation of crustal thickness and inferred velocity attenuation across the Tendaho Graben is conducted, and the largest to-date study of the topography of the mantle transition zone (MTZ) beneath NE Africa is provided, which reveals low upper-mantle velocities beneath the Afar concordant with a probable mantle plume traversing the MTZ beneath the western Ethiopian Plateau. In the vicinity of the MRZ, a data set comprised of 35 seismic stations is employed that was deployed over a two year period from mid-2012 to mid-2014, belonging to the SAFARI (Seismic Arrays For African Rift Initiation) experiment. Accordingly, the first MTZ topography and shear wave splitting analyses were conducted in the region. The latter reveals largely plate motion-parallel anisotropy that is locally modulated by lithospheric thickness abnormalities adjacent to the MRZ, while the former reveals normal MTZ thicknesses and shallow discontinuities that support the presence of a thick lithospheric keel within the MRZ region. These evidences strongly argue for the evolution of the MRZ via passive rifting mechanisms absent lower-mantle influences.
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
An accurate tomography model of the lithospheric mantle is essential for understanding the dynamics and evolution of the Tibetan Plateau. Using regional earthquake records, we obtain the first full-wave Pn tomography model for the eastern Tibetan Plateau. The resulting three-dimensional model exhibits similarities to and notable differences from the previous models based on ray theory. The juxtaposition of a high-velocity anomaly under the eastern Qiangtang Terrane and a low-velocity anomaly to the south near the Bangong-Nujiang Suture (BNS) provides strong evidence that the underthrusting Indian Plate does not reach the BNS beneath the plateau east of 90°E. The model shows no evidence for a southward-subducted Qaidam lithosphere. The sandwich-like layering of a low-velocity layer between two high-velocity layers at 80 to 160 km depths, mainly beneath the Qiangtang Terrane, is consistent with the results of S-to-P receiver functions. The observed contact between these two high-velocity layers beneath the Kunlun suggests that the lower high-velocity layer can be identified as the foundering Tibetan lithospheric mantle, which may be caused by gravitational instability. Beneath the eastern Kunlun Fault and the West Qinling orogen, a southward dipping high-velocity anomaly underlies a low-velocity mantle anomaly, is a pattern consistent with a delaminated mantle lithosphere and associated upwelling asthenosphere. Together with the evidence for lithospheric delamination beneath the central and southern Tibetan Plateau in previous studies, our findings suggest that the lithospheric foundering plays an important role in the formation of the Tibetan Plateau.
Uppermost Mantle Deformation and Hydration Beneath the Gorda Plate Inferred from Pn Travel-times
NASA Astrophysics Data System (ADS)
VanderBeek, B. P.; Toomey, D. R.
2017-12-01
Deformation of the uppermost oceanic mantle is thought to occur primarily in response to divergence beneath mid-ocean ridges with little subsequent deformation off-axis. A notable exception to this is the Gorda plate where sinuous magnetic anomalies and numerous intra-plate earthquakes indicate diffuse, plate-wide deformation. Thus, the Gorda region provides a natural laboratory to investigate the non-rigid behavior of tectonic plates. We invert Pn (the seismic head wave refracted below the Moho) arrival times from 770 local earthquakes for epicentral and mantle anisotropic velocity parameters to understand how the surficial pattern of deformation translates into the uppermost 10 km of the mantle. Specifically, we ask does the pattern of seismic anisotropy reflect spreading-induced fabrics or has it been re-worked by extensive deformation of the Gorda plate? If it has been re-worked, does it reflect pervasive faulting of the uppermost mantle or plate-scale ductile deformation? And, are isotropic velocities anomalously slow suggesting significant mantle hydration? Preliminary results show that the average mantle velocity beneath Gorda is 7.55 km/s. Velocities vary azimuthally by 4% and the fast-propagation direction is sub-parallel to Pacific absolute plate motion (APM). In comparison, the uppermost mantle beneath the Juan de Fuca (JdF) plate is characterized by 4.6% anisotropy with a mean velocity of 7.85 km/s [VanderBeek and Toomey, 2017]; the fast propagation direction trends between the paleo-spreading direction and JdF APM. The reduced Gorda velocities may indicate a greater extent of fault-controlled hydration of the shallow mantle compared to the JdF plate. In both regions, the anisotropic structure argues against the notion that shallow mantle deformation ceases away from the ridge. Instead, shearing across Gorda due to differential motion between the Pacific and JdF plates [e.g. Bodmer et al., 2015] may cause broad scale ductile deformation and the realignment of shallow mantle fabrics. Beneath the JdF plate, the anisotropic signal is inferred to track the evolution of mantle flow as it evolves from divergence at the ridge to simple shear that is more closely aligned with APM. We discuss the rheologic implications of these observations and the patterns of mantle flow and deformation in Cascadia.
Mantle dynamics of continent-wide tilting of Australia
NASA Astrophysics Data System (ADS)
Dicaprio, L.; Gurnis, M.; Muller, R. D.
2009-12-01
Australia is distinctive in that during the Cenozoic it experienced first order, broad-scale vertical motions unrelated to normal orogenic processes. The progressive continent-wide tilting down to the northeast is attributed to the horizontal motion of the continent over subducted slabs. We use plate tectonic reconstructions and a model of mantle convection to quantitatively link the geological evolution of the continent to mantle convection. The passage of slabs beneath the Southwest Pacific since 50 Ma is modeled numerically, and the results are compared to geologic observations of anomalous topography. Models show that Australia undergoes a 300 m northeast downward tilt as it approaches and overrides subducted slabs between Melanesia and the active margin along the Loyalty and proto-Tonga Kermadec subduction systems. This pattern of dynamic subsidence is consistent with observations of continent wide tilting and may indicate that during the Cenozoic Australia moved northward away from a relatively hot mantle anomaly presently located beneath Antarctica.
Mantle Flow and Melting Processes Beneath Back-Arc Basins
NASA Astrophysics Data System (ADS)
Hall, P. S.
2007-12-01
The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.
NASA Astrophysics Data System (ADS)
Kumar, A.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.
2014-12-01
The northern Altiplano plateau of southern Peru and northern Bolivia is one of the highest topographic features on the Earth, flanked by Western and Eastern Cordillera along its margin. It has strongly influenced the local and far field lithospheric deformation since the early Miocene (Masek et al., 1994). Previous studies have emphasized the importance of both the crust and upper mantle in the evolution of Altiplano plateau (McQuarrie et al., 2005). Early tomographic and receiver function studies, south of 16° S, show significant variations in the crust and upper mantle properties in both perpendicular and along strike direction of the Altiplano plateau (Dorbath et. al., 1993; Myers et al., 1998; Beck and Zandt, 2002). In order to investigate the nature of subsurface lithospheric structure below the northern Altiplano, between 15-18° S, we have determined three-dimensional seismic tomography models for Vp and Vs using P and S-wave travel time data from two recently deployed local seismic networks of CAUGHT and PULSE. We also used data from 8 stations from the PERUSE network (PERU Subduction Experiment). Our preliminary tomographic models show a complex variation in the upper mantle velocity structure with depth, northwest and southeast of lake Titicaca. We see the following trend, at ~85 km depth, northwest of lake Titicaca: low Vp and Vs beneath the Western Cordillera, high Vs beneath the Altiplano and low Vp and Vs beneath the Eastern Cordillera. This low velocity anomaly, beneath Eastern Cordillera, seems to coincide with Kimsachata, a Holocene volcano in southern Peru. At depth greater than ~85 km: we find high velocity anomaly beneath the Western Cordillera and low Vs beneath the Altiplano. This high velocity anomaly, beneath Western Cordillera, coincides with the well-located Wadati-Benioff zone seismicity and perhaps represents the subducting Nazca slab. On the southeast of lake Titicaca, in northern Bolivia, we see a consistently high velocity anomaly that continues deeper as a westward dipping high velocity structure in the upper mantle. Our further in depth modelling and tomographic constraints on Vp/Vs would allow us to better resolve the lithospheric features that we see in our preliminary tomographic models and their possible correlations with the evolution of northern Altiplano plateau.
NASA Astrophysics Data System (ADS)
Solarino, Stefano; Malusà, Marco G.; Eva, Elena; Guillot, Stéphane; Paul, Anne; Schwartz, Stéphane; Zhao, Liang; Aubert, Coralie; Dumont, Thierry; Pondrelli, Silvia; Salimbeni, Simone; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang
2018-01-01
In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by receiver function analysis. Our results point to a composite structure of the mantle wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above partly serpentinized peridotites (Vp 7.5 km/s; Vp/Vs = 1.70-1.72), documented from 10 km depth down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation may represent a major feature of the deep structure of exhumed continental subduction zones. The deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.
NASA Astrophysics Data System (ADS)
Glisovic, P.; Forte, A. M.; Rowley, D. B.; Simmons, N. A.; Grand, S. P.
2013-12-01
Current tomographic imaging of the 3-D structure in Earth's interior reveals several large-scale anomalies of strongly reduced seismic velocity in the deep lower mantle, in particular beneath the Perm region in Western Siberia, the East Pacific Rise, the West Pacific (Caroline Islands), the Southwest Indian Ocean, as well as under Western and Southern Africa. We have carried out mantle dynamic simulations (Glisovic et al., GJI 2012) of the evolution of these large-scale structures that directly incorporate robust constraints provided by joint seismic-geodynamic inversions of mantle density structure with further constraints provided by mineral physics data (Simmons et al., GJI 2009, JGR 2010). These tomography-based convection simulations also incorporate constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) and are characterized by Earth-like Rayleigh numbers. The convection simulations provide a detailed insight into the very-long-time evolution of the buoyancy of these lower-mantle anomalies. We find, in particular, that the buoyancy associated with the 'Perm Anomaly' generates a very long-lived hot upwelling or 'superplume' that is connected to the paleomagnetic location of the Siberian Traps (Smirnov & Tarduno, EPSL 2010) and also to location of North Atlantic Igneous Provinces (i.e., the opening of North Atlantic Ocean). These convection simulations (both backwards and forwards in time) also reveal stable and long-lived plume-like upwellings under the East Pacific Rise, as previously identified by Rowley et al. (AGU 2011, Nature - in review), in particular beneath the Easter & Pitcairn hotspots. Finally we also provide detailed reconstructions of the 65 Myr evolution of the 'Reunion plume' that gave rise to the Deccan Traps.
NASA Astrophysics Data System (ADS)
Long, M. D.; Benoit, M. H.; Evans, R. L.; King, S. D.; Kirby, E.; Aragon, J. C.; Miller, S. R.; Liu, S.; Elsenbeck, J.
2017-12-01
The eastern margin of North America has undergone multiple episodes of orogenesis and rifting, yielding the surface geology and topography visible today. It is poorly known, however, how the crust and mantle lithosphere have responded to these tectonic forces, and how geologic units preserved at the surface relate to deeper structures. Furthermore, the evolution of Appalachian topography through time, which reflects a complex interplay among erosion, lithology, and mantle flow, remains a major outstanding problem. The MAGIC project involves a multidisciplinary, collaborative effort to understand the structure and evolution of the central Appalachians, from the mantle to the surface. New images of the lithosphere derived from a passive broadband seismic array and a magnetotelluric deployment demonstrate significant along-strike lateral variability across the MAGIC transect. We observe a sharp change in crustal thickness across the eastern edge of the Appalachians, with a deeper Moho beneath the mountains than suggested by simple isostatic models. We find evidence for a relatively shallow lithosphere-asthenosphere boundary (LAB) beneath the Appalachians, with the thinnest LAB coinciding with the location of Eocene volcanism in and around Harrisonburg, VA. This observation is consistent with lithospheric loss as a mechanism for Eocene volcanic activity. Observations of seismic anisotropy suggest deformation of the mantle lithosphere associated with both Appalachian orogenesis and later Mesozoic rifting, with an observable component of anisotropy due to present-day mantle flow. Geodynamic models of mantle flow using a variety of tomographic models and density scaling relationships are being used to generate predictions of dynamic topography and plate motions for comparison with observations, and are currently being refined to incorporate realistic lithospheric morphology based on imaging results. Models of present-day erosion rates throughout the Appalachians from stream profile analysis show particularly fast erosion rates just to the west of Harrisonburg. Integration of results from the MAGIC project is yielding new insight into the structure and evolution of the central Appalachians and into the processes associated with orogenesis, rifting, and post-rift evolution of the passive margin.
NASA Astrophysics Data System (ADS)
Eakin, C. M.
2017-12-01
Plate tectonics is primarily driven by the subduction of cold dense oceanic slabs. It has yet to be fully understood however how variations in slab morphology and buoyancy influence the surrounding mantle dynamics, and what difference if any is seen at the surface. An excellent natural laboratory to answer such questions is found along the Andean margin where the world's largest flat slab is presently subducting beneath much of Peru. Following the deployment of broadband seismic arrays across the region, mantle flow both beneath and above the flat-slab is investigated using targeted shear-wave splitting techniques that detect seismic anisotropy and the pattern of mantle deformation. The along strike change in slab dip angle and buoyancy content is found to exert a strong control over the surrounding mantle flow field. Modeling of the induced mantle flow, and the dynamic topography at the surface that results, predicts a wave of dynamic subsidence that propagates away from the trench as the flat slab develops. This is found to correlate well with the record of widespread sediment deposition across western Amazonia during the Miocene. A combination of uplift, flexure and dynamic topography during slab flattening is proposed to explain the overall landscape evolution of the region and the subsequent configuration of the transcontinental Amazon drainage system we see today.
Mantle plumes and associated flow beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Van der Lee, Suzan
2011-02-01
We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.
Trench-parallel flow beneath the nazca plate from seismic anisotropy.
Russo, R M; Silver, P G
1994-02-25
Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.
NASA Astrophysics Data System (ADS)
Liang, X.; Tian, X.; Wang, M.
2017-12-01
Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.
Radar-Sounding of Icy Mantles and Comets Using Natural Radio Noise
NASA Astrophysics Data System (ADS)
Winebrenner, D. P.; Sahr, J. D.
2011-10-01
Radar-sounding of ice sheets on Earth yields crucial information on ice history and dynamics, including discoveries of subglacial lakes beneath 3-4 km of ice [1]. Mars Express and the Mars Reconnaissance Orbiter (MRO) have now demonstrated the corresponding power of orbital radar sounding for planetary exploration, in particular by imaging structures within and beneath kilometers of Martian water ice [2-4]. Based on this experience, a sophisticated orbital radar sounder is planned for a flagship mission to Europa, with the aim of imaging stratigraphy, faults, diapirs and other geological structure in the upper few kilometers of the water-ice mantle there, and possibly even detecting the upper surface of the (likely) underlying ocean [5]. Recent modeling of the formation and evolution of volatilerich bodies suggests that oceans or lakes of liquid water occur beneath water-ice mantles in a surprising variety of places, including Ceres in the outer asteroid belt [6], 3 of the 4 Galilean moons of Jupiter as well as Enceladus and Titan in the Saturnian system [7], and possibly even Pluto [8]. Thus there is now a wide scope for low-cost missions to bodies of exceptional interest, and for radar sounding of icy mantles to image near-surface structural geology related to underlying water (whether past or present).
NASA Astrophysics Data System (ADS)
Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele
2016-05-01
Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.
NASA Astrophysics Data System (ADS)
Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele
2016-04-01
Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.
NASA Astrophysics Data System (ADS)
Bartol, J.; Govers, R. M. A.; Wortel, M. J. R.
2015-12-01
Central Anatolia (Central Turkey) possesses all the characteristics of a plateau. It experienced a period of rapid and substantial uplift (late Miocene, ˜8 Ma) while significant crustal shortening did not occur. Similar to other plateaus, the presence of volcanic ash and tuff within the sediments suggest that uplift was preceded by widespread volcanism (˜14-9Ma). The lithospheric context of these events is, however, unknown. For the Eastern Anatolian plateau, similar events have been attributed to southward retread followed by slab break-off of the northern Neotethys slab. Recent tomographic results indicate that this northern Neotethys slab extended beneath both the Eastern and Central Anatolian plateau prior to late Miocene delamination and possibly even beneath western Anatolia prior to the Eocene (?). We propose a new lithospheric scenario for the regional evolution for the Aegean-Anatolia-Near East region that combines a recent compilation of surface geology data with the structure of the upper mantle imaged with tomography. In our new scenario for the evolution of the Aegean-Anatolia-Near East region, a single continuous subduction zone south of the Pontides (Izmir - Ankara - Erzincan crustal suture zone) accommodated the Africa - Eurasia convergence until the end of the late Cretaceous. In the Late Cretaceous - Eocene the northern Neotethys Ocean closed followed by Anatolide - Taurides (south) and Pontides (north) continental collision along the Izmir - Ankara - Erzincan crustal suture zone. While the trench jumped to the south of Anatolide - Taurides terrane, subduction continued beneath the Izmir-Ankara-Erzincan suture where the northern Neotethys slab continued to sink into the deeper mantle. In the early Miocene (˜20-15Ma), the northern Neotethys slab started to retreat southward towards the trench, resulting in delamination of the lithospheric mantle. The last part of (early Miocene - recent) our scenario is testable. We use a coupled thermal-flexural model of the lithosphere. Model results show that delamination can explain the average present-day long-wavelength topography of the Central Anatolian plateau. For the Eastern Anatolian plateau, delamination explains half the present-day elevation: the other half resulted from crustal thickening.
NASA Astrophysics Data System (ADS)
Zhang, Nan
Understanding the Earth's evolution is a fundamental goal of geophysics. The mantle plays the key role in understanding the Earth's evolution. The convective planform of the mantle influences the energy exchange of the core on the core-mantle boundary (CMB) and hence the geodynamo process, determines the heat release and hence the thermal evolution of the Earth, and shapes the long wavelength topography on the surface of the Earth. Given the observationally constrained mantle viscosity structure, and realistic convective vigor and internal heating rate, the numerical modeling of mantle convection shows that the mobile-lid mantle convection is characterized by either a spherical harmonic degree-1 planform with a major upwelling in one hemisphere and a major downwelling in the other hemisphere when continents are absent, or a degree-2 planform with two antipodal major upwellings when a supercontinent is present. The Earth's mantle evolves from one to the other of these two modes due to modulation of continents, causing the cyclic processes of assembly and breakup of supercontinents. However, to constrain the realistically temporal evolution of mantle convection, other observations such as the time-dependent plate motion and geological records are needed. I reconstruct a proxy model for global plate motion for the last 450 Myr. Using the proxy plate motion model as time dependent boundary conditions, I reproduce well the basic features of the present-day mantle structure including the African and Pacific superplumes and chemical piles, and a predominantly degree 2 structure throughout the lower mantle. I further demonstrate that the mantle in the African hemisphere around the Pangea time is predominated by cold downwellings resulting from the convergence between Gondwana and Laurussia, consistent with the 1-2-1 cyclic model from the numerical modeling of mantle convection. Based on the evolution of the three-dimensional mantle structures, I reconstruct tempo-spatial evolutions of the surface and CMB heat fluxes, and the dynamic topography since the Paleozoic. My result shows that the surface heat flux increases by ~16% from 200 to 120 Ma ago as a result of Pangea breakup and the equatorial CMB heat flux has two minima that coincide with the Kiaman (316-262 Ma) and Cretaceous (118-83 Ma) Superchrons, respectively, and may be responsible for the Superchrons. My results of the dynamic topography show that the Slave Craton subsided when the major downwelling occupied the mantle beneath North America, while Sao Francisco Craton, Kaapvaal Craton, and Yilgarn Craton were supported by the large scale upwellings in the mantle beneath the very south of Pangea around 330 Ma during Pangea formation. After Pangea formed, Slave Craton started to uplift as the major downwelling heated up with time and were controlled by the subductions close to it. Sao Francisco Craton and Kaapvaal Craton kept uplifting due to the returning African Superplume. My reconstructed dynamic topography history compares well with the vertical motion history of Slave Craton indicated by the thermochronometry study.
NASA Astrophysics Data System (ADS)
Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves
2013-08-01
The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.
Subduction History and the Evolution of Earth's Lower Mantle
NASA Astrophysics Data System (ADS)
Bull, Abigail; Shephard, Grace; Torsvik, Trond
2016-04-01
Understanding the complex structure, dynamics and evolution of the deep mantle is a fundamental goal in solid Earth geophysics. Close to the core-mantle boundary, seismic images reveal a mantle characterised by (1) higher than average shear wave speeds beneath Asia and encircling the Pacific, consistent with sub ducting lithosphere beneath regions of ancient subduction, and (2) large regions of anomalously low seismic wavespeeds beneath Africa and the Central Pacific. The anomalously slow areas are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. The origin, composition and long-term evolution of the LLSVPs remain enigmatic. Geochemical inferences of multiple chemical reservoirs at depth, strong seismic contrasts, increased density, and an anticorrelation of shear wave velocity to bulk sound velocity in the anomalous regions imply that heterogeneities in both temperature and composition may be required to explain the seismic observations. Consequently, heterogeneous mantle models place the anomalies into the context of thermochemical piles, characterised by an anomalous component whose intrinsic density is a few percent higher relative to that of the surrounding mantle. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end member scenario suggests that the LLSVPs are relatively mobile features over short timescales and thus are strongly affected by supercontinent cycles and Earth's plate motion history. In this scenario, the African LLSVP formed as a result of return flow in the mantle due to circum-Pangean subduction (~240 Ma), contrasting a much older Pacific LLSVP, which may be linked to the Rodinia supercontinent and is implied to have remained largely unchanged since Rodinian breakup (~750-700 Ma). This propounds that Earth's plate motion history plays a controlling role in LLSVP development, suggesting that the location, geometry and morphology of lower mantle structures can be influenced by the movement of subducting slabs, and thus by the motions of tectonic plates at the surface. Alternatively, a long-term stability for both LLSVPs, which would suggest a first-order dissociation from the effects of surface plate motions, is hypothesised by recent studies which propose a geographic correlation between the reconstructed surface eruption sites of kimberlites and Large Igneous Provinces with the margins of the LLSVPs. If the surface volcanism was sourced from the lower mantle, such a link would suggest that the LLSVPs may have remained stationary for at least the age of the volcanic rocks (> 500 Myr) and further that the anomalies were largely insensitive to the formation and subsequent breakup of Pangea, and thus to Earth's plate motion history. Here we discuss the evolution of lower mantle structure, LLSVPs and surface volcanics in terms of subduction dynamics. We integrate high-resolution plate tectonic histories and numerical models of mantle convection and perform a series of 3D spherical calculations with Earth-like boundary conditions to investigate the role that subduction history plays in the development and evolution of lower mantle structures. To test whether such an interaction exists, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. We incorporate global shifts in both longitude and latitude, with the correction applied over timescales of 230-50 Myrs. With this method, the location of subduction at the surface and thus the global flow field can be altered. This in turn affects the time-dependent sinking of lithospheric slabs and may affect their interaction with the lower mantle and the LLSVPs at both their margins and top surfaces. We aim to understand how the subduction history has affected mantle structure on a global scale. We show that shifts to the surface history of subduction, even for extreme and unrealistic cases, lead to minimal changes in LLSVP geometry and position, suggesting that the LLSVPs may be long-lived features (> 250 Ma).
NASA Astrophysics Data System (ADS)
Wang, Y.; Pavlis, G. L.; Li, M.
2017-12-01
The amount of water in the Earth's deep mantle is critical for the evolution of the solid Earth and the atmosphere. Mineral physics studies have revealed that Wadsleyite and Ringwoodite in the mantle transition zone could store several times the volume of water in the ocean. However, the water content and its distribution in the transition zone remain enigmatic due to lack of direct observations. Here we use seismic data from the full deployment of the Earthscope Transportable Array to produce 3D image of P to S scattering of the mantle transition zone beneath the United States. We compute the image volume from 141,080 pairs of high quality receiver functions defined by the Earthscope Automated Receiver Survey, reprocessed by the generalized iterative deconvolution method and imaged by the plane wave migration method. We find that the transition zone is filled with previously unrecognized small-scale heterogeneities that produce pervasive, negative polarity P to S conversions. Seismic synthetic modeling using a point source simulation method suggests two possible structures for these objects: 1) a set of randomly distributed blobs of slight difference in size, and 2) near vertical diapir structures from small scale convections. Combining with geodynamic simulations, we interpret the observation as compositional heterogeneity from small-scale, low-velocity bodies that are water enriched. Our results indicate there is a heterogeneous distribution of water through the entire mantle transition zone beneath the contiguous United States.
Mantle mixing and thermal evolution during Pangaea assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Li, M.; Zhong, S.; Manga, M.
2016-12-01
Continents insulate the underlying mantle, and it has been suggested that the arrangement of the continents can have a significant effect on sub-continental mantle temperatures. Additionally, the dispersal or agglomeration of continents may affect the efficacy of continental insulation, with some studies suggesting warming of 100K beneath supercontinents. During the most recent supercontinent cycle, Pangaea was encircled by subduction, potentially creating a `curtain' of subducted material that may have prevented mixing of the sub-Pangaea mantle with the sub-Panthalassa mantle. Using 3D spherical shell geometry mantle convection simulations, we quantify the effect of insulation by continents and supercontinents. We explore the differences in model predictions for purely thermal vs. thermochemical convection, and we use tracers to quantify the exchange of material between the sub-oceanic to the sub-continental mantle.
NASA Astrophysics Data System (ADS)
Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.
2012-12-01
Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the forces sustaining volcanism and the factors that dictate the style of breakup beneath rifts.
Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M
2017-05-12
The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.
Multi Plumes and Their Flows beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, S.; van der Lee, S.
2010-12-01
The three-dimensional S-velocity structure beneath Arabia and East Africa is estimated down to the lower mantle to investigate vertical and horizontal extension of low-velocity anomalies that bear out the presence of mantle plumes and their flows beneath lithosphere. We estimated this model through joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. With the unprecedented resolution in our S-velocity model, we found different flow patterns of hot materials upwelling beneath Afar beneath the Red Sea and the Gulf of Aden. While the low-velocity anomaly from Afar is well confined beneath the Gulf of Aden, inferring mantle flow along the gulf, N-S channel of low velocity is found beneath Arabia, not along the Red Sea. The Afar plume is distinctively separate from the Kenya plume, showing its origin in the lower mantle beneath southwestern Arabia. We identified another low-velocity extension to the lower mantle beneath Jordan and northern Arabia, which is thought to have caused volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirmed horizontal plume flow from Afar in NS direction beneath Arabia and in NE-SW direction beneath Ethiopia as a likely cause of the observed seismic anisotropy.
NASA Astrophysics Data System (ADS)
Gallego, A.; Ito, G.; Dunn, R. A.
2013-08-01
Surface wave studies of the Reykjanes Ridge (RR) and the Iceland hotspot have imaged an unusual and enigmatic pattern of two zones of negative radial anisotropy on each side of the RR. We test previously posed and new hypotheses for the origin of this anisotropy, by considering lattice preferred orientation (LPO) of olivine A-type fabric in simple models with 1-D, layered structures, as well as in 2-D and 3-D geodynamic models with mantle flow and LPO evolution. Synthetic phase velocities of Love and Rayleigh waves traveling parallel to the ridge axis are produced and then inverted to mimic the previous seismic studies. Results of 1-D models show that strong negative radial anisotropy can be produced when olivine a axes are preferentially aligned not only vertically but also subhorizontally in the plane of wave propagation. Geodynamic models show that negative anisotropy on the sides of the RR can occur when plate spreading impels a corner flow, and in turn a subvertical alignment of olivine a axes, on the sides of the ridge axis. Mantle dehydration must be invoked to form a viscous upper layer that minimizes the disturbance of the corner flow by the Iceland mantle plume. While the results are promising, important discrepancies still exist between the observed seismic structure and the predictions of this model, as well as models of a variety of types of mantle flow associated with plume-ridge interaction. Thus, other factors that influence seismic anisotropy, but not considered in this study, such as power-law rheology, water, melt, or time-dependent mantle flow, are probably important beneath the Reykjanes Ridge.
Cordilleran Longevity, Elevation and Heat Driven by Lithospheric Mantle Removal
NASA Astrophysics Data System (ADS)
Mackay-Hill, A.; Currie, C. A.; Audet, P.; Schaeffer, A. J.
2017-12-01
Cordilleran evolution is controlled by subduction zone back-arc processes that generate and maintain high topography due to elevated uppermost mantle temperatures. In the northern Canadian Cordillera (NCC), the persisting high mean elevation long after subduction has stopped (>50 Ma) requires a sustained source of heat either from small-scale mantle convection or lithospheric mantle removal; however direct structural constraints of these processes are sparse. We image the crust and uppermost mantle beneath the NCC using scattered teleseismic waves recorded on an array of broadband seismograph stations. We resolve two sharp and flat seismic discontinuities: a downward velocity increase at 35 km that we interpret as the Moho; and a deeper discontinuity with opposite velocity contrast at 50 km depth. Based on petrologic estimates, we interpret the deeper interface as the lithosphere-asthenosphere boundary (LAB), which implies an extremely thin ( 15 km) lithospheric mantle. We calculate the temperature at the Moho and the LAB in the range 800-900C and 1200-1300C, respectively. Below the LAB, we find west-dipping features far below the LAB beneath the eastern NCC that we associate with laminar downwelling of Cordilleran lithosphere. Whether these structures are fossilized or active, they suggest that lithospheric mantle removal near the Cordillera-Craton boundary may have provided the source of heat and elevation and therefore played a role in the longevity and stability of the Cordillera.
Hutchinson, D.R.; White, R.S.; Cannon, W.F.; Schulz, K.J.
1990-01-01
The Proterozoic Midcontinent Rift System of North America is remarkably similar to Phanerozoic rifted continental margins and flood basalt provinces. Like the younger analogues, the volcanism within this older rift can be explained by decompression melting and rapid extrusion of igneous material during lithospheric extension above a broad, asthenospheric, thermal anomaly which we call the Keweenaw hot spot. Great Lakes International Multidisciplinary Program on Crustal Evolution seismic reflection profiles constrain end-member models of melt thickness and stretching factors, which yield an inferred mantle potential temperature of 1500°–1570°C during rifting. Combined gravity modeling and subsidence calculations are consistent with stretching factors that reached 3 or 4 before rifting ceased, and much of the lower crust beneath the rift consists of relatively high density intruded or underplated synrift igneous material. The isotopic signature of Keweenawan volcanic rocks, presented in a companion paper by Nicholson and Shirey (this issue), is consistent with our model of passive rifting above an asthenospheric mantle plume.
NASA Astrophysics Data System (ADS)
Hansen, Samantha E.; Nyblade, Andrew A.; Benoit, Margaret H.
2012-02-01
While the Cenozoic Afro-Arabian Rift System (AARS) has been the focus of numerous studies, it has long been questioned if low-velocity anomalies in the upper mantle beneath eastern Africa and western Arabia are connected, forming one large anomaly, and if any parts of the anomalous upper mantle structure extend into the lower mantle. To address these questions, we have developed a new image of P-wave velocity variations in the Afro-Arabian mantle using an adaptively parameterized tomography approach and an expanded dataset containing travel-times from earthquakes recorded on many new temporary and permanent seismic networks. Our model shows a laterally continuous, low-velocity region in the upper mantle beneath all of eastern Africa and western Arabia, extending to depths of ~ 500-700 km, as well as a lower mantle anomaly beneath southern Africa that rises from the core-mantle boundary to at least ~ 1100 km depth and possibly connects to the upper mantle anomaly across the transition zone. Geodynamic models which invoke one or more discrete plumes to explain the origin of the AARS are difficult to reconcile with the lateral and depth extent of the upper mantle low-velocity region, as are non-plume models invoking small-scale convection passively induced by lithospheric extension or by edge-flow around thick cratonic lithosphere. Instead, the low-velocity anomaly beneath the AARS can be explained by the African superplume model, where the anomalous upper mantle structure is a continuation of a large, thermo-chemical upwelling in the lower mantle beneath southern Africa. These findings provide further support for a geodynamic connection between processes in Earth's lower mantle and continental break-up within the AARS.
NASA Astrophysics Data System (ADS)
Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain
2018-08-01
The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.
Thermal Evolution of Earth's Mantle During the Accretion
NASA Astrophysics Data System (ADS)
Arkani-Hamed, J.; Roberts, J. H.
2017-12-01
Earth is likely formed by accreting Moon to Mars size embryos. The impact heating by an embryo melts the embryo and the upper mantle of the Earth beneath the impact site. The iron core of the embryo sinks and merges with the core of the Earth, while the mantle of the embryo mixes with the upper mantle of the Earth, producing a buoyant molten/partially molten magma pond. Strong but localized mantle dynamics results in fast lithostatic adjustment that pours out a huge amount of molten and partially molten magma which spread on the Earth, and together with impact ejecta creates a globe encircling magma ocean. The lithostatic adjustment diminishes as the magma ocean becomes globe encircling within 104 to 105 yr. The major part of the thermal evolution of Earth's mantle after an impact takes place in the presence of a thick and hot magma ocean, which hampers heat loss from the mantle and suppresses global mantle dynamics. Because the impact velocity of an embryo increases as the Earth grows, a given magma ocean is hotter than the previous ones. We investigated this scenario using 25 Moon to Mars size embryos. Due to random geographic impact sites we considered vertical impacts since no information is available about the impact angles. This may over estimate the impact heating by a factor of 1.4 with respect to the most probable impact angle of 45o. The thermal structure of the Earth at the end of accretion is layered, aside from the localized magma ponds that are distributed randomly due to the random geographic impact sites. We also take into account the impact heating of the solid lower mantle, the heating of the lower mantle by the gravitational energy released through sinking of an embryo's core. We then follow the thermal evolution of the mantle of a growing Earth using a 3D convection model. The Earth grows due to merging of the impactor iron core with the Earth's core, and the accumulating magma ocean on the surface. The growth enhances the lithostatic pressure in the Earth that in turn increase the temperature by compression. Each overlying magma ocean hampers global convection beneath, and the mean temperature gradient at the end of accretion is less steep than the adiabatic gradient, indicating that mantle convection during accretion is mainly localized [JHR1]Is this range because there are multiple models with different numbers of embryos?yes
NASA Astrophysics Data System (ADS)
Zou, H.; Ma, M.; Fan, Q.; Xu, B.; Li, S. Q.; Zhao, Y.; King, D. T., Jr.
2017-12-01
The Tengchong volcanic field on the southeastern margin of the Tibetan Plateau represents rare Quaternary volcanic eruptions on the plateau. The Quaternary Tengchong volcanic field formed high-potassium calc-alkaline volcanic rocks that include trachybasalts, basaltic trachyandesites, trachyandesites, and dacites. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four young Tengchong volcanoes at Maanshan, Dayingshan, Heikongshan, and Laoguipo, in order to understand their magma genesis and evolution. Nd-Sr-Pb-Hf isotopes for the primitive Tengchong magma (trachybasalts with SiO2 <52.5 wt. % and MgO >5.5% wt. %) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the primitive magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area. With regard to the evolved magmas (basaltic trachyandesites and trachyandesites), good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process during magma evolution to form these basaltic trachyandesites and trachyandesites. Uranium-series zircon dating on these evolved lavas from Tengchong is used to constrain their magma evolution and residence timescales.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Zhu, Bin; Fentie, Birhanu; Abraham, Samuel; Haji, Muhammed
2016-01-01
Detailed petrographical observations and in-situ major- and trace-element data for minerals from ten spinel peridotite xenoliths from a new locality in Gundeweyn area, East Gojam, have been examined in order to understand the composition, equilibrium temperature and pressure conditions as well as depletion and enrichment processes of continental lithospheric mantle beneath the Ethiopian plateau. The peridotite samples are very fresh and, with the exception of one spinel harzburgite, are all spinel lherzolites. Texturally, the xenoliths can be divided into two groups as primary and secondary textures. Primary textures are protogranular and porphyroclastic while secondary ones include reaction, spongy and lamellae textures. The Fo content of olivine and Cr# of spinel ranges from 86.5 to 90.5 and 7.7 to 14.1 in the lherzolites, respectively and are 89.8 and 49.8, respectively, in the harzburgite. All of the lherzolites fall into the lower Cr# and Fo region in the olivine-spinel mantle array than the harzburgite, which indicates that they are fertile peridotites that experienced low degrees of partial melting and melt extraction. Orthopyroxene and clinopyroxene show variable Cr2O3 and Al2O3 contents regardless of their lithology. The Mg# of orthopyroxene and clinopyroxene are 87.3 to 90.1 and 85.8 to 90.5 for lherzolite and 90.4 and 91.2 for harzburgite, respectively. The peridotites have been equilibrated at a temperature and pressure ranging from 850 to 1100 °C and 10.2 to 30 kbar, respectively, with the highest pressure record from the harzburgite. They record high mantle heat flow between 60 and 150 mW/m2, which is not typical for continental environments (40 mW/m2). Such a high geotherm in continental area shows the presence of active mantle upwelling beneath the Ethiopian plateau, which is consistent with the tectonic setting of nearby area of the Afar plume. Clinopyroxene of five lherzolites and one harzburgite samples have a LREE enriched pattern and the rest exhibit LREE depletion relative to HREE. These suggest that the lithospheric mantle of the Ethiopian plateau has experienced at least two major processes, specifically, partial melting and metasomatism that produce LREE-depleted and -enriched signature of continental lithospheric mantle, respectively. There is also no clear relationship between degree of LREE enrichment and petrography of the studied peridotite. Based on our data, we conclude that the lithospheric mantle beneath Gundeweyn has experienced melt extraction during and/or before pan-African orogeny and then interacted with various degrees of asthenospheric melt. The interaction is probably related to mantle upwelling, which is mainly focused beneath East Africa rift system (EARS).
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.
2014-12-01
Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones" resulting from lateral and vertical shear in the wedge above the slab gap, produce slow transit times. These 4-D ascent pathways are being incorporated into numerical models on the thermal and melting evolution of diapirs. Models show subduction-induced circulation significantly alters diapir ascent beneath arcs.
Mantle structure beneath the western edge of the Colorado Plateau
Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.
2008-01-01
Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja
2017-07-01
We present new trace element compositions of amphiboles, Sr-Nd-Hf isotope compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched isotope compositions than depleted ones. While lherzolites with isotope compositions similar to those of the Afar plume result from the most recent metasomatic overprint, isotope compositions more depleted than present-day MORB can be explained by an older melt extraction and/or isotopic rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt magmatism, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt magmatism. Strikingly, both trace-element enriched and depleted lherzolites have high clinopyroxene and orthopyroxene and low olivine contents (median 15, 24 and 56 vol.%), combined with primitive olivine Mg# (median 89.5), indicating the presence of refertilized mantle beneath Gundeweyn. Despite its fertility and FeO-rich character (hence high inferred density), and impingement by the Afar plume, the CLM beneath the Ethiopian plateau, though apparently thinned through thermochemical erosion, has so far resisted whole-sale delamination or dripping. This is tentatively ascribed to insufficient stress and density contrasts at the periphery of the Afar plume, which reached its greatest thermochemical buoyancy in the Afar region, northeast of Gundeweyn.
NASA Astrophysics Data System (ADS)
Ogawa, Masaki
2018-02-01
To discuss how redistribution of heat producing elements (HPEs) by magmatism affects the lunar mantle evolution depending on the initial condition, I present two-dimensional numerical models of magmatism in convecting mantle internally heated by incompatible HPEs. Mantle convection occurs beneath a stagnant lithosphere that inhibits recycling of the HPE-enriched crustal materials to the mantle. Magmatism is modeled by a permeable flow of magma generated by decompression melting through matrix. Migrating magma transports heat, mass, and HPEs. When the deep mantle is initially hot with the temperature TD around 1800 K at its base, magmatism starts from the beginning of the calculated history to extract HPEs from the mantle. The mantle is monotonously cooled, and magmatism ceases within 2 Gyr, accordingly. When the deep mantle is initially colder with TD around 1100 K, HPEs stay in the deep mantle for a longer time to let the planet be first heated up and then cooled only slightly. If, in addition, there is an HPE-enriched domain in the shallow mantle at the beginning of the calculation, magma continues ascending to the surface through the domain for more than 3 Gyr. The low TD models fit in with the thermal and magmatic history of the Moon inferred from spacecraft observations, although it is not clear if the models are consistent with the current understanding of the origin of the Moon and its magnetic field. Redistribution of HPEs by magmatism is a crucial factor that must be taken into account in future studies of the evolution of the Moon.
NASA Astrophysics Data System (ADS)
Liu, Chuan-Zhou; Wu, Fu-Yuan; Sun, Jing; Chu, Zhu-Yin; Yu, Xue-Hui
2013-05-01
Petrology, geochemistry and Resbnd Os isotopes of peridotite xenoliths from Maguan (Yunnan Province) are reported in this paper with the aims of constraining the age and evolution of the lithospheric mantle beneath the western margin of the Cathyasia block. The Maguan mantle xenoliths contain predominantly fertile lherzolites with whole-rock Al2O3 contents of 2.42-4.99 wt.%, and subordinate clinopyroxene-poor lherzolites with Al2O3 contents of 1.19-1.98 wt.%. Their whole-rock CaO, Al2O3 and Na2O decrease along with the increase of MgO, following melt depletion trends. This suggests that the Maguan lherzolites represent mantle residues after variable degrees of partial melting. Clinopyroxenes in the fertile lherzolites display flat to depleted REE patterns, whereas those in the clinopyroxene-poor lherzolites are variably enriched in LREE. Modeling results of Y and Yb contents in clinopyroxenes suggest that the fertile lherzolites have experienced ~ 1-5% degrees of partial melting, in contrast with ~ 10-15% for the clinopyroxene-poor lherzolites. Both fertile and clinopyroxene-poor lherzolites have similarly high equilibrium temperatures, i.e., 911-1120 °C versus 919-941 °C, respectively. The whole-rock 187Os/188Os ratios of clinopyroxene-poor lherzolites vary from 0.11764 to 0.12506, which are slightly lower than most fertile lherzolites (0.12272-0.12854). Their 187Os/188Os ratios show no correlation with 187Re/188Os ratios or bulk-rock Al2O3 contents. The rhenium depletion ages (TRD) of the lherzolites range from 0.15 to 1.08 Ga, whereas the clinopyroxene-poor lherzolites have TRD ages of 0.64-1.67 Ga. This suggests the co-existence of Phanerozoic and Proterozoic mantle beneath the western Cathyasia block. Alternatively, the whole lithospheric mantle beneath Maguan was likely formed during the Phanerozoic, given the resemblance of their Os isotopic ratios with those of abyssal peridotites. The latter explanation is consistent with the fact that all the studied samples plot along the oceanic trend in a plot of olivine modes versus Fo contents. We suggest that the enriched mantle that was existed beneath the western Cathyasia block during the Late Cretaceous or Eocene-Oligocene has been replaced by juvenile and depleted mantle, which probably occurred during the Cenozoic.
NASA Astrophysics Data System (ADS)
Cui, Qinghui; Wei, Rongqiang; Zhou, Yuanze; Gao, Yajian; Li, Wenlan
2018-01-01
The lithosphere-asthenosphere boundary (LAB) is the seismic discontinuity with negative velocity contrasts in the upper mantle. Seismic detections on the LAB are of great significance in understanding the plate tectonics, mantle convection and lithospheric evolution. In this paper, we study the LAB in the Izu-Bonin subduction zone using four deep earthquakes recorded by the permanent and temporary seismic networks of the USArray. The LAB is clearly revealed with sP precursors (sdP) through the linear slant stacking. As illustrated by reflected points of the identified sdP phases, the depth of LAB beneath the Izu-Bonin Arc (IBA) is about 65 km with a range of 60-68 km. The identified sdP phases with opposite polarities relative to sP phases have the average relative amplitude of 0.21, which means a 3.7% velocity drop and implies partial melting in the asthenosphere. On the basis of the crustal age data, the lithosphere beneath the IBA is located at the 1100 °C isotherm calculated with the GDH1 model. Compared to tectonically stable areas, such as the West Philippine Basin (WPB) and Parece Vela Basin (PVB) in the Philippine Sea, the lithosphere beneath the Izu-Bonin area shows the obvious lithospheric thinning. According to the geodynamic and petrological studies, the oceanic lithospheric thinning phenomenon can be attributed to the strong erosion of the small-scale convection in the mantle wedge enriched in volatiles and melts.
NASA Astrophysics Data System (ADS)
Aradi, Laszlo; Hidas, Károly; Zanetti, Alberto; János Kovács, István; Patkó, Levente; Szabó, Csaba
2016-04-01
Plio-Pleistocene alkali basaltic volcanism sampled sporadically the upper mantle beneath the Carpathian-Pannonian Region (CPR, e.g. [1]). Lavas and pyroclasts often contain mantle derived xenoliths, and the majority of them have been extensively studied [1], except the westernmost Styrian Basin Volcanic Field (SBVF, Eastern Austria and Slovenia). In the SBVF only a few volcanic centers have been studied in details (e.g. Kapfenstein & Tobaj). Based on these studies, the upper mantle beneath the SBVF is consists of dominantly high temperature, texturally and geochemically homogeneous protogranular spinel lherzolite. New major and trace element data from rock-forming minerals of ultramafic xenoliths, coupled with texture and deformation analysis from 12 volcanic outcrops across the SBVF, suggest that the lithospheric roots of the region are more heterogeneous than described previously. The studied xenoliths are predominantly lherzolite, amphibole is a common phase that replaces pyroxenes and spinels and proves modal metasomatism. Phlogopite coupled with apatite is also present in amphibole-rich samples. The texture of the xenoliths is usually coarse-grained and annealed with low abundance of subgrain boundaries in both olivine and pyroxenes. Olivine crystal preferred orientation (CPO) varies between the three most abundant one: [010]-fiber, orthogonal and [100]-fiber symmetry [2]. The CPO of pyroxenes is usually coherent with coeval deformation with olivine, however the CPO of amphibole is suggesting postkinematic epitaxial overgrowth on the precursor pyroxenes. According to equilibrium temperatures, the studied xenolith suite samples a broader temperature range (850-1100 °C) than the literature data, corresponding to mantle depths between 30 and 60 km, which indicates that the xenolith suite only represents the shallower part of the recent 100 km thick lithospheric mantle beneath the SBVF. The equilibrium temperatures show correlation with the varying CPO symmetries, with [100]-fiber and orthorhombic symmetry appear in the high temperature (>1000 °C) xenoliths, which are thought to have an asthenospheric origin [3]. Based on our study, the subcontinental lithospheric mantle beneath the western part of the CPR is not as homogeneous as it was reported before. The shallower part of the mantle lithosphere contains peridotites, where the pervasive deformation and subsequent thermal recovery of the upper mantle was followed by melt percolation events causing extensive metasomatism. This research was granted by the Hungarian Science Foundation (OTKA, 78425 to Cs. Szabó). K. Hidas' research leading to these results was funded by the European Union Framework Programme 7 (EU-FP7) Marie Curie postdoctoral grant PIEF-GA-2012- 327226. References: [1]Szabó, C. et al. 2004. Tectonophysics, 393(1), 119-137. [2] Tommasi, A., Vauchez, A. 2015. Tectonophysics, 661, 11-37. [3] Kovács, I. et al. 2012. Tectonophysics, 514, 168-179.
NASA Astrophysics Data System (ADS)
Garnero, E.; McNamara, A. K.; Shim, S. H. D.
2014-12-01
The term large low shear velocity province (LLSVP) represents large lowermost mantle regions of reduced shear velocities (Vs) relative to 1D reference models. There are two LLSVPs: one beneath the central Pacific Ocean, and one beneath the southern Atlantic Ocean and Africa. While LLSVP existence has been well known for several decades, more recently evidence from forward modeling has brought to light relatively sharp margins of the LLSVPs, i.e., the transition from low-to-"normal" Vs occurs over a short lateral distance (probably < ~100 km). This finding is further supported by the strongest lateral dVs gradients in tomography coinciding with locations of sharp LLSVP sides in high-resolution studies. Surface hotspot and large igneous province origination locations mostly map above the present day LLSVP edges. Combined with geochemical arguments that a deep mantle long-lived (possibly primordial) reservoir exists, and geodynamics experiments that demonstrate a dense basal reservoir would be swept by convection to reside beneath upwellings and plumes, a strong argument can be made for dense, chemically distinct material explaining LLSVPs. This presentation will present additional seismic information that needs to be considered for a self-consistent geodynamic and mineralogical framework. For example, there does not appear to be consistency between Vp and Vs reductions defining LLSVPs; however, this comparison is complicated by lowermost mantle Vp models exhibiting greater divergence from each other than Vs models. LLSVP forward modeling usually involves a trade-off between dVs within the LLSVP and LLSVP height/shape; thus continued mapping of heterogeneity within LLSVP is critical. ULVZs might relate to LLSVP chemistry, temperature, and evolution, and thus will be discussed. The chemistry that can explain large and old thermochemical piles is as of yet unconstrained; other mineralogical considerations include understanding the possible role of the post-perovskite phase transition within and outside LLSVPs (which may affect Vs differently from Vp), and the evolution of pile chemistry over time, since geodynamics work demonstrates how mantle material (including deeply subducted MORB) can become downward entrained into piles.
Seismic anisotropy beneath South China Sea: using SKS splitting to constrain mantle flow
NASA Astrophysics Data System (ADS)
Xue, M.; Le, K.; Yang, T.
2011-12-01
The evolution of South China Sea is under debate and several hypotheses have been proposed: (1) The collision of India plate and Eurasia plate; (2) the backward movement of the Pacific subduction plate; (3) mantle upwelling; and (4) combinations of above hypotheses. All these causal mechanisms emphasize the contributions of deep structures to the evolution of South China Sea. In this study we use earthquake data recorded by seismic stations surrounding South China Sea to constrain mantle flow beneath. To fill the vacancy of seismic data in Viet Nam, we deployed 4 seismic stations (VT01-VT04) in a roughly north - south orientation in Viet Nam in Nov. 2009. We combine the VT dataset with the AD and MY datasets from IRIS and select 81 events for SKS splitting analysis. Measurements were made at 11 stations using Wolfe and Silver (1998)'s multi-event stacking procedure. Our observed splitting directions in Vietnam are generally consistent with those of Bai et. al. (2009) . In northern Vietnam, the splitting times are around 1 sec and the fast directions are NWW-SEE, parallel to the absolute plate motion as well as the motion of the Earth surface, implying the crust and the mantle are coupled in this region and is moving as a result of the collision of India and China. While in southern Vietnam and Malaya, the fast directions are NE-SW, almost perpendicular to the absolute plate motion as well as the surface motion of Eurasia plate. However, the observed NE-SW is parallel to the subduction direction of the Australian plate, which might be caused by the mantle flow along NE-SW induced by the subduction.
Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra
NASA Astrophysics Data System (ADS)
Venkataraman, Anupama; Nyblade, Andrew A.; Ritsema, Jeroen
2004-08-01
We measure P wave spectral amplitude ratios from deep-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift. One-dimensional profiles of QP adequately explain the systematic variation of P wave attenuation in the sublithospheric upper mantle: QP ~ 175 beneath the cratonic lithosphere, while it is ~ 80 beneath the rifted lithosphere. By combining the QP values and a model of P wave velocity perturbations, we estimate that the temperature beneath the rifted lithosphere (100-400 km depth) is 140-280 K higher than ambient mantle temperatures, consistent with the observation that the 410 km discontinuity in this region is depressed by 30-40 km.
The North American upper mantle: density, composition, and evolution
Mooney, Walter D.; Kaban, Mikhail K.
2010-01-01
The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.
Resolving mantle structure beneath the Pacific Northwest
NASA Astrophysics Data System (ADS)
Darold, A. P.; Humphreys, E.; Schmandt, B.; Gao, H.
2011-12-01
Cenozoic tectonics of the Pacific Northwest (PNW) and the associated mantle structures are remarkable, the latter revealed only recently by EarthScope seismic data. Over the last ~66 Ma this region experienced a wide range of tectonic and magmatic conditions: Laramide compression, ~75-53 Ma, involving Farallon flat-slab subduction, regional uplift, and magmatic quiescence. With the ~53 Ma accretion of Siletzia ocean lithosphere within the Columbia Embayment, westward migration of subduction beginning Cascadia, along with initiation of the Cascade volcanic arc. Within the continental interior the Laramide orogeny was quickly followed by a period of extension involving metamorphic core complexes and the associated initial ignimbrite flare-up (both in northern Washington, Idaho, and western Montana); interior magmo-tectonic activity is attributed to flat-slab removal and (to the south) slab rollback. Rotation of Siletzia created new crust on SE Oregon and, at ~16 Ma, the Columbia River Flood Basalt (CRB) eruptions renewed vigorous magmatism. We have united several EarthScope studies in the Pacific Northwest and have focused on better resolving the major mantle structures that have been discovered. We have tomographically modeled the body waves with teleseismic, finite-frequency code under the constraints of ambient noise tomography and teleseismic receiver function models of Gao et al. (2011), and teleseismic anisotropy models of Long et al. (2009) in order to resolve structures continuously from the surface to the base of the upper mantle. We now have clear imaging of two episodes of subduction: Juan De Fuca slab deeper than ~250 km is absent across much of the PNW, and it has an E-W tear located beneath northern Oregon; Farallon slab (the "Siletzia curtain") is still present, hanging vertically just inboard of the core complexes, and with a basal tear causing the structure to extend deeper (~600 km) beneath north-central Idaho than beneath south-central Idaho and northern Washington (~300 km). Lying just west of the Siletzia curtain, beneath NE Oregon, is a prominent high-velocity body centered on 250 km depth. Its nearly circular plan view corresponds with the area of intense Columbia River Basalt eruptions and with the circular topographic bull's eye centered on the recently uplifted (post CRB) Wallowa Mountains. Finally, we are investigating a very low-velocity volume of mantle present between the E-W Juan de Fuca tear and the high-velocity body beneath the Wallowa Mountains. At 250 km depth this is the strongest low-velocity anomaly beneath the western U.S. Presently we are completing resolution testing on the structures revealed through our imaging in order to resolve their structural details. These synthetic resolution tests along with the high resolution imaging of the crust and upper mantle will clarify several previously cited structures as well as strengthen our conclusions on the tectonic history and geodynamical evolution of the mantle while aiding in putting together a comprehensive story for the area.
Crustal Footprint of the Hainan Plume beneath Southeast China
NASA Astrophysics Data System (ADS)
Liu, H.; Chen, F.; Leng, W.; Zhang, H.
2016-12-01
A hotspot track is an age-progressive line of volcanos that is connected to a hotspot that may have resulted from interactions between the lithosphere and a deep-seated mantle plume [Campbell and Griffiths, 1990; Richards et al., 1989]. Although global and regional seismic tomography results have revealed the presence of a mantle plume beneath Hainan Island [Lebedev et al., 2003; Lei et al., 2009; Huang, 2014], there is little evidence for a hotspot track associated with the Hainan plume. Here, a joint inversion of seismology and gravity data was performed with the receiver function method, and the results show that a linear corridor of seismic velocity anomalies at the base of the crust is located northeast of Hainan Island beneath southeast China. Geodynamic modeling demonstrates that this corridor could have formed by the interactions between a mantle plume and the continental lithosphere with a weak lower crust. Volcanic age distributions further suggest that this track likely formed in the Cenozoic, which constrains the average plate velocities of the South China Block during the Cenozoic to 2-6 cm/yr to the northeast. These results provide an independent reference frame for the motion history of the Eurasia plate in the Cenozoic. References 1. Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth and Planetary Science Letters, 1990, 99(1): 79-93. 2. Richards M A, Duncan R A, Courtillot V E. Flood basalts and hot-spot tracks: plume heads and tails [J]. Science, 1989, 246(4926): 103-107. 3. Lebedev S, Nolet G. Upper mantle beneath Southeast Asia from S velocity tomography [J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2003, 108(B1). 4. Lei J, Zhao D, Steinberger B, et al. New seismic constraints on the upper mantle structure of the Hainan plume [J]. Physics of the Earth and Planetary Interiors, 2009, 173(1): 33-50. 5. Huang J. P-and S-wave tomography of the Hainan and surrounding regions: Insight into the Hainan plume [J]. Tectonophysics, 2014, 633: 176-192.
African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.
King, S D; Ritsema, J
2000-11-10
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.
The contemporary North Pangea supercontinent and the geodynamic causes of its formation
NASA Astrophysics Data System (ADS)
Kovalenko, V. I.; Yarmolyuk, V. V.; Bogatikov, O. A.
2010-11-01
The supercontinental status of the contemporary aggregation of continents called North Pangea is substantiated. This supercontinent comprises all continents with the probable exception of Antarctica. In addition to the spatial contiguity of continents, the supercontinent is characterized by the prevalence of the continental crust that combines North America and Eurasia, Eurasia and Africa, and Eurasia and Australia. Over the course of the 300-250-Ma evolution from Wegener's Pangea to contemporary North Pangea, the aggregation of continents has not lost its supercontinental status, despite modification of the supercontinent shape and opening and closure of the newly formed Paleotethys, Tethys, Atlantic, and Indian oceans. Over the last 250-300 Ma, all movements of the lithospheric plates have most likely occurred within the Indo-Atlantic segment of the Earth, whereas the Pacific segment has remained oceanic. In short, the formation of the North Pangea supercontinent can be outlined in the following terms. The long and deep subduction of the lithospheric plates beneath Eurasia and North America gave rise to the stabilization of the continents and accumulation of huge bodies of the cold lithosphere commensurable in volume with the upper mantle at the deeper mantle levels. This brought about compensation ascent of hot mantle (mantle plumes) near the convergent plate boundaries and far from them. A special geodynamic setting develops beneath the supercontinent. Due to encircling subduction of the lithospheric plates and related squeezing of the hot mantle, an ascending flow, or plume (superplume) formed beneath the central part of the supercontinent. In our view, the African superplume broke up Wegener's Pangea in the Atlantic region, caused the opening of the Atlantic and Indian oceans, and migrated to the Arctic Region 53 Ma ago.
Deep drilling; Probing beneath the earth's surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, J.250
1991-06-01
This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.
Crustal and mantle velocity models of southern Tibet from finite frequency tomography
NASA Astrophysics Data System (ADS)
Liang, Xiaofeng; Shen, Yang; Chen, Yongshun John; Ren, Yong
2011-02-01
Using traveltimes of teleseismic body waves recorded by several temporary local seismic arrays, we carried out finite-frequency tomographic inversions to image the three-dimensional velocity structure beneath southern Tibet to examine the roles of the upper mantle in the formation of the Tibetan Plateau. The results reveal a region of relatively high P and S wave velocity anomalies extending from the uppermost mantle to at least 200 km depth beneath the Higher Himalaya. We interpret this high-velocity anomaly as the underthrusting Indian mantle lithosphere. There is a strong low P and S wave velocity anomaly that extends from the lower crust to at least 200 km depth beneath the Yadong-Gulu rift, suggesting that rifting in southern Tibet is probably a process that involves the entire lithosphere. Intermediate-depth earthquakes in southern Tibet are located at the top of an anomalous feature in the mantle with a low Vp, a high Vs, and a low Vp/Vs ratio. One possible explanation for this unusual velocity anomaly is the ongoing granulite-eclogite transformation. Together with the compressional stress from the collision, eclogitization and the associated negative buoyancy force offer a plausible mechanism that causes the subduction of the Indian mantle lithosphere beneath the Higher Himalaya. Our tomographic model and the observation of north-dipping lineations in the upper mantle suggest that the Indian mantle lithosphere has been broken laterally in the direction perpendicular to the convergence beneath the north-south trending rifts and subducted in a progressive, piecewise and subparallel fashion with the current one beneath the Higher Himalaya.
Mantle Structure Beneath East Africa and Zambia from Body Wave Tomography
NASA Astrophysics Data System (ADS)
Mulibo, G.; Nyblade, A.; Tugume, F.
2011-12-01
In this study, P and S travel time residuals from teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are being inverted, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds variations extending to a depth of 1200 km. Preliminary results show that at depths of 200 km of less, low wave speed anomalies are well developed beneath the Eastern and Western Branches of the East African Rift System. At deep depths, the low wave speed anomalies focus under the center and southern part of the East African Plateau and extend into the transition zone. At transition zone depths and within the top part of the lower mantle, the low wave speed anomaly shifts to the southwest beneath Zambia, indicating that the low wave speed anomaly is continuous across the transition zone and that it extends into the lower mantle. This result suggests that the upper mantle low wave speed anomaly beneath East Africa is connected to the African superplume anomaly in the lower mantle beneath southern Africa.
Receiver function imaging of the mantle discontinuties beneath Fennoscandia and northern Europe
NASA Astrophysics Data System (ADS)
Frassetto, Andrew; Thybo, Hans
2010-05-01
Receiver functions from the Mantle Investigations of Norwegian Uplift Structure experiment (MAGNUS) are depth-converted using interval wavespeeds from AK-135 for the 410-km and 660-km discontinuities and combined using common-conversion-point stacking. This preliminary work shows a potentially complex mantle-transition-zone beneath southern Norway, with reduction in the amplitude of the 410-arrival and 20-30 km of shallowing of the 660-arrival beneath the axis of the Oslo Rift. To refine these measurements and place them in a regional context, we incorporate the MAGNUS dataset with permanent stations and previous temporary seismic deployments across Fennoscandia and northern Europe. New constraints on the depth to the lithosphere-asthenosphere boundary and character of the mantle-transition-zone will aid in understanding the causes for potentially recent uplift in the southern Scandes and the region of unusually slow upper mantle resolved beneath the region (Weidle and Maupin, 2008).
NASA Astrophysics Data System (ADS)
Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.
2017-12-01
We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (<20 Ωm) in the midcrust to lower crust that is centered beneath the highest elevations of the southern Rocky Mountains and (2) hydrated lithospheric mantle beneath the Great Plains with water content in excess of 100 ppm. We interpret the high conductivity region of the lower crust as a zone of partially molten basalt and associated deep-crustal fluids that is the result of recent (less than 10 Ma) tectonic activity in the region. The recent supply of volatiles and/or heat to the base of the crust in the late Cenozoic implies that modern-day tectonic activity in the western United States extends to at least the western margin of the Great Plains. The transition from conductive to resistive upper mantle is caused by a gradient in lithospheric modification, likely including hydration of nominally anhydrous minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.
Surface wave tomography applied to the North American upper mantle
NASA Astrophysics Data System (ADS)
van der Lee, Suzan; Frederiksen, Andrew
Tomographic techniques that invert seismic surface waves for 3-D Earth structure differ in their definitions of data and the forward problem as well as in the parameterization of the tomographic model. However, all such techniques have in common that the tomographic inverse problem involves solving a large and mixed-determined set of linear equations. Consequently these inverse problems have multiple solutions and inherently undefinable accuracy. Smoother and rougher tomographic models are found with rougher (confined to great circle path) and smoother (finite-width) sensitivity kernels, respectively. A powerful, well-tested method of surface wave tomography (Partitioned Waveform Inversion) is based on inverting the waveforms of wave trains comprising regional S and surface waves from at least hundreds of seismograms for 3-D variations in S wave velocity. We apply this method to nearly 1400 seismograms recorded by digital broadband seismic stations in North America. The new 3-D S-velocity model, NA04, is consistent with previous findings that are based on separate, overlapping data sets. The merging of US and Canadian data sets, adding Canadian recordings of Mexican earthquakes, and combining fundamental-mode with higher-mode waveforms provides superior resolution, in particular in the US-Canada border region and the deep upper mantle. NA04 shows that 1) the Atlantic upper mantle is seismically faster than the Pacific upper mantle, 2) the uppermost mantle beneath Precambrian North America could be one and a half times as rigid as the upper mantle beneath Meso- and Cenozoic North America, with the upper mantle beneath Paleozoic North America being intermediate in seismic rigidity, 3) upper-mantle structure varies laterally within these geologic-age domains, and 4) the distribution of high-velocity anomalies in the deep upper mantle aligns with lower mantle images of the subducted Farallon and Kula plates and indicate that trailing fragments of these subducted oceanic plates still reside in the transition zone. The thickness of the high-velocity layer beneath Precambrian North America is estimated to be 250±70 km thick. On a smaller scale NA04 shows 1) high-velocities associated with subduction of the Pacific plate beneath the Aleutian arc, 2) the absence of expected high velocities in the upper mantle beneath the Wyoming craton, 3) a V-shaped dent below 150 km in the high-velocity cratonic lithosphere beneath New England, 4) the cratonic lithosphere beneath Precambrian North America being confined southwest of Baffin Bay, west of the Appalachians, north of the Ouachitas, east of the Rocky Mountains, and south of the Arctic Ocean, 5) the cratonic lithosphere beneath the Canadian shield having higher S-velocities than that beneath Precambrian basement that is covered with Phanerozoic sediments, 6) the lowest S velocities are concentrated beneath the Gulf of California, northern Mexico, and the Basin and Range Province.
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro; Simmons, Nathan; Grand, Stephen
2014-05-01
Current tomography models consistently reveal three large-scale regions of strongly reduced seismic velocity in the lowermost mantle under the Pacific, Africa and a region that extends from below Iceland to the city of Perm (the Perm Anomaly). We have carried out mantle dynamic simulations (Glišović et al., GJI 2012; Glišović & Forte, EPSL 2014) of the evolution of these large-scale structures that directly incorporate: 1) robust constraints provided by joint seismic-geodynamic inversions of mantle density structure with constraints provided by mineral physics data (Simmons et al., GJI 2009); and 2) constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) characterised by Earth-like Rayleigh numbers. The convection simulations provide a detailed insight into the very-long-time evolution of the buoyancy of these lower-mantle anomalies. We find, in particular, that the buoyancy associated with the Perm Anomaly generates a very long-lived superplume that is connected to the paleomagnetic location of the Siberian Traps at the time of their eruption (Smirnov & Tarduno, EPSL 2010) and also to location of North Atlantic Igneous Provinces (i.e., the opening of North Atlantic Ocean).
Three-dimensional shear wave velocity structure in the Atlantic upper mantle
NASA Astrophysics Data System (ADS)
James, Esther Kezia Candace
Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.
The mantle transition zone beneath Antarctica: Evidence for thermal upwellings and hydration
NASA Astrophysics Data System (ADS)
Nyblade, Andrew; Emry, Erica; Hansen, Samantha; Julia, Jordi; Anandakrishnan, Sridhar; Aster, Richard; Wiens, Douglas; Huerta, Audrey; Wilson, Terry
2015-04-01
West Antarctica has experienced abundant Cenozoic volcanism, and it is suspected that the region is influenced by upwelling thermal plumes from the lower mantle; however this has not yet been verified, because seismic tomography results are not well resolved at mantle transition zone (MTZ) depths. We use P-wave receiver functions (PRFs) from temporary and permanent arrays throughout Antarctica, including the Antarctic POLENET, TAMNET, TAMSEIS, and GAMSEIS arrays, to explore the characteristics of the MTZ beneath the continent. We obtained PRFs for earthquakes occurring at 30-90° with Mb>5.5 using a time-domain iterative deconvolution method filtered with a Gaussian-width of 0.5 and 1.0, corresponding to frequencies less than ~0.24 Hz and ~0.48 Hz, respectively. We combine P receiver functions as single-station and as common conversion point stacks and migrate them to depth using the ak135 1-d velocity model. Results from West Antarctica suggest that the thickness of the MTZ varies throughout the region with thinning beneath the Ruppert Coast of Marie Byrd Land and beneath the Bentley Subglacial Trench and Whitmore Mountains. Also, prominent negative peaks are detected above the transition zone beneath much of West Antarctica and may be evidence for water-induced partial melt above the MTZ. Preliminary results from single-station stacks for the mantle transition zone beneath East Antarctica suggests that one section of East Antarctica, off of the South Pole may have slightly thinned transition zone. Results are forthcoming from the mantle transition zone beneath Victoria Land and the Northern Transantarctics. We propose that the MTZ beneath parts of West Antarctica and possibly also beneath one region of East Antarctica, is hotter than average, possibly due to material upwelling from the lower mantle. Furthermore, we propose that the transition zone beneath much of West Antarctica is water-rich and that upward migration of hydrated material results in formation of a partial melt layer above the MTZ.
NASA Astrophysics Data System (ADS)
Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham
2006-11-01
Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.
Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet.
Legendre, Cédric P; Deschamps, Frédéric; Zhao, Li; Chen, Qi-Fu
2015-11-09
The Tibetan Plateau results from the collision of the Indian and Eurasian Plates during the Cenozoic, which produced at least 2,000 km of convergence. Its tectonics is dominated by an eastward extrusion of crustal material that has been explained by models implying either a mechanical decoupling between the crust and the lithosphere, or lithospheric deformation. Discriminating between these end-member models requires constraints on crustal and lithospheric mantle deformations. Distribution of seismic anisotropy may be inferred from the mapping of azimuthal anisotropy of surface waves. Here, we use data from the CNSN to map Rayleigh-wave azimuthal anisotropy in the crust and lithospheric mantle beneath eastern Tibet. Beneath Tibet, the anisotropic patterns at periods sampling the crust support an eastward flow up to 100°E in longitude, and a southward bend between 100°E and 104°E. At longer periods, sampling the lithospheric mantle, the anisotropic structures are consistent with the absolute plate motion. By contrast, in the Sino-Korean and Yangtze cratons, the direction of fast propagation remains unchanged throughout the period range sampling the crust and lithospheric mantle. These observations suggest that the crust and lithospheric mantle are mechanically decoupled beneath eastern Tibet, and coupled beneath the Sino-Korean and Yangtze cratons.
Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield
NASA Astrophysics Data System (ADS)
Park, Yongcheol
Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For the Arabian Shield, the models are not consistent with a two plume model [Camp and Roobol, 1992] because there is a continuous low velocity zone at depths ≥ 150 km along the western side of the Shield and not separate anomalies. The NW-SE trending low velocity anomaly beneath the western side of the Shield supports the Ebinger and Sleep [1998] model invoking plume flow channeled by thinner lithosphere along the Red Sea coast. The NW-SE low velocity structure beneath the western side of the Shield could also be the northern-most extent of the African Superplume. A low velocity anomaly beneath Ethiopia [Benoit et al., 2006a,b] dips to the west and may extend through the mantle transition zone. The observed low velocities in the upper mantle beneath the Arabian Shield could be caused by hot mantle rock rising beneath Ethiopia and flowing to the north under the Arabian Shield.
NASA Astrophysics Data System (ADS)
Lynner, Colton; Long, Maureen D.
2015-06-01
Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.
Two mantle domains and the time scales of fluid transfer beneath the Vanuatu arc
NASA Astrophysics Data System (ADS)
Turner, Simon P.; Peate, David W.; Hawkesworth, Chris J.; Eggins, Stephen M.; Crawford, Anthony J.
1999-11-01
U-Th isotope disequilibria can provide constraints on the time elapsed since fluid addition to the mantle wedge beneath island arcs. The Vanuatu arc offers new insights into these processes because Pb isotopes there are not dominated by components from the subducting plate and so preserve the signatures of the mantle wedge. The Pb isotope data document the presence of separate Pacific and Indian mantle domains beneath the arc volcanoes. The Indian mantle was brought beneath the central part of the arc from the backarc by collision with the D'Entrecasteaux Ridge, resulting in a slowing of subduction there. The distinction in the mantle wedge composition is also uniquely apparent in U-Th isotope data, which define two subparallel arrays on the U-Th equiline diagram, one anchored to high U/Th Pacific mantle and the other to lower U/Th Indian mantle. These data provide clear evidence of the effects of variable mantle composition on U-Th isotope disequilibria. We argue that such arrays faithfully record the time elapsed since fluid release from the subducting plate. The data indicate that this occurred ca. 16 ka in the area of collision and slow subduction, but ca. 60 ka where the rate of subduction is substantially faster. This suggests a link between the rate of subduction and the time elapsed since fluid release.
NASA Astrophysics Data System (ADS)
Pedrera, A.; García-Senz, J.; Ayala, C.; Ruiz-Constán, A.; Rodríguez-Fernández, L. R.; Robador, A.; González Menéndez, L.
2017-12-01
Recent models support the view that the Pyrenees were formed after the inversion of a previously highly extended continental crust that included exhumed upper mantle rocks. Mantle rocks remain near to the surface after compression and mountain building, covered by the latest Cretaceous to Paleogene sequences. 3-D lithospheric-scale gravity inversion demands the presence of a high-density mantle body placed within the crust in order to justify the observed anomalies. Exhumed mantle, having 50 km of maximum width, continuously extends beneath the Basque-Cantabrian Basin and along the northern side of the Pyrenees. The association of this body with rift, postrift, and inversion structural geometries is tested in a balanced cross section across the Basque-Cantabrian Basin that incorporates a major south-dipping ramp-flat-ramp extensional detachment active between Valanginian and early Cenomanian times. Results indicate that horizontal extension progressed 48 km at variable strain rates that increased from 1 to 4 mm/yr in middle Albian times. Low-strength Triassic Keuper evaporites and mudstones above the basement favor the decoupling of the cover with formation of minibasins, expulsion rollovers, and diapirs. The inversion of the extensional system is accommodated by doubly verging basement thrusts due to the reactivation of the former basin bounding faults in Eocene-Oligocene times. Total shortening is estimated in 34 km and produced the partial subduction of the continental lithosphere beneath the two sides of the exhumed mantle. Obtained results help to pinpoint the original architecture of the North Iberian Margin and the evolution of the hyperextended aborted intracontinental basins.
NASA Astrophysics Data System (ADS)
Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.
2013-12-01
We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.
Seismic anisotropy and mantle creep in young orogens
Meissner, R.; Mooney, W.D.; Artemieva, I.
2002-01-01
Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.
Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland
Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.
2002-01-01
Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.
Foulger, G.R.; Du, Z.; Julian, B.R.
2003-01-01
Numerous seismic studies, in particular using receiver functions and explosion seismology, have provided a detailed picture of the structure and thickness of the crust beneath the Iceland transverse ridge. We review the results and propose a structural model that is consistent with all the observations. The upper crust is typically 7 ?? 1 km thick, heterogeneous and has high velocity gradients. The lower crust is typically 15-30 ?? 5 km thick and begins where the velocity gradient decreases radically. This generally occurs at the V p ??? 6.5 km s-1 level. A low-velocity zone ??? 10 000 km2 in area and up to ??? 15 km thick occupies the lower crust beneath central Iceland, and may represent a submerged, trapped oceanic microplate. The crust-mantle boundary is a transition zone ???5 ?? 3 km thick throughout which V p increases progressively from ???7.2 to ???8.0 km s-1. It may be gradational or a zone of alternating high- and low-velocity layers. There is no seismic evidence for melt or exceptionally high temperatures in or near this zone. Isostasy indicates that the density contrast between the lower crust and the mantle is only ???90 kg m-3 compared with ???300 kg m-3 for normal oceanic crust, indicating compositional anomalies that are as yet not understood. The seismological crust is ???30 km thick beneath the Greenland-Iceland and Iceland-Faeroe ridges, and eastern Iceland, ???20 km beneath western Iceland, and ???40 km thick beneath central Iceland. This pattern is not what is predicted for an eastward-migrating plume. Low attenuation and normal V p/V s ratios in the lower crust beneath central and southwestern Iceland, and normal uppermost mantle velocities in general, suggest that the crust and uppermost mantle are subsolidus and cooler than at equivalent depths beneath the East Pacific Rise. Seismic data from Iceland have historically been interpreted both in terms of thin-hot and thick-cold crust models, both of which have been cited as supporting the plume hypothesis. This suggests that the plume model for Iceland is an a priori assumption rather than a hypothesis subject to testing. The long-extinct Ontong-Java Plateau, northwest India and Parana??, Brazil large igneous provinces, beneath which mantle plumes are not expected are all underlain by mantle low-velocity bodies similar to that beneath Iceland. A plume interpretation for the mantle anomaly beneath Iceland is thus not required.
NASA Astrophysics Data System (ADS)
Chen, Y.; Gu, Y. J.; Hung, S. H.
2014-12-01
Based on finite-frequency theory and cross-correlation teleseismic relative traveltime data from the USArray, Canadian National Seismograph Network (CNSN) and Canadian Rockies and Alberta Network (CRANE), we present a new tomographic model of P-wave velocity perturbations for the lithosphere and upper mantle beneath the Cordillera-cration transition region in southwestern Canada. The inversion procedure properly accounts for the finite-volume sensitivities of measured travel time residuals, and the resulting model shows a greater resolution of upper mantle velocity heterogeneity beneath the study area than earlier approaches based on the classical ray-theoretical approach. Our model reveals a lateral change of P velocities from -0.5% to 0.5% down to ~200-km depth in a 50-km wide zone between the Alberta Basin and the foothills of the Rocky Mountains, which suggests a sharp structural gradient along the Cordillera deformation front. The stable cratonic lithosphere, delineated by positive P-velocity perturbations of 0.5% and greater, extends down to a maximum depth of ~180 km beneath the Archean Loverna Block (LB). In comparison, the mantle beneath the controversial Medicine Hat Block (MHB) exhibits significantly higher velocities in the uppermost mantle and a shallower (130-150 km depth) root, generally consistent with the average depth of the lithosphere-asthenosphere boundary beneath Southwest Western Canada Sedimentary Basin (WCSB). The complex shape of the lithospheric velocities under the MHB may be evidence of extensive erosion or a partial detachment of the Precambrian lithospheric root. Furthermore, distinct high velocity anomalies in LB and MHB, which are separated by 'normal' mantle block beneath the Vulcan structure (VS), suggest different Archean assembly and collision histories between these two tectonic blocks.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Adams, A.; Nyblade, A. A.; Mulibo, G. D.; Tugume, F.
2013-08-01
An expanded model of the 3-D shear wave velocity structure of the uppermost mantle beneath eastern Africa has been developed using earthquakes recorded by the AfricaArray East African Seismic Experiment in conjunction with data from permanent stations and previously deployed temporary stations. The combined data set comprises 331 earthquakes recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this study, data from 149 earthquakes were used to determine fundamental-mode Rayleigh wave phase velocities at periods ranging from 20 to 182 s using the two-plane wave method, and then combined with the similarly processed published measurements and inverted for a 3-D shear wave velocity model of the uppermost mantle. New features in the model include (1) a low-velocity region in western Zambia, (2) a high-velocity region in eastern Zambia, (3) a low-velocity region in eastern Tanzania and (4) low-velocity regions beneath the Lake Malawi rift. When considered in conjunction with mapped seismicity, these results support a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. We estimate a lithospheric thickness of ˜150-200 km for the substantial fast shear wave anomaly imaged in eastern Zambia, which may be a southward subsurface extension of the Bangweulu Block. The low-velocity region in eastern Tanzania suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. Pronounced velocity lows along the Lake Malawi rift are found beneath the northern and southern ends of the lake, but not beneath the central portion of the lake.
Lateral variations of thermo-rheological structure in SE Tibet
NASA Astrophysics Data System (ADS)
Jiang, X.; Gong, W.
2017-12-01
The structure and geodynamics in SE Tibet is important to developing a full understanding of tectonic evolution of the Tibetan plateau. To investigate the lithospheric structure and deformation, we present thermo-rheological models for two transects across SE Tibet. The thermal models are determined by the heat flow and P-wave velocity models. Based on thermal models, the rheological models are constructed in the weak and strong cases where the lower crust is felsic or mafic granulite and the lithospheric mantle is wet or dry peridotite. The thermal models show an obvious high-temperature anomaly within the lithosphere beneath the Chuandian block. Strong lateral heterogeneity is present in the rheological modeling and corresponds to variations of thermal models. The Chuandian block demonstrates a lower level of lithospheric strength than its neighboring regions, which is in accord with the seismogenic layer distribution. Combining with a joint analysis of SKS splitting and GPS data, the crust and mantle is decoupled at a depth below the topmost mantle in SE Tibet. The strong crust beneath the South China plate and Indochina block has two brittle load-bearing layers in the crust, indicating the system is mechanically coupled. The crust beneath the Emeishan igneous province also has two brittle load-bearing layers, but the brittle deformation is restricted to the topmost 10 km of the upper and lower crust. In contrast, only one brittle load-bearing layer resides in the upper crust with the lower crust contributing little to the lithospheric strength at the location where low-velocity-high-conductivity zones have been recognized within the crust in the Chuandian block. This indicates that the crust beneath the Chuandian block becomes decoupled, as evidenced by the crustal anisotropy pattern.
Crustal and Mantle Structure beneath the Okavango and Malawi Rifts and Its Geodynamic Implications
NASA Astrophysics Data System (ADS)
Gao, S. S.; Liu, K. H.; Yu, Y.; Reed, C. A.; Mickus, K. L.; Moidaki, M.
2017-12-01
To investigate crustal and mantle structure beneath the young and incipient sections of the East African Rift System and provide constraints on rifting models, a total of 50 broadband seismic stations were placed along three profiles across the Okavango and Malawi rifts, with a total length of about 2500 km. Results to date suggest minor crustal thinning and nearly normal seismic velocities in the upper mantle beneath both rifts. The thickness of the mantle transition zone is comparable to the global average, suggesting the lack of thermal upwelling from the lower mantle beneath the rifts. In addition, shear-wave splitting analysis found no anomalies in either the fast polarization orientation or the splitting time associated with the rifts, and thus has ruled out the existence of small-scale mantle convection or plume-related mantle flow beneath the rifts. While the Okavango rift has long been recognized to be located in a Precambrian orogenic zone between the Kalahari and Congo cratons, our results suggest that the Malawi Rift is also developing along the western edge of a lithospheric block with relatively greater thickness relative to the surrounding area. Those seismological and gravity modeling results are consistent with a passive rifting model, in which rifts develop along pre-existing zones of lithospheric weakness, where rapid variations of lithospheric thickness is observed. Lateral variations of dragging stress applied to the bottom of the lithosphere are the most likely cause for the initiation and development of both rifts.
Lithospheric thinning beneath rifted regions of Southern California.
Lekic, Vedran; French, Scott W; Fischer, Karen M
2011-11-11
The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.
Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.
1990-01-01
Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth.
NASA Astrophysics Data System (ADS)
Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.
2013-12-01
The Kyushu district, Japan, under which the Philippine Sea (PHS) plate is subducting in a WNW direction, has several active volcanoes. On the volcanic front in Kyushu, a 110 km long gap in volcanism exists in the central part of Kyushu and volcanic rocks with various degrees of contamination by slab-derived fluid are distributed. To reveal the causes of the gap in volcanism and the chemical properties of volcanic rocks and to understand the process of magma genesis and water transportation, we should reveal along-arc variation in water distribution beneath Kyushu. We investigated the seismic velocity discontinuities in the upper mantle beneath Kyushu, with seismic waveform data from 65 stations of Hi-net, which are established by National Research Institute for Earth Science and Disaster Prevention, and 55 stations of the J-array, which are established by Japan Meteorological Agency, Kyushu University, Kagoshima University and Kyoto University. We used receiver function analyses developed especially for discontinuities with high dipping angles (Abe et al., 2011, GJI). We obtained the geometry and velocity contrasts of the continental Moho, the oceanic Moho, and the upper boundary of the PHS slab. From the geometry of these discontinuities and contrast in S wave velocities, we interpreted that the oceanic crust of the PHS slab has a low S wave velocity and is hydrated to a depth of 70 km beneath south Kyushu, to a depth of 80-90 km beneath central Kyushu, and to a depth of no more than 50 km beneath north Kyushu. We also interpreted that the fore-arc mantle beneath central Kyushu has a low velocity region (Vs < 3.2 km/s) that can contain hydrated materials and free aqueous fluid. Such a low velocity fore-arc mantle does not exist beneath north and south Kyushu. Beneath north Kyushu, the oceanic crust does not appear to convey much water in the mantle wedge. Beneath south Kyushu, water dehydrated from the slab could move to the back-arc side and cause arc volcanism, while it could move to the fore-arc side and cause a gap in volcanism and hydration of the fore-arc mantle materials.
Understanding the nature of mantle upwelling beneath East-Africa
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham
2014-05-01
The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow depths. Moreover, our preliminary models show that the low-velocity feature in the transition zone and uppermost lower mantle beneath Afar trends to the northeast beneath the Red Sea and Saudi Arabia as opposed to being linked to the African Superplume towards the southwest.
Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia
NASA Astrophysics Data System (ADS)
Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum
2017-04-01
3-D P- and S-wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ∼981 000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative traveltime residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.
NASA Astrophysics Data System (ADS)
Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao
2017-05-01
The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.
Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle
Foulger, G.R.; Pritchard, M.J.; Julian, B.R.; Evans, J.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.
2001-01-01
We report the results of the highest-resolution teleseismic tomography study yet performed of the upper mantle beneath Iceland. The experiment used data gathered by the Iceland Hotspot Project, which operated a 35-station network of continuously recording, digital, broad-band seismometers over all of Iceland 1996-1998. The structure of the upper mantle was determined using the ACH damped least-squares method and involved 42 stations, 3159 P-wave, and 1338 S-wave arrival times, including the phases P, pP, sP, PP, SP, PcP, PKIKP, pPKIKP, S, sS, SS, SKS and Sdiff. Artefacts, both perceptual and parametric, were minimized by well-tested smoothing techniques involving layer thinning and offset-and-averaging. Resolution is good beneath most of Iceland from ??? 60 km depth to a maximum of ??? 450 km depth and beneath the Tjornes Fracture Zone and near-shore parts of the Reykjanes ridge. The results reveal a coherent, negative wave-speed anomaly with a diameter of 200-250 km and anomalies in P-wave speed, Vp, as strong as -2.7 per cent and in S-wave speed, Vs, as strong as -4.9 per cent. The anomaly extends from the surface to the limit of good resolution at ??? 450 km depth. In the upper ??? 250 km it is centred beneath the eastern part of the Middle Volcanic Zone, coincident with the centre of the ??? 100 mGal Bouguer gravity low over Iceland, and a lower crustal low-velocity zone identified by receiver functions. This is probably the true centre of the Iceland hotspot. In the upper ??? 200 km, the low-wave-speed body extends along the Reykjanes ridge but is sharply truncated beneath the Tjornes Fracture Zone. This suggests that material may flow unimpeded along the Reykjanes ridge from beneath Iceland but is blocked beneath the Tjornes Fracture Zone. The magnitudes of the Vp, Vs and Vp/Vs anomalies cannot be explained by elevated temperature alone, but favour a model of maximum temperature anomalies <200 K, along with up to ??? 2 per cent of partial melt in the depth range ??? 100-300 km beneath east-central Iceland. The anomalous body is approximately cylindrical in the top 250 km but tabular in shape at greater depth, elongated north-south and generally underlying the spreading plate boundary. Such a morphological change and its relationship to surface rift zones are predicted to occur in convective upwellings driven by basal heating, passive upwelling in response to plate separation and lateral temperature gradients. Although we cannot resolve structure deeper than ??? 450 km, and do not detect a bottom to the anomaly, these models suggest that it extends no deeper than the mantle transition zone. Such models thus suggest a shallow origin for the Iceland hotspot rather than a deep mantle plume, and imply that the hotspot has been located on the spreading ridge in the centre of the north Atlantic for its entire history, and is not fixed relative to other Atlantic hotspots. The results are consistent with recent, regional full-thickness mantle tomography and whole-mantle tomography images that show a strong, low-wave-speed anomaly beneath the Iceland region that is confined to the upper mantle and thus do not require a plume in the lower mantle. Seismic and geochemical observations that are interpreted as indicating a lower mantle, or core-mantle boundary origin for the North Atlantic Igneous Province and the Iceland hotspot should be re-examined to consider whether they are consistent with upper mantle processes.
NASA Astrophysics Data System (ADS)
Civiero, C.; Custodio, S.; Silveira, G. M.; Rawlinson, N.; Arroucau, P.
2017-12-01
The processes responsible for the geodynamical evolution of the Ibero-Maghrebian domain are still enigmatic. Several geophysical studies have improved our understanding of the region, but no single model has been accepted yet. This study takes advantage of the dense station networks deployed from France in the north to Canary Islands and Morocco in the south to provide a new high-resolution P-wave velocity model of the structure of the upper-mantle and top of the lower mantle. These images show subvertical small-scale upwellings below Atlas Range, Canary Islands and Central Iberia that seem to cross the transition zone. The results, together with geochemical evidence and a comparison with previous global tomographic models, reveal the ponding or flow of deep-plume material beneath the transition zone, which seems to feed upper-mantle "secondary" pulses. In the upper mantle the plumes, in conjunction with the subduction-related upwellings, allow the hot mantle to rise in the surrounding zones. During its rising, the mantle interacts with horizontal SW slab-driven flow which skirts the Alboran slab and connects with the mantle upwelling below Massif Central through the Valencia Trough rift.
NASA Astrophysics Data System (ADS)
Ashchepkov, I. V.
2009-04-01
The original methods of the monomineral thermobarometry for clinopyroxene, garnet, ilmenite, chromite (Ashchepkov,2008) and orthopyroxene (Brey, Kohler, 1990- McGregor, 1974) thermobarometer allow to reconstruct the mantle columns. TP diagram for Udachnaya pipe suggests creation at least in tree stages of the melt percolation through the mantle column differing in Fe# and other parameters. The most high temperature (HT) (45 mvm-2) and Fe# rich refer to the last HT reactions with the protokimberlite melts formed the megacrystalline associations. Relict low temperature (LT) geotherm (35 45 mvm-2 and lower) is close to the conductive geotherm (Boyd et al., 1997). Most of ТР parameters for the minerals refer to the middle part of the geotherm (40- 45 mvm-2). Monomineral thermobarometry reconstructing the PTX values (Fe#; CrCpx, Cr-Ilm CaGar, TiChr) showing the high overlapping formed by the the melt percolation. The clinopyroxene growth in the mantle lithosphere in Daldyn, Akakite, Nakyn and Upper Muna are produced by the refertilization events under the influence of the protokimberlite melts. Their spreading in the lower part of mantle section of Garnet trend to subcalsic and pyroxenitic types is likely the result of submelting and heating of the mantle peridotites. Similar process for eclogites is responsible for the appearance of LT eclogites tracing subduction gradients and HT branches with the Ti- bearing associations corresponding to advective gradients. . For the larger pipes the scale of the perturbation is much higher then for smaller. The levels of the melt intrusions are reconstructed by the clotting of TP values inflections of TP paths and TiChr, CrIlm and Fe#. Ilmenite trends reveal the polybaric character of the fractionation and high degree interaction with the wall rock peridotites visible by CrIlm increase. The metasomatic associations differ in PTX diagrams by higher Cr and LT conditions the HT megacrystalls. The evident layered nature of the mantle columns (10-13) is reconstructed by the stepped TPX trends formed at first by the combinations of subduction and superplume events coinciding with the Re/Os ages (Spetsius, 2007), overprinted by the reactions with the plume and other percolating melts The Fe# increase near the 60 kbar refer to the last superplume events the previous leave similar rhythmic Fe- dunite horizons at 11-12 levels. The comparison of the compositions of minerals and reconstruction of mantle roots for several phases for Yubileinay, Udachnaya and Nyurbinskaya pipes allow to reveal the evolution of the magmatic sources and their interaction with the mantle lithosphere. Reconstruction of the mantle columns beneath 60 pipes allow to make the transsects of the kimberlite fields and the 3D model of the mantle beneath the dense kimberlite clusters with many close located diatrems Mesozoic mantle columns beneath the Anabar, Olenek, Aldan show the HT -Fe# alteration in 60-40 kbar due to interaction with the PT superplume, but relic and LT and low Fe# associations occurs to 60 kbar also. RBRF 05-05-74718, 06-05-65021, 06-05-64416.
Super-deep low-velocity layer beneath the Arabian plate
NASA Astrophysics Data System (ADS)
Vinnik, L.; Ravi Kumar, M.; Kind, R.; Farra, V.
2003-04-01
S and P receiver functions reveal indications of a low S velocity layer at 350-410 km depths beneath the Arabian plate. A similar layer was previously found beneath the Kaapvaal craton in southern Africa and Tunguska basin of the Siberian platform. We hypothesize, that the boundary at 350 km depth may separate dry mantle root of the Arabian plate from the underlying wet mantle layer. This boundary is not found beneath the Gulf of Aden, where the root is destroyed by sea-floor spreading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, N. A.; Myers, S. C.; Johannesson, G.
In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along anmore » extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.« less
Simmons, N. A.; Myers, S. C.; Johannesson, G.; ...
2015-11-14
In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along anmore » extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.« less
Archean crust-mantle geochemical differentiation
NASA Astrophysics Data System (ADS)
Tilton, G. R.
Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.
Archean crust-mantle geochemical differentiation
NASA Technical Reports Server (NTRS)
Tilton, G. R.
1983-01-01
Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.
NASA Astrophysics Data System (ADS)
Lloyd, A. J.; Wiens, D. A.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.
2013-12-01
Here we present the first regional P and S wave relative velocity models of the upper mantle beneath much of West Antarctica using P and S wave relative travel time residuals from teleseismic events recorded by seismographs from the POLENET/ANET project. 21 of the seismographs form a sparse backbone network co-located with continuously recording GPS stations at rock sites throughout West Antarctica, and 17 stations formed a seismic transect extending from the Whitmore Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land (MBL) with a station spacing of 90-100 km. Corrections for heterogeneities above the Moho, including the ice sheet, are applied to the relative travel time residuals using the receiver function models of Chaput et al., [submitted, 2013]. Both P and S wave velocity models indicate velocities faster than the mean of the model beneath the Whitmore Mountains that may be interpreted as thicker, colder lithosphere relative to the rest of West Antarctica. Slow velocity anomalies are observed beneath the Bentley Subglacial Trench (BST) and MBL. Slow velocities extending from the Moho to the transition zone beneath MBL are centered beneath the Mt Sidley volcano and coincide with high topography that is not isostatically supported by the crust [Chaput et al., submitted, 2013]. The slowest velocities occur at 200-300 km depth and are consistent with warm, low viscosity mantle that provides topographic support for the elevated MBL volcanic dome. Poor vertical resolution, typical of body wave tomography, hampers the models ability to resolve whether the anomaly beneath MBL is strictly an upper mantle hotspot or a classic mantle plume that extends into the lower mantle. The shallow (≤ 100 km depth) slow anomaly beneath the BST coincides with a region of thin crust and likely reflects a localized region of Cenozoic extension in the WARS that may have undergone a last phase of extension in the Neogene [Garnot et al., 2013]. Anomalously high heat flow reported by Fudge et al.[2012] at the WAIS divide ice core is also consistent with recent Neogene extension and a thermal perturbation suggested by both P and S tomography models. In general, the strong heterogeneities in our models are predominantly interpreted as reflecting upper mantle temperature variations in addition to possible mantle partial melting beneath MBL.
Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea
NASA Astrophysics Data System (ADS)
Zhao, Dapeng
2017-09-01
The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related to the deep seismicity. However, many of these results are still preliminary, due to the lack of seismic stations in the Japan Sea. The key to resolving these critical geoscientific issues is seismic instrumentation in the Japan Sea, for which international cooperation of geoscience communities in the East Asian countries is necessary.
NASA Astrophysics Data System (ADS)
Eakin, Caroline M.; Rychert, Catherine A.; Harmon, Nicholas
2018-02-01
Mantle anisotropy beneath mid-ocean ridges and oceanic transforms is key to our understanding of seafloor spreading and underlying dynamics of divergent plate boundaries. Observations are sparse, however, given the remoteness of the oceans and the difficulties of seismic instrumentation. To overcome this, we utilize the global distribution of seismicity along transform faults to measure shear wave splitting of over 550 direct S phases recorded at 56 carefully selected seismic stations worldwide. Applying this source-side splitting technique allows for characterization of the upper mantle seismic anisotropy, and therefore the pattern of mantle flow, directly beneath seismically active transform faults. The majority of the results (60%) return nulls (no splitting), while the non-null measurements display clear azimuthal dependency. This is best simply explained by anisotropy with a near vertical symmetry axis, consistent with mantle upwelling beneath oceanic transforms as suggested by numerical models. It appears therefore that the long-term stability of seafloor spreading may be associated with widespread mantle upwelling beneath the transforms creating warm and weak faults that localize strain to the plate boundary.
NASA Astrophysics Data System (ADS)
Lessing, Stephan; Thomas, Christine; Rost, Sebastian; Cobden, Laura; Dobson, David P.
2014-04-01
We investigate the seismic structure of the upper-mantle and mantle transition zone beneath India and Western China using PP and SS underside reflections off seismic discontinuities, which arrive as precursors to the PP and SS arrival. We use high-resolution array seismic techniques to identify precursory energy and to map lateral variations of discontinuity depths. We find deep reflections off the 410 km discontinuity (P410P and S410S) beneath Tibet, Western China and India at depths of 410-440 km and elevated underside reflections of the 410 km discontinuity at 370-390 km depth beneath the Tien Shan region and Eastern Himalayas. These reflections likely correspond to the olivine to wadsleyite phase transition. The 410 km discontinuity appears to deepen in Central and Northern Tibet. We also find reflections off the 660 km discontinuity beneath Northern China at depths between 660 and 700 km (P660P and S660S) which could be attributed to the mineral transformation of ringwoodite to magnesiowuestite and perovskite. These observations could be consistent with the presence of cold material in the middle and lower part of the mantle transition zone in this region. We also find a deeper reflector between 700 and 740 km depth beneath Tibet which cannot be explained by a depressed 660 km discontinuity. This structure could, however, be explained by the segregation of oceanic crust and the formation of a neutrally buoyant garnet-rich layer beneath the mantle transition zone, due to subduction of oceanic crust of the Tethys Ocean. For several combinations of sources and receivers we do not detect arrivals of P660P and S660S although similar combinations of sources and receivers give well-developed P660P and S660S arrivals. Our thermodynamic modelling of seismic structure for a range of compositions and mantle geotherms shows that non-observations of P660P and S660S arrivals could be caused by the dependence of underside reflection coefficients on the incidence angle of the incoming seismic waves. Apart from reflections off the 410 and 660 km discontinuities, we observe intermittent reflectors at 300 and 520 km depth. The discontinuity structure of the study region likely reflects lateral thermal and chemical variations in the upper-mantle and mantle transition zone connected to past and present subduction and mantle convection processes.
NASA Astrophysics Data System (ADS)
Dilek, Yildirim; Altunkaynak, Safak
2010-05-01
The geochemical and temporal evolution of the Cenozoic magmatism in the Aegean, Western Anatolian and peri-Arabian regions shows that plate tectonic events, mantle dynamics, and magmatism were closely linked in space and time. The mantle responded to collision-driven crustal thickening, slab breakoff, delamination, and lithospheric tearing swiftly, within geologically short time scales (few million years). This geodynamic continuum resulted in lateral mantle flow, whole-sale extension and accompanying magmatism that in turn caused the collapse of tectonically and magmatically weakened orogenic crust. Initial stages of post-collisional magmatism (~45 Ma) thermally weakened the orogenic crust in Tethyan continental collision zones, giving way into large-scale extension and lower crustal exhumation via core complex formation starting around 25-23 Ma. Slab breakoff was the most common driving force for the early stages of post-collisional magmatism in the Tethyan mountain belts in the eastern Mediterranean region. Magmatic rocks produced at this stage are represented by calc-alkaline-shoshonitic to transitional (in composition) igneous suites. Subsequent lithospheric delamination or partial convective removal of the sub-continental lithospheric mantle in collision-induced, overthickened orogenic lithosphere caused decompressional melting of the upwelling asthenosphere that in turn resulted in alkaline basaltic magmatism (<12 Ma). Attendant crustal extension and widespread thinning of the lithosphere facilitated rapid ascent of basaltic (OIB) magmas without much residence time in the crust and hence the eruption of relatively uncontaminated, asthenosphere-derived magmas at the surface (i.e. Kula lavas in SW Anatolia). Subduction of the Tethyan mantle lithosphere northward beneath Eurasia was nearly continuous since the latest Cretaceous, only temporarily punctuated by the collisional accretion of several ribbon continents (i.e. Pelagonia, Sakarya, Tauride-South Armenian) to the southern margin of Eurasia, and by related slab breakoff events. Exhumation of middle to lower crustal rocks and the formation of extensional metamorphic domes occurred in the backarc region of this progressively southward-migrated trench and the Tethyan (Afro-Arabian) slab throughout the Cenozoic. Thus, slab retreat played a major role in the Cenozoic geodynamic evolution of the Aegean and Western Anatolian regions. However, the subducting African lithospheric slab beneath the Aegean-Western Anatolian region is delimited to the east by a subduction-transform edge propagator (STEP) fault, which corresponds to the sharp cusp between the Hellenic and Cyprus trenches whose surface expression is marked by the Isparta Angle in the Western Taurides. This lithospheric tear in the downgoing African plate allowed the mantle to rise beneath SW Anatolia, inducing decompressional melting of shallow asthenosphere and producing linearly distributed alkaline magmatism younging in the direction of tear propagation (southward). The N-S-trending potassic and ultra-potassic volcanic fields stretching from the Kirka and Afyon-Suhut region (~17 Ma) in the north to the Isparta-Gölcük area (4.6 Ma-Recent) in the south are the result of this melting of the sub-slab (asthenospheric) mantle, which was metasomatized by recent subduction events in the region. Asthenospheric low velocities detected through Pn tomographic imaging in this region support the existence of shallow asthenosphere beneath the Isparta Angle at present. These observations suggest that currently there is no active subduction underneath much of Western Anatolia.
Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens
Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.
2016-01-01
Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams. PMID:27802263
Shallow Mantle Anisotropy Beneath the Juan de Fuca Plate
NASA Astrophysics Data System (ADS)
VanderBeek, Brandon P.; Toomey, Douglas R.
2017-11-01
The anisotropic fabric of the oceanic mantle lithosphere is often assumed to parallel paleo-relative plate motion (RPM). However, we find evidence that this assumption is invalid beneath the Juan de Fuca (JdF) plate. Using travel times of seismic energy propagating through the topmost mantle, we find that the fast direction of P wave propagation is rotated 18° ± 3° counterclockwise to the paleo-spreading direction and strikes between Pacific-JdF relative and JdF absolute plate motion (APM). The mean mantle velocity is 7.85 ± 0.02 km/s with 4.6% ± 0.4% anisotropy. Synthesis of the plate-averaged Pn anisotropy signal with measurements of Pn anisotropy beneath the JdF Ridge and SKS splits across the JdF plate suggests that the anisotropic structure of the topmost mantle continues to evolve away from the spreading center to more closely align with APM. We infer that the oceanic mantle lithosphere may record the influence of both paleo-RPM and paleo-APM.
Mantle flow beneath Arabia offset from the opening Red Sea
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Merino, Miguel; Van der Lee, Suzan; Stein, Seth; Stein, Carol A.
2011-02-01
Continental rifting involves a poorly understood sequence of lithospheric stretching, volcanism, and mantle flow that evolves to seafloor spreading. We present new insight from inversion of seismic traveltimes and waveforms beneath Arabia and surroundings. Low velocities occur beneath the southern Red Sea and Gulf of Aden, consistent with active spreading. However, hot material extends not below the northern Red Sea, but is offset eastward beneath Arabia, showing mantle flow from the Afar hotspot. The location of this channel beneath volcanic rocks erupted since rifting began 30 million years ago indicates that flow moves with Arabia. We propose that the absence of seafloor spreading in the northern Red Sea reflects the offset flow. This geometry may evolve to spreading in the Northern Red Sea, rifting of Arabia, or both. This situation has aspects of both active and passive rifting, showing that both can occur before coalescing to seafloor spreading.
NASA Technical Reports Server (NTRS)
Peslier, Anne H.; Brandon, Alan D.; Schaffer, Lillian Aurora; O'Reilly, Suzanne Yvette; Griffin, William L.; Morris, Richard V.; Graff, Trevor G.; Agresti, David G.
2014-01-01
The mantle lithosphere beneath the cratonic part of continents is the deepest (> 200 km) and oldest (>2-3 Ga) on Earth, remaining a conundrum as to how these cratonic roots could have resisted delamination by asthenospheric convection over time. Water, or trace H incorporated in mineral defects, could be a key player in the evolution of continental lithosphere because it influences melting and rheology of the mantle. Mantle xenoliths from the Lac de Gras kimberlite in the Slave craton were analyzed by FTIR. The cratonic mantle beneath Lac de Gras is stratified with shallow (<145 km) oxidized ultradepleted peridotites and pyroxenites with evidence for carbonatitic metasomatism, underlain by reduced and less depleted peridotites metasomatized by kimberlite melts. Peridotites analyzed so far have H O contents in ppm weight of 7-100 in their olivines, 58 to 255 in their orthopyroxenes (opx), 11 to 84 in their garnet, and 139 in one clinopyroxene. A pyroxenite contains 58 ppm H2O in opx and 5 ppm H2O in its olivine and garnet. Olivine and garnet from the deep peridotites have a range of water contents extending to higher values than those from the shallow ones. The FTIR spectra of olivines from the shallow samples have more prominent Group II OH bands compared to the olivines from the deep samples, consistent with a more oxidized mantle environment. The range of olivine water content is similar to that observed in Kaapvaal craton peridotites at the same depths (129-184 km) but does not extend to as high values as those from Udachnaya (Siberian craton). The Slave, Kaapvaal and Siberian cratons will be compared in terms of water content distribution, controls and role in cratonic root longevity.
Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O. S.; Kendall, J.-M.; Wookey, J.; Stuart, G. W.; Keir, D.; Ayele, A.
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti, and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and we directly invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due to shear segregated melt along sharp changes in lithospheric thickness dominates the shear-wave splitting signal in the mantle. Beneath Afar, away from regions with significant lithospheric topography, melt pockets associated with the crustal and uppermost mantle magma storage dominate the signal in localized regions. In general, little anisotropy is seen in the uppermost mantle beneath Afar suggesting melt retains no preferential alignment. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is lacking beneath Afar today, rather a broad flow from the southwest dominates flow in the upper mantle.
NASA Astrophysics Data System (ADS)
Mulibo, Gabriel D.; Nyblade, Andrew A.
2013-08-01
P and S relative arrival time residuals from teleseismic earthquakes recorded on over 60 temporary AfricaArray broadband seismic stations deployed in Uganda, Tanzania, and Zambia between 2007 and 2011 have been inverted, together with relative arrival time residuals from earthquakes recorded by previous deployments, for a tomographic image of mantle wave speed variations extending to a depth of 1200 km beneath eastern Africa. The image shows a low-wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the Cenozoic East African rift system and northwestern Zambia, and a fast wave speed anomaly at depths ≤ 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths ≥350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a ˜150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A superplume extending from the core-mantle boundary to the surface implies an origin for the Cenozoic extension, volcanism, and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.
Depth variations of P-wave azimuthal anisotropy beneath East Asia
NASA Astrophysics Data System (ADS)
Wei, W.; Zhao, D.; Xu, J.
2017-12-01
We present a new P-wave anisotropic tomographic model beneath East Asia by inverting a total of 1,488,531 P wave arrival-time data recorded by the regional seismic networks in East Asia and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducting Indian, Pacific and Philippine Sea plates and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. The FVD in the subducting Philippine Sea plate beneath the Ryukyu arc is NE-SW(trench parallel), which is consistent with the spreading direction of the West Philippine Basin during its initial opening stage, suggesting that it may reflect the fossil anisotropy. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China. We suggest that it reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. We find a striking variation of the FVD with depth in the subducting Pacific slab beneath the Northeast Japan arc. It may be caused by slab dehydration that changed elastic properties of the slab with depth. The FVD in the mantle wedge beneath the Northeast Japan and Ryukyu arcs is trench normal, which reflects subduction-induced convection. Beneath the Kuril and Izu-Bonin arcs where oblique subduction occurs, the FVD in the mantle wedge is nearly normal to the moving direction of the downgoing Pacific plate, suggesting that the oblique subduction together with the complex slab morphology have disturbed the mantle flow.
NASA Astrophysics Data System (ADS)
Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.
2016-06-01
The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.
K-Rich Basaltic Sources beneath Ultraslow Spreading Central Lena Trough in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Ling, X.; Snow, J. E.; Li, Y.
2016-12-01
Magma sources fundamentally influence accretion processes at ultraslow spreading ridges. Potassium enriched Mid-Ocean Ridge Basalt (K-MORB) was dredged from the central Lena Trough (CLT) in the Arctic Ocean (Nauret et al., 2011). Its geochemical signatures indicate a heterogeneous mantle source with probable garnet present under low pressure. To explore the basaltic mantle sources beneath the study area, multiple models are carried out predicting melting sources and melting P-T conditions in this study. P-T conditions are estimated by the experimental derived thermobarometer from Hoang and Flower (1998). Batch melting model and major element model (AlphaMELTs) are used to calculate the heterogeneous mantle sources. The modeling suggests phlogopite is the dominant H2O-K bearing mineral in the magma source. 5% partial melting of phlogopite and amphibole mixing with depleted mantle (DM) melt is consistent with the incompatible element pattern of CLT basalt. P-T estimation shows 1198-1212oC/4-7kbar as the possible melting condition for CLT basalt. Whereas the chemical composition of north Lena Trough (NLT) basalt is similar to N-MORB, and the P-T estimation corresponds to 1300oC normal mantle adiabat. The CLT basalt bulk composition is of mixture of 40% of the K-MORB endmember and an N-MORB-like endmember similar to NLT basalt. Therefore the binary mixing of the two endmembers exists in the CLT region. This kind of mixing infers to the tectonic evolution of the region, which is simultaneous to the Arctic Ocean opening.
Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves
NASA Astrophysics Data System (ADS)
Nelson, Peter L.; Grand, Stephen P.
2018-04-01
The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.
A kinematic model for the late Cenozoic development of southern California crust and upper mantle
NASA Technical Reports Server (NTRS)
Humphreys, Eugene D.; Hager, Bradford H.
1990-01-01
A model is developed for the young and ongoing kinematic deformation of the southern California crust and upper mantle. The kinematic model qualitatively explains both the overall seismic structure of the upper mantle and much of the known geological history of the late Cenozoic as consequences of ongoing convection beneath southern California. In this model, the high-velocity upper-mantle anomaly of the Transverse ranges is created through the convergence and sinking of the entire thickness of subcrustal lihtosphere, and the low-velocity upper-mantle anomaly beneath the Salton Trough region is attributed to high temperatures and 1-4 percent partial melt related to adiabatic decompression during mantle upwelling.
Adakitic-like volcanism in Southern Mexico and subduction of the Tehuantepec Ridge
NASA Astrophysics Data System (ADS)
Manea, M.; Manea, V. C.
2007-05-01
The origin of El Chichón volcano is poorly understood, and our attempt in this study is to demonstrate that Tehuantepec Ridge, a major tectonic discontinuity on the Cocos plate, plays a key role in the slab dehydration budget and therefore in partial melting of the mantle beneath El Chichón. Using marine magnetic anomalies we show that the upper mantle beneath TR undergo partial serpentinization, a 5-7 km thick serpentinized root extending along TR and below the oceanic crust. Another key aspect of the magnetic anomaly over southern México is a long-wavelength (~150 km) high amplitude (~500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction P-T structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40-130 km depth. We interpret this result as a serpentinized mantle wedge by fluids expelled from the subducting Cocos plate beneath southern Mexico. Such a deep hydrated mantle requires a low temperature wedge (T<600° C) because serpentine is stable below this temperature and also the magnetic properties are preserved for temperature less than the Currie point for magnetite (~580° C). This result explains the lack of volcanism in southern México where the slab depth is ~ 100 km. Using phase diagrams for sediments, basalt and peridotite, and the subduction P-T structure beneath El Chichón we find that sediments and basalt dehydrate ~ 50% at depths corresponding with the location of serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (60-80%) at higher depths (170-180 km) comparable with the slab depth beneath El Chichón. We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths triggers arc melting, explaining the unusual location and probably the adakitic signature of El Chichón.
NASA Astrophysics Data System (ADS)
Sun, M.; Liu, K. H.; Fu, X.; Gao, S. S.
2017-12-01
To investigate the mechanism of initiation and development of the Eastern African Rifting System (EARS) circumfluent the Tanzania Craton (TC), over 7,100 P-to-S radial receiver functions (RFs) recorded by 87 broadband seismic stations are stacked to map the topography of mantle transition zone (MTZ) discontinuities beneath the TC and the Eastern and Western Branches of the EARS. After time-depth conversion using the 1-D IASP91 Earth model, the resulting 410 km (d410) and 660 km (d660) discontinuity apparent depths are found to be greater than the global averages beneath the whole study area, implying slower than normal upper mantle velocities. The mean thickness of the MTZ beneath the Western Branch and TC is about 252 km, which is comparable to the global average and is inconsistent with the existence of present-day thermal upwelling originating from the lower mantle. In contrast, beneath the Eastern Branch, an 30 km thinning of the MTZ is observed from an up to 50 km and 20 km apparent depression of the d410 and d660, respectively. On the basis of previous seismic tomographic results and empirical relationships between velocity and thermal anomalies, we propose that the most plausible explanation for the observations beneath the volcanic Eastern Branch is the existence of a low-velocity layer extending from the surface to the upper MTZ, probably caused by decompression partial melting associated with continental rifting. The observations are in general agreement with an upper mantle origin for the initiation and development of both the Western and Eastern Branches of the EARS beneath the study area.
NASA Astrophysics Data System (ADS)
LI, S.; Guo, Z.; Chen, Y. J.
2017-12-01
We present a high-resolution upper mantle S velocity model of the northern Ordos block using ambient noise tomography and two-plane-wave tomography between 8 and 143 s. The Ordos block, regarded as the nuclei of the Archean craton of North China Craton, is underlain by high velocity down to 200 km, indicating the preservation of cratonic root at the interior. However, thick lithospheric keel (≥ 200 km) is not observed outside the Ordos, suggesting craton reworking around the Ordos. The most important findings is the prominent low velocity shown beneath the Datong volcano that migrates westward with depth. At 200 km depth, the low velocity locates almost 500 km west to the leading edge of the flat-lying Pacific slab in the mantle transition zone. This observation is in conflict with the previous interpretation that the Datong volcano is fed by the deep upwelling related to the subduction of the Pacific plate. The westward tilted low velocity beneath the Datong volcano, however, is in agreement with the predominant NW-SE trending alignment of fast direction revealed by SKS splitting in this area, suggesting the Datong volcano is likely due to the asthenospheric mantle flow from west. Two possible scenarios could be related to this mantle process. First, the low velocity beneath the Datong volcano may link to the large-scale, deep-rooted mantle upwelling beneath the Mongolia, northwest to the Datong volcano at deeper depth revealed by Zhang et al. (2016). We postulate that when the raising mantle materials reaches the shallow depth, it would be forced bent by the thick lithosphere beneath the Gobi in Mongolia and flow southeastward to Datong volcano. Second, it is also worth noting that the low velocity beneath the Datong volcano connects to the low velocity zone (LVZ) beneath the Ordos block below 200km, which further links the LVZ beneath the northeastern Tibet to the west. Therefore, the Datong volcano could be fed by the mantle flow from northeastern Tibet. The continuous slab-retreating of the western Pacific since the Cenozoic would have created void spaces in eastern Asia which could in turn suck new asthenospheric materials from the Mongolia and northeast Tibet through the northern TNCO. The upward mantle flow along the rapid thinning lithosphere to the northeast of Ordos had generated partial melting to supply the Datong volcano.
NASA Astrophysics Data System (ADS)
Julià, J.; Ammon, C. J.; Herrmann, R. B.
2002-12-01
Models of crustal evolution strongly rely on our knowledge on the mineralogical composition of subsurface rocks, as well as pressure and temperature conditions. Direct sampling of subsurface rocks is often not possible, so that constraints have to be placed from indirect estimates of rock properties. Detailed seismic imaging of subsurface rocks has the potential for providing such constraints, and probe the extent at depth of surface geologic observations. In this study, we provide detailed S-wave velocity profiles for the crust and uppermost mantle beneath the Saudi Arabian Portable Broadband Deployment stations. Seismic velocities have been estimated from the joint inversion of receiver functions and fundamental mode group velocities. Receiver functions are sensitive to S-wave velocity contrasts and vertical travel times, and surface-wave dispersion is sensitive to vertical S-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with surface geology observations in the Arabian Shield and characterize its terranes at depth: the Asir terrane consists of a 10-km thick upper crust of 3.3~km/s overlying a lower crust with shear-wave velocities of 3.7-3.8 km/s; the Afif terrane is made of a 20-km thick upper crust with average velocity of 3.6 km/s and a lower crust with a shear-velocity of about 3.8~km/s; the Nabitah mobile belt has a gradational, 15-km thick upper crust up to 3.6 km/s overlying a gradational lower crust with velocities up to 4.0 km/s. The crust-mantle transition is sharper in terranes of continental affinity and more gradational beneath terranes of oceanic affinity. In the uppermost mantle, our models suggest a thin lid between up to 50-60 km depth overlying a low velocity zone beneath station TAIF, located close to a region of upwelling mantle material. Temperatures in the lid are estimated to be about 1000 C, which are in good agreement with independent xenolith data, and suggest that the lithosphere could be eroded to a thickness as little as 50~km under this station.
NASA Astrophysics Data System (ADS)
Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.
2017-12-01
The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending from Marie Byrd Land to the Antarctic Peninsula. This region of slow velocity only extends to 150-200 km depth beneath the Antarctic Peninsula, while elsewhere it extends to deeper upper mantle depths and possibly into the transition zone as well as offshore, suggesting two different geodynamic processes are at play.
U-Series Disequilibria across the New Southern Ocean Mantle Province, Australian-Antarctic Ridge
NASA Astrophysics Data System (ADS)
Scott, S. R.; Sims, K. W. W.; Park, S. H.; Langmuir, C. H.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Michael, P. J.; Choi, H.; Yang, Y. S.
2017-12-01
Mid-ocean ridge basalts (MORB) provide a unique window into the temporal and spatial scales of mantle evolution. Long-lived radiogenic isotopes in MORB have demonstrated that the mantle contains many different chemical components or "flavors". U-series disequilibria in MORB have further shown that different chemical components/lithologies in the mantle contribute differently to mantle melting processes beneath mid-ocean ridges. Recent Sr, Nd, Hf, and Pb isotopic analyses from newly collected basalts along the Australian-Antarctic Ridge (AAR) have revealed that a large distinct mantle province exists between the Australian-Antarctic Discordance and the Pacific-Antarctic Ridge, extending from West Antarctica and Marie Byrd Land to New Zealand and Eastern Australia (Park et al., submitted). This southern mantle province is located between the Indian-type mantle and the Pacific-type mantle domains. U-series measurements in the Southeast Indian Ridge and East Pacific Rise provinces show distinct signatures suggestive of differences in melting processes and source lithology. To examine whether the AAR mantle province also exhibits different U-series systematics we have measured U-Th-Ra disequilibria data on 38 basalts from the AAR sampled along 500 km of ridge axis from two segments that cross the newly discovered Southern Ocean Mantle province. We compare the data to those from nearby ridge segments show that the AAR possesses unique U-series disequilibria, and are thus undergoing distinct mantle melting dynamics relative to the adjacent Pacific and Indian ridges. (230Th)/(238U) excesses in zero-age basalts (i.e., those with (226Ra)/(230Th) > 1.0) range from 1.3 to 1.7, while (226Ra)/(230Th) ranges from 1.0 to 2.3. (226Ra)/(230Th) and (230Th)/(238U) are negatively correlated, consistent with the model of mixing between deep and shallow melts. The AAR data show higher values of disequilibria compared to the Indian and Pacific Ridges, which can be explained by either lower melting rates and porosities, or a higher gt/cpx ratio in their mantle source. That both long-lived radiogenic isotopes and U-series disequilibria are distinct in these three adjacent mantle provinces suggests that lithological differences are strongly influencing the melting process beneath each of these mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Nyblade, A.; Lloyd, A. J.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.; Zhao, D.
2011-12-01
As part of the International Polar Year in Antarctica, 37 seismic stations have been installed across West Antarctica as part of the Polar Earth Observing Network (POLENET). 23 stations form a sparse backbone network of which 21 are co-located on rock sites with a network of continuously recording GPS stations. The remaining 14 stations, in conjunction with 2 backbone stations, form a seismic transect extending from the Ellsworth Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land. Here we present preliminary P and S wave velocity models of the upper mantle from regional body wave tomography using P and S travel times from teleseismic events recorded by the seismic transect during the first year (2009-2010) of deployment. Preliminary P wave velocity models consisting of ~3,000 ray paths from 266 events indicate that the upper mantle beneath the Whitmore Mountains is seismically faster than the upper mantle beneath Marie Byrd Land and the WARS. Furthermore, we observe two substantial upper mantle low velocity zones located beneath Marie Byrd Land and near the southern boundary of the WARS.
Constraints on a plume in the mid-mantle beneath the Iceland region from seismic array data
Pritchard, M.J.; Foulger, G.R.; Julian, B.R.; Fyen, J.
2000-01-01
Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ~ 1000-2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ~ 1500 km beneath the Iceland-Faeroe ridge with a maximum diameter of ~ 250 km and a maximum wave-speed contrast of ~ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ~ 500 km and a wave-speed anomaly of ~ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.
NASA Astrophysics Data System (ADS)
Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.
2014-10-01
We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.
NASA Astrophysics Data System (ADS)
Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.
2015-02-01
We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.
Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
Wei, S. Shawn; Zha, Yang; Shen, Weisen; Wiens, Douglas A.; Conder, James A.; Webb, Spahr C.
2016-11-01
We investigate the upper mantle seismic structure in the Tonga-Lau-Fiji region by jointly fitting the phase velocities of Rayleigh waves from ambient-noise and two-plane-wave tomography. The results suggest a wide low-velocity zone beneath the Lau Basin, with a minimum SV-velocity of about 3.7 ± 0.1 km/s, indicating upwelling hot asthenosphere with extensive partial melting. The variations of velocity anomalies along the Central and Eastern Lau Spreading Centers suggest varying mantle porosity filled with melt. In the north where the spreading centers are distant from the Tonga slab, the inferred melting commences at about 70 km depth, and forms an inclined zone in the mantle, dipping to the west away from the arc. This pattern suggests a passive decompression melting process supplied by the Australian plate mantle from the west. In the south, as the supply from the Australian mantle is impeded by the Lau Ridge lithosphere, flux melting controlled by water from the nearby slab dominates in the back-arc. This source change results in the rapid transition in geochemistry and axial morphology along the spreading centers. The remnant Lau Ridge and the Fiji Plateau are characterized by a 60-80 km thick lithosphere underlain by a low-velocity asthenosphere. Our results suggest the removal of the lithosphere of the northeastern Fiji Plateau-Lau Ridge beneath the active Taveuni Volcano. Azimuthal anisotropy shows that the mantle flow direction rotates from trench-perpendicular beneath Fiji to spreading-perpendicular beneath the Lau Basin, which provides evidence for the southward flow of the mantle wedge and the Samoan plume.
NASA Astrophysics Data System (ADS)
Mulibo, G.; Tugume, F.; Julia, J.
2012-12-01
In this study, teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are used to invert P and S travel time residuals, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds and for examining relief on transition zone discontinuities using receiver function stacks. Tomographic images reveal a low wave speed anomaly (LWA) that dips to the SW beneath northern Zambia, extending to a depth of at least 900 km. The anomaly appears to be continuous across the transition zone, extending into the lower mantle. Receiver function stacks reveal an average transition zone thickness (TZT) across a wide region extending from central Zambia to the NE through Tanzania and into Kenya, which is ~30-40 km thinner than the global average. These results are not easily explained by models for the origin of the Cenozoic tectonism in eastern Africa that invoke a plume head or small scale convection either by edge flow or passive stretching of the lithosphere. However, the depth extent of the LWA coincident with a thin transition zone is consistent with a model invoking a through-going mantle anomaly beneath eastern Africa that links anomalous upper mantle to the African Superplume anomaly in the lower mantle beneath southern Africa. This finding indicates that geodynamic processes deep in the lower mantle are influencing surface dynamics across the Afro-Arabian rift system.
Seismic Imaging of Mantle Plumes
NASA Astrophysics Data System (ADS)
Nataf, Henri-Claude
The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.
Pn wave velocities beneath the Tanzania Craton and adjacent rifted mobile belts, east Africa
NASA Astrophysics Data System (ADS)
Brazier, Richard A.; Nyblade, Andrew A.; Langston, Charles A.; Owens, Thomas J.
2000-08-01
P wave travel times from regional earthquakes recorded by the Tanzania Broadband Seismic Experiment have been inverted for long wavelength (>100 km) Pn velocity variations beneath Tanzania using a generalized inverse algorithm. Pn velocities, on average, are 8.40 to 8.45 km/s beneath the center of the Tanzania Craton, 8.30-8.35 km/s beneath the terminus of the Eastern Branch of the rift system, and 8.35-8.40 km/s beneath the Western Branch. These velocities indicate that there are no broad (>100 km wide) thermal anomalies in the uppermost mantle beneath areas of rifting in Tanzania, and suggest that thermal anomalies present deeper in the mantle have not yet reached the base of the crust.
NASA Astrophysics Data System (ADS)
Mulibo, Gabriel D.; Nyblade, Andrew A.
2013-07-01
to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks reveal a mantle transition zone that is ~30-40 km thinner than the global average in a region ~200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya. The thinning of the transition zone indicates a ~190-300 K thermal anomaly in the same location where seismic tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. This finding provides compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume.
Asymmetric Subductions in an Asymmetric Earth: Geodynamics and Numerical Modeling
NASA Astrophysics Data System (ADS)
Dal Zilio, L.; Ficini, E.; Doglioni, C.; Gerya, T.
2016-12-01
The driving mechanism of plate tectonics is still controversial. Moreover, mantle kinematics is still poorly constrained due to the limited information available on its composition, thermal state, and physical parameters. The net rotation of the lithosphere, or so-called W-ward drift, however, indicates a decoupling of the plates relative to the underlying asthenosphere at about 100-200 km depth in the Low-Velocity Zone and a relative "E-ward" mantle counterflow. This mantle flow can account for a number of tectonic asymmetries on subduction dynamics such as steep versus shallow slab dip, diverging versus converging subduction hinge, low versus high topography of mountain belts, etc. This asymmetry is generally interpreted to reflect the age-dependent negative buoyancy of the subducting lithosphere. However, slab dip is insensitive to the age of the lithosphere. Here we investigate the role of mantle flow in controlling subduction dynamics using a high-resolution rheologically consistent two-dimensional numerical modeling. Results show the evolution of a subducting oceanic plate beneath a continent: when the subducting plate is dipping in opposite direction with respect to the mantle flow, the slab is sub-vertically deflected by the mantle flow, thus leading the coeval development of a back-arc basin. In contrast, agreement between mantle flow and dipping of the subducting slab relieves shallow dipping subduction zone, which in turn controls the development of a pronounced topography. Moreover, this study confirms that the age of the subducting oceanic lithosphere (i.e. its negative buoyancy) has a second order effect on the dip angle of the slab and, more generally, on subduction dynamics. Our numerical experiments show strong similarities to the observed evolution of subduction zone worldwide and demonstrate that the possibility of a horizontal mantle flow is universally valid.
Mapping the subducted Nazca plate in the lower mantle beneath South America
NASA Astrophysics Data System (ADS)
Contenti, S. M.; Gu, Y. J.; Okeler, A.
2009-12-01
Recent improvements in data coverage have enabled high-resolution imaging of the morphology of subduction zones and mantle plumes. In this study, we migrate the SS precursors from over 5000 seismograms to obtain a detailed map of mid- and upper-mantle reflectors beneath the northern portion of the South American subduction zone, where the oceanic Nazca plate is descending below the South American plate. In addition to an elevated 410 and depressed 660 (as expected for a subduction zone), strong mid-mantle reflectors at 800-1100 km depth are also apparent. The amplitudes of these steeply dipping reflectors are comparable to that of the 660-kilometer discontinuity. This anomaly outlines a high-velocity (therefore presumably cold) region present in recent finite-frequency based mantle velocity models, suggesting the extension of slab material into the lower mantle. The strength of the reflection is interpreted to be caused by a relatively sharp velocity change, likely due to a strong temperature gradient in combination with mineral phase transitions, the presence of water, or other chemical heterogeneities. Significant mass and heat exchange is therefore expected between the upper- and lower-mantle beneath the study region.
Anomalous mantle transition zone beneath the Yellowstone hotspot track
NASA Astrophysics Data System (ADS)
Zhou, Ying
2018-06-01
The origin of the Yellowstone and Snake River Plain volcanism has been strongly debated. The mantle plume model successfully explains the age-progressive volcanic track, but a deep plume structure has been absent in seismic imaging. Here I apply diffractional tomography to receiver functions recorded at USArray stations to map high-resolution topography of mantle transition-zone discontinuities. The images reveal a trail of anomalies that closely follow the surface hotspot track and correlate well with a seismic wave-speed gap in the subducting Farallon slab. This observation contradicts the plume model, which requires anomalies in the mid mantle to be confined in a narrow region directly beneath the present-day Yellowstone caldera. I propose an alternative interpretation of the Yellowstone volcanism. About 16 million years ago, a section of young slab that had broken off from a subducted spreading centre in the mantle first penetrated the 660 km discontinuity beneath Oregon and Idaho, and pulled down older stagnant slab. Slab tearing occurred along pre-existing fracture zones and propagated northeastward. This reversed-polarity subduction generated passive upwellings from the lower mantle, which ascended through a water-rich mantle transition zone to produce melting and age-progressive volcanism.
NASA Astrophysics Data System (ADS)
Suetsugu, D.; Shiobara, H.; Sugioka, H.; Kanazawa, T.; Fukao, Y.
2005-12-01
We determined depths of the mantle discontinuities (the 410-km and 660-km discontinuities) beneath the South Pacific Superswell using waveform data from broadband ocean bottom seismograph (BBOBS) array to image presumed mantle plumes and their temperature anomalies. Seismic structure beneath this region had not previously been well explored in spite of its significance for mantle dynamics. The region is characterized by a topographic high of more than 680 m (Adam and Bonneville, 2005), a concentration of hotspot chains (e.g., Society, Cook-Austral, Marquesas, and Pitcairn) whose volcanic rocks have isotopic characteristics suggesting deep mantle origin, and a broad low velocity anomaly in the lower mantle revealed by seismic tomography. These observations suggest the presence of a whole-mantle scale upwelling beneath the region, which is called a 'superplume' (McNutt, 1998). However, the seismic structure has been only poorly resolved so far and the maximum depth of anomalous material beneath the hotspots has not yet been determined, mainly due to the sparseness of seismic stations in the region. To improve the seismic coverage, we deployed an array of 10 BBOBS over the French Polynesia area from 2003 to 2005. The BBOBS has been developed by Earthquake Research Institute of University of Tokyo and are equipped with the broadband CMG-3T/EBB sensor. The observation was conducted as a Japan-France cooperative project (Suetsugu et al., 2005, submitted to EOS). We computed receiver functions from the BBOBS data to detect Ps waves from the mantle discontinuities. The Velocity Spectrum Stacking method (Gurrola et al., 1994) were employed to enhance the Ps waves for determination of the discontinuity depths, in which receiver functions were stacked in a depth-velocity space. The Ps-waves from the mantle discontinuities were successfully detected at the most of the BBOBS stations, from which the discontinuity depths were determined with the Iasp91 velocity model. The 410-km discontinuity depths were estimated to be 403-431 km over the Superswell region, which are not substantially different from the global average considering the estimation error of 10 km. The 660-km discontinuity depths were also determined to be 654-674 km, close to the global average, at most of the stations. Data from a station near the Society hot spot, however, provide an anomalously shallow depth of 623 km, indicating a presence of a local hot anomaly at the bottom of the mantle transition zone beneath near the Society hot spot. Taking into consideration a possible effect of velocity anomalies on the depth estimation, the shallow anomaly is significant. The present result suggests that the thermal anomalies are not obvious in the Superswell-scale, but present locally beneath the Society hot spot.
Detection of a ULVZ at the base of the mantle beneath the northwest Pacific
NASA Astrophysics Data System (ADS)
Xu, Yan; Koper, Keith D.
2009-09-01
We used the Yellowknife seismic array (YKA) to measure the slowness of 1,371 P and P diff waves from earthquakes occurring in the circum-Pacific region. The corresponding anomalies in P-velocity show a sharp reduction of up to 6% across a patch of the lowermost mantle beneath the Northwest Pacific with lateral dimensions of several hundred kilometers. The location of this ultra low velocity zone (ULVZ) correlates with a long-wavelength compositional boundary revealed by probabilistic mantle tomography. We interpret the ULVZ as partial melt created by paleo-slab material that is being swept laterally from northwestern Pacific subduction zones towards the large, chemically distinct province beneath the south-central Pacific.
The mantle flow field beneath western North America.
Silver, P G; Holt, W E
2002-02-08
Although motions at the surface of tectonic plates are well determined, the accompanying horizontal mantle flow is not. We have combined observations of surface deformation and upper mantle seismic anisotropy to estimate this flow field for western North America. We find that the mantle velocity is 5.5 +/- 1.5 centimeters per year due east in a hot spot reference frame, nearly opposite to the direction of North American plate motion (west-southwest). The flow is only weakly coupled to the motion of the surface plate, producing a small drag force. This flow field is probably due to heterogeneity in mantle density associated with the former Farallon oceanic plate beneath North America.
NASA Astrophysics Data System (ADS)
Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.
2017-04-01
We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.
NASA Astrophysics Data System (ADS)
Bai, Y.; Ai, Y.; Jiang, M.; He, Y.; Chen, Q.
2017-12-01
The deep structure of the southeastern Tibetan plateau is of great scientific importance to a better understanding of the India-Eurasia collision as well as the evolution of the magnificent Tibetan plateau. In this study, we collected 566 permanent and temporary seismic stations deployed in SE Tibet, with a total of 77853 high quality P-wave receiver functions been extracted by maximum entropy deconvolution method. On the basis of the Common Conversion Point (CCP) stacking technique, we mapped the topography of the 410km and 660km discontinuities (hereinafter called the `410' and the `660'), and further investigated the lateral variation of the mantle transition zone (MTZ) thickness beneath this region. The background velocity model deduced from H-κ stacking results and a previous body-wave tomographic research was applied for the correction of the crustal and upper mantle heterogeneities beneath SE Tibet for CCP stacking. Our results reveal two significantly thickened MTZ anomalies aligned nearly in the south-north direction. The magnitude of both anomalies are 30km above the global average of 250km. The southern anomaly located beneath the Dianzhong sub-block and the Indo-China block is characterized by a slightly deeper `410' and a greater-than-normal `660', while the northern anomaly beneath western Sichuan has an uplifted `410' and a depressed `660'. Combining with previous studies in the adjacent region, we suggest that slab break-off may occurred during the eastward subduction of the Burma plate, with the lower part of the cold slab penetrated into the MTZ and stagnated at the bottom of the `660' which may cause the southern anomaly in our receiver function images. The origin of the Tengchong volcano is probably connected to the upwelling of the asthenospheric material caused by the slab break-off or to the ascending of the hot and wet material triggered by the dehydration of stagnant slab in the MTZ. The anomaly in the north, on the other hand, might be the consequence of the delamination of the overlying lithosphere sinking into the MTZ. This work is supported by the National Natural Science Foundation of China (grants 41474040, 41125015 and 41274002).
NASA Astrophysics Data System (ADS)
Ionov, D. A.; Kramm, U.; Stosch, H.-G.
1992-06-01
Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr-Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr-Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300 400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe ˜2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.
The temporal evolution of a subducting plate in the lower mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.
2009-04-01
It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.
The Temporal Evolution Of A Subducting Plate In The Lower Mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Grujic, D.; Fullsack, P.; Thieulot, C.; Yamato, P.; Braun, J.
2008-12-01
It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001)) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle). The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a jellyfish form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.
Evidence of active mantle flow beneath South China
NASA Astrophysics Data System (ADS)
Wang, Chun-Yung; Flesch, Lucy M.; Chang, Lijun; Zheng, Tianyu
2013-10-01
The India-Eurasia collision is responsible for producing the Himalayan Mountains and Tibetan plateau and has been hypothesized to have significant far field influences, including driving the Baikal rift and the eastward extrusion of South China. However, quantification of lithospheric buoyancy forces and integrated effect of tractions acting at base of the lithosphere are unable to explain the observed surface motions within South China. We present 198 new SKS shear wave splitting observations beneath South China and invert these data along with published GPS data to solve for the subasthenospheric flow field beneath South China to assess the role of small-scale convection here. We find a 15-20 mm/yr southwestward-directed mantle flow toward the Burma slab. This flow is consistent with the mantle response of slab retreat over the past 25 Ma, and counter flow due to subduction of Burma/Sunda slabs demonstrating the importance of localized mantle convection on present-day plate motions.
Waveform Tomography of the South Atlantic Region
NASA Astrophysics Data System (ADS)
Celli, N. L.; Lebedev, S.; Schaeffer, A. J.; Gaina, C.
2016-12-01
The rapid growth in broadband seismic data, along with developments in waveform tomography techniques, allow us to greatly improve the data sampling in the southern hemisphere and resolve the upper-mantle structure beneath the South Atlantic region at a new level of detail. We have gathered a very large waveform dataset, including all publicly available data from permanent and temporary networks. Our S-velocity tomographic model is constrained by vertical-component waveform fits, computed using the Automated Multimode Inversion of surface, S and multiple S waves. Each seismogram fit provides a set of linear equations describing 1D average velocity perturbations within approximate sensitivity volumes, with respect to a 3D reference model. All the equations are then combined into a large linear system and inverted jointly for a model of shear- and compressional-wave speeds and azimuthal anisotropy within the lithosphere and underlying mantle. The isotropic-average shear speeds are proxies for temperature and composition at depth, while azimuthal anisotropy provides evidence on the past and present deformation in the lithosphere and asthenosphere beneath the region. We resolve the complex boundaries of the mantle roots of South America's and Africa's cratons and the deep low-velocity anomalies beneath volcanic areas in South America. Pronounced lithospheric high seismic velocity anomalies beneath the Argentine Basin suggest that its anomalously deep seafloor, previously attributed to dynamic topography, is mainly due to anomalously cold, thick lithosphere. Major hotspots show low-velocity anomalies extending substantially deeper than those beneath the mid-ocean ridge. The Vema Hotspot shows a major, hot asthenospheric anomaly beneath thick, cold oceanic lithosphere. The mantle lithosphere beneath the Walvis Ridge—a hotspot track—shows normal cooling. The volcanic Cameroon Line, in contrast, is characterized by thin lithosphere beneath the locations of recent volcanism.
NASA Astrophysics Data System (ADS)
Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham
2015-08-01
The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with that of their younger counterparts now represents a highly viscous, stable continental keel. This model could account for the large spectrum of ages observed in fertile to moderately depleted peridotites sampled from lithospheric mantle beneath SE Australia, W Antarctica and other locations in Zealandia, as well as the oceanic mantle. Our data confirm the longevity and dispersal of ancient depleted mantle domains in the convecting mantle and their re-appearance beneath young continents.
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.; Li, C.; Yao, H.; Sun, R.; Meltzer, A. S.
2007-12-01
We will present a summary of the results of our seismological studies of crust and upper mantle heterogeneity and anisotropy beneath Tibet and SW China with data from temporary (PASSCAL) arrays as well as other regional, national, and global networks. In 2003 and 2004 MIT and CIGMR (Chengdu Institute of Geology and Mineral Resources) operated a 25 station array (3-component, broad band seismometers) in Sichuan and Yunnan provinces, SW China; during the same period Lehigh University (also in collaboration with CIGMR) operated a 75 station array in east Tibet. Data from these arrays allow delineation of mantle structure in unprecedented detail. We focus our presentation on results of two lines of seismological study. Travel time tomography (Li et al., PEPI, 2006; EPSL, 2007) with hand-picked phase arrivals from recordings at regional arrays, and combined with data from over 1,000 stations in China and with the global data base due to Engdahl et al. (BSSA, 1998), reveals substantial the structural complexity of the upper mantle beneath SE Asia. In particular, structures associated with subduction of the Indian plate beneath the Himalayas vary significantly from west Tibet (where the plate seems to have underthrusted the entire plateau) to east Tibet (where P-wave tomography provides no evidence for the presence of fast lithosphere beneath the Plateau proper). Further east, fast structures appear in the upper mantle transition zone, presumably related to stagnation of slab fragments associated with subduction of the Pacific plate. (2) Surface wave array tomography (Yao et al., GJI, 2006, 2007), using ambient noise interferometry and traditional (inter station) dispersion analysis, is used to delineate the 3-D structure of the crust and lithospheric mantle at length scales as small as 100 km beneath the MIT and Lehigh arrays. This analysis reveals a complex spatial distribution of intra-crustal low velocity zones (which may imply that crustal-scale faults influence the pattern of middle/lower crustal flow). We will also show preliminary results of surface wave inversion for azimuthal anisotropy, which - combined with previous results from shear wave splitting (Lev et al., EPSL, 2006) - give insight into the deformation of the upper mantle beneath the area under study.
NASA Astrophysics Data System (ADS)
Nyblade, A.; Emry, E.; Juliá, J.; Anandakrishnan, S.; Aster, R. C.; Wiens, D. A.; Huerta, A. D.; Wilson, T. J.
2014-12-01
West Antarctica has experienced abundant Cenozoic volcanism, and it is suspected that the region is influenced by upwelling thermal plumes from the lower mantle; however this has not yet been verified, because seismic tomography results are not well resolved at mantle transition zone (MTZ) depths. We use P-wave receiver functions (PRFs) from the 2007-2013 Antarctic POLENET array to explore the characteristics of the MTZ throughout Marie Byrd Land and the West Antarctic Rift System. We obtained over 8000 high-quality PRFs for earthquakes occurring at 30-90° with Mb>5.5 using a time-domain iterative deconvolution method filtered with a Gaussian-width of 0.5 and 1.0, corresponding to frequencies less than ~0.24 Hz and ~0.48 Hz, respectively. We stack P receiver functions as single-station and by common conversion point and migrate them to depth using the ak135 1-d velocity model. Results suggest that the thickness of the MTZ varies throughout the region with thinning beneath the Ruppert Coast of Marie Byrd Land and beneath the Bentley Subglacial Trench and Whitmore Mountains. We identify the 520' discontinuity throughout much of West Antarctica; the discontinuity is most prominent beneath the Bentley Subglacial Trench and Whitmore Mountains. Additionally, prominent negative peaks are detected above the transition zone beneath much of West Antarctica and may be evidence for water-induced partial melt above the MTZ. We propose that the MTZ beneath West Antarctica is hotter than average in some regions, possibly due to material upwelling from the lower mantle. Furthermore, we propose that the transition zone is water-rich and that upward migration of hydrated material results in formation of a partial melt layer above the MTZ.
Shear velocity structure of central Eurasia from inversion of surface wave velocities
NASA Astrophysics Data System (ADS)
Villaseñor, A.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Engdahl, E. R.; Spakman, W.; Trampert, J.
2001-04-01
We present a shear velocity model of the crust and upper mantle beneath central Eurasia by simultaneous inversion of broadband group and phase velocity maps of fundamental-mode Love and Rayleigh waves. The model is parameterized in terms of velocity depth profiles on a discrete 2°×2° grid. The model is isotropic for the crust and for the upper mantle below 220 km but, to fit simultaneously long period Love and Rayleigh waves, the model is transversely isotropic in the uppermost mantle, from the Moho discontinuity to 220 km depth. We have used newly available a priori models for the crust and sedimentary cover as starting models for the inversion. Therefore, the crustal part of the estimated model shows good correlation with known surface features such as sedimentary basins and mountain ranges. The velocity anomalies in the upper mantle are related to differences between tectonic and stable regions. Old, stable regions such as the East European, Siberian, and Indian cratons are characterized by high upper-mantle shear velocities. Other large high velocity anomalies occur beneath the Persian Gulf and the Tarim block. Slow shear velocity anomalies are related to regions of current extension (Red Sea and Andaman ridges) and are also found beneath the Tibetan and Turkish-Iranian Plateaus, structures originated by continent-continent collision. A large low velocity anomaly beneath western Mongolia corresponds to the location of a hypothesized mantle plume. A clear low velocity zone in vSH between Moho and 220 km exists across most of Eurasia, but is absent for vSV. The character and magnitude of anisotropy in the model is on average similar to PREM, with the most prominent anisotropic region occurring beneath the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Kelly, Sean; Butler, Jared P.; Beaumont, Christopher
2016-12-01
Many collisional orogens contain exotic terranes that were accreted to either the subducting or overriding plate prior to terminal continent-continent collision. The ways in which the physical properties of these terranes influence collision remain poorly understood. We use 2D thermomechanical finite element models to examine the effects of prior 'soft' terrane accretion to a continental upper plate (retro-lithosphere) on the ensuing continent-continent collision. The experiments explore how the style of collision changes in response to variations in the density and viscosity of the accreted terrane lithospheric mantle, as well as the density of the pro-lithospheric mantle, which determines its propensity to subduct or compress the accreted terrane and retro-lithosphere. The models evolve self-consistently through several emergent phases: breakoff of subducted oceanic lithosphere; pro-continent subduction; shortening of the retro-lithosphere accreted terrane, sometimes accompanied by lithospheric delamination; and, terminal underthrusting of pro-lithospheric mantle beneath the accreted terrane crust or mantle. The modeled variations in the properties of the accreted terrane lithospheric mantle can be interpreted to reflect metasomatism during earlier oceanic subduction beneath the terrane. Strongly metasomatized (i.e., dense and weak) mantle is easily removed by delamination or entrainment by the subducting pro-lithosphere, and facilitates later flat-slab underthrusting. The models are a prototype representation of the Himalayan-Tibetan orogeny in which there is only one accreted terrane, representing the Lhasa terrane, but they nonetheless exhibit processes like those inferred for the more complex Himalayan-Tibetan system. Present-day underthrusting of the Tibetan Plateau crust by Indian mantle lithosphere requires that the Lhasa terrane lithospheric mantle has been removed. Some of the model results support previous conceptual interpretations that Tibetan lithospheric mantle was removed by convective coupling to the pro-lithosphere. They can also be interpreted to suggest that delamination beneath Tibet was facilitated by densification and weakening of the plateau lithosphere, perhaps owing to long-lived pre- to syn-collisional subduction-related metasomatism beneath the Asian margin.
NASA Astrophysics Data System (ADS)
Si, Shaokun; Tian, Xiaobo; Gao, Rui
2017-05-01
To detect the thinning, modification, and replacement of the basement of the lithosphere is a key step in understanding the destruction mechanism of the North China lithosphere. The difference of the basement of the lithosphere is mainly displayed by the variation of the peridotite composition and its physical state. Vp/Vs ratio (hereafter referred to as velocity ratio) is more sensitive to this change than Vp or Vs alone. By means of the strong dependence of the travel-time of the wave converted at the 410-km discontinuity (P410s) observed in the receiver function (RF) on the velocity ratio in the upper mantle, we developed a new mapping method to constrain the velocity ratio between the Moho and 410-km discontinuity. Using the RFs extracted from 246 broadband stations beneath the North China Craton (NCC), we obtained a high-resolution velocity ratio image of the upper mantle. The abnormal velocity ratio indicates a strong lateral variation of the mineral composition in the upper mantle beneath North China. Two low-velocity-ratio patches are imaged at the top of the upper mantle and the 410 km depth, respectively. The former may be related to the orthopyroxene enrichment in the lithospheric mantle, and the latter may reflect the stagnant Pacific slab in the mantle transition zone (MTZ). A prominent high-velocity-ratio anomaly is also imaged in the upper mantle beneath the Shaanxi-Shanxi rift system in the central NCC, with the highest anomaly reaching 10%. We speculate that the high velocity ratio of upper mantle is related to convective flow due to slab dehydration in the MTZ. The dehydration of the retained slab in the MTZ results in partial melting and upwelling of upper mantle materials. Such convective flow and their melting are closely related to the Cenozoic basalt eruption in the northern section of the Shaanxi-Shanxi rift system.
NASA Astrophysics Data System (ADS)
Cui, Z.; Meltzer, A.; Fischer, K. M.; Stachnik, J. C.; Munkhuu, U.; Tsagaan, B.; Russo, R. M.
2017-12-01
The origin and preservation of high-elevation low-relief surfaces in continental interiors remains an open questions. Central Mongolia constitutes a major portion of the Mongolian Plateau and is an excellent place to link deep earth and surface processes. The lithosphere of Mongolia was constructed through accretionary orogenesis associated with the Central Asian Orogenic Belt (CAOB) from the late Paleozoic to the early Triassic. Alkaline volcanic basalt derived from sublithospheric sources has erupted sporadically in Mongolia since 30 Ma. Constraining the depth variation of lithospheric and upper mantle discontinuities is crucial for understanding the interaction between upper mantle structure and surface topography. We conducted receiver functions (RF) analyses suitable data recorded at112 seismic broadband stations in central Mongolia to image the LAB and mantle transition zone beneath Central Mongolia. A modified H-κ stacking was performed to determine crustal average thickness (H) and Vp/Vs ratio (κ). Central Mongolia is characterized by thick crust (43-57 km) enabling use of both P wave RF and to S wave RF to image the LAB. The PRF traces in the depth domain are stacked based on piercing point locations for the 410 and 660 discontinuities using 0.6 ° × 0.6 ° bins in a grid. From south to north, the average lithospheric thickness is 85km in Gobi Altai gradually thinning northeastward to 78km in the southern Hangay Dome, 72 km in the northern Hangay Dome then increases to 75km in Hovsgol area. While there is overall thinning of the lithosphere from SW to NE, beneath the Hangay, there is a slight increase beneath the highest topography. The thickness of the mantle transition zone (MTZ) beneath central Mongolia is similar to global averages. This evidence argues against the hypothesis that a mantle plume exists beneath Central Mongolia causing low velocity anomalies in the upper mantle. To the east of the Hovsgol area in northern Mongolia, the MTZ thickens 10-15 km mainly due to depression in the 660-km discontinuity, perhaps representing a relict of subducted plate during CAOB.
NASA Astrophysics Data System (ADS)
Priestley, K.; Debayle, E.; McKenzie, D.; Pilidou, S.
2007-12-01
There have been a number of prior, large scale surface wave studies of Africa, the majority of which rely on fundamental mode observations. In this study we use a large data set of multi-mode surface waves recorded over epicentral distances most of which are shorter than 6000 km, to investigate the Sv wave speed heterogeneity of the upper mantle beneath Africa. The inclusion of the higher mode data allow us to build an upper mantle model for the African plate with a horizontal resolution of a few hundred kilometers and a vertical resolution of a few tens of kilometers extending to about 400 km depth. Our tomographic images of the upper mantle beneath Africa displays significant shear velocity features, much of which correlate with surface geology. High velocity mantle persists beneath the West African and Congo cratons to 225-250 km depth, but the high velocity root beneath Kalahari Craton extends to only about 175 km depth. Low velocity upper mantle underlies the Pan- African terranes of Africa with the exception of the Damara mobile belt separating the Congo and Kalahari Cratons. The Damara mobile belt is underlain by a thick high velocity upper mantle lid which is indistinguishable from that beneath the Congo Craton to the north and the Kalahari Craton to the south. Low velocity upper mantle underlie the Hoggar, Tebesti and Darfur volcanic areas of northern Africa, and very low velocities underlie the Afar region to at least 400 km depth. We use the relationship between shear velocity and temperature of Priestley & McKenzie (2006) to derive a model for the African thermal lithosphere. Two types of lithosphere underlie Africa. Thick lithosphere underlies most of western Africa and all of southern Africa; in the latter the extent of the thick lithosphere is significantly different from the distribution of Archean crust mapped at the surface. Thick lithosphere forms one continuous structure beneath the Congo and Kalahari Cratons. Other than the Pan-African Damara mobile belt, the only Pan-African terrane of Africa free of recent (<30 Ma) volcanism, all of the Pan- African is underlain by lithosphere whose thickness is too thin to be resolved by our current surface wave analysis.
Investigation of lunar crustal structure and isostasy
NASA Technical Reports Server (NTRS)
Thurber, Clifford H.
1987-01-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.
Petrologic Modeling of Magmatic Evolution in The Elysium Volcanic Province
NASA Astrophysics Data System (ADS)
Susko, D.; Karunatillake, S.; Hood, D.
2017-12-01
The Elysium Volcanic Province (EVP) on Mars is a massive expanse of land made up of many hundreds of lava flows of various ages1. The variable surface ages within this volcanic province have distinct elemental compositions based on the derived values from the Gamma Ray Spectrometer (GRS) suite2. Without seismic data or ophiolite sequences on Mars, the compositions of lavas on the surface provide some of the only information to study the properties of the interior of the planet. The Amazonian surface age and isolated nature of the EVP in the northern lowlands of Mars make it ideal for analyzing the mantle beneath Elysium during the most recent geologic era on Mars. The MELTS algorithm is one of the most commonly used programs for simulating compositions and mineral phases of basaltic melt crystallization3. It has been used extensively for both terrestrial applications4 and for other planetary bodies3,5. The pMELTS calibration of the algorithm allows for higher pressure (10-30 kbars) regimes, and is more appropriate for modeling melt compositions and equilibrium conditions for a source within the martian mantle. We use the pMELTS program to model how partial melting of the martian mantle could evolve magmas into the surface compositions derived from the GRS instrument, and how the mantle beneath Elysium has changed over time. We attribute changes to lithospheric loading by long term, episodic volcanism within the EVP throughout its history. 1. Vaucher, J. et al. The volcanic history of central Elysium Planitia: Implications for martian magmatism. Icarus 204, 418-442 (2009). 2. Susko, D. et al. A record of igneous evolution in Elysium, a major martian volcanic province. Scientific Reports 7, 43177 (2017). 3. El Maarry, M. R. et al. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? Journal of Volcanology and Geothermal Research 185, 116-122 (2009). 4. Ding, S. & Dasgupta, R. The fate of sulfide during decompression melting of peridotite - implications for sulfur inventory of the MORB-source depleted upper mantle. Earth and Planetary Science Letters 459, 183-195 (2017). 5. Sakaia, R., Nagaharaa, H., Ozawaa, K. & Tachibanab, S. Composition of the lunar magma ocean constrained by the conditions for the crust formation. Icarus 229, 45-56 (2014).
Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data
NASA Astrophysics Data System (ADS)
Brazier, Richard A.; Nyblade, Andrew A.
2003-02-01
Uppermost mantle P wave velocity structure beneath the Baikal rift and southern margin of the Siberian Platform has been investigated by using a grid search method to model Pnl waveforms from two moderate earthquakes recorded by station TLY at the southwestern end of Lake Baikal. The results yielded a limited number of successful models which indicate the presence of upper mantle P wave velocities beneath the rift axis and the margin of the platform that are 2-5% lower than expected. The magnitude of the velocity anomalies and their location support the presence of a thermal anomaly that extends laterally beyond the rift proper, possibly created by small-scale convection or a plume-like, thermal upwelling.
NASA Astrophysics Data System (ADS)
Padma Rao, B.; Ravi Kumar, M.; Singh, Arun
2017-02-01
The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.
NASA Astrophysics Data System (ADS)
Gao, S. S.; Reed, C. A.; Yu, Y.; Liu, K. H.; Chindandali, P. R. N.; Mdala, H. S.; Massinque, B.; Mutamina, D. M.
2016-12-01
Measuring the magnitude and orientation of seismic anisotropy beneath actively extending rift zones provides invaluable estimates of the influence of numerous geodynamic parameters upon their evolution. In order to infer the character and origin of extensional forces acting upon the Malawi Rift Zone (MRZ) and Luangwa Rift Zone (LRZ) of southern Africa, we installed 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia between 2012-2014. Shear-wave splitting parameters, including the fast-component polarization orientation and the splitting time, are extracted from 142 events recorded during that time period for a total of 642 well-defined PKS, SKKS, and SKS phase measurements. Polarizations trend NE-SW along the western flank of the LRZ, whereupon they demonstrate an abrupt shift to N-S within the rift valley and the eastern flank. SWS orientations shift increasingly counterclockwise toward the east until, at 33°E, they shift from WNW-ESE to ENE-WSW, suggesting a systematic change in dominant mantle fabric orientation. The resulting fast orientations demonstrate remarkable variability within the MRZ, with E-W measurements in the north rotating counterclockwise toward the south to N-S within the southernmost MRZ. Measurements revert to E-W and NE-SW orientations toward the east in Mozambique, suggesting the presence of complex two-layer anisotropy. Azimuthal variations of SWS parameters recorded by stations within the central MRZ exhibit excellent 90° periodicity, further suggesting complex anisotropic layering. Lateral variation of measurements between the northern and southern MRZ imply the modulation of the mantle flow system beneath the active rift zone.
Hammond, W.C.; Toomey, D.R.
2003-01-01
We use teleseismic P and S delay times and shear wave splitting measurements to constrain isotropic and anisotropic heterogeneity in the mantle beneath the southern East Pacific Rise (SEPR). The data comprise 462 P and S delay times and 18 shear wave splitting observations recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment. We estimate the mantle melt content (F) and temperature (T) variation from the isotropic velocity variation. Our results indicate that the maximum variation in F beneath our array is between zero and ???1.2%, and maximum variation in T is between zero and ???100 K. We favor an explanation having partial contributions from both T and F. We approximate the seismic anisotropy of the upper mantle with hexagonal symmetry, consistent with the assumption of two dimensionality of mantle flow. Our new tomographic technique uses a nonlinear inversion of P and slow S polarization delay times to simultaneously solve for coupled VP and VS heterogeneity throughout the model and for the magnitude of anisotropy within discrete domains. The domain dimensions and the dip of the anisotropy are fixed for each inversion but are varied in a grid search, obtaining the misfit of the models to the body wave delay data and to split times of vertically propagating S waves. The data misfit and the isotropic heterogeneity are sensitive to domain dimensions and dip of anisotropy. In a region centered beneath the SEPR the best average dip of the hexagonal symmetry axis is horizontal or dipping shallowly (<30??) west. Given the resolution of our data, a subaxial region characterized by vertically aligned symmetry axes may exist but is limited to be <80 km deep. We infer that the mantle flow beneath the SEPR is consistent with shallow asthenospheric return flow from the direction of the South Pacific superswell.
Flow, melt and fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, James; Kendall, J.-Michael; Wookey, James; Stuart, Graham; Keir, Derek; Ayele, Atalay
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and use shear-wave splitting tomography to invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due aligned melt due to sharp changes in lithospheric thickness dominate the shear-wave splitting signal in the mantle. Beneath Afar, away from lithospheric topography, melt pockets associated with the crustal magma storage dominate the signal and little anisotropy is seen in the uppermost mantle suggesting melt retains no preferential alignment, possibly due to a lack of mantle lithosphere. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is absent beneath Afar today, rather a broad flow from the southwest dominates in the upper mantle.
Insights Into Layering in the Cratonic Lithosphere Beneath Western Australia
NASA Astrophysics Data System (ADS)
Sun, Weijia; Fu, Li-Yun; Saygin, Erdinc; Zhao, Liang
2018-02-01
The characteristics of internal lithospheric discontinuities carry crucial information regarding the origin and evolution of the lithosphere. However, the formation and mechanisms of the midlithosphere discontinuity (MLD) are still enigmatic and controversial. We investigate the midlithospheric discontinuities beneath the Archean Western Australian Craton, which represents one of the oldest continents on the globe, using a novel receiver-based reflectivity approach combined with other geophysical information comprising tomographic P and S wave velocity, radial anisotropy, electrical resistivity, and heat flow data. The MLD is rather shallow with a depth of 68-82 km. Multiple prominent discontinuities are observed in the lithospheric mantle using constructed high-frequency (0.5-4 Hz) P wave reflectivities. These multiple discontinuities coincide well with the broad-scale reduction of relative P and SV wave velocities at the top of the graded transition zone from the lithosphere to the asthenosphere. Strong radial anisotropy in the upper lithosphere mantle tends to be weak across the MLD, which might reflect quasi-laminar lithospheric heterogeneity behavior with a horizontal correlation length that is greater than its vertical correlation length. Broad-scale electrical resistivity variations show little coherence with the MLD. Given these various geophysical observations, the upper lithosphere exhibits rigid and elastic properties above the MLD, while the lower lithosphere tends to be ductile and rheological or viscous. A model comprising quasi-laminar lithospheric heterogeneity could effectively represent the MLD characteristics beneath the Archean continent.
NASA Astrophysics Data System (ADS)
Plomerová, Jaroslava; Munzarová, Helena; Vecsey, Luděk.; Kissling, Eduard; Achauer, Ulrich; Babuška, Vladislav
2016-08-01
New high-resolution tomographic models of P- and S-wave isotropic-velocity perturbations for the Bohemian upper mantle are estimated from carefully preprocessed travel-time residuals of teleseismic P, PKP and S waves recorded during the BOHEMA passive seismic experiment. The new data resolve anomalies with scale lengths 30-50 km. The models address whether a small mantle plume in the western Bohemian Massif is responsible for this geodynamically active region in central Europe, as expressed in recurrent earthquake swarms. Velocity-perturbations of the P- and S-wave models show similar features, though their resolutions are different. No model resolves a narrow subvertical low-velocity anomaly, which would validate the "baby-plume" concept. The new tomographic inferences complement previous studies of the upper mantle beneath the Bohemian Massif, in a broader context of the European Cenozoic Rift System (ECRIS) and of other Variscan Massifs in Europe. The low-velocity perturbations beneath the Eger Rift, observed in about 200km-broad zone, agree with shear-velocity models from full-waveform inversion, which also did not identify a mantle plume beneath the ECRIS. Boundaries between mantle domains of three tectonic units that comprise the region, determined from studies of seismic anisotropy, represent weak zones in the otherwise rigid continental mantle lithosphere. In the past, such zones could have channeled upwelling of hot mantle material, which on its way could have modified the mantle domain boundaries and locally thinned the lithosphere.
P wave anisotropic tomography of the Alps
NASA Astrophysics Data System (ADS)
Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian
2017-06-01
The first tomographic images of P wave azimuthal and radial anisotropies in the crust and upper mantle beneath the Alps are determined by joint inversions of arrival time data of local earthquakes and teleseismic events. Our results show the south dipping European plate with a high-velocity (high-V) anomaly beneath the western central Alps and the north dipping Adriatic plate with a high-V anomaly beneath the Eastern Alps, indicating that the subduction polarity changes along the strike of the Alps. The P wave azimuthal anisotropy is characterized by mountain chain-parallel fast-velocity directions (FVDs) in the western central Alps and NE-SW FVDs in the Eastern Alps, which may be caused by mantle flow induced by the slab subductions. Our results reveal a negative radial anisotropy (i.e., Vph < Vpv) within the subducting slabs and a positive radial anisotropy (i.e., Vph > Vpv) in the low-velocity mantle wedge, which may reflect the subvertical plate subduction and its induced mantle flow. The results of anisotropic tomography provide important new information on the complex mantle structure and dynamics of the Alps and adjacent regions.
NASA Astrophysics Data System (ADS)
Matsuno, T.; Seama, N.; Shindo, H.; Nogi, Y.; Okino, K.
2017-12-01
Back-arc spreading ridges in the southern Mariana Trough are slow-spreading ridges but have features suggesting enhanced melting beneath the ridges and influences on seafloor spreading processes by fluid derived from the subducted Pacific slab underlying the ridges. To reveal melting and dehydration processes and dynamics in the upper mantle in the southern Mariana Trough, we conducted a marine magnetotelluric (MT) experiment along a 120 km-length transect across a ridge segment at 13°N. We obtained electromagnetic field data at 9 stations along the transect, and analyzed them for estimating MT responses, striping seafloor topographic distortion from the responses, and imaging a 2-D electrical resistivity structure by 2-D inversion of TM-mode responses. A resultant 2-D inversion model showed 1) a conductive area at 10-20 km depth beneath the ridge center, the center of which slightly offsets to the trench side, 2) a moderately conductive area expanding asymmetrically around and under the conductor of 1), 3) a resistive area thickening from the ridge center up to about 40 km on the remnant arc side, and 4) a resistive area with a constant thickness of about 150 km on the trench side. These model features suggest 1) a melt body beneath the ridge center, possibly containing slab-derived water 2) water- and melt-retained mantle area produced by hydration of the back-arc mantle wedge and asymmetric passive decompression melting in the hydrous mantle wedge, 3) cooled and residual lithospheric mantle off the ridge center, and 4) mantle wedge and subducted Pacific lithospheric mantle that are both cold and depleted. The electrical resistivity structure obtained in the southern Mariana Trough, which clearly contrasts with the structure of the central Mariana Trough at 18°N in that this lacks a conductor beneath the ridge center, provides insights on the mantle dynamics and its relation to the characteristic tectonics and many kinds of observational results in the southern Mariana Trough.
NASA Astrophysics Data System (ADS)
Levin, V. L.; Moucha, R.; Yuan, H.
2013-12-01
Global seismic models show gradual and systematic changes in upper mantle seismic properties beneath North America. Faster and thicker lithosphere of the interior thins eastward. Upper mantle rock fabric reflected in observations of seismic anisotropy also varies. Near the coast apparent fast directions of split shear waves are nearly east-west, with considerable scatter. Further inland they are more uniform and align SW-NE, close to the absolute plate motion direction of North America. Mantle convection simulations driven by density inferred from global joint seismic-geodynamic tomography models exhibit complex flow beneath the eastern edge of the North American continent due to the ongoing descent of the Farallon slab deep beneath it (figure 1). Flow predicted beneath the coast is nearly horizontal with a small, though dynamically important, vertical component, while west of the Appalachians it turns downward. Long records of teleseismic observations accumulated at permanent seismic stations HRV, PAL and SSPA (figure 2) are inverted for vertical distribution of anisotropic parameters. We find preference for more than one layer of anisotropy beneath all sites, with significantly different parameters that could reflect either lateral variations in the lithospheric thickness, variations in the asthenospheric flow field, or both. Since we find considerable consistency in directional patterns of P-to-S mode converted waves associated with the lower part of the lithosphere, variations of asthenospheric flow seem to be a more plausible explanation. We explore the links between predicted flow and inferences from seismic data with additional observations of anisotropy and calculations of flow-induced rock fabric.
1995-08-14
characterized by a lid structure with a constant velocity. There appears to be little evidence for (1) mantle velocity gradients beneath southern Africa that...therefore conclude that there is little evidence for (1) a mantle lid beneath central Africa containing a positive velocity gradient or (2).a low velocity... Fucks , M.A. Khan, P.K.H. Maguire, W.D. Mooney, U. Achauer, P.M. Davis, R.P. Meyer, L.W. Braile, 1.0. Nyambok, and G.A. Thompson, The East African rift
High resolution image of uppermost mantle beneath NE Iran continental collision zone
NASA Astrophysics Data System (ADS)
Motaghi, K.; Tatar, M.; Shomali, Z. H.; Kaviani, A.; Priestley, K.
2012-10-01
We invert 3775 relative P wave arrival times using the ACH damped least square method of Aki et al. (1977) to study upper mantle structure beneath the NE Iran continental collision zone. The data for this study were recorded by 17 three component broad-band stations operated from August 2006 to February 2008 along a profile from the center of Iranian Plateau, near Yazd, to the northeastern part of Iran on the Turan Platform just north of the Kopeh Dagh Mountains. The results confirm the previously known low velocity upper mantle beneath Central Iran. Our tomographic model reveals a deep high velocity anomaly. The surficial expressions of this anomaly are between the Ashkabad and Doruneh Faults, where the resolution and ray coverage are good. A transition zone in uppermost mantle is recognized under the Binalud foreland that we interpreted as suture zone between Iran and Turan platform. Our results indicate that Atrak Valley which is the boundary between the Binalud and Kopeh Dagh Mountains can be considered as the northeastern suture of the Iranian Plateau where Eurasia and Turan Platform under-thrust beneath the Binalud range and Central Iran.
Stratification of Seismic Anisotropy Beneath Hudson Bay
NASA Astrophysics Data System (ADS)
Darbyshire, F. A.; Eaton, D. W.; Bastow, I. D.
2012-12-01
The Hudson Bay region has a complex tectonic history spanning ~4 Ga of Earth's evolution. During the ~1.8 Ga Trans-Hudson orogeny, the Archean Superior and Western Churchill cratons collided following the subduction of a Pacific-scale ocean. It is thought that a significant amount of juvenile material is preserved in the Trans-Hudson Orogen, in part due to the complex double-indentor geometry of the Superior-Churchill collision. In the region of interest, the orogen lies beneath a large but shallow Paleozoic intra-cratonic basin. Studies of the crust and upper mantle beneath this region have been enabled through the HuBLE (Hudson Bay Lithospheric Experiment) project, through the deployment of broadband seismographs around the Bay and across the islands to the north. A surface-wave tomography study has taken advantage of the data coverage, providing new information on phase velocity heterogeneity and anisotropy for wave periods of 25-200 seconds (equivalent to depths from the lower crust to ~300 km). On a large scale, our results show that the entire region is underlain by a seismically fast lithospheric lid corresponding to the continental keel. The lithospheric thickness ranges from ~180km in the northeast, beneath a zone of Paleozoic rifting, to ~280km beneath central Hudson Bay. Within the lithosphere, seismic velocities vary laterally, including high-velocity material wrapping around the Bay in the uppermost mantle. In the mid-lithosphere, two high-velocity cores are imaged, with a zone of lower velocity between them beneath the Bay. We interpret these high-velocity structures to represent the strongest central cores of the Superior and Churchill cratons, with more-juvenile material preserved between them. The near-vertical geometry of the lower-velocity zone suggests that it is only the effects of terminal collision of the cratonic cores, rather than any preceding subduction, that is preserved today. The lowermost lithosphere has a more uniform velocity, and may represent a pervasive zone of metasomatism or underplating. Anisotropy patterns across the region also vary with depth, suggesting ~3 layers of stratification of lithospheric fabric. At the shallowest depths, anisotropic fast directions wrap around the Bay in a similar fashion to the patterns of isotropic wavespeed. The upper lithospheric mantle below is characterized by relatively weak and incoherent anisotropy; however the mid-to-lower lithosphere shows stronger anisotropy, with a pattern of fast directions broadly consistent with the tectonics of the Superior-Churchill collision as inferred from potential-field data. This may suggest some degree of coherency of deformation between the crust, uppermost mantle and lower lithosphere. These models of seismic wavespeed variation beneath the Hudson Bay region reveal the preservation of a major collision zone during the assembly of the Laurentian continental mass, and also suggest that the Archean cratons can be subdivided into different lithospheric domains that reflect their tectonic history but do not necessarily correspond to surface geological boundaries.
S-wave attenuation structure beneath the northern Izu-Bonin arc
NASA Astrophysics Data System (ADS)
Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi
2016-04-01
To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.
Sr isotopic composition of Afar volcanics and its implication for mantle evolution
NASA Astrophysics Data System (ADS)
Barberi, F.; Civetta, L.; Varet, J.
1980-10-01
Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.
NASA Astrophysics Data System (ADS)
Chen, Yunfeng; Gu, Yu Jeffrey; Hung, Shu-Huei
2017-02-01
The lithosphere beneath the Western Canada Sedimentary Basin has potentially undergone Precambrian subduction and collisional orogenesis, resulting in a complex network of crustal domains. To improve the understanding of its evolutionary history, we combine data from the USArray and three regional networks to invert for P-wave velocities of the upper mantle using finite-frequency tomography. Our model reveals distinct, vertically continuous high (> 1%) velocity perturbations at depths above 200 km beneath the Precambrian Buffalo Head Terrane, Hearne craton and Medicine Hat Block, which sharply contrasts with those beneath the Canadian Rockies (<- 1%) at comparable depths. The P velocity increases from - 0.5% above 70 km depth to 1.5% at 330 km depth beneath southern Alberta, which provides compelling evidence for a deep, structurally complex Hearne craton. In comparison, the lithosphere is substantially thinner beneath the adjacent Buffalo Head Terrane (160 km) and Medicine Hat Block (200 km). These findings are consistent with earlier theories of tectonic assembly in this region, which featured distinct Archean and Proterozoic plate convergences between the Hearne craton and its neighboring domains. The highly variable, bimodally distributed craton thicknesses may also reflect different lithospheric destruction processes beneath the western margin of Laurentia.
NASA Technical Reports Server (NTRS)
Humphreys, E. D.; Hager, B. H.
1985-01-01
Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc.
Subduction Related Crustal and Mantle Deformations and Their Implications for Plate Dynamics
NASA Astrophysics Data System (ADS)
Okeler, Ahmet
Ocean-continent convergence and subsequent continental collision are responsible for continental growth, mountain building, and severe tectonic events including volcanic eruptions and earthquake activity. They are also key driving forces behind the extensive thermal and compositional heterogeneities at crustal and mantle depths. Active subduction along the Calabrian Arc in southern Italy and the Hellenic Arc are examples of such collisional tectonics. The first part of this thesis examines the subduction related deformations within the crust beneath the southern Apennines. By modeling regional surface wave recordings of the largest temporary deployment in the southern Apennines, a lower-crustal/upper-mantle low-velocity volume extending down to 50 km beneath the mountain chain is identified. The magnitude (˜ 0.4 km/s slower) and anisotropic nature (˜ 10%) of the anomaly suggest the presence of hot and partially molten emplacement that may extend into the upper-crust towards Mt. Vulture, a once active volcano. Since the Apulian basement units are deformed during the compressional and consequent extensional events, our observations favor the "thick-skin" tectonic growth model for the region. In the deeper mantle, active processes are thermodynamically imprinted on the depth and strength of the phase transitions. This thesis examines more than 15000 SS precursors and provides the present-day reflectivity structure and topography associated with these phase transitions. Through case studies I present ample evidence for both slab penetration into the lower mantle (beneath the Hellenic Arc, Kurile Island and South America) and slab stagnation at the bottom of the Mantle Transition Zone (beneath the Tyrrhenian Sea and eastern China). Key findings include (1) thermal anomalies (˜ 200 K) at the base of the MTZ, which represent the deep source for Cenozoic European Rift Zone, Mount Etna and Mount Cameroon volcanism, (2) significant depressions (by 20-40 km) at the bottom of the Mantle Transition Zone beneath subducting slabs, (3) a strong 520-km reflector near subducting slabs, (4) a weak and elevated (15-25 km) 410-km reflector within active deformation zones, (5) strong lower mantle reflectors (˜ 900 km) while slabs penetrate into the lower mantle, and (6) consistency between the topography of a 300-km reflector and an exothermic phase transformation.
Tidal tomography constrains Earth's deep-mantle buoyancy.
Lau, Harriet C P; Mitrovica, Jerry X; Davis, James L; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David
2017-11-15
Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.
NASA Technical Reports Server (NTRS)
Vanian, L. L.; Vnuchkova, T. A.; Egorov, I. V.; Basilevskii, A. T.; Eroshenko, E. G.; Fainberg, E. B.; Dyal, P.; Daily, W. D.
1979-01-01
Magnetic fluctuations measured by the Lunokhod 2 magnetometer in the Bay Le Monnier are distinctly anisotropic when compared to simultaneous Apollo 16 magnetometer data measured 1100 km away in the Descartes highlands. This anisotropy can be explained by an anomalous electrical conductivity of the upper mantle beneath Mare Serenitatis. A model is presented of anomalously lower electrical conductivity beneath Serenitatis and the simultaneous magnetic data from the Lunokhod 2 site at the mare edge and the Apollo 16 site are compared to the numerically calculated model solutions. This comparison indicates that the anisotropic fluctuations can be modeled by a nonconducting layer in the lunar lithosphere which is 150 km thick beneath the highlands and 300 km thick beneath Mare Serenitatis. A decreased electrical conductivity in the upper mantle beneath the mare may be due to a lower temperature resulting from heat carried out the magma source regions to the surface during mare flooding.
Origin and Evolution of the Yellowstone Hotspot from Seismic-GPS Imaging and Geodynamic Modeling
NASA Astrophysics Data System (ADS)
Smith, R. B.; Jordan, M.; Puskas, C. M.; Farrell, J.; Waite, G. P.
2006-12-01
The Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have influenced a large part of the western U.S., producing the 16 Ma Yellowstone-Snake River Plain-Newberry silicic-basalt volcanic field (YSRPN). We integrate results from a multi-institution experiment that deployed 80 seismic stations and 160 campaign and 21 permanent GPS stations for 1999-2003. Crust and mantle velocity models were derived from inversion of teleseismic and local earthquake data. Kinematic and dynamic models were derived from inversion of GPS velocities constrained by stresses associated the topography and the +15 m geoid anomaly. Tomography revealed a P- and S-wave low-velocity body at depths of 8-16 km beneath the caldera that is interpreted as partial melt of 8-15% that feeds the youthful Yellowstone volcanic field. Volume changes in the magma chamber are responsible for GPS-measured episodes of uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 80 mm/yr. An upper-mantle low-velocity body was imaged by inverting teleseismic data constrained by the geoid structure, crustal structure, and the upper mantle discontinuities. This low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected tilt to the west at ~60°. The tilt is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. We estimate this body has an excess temperature from 85K to 120K, depending on the water content and with up to 1.5% melt. Using the inclined plume-geometry and plate motion history, we extrapolate the Yellowstone mantle source southwestward ~800 km as a plume-head in oceanic lithosphere centered beneath the Columbia Plateau basalt field at 16 Ma. Magma ascent was truncated there by the passage of thicker continental lithosphere over the plume beginning at 12 Ma, reducing the rate of large-scale volcanic eruptions in the YSRP. The decapitated plume head beneath Oregon underwent mantle return flow above the subducting Juan de Fuca plate and was responsible for the NW transgressive magmatism of the Newberry system. We then model the overall kinematics of the western U.S. from GPS data as SW motion for the YSRP, ~2 mm/yr, rotating into E-W motion in the Basin-Range, with a cumulative rate of ~4 mm/yr, and rotating to the northwest at rates of up to ~5 mm/yr in the Pacific Northwest, totaling ~10 mm/yr. Geodynamic models employing the GPS data and geometry of the crust-mantle structure suggests that southwest motion of the YSRP is dominated by stresses produced by the high potential energy of the Yellowstone hotspot while westward motion of the Basin-Range is driven by stress differences associated with the high topography of the Rocky Mountains.
Investigation of lunar crustal structure and isostasy. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurber, C.H.
1987-07-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. Themore » present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.« less
NASA Astrophysics Data System (ADS)
Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo
2016-10-01
Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.
Mantle Flow Induced by Subduction Beneath Taurides Mountains
NASA Astrophysics Data System (ADS)
Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.
2017-12-01
GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the mantle, we explore the mantle strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the mantle. In our numerical model, we observe a poloidal component of the mantle flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of mantle flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric mantle below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This mantle flow pattern may explain the shear-wave splitting directions in central Anatolia.
NASA Astrophysics Data System (ADS)
Li, J.; Guo, G.; WANG, X.; Chen, Q.
2017-12-01
The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we argue that the east-retreat trench motion of the subducting Pacific slab might play an important role in the observed broad depression of the 410-km discontinuity.
NASA Astrophysics Data System (ADS)
Gibson, Lydia; Gibson, Sally; Leat, Phil
2010-05-01
Our understanding of the tectono-magmatic processes in subduction zones generally relies on interpretations of the bulk-rock compositions of associated volcanic rocks. These, however, have typically undergone extensive modification in the crust (fractionation and/or contamination) and interpreting the mantle processes that have contributed to their genesis is complex. Direct evidence of the composition of the mantle beneath subduction-related volcanics is rare as mantle xenoliths are seldom brought to the surface. An exception is the Antarctic Peninsula, which consists of a series of suspect arc terranes accreted to the margin of Gondwana. Subduction occurred along a trench, off the west coast, and lasted over 200 Ma. It finally ceased after a series of ridge-trench collisions, which began at ~50 Ma in the south and ended at ca. 4 Ma in the north. This was followed by extensive alkaline volcanism along the length of the Antarctic Peninsula. At several localities these post-subduction volcanics contain abundant, fresh spinel-bearing lherzolites, harzburgites and pyroxenites. The widest variety of xenoliths were collected from basanites and tephrites emplaced on Alexander Island and Rothschild Island in the accreted Western Domain. The mineral chemistry of the xenolith suite as a whole is highly varied, e.g. olivine ranges in composition from Fo77 to Fo91, but within individual xenoliths typically only limited variation is apparent. Xenolith textures and plots of mineral chemistry suggest that the constituent mineral phases are in equilibrium and can be used to determine pressures and temperatures. PT estimates based on pyroxene compositions indicate that the lithosphere beneath the Antarctic Peninsula has a normal, unperturbed mantle geotherm and a thickness of ~90 km; the base of the mechanical boundary layer is at ~70 km and the xenoliths appear to have been entrained from within this region. Preliminary modelling of incompatible-trace-element ratios of diopsides and augites in the peridotites suggests that they are not all simple residues of mantle melting. They have a wide range of [La/Sm]n ratios (0.01 to 8.56) and appear to have undergone variable degrees of modal metasomatism, which has also resulted in an increase in bulk-rock concentrations of major elements, such as Fe and Al. Variable Ti enrichment in spinels and very-high oxygen fugacities suggest that an extreme range of melt compositions may have interacted with the mantle beneath the Antarctic Peninsula and produced the diverse lithologies that we have observed in the mantle xenolith suite. These include boninites (Mg-rich, hydrous melts) and small-fraction melts. We propose that metasomatic enrichment by silicate melts may have occurred during subduction whereas carbonate metasomatism modified the lithosphere following the formation of a 'window' in the underlying slab.
NASA Astrophysics Data System (ADS)
Schmid, Stefan; Kissling, Eduard; van Hinsbergen, Douwe J. J.; Molli, Giancarlo
2017-04-01
Integration of geological and geophysical data on the deep structure of the Alps (Kissling et al. 2017) reveals that the deep-seated Ivrea mantle played a crucial role during the formation of the arc of the Western Alps. Exhumation of the mantle beneath the Ivrea Zone to shallow crustal depths during Mesozoic rifting led to the formation of a strong Ivrea mantle wedge; its strength exceeds that of surrounding mostly quartz-bearing units, and consequently allows for indentation and wedging of a quasi-rigid Ivrea mantle wedge into the Western Alps during Alpine orogeny. A first early stage (pre-35 Ma) of the West-Alpine orogenic evolution is characterized by top-NNW thrusting in sinistral transpression causing at least some 260km displacement of internal Western Alps and E-W-striking Alps farther east, together with the Adria micro-plate, towards N to NNW with respect to stable Europe. It is during the second stage (35-25 Ma) that the Ivrea mantle wedge played a crucial role by accentuating the arc. This stage is associated with top-WNW thrusting in the external zones of the central portion of the arc and lateral indentation and wedging of the Ivrea mantle slice beneath the already existing nappe pile towards WNW by some 100-150km. The final stage of arc formation (25-0 Ma) is associated with orogeny in the Apennines leading to oroclinal bending in the southernmost Western Alps that by now became parts of the Apenninic orogen, in connection with the 50° counterclockwise rotation of the Corsica-Sardinia block and the Ligurian Alps. The lithological composition of some tectonic units originating from the Alpine Tethys (Piemont-Liguria Ocean) found in the Alps and the northern Apennines has much in common. The non-metamorphic parts of the Piemont-Liguria derived units form the upper plate of the Western Alps that is devoid of Austroalpine elements, while the lower plate includes highly metamorphic units derived from the same Piemont-Liguria Ocean. This points to a lateral transition from continent-continent collision in the Central and Eastern Alps to intra-oceanic subduction in the Western Alps during Alpine orogeny, leaving large parts of the Piemont-Liguria Ocean that belong to the Adria microplate open until about 25 Ma. It is these parts that from now on formed the highest tectonic units in the Apennines, namely the Ligurides. However, internal units of the Northern Apennines previously suffered Alpine-type shortening associated with an E-dipping Alpine subduction zone. They became " backthrusted" to the NE during Apenninic orogeny commencing in the Late Oligocene. Apenninic orogeny is associated with a change in subduction polarity from Alpine E-directed subduction, previously affecting the Internal Ligurides and other parts of the Northern Apennines, towards NW-directed subduction and roll back of the Adria slab beneath Northern Apennines, pulled by the negative buoyancy of those parts of the old oceanic lithosphere of the Piemont-Liguria Ocean that remained unaffected by Alpine orogeny. Reference: Edi Kissling, Stefan M. Schmid, Tobias Diehl (2017). Ivrea mantle wedge and arc of the Western Alps (1): Geophysical evidence for the deep structure. Abstract Volume EGU 2017.
The delineation and interpretation of the earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1988-01-01
A series of fluid dynamical experiments in variable viscosity fluid have been made and are in progress to study: (1) the onset of small scale convection relative to lithosphere growth rate; (2) the influence of paired fracture zones in modulating the horizontal scale of small scale convection; (3) the influence of the mantle vertical viscosity structure on determing the mode of small scale convection; and (4) the 3-D and temporal evolution of flows beneath a high viscosity lid. These experiments extend and amplify the present experimental work that has produced small scale convection beneath a downward-moving solidification front. Rapid growth of a high viscosity lid stifles the early onset of convection such that convection only begins once the lithosphere is older than a certain minimum age. The interplay of this convection with both the structure of the lithosphere and mantle provide a fertile field of investigation into the origin of geoid, gravity, and topographic anomalies in the central Pacific. These highly correlated fields of intermediate wavelength (approximately 200 to 2000 km), but not the larger wavelengths. It is the ultimate, dynamic origin of this class of anomalies that is sought in this investigation.
NASA Astrophysics Data System (ADS)
Dokht, R.; Gu, Y. J.; Sacchi, M. D.
2016-12-01
Seismic velocities and the topography of mantle discontinuities are crucial for the understanding of mantle structure, dynamics and mineralogy. While these two observables are closely linked, the vast majority of high-resolution seismic images are retrieved under the assumption of horizontally stratified mantle interfaces. This conventional correction-based process could lead to considerable errors due to the inherent trade-off between velocity and discontinuity depth. In this study, we introduce a nonlinear joint waveform inversion method that simultaneously recovers discontinuity depths and seismic velocities using the waveforms of SS precursors. Our target region is the upper mantle and transition zone beneath Northeast Asia. In this region, the inversion outcomes clearly delineate a westward dipping high-velocity structure in association with the subducting Pacific plate. Above the flat part of the slab west of the Japan sea, our results show a shear wave velocity reduction of 1.5% in the upper mantle and 10-15 km depression of the 410 km discontinuity beneath the Changbaishan volcanic field. We also identify the maximum correlation between shear velocity and transition zone thickness at an approximate slab dip of 30 degrees, which is consistent with previously reported values in this region.To validate the results of the 1D waveform inversion of SS precursors, we discretize the mantle beneath the study region and conduct a 2D waveform tomographic survey using the same nonlinear approach. The problem is simplified by adopting the discontinuity depths from the 1D inversion and solving only for perturbations in shear velocities. The resulting models obtained from the 1D and 2D approaches are self-consistent. Low-velocities beneath the Changbai intraplate volcano likely persist to a depth of 500 km. Collectively, our seismic observations suggest that the active volcanoes in eastern China may be fueled by a hot thermal anomaly originating from the mantle transition zone.
NASA Astrophysics Data System (ADS)
Li, A.; Dave, R.
2016-12-01
A typical craton has a thick, strong, and neutrally buoyant lithosphere that protects it from being destructed by mantle convection. The Wyoming craton and the North China craton are two rare representatives, where the thick Archean lithosphere has been significantly thinned and partially removed as revealed in seismic tomography models. The Wyoming craton in the west-central US experienced pervasive deformation 80-55 Ma during the Laramide orogeny. It has been subsequently encroached upon by the Yellowstone hotspot since 2.0 Ma. Recent seismic models agree that the northern cratonic root in eastern Montana has been broadly removed while the thick root is still present in Wyoming. Our radial anisotropy model images a VSV>VSH anomaly associated with the deep fast anomaly in central Wyoming, indicating mantle downwelling. Continuous low velocities are observed beneath the Yellowstone hotspot and the Cheyenne belt at the craton's southern margin, suggesting mantle upwelling in the sub-lithosphere mantle. These observations evidence for small-scale mantle convection beneath the south-central Wyoming craton, which probably has been actively eroding the cratonic lithosphere. The small-scale mantle convection is probably also responsible for the observed, localized lithosphere delamination beneath the eastern North China craton. In addition, a plume-like, low-velocity feature is imaged beneath the central block of the North China craton and is suggested as the driving force for destructing the cratonic root. Like the Wyoming craton that was subducted by the Farallon plate during the Laramide orogeny, the North China craton was underlined by the ancient Pacific plate before the root destruction in Late Jurassic. In both cases, the subducted slab helped to hydrate and weaken the cratonic lithosphere above it, initiate local metasomatism and partial melting, and promote small-scale convection. The craton's interaction with a mantle plume could further strengthen the small-scale convection and lead a massive destruction of the craton.
Large-scale trench-normal mantle flow beneath central South America
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rümpker, G.; Wölbern, I.
2018-01-01
We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.
Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology
NASA Astrophysics Data System (ADS)
Brown, L. D.
2013-12-01
One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and upper mantle. The SNORCLE mantle reflectors, which can be traced deep within the early Precambrian (?) mantle by both surface (controlled source) reflection profiles and passive (receiver function) images most clearly illustrates the rheological implications of such feature. The SNORCLE events appear to root upwards into the lower crust and extend to depths approaching 200 km into the mantle. This would seem to require the preservation of undeformed mantle lithosphere for almost 2.5 billion years in this area. This preservation is clearly inconsistent with the interpretation of nearby shallower mantle interfaces as marking the modern lithosphere-asthenosphere boundary. In summary, dipping mantle reflections imply preservation of substantial thicknesses of mantle lithosphere for very long periods of time, and localization of mantle deformation during the formation of these structures along relatively narrow, discrete interfaces rather than across broad zones of diffuse deformation. .
Electrical conductivity imaging in the western Pacific subduction zone
NASA Astrophysics Data System (ADS)
Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi
2010-05-01
Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005 to 2008. As a preliminary investigation, MT response functions from 20 sites in the Philippine Sea and 4 sites in the west Pacific basin in the period range between 300 and 80000 sec were respectively inverted to one-dimensional (1-D) profile of electrical conductivity by quantitatively considering the effect of the heterogeneous conductivity distribution (ocean and lands) at the surface. The resultant 1-D models show three main features: (1) Strong contrast in the conductivity for the shallower 200 km of the upper mantle depths is recognized between the two regions, which is qualitatively consistent with the difference in lithospheric age. (2) The conductivity at 200-300 km depth is more or less similar to each other at about 0.3 S /m. (3) The conductivity around the MTZ depth is higher for the Philippine Sea mantle than for the Pacific mantle, which is consistent with the implication obtained from a semi-global approach (a). As already suggested in our previous work, the high conductivity in the MTZ below the Philippine Sea can be explained by the excess conduction due to the presence of hydrogen (water) in wadesleyite or in ringwoodite. Therefore, it implies a large scale circulation of water in the back arc mantle not only in the upper mantle but also down to the MTZ depth. However, our interpretation indicates that the high conductivity of the Philippine Sea uppermost upper mantle cannot be explained only by the effect of hydrogen conduction in olivine, but that additional conduction enhancement such as the presence of partial melt is required.
Sub-crustal seismic activity beneath Klyuchevskoy Volcano
NASA Astrophysics Data System (ADS)
Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.
2013-12-01
Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep events observed at a site closest to the epicenter to delay times of Ps phases in RFs that we associate with the crust-mantle transition. Both observations are essentially differences between travel times of S and P waves originating at the same place, and traversing the same velocity structure. Consequently, the uncertainty of the velocity structure beneath the KVG does not influence the comparison. For all events nominally located at 28-30 km beneath KVG the S-P time at the nearest site (CIR) significantly exceeds 4 seconds. Given that crust-mantle boundary Ps times at nearby sites are ~3 s, these earthquakes take place in the upper mantle. Both recent RFs and wide-angle reflection (Deep Seismic Sounding) studies in the late 1970s identified additional boundaries beneath KVG at depths in excess of 40 km. The nature of these boundaries is unclear, however their sharpness suggests chemical changes or the presence of fluids or melts. Chemistry of Klyuchevskoy lavas suggests sub-crustal origin with no clear magma chamber within the crust. Sub-crustal earthquakes we describe show that processes in the magma conduit at the base of the crust beneath KVG are vigorous enough to promote brittle failure in the surrounding mantle rock. The complex seismic structure of the uppermost mantle beneath KVG may reflect a history of magma injection that is accompanied by seismic energy release.
The upper mantle shear wave velocity structure of East Africa derived from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
O'Donnell, J.; Nyblade, A.; Adams, A. N.; Weeraratne, D. S.; Mulibo, G.; Tugume, F.
2012-12-01
An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa has been developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset consists of 331 events recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this latest study, 149 events were used to determine fundamental mode Rayleigh wave phase velocities at periods ranging from 20 to 182 seconds using the two-plane-wave method. These were subsequently combined with the similarly processed published measurements and inverted for an updated upper mantle three-dimensional shear wave velocity model. Newly imaged features include a substantial fast anomaly in eastern Zambia that may have exerted a controlling influence on the evolution of the Western Rift Branch. Furthermore, there is a suggestion that the Eastern Rift Branch trends southeastward offshore eastern Tanzania.
One billion year-old Mid-continent Rift leaves virtually no clues in the mantle
NASA Astrophysics Data System (ADS)
Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.
2017-12-01
We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes along the eastern edge of the Michigan arm of the MR, and 3) beneath Lake Nipigon, north of Lake Superior. Our tomographic image also reveals an intricate distribution of deep high-velocity anomalies, including in the lower mantle, potentially related to Mesozoic subduction of the Kula and/or Farallon Plates.
NASA Astrophysics Data System (ADS)
Molnar, P.
1988-09-01
The Tibetan Plateau, the Himalaya and the Karakoram are the most spectacular consequences of the collision of the Indian subcontinent with the rest of Eurasia in Cainozoic time. Accordingly, the deep structures beneath them provide constraints on both the tectonic history of the region and on the dynamic processes that have created these structures. The dispersion of seismic surface waves requires that the crust beneath Tibet be thick: nowhere less than 50 km, at least 65 km, in most areas, but less than 80 km in all areas that have been studied. Wide-angle reflections of P-waves from explosive sources in southern Tibet corroborate the existence of a thick crust but also imply the existence of marked lateral variations in that thickness, or in the velocity structure of the crust. Thus isostatic compensation occurs largely by an Airy-type mechanism, unlike that, for instance, of the Basin and Range Province of western North America where a hot upper mantle buoys up a thin crust. The P-wave and S-wave velocities in the uppermost mantle of most of Tibet are relatively high and typical of those of Precambrian shields and stable platforms: Vp = 8.1 km s-1 or higher, and Vs≈ 4.7 km s-1. Travel times and waveforms of S-waves passing through the uppermost mantle of much of Tibet, however, require a much lower average velocity in the uppermost mantle than that of the Indian, or other, shields. They indicate a thick low-velocity zone in the upper mantle beneath Tibet, reminiscent of tectonically active regions. These data rule out a shield structure beneath northern Tibet and suggest that if such a structure does underlie part of the plateau, it does so only beneath the southern part. Lateral variations in the upper-mantle structure of Tibet are apparent from differences in travel times of S-waves from earthquakes in different parts of Tibet, in the attenuation of short-period phases, Pn and Sn, that propagate through the uppermost mantle of Tibet, and in surface-wave dispersion for different paths. The notably lower velocities and the greater attenuation in the mantle of north--central Tibet than elsewhere imply higher temperatures there and are consistent with the occurrence of active and young volcanism in roughly the same area. Surface-wave dispersion across north--central Tibet also requires a thinner crust in that area than in most of the plateau. Consequently the relatively uniform height of the plateau implies that isostatic compensation in the north--central part of Tibet occurs partly because the density of the relatively hot material in the upper mantle is lower than that elsewhere beneath Tibet, the mechanism envisioned by Pratt. Several seismological studies provide evidence consistent with a continuity of the Indian Shield, and its cold thick lithosphere, beneath the Himalaya. Fault-plane solutions and focal depths of the majority of moderate earthquakes in the Himalaya are consistent with their occurring on the top surface of the gently flexed, intact Indian plate that has underthrust the Lesser Himalaya roughly 80-100 km or more. P-waves from explosions in southern Tibet and recorded in Nepal can be interpreted as wide-angle reflections from this fault zone. P-wave delays across the Tarbela network in Pakistan from distant earthquakes indicate a gentle dip of the Moho beneath the array without pronounced later variations in upper-mantle structure. High Pn and Sn velocities beneath the Himalaya and normal to early S-wave arrival times from Himalayan earthquakes recorded at teleseismic distances are consistent with Himalaya being underlain by the same structure that underlies India. Results from explosion seismology indicate an increase in crustal thickness from the Indo--Gangetic Plain across the Himalaya to southern Tibet, but Hirn, Lepine, Sapin and their co-workers inferred that the depth of the Moho does not increase smoothly northward, as it would if the Indian Shield had been underthrust coherently beneath the Himalaya. They interpreted wide-angle reflections as evidence for steps in the Moho displaced from one another on southward-dipping faults. Although I cannot disprove this interpretation, I think that one can recognize a sequence of signals on their wide-angle reflection profiles that could be wide-angle reflections from a northward-dipping Moho. Gravity anomalies across the Himalaya show that both the Indo--Gangetic Plain and the Himalaya are not in local isostatic equilibrium. A mass deficit beneath the plain is apparently caused by the flexure of the Indian Shield and by the low density of the sedimentary rock in the basin formed by the flexure. The mass excess in the Himalaya seems to be partly supported by the strength of the Indian plate, for which the flexural rigidity is particularly large. An increase in the Bouguer gravity gradient from about 1 mGal km-1 (1 mGal = 10-3 cm s-2) over the Indo--Gangetic Plain to 2 mGal km-1 over the Himalaya implies a marked steepening of the Moho, and therefore a greater flexure of the Indian plate, beneath the Himalaya. This implies a northward decrease in the flexural rigidity of the part of the Indian plate underlying the range. Nevertheless, calculations of deflections of elastic plates with different flexural rigidities and flexed by the weight of the Himalaya show larger deflections and yield more negative gravity anomalies than are observed. Thus, some other force, besides the flexural strength of the plate, must contribute to the support of the range. A bending moment applied to the end of the Indian plate could flex the plate up beneath the range and provide the needed support. The source of this moment might be gravity acting on the mantle portion of the subducting Indian continental lithosphere with much or all of the crust detached from it. Seismological studies of the Karakoram are consistent with its being underlain by particularly cold material in the upper mantle. Intermediate-depth earthquakes occur between depths of 70 and 100 km but apparently do not define a zone of subducted oceanic lithosphere. Rayleigh-wave phase velocities are particularly high for paths across this area and imply high shear wave velocities in the upper mantle. Isostatic gravity anomalies indicate a marked low of 70 mGal over the Karakoram, which could result from a slightly thickened crust pulled down by the sinking of cold material beneath it. Geophysical constraints on the structure of Tibet, the Himalaya and the Karakoram are consistent with a dynamic uppermost mantle that includes first, the plunging of cold material into the asthenosphere beneath southern Tibet and the Karakoram, as the Indian plate slides beneath the Himalaya, and second, an upwelling of hot material beneath north--central Tibet. The structure is too poorly resolved to require such dynamic flow, but the existence for both a hot uppermost mantle beneath north--central Tibet and a relatively cold uppermost mantle beneath southern Tibet and the Karakoram seem to be required. Both group and phase velocities of Rayleigh waves and Love waves are delayed along paths crossing Tibet. The low velocities require a crustal thickness in excess of 50 km, and for most regions in excess of 60 km. Crustal thicknesses in excess of 80 km can be ruled out for all paths studied, and for most of Tibet, a crustal thickness of 65-70 km seems required. Clear evidence for lateral heterogeneity beneath Tibet is provided not only by body waves (discussed below) but also by surface waves (Brandon & Romanowicz 1986), which show an area of lower uppermost shear-wave velocity and thinner crust in north--central Tibet than elsewhere in the plateau. These variations might explain the differences in group velocities measured by different workers, and the different structures that they deduced, but if so, they also render the regionalization of surface-wave dispersion into arbitrary tectonic provinces risky. Although Rayleigh-wave phase velocities can resolve large differences in upper-mantle velocities for regions the size of Tibet, constraints on these velocities are best derived from body waves. Thus, with the exceptions of Brandon & Romanowicz's (1986) detailed investigation of north--central Tibet, the study of southernmost Tibet by Jobert et al. (1985) and that of Romanowicz (1982) for the northeasternmost part of the plateau, I do not think that surface waves have placed an important bound on the velocity in the upper mantle beneath Tibet. The seismic data are broadly consistent with partial melting of the uppermost mantle of north--central Tibet, where recent volcanism has been observed. Correspondingly, there is no suggestion of such low velocities, and such high temperatures, in the mantle elsewhere beneath Tibet, for which late-Cainozoic volcanism has not been reported. The results are also consistent with a slightly thinner crust in north--central Tibet than farther south, suggesting that both Airy and Pratt isostasy share compensation for north--central Tibet's great height. Finally, the average shear-wave velocity in the upper mantle of southern Tibet seems to be higher than that in northern Tibet, but neither is the degree of difference well determined, nor is the location of the transition from one to the other well mapped.
NASA Technical Reports Server (NTRS)
Sheehan, Anne Francis
1991-01-01
Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.
Deep mantle: Enriched carbon source detected
NASA Astrophysics Data System (ADS)
Barry, Peter H.
2017-09-01
Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.
Teleseismic array analysis of upper mantle compressional velocity structure. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Walck, M. C.
1984-01-01
Relative array analysis of upper mantle lateral velocity variations in southern California, analysis techniques for dense data profiles, the P-wave upper mantle structure beneath an active spreading center: the Gulf of California, and the upper mantle under the Cascade ranges: a comparison with the Gulf of California are presented.
A New Structural Model for the Red Sea from Seismic Data
NASA Astrophysics Data System (ADS)
Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.
2017-12-01
We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.
NASA Astrophysics Data System (ADS)
Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi; Eken, Tuna; Lushetile, Bufelo
2015-04-01
We present a 3D high-resolution seismic model of the southwestern Africa region from teleseismic tomographic inversion of the P- and S- wave data recorded by the amphibious WALPASS network. We used 40 temporary stations in southwestern Africa with records for a period of 2 years (the OBS operated for 1 year), between November 2010 and November 2012. The array covers a surface area of approximately 600 by 1200 km and is located at the intersection of the Walvis Ridge, the continental margin of northern Namibia, and extends into the Congo craton. Major questions that need to be understood are related to the impact of asthenosphere-lithosphere interaction, (plume-related features), on the continental areas and the evolution of the continent-ocean transition that followed the break-up of Gondwana. This process is supposed to leave its imprint as distinct seismic signature in the upper mantle. Utilizing 3D sensitivity kernels, we invert traveltime residuals to image velocity perturbations in the upper mantle down to 1000 km depth. To test the robustness of our tomographic image we employed various resolution tests which allow us to evaluate the extent of smearing effects and help defining the optimum inversion parameters (i.e., damping and smoothness) used during the regularization of inversion process. Resolution assessment procedure includes also a detailed investigation of the effect of the crustal corrections on the final images, which strongly influenced the resolution for the mantle structures. We present detailed tomographic images of the oceanic and continental lithosphere beneath the study area. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. Relatively low velocity perturbations have been imaged within the orogenic Damara Belt down to a depth of ~150 km, probably related to surficial suture zones and the presence of fertile material. A shallower depth extent of the lithospheric plate of ~100 km was observed beneath the ocean, consistent with plate-cooling models. In addition to tomographic images, the seismic anisotropy measurements within the upper mantle inferred from teleseismic shear waves indicate a predominant NE-SW orientation for most of the land stations. Current results indicate no evidence for a consistent signature of fossil plume.
Mantle transition zone beneath northeast China from P-receiver function
NASA Astrophysics Data System (ADS)
Zhang, R.; Wu, Q.
2015-12-01
We used receiver functions to examine lateral topographical variations on the 410- and 660-km beneath northeast China and particularly the Kuril-Japan arc junctions. Compared to other receiver functions studies, our analysis was based on greater station coverage of higher density by combining all recent seismic arrays so far deployed in northeast China. Our image shows that the 410-km is featured by a ~10-20 km uplift extending in the NNE direction beneath some areas of the Quaternary basaltic rocks distributed at Abaga and at Wudalianchi. The Clapeyron slope of the olivine phase transiton at 410-km suggests that the uplift is compatible with a negative thermal anomaly. We also confirm a significant depression of the 660 from the Changbai volcanism in the north to Korea in the south along the NW-SE direction. The depression is also accompanied by an uplift of the 660 to the west. The shallow 660-km discontinuity is also particularly detected beneath the Kuril-Japan arc junctions, while it was not detected before. The thermal anomaly at 410 km depth is most likely a remnant of a detached mantle lithosphere that recently sank to depth, thus providing robust evidence for the source and evolution of these basalts. The depression of the 660-km discontinuity may support that the subducting Pacific slab bends sharply and becomes stagnant when it meets strong resistance at a depth of about 670 km. After accumulation to a great extent the stagnant slab finally penetrates into the lower mantle. Combined with the previous triplicated studies, the shallow 660-km may suggest that descending Pacific slab at its leading and junction edges might be accommodated by a tearing near a depth of 660 km. Acknowledgements. Two liner seismic arrays were deployed by the Institute of Geophysics, China Earthquake Administration. The data of the permanent stations were provided by the Data Management Centre of China, National Seismic Network at the Institute of Geophysics, China Earthquake Administration. We thank the NECESSArray project for providing data, which are downloadable from website of IRIS. This research supported by the NSF of China (Grant Nos. 41474089, 90814013 and 40974061).
NASA Astrophysics Data System (ADS)
Baba, Kiyoshi; Chen, Jin; Sommer, Malte; Utada, Hisashi; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion
2017-10-01
The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012-2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past 30 Myr.
NASA Astrophysics Data System (ADS)
Guo, Zhen; Chen, Yongshun John
2017-04-01
We have obtained a high resolution 3-D crustal and uppermost mantle velocity model of the Ordos block and its surrounding areas by joint inversion of ambient noise tomography and receiver functions using seismic recordings from 320 stations. The resulting model shows wide-spread low velocity zone (Vs ≤ 3.4 km/s) in the mid-to-lower crust beneath northeastern Tibet Plateau, which may favor crustal ductile flow within the plateau. However, our model argues against the eastward crustal ductile flow beneath the Qinling belt from the Tibetan Plateau. We find high velocities in the middle part of Qinling belt which separate the low velocities in the mid-to-lower crust of the eastern Qinling belt from the low velocity zone in eastern Tibetan Plateau. More importantly, we observe significant low velocities and thickened lower crust at the Liupanshan thrust belt as the evidence for strong crustal shortening at this boundary between the northeastern Tibetan Plateau and Ordos block. The most important finding of our model is the upper mantle low velocity anomalies surrounding the Ordos block, particularly the one beneath the Trans North China Craton (TNCO) that is penetrating into the southern margin of the Ordos block for ∼100 km horizontally in the depth range of ∼70 km and at least 100 km. We propose an on-going lithospheric mantle reworking at the southernmost boundary of the Ordos block due to complicated mantle flow surrounding the Ordos block, that is, the eastward asthenospheric flow from the Tibet Plateau proposed by recent SKS study and mantle upwelling beneath the TNCO from mantle transition zone induced by the stagnant slabs of the subducted Pacific plate.
The origin of shear wave splitting beneath Iceland
NASA Astrophysics Data System (ADS)
Ito, Garrett; Dunn, Robert; Li, Aibing
2015-06-01
The origin of shear wave splitting (SWS) in the mantle beneath Iceland is examined using numerical models that simulate 3-D mantle flow and the development of seismic anisotropy due to lattice-preferred orientation (LPO). Using the simulated anisotropy structure, we compute synthetic SKS waveforms, invert them for fast polarization directions and split times, and then compare the predictions with the results from three observational studies of Iceland. Models that simulate a mantle plume interacting with the Mid-Atlantic Ridge in which the shallow-most mantle has a high viscosity due to the extraction of water with partial melting, or in which C-type olivine LPO fabric is present due to high water content in the plume, produce the largest chi-squared misfits to the SWS observations and are thus rejected. Models of a low-viscosity mantle plume with A-type olivine fabric everywhere, or with the added effects of E-type fabric in the plume below the solidus produce lower misfits. The lowest misfits are produced by models that include a rapid (˜50 km Myr-1) northward regional flow (NRF) in the mid-upper mantle, either with or without a plume. NRF was previously indicated by a receiver function study and a regional tomography study, and is shown here to be a major cause of the azimuthal anisotropy beneath Iceland. The smallest misfits for the models with both a plume and NRF are produced when LPO forms above depths of 300-400 km, which, by implication, also mark the depths above which dislocation creep dominates over diffusion creep. This depth of transition between dislocation and diffusion creep is greater than expected beneath normal oceanic seafloor, and is attributed to the unusually rapid strain rates associated with an Iceland plume and the NRF.
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.
2015-09-01
Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Aubreya N.; Wiens, Douglas A.; Nyblade, Andrew A.
The Cameroon Volcanic Line (CVL) is a 1800 km long volcanic chain, extending SW-NE from the Gulf of Guinea into Central Africa, that lacks the typical age progression exhibited by hot spot-related volcanic tracks. Our study investigates the upper mantle seismic structure beneath the CVL and surrounding regions to constrain the origin of volcanic lines that are poorly described by the classic plume model. Rayleigh wave phase velocities are measured at periods from 20 to 182 s following the two-plane wave methodology, using data from the Cameroon Seismic Experiment, which consists of 32 broadband stations deployed between 2005 and 2007.more » These phase velocities are then inverted to build a model of shear wave velocity structure in the upper mantle beneath the CVL. Our results show that phase velocities beneath the CVL are reduced at all periods, with average velocities beneath the CVL deviating more than –2% from the regional average and +4% beneath the Congo Craton. This distinction is observed for all periods but is less pronounced for the longest periods measured. Inversion for shear wave velocity structure indicates a tabular low velocity anomaly directly beneath the CVL at depths of 50 to at least 200 km and a sharp vertical boundary with faster velocities beneath the Congo Craton. Finally, these observations demonstrate widespread infiltration or erosion of the continental lithosphere beneath the CVL, most likely caused by mantle upwelling associated with edge-flow convection driven by the Congo Craton or by lithospheric instabilities that develop due to the nearby edge of the African continent.« less
Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions
NASA Astrophysics Data System (ADS)
Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.
2016-12-01
The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the time of emplacement of the islands, with an older plate providing conditions that are more favourable for basaltic underplating.
Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine
2015-12-01
The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.
Two-stage magmatism during the evolution of the transitional Ethiopian rift
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; England, R. W.; Maguire, P. K.; Kendall, M.; Stuart, G. W.
2008-12-01
The Ethiopian rift marks the transition between continental rifting and incipient seafloor spreading. The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) included a 400 km-long cross-rift profile with 97 broadband passive seismometers with the aim to investigate the change from mechanical to magmatic extension by defining the lithospheric structure and extent of magmatism beneath the rift. Complimentary studies of P-wave receiver functions, shear-wave splitting and teleseismic earthquake arrival times show that the lithospheric structure is inherently different beneath the north-western rift flank, rift valley and south- eastern rift flank, with contrasting crustal thickness and composition, upper mantle velocity and lithospheric anisotropy. Two stages of magmatic addition are interpreted: 1) a 6--18 km-thick underplate lens at the base of the crust, which probably formed synchronous with an Oligocene flood basalt event (and therefore pre-dates the adjacent rifting by ~20 Myr); and 2) a 20--30 km-wide zone of intense dyking and partial melt, which most likely pervades the entire crust beneath the rift valley and marks the locus of current rift extension. Furthermore, Precambrian collision-related lithospheric fabric is proposed to be the main source of the strong anisotropy that is observed along the entire cross-rift profile, which may be augmented by magmatism beneath the rift. An active, followed by a passive magma-assisted rifting model that is controlled by a combination of far-field plate stresses, the pre-existing lithospheric framework and magmatism is invoked to explain the rift evolution.
NASA Astrophysics Data System (ADS)
Zhang, B.; Ni, S.; Sun, D.; Shen, Z.; Jackson, J. M.; Wu, W.
2017-12-01
Volumetric heterogeneity on large scales ( >1000 km) and intermediate scales ( >100km) in the lowermost mantle have been established with seismological approaches. However, there are controversies regarding the level of heterogeneity in lowermost mantle at small scales (a few kilometers to tens of kilometers), with lower bound estimates ranging from 0.1% to a few percent. We take advantage of the small amplitude PcP waves at near podal distances (0-12°) to constrain the level of small-scale heterogeneity in the lowermost mantle. First, we compute short period synthetic seismograms with a finite difference code for a series of volumetric heterogeneity models in the lowermost mantle, and find that PcP is not identifiable if the small-scale heterogeneity in the lowermost mantle is above 2.0%. And then we use a functional form appropriate for coda decay to suppress P coda contamination. By comparing the corrected envelope of PcP and its precursors with synthetic seismograms, we find that perturbation of small-scale ( 8 km) heterogeneity in the lowermost mantle is 0.2% beneath regions to the east of China-Myanmar border area, north of Okhotsk Sea and South America. The perturbation is 0.5% beneath south of Okhotsk Sea and west of China-Myanmar border area, whereas strong perturbations ( 1.0%) are found beneath Central America. In the regions studied, we find that this particular type of small scale heterogeneity in lowermost mantle is weak, yet there are some regions requiring heterogeneity up to 1.0%. Where scattering is stronger, such as under Central America, more chemically complex mineral assemblages may be present at the core-mantle boundary.
Episodic kinematics in continental rifts modulated by changes in mantle melt fraction.
Lamb, Simon; Moore, James D P; Smith, Euan; Stern, Tim
2017-07-05
Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift-processes that are also likely to occur in oceanic spreading centres.
Upper mantle electrical resistivity structure beneath back-arc spreading centers
NASA Astrophysics Data System (ADS)
Seama, N.; Shibata, Y.; Kimura, M.; Shindo, H.; Matsuno, T.; Nogi, Y.; Okino, K.
2011-12-01
We compare four electrical resistivity structure images of the upper mantle across back-arc spreading centers (Mariana Trough at 18 N and 13 N, and the Eastern Lau at 19.7 S and 21.3 S) to provide geophysical constraints on issues of mantle dynamics beneath the back-arc spreading system related to the subducting slab. The central Mariana Trough at 18 N has the full spreading rate of 25 km/Myr, and shows characteristic slow-spreading features; existence of median valley neovolcanic zone and "Bull's eyes" mantle Bouguer anomaly (MBA) along the axes. On the other hand, the southern Mariana Trough at 13 N shows an EPR type axial relief in morphology and lower MBA than that in the central Mariana Trough (Kitada et al., 2006), suggesting abundance of magma supply, even though the full spreading rate is 35 km/Myr that is categorized as a slow spreading ridge. At the Eastern Lau spreading center, crustal thickness and morphology vary systematically with arc proximity and shows the opposed trends against spreading rate: The full spreading rate increases from 65 km/Myr at 21.3 S to 85 km/Myr at 19.7 S, while the crustal thicknesses decrease together with morphology transitions from shallow peaked volcanic highs to a deeper flat axis (Martinez et al., 2006). Matsuno et al. (2010) provides a resistivity structure image of the upper mantle across the central Mariana subduction system, which contains several key features: There is an uppermost resistive layer with a thickness of 80-100 km beneath the central Mariana Trough, suggesting dry residual from the plate accretion process. But there is no evidence for a conductive feature beneath the back-arc spreading center at 18 N, and this feature is clearly independent from the conductive region beneath the volcanic arc below 60 km depth that reflects melting and hydration driven by water release from the subducting slab. The resultant upper mantle resistivity structure well support that the melt supply is not abundant, resulting in characteristic slow-spreading features at the surface. We have conducted marine magnetotelluric (MT) surveys at the southern Mariana in 2010 and at the Eastern Lau in 2009-2010. We obtained 10 ocean bottom electro-magnetometer (OBEM) data from a 130 km length MT transect across the southern Mariana spreading axis at 13 N, while we obtained 2 OBEM data and 11 ocean bottom magnetometer data from two 160 km length MT transects across the Eastern Lau spreading axes at 19.7 S and 21.3 S. After calculation of MT response functions and their correction for topographic distortion, two-dimensional electrical resistivity structures will be derived using an inversion algorithm. At this meeting, first we will show the resistivity structure images of the upper mantle beneath these spreading axes. Then, these structure images will be compared to identify differences in the mantle dynamics and the melt supply beneath the back-arc spreading system related to the subducting slab.
Mantle viscosity beneath the Galapagos 95.5 deg W propagating rift
NASA Technical Reports Server (NTRS)
Schubert, G.; Hey, R. N.
1986-01-01
Detailed geophysical surveys in the vicinity of the Galapagos 95.5 deg W propagating rift tip establish the opening history of the rift and its velocity of propagation. These data together with a theory for mantle upwelling into slowly widening lithospheric cracks constrain the viscosity of the asthenosphere beneath the propagating rift to be less than about 10 to the 17th to 10 to the 18th Pa s.
Shield volcanism and lithospheric structure beneath the Tharsis plateau, Mars
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Cutts, J. A.
1976-01-01
The heights of four great shield volcanoes, when interpreted as reflecting the local hydrostatic head on a common source of upwelling magma, provide significant constraints on models of lithospheric structure beneath the Tharsis plateau. If Bouguer gravity anomalies are modeled in terms of a variable thickness crust, and a two-component (crust/mantle) earth-like structure is assumed for the Martian lithosphere, the derived model lithosphere beneath the Tharsis plateau has the following properties: (1) the upper low-density 'crustal' component is thickened beneath the Tharsis plateau; (2) the lower high-density 'mantle' component is thinned beneath the Tharsis plateau; and (3) there is a net gradient on the base of the Martian lithosphere directed downward away from beneath the summit of the Tharsis plateau. A long history of magmatic intrusion is hypothesized to have been the cause of the updoming of the Tharsis plateau and the maintenance of the plateau in a state of only partial compensation.
Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP
NASA Astrophysics Data System (ADS)
Lynner, Colton; Long, Maureen D.
2014-05-01
Shear wave splitting of SK(K)S phases is often used to examine upper mantle anisotropy. In specific cases, however, splitting of these phases may reflect anisotropy in the lowermost mantle. Here we present SKS and SKKS splitting measurements for 233 event-station pairs at 34 seismic stations that sample D″ beneath Africa. Of these, 36 pairs show significantly different splitting between the two phases, which likely reflects a contribution from lowermost mantle anisotropy. The vast majority of discrepant pairs sample the boundary of the African large low shear velocity province (LLSVP), which dominates the lower mantle structure beneath this region. In general, we observe little or no splitting of phases that have passed through the LLSVP itself and significant splitting for phases that have sampled the boundary of the LLSVP. We infer that the D″ region just outside the LLSVP boundary is strongly deformed, while its interior remains undeformed (or weakly deformed).
CCP Receiver-Function Imaging of the Moho beneath Volcanic Fields in Western Saudi Arabia
NASA Astrophysics Data System (ADS)
Blanchette, A. R.; Mooney, W. D.; Klemperer, S. L.; Zahran, H. M.; El-Hadidy, S. Y.
2015-12-01
We are searching for structural complexity in the crust and upper mantle beneath the Neogene volcanic fields ('harrats') of western Saudi Arabia. We determined P-wave seismic receiver functions for 50 broadband seismographic stations located within or adjacent to three volcanic fields: Harrats Lunayyir, Rahat, and Khaybar. There are 18 seismographic stations within Lunayyir, 11 in Khaybar, and 15 in Rahat with average interstation spacing of 10 km, 30km, and 50 km. For each station we calculated 300 to 600 receiver functions with an iterative time-domain deconvolution; noisy receiver functions (outliers) were rejected by cross correlating each receiver function with a station stack; we only accepted those with a cross correlation coefficient ≥ 0.6. We used these receiver functions to create a common-conversion point (CCP) image of the crust and upper mantle. The Moho and lithosphere-asthenosphere boundary (LAB) are clearly imaged, particularly beneath Lunayyir, and have average depths of about 38 km and 60 km. We do not find any evidence for structural disruption of the Moho within our ~70 km x 70 km image of the Moho beneath Lunayyir. We image a clear crust-mantle boundary beneath Rahat and Khaybar also at ~38 km, 2-3 km deeper than anticipated from prior receiver function results outside of the harrats. Mid-crustal low velocity zones seen locally beneath all three harrats, most commonly at 10-15 km or 15-20 km in depth, may more likely represent silicic Precambrian basement than accumulations of magma. Estimates of up to ~0.5 km3 of magma erupted during each eruptive episode are consistent with the lack of a disrupted Moho. However, the total erupted volume of magma, e.g. > 1000 km3 at Rahat, together with associated intrusions from the mantle, is consistent with crustal thickening of ~2 km beneath the harrats.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi
2007-08-01
The seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Most of the data for this study come from the Ethiopia broadband seismic experiment, conducted between 2000 and 2002. Shear velocity models obtained from the joint inversion show crustal structure that is similar to previously published models, with crustal thicknesses of 35 to 44 km beneath the Ethiopian Plateau, and 25 to 35 km beneath the Main Ethiopian Rift (MER) and the Afar. The lithospheric mantle beneath the Ethiopian Plateau has a maximum shear wave velocity of about 4.3 km/s and extends to a depth of ˜70-80 km. Beneath the MER and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the Ethiopian Plateau lithosphere can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30-50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure.
NASA Astrophysics Data System (ADS)
Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.
2016-12-01
North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow beneath the passive margin.
Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models
NASA Astrophysics Data System (ADS)
Li, A.; Dave, R.; Yao, Y.
2017-12-01
Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last effects or too slow to alter the dominant shear deformation in the asthenosphere.
NASA Technical Reports Server (NTRS)
Haggerty, Stephen E.; Toft, Paul B.
1988-01-01
Additional evidence to the composition of the lower crust and uppermost mantle was presented in the form of xenolith data. Xenoliths from the 2.7-Ga West African Craton indicate that the Moho beneath this shield is a chemically and physically gradational boundary, with intercalations of garnet granulite and garnet eclogite. Inclusions in diamonds indicate a depleted upper mantle source, and zenolith barometry and thermometry data suggest a high mantle geotherm with a kink near the Moho. Metallic iron in the xenoliths indicates that the uppermost mantle has a significant magnetization, and that the depth to the Curie isotherm, which is usually considered to be at or above the Moho, may be deeper than the Moho.
Deep Subducction in a Compressible Mantle: Observations and Theory
NASA Astrophysics Data System (ADS)
King, S. D.
2017-12-01
Our understanding of slab dynamics is primarily based on the results of numerical models of subduction. In such models coherent, cold slabs are clearly visible from the surface of the Earth to the core mantle boundary. In contrast, fast seismic anomalies associated with cold subducted slabs are difficult to identify below 1500-2000 km in tomographic models of Earth's mantle. One explanation for this has been the resolution, or lack thereof, of seismic tomography in the mid-mantle region; however in this work I will explore the impact of compressibility on the dynamics of subducting slabs, specifically shear heating of the slab and latent heat of phase transformations. Most geodynamic models of subduction have used an incompressible formulation, thus because subducted slabs are assumed to be cold and stiff, the primary means of thermal equilibration is conduction. With an assumed sinking velocity of approximately 0.1 m/yr, a subducted slab reaches the core-mantle boundary in approximately 30 Myrs—too fast for significant conductive cooling of the downgoing slab. In this work I consider a whole-mantle geometry and include both phase transformations with associated latent heat and density changes from the olivine-wadsleyite-ringwoodite-bridgmanite system and the pyroxene-garnet system. The goal of this work is to understand both the eventual fate and thermal evolution of slabs beneath the transition zone.
NASA Astrophysics Data System (ADS)
Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike
2018-02-01
Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below 1400 °C during post-Archean times, probably sometime shortly after 2 Ga. At around this time kimberlites replace komatiites as the hallmark mantle-derived magmatic feature of continental shields worldwide. The remarkable Mesozoic-Cenozoic 'kimberlite bloom' between 250-50 Ma may represent the ideal circumstance under which the relatively cool and volatile-fluxed cratonic roots of the Pangea supercontinent underwent significant tectonic disturbance. This created more than 60% of world's known kimberlites in a combination of redox- and decompression-related low-degree partial melting. Less than 2% of world's known kimberlites formed after 50 Ma, and the tectonic settings of rare 'young' kimberlites from eastern Africa and western North America demonstrate that far-field stresses on cratonic lithosphere enforced by either continental rifting or cold subduction play a crucial role in enabling kimberlite magma transfer to Earth's surface.
NASA Astrophysics Data System (ADS)
Krienitz, M.-S.; Haase, K. M.; Mezger, K.; van den Bogaard, P.; Thiemann, V.; Shaikh-Mashail, M. A.
2009-04-01
New 40Ar/39Ar ages combined with chemical and Sr, Nd, and Pb isotope data for volcanic rocks from Syria along with published data of Syrian and Arabian lavas constrain the spatiotemporal evolution of volcanism, melting regime, and magmatic sources contributing to the volcanic activity in northern Arabia. Several volcanic phases occurred in different parts of Syria in the last 20 Ma that partly correlate with different tectonic events like displacements along the Dead Sea Fault system or slab break-off beneath the Bitlis suture zone, although the large volume of magmas and their composition suggest that hot mantle material caused volcanism. Low Ce/Pb (<20), Nb/Th (<10), and Sr, Nd, and Pb isotope variations of Syrian lavas indicate the role of crustal contamination in magma genesis, and contamination of magmas with up to 30% of continental crustal material can explain their 87Sr/86Sr. Fractionation-corrected major element compositions and REE ratios of uncontaminated lavas suggest a pressure-controlled melting regime in western Arabia that varies from shallow and high-degree melt formation in the south to increasingly deeper regions and lower extents of the beginning melting process northward. Temperature estimates of calculated primary, crustally uncontaminated Arabian lavas indicate their formation at elevated mantle temperatures (Texcess ˜ 100-200°C) being characteristic for their generation in a plume mantle region. The Sr, Nd, and Pb isotope systematic of crustally uncontaminated Syrian lavas reveal a sublithospheric and a mantle plume source involvement in their formation, whereas a (hydrous) lithospheric origin of lavas can be excluded on the basis of negative correlations between Ba/La and K/La. The characteristically high 206Pb/204Pb (˜19.5) of the mantle plume source can be explained by material entrainment associated with the Afar mantle plume. The Syrian volcanic rocks are generally younger than lavas from the southern Afro-Arabian region, indicating a northward progression of the commencing volcanism since the arrival of the Afar mantle plume beneath Ethiopia/Djibouti some 30 Ma ago. The distribution of crustally uncontaminated high 206Pb/204Pb lavas in Arabia indicates a spatial influence of the Afar plume of ˜2600 km in northward direction with an estimated flow velocity of plume material on the order of 22 cm/a.
Variations in the mantle transition zone beneath the Ethiopian Rift and Afar
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; Hetenyi, G.; Blanchard, T.; Stuart, G. W.
2010-12-01
We use receiver functions calculated on broadband seismological data across Ethiopia to identify and map 3-D changes in the mantle transition zone (MTZ) thickness beneath the Ethiopian rift, Afar and the uplifted Ethiopian Plateau. The MTZ that divides the upper and lower mantle in the Earth is marked by discontinuities whose position and nature is controlled by local temperature and composition. It is commonly assumed that positive temperature anomalies cause an overall thinning of the MTZ by deepening the mineral phase transition of olivine (α-spinel) to wadsleyite (β-spinel) at around 410 km depth and shallowing the mineral phase transition of ringwoodite (γ-spinel) to magnesiowustite-perovskite at around 660 km depth. Such regions of anomalously hot mantle have been interpreted to extend from the core-mantle boundary (e.g. the African Superplume) to the Earth's surface from global tomographic models. Previous studies in Ethiopia or Afar that invoke receiver functions are mainly restricted to illuminating the MTZ beneath permanent seismological stations and, together with a regional receiver function study, all have found difficulty in imaging the discontinuities. They were unable to provide conclusive evidence for a thinned transition zone and could not constrain lateral changes in MTZ thickness that are required to assess whether the African Superplume intersects the MTZ beneath Ethiopia. We use seismological data from permanent stations as well as from four temporary arrays to compute receiver functions. We perform time-to-depth migration using the common conversion point (CCP) method with a regional velocity model that includes the slow mantle anomalies to estimate the depth-to-discontinuties and produce an MTZ thickness map. The signature of both the 410 and the 660 km discontinuities is clearly identified across ~500x500 km2. The 410 is relatively flat at 444±10 km depth throughout the region. The 660 is more perturbed with steep topographic changes and lies at 685±20 km depth. The mean depth of both interfaces being deeper than the respective nominal depths can be related to the low resolution of the global velocity model. However, the 410 is deepened more than the 660, resulting in a regionally thinned MTZ in the area of study by up to 25 km (equivalent of +150°C anomaly in the MTZ). A locally thickened (+13 km) MTZ is observed beneath part of the rift where the Main Ethiopian Rift opens into Afar. We interpret that elevated temperatures caused by the lower mantle African Superplume interacting with the MTZ in this region explains the thinned MTZ. Furthermore, the very slow upper mantle above the MTZ is a result of heat transfer from lower to upper mantle. This raised the mantle temperature, which facilitated the onset of rifting in Ethiopia.
NASA Astrophysics Data System (ADS)
Lee, C.; Zhou, Y.; King, S. D.
2008-12-01
Analyses of seismic anisotropy caused by spatial alignments of anisotropic minerals (e.g., olivine) have been widely used to infer mantle flow directions in the upper mantle. Deep seismic anisotropy beneath fast spreading mid-ocean ridges (e.g., East Pacific Rise) has been recently observed at depths of 200-300 km and even down to the transition zone, with polarization changes in radial anisotropy from VSH < VSV (shallow) to VSH < VSV (deep). We investigate the origin of the observed deep seismic anisotropy and polarization changes beneath the EPR in 2-D Cartesian numerical models using both kinematically (prescribed velocity) and dynamically (negative buoyancy) driven ridge spreading. Because subduction is thought to be an important controlling factor in the style of ridge spreading and mantle convection, we consider a subduction zone developing at the prescribed weak zone. A whole mantle domain expressed by a one by four box (2890 by 11560 km) is used to minimize the boundary effects on the subducting slab. For the upper mantle rheology, we consider composite viscosity of diffusion and dislocation creep for dry olivine to evaluate the effects of lateral variation of mantle viscosity and the rheological changes from dislocation to diffusion creep under the mid-ocean ridge. For the lower mantle rheology, we use diffusion creep for dry olivine by increasing grain size to match relevant lower mantle viscosity. We also consider the 660 km phase transition with density and viscosity jump as well as Clapeyron slope. Anisotropy is evaluated using finite-strain ellipses based on the assumption that a-axes of olivine crystals are parallel to the major axes of the finite-strain ellipses. Our preliminary results show 1) in general, the development of VSH < VSV anisotropy is confined only in a narrow region under the ridge axis at depths of 200- 300 km; 2) strong VSH > VSV anisotropy can be found in the 'asthenosphere' beneath the entire spreading oceanic lithosphere; and 3) the dominate creep mechanism changes from dislocation creep to diffusion creep at depths of 300-400 km; indicating a more isotropic lower upper mantle. We conclude that our geodynamical modeling in a passive ridge spreading system does not produce the deep seismic anisotropy recently observed beneath the EPR. However, we do not consider partial melting, dynamic recrystallization and anisotropic viscosity which would change seismic interpretation and mantle flow, and thus further study is required.
Anisotropy beneath the Southern Pacific - real or apparent?
NASA Astrophysics Data System (ADS)
Prasse, Philipp; Thomas, Christine
2016-04-01
Anisotropy of the lowermost mantle beneath the South- to Central Pacific is investigated using US-Array receivers and events located near the Tonga-Fiji subduction zones. Differential splitting in three different distance ranges (65° -85° , 90° -110° and >110°) of S-ScS, SKS-S, SKS-Sdiff phases is used. By utilizing differential splitting technique, it was possible to correct for upper mantle, as well as source- and receiver side anisotropy and effectively quantify shear wave splitting originating in the lowermost mantle. Delay times of horizontal (SH) and vertical polarized (SV) shear waves show that predominantly the SH wave is delayed relative to the SV wave. Motivated by the discrepancy in previous Pacific studies investigating the lowermost mantle beneath the Pacific the possibility of isotropic structure producing the observed splitting is tested. Synthetic seismograms are computed, based on various isotropic models and the resulting synthetics are analysed in the same way as the real data. While simple layered models do not produce splitting and therefore apparent anisotropy, models in which the lowermost mantle is represented as a negative gradient in P- and S-wave velocity, produce clear apparent anisotropy. Thus, this study presents a possible alternative way of explaining the structure of the D" region.
NASA Astrophysics Data System (ADS)
Mohamed, A. A.; Gao, S. S.; Elsheikh, A. A.; Liu, K. H.; Yu, Y.; Fat-Helbary, R. E.
2014-11-01
The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broad-band seismic data on the African Plate adjacent to the Red Sea. Here, we report the first comprehensive image of the mantle transition zone (MTZ) discontinuities using data from the Egyptian National Seismic Network, and compare the resulting depths of the 410 and 660-km discontinuities with those observed on the Arabian side. Our results show that when a standard earth model is used for time-to-depth conversion, the resulting depth of the discontinuities increases systematically towards the axis of the Afro-Arabian Dome (AAD) from both the west and east. Relative to the westernmost area, the maximum depression of the 410-km discontinuity is about 30 km, and that of the 660-km discontinuity is about 45 km. The observed systematic variations can best be explained by a model involving a hydrated MTZ and an upper-mantle low-velocity zone beneath the AAD. Models invoking one or more mantle plumes originated from the MTZ or the lower-mantle beneath the study area are not consistent with the observations.
NASA Astrophysics Data System (ADS)
Guo, Zhi; Gao, Xing; Li, Tong; Wang, Wei
2018-05-01
We use P-wave receiver function H-k stacking and joint inversion of receiver functions and Rayleigh wave dispersions to investigate crustal and uppermost mantle structure beneath the South China. The obtained results reveal prominent crustal structure variations in the study area, Moho depth increases from ∼30 km in the Cathaysia Block to more than ∼60 km in the eastern Tibetan Plateau. A Moho undulation and Vp/Vs ratio variations can be observed from the Cathaysia Block to Yangtze Craton. These observations consistent with the crustal structures predict by the flat slab subduction model. We interpret these lateral crustal structure variations reflect the tectonic evolution of the Yangtze Craton and Cathaysia Block prior the Mesozoic and the post-orogenic magmatism due to the breaking up of the subducted flat slab and subsequent slab rollback in the South China. The observed variations of the crustal structures not only reveal the lateral crustal inhomogeneity, but also provide constraints on the geodynamic evolution of the South China.
Volatiles in the Earth: All shallow and all recycled
NASA Technical Reports Server (NTRS)
Anderson, Don L.
1994-01-01
A case can be made that accretion of the Earth was a high-temperature process and that the primordial Earth was dry. A radial zone-refining process during accretion may have excluded low-melting point and volatile material, including large-ion lithophile elements toward the surface, leaving a refractory and zoned interior. Water, sediments and altered hydrous oceanic crust are introduced back into the interior by subduction, a process that may be more efficient today than in the past. Seismic tomography strongly suggests that a large part of the uppermantle is above the solidus, and this implies wet melting. The mantle beneath Archean cratons has very fast seismic velocities and appears to be strong to 150 km or greater. This is consistent with very dry mantle. It is argued that recycling of substantial quantities of water occurs in the shallow mantle but only minor amounts recycle to depths greater than 200 km. Recycling also oxidizes that mantle; ocean island ('hotspot') basalts are intermediate in oxidation state to island-arc and midocean ridge basalts (MORB). This suggests a deep uncontaminated reservoir for MORB. Plate tectonics on a dry Earth is discussed in order to focus attention on inconsistencies in current geochemical models of terrestrial evolution and recycling.
The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone
NASA Astrophysics Data System (ADS)
Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia
2016-04-01
The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.
NASA Astrophysics Data System (ADS)
Darin, Michael
2017-04-01
Despite significant progress toward understanding the kinematics of modern tectonic escape in Anatolia, considerable uncertainty remains regarding the dynamics of the transition from collision to escape. Because of the relatively small size of the Anatolia microplate, regional-scale studies spanning the plate margins and interior are well-suited to investigate the driving forces and space-time evolution of this unique tectonic transition in collisional orogens. CD-CAT (Continental Dynamics-Central Anatolia Tectonics) is a five-year (2011-2016) project funded by the National Science Foundation (USA) designed to explore the surface-to-mantle dynamics of Anatolia during the Cenozoic subduction-collision-escape transition in central Anatolia. Our approach integrates results from a diversity of methods including: structural, stratigraphic, and geomorphic analyses; magnetostratigraphy; low-temperature thermochronometry; Ar/Ar geochronology; geochemistry; passive seismic experiments (71 stations over two years); magnetotellurics; and numerical modeling. The principal results from this project include: recognition of a margin-wide magmatic lull from 40-20 Ma, followed by a southwestward migration of the initiation of magmatism toward and within the Central Anatolia Volcanic Province (CAVP); an early Miocene switch from contraction/transpression to extension/transtension in the Kırşehir and Niǧde Massifs, while contraction changed to late Miocene strike-slip deformation east of the Central Anatolian fault zone (CAFZ); rain shadow development due to uplift of the central Taurides 11-5 Ma; thin to absent lithospheric mantle beneath central Anatolia; the lack of an Arabia slab shallower than 800 km depth; and a change in the Cyprus slab from horizontal beneath the central Taurides and apparently fragmented beneath the CAVP, to very steeply dipping beneath the eastern Isparta Angle. The CAFZ lies along part of the Inner Tauride Suture (ITS) and represents a fundamental inherited lithosphere-scale structure that has accommodated contrasting magnitudes and styles of deformation to the east and west since Arabia collision. The coincidence of a similarly NNE-oriented lower plate boundary (Africa COB) or STEP fault between the Cyprus and Arabia slabs may have amplified the role of the CAFZ in controlling differential upper plate deformation. These findings support the following tectonic scenario: the first stage involved late Eocene to early Miocene horizontal subduction of the Afro-Arabia slab from central Anatolia to the Zagros, culminating in the final suturing of the Taurides and Pontides in Anatolia. The second stage occurred during the Miocene and involved the segmentation of the downgoing slab at the longitude of the CAFZ to form the Arabia slab in the east and the Cyprus slab in the west. North of Arabia, early Miocene rollback and foundering of the Arabia slab resulted in widespread volcanism, slab delamination beneath the eastern Taurides and eventual break-off and rapid sinking into the lower mantle starting at 15-10 Ma. North of Cyprus, initial rollback, steepening and breakup of the Cyprus slab are recorded by early Miocene upper plate extension and exhumation, followed by middle Miocene voluminous CAVP magmatism and uplift of the southern Taurides margin. The final stage involved a transition from diffuse to localized strain along transcurrent structures that have facilitated the westward escape of Anatolia since the latest Miocene-Pliocene.
Developments of Finite-Frequency Seismic Theory and Applications to Regional Tomographic Imaging
2009-01-31
banana -doughnut” sensitivity kernels of teleseismic body waves to image the crust and mantle beneath eastern Eurasia. We have collected and processed...In this project, we use the “ banana -doughnut” sensitivity kernels of teleseismic body waves to image the crust and mantle beneath eastern Eurasia...replaced body-wave ray paths with “ banana -doughnut” sensitivity kernels calculated in 1D (Dahlen et al., 2000; Hung et al., 2000; Zhao et al., 2000
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.
2017-12-01
The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.
NASA Astrophysics Data System (ADS)
Schaeffer, A. J.; Snyder, D. B.; Cairns, S.; Elliot, B.; Audet, P.; Esteve, C.; Murray-Bergquist, L.; Falck, H.
2016-12-01
The tectonic evolution of the Beaufort Sea continental margin has contributed to the maturation of these rocks into a major petroleum reservoir. Recent shallow offshore seismic reflection data suggest that Banks Island represents thin crust along a rifted margin established during the opening of the Arctic Ocean. In this case, rifting of the margin caused Banks Island to subside and accumulate sediments rich in petroleum source material. The cooling history and further subsidence of these sediments is important for understanding the thermal maturation of petroleum products. Recently published surface-wave velocity models of North America indicate seismic velocities at 100-150 km depths similar to those beneath Canada's diamond mines in the central Slave craton north of Yellowknife. These results imply that Banks Island is part of the Canadian Shield and that any kimberlites found thereon might contain diamonds. However, the fast velocities are inconsistent with this being a tectonically disrupted and thinned lithosphere along the Arctic margin of the Canada Basin. The problem is therefore to reconcile mantle structure typical of the Canadian Shield with crust typical of a rifted passive margin. Possibly related seismicity beneath the Mackenize River Delta and offshore in the Beaufort Sea has been observed for decades but its origin remains unknown, although has been suggested as due to incipient subduction of oceanic lithosphere beneath the North American craton. Resolving these questions requires high-resolution 3-D seismic models obtained from an array of broadband seismograph stations. Here we present preliminary results on the structure of the crust and uppermost mantle underlying the western Canadian Arctic. These results are generated using new data from the Banks Island Seismograph Network (BISN), three stations installed over the summer of 2014 and 2015; augmented with several USArray Transportable Array stations and older POLARIS and CNSN stations on neighbouring Arctic Islands.
Thermal structure and geodynamics of subduction zones
NASA Astrophysics Data System (ADS)
Wada, Ikuko
The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.
Adams, Aubreya N.; Wiens, Douglas A.; Nyblade, Andrew A.; ...
2015-03-24
The Cameroon Volcanic Line (CVL) is a 1800 km long volcanic chain, extending SW-NE from the Gulf of Guinea into Central Africa, that lacks the typical age progression exhibited by hot spot-related volcanic tracks. Our study investigates the upper mantle seismic structure beneath the CVL and surrounding regions to constrain the origin of volcanic lines that are poorly described by the classic plume model. Rayleigh wave phase velocities are measured at periods from 20 to 182 s following the two-plane wave methodology, using data from the Cameroon Seismic Experiment, which consists of 32 broadband stations deployed between 2005 and 2007.more » These phase velocities are then inverted to build a model of shear wave velocity structure in the upper mantle beneath the CVL. Our results show that phase velocities beneath the CVL are reduced at all periods, with average velocities beneath the CVL deviating more than –2% from the regional average and +4% beneath the Congo Craton. This distinction is observed for all periods but is less pronounced for the longest periods measured. Inversion for shear wave velocity structure indicates a tabular low velocity anomaly directly beneath the CVL at depths of 50 to at least 200 km and a sharp vertical boundary with faster velocities beneath the Congo Craton. Finally, these observations demonstrate widespread infiltration or erosion of the continental lithosphere beneath the CVL, most likely caused by mantle upwelling associated with edge-flow convection driven by the Congo Craton or by lithospheric instabilities that develop due to the nearby edge of the African continent.« less
Slab melting and magma formation beneath the southern Cascade arc
Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.
2016-01-01
The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the slab (∼7–9 km below the slab top) cause flux melting of the subducted oceanic crust, producing hydrous slab melts that migrate into the overlying mantle, where they react with peridotite to induce further melting.
3D Integrated geophysical-petrological modelling of the Iranian lithosphere
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier
2016-04-01
The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3D thermochemical model we propose a new scenario to interpret the geodynamical history of area. In this context the present-day central Iran block would be as remain of the older and larger Iranian block present before the onset of Turan platform subduction beneath the Iranian Plateau. Further analysis of sub-lithospheric density anomalies (e.g., subducted slabs) is required to fully understand the geodynamics of the area.
Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements
NASA Astrophysics Data System (ADS)
Lebedev, S.; Meier, T.; van der Hilst, R. D.
2005-12-01
The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be ruled out. As shown for the model of subcontinental asthenospheric flow by Morgan and Morgan (2005), this mantle flow pattern can explain not only the rifting but also the basaltic volcanism observed in the Lake Baikal region.
Lattice thermal conductivity of silicate glasses at high pressures
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Hsieh, W. P.
2016-12-01
Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.
Os and HSE of the hot upper mantle beneath southern Tibet: Indian mantle affinity?
NASA Astrophysics Data System (ADS)
Zhao, Z.; Dale, C. W.; Pearson, D. G.; Niu, Y.; Zhu, D.; Mo, X.
2011-12-01
The subduction of the Indian plate (including cratonic continental crust and/or upper mantle) beneath southern Tibet is widely accepted from both geological and geophysical studies. Mantle-derived xenoliths from this region provide a means of directly investigating the mantle underlying the southern part of the plateau. Studies of xenoliths hosted in the Sailipu ultrapotassic volcanic rocks, erupted at ~17 Ma, have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). Here we report comprehensive EPMA and LA-ICP-MS major and trace element data for the Sailipu xenoliths and also whole rock Os isotope and HSE data in order to constrain the depletion history of the mantle and to identify the presence of any potential Indian cratonic mantle. The xenoliths, ranging in size from 0.5cm to 1.5cm in diameter, are mostly peridotites. The calculated temperatures are 1010-1230°C at the given pressures of ~1.6-2.0 GPa (n=47). These P-T conditions are similar to rift-related upper mantle regimes (e.g. Kenya), indicating the influence of regional extension beneath southern Tibet in the Miocene. A series of compositional discriminations for minerals (Cpx, Opx, Ol, and Phl), e.g. Fo<90, suggest that the xenoliths are non-cratonic spinel-peridotite (cratonic peridotite olivine Fo> ~91), with a clear metasomatic signature We obtained Os isotope data and abundances of highly siderophile elements (HSE, including Os, Ir, Ru, Pt, Pd and Re) on a set of six olivine-dominated peridotite samples from Sailipu volcanics, less than 1 cm in dimension. They allow us to further constrain the nature and state of the upper mantle beneath the southern Tibet. Sailipu samples display low total HSE abundances (Os+Ir+Ru+Pt+Pd+Re) ranging from 8.7 to 25 ppb, with nearly constant Os, Ir , and Ru, but rather varied Pt (2-13), Pd (0.4-5.2), and Re (0.01-0.5). Chondrite-normalised Pd/Ir ratios range from 0.2 to 2.4 reflecting significant metasomatism of some samples. The xenoliths exhibit 187Os/188Os ratios of 0.12213-0.12696, corresponding to γOs ranging from -4.2 to -0.4 - much higher than ancient cratonic mantle. Thus, on the basis of mineral chemistry and whole rock Os isotopes, Indian cratonic mantle is absent from our suite of xenoliths. Therefore, assuming the presence of cratonic mantle, it seems likely that the xenoliths do not sample the deep basal section of the lithosphere where cratonic Indian lithosphere is thought to be present under southern Tibet. In which case, testing of the seismic and tectonic models may not be possible without garnet-facies peridotites. More work need to be done to further reveal the mantle compostion and mantle dynamics beneath Tibet. [Financially supported by the National Key Project for Basic Research of China (Project 2011CB403102 and 2009CB421002)]. [1] Zhao Z, et al., 2008a. Acta Petrologica Sinica, 24 (2): 193-202 [2] Zhao Z, et al., 2008b. Geochimica et Cosmochimica Acta, 72, 12 (Supp.): A1095 [3] Liu C-Z, et al., 2011, Geology, in press
Deformation Mechanism of the Northern Tibetan Plateau as Revealed by Magnetotelluric Data
NASA Astrophysics Data System (ADS)
Zhang, Letian; Wei, Wenbo; Jin, Sheng; Ye, Gaofeng; Xie, Chengliang
2017-04-01
As a unique geologic unit on the northern margin of the Tibetan Plateau, the Qaidam Basin plays a significant role in constraining the vertical uplift and horizontal expansion of the northern and northeastern Tibetan Plateau. However, due to its complex evolution history and difficult logistic condition, deformation mechanism of the lithosphere beneath the Qaidam Basin is still highly debated. To better understand the lithospheric electrical structure and deformation mechanism of the Qaidam Basin, A 250 km long, NE-SW directed Magnetotelluric (MT) profile was finished in the northern portion of the Basin, which is roughly perpendicular to the thrust fault systems on the western and eastern margins of the Basin, as well as anticlinorium systems within the Basin. The profile consists of 20 broad-band MT stations and 5 long-period MT stations. Original time series data is processed with regular robust routines. Dimensionality and regional strike direction are determined for the dataset through data analysis. Based on the analysis results, 2D inversions were performed to produce a preferred model of the lithospheric electrical structure beneath the northern Qaidam Basin. Uncertainty analysis of the 2D inversion model was also conducted based on a data resampling approach. The outcome 2D electrical model was further used to estimate the distribution of temperature and melt fraction in the upper mantle based on laboratory-determined relationships between the electrical conductivity and temperature of nominally anhydrous minerals and basaltic melt by using the mixing law of Hashin-Shtrikman's bounds. All these results suggest that: (1) the crust-mantle boundary is imaged as a conductive layer beneath the western Qaidam Basin, with its temperature estimated to be 1200-1300 °C and melt fraction 5-8%, indicating decoupling deformation of the crust and upper mantle. (2) A large-scale east-dipping conductor is imaged beneath the eastern Qaidam Basin. This conductor extends from the upper crust to the upper mantle, implying vertical coherent deformation of the lithosphere. Melt fraction of this conductive region is estimated to be as high as 10%, which might accommodates a major portion of the thrust deformation on the boundary between the Qaidam Basin and the Qilian Block. (3) Two different end-member deformation mechanisms, namely the decoupling deformation and vertical coherent deformation are both active on the northern margin of the Tibetan Plateau, and both play a significant role in controlling the uplift and expansion of the northern Tibetan Plateau. *This work was funded by National Natural Science Foundation of China (41404060, 41404059).
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan V.; Li, Aibing
2015-02-01
Shear wave velocity and radial anisotropy beneath New Mexico are obtained from ambient seismic noise tomography using data from the Transportable Array. Besides the distinct seismic structure imaged across the Rio Grande rift from the Colorado Plateau to the Great Plains, both velocity and anisotropy models also reveal significant variations along the rift. The rift at Albuquerque is characterized by remarkably low velocity in the shallow crust, high velocity and strong positive anisotropy in the middle and lower crust, and low velocity in the upper mantle. These observations can be interpreted as magma accumulation in the shallow crust and significant mafic underplating in the lower crust with abundant melt supply from the hot mantle. We propose that the Albuquerque region has recently been experiencing the most vigorous extensional deformation in the rift. Positive anisotropy with Vsh > Vsv appears in the central and southern rifts with a stronger anisotropy beneath younger volcanoes, reflecting layering of magma intrusion due to past and recent rifting activities. The low velocities in the uppermost mantle are observed under high-elevation places, the Jemez Lineament, northern rift, and east rift boundary, implying that the buoyancy of hot mantle largely compensates the local high topography. Low mantle velocities appear at the boundary of the southern rift, corresponding to the large lithosphere thickness change, instead of the rift center, consistent with the prediction from the small-scale, edge-driven mantle convection model. We conclude that the edge-driven upper mantle convection is probably the dominant mechanism for the recent and current rifting and uplift in the Rio Grande rift.
NASA Astrophysics Data System (ADS)
Castillo, Paterno; Hilton, David; Halldórsson, Sæmundur
2014-09-01
The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP) in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS) has a deep mantle contribution (Hilton et al., 2011). New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean) lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean) lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014).
Magma plumbing in the Grímsvötn volcanic system, Iceland: an overview
NASA Astrophysics Data System (ADS)
Thordarson, T.
2016-12-01
The basaltic Grímsvötn volcanic system (GVS) consists of Grímsvötn central volcano (GCV) and an immature fissure swarm extending 70 km to the southwest from GCV. The GCV has the highest eruption frequency of all central volcanos in Iceland, or 7 events per 100 years. In contrast, the GVS fissure swarm has only featured two events in postglacial times, the 1783-4 Laki and the prehistoric Lambavatnsgígar fissure eruptions. These two events account for 25% of the total Holocene magma output from the GVS and 80% of the output in historic time (i.e. last 1100 years). Although GVS magma plumbing has been a topic of research for four decades, its general structure, extent and geometry is still deliberated. Is mantle-derived magma delivered straight up beneath the GCV to an upper crustal magma chamber and then vertically to eruptions at the GCV and laterally to eruption on the GVS fissure swarm? Or does the system feature two levels of crustal storage, one in the upper crust beneath GCV and another at mid-crustal depth? Or is the structure of the GVS plumbing more complex? The data that we have so far and is pertinent to GVS magma plumbing is summarised below: Geophysical measurements imply that shallowest magma storage beneath GCV is at 3-4 km. The Zr and Nb concentrations in the tephra from the 1998 and 2004 GCV plus Laki eruptions show that the parent magmas for each was produced by different degrees of partial melting of a similar mantle source. It also demonstrates transport to the surface via separate pathways and that neither magma can be derived by fractional crystallization from a Laki-like magma. Detailed petrological studies on the Laki tephra and lava indicate polybaric magma evolution within the mid-crust (at 6 to 15 km depth), with further evolution at shallower depths induced either by disequilibrium crystal growth during ascent of magma from the mid-crust storage or a brief residence at 3-6 km depths. The Laki magma contains significant abundances of polymineralic glomerocrysts, signifying that erupted magma interacted with preexisting crystal mushes. These data support the notion of a crustal plumbing system with multiple storage level involving polybaric magma evolution and are inconsistent with the idea that all of the magma erupted within the GVS is delivered from a single upper crustal magma chamber beneath GCV.
NASA Technical Reports Server (NTRS)
Froidevaux, C.; Schubert, G.; Yuen, D. A.
1976-01-01
Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.
Magmatic plumbing system from lower mantle of Hainan plume
NASA Astrophysics Data System (ADS)
Xia, Shaohong; Sun, Jinlong; Xu, Huilong; Huang, Haibo; Cao, Jinghe
2017-04-01
Intraplate volcanism during Late Cenozoic in the Leiqiong area of southernmost South China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. However, detailed features of Hainan plume, such as morphology of magmatic conduits, depth of magmatic pool in the upper mantle and pattern of mantle upwelling, are still enigmatic. Here we present seismic tomographic images of the upper 1100 km of the mantle beneath the southern South China. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with diameter of about 200-300 km that tilts downward to lower mantle beneath north of Hainan hotspot and a head that spreads laterally near the mantle transition zone, indicating a magmatic pool in the upper mantle. Further upward, this head is decomposed into small patches, but when encountering the base of the lithosphere, a pancake-like anomaly is shaped again to feed the Hainan volcanism. Our results challenge the classical model of a fixed thermal plume that rises vertically to the surface, and propose the new layering-style pattern of magmatic upwelling of Hainan plume. This work indicates the spatial complexities and differences of global mantle plumes probably due to heterogeneous compositions and changefully thermochemical structures of deep mantle.
the P-wave upper mantle structure beneath an active spreading center: The Gulf of California
NASA Technical Reports Server (NTRS)
Walck, M. C.
1983-01-01
Detailed analysis of short period travel time, and waveform data reveals the upper mantle structure beneath an oceanic ridge to depths of 900 km. More than 1400 digital seismograms from earthquakes in Mexico and central America recorded at SCARLET yield 1753 travel times and 58 direct measurements of short period travel time as well as high quality, stable waveforms. The 29 events combine to form a continuous record section from 9 deg to 40 deg with an average station spacing of less than 5 km. First the travel times are inverted. Further constraints arise from the observed relative amplitudes of mantle phases, which are modeled by trial and error.
Tomographic imaging of subducted lithosphere below northwest Pacific island arcs
Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.
1991-01-01
The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.
NASA Astrophysics Data System (ADS)
Palomeras, I.; Villaseñor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.
2017-05-01
We present a new 3-D shear velocity model of the western Mediterranean from the Pyrenees, Spain, to the Atlas Mountains, Morocco, and the estimated crustal and lithospheric thickness. The velocity model shows different crustal and lithospheric velocities for the Variscan provinces, those which have been affected by Alpine deformation, and those which are actively deforming. The Iberian Massif has detectable differences in crustal thickness that can be related to the evolution of the Variscan orogen in Iberia. Areas affected by Alpine deformation have generally lower velocities in the upper and lower crust than the Iberian Massif. Beneath the Gibraltar Strait and surrounding areas, the crustal thickness is greater than 50 km, below which a high-velocity anomaly (>4.5 km/s) is mapped to depths greater than 200 km. We identify this as a subducted remnant of the NeoTethys plate referred to as the Alboran and western Mediterranean slab. Beneath the adjacent Betic and Rif Mountains, the Alboran slab is still attached to the base of the crust, depressing it, and ultimately delaminating the lower crust and mantle lithosphere as the slab sinks. Under the adjacent continents, the Alboran slab is surrounded by low upper mantle shear wave velocities (Vs < 4.3) that we interpret as asthenosphere that has replaced the continental margin lithosphere which was viscously removed by Alboran plate subduction. The southernmost part of the model features an anomalously thin lithosphere beneath the Atlas Mountains that could be related to lateral flow induced by the Alboran slab.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua
2018-01-01
We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.
NASA Astrophysics Data System (ADS)
James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.
2012-12-01
We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth range 300-600 km show that a northern segment of the orphaned Farallon plate lies sub-horizontally in the mantle transition zone parallel to and along the length of the SRP. The images also provide evidence for present-day upwelling from the deep upper mantle around the northern edge of the remnant slab beneath SRP as well as around its leading tip beneath Yellowstone. These results, coupled with petrologic and geochemical constraints, provide compelling support for a subduction model that accounts for virtually all post-20 Ma Cenozoic volcanism and structural deformation in the Cascadian back arc. James, D.E., Fouch, M.J., Carlson, R.W., Roth, J.B., 2011. Slab fragmentation, edge flow, and the origin of the Yellowstone hotspot track. Earth and Planetary Science Letters 311, 124-135. Long, M.D., Till, C.B., Druken, K.A., Carlson, R.W., Wagner, L.S., Fouch, M.J., James, D.E., Grove, T.L., Schmerr, N., Kincaid, C., 2012. Mantle dynamics beneath the Pacific Northwest and generation of voluminous back-arc volcanism. G-cubed in press.
NASA Astrophysics Data System (ADS)
Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.
2016-05-01
We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs < 4.4 km/s) body extending from near surface to greater than 75 km depth beneath the Banks and Otago Peninsulas and high-velocity (Vs~4.7 km/s) mantle anomalies underlying the Southern Alps and off the northwest coast of the South Island. Using the 4.5 km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau and central South Island is substantially greater than that of the inner Campbell Plateau. The high-velocity anomaly we resolve at subcrustal depths (>50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.
NASA Astrophysics Data System (ADS)
Agius, M. R.; Rychert, C.; Harmon, N.; Kendall, J. M.
2017-12-01
Determining the mechanisms taking place beneath ridges is important in order to understand how tectonic plates form and interact. Of particular interest is establishing the depth at which these processes originate. Anomalies such as higher temperature within the mantle transition zone may be inferred seismically if present. However, most ridges are found in remote locations beneath the oceans restricting seismologists to use far away land-based seismometers, which in turn limits the imaging resolution. In 2016, 39 broadband ocean-bottom seismometers were deployed across the Mid-Atlantic Ridge, along the Romanche and Chain fracture zones as part of the PI-LAB research project (Passive Imaging of the Lithosphere and Asthenosphere Boundary). The one-year long seismic data is now retrieved and analysed to image the mantle transition zone beneath the ridge. We determine P-to-s (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities using the extended multitaper deconvolution. The data from ocean-bottom seismometers have tilt and compliance noise corrections and is filtered between 0.05-0.2 Hz to enhance the signal. 51 teleseismic earthquakes generated hundreds of good quality waveforms, which are then migrated to depth in 3-D. The topography at the d410 deepens towards the west of the Romanche and Chain fracture zone by 15 km, whereas the topography of d660 shallows beneath the ridge between the two zones. Transition zone thickness thins from 5 to 20 km. Thermal anomalies determined from temperature relationships with transition zone thickness and depth variations of the d410 and d660 suggests hotter temperatures of about 200 K. Overall, the result suggests mid-ocean ridges may have associated thermal signatures as deep as the transition zone.
Tomography of the upper mantle beneath the African/Iberian collision zone
NASA Astrophysics Data System (ADS)
Mickael, B.; Nolet, G.; Villasenor, A.; Josep, G.; Thomas, C.
2013-12-01
During Cenozoic, geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study we take advantage of the dense broadband-station networks now available in Alborán Sea region, to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will bring new constraints on the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Our model shows, beneath Alborán Sea, a strong (~ 4%) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly and its extent at depth are coherent with a lithospheric slab, thus favoring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper-mantle, several high intensity slow anomalies are widely observed in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at surface with the position of the orogens (Rif and Atlas) and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot) upper mantle, with piece of evidence for a lateral connection with the Canary volcanic islands, likely indicating a lateral spreading of the Canary plume to the east.
NASA Astrophysics Data System (ADS)
Matchette-Downes, H.; van der Hilst, R. D.; Priestley, K. F.
2017-12-01
We have estimated the thickness of the crust in western Tibet by measuring the time delays between the direct S and the SsPmp seismic phases. We find that the thickness of the crust increases from around 50 km beneath the Tethyan Himalayas to around 80 km beneath the Lhasa block, and then decreases to around 70 km beneath the Qiangtang terrane.This method, virtual deep seismic sounding (VDSS), also yields robust estimates of the contribution of crust buoyancy to elevation. By subtracting the predicted elevation from the real topography, we find there is no observable deviation from hydrostatic topography beneath the Tethyan Himalaya, but there is negative residual topography of 1.5 to 2.0 km beneath the Lhasa and Qiangtang terranes. It is also known that the interior of the Plateau is isostatically compensated, as it has small free air gravity anomalies.Additionally, we have estimated the 3D shear speed structure of the crust and upper mantle. This model is derived from maps of the fundamental mode Rayleigh wave phase speed dispersion in the period range from 20 to 140 s, obtained from a standard two-plane-wave inversion constrained with receiver functions and group speeds from ambient noise. The observations agree with previous observations of a low-wavespeed zone in the mid-crust and a gradual Moho. Furthermore, the long-period Rayleigh waves detect a high-wavespeed upper mantle.Together, the observations of high upper mantle wavespeeds, negative residual topography, and small free air gravity anomalies support the hypothesis that cold, dense Indian lithosphere has underthrust the Plateau in this region. However, in the presentation we also consider contributions to residual topography from plate flexure, lower crustal flow, or deeper mantle flow (dynamic topography).
Fuis, G.S.; Murphy, J.M.; Lutter, W.J.; Moore, Thomas E.; Bird, K.J.; Christensen, N.I.
1997-01-01
Seismic reflection and refraction and laboratory velocity data collected along a transect of northern Alaska (including the east edge of the Koyukuk basin, the Brooks Range, and the North Slope) yield a composite picture of the crustal and upper mantle structure of this Mesozoic and Cenozoic compressional orogen. The following observations are made: (1) Northern Alaska is underlain by nested tectonic wedges, most with northward vergence (i.e., with their tips pointed north). (2) High reflectivity throughout the crust above a basal decollement, which deepens southward from about 10 km depth beneath the northern front of the Brooks Range to about 30 km depth beneath the southern Brooks Range, is interpreted as structural complexity due to the presence of these tectonic wedges, or duplexes. (3) Low reflectivity throughout the crust below the decollement is interpreted as minimal deformation, which appears to involve chiefly bending of a relatively rigid plate consisting of the parautochthonous North Slope crust and a 10- to 15-km-thick section of mantle material. (4) This plate is interpreted as a southward verging tectonic wedge, with its tip in the lower crust or at the Moho beneath the southern Brooks Range. In this interpretation the middle and upper crust, or all of the crust, is detached in the southern Brooks Range by the tectonic wedge, or indentor: as a result, crust is uplifted and deformed above the wedge, and mantle is depressed and underthrust beneath this wedge. (5) Underthrusting has juxtaposed mantle of two different origins (and seismic velocities), giving rise to a prominent sub-Moho reflector. Copyright 1997 by the American Geophysical Union.
Volcanoes of the passive margin: The youngest magmatic event in eastern North America
Mazza, Sarah E; Gazel, Esteban; Johnson, Elizabeth A; Kunk, Michael J.; McAleer, Ryan J.; Spotila, James A; Bizimis, Michael; Coleman, Drew S
2014-01-01
The rifted eastern North American margin (ENAM) provides important clues to the long-term evolution of continental margins. An Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia (USA) contains the youngest known igneous rocks in the ENAM. These magmas provide the only window into the most recent deep processes contributing to the postrift evolution of this margin. Here we present new 40Ar/39Ar ages, geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions on primitive basalts yielded an average temperature and pressure of 1412 ± 25 °C and 2.32 ± 0.31 GPa, corresponding to a mantle potential temperature of ∼1410 °C, suggesting melting conditions slightly higher than average mantle temperatures beneath mid-ocean ridges. When compared with magmas from Atlantic hotspots, the Eocene ENAM samples share isotopic signatures with the Azores and Cape Verde. This similarity suggests the possibility of a large-scale dissemination of similar sources in the upper mantle left over from the opening of the Atlantic Ocean. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly. This process can also explain the Cenozoic dynamic topography and evidence of rejuvenation of the central Appalachians.
NASA Astrophysics Data System (ADS)
Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.
2013-04-01
The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.
NASA Astrophysics Data System (ADS)
Rodgers, Arthur J.; Schwartz, Susan Y.
We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.
NASA Technical Reports Server (NTRS)
Molnar, P.; Chen, W.-P.
1984-01-01
S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.
NASA Astrophysics Data System (ADS)
Borgeaud, A. F. E.; Konishi, K.; Kawai, K.; Geller, R. J.
2015-12-01
The region beneath Central America is known to have significant lateral velocity heterogeneities from the upper mantle down to the lowermost mantle. It is also known for its long history of subducting oceanic plates and fragmented plate remnants that sunk to the lowermost mantle (e.g., Ren et al., 2007). In this study, we use localized full-waveform inversion to invert for the 3-D S-velocity beneath the Caribbean. We use the DSM (Kawai et al., 2006) to compute 1-D synthetic seismograms and the first-order Born approximation to compute the partial derivatives for 3-D structure. We use a larger dataset with better coverage than Kawai et al. (2014), consisting of S and ScS phases from US-Array data for events in South America. The resulting 3-D model can contribute to understanding whether the cause of the velocity anomalies is thermal, chemical, or due to phase transitions.
Velocity variations and uncertainty from transdimensional P-wave tomography of North America
NASA Astrophysics Data System (ADS)
Burdick, Scott; Lekić, Vedran
2017-05-01
High-resolution models of seismic velocity variations constructed using body-wave tomography inform the study of the origin, fate and thermochemical state of mantle domains. In order to reliably relate these variations to material properties including temperature, composition and volatile content, we must accurately retrieve both the patterns and amplitudes of variations and quantify the uncertainty associated with the estimates of each. For these reasons, we image the mantle beneath North America with P-wave traveltimes from USArray using a novel method for 3-D probabilistic body-wave tomography. The method uses a Transdimensional Hierarchical Bayesian framework with a reversible-jump Markov Chain Monte Carlo algorithm in order to generate an ensemble of possible velocity models. We analyse this ensemble solution to obtain the posterior probability distribution of velocities, thereby yielding error bars and enabling rigorous hypothesis testing. Overall, we determine that the average uncertainty (1σ) of compressional wave velocity estimates beneath North America is ∼0.25 per cent dVP/VP, increasing with proximity to complex structure and decreasing with depth. The addition of USArray data reduces the uncertainty beneath the Eastern US by over 50 per cent in the upper mantle and 25-40 per cent below the transition zone and ∼30 per cent throughout the mantle beneath the Western US. In the absence of damping and smoothing, we recover amplitudes of variations 10-80 per cent higher than a standard inversion approach. Accounting for differences in data coverage, we infer that the length scale of heterogeneity is ∼50 per cent longer at shallow depths beneath the continental platform than beneath tectonically active regions. We illustrate the model trade-off analysis for the Cascadia slab and the New Madrid Seismic Zone, where we find that smearing due to the limitations of the illumination is relatively minor.
NASA Astrophysics Data System (ADS)
Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; VanDecar, J. C.; Hongsresawat, S.; Bremner, P. M.; Torpey, M. E.; Panning, M. P.
2016-12-01
We present a new high-resolution P-wave velocity model of the upper mantle beneath the former passive margin of the North American craton in Oregon and Idaho. We identify high velocity anomalies in the central part of the model and low velocity anomalies to the northwest and southeast. Our results derive from an integrated data set of teleseismic P waves recorded at 145 broadband stations, 85 deployed between 2011 and 2013 as part of the IDOR Passive experiment, and 60 USArray-TA stations. We determined 15,000 travel-times using multi-channel cross-correlation (VanDecar and Crosson, 1990). Phanerozoic tectonic events that affected upper mantle seismic structure here include subduction of Farallon and Juan de Fuca lithosphere, accretion of Blue Mountains terranes, Sevier and Laramide orogenies, Idaho batholith formation, Yellowstone and Columbia River volcanism, and Basin and Range extension. Our results indicate a high P-wave velocity anomaly located beneath the Idaho Batholith in west-central Idaho traceable down to 150-200 km depth. A similar anomaly identified by Schmandt and Humphrey (2011) beneath Washington and Montana was interpreted as a slab remnant from the accretion of Siletzia to North America. Alternatively, the fast Vp anomalies are delaminated North American craton lithosphere. Thickened lithosphere may have formed during Farallon subduction, terrane collision and accretion. Crust as much as 55 km thick present during Late Cretaceous (Foster et al., 2001; Gaschnig et al., 2011) is potentially indicative of lithospheric thickening leading to delamination. To the southeast, upper mantle low velocity anomalies occur beneath the Western Snake River Plain. We associate these low velocities with high temperatures generated by the Yellowstone mantle plume system. We observe a low velocity anomaly beneath the Wallowa Mountains starting at 150-200 km extending to depths below the resolution of our model.
NASA Astrophysics Data System (ADS)
Assumpcao, M.; Melo, B. C.
2017-12-01
Shear-wave splitting from core-refracted (SKS) waves indicates the amount and orientation of seismic anisotropy in the upper mantle, and is used to infer past and present mantle dynamics and continental evolution. Previous SKS studies in South America concentrated mainly in the Andes and in SE Brazil. Although effects of frozen anisotropy in the lithospheric mantle were suggested in some parts of SE Brazil, the main contribution to the orientation of the fast polarization directions have been attributed to asthenospheric flow around cratonic keels, especially around the São Francisco craton in eastern Brazil (Assumpção et al., 2006,2011). We added extra SKS splitting measurements in the area of the Pantanal and Paraná-Chaco basins (FAPESP-funded "3-Basins" Project). Results from 47 new stations will be presented, both from the temporary deployments and from the Brazilian permanent net. This data set partly fills the gap in SKS measurements between the Andes and SE Brazil, providing a more complete and robust anisotropy map of the S. American stable platform. On average, over most of the mid-continent, the fast polarization orientation tends to be close to the absolute plate motion given by the hotspot reference frame HS3-NUVEL-1A. Nevertheless, the new and previously published fast polarizations results suggest mantle flow around the Amazon and São Francisco cratons. A comparison with recent modeling of upper mantle flow induced by the Nazca plate subduction (Hu et al., 2017) shows good agreement with the predictions of mantle flow around the Amazon craton. Further south, however, especially in the Pantanal Basin, the observed SKS fast orientations are ENE-WSW, deviating from the general ESE-WNW predicted orientations. We propose that the observed ENE-WSW orientation may be due to flow around a possible cratonic nucleus beneath the northern part of the Paraná Basin ("Paranapanema block"). This cratonic block (inferred from geological observations) is also seen in regional surface-wave tomography. Large delay times at the Pantanal Basin may indicate a stronger asthenospheric channel, a more coherent flow, or a thicker asthenosphere. Similarly, small delay times beneath the northern Paraná Basin may indicate thinner anisotropic asthenosphere in that region, similar to the observations in the Amazon craton.
NASA Astrophysics Data System (ADS)
Brueckner, H. K.
2007-12-01
The garnet peridotites (and pyroxenites) of the UHP Western Gneiss Region of Norway give Sm-Nd garnet, clinopyroxene, whole rock, orthopyroxene, amphibole ages that range from ca. 1.7 Ga to 424 Ma. Most of these twenty seven ages are much older than the continent-continent collision that transferred these peridoitites from the mantle into the crust (i.e. the 400 Ma Scandian Orogeny) suggesting the garnet peridotites of the WGR are unique relative to those in other UHP terranes, which invariably give ages that overlap the time of UHP metamorphism of the enclosing country rocks. All but the youngest ages given by WGR peridotites reflect processes that occurred deep in the mantle beneath the Baltic Shield, but it is unclear if they date a series of discrete events related to the tectonic evolution of the Baltic Shield or if the ages reflect continuous, but variable, re-equilibration of the Sm-Nd system between phases during the residence of the peridotites in the mantle. Three ages overlap the 1.75 to 1.55 Ga Gothian Orogeny while twelve ages are within error of the 1.2 to 0.9 Ga Sveconorwegian Orogeny. The three youngest ages (438 to 424 Ma) are associated with a younger generation of garnets and may mark the beginning of eclogite-facies metamorphism of Baltica as it was subducted beneath Laurentia during the Scandian Orogeny. However, the remaining nine ages spread more or less continuously between these three major events. The overall pattern on a histogram is a range of ages with a pronounced peak at and near the Sveconorwegian Orogeny. The ages therefore appear to date continuous diffusion between minerals from garnet-bearing assemblages that formed originally during or, less likely, before the Gothian Orogeny interrupted by a pronounced thermal event during the Svconorwegian Orogeny and a recrystallization event during the early stages of the Scandian orogeny. The degree of re-equilibration was probably controlled by the ambient temperature of the peridotite body in the mantle, which was controlled, in turn, by their depth in the mantle and their proximity to hot mantle upwelling during the Sveconorwegian Orogeny.
NASA Astrophysics Data System (ADS)
Qi, Yue; Gou, Guo-Ning; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Li, Qiu-Li; Zhang, Le
2018-03-01
The question of whether continental subduction processes in collisional orogenic belts can trigger wide-spread mantle metesomatism and crustal material recycling remains unresolved. Miocene (25-8 Ma) ultrapotassic rocks in southern Tibet are the only mantle-derived magmatic rocks emplaced after the collision between India and Asia and they have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached near-maximum elevation. However, their petrogenesis remains highly controversial, particularly the issue of whether their extremely enriched Sr-Nd isotopic characteristics were related to metasomatism derived from subducted Indian continental materials during the Cenozoic. Here we report on a Paleocene silicate-unsaturated, pseudoleucite phonolitic dike, in the Rongniduo area of central Lhasa terrane. In-situ SIMS (secondary ion mass spectrometry) apatite U-Pb age indicates the dike was generated at 64.1 ± 4.2 Ma, which slightly predates the age of initial India and Asia collision (about 55-50 Ma). This is the oldest age yet reported for ultrapotassic rocks in southern Tibet. Samples from this dike have distinctly more depleted Sr-Nd (whole rock: (87Sr/86Sr)i = 0.7064 to 0.7062, εNd(t) = - 1.5 to 0.4; in situ apitite: (87Sr/86Sr)i = 0.7059 to 0.7060, εNd(t) = - 2.0 to 0.4) isotopic compositions, than those of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa terrane ((87Sr/86Sr)i = 0.7106 to 0.7399, εNd(t) = - 10.6 to - 18.5). Our new data provides important constraints on pre-collisional mantle characteristics beneath the Lhasa terrane. We suggest that these 64 Ma pseudoleucite phonolitic rocks were derived from the enriched lithospheric mantle metasomatized by subducted Tethyan oceanic materials in response to Neo-Tethyan slab roll-back. As a consequence, the younger Miocene ultrapotassic rocks, which display different geochemical compositions from the pre-collisional ultrapotassic rocks, were most probably derived from a mantle source metasomatized by subducted Indian continental materials after 64 Ma. Our results indicate that the addition of subducted continental components plays an important role in changing mantle constituents beneath collisional orogenic belts.
Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan)
NASA Astrophysics Data System (ADS)
Choi, S. H.; Park, K.; Cho, M.; Lee, D. C.
2017-12-01
Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine, enstatite, diopside and spinel. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1,010°C, reflecting their lithospheric mantle origin. The REE patterns in clinopyroxenes of the peridotites varied from LREE-depleted to spoon shaped to LREE-enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in LILEs, Th and U together with slight fractionation in HREEs and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying well above the mantle array. The Lu-Hf and Sm-Nd model ages of residual clinopyroxenes yielded Early Proterozoic to Phanerozoic ages. No signature of Archean cratonic mantle was present. Therefore, Mt. Baekdu peridotite is residual lithospheric mantle that has undergone variable degrees of diachronous melt extraction and infiltration metasomatism involving subduction-related, fluid-bearing silicate melts. The predominance of Phanerozoic Hf model ages indicates that the lherzolites represent lithospheric mantle fragments newly accreted underneath the eastern NCC.
Transient rheology of the uppermost mantle beneath the Mojave Desert, California
Pollitz, F.F.
2003-01-01
Geodetic data indicate that the M7.1 Hector Mine, California, earthquake was followed by a brief period (a few weeks) of rapid deformation preceding a prolonged phase of slower deformation. We find that the signal contained in continuous and campaign global positioning system data for 2.5 years after the earthquake may be explained with a transient rheology. Quantitative modeling of these data with allowance for transient (linear biviscous) rheology in the lower crust and upper mantle demonstrates that transient rheology in the upper mantle is dominant, its material properties being typified by two characteristic relaxation times ???0.07 and ???2 years. The inferred mantle rheology is a Jeffreys solid in which the transient and steady-state shear moduli are equal. Consideration of a simpler viscoelastic model with a linear univiscous rheology (2 fewer parameters than a biviscous model) shows that it consistently underpredicts the amplitude of the first ???3 months signal, and allowance for a biviscous rheology is significant at the 99.0% confidence level. Another alternative model - deep postseismic afterslip beneath the coseismic rupture - predicts a vertical velocity pattern opposite to the observed pattern at all time periods considered. Despite its plausibility, the advocated biviscous rheology model is non-unique and should be regarded as a viable alternative to the non-linear mantle rheology model for governing postseismic flow beneath the Mojave Desert. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta Tuji
Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region. In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking. In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure. In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ˜75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.
NASA Astrophysics Data System (ADS)
Diaz, Jordi
2013-04-01
One of the key assets of the Topo-Iberia research program, aiming to unravel the complex structure and mantle processes in the area of interaction between the African and European continental plates, has been the deploying of a technological observational platform, named IberArray, to provide new seismological, magnetotelluric and geodetical data with unprecedented resolution and coverage. Topo-Iberia has also benefited from the interaction with subsequent projects investigating the same area, as the USA Picasso, the French Pyrope or the Portuguese Wilas. This interaction includes sharing the available data to better assess the key geological questions. This contribution aims to present the current state of the most significant scientific investigations concerning the lithosphere-asthenosphere system beneath Iberia and Northern Morocco which are arising from the data acquired using the Iberarray platform. The area so far investigated extends from the Variscan Central Iberian Massif in the North to the border of the Sahara Platform in the South and includes areas of complex and still not completely understood geodynamics, as the Alboran domain or the Atlas Mountains. SKS splitting analysis clearly image this complexity; the fast polarization directions (FPD) beneath the Betics-Alboran show a spectacular rotation along the Gibraltar arc following the curvature of the Rif-Betic chain. Beneath the High Atlas and SW Iberia, there are a very significant number of high quality events without evidence for anisotropy, suggesting the presence of a large vertical component of flow in the upper mantle. These observations allow inferring a model of mantle flow at regional scale. New body wave tomographic images have confirmed the presence of a high-velocity slab beneath the Gibraltar Arc and allowed to define more precisely its geometry, appearing as a near-vertical feature extending from 50-75 km to about 600 km. Magnetotelluric profiles acquired using broad-band and long-period instrumentation along different N-S profiles from North Iberia to the Atlas have also provided relevant information along a 1500 km long N-S lithospheric transect. Receiver functions have revealed large crustal thickness variations, including a crustal root beneath the Rif not clearly documented previously. Beneath Iberia, the Variscan domain shows a quite uniform Moho depth, but the areas affected by the Alpine orogeny show significant variations, consistent with the results arising from ambient noise interferometry. Moving to the base of the upper mantle, the geometry of the 410-km and 660-km upper mantle discontinuities have been investigated using novel cross-correlation/stacking techniques, which have allowed to obtain a detailed map of the transition zone thickness variations.
Lithospheric radial anisotropy beneath the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Chu, Risheng; Ko, Justin Yen-Ting; Wei, Shengji; Zhan, Zhongwen; Helmberger, Don
2017-05-01
The Lithosphere-Asthenosphere Boundary (LAB), where a layer of low viscosity asthenosphere decouples with the upper plate motion, plays an essential role in plate tectonics. Most dynamic modeling assumes that the shear velocity can be used as a surrogate for viscosity which provides key information about mantle flow. Here, we derive a shear velocity model for the LAB structure beneath the Gulf of Mexico allowing a detailed comparison with that beneath the Pacific (PAC) and Atlantic (ATL). Our study takes advantage of the USArray data from the March 25th, 2013 Guatemala earthquake at a depth of 200 km. Such data is unique in that we can observe a direct upward traveling lid arrival which remains the first arrival ahead of the triplications beyond 18°. This extra feature in conjunction with upper-mantle triplication sampling allows good depth control of the LAB and a new upper-mantle seismic model ATM, a modification of ATL, to be developed. ATM has a prominent low velocity zone similar to the structure beneath the western Atlantic. The model contains strong radial anisotropy in the lid where VSH is about 6% faster than VSV. This anisotropic feature ends at the bottom of the lithosphere at about the depth of 175 km in contrast to the Pacific where it extends to over 300 km. Another important feature of ATM is the weaker velocity gradient from the depth of 175 to 350 km compared to Pacific models, which may be related to differences in mantle flow.
Cenozoic extension, volcanism and plateau uplift in eastern Africa and the African Superplume
NASA Astrophysics Data System (ADS)
Nyblade, A.; O'Donnell, J.; Mulibo, G. D.; Adams, A. N.
2013-12-01
Recent body and surface wave studies combine to image mantle velocity structure to a depth of 1200 km beneath eastern Africa using teleseismic earthquake data recorded by the AfricaArray East African Seismic Experiment in conjunction with permanent stations and previously deployed temporary stations. The combined network spans Kenya, Uganda, Tanzania, Zambia and Malawi. The 3-D shear wave velocity structure of the uppermost mantle was imaged using fundamental-mode Rayleigh wave phase velocities measured at periods ranging from 20 to 182 s, subsequently inverted for shear velocity structure. When considered in conjunction with mapped seismicity, the shear velocity model supports a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. In eastern Tanzania a low-velocity region suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. The results suggest that existing lithospheric structures exert a significant governing influence on rift development. Sub-lithospheric mantle wave speed variations extending to a depth of 1200 km were tomographically imaged from the inversion of P and S wave relative arrival time residuals. The images shows a low wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the rift system and northwestern Zambia, and a fast wave speed anomaly at depths greater than 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths below 350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a 150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A mantle transition zone about 30-40 km thinner than the global average in a region 200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya was inferred from P to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks. The thinning of the transition zone indicates a 190-300 K thermal anomaly in the same location where the P and S wave tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. These findings provide compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume, implying an origin for the Cenozoic extension, volcanism and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.
Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust
NASA Astrophysics Data System (ADS)
Hamilton, Warren B.
2013-12-01
This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (< 3.9 Ga) crustal geology integrate well. The shallow mantle was extremely depleted by early removal of thick mafic protocrust, which was the primary source of the tonalite, trondhjemite, and granodiorite (TTG) that dominate preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That reenrichment enabled modern-style plate tectonics after ~ 600 Ma, with a transition regime beginning ~ 850 Ma.
Earth's structure and evolution inferred from topography, gravity, and seismicity.
NASA Astrophysics Data System (ADS)
Watkinson, A. J.; Menard, J.; Patton, R. L.
2016-12-01
Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long-wavelength (l < 14) low-amplitude portion of Earth's gravity field to be consistent with loading of the mesosphere by subducted slabs. The Earth that emerges from this work might be characterized as a self-gravitating, self-peeling onion.
The Continental Plates are Getting Thicker.
ERIC Educational Resources Information Center
Kerr, Richard A.
1986-01-01
Reviews seismological studies that provide evidence of the existence of continental roots beneath the continents. Suggests, that through the collisions of plate tectonics, continents stabilized part of the mobile mantle rock beneath them to form deep roots. (ML)
NASA Astrophysics Data System (ADS)
Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.
2016-12-01
The present tectonic configuration of the southeastern United States is a product of earlier episodes of arc accretion, continental collision and breakup. This region is located in the interior of the North American Plate, some 1500 km away from closest active plate margin. However, there is ongoing tectonism across the area with multiple zones of seismicity, rejuvenation of the Appalachians of North Carolina, Virginia, and Pennsylvania, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the modern-day state of stress remain enigmatic. Two factors often regarded as major contributors are plate strength and preexisting inherited structures. Recent improvements in broadband seismic data coverage in the region associated with the South Eastern Suture of the Appalachian Margin Experiment (SESAME) and EarthScope Transportable Array make it possible to obtain detailed information on the structure of the lithosphere in the region. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Our results indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. We observe an agreement between the locations of these upper mantle anomalies and the location of major zones of tectonism, volcanism and seismicity, providing a viable explanation for modern-day activity in this plate interior setting long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.
NASA Astrophysics Data System (ADS)
He, Chuansong; Santosh, M.
2018-05-01
The Tianshan orogenic belt, Junggar terrane and Altai terrane are located at the southwestern part of the Central Asian Orogenic Belt (CAOB). Here, we investigate the velocity structure beneath the Xinjiang region in NW China, which includes the Tarim terrane, Tianshan orogenic belt, Junggar terrane and Altai terrane with a view to evaluate the mantle dynamics based on teleseismic data recorded by 103 seismic stations. Our tomographic results show both high and low velocity perturbations beneath the Tianshan orogenic belt. We suggest that the high velocity perturbations beneath this orogenic belt might represent the northward subducted lithosphere of the Tarim Basin and the southward subducted lithosphere of the Junggar Basin. The low velocity structure beneath the Tianshan orogenic belt might represent asthenosphere upwelling that triggered the extensive magmatism which contributed to rebuilding of the Tianshan orogenic belt.
NASA Astrophysics Data System (ADS)
Konishi, K.; Deschamps, F.; Fuji, N.
2015-12-01
We investigate quasi-2D elastic and anelastic structure of the lowermost mantle beneath the Western Pacific by inverting S and ScS waveforms. The transverse component data were obtained from F-net for 32 deep sources beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratio, according to which we divide our region of interest into four sub-regions and perform 1D waveform inversion for S-wave velocity and Qμ value simultaneously. We find S-shaped structure of S-wave velocity beneath the whole region with sub-regional variation of S-wave velocity peak depths, which can explain regional difference in travel times. Qμ structure varies with sub-regions as well, but the physical interpretation has not yet done.
Magnetic properties of the upper mantle beneath the continental United States
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Ferre, E. C.; Demory, F.; Rochette, P.; Martin Hernandez, F.; Conder, J. A.
2012-12-01
The interpretation of long wavelength satellite magnetic data (Magsat, Oersted, CHAMP, SWARM) requires an understanding of magnetic mineralogy in the lithospheric mantle and reliable models of induced and remanent magnetic sources in the lithospheric mantle and the crust. Blakely et al. (2005) proposed the hypothesis of a magnetic lithospheric mantle in subduction zones. This prompted us to reexamine magnetic sources in the lithospheric mantle in different tectonic settings where unaltered mantle xenolith have been reported since the 1990s. Xenoliths from the upper mantle beneath the continental United States show different magnetic properties depending on the tectonic setting in which they equilibrated. Three localities in the South Central United States (San Carlos, AZ; Kilbourne Hole, NM; Knippa, TX) produced lherzolite and harzburgite xenoliths, while the Bearpaw Mountains in Montana (subduction zone) produced dunite and phlogopite-rich dunite xenoliths. Paleomagnetic data on these samples shows the lack of secondary alteration which is commonly caused by post-eruption serpentinization and the lack of basalt contamination. The main magnetic carrier is pure magnetite. The ascent of mantle xenoliths to the surface of the Earth generally takes only a few hours. Numerical modelling shows that nucleation of magnetite during ascent would form superparamagnetic grains and therefore cannot explain the observed magnetic grain sizes. This implies that the ferromagnetic phases present in the studied samples formed at mantle depth. The samples from the South Central United States exhibit a small range in low-field magnetic susceptibility (+/- 0.00003 [SI]), and Natural Remanent Magnetization (NRM) between 0.001 - 0.100 A/m. To the contrary samples from the Bearpaw Mountains exhibit a wider range of low-field susceptibilities (0.00001 to 0.0015 [SI]) and NRM (0.01 and 9.00 A/m). These samples have been serpentinized in-situ by metasomatic fluids related to the Farallon plate (Facer et al., 2009). Hence, the magnetic properties of the lithospheric mantle beneath the continental United States differ significantly depending on tectonic setting. The combination of the low geotherm observed in the Bearpaw Mountains with the stronger induced and remanent magnetization of mantle rocks in this area may produce a detectable LWMA.
Lithospheric Structure of Antarctica and Implications for Geological and Cryospheric Evolution
NASA Astrophysics Data System (ADS)
Wiens, Douglas; Heeszel, David; Sun, Xinlei; Lloyd, Andrew; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Richard; Chaput, Julien; Huerta, Audrey; Hansen, Samantha; Wilson, Terry
2013-04-01
Recent broadband seismic deployments, including the AGAP/GAMSEIS array of 24 broadband seismographs over the Gamburtsev Subglacial Mountains (GSM) in East Antarctica and the POLENET/ANET deployment of 33 seismographs across much of West Antarctica, reveal the detailed crust and upper mantle structure of Antarctica for the first time. The seismographs operate year-around even in the coldest parts of Antarctica, due to novel insulated boxes, power systems, and modified instrumentation developed in collaboration with the IRIS PASSCAL Instrument Center. We analyze the data using several different techniques to develop high-resolution models of Antarctic seismic structure. We use Rayleigh wave phase velocities at periods of 20-180 s determined using a modified two-plane wave decomposition of teleseismic Rayleigh waves to invert for the three dimensional shear velocity structure. In addition, Rayleigh wave group and phase velocities obtained by ambient seismic noise correlation methods provide constraints at shorter periods and shallower depths. Receiver functions provide precise estimates of crustal structure beneath the stations, and P and S wave tomography provides models of upper mantle structure down to ~ 500 km depth along transects of greater seismic station density. The new seismic results show that the high elevations of the GSM are supported by thick crust (~ 55 km), and are underlain by thick Precambrian continental lithosphere that initially formed during Archean to mid-Proterozoic times. The absence of lithospheric thermal anomalies suggests that the mountains were formed by a compressional orogeny during the Paleozoic, thus providing a locus for ice sheet nucleation throughout a long period of geological time. Within West Antarctica, the crust and lithosphere are extremely thin near the Transantarctic Mountain Front and topographic lows such as the Bentley Trench and Byrd Basin, which represent currently inactive Cenozoic rift systems. Slow seismic velocities beneath Marie Byrd Land at asthenospheric depths suggest a major thermal anomaly, possibly due to a mantle plume. Volcanic earthquakes detected in this region indicate the presence of currently active magma systems. The results suggest large lateral changes in parameters needed for glaciological models, including lithospheric thickness, mantle viscosity, and heat flow. Extremely high heat flow is predicted for much of West Antarctica, consistent with recent results from the WAIS ice drilling. Using the seismic results to estimate mantle viscosity, we find several orders of magnitude difference in viscosity between East and West Antarctica, with lowest viscosities found beneath Marie Byrd Land and the West Antarctic Rift System. Realistic glacial isostatic adjustment models must take these large lateral variations into account.
NASA Astrophysics Data System (ADS)
Ruan, Y.; Forsyth, D. W.; Bell, S. W.
2017-12-01
At mid-ocean-ridge spreading centers, it is still unclear to what extent the upwelling is purely passive, driven by viscous drag of the separating plates, or dynamically driven by the buoyancy induced by melt retention and depletion of the mantle matrix. The distinct sensitivities of seismic wavespeed and attenuation to temperature, melt porosity, water content and major element composition yield some of the primary constraints on mid-ocean ridge processes and the associated flow pattern, melt distribution, and the interaction of spreading centers with hotspots. Extensive arrays of ocean-bottom seismometers (OBS) with better quality, longer deployment periods, and the application of noise-removal techniques together provided higher quality data in this study than in any previous regional study of velocity and attenuation of the upper mantle beneath a spreading center. Based on the fundamental-mode Rayleigh waves, we imaged shear wave attenuation and velocity models in the vicinity of the Juan de Fuca plate with the best resolution to date of any spreading center. There is strong attenuation centered at depths of 70-80 km, just below the expected dry solidus and somewhat deeper than predicted for a model of passive mantle upwelling beneath the spreading center. The shear velocity structure shows lowest velocities west of the spreading center, particularly near Axial Seamount and high velocities east of the axis extending to a greater depth than predicted by the passive flow model. Together, these observations support a model in which buoyant upwelling west of the spreading center first depletes and dehydrates the mantle above the dry solidus by melt removal and then the associated downwelling carries depleted, melt-free, residual mantle downward beneath the Juan de Fuca plate. This depleted, dehydrated, melt-free layer can explain why the average attenuation is lower than expected and the velocity is higher than expected in the 30 to 70 km depth range. The compositional buoyancy of the depleted mantle may in most places limit downwelling to the vicinity of the spinel peridotite to garnet peridotite transition at a depth of 80 km.
Crustal Structure of the Flood Basalt Province of Ethiopia from Constrained 3-D Gravity Inversion
NASA Astrophysics Data System (ADS)
Mammo, Tilahun
2013-12-01
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.
Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature
NASA Astrophysics Data System (ADS)
Sarafian, Emily; Gaetani, Glenn A.; Hauri, Erik H.; Sarafian, Adam R.
2017-03-01
Decompression of hot mantle rock upwelling beneath oceanic spreading centers causes it to exceed the melting point (solidus), producing magmas that ascend to form basaltic crust ~6 to 7 kilometers thick. The oceanic upper mantle contains ~50 to 200 micrograms per gram of water (H2O) dissolved in nominally anhydrous minerals, which—relative to its low concentration—has a disproportionate effect on the solidus that has not been quantified experimentally. Here, we present results from an experimental determination of the peridotite solidus containing known amounts of dissolved hydrogen. Our data reveal that the H2O-undersaturated peridotite solidus is hotter than previously thought. Reconciling geophysical observations of the melting regime beneath the East Pacific Rise with our experimental results requires that existing estimates for the oceanic upper mantle potential temperature be adjusted upward by about 60°C.
Seismic structure of the European upper mantle based on adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, Hejun; Bozdağ, Ebru; Tromp, Jeroen
2015-04-01
We use adjoint tomography to iteratively determine seismic models of the crust and upper mantle beneath the European continent and the North Atlantic Ocean. Three-component seismograms from 190 earthquakes recorded by 745 seismographic stations are employed in the inversion. Crustal model EPcrust combined with mantle model S362ANI comprise the 3-D starting model, EU00. Before the structural inversion, earthquake source parameters, for example, centroid moment tensors and locations, are reinverted based on global 3-D Green's functions and Fréchet derivatives. This study consists of three stages. In stage one, frequency-dependent phase differences between observed and simulated seismograms are used to constrain radially anisotropic wave speed variations. In stage two, frequency-dependent phase and amplitude measurements are combined to simultaneously constrain elastic wave speeds and anelastic attenuation. In these two stages, long-period surface waves and short-period body waves are combined to simultaneously constrain shallow and deep structures. In stage three, frequency-dependent phase and amplitude anomalies of three-component surface waves are used to simultaneously constrain radial and azimuthal anisotropy. After this three-stage inversion, we obtain a new seismic model of the European curst and upper mantle, named EU60. Improvements in misfits and histograms in both phase and amplitude help us to validate this three-stage inversion strategy. Long-wavelength elastic wave speed variations in model EU60 compare favourably with previous body- and surface wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from the smooth starting model. Subducting slabs, slab detachments, ancient suture zones, continental rifts and backarc basins are well resolved in model EU60. We find an anticorrelation between shear wave speed and anelastic attenuation at depths < 100 km. At greater depths, this anticorrelation becomes relatively weak, in agreement with previous global attenuation studies. Furthermore, enhanced attenuation is observed within the mantle transition zone beneath the North Atlantic Ocean. Consistent with typical radial anisotropy in 1-D reference models, the European continent is dominated by features with a radially anisotropic parameter ξ > 1, indicating predominantly horizontal flow within the upper mantle. In addition, subduction zones, such as the Apennines and Hellenic arcs, are characterized by vertical flow with ξ < 1 at depths greater than 150 km. We find that the direction of the fast anisotropic axis is closely tied to the tectonic evolution of the region. Averaged radial peak-to-peak anisotropic strength profiles identify distinct brittle-ductile deformation in lithospheric strength beneath oceans and continents. Finally, we use the `point-spread function' to assess image quality and analyse trade-offs between different model parameters.
NASA Astrophysics Data System (ADS)
Dündar, Süleyman; Dias, Nuno A.; Silveira, Graça; Vinnik, Lev; Haberland, Christian
2013-04-01
An accurate knowledge of the structure of the earth's interior is of great importance to our understanding of tectonic processes. The WILAS-project (REF: PTDC/CTE-GIX/097946/2008) is a three-year collaborative project developed to study the subsurface structure of the western Iberian Peninsula, putting the main emphases on the lithosphere-asthenosphere system beneath the mainland of Portugal. The tectonic evolution of the target area has been driven by major plate-tectonic processes such as the historical opening of the Central Atlantic and the subsequent African-Eurasian convergence. Still, very little is known about the spatial structure of the continental collision. Within the framework of this research, a temporary network of 30 broadband three-component digital stations was operated between 2010 and 2012 in the target area. To carry out a large-scale structural analysis and facilitate a dense station-coverage for the area under investigation, the permanent Global Seismic Network stations, and temporary broadband stations deployed within the scope of the several seismic experiments (e.g. Doctar Network, Portuguese National Seismic Network), were included in the research analysis. In doing so, an unprecedented volume of high-quality data of a ca. 60X60 km density along with a combined network of 65 temporary and permanent broadband seismic stations are currently available for research purposes. One of the tasks of the WILAS research project has been a study of seismic velocity discontinuities beneath the western Iberian Peninsula region, up to a depth range of 700 km, utilizing the P- and S-receiver function techniques (PRF, SRF). Both techniques are based mainly on mode conversion of the elastic body-waves at an interface dividing the layers with different elastic properties. In the first phase of the project, PRF analysis was conducted in order to image the crust-mantle interface (Moho) and the mantle-transition-zone discontinuities at a depth of 410 km and 660 km beneath the area under investigation. While applying the common data processing steps (e.g., rotation, deconvolution and moveout-correction) to the selected data-set, we were able to create approximately 4.500 PRFs. The signals from the Moho, 410-km and 660-km discontinuities are clearly visible in many PRF stacks. The Moho depth range is from 26 to 34 km, with an average value of 29 km. No significant lateral variations in the depths of the "410-km" and "660-km" discontinuities have been identified so far. In the second phase of this project, the S-receiver-function technique will be applied in order to map the thickness of the underlying mantle lithosphere. Additionally, joint inversion of PRFs and waveforms of SKS will be used to investigate depth-localized azimuthal anisotropy and the related past and present mantle flows.
NASA Astrophysics Data System (ADS)
Hidas, Károly; Garrido, Carlos J.; Marchesi, Claudio; Bodinier, Jean-Louis; Louni-Hacini, Amina; Azzouni-Sekkal, Abla; Konc, Zoltán; Dautria, Jean-Marie; Varas-Reus, Maria Isabel
2017-04-01
As a result of the Miocene collision between the Alborán domain and the south Iberian and Maghrebian passive margins, the Betic and the Rif-Tell mountains form an arc-shaped orogenic belt in the westernmost Mediterranean (e.g. [1]). This belt is characterized by the presence of subcontinental lithospheric mantle exhumed as orogenic peridotites [2-4], and entrained by basaltic magmatism. Mantle xenoliths entrained in Plio-Pleistocene alkali basalts in the innermost Betics in South Spain provided invaluable data to study the structure and composition of the subcontinental lithospheric mantle beneath the northern limb of this mountain belt [5-7]. In contrast, information from the southern limb is scarce, even though alkali basalts of the same age (< 4 Ma) in the Oran area of the Tell Atlas (North Algeria) contain large amounts of plagioclase to spinel facies peridotite mantle xenoliths with lherzolitic, harzburgitic and wehrlitic modal compositions [6]. Here we report detailed geochemical and textural study of metasomatized mantle xenoliths from this area. The studied spinel-facies mantle xenoliths normally have coarse granular and porphyroclastic textures, whereas in the plagioclase-bearing lithologies fine-grained equigranular fabric becomes abundant. Olivine and orthopyroxene of the coarse-grained lherzolites and harzburgites reflect usual major element geochemical compositions with Mg# in the range of 90-93. Clinopyroxene in these rocks have an overall depleted LREE pattern with slight variation in the most incompatible elements indicating cryptic metasomatism. The Crystal Preferred Orientation (CPO) of olivine shows an axial-[100] pattern characterized by a strong alignment of [100]-axes near or parallel to the peridotite lineation. Wehrlitic lithologies show more variable major element compositions and an important enrichment in LREE in clinopyroxene yet with MREE/HREE ratios comparable to those in harzburgite and lherzolite. Modal enrichment in clinopyroxene and development of fine-grained equigranular texture are both accompanied with a dispersion of olivine CPO. The lithological, textural and geochemical variations of these xenoliths indicate that wehrlite-forming melt-rock reactions took place in the shallow subcontinental lithospheric mantle beneath the southern limb of the Betic-Rif-Tell orogenic belt during the Neogene geodynamic evolution of the westernmost Mediterranean. REFERENCES 1. Platt, J.P., Behr, W.M., Johanesen, K., Williams, J.R., 2013. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annual Review of Earth and Planetary Sciences 41, 313-357. 2. Hidas, K., Booth-Rea, G., Garrido, C.J., Martínez-Martínez, J.M., Padrón-Navarta, J.A., Konc, Z., Giaconia, F., Frets, E., Marchesi, C., 2013. Backarc basin inversion and subcontinental mantle emplacement in the crust: kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle (Betic Cordillera, southern Spain). Journal of the Geological Society 170, 47-55. 3. Frets, E.C., Tommasi, A., Garrido, C.J., Vauchez, A., Mainprice, D., Targuisti, K., Amri, I., 2014. The Beni Bousera peridotite (Rif Belt, Morocco): an oblique-slip low-angle shear zone thinning the Subcontinental Mantle Lithosphere. Journal of Petrology 55, 283-313. 4. Rampone, E., Vissers, R.L.M., Poggio, M., Scambelluri, M., Zanetti, A., 2010. Melt migration and intrusion during exhumation of the Alboran lithosphere: the Tallante mantle xenolith record (Betic Cordillera, SE Spain). Journal of Petrology 51, 295-325. 5. Hidas, K., Konc, Z., Garrido, C.J., Tommasi, A., Vauchez, A., Padrón-Navarta, J.A., Marchesi, C., Booth-Rea, G., Acosta-Vigil, A., Szabó, C., Varas-Reus, M.I., Gervilla, F., 2016. Flow in the western Mediterranean shallow mantle: Insights from xenoliths in Pliocene alkali basalts from SE Iberia (eastern Betics, Spain). Tectonics 35, 2657-2676. 6. Marchesi, C., Konc, Z., Garrido, C.J., Bosch, D., Hidas, K., Varas-Reus, M.I., Acosta-Vigil, A., 2017. Multi-stage evolution of the lithospheric mantle beneath the westernmost Mediterranean: Geochemical constraints from peridotite xenoliths in the eastern Betic Cordillera (SE Spain). Lithos, in press 7. Zerka, M., 2004. Le manteau sous la marge Maghrébine: relations infiltrations-réactions-cristallisations et cisaillements lithosphériques dans les enclaves ultramafiques du volcanisme alcalin Plio-Quaternaire d'Oranie, exemple des complexes d'Ain Temouchent et de la Basse Tafna (Algérie Nord-Occidentale). PhD thesis, Université d'Oran, Algeria, pp. 345. Funding: This research has been funded by a FP7-IRSES Marie Curie Action under Grant Agreement PIRSESGA-2013-612572
NASA Astrophysics Data System (ADS)
Kargin, Alexey; Golubeva, Yulia; Demonterova, Elena
2017-04-01
The southeastern margin of the Anabar shield (the Siberian Craton) in Mesozoic was characterized by intense alkaline-ultramafic (include diamondiferous kimberlite) magmatism. This zone is located within the Archean-Proterozoic Hapchan terrane and includes several fields of alkaline-ultramafic rocks that formed during three main episodes (Zaytsev and Smelov, 2010; Sun et al., 2014): Late Triassic (235-205 Ma), Middle-Late Jurassic (171-149 Ma), Cretaceous (105 Ma). Following the revised classification scheme of Tappe et al. (2005), the alkaline-ultramafic rocks of the Anabar region were identified, correspondingly, as 1) Late Triassic aillikites, damtjernites, and orangeites; 2) Middle-Late Jurassic silicocarbonatites and 3) Cretaceous carbonatites. According to mineralogical, geochemical and isotopic (Sm-Nd, Rb-Sr) data on the alkaline-ultramafic rocks of the Anabar region, the following scheme of the mantle source evolution is suggested: 1). Ascent of the asthenospheric (or plume) material to the base of the lithospheric mantle containing numerous carbonate- and phlogopite-rich veins in Late Triassic led to the generation of orangeite and aillikite magmas; 2). Evolution of aillikite magmas during their ascent and interaction with the surrounding lithospheric mantle (e.g. mantle-rock assimilation and/or melt differentiation) resulted in the accumulation of Mg-Si components in alkaline-ultramafic magmas and was accompanied by a change in liquidus minerals (from apatite-carbonate to olivine and Ca-silicate). Exsolution of carbonate-rich fluid at this stage was responsible for the formation of damtjernite magmas. 3). The tectonothermal activation within the Anabar region in Jurassic was marked by the generation of silicocarbonatitic magmas. Their geochemical composition suggests decreasing abundance of phlogopite-rich veins in the lithospheric mantle source. 4). In Cretaceous, the alkaline-ultramafic magmatism shifted into the central part of the Hapchan terrane where produced several carbonatite pipes and dykes. Their geochemical composition indicates the predominance of the carbonate component in the source region and a decrease of the thickness of the lithospheric mantle. This study was supported by Russian Science Foundation №16-17-10068. Tappe S., Foley S.F., Jenner G.A. et al. 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton // J. Petrology. V. 47 (7). P. 1261-1315. Sun J., Liu C.Z., Tappe S. et al. 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis // Earth Planet. Sci. Lett. V. 404. P. 283-295. Zaytsev A.I., Smelov A.P., 2010. Isotope Geochronology of Kimberlite Formation Rocks from Yakutian Province // Publication of the Institute of Diamonds Geology, Siberian branch of the Russian Academy of Sciences, Yakutsk (107 pp. (in Russian)).
New insight into the Upper Mantle Structure Beneath the Pacific Ocean Using PP and SS Precursors
NASA Astrophysics Data System (ADS)
Gurrola, H.; Rogers, K. D.
2013-12-01
The passing of the EarthScope Transportable array has provided a dense data set that enabled beam forming of SS and PP data that resultes in improved frequency content to as much a 1 Hz in the imaging of upper mantle structure. This combined with the application of simultaneous iterative deconvolution has resulted in images to as much as 4 Hz. The processing however results in structure being averaged over regions of 60 to 100 km in radius. This is becomes a powerful new tool to image the upper mantle beneath Oceanic regions where locating stations is expensive and difficult. This presentation will summarize work from a number of regions as to new observations of the upper mantle beneath the Pacific and Arctic Oceans. Images from a region of the Pacific Ocean furthest from hot spots or subduction zones (we will refer to this as the 'reference region'). show considerable layering in the upper mantle. The 410 km discontinuity is always imaged using these tools and appears to be a very sharp boundary. It does usually appear as an isolated positive phase. There appears to be a LAB at ~100 km as expected but there is a strong negative phase at ~ 200 km with a positive phase 15 km deeper. This is best explained as a lens of partial melt as expected for this depth based on the geothermal gradient. If so this should be a low friction point and so we would expect it to accommodate plate motion. Imaging of the Aleutian subduction zone does show the 100 km deep LAB as it descends but this 200 km deep horizon appears as a week descending positive anomaly without the shallower negative pulse. In addition to the 410, 100 and 200 km discontinuities there are a number of paired anomalies, between the 200 and 400 km depths, with a negative pulse 15 to 20 km shallower then the positive pulse. We do not believe these are side lobes or we would see side lobes on the 100 km and 410 km discontinuities. We believe these to be the result of friction induced partial melt along zones of critical failure to accommodate differential mantle flow with depth. The paired layers disappear beneath the Hawaiian Island chain. We believe heat from the hot spot warms the mantle beneath the Hawaiian island chain so flow is more easily accommodated. As a result the lenses of melt disappear in the region near hot spots.
3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.
2017-12-01
We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic constants (A, C, F, L, N) of a transversely isotropy (TI) medium, and conduct a synthetic resolution test to examine the ability of our methods and dataset to resolve the anisotropic structure in this region using two-component waveform data.
Crustal and upper mantle velocity structure of the Salton Trough, southeast California
Parsons, T.; McCarthy, J.
1996-01-01
This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part predates Salton Trough rifting. It may also in part result from migration of magmatic spreading centers associated with the southern San Andreas fault system. These spreading centers may have existed east of their current locations in the past and may have influenced the lower crust and upper mantle to the east of the current Salton Trough.
D" anisotropy and slip systems in post-perovskite
NASA Astrophysics Data System (ADS)
Nowacki, Andy; Wookey, James; Kendall, J.-Michael
2010-05-01
The lowermost few hundred kilometres of the Earth's mantle-known as D″-form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a large (~2%) increase in S-wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (V S) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. The MgSiO3-post-perovskite mineral phase is the most compelling explanation for observations of anisotropy, though an outstanding question is how post-perovskite and other mineral phases may deform to produce this: different mechanisms are possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can determine the other with the seismic anisotropy which is created. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW > 5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained-only one azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically-distinct material such as melt. TTI planes of isotropy dip south beneath Florida, southwest beneath western USA and southeast beneath Yucatan. However we test other slip systems in MgO, pv and ppv to determine if deformation in these phases can account for the observed anisotropy. The systems [100](010) and [¯110](110) in ppv are consistent everywhere; pv is not beneath Yucatan. If we assume a general downwelling and displacement of mantle material in the seismically fast D″, corresponding to the impingement of slab material, slip along [100](010) seems more likely. With a new breed of detailed mantle deformation models, or experimental evidence of which slip system dominates, seismic anisotropy may be used to map deformation in D″ and provide greater insight into Earth's convecting interior.
The Stability of Tibetan Mantle Lithosphere
NASA Astrophysics Data System (ADS)
Houseman, Gregory; England, Philip
2017-04-01
The large area of thickened crust beneath the Tibetan Plateau is a consequence of sustained continental convergence between India and the Eurasian land mass during the last 50 m.y. Although the Tibetan crust has thickened, there has been much debate about the consequences for its sub-crustal mantle lithosphere. The onset of crustal thinning in the late Miocene appears to require an increase in the gravitational potential energy of the plateau at that time. One explanation for that increase depended on the idea that the mantle lithosphere beneath Tibet had been replaced by asthenosphere, either by some form of convective thinning or by a delamination process akin to retreating subduction acting on the unstable lithospheric mantle layer. Such ideas seem consistent with the history of magmatism and volcanism on the plateau. However, the dispersion of surface waves crossing the plateau implies that a relatively cold and fast layer of mantle remains beneath the plateau to depths of at least 250 km. Because the surface wave data appear inconsistent with the idea that mantle lithosphere has been removed, we investigate an alternative explanation that could explain the apparent increase in gravitational potential energy of the Tibetan lithosphere. If that mantle lithosphere has remained largely in place due to an intrinsic compositional buoyancy but, on thickening, has become unstable to an internal convective overturn, then: (1) mantle material at near asthenospheric temperatures would be emplaced below the crust, and (2) colder mantle from beneath the Moho could become stranded above about 250 km depth. This mechanism is feasible if the Tibetan sub-continental mantle lithosphere is depleted and intrinsically less dense than the underlying asthenosphere. The mechanism is broadly consistent with the surface wave analyses (which cannot resolve the short horizontal wavelengths on which overturn is likely to occur), and it predicts the kind of short-wavelength variations that are revealed by body-wave tomography. The thermal re-equilibration of the disturbed lithosphere may take 100s of m.y. but there is a rapid transient transfer of heat as the coldest parts of the mantle lithosphere are juxtaposed with the asthenosphere and the hotter parts juxtaposed with the base of the crust. Heat transfer at the base of the lithosphere could explain a short-term uplift of the surface ( 500 m in 10 m.y.). Heat transfer at the Moho could cause lower-crustal melting and volcanism, and could trigger retrograde metamorphic reactions in the lowermost crust that would contribute to further uplift. The increase in gravitational potential energy of the lithosphere associated with surface uplift thereby can explain the onset of extension in the plateau.
The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone
NASA Astrophysics Data System (ADS)
Ferrari, Luca; Orozco-Esquivel, Teresa; Manea, Vlad; Manea, Marina
2012-02-01
The Trans-Mexican Volcanic Belt (TMVB) is a 1000 km long Neogene continental arc showing a large variation in composition and volcanic style, and an intra-arc extensional tectonics. It overlies the Rivera and Cocos slabs, which display marked changes in geometry. Geophysical studies indicate that lithospheric mantle is very thin or absent beneath the forearc and arc, the fluids from the slab are released in a 40 to 100 km wide belt beneath the frontal part of the arc, and the lower crust beneath the arc is partially molten. East of 101°W the TMVB is built on a Precambrian to Paleozoic crust with thickness of 50-55 km. West of 101°W the TMVB is underlain by Jurassic to Cenozoic marine and continental arcs with a 35-40 km thick crust. The evolution of the TMVB occurred in four stages: 1) from ~ 20 to 10 Ma the initial andesitic arc moved inland showing progressively drier melting and, eventually, slab melting, suggesting flattening of the subducted slab; 2) since ~ 11 Ma a pulse of mafic volcanism migrated from west to east reaching the Gulf of Mexico by 7 Ma. This mafic lavas marks the lateral propagation of a slab tear, triggered by cessation of subduction beneath Baja California; 3) thereafter, the volcanic front started moving trenchward, with a marked phase of silicic volcanism between 7.5 and 3 Ma, local emplacement of small volume intraplate-like basalts since 5 Ma, and development of extensional faulting. These features are related to slab rollback, enhancing asthenophere flux into the mantle wedge and promoting partial melting of the crust; 4) the modern arc consists of a frontal belt dominated by flux and slab melting, and a rear belt characterized by more differentiated rocks or by mafic lavas with little or no evidence of subduction fluids but higher asthenosphere fingerprint.
NASA Astrophysics Data System (ADS)
Harmon, Nicholas; de la Cruz, Mariela Salas; Rychert, Catherine Ann; Abers, Geoffrey; Fischer, Karen
2013-11-01
The Costa Rica-Nicaragua subduction zone shows systematic along strike variation in arc chemistry, geology, tectonics and seismic velocity and attenuation, presenting global extremes within a few hundred kilometres. In this study, we use teleseismic and ambient noise derived surface wave tomography to produce a 3-D shear velocity model of the region. We use the 48 stations of the TUCAN array, and up to 94 events for the teleseismic Rayleigh wave inversion, and 18 months of continuous data for cross correlation to estimate Green's functions from ambient noise. In the shallow crust (0-15 km) we observe low-shear velocities directly beneath the arc volcanoes (<3 km s-1) and higher velocities in the backarc of Nicaragua. The anomalies below the volcanoes are likely caused by heated crust, intruded by magma. We estimate crustal thickness by picking the depth to the 4 km s-1 velocity contour. We infer >40-km-thick crust beneath the Costa Rican arc and the Nicaraguan Highlands, thinned crust (˜20 km) beneath the Nicaraguan Depression, and increasing crustal thickness in the backarc region, consistent with receiver function studies. The region of thinned, seismically slow and likely weakened crust beneath the arc in Nicaragua is not localizing deformation associated with oblique subduction. At mantle depths (55-120 km depth) we observe lower shear velocities (up to 3 per cent) beneath the Nicaraguan arc and backarc than beneath Costa Rica. Our low-shear velocity anomaly beneath Nicaragua is in the same location as a low-shear velocity anomaly and displaced towards the backarc from the high VP/VS anomaly observed in body wave tomography. The lower shear velocity beneath Nicaragua may indicate higher melt content in the mantle perhaps due to higher volatile flux from the slab or higher temperature. Finally, we observe a linear high-velocity region at depths >120 km parallel to the trench, which is consistent with the subducting slab.
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; Sun, Daoyuan; O'Driscoll, Leland; Becker, Thorsten W.; Holt, Adam; Diaz, Jordi; Thomas, Christine
2015-04-01
Detailed mantle and lithospheric structure from the Canary Islands to Iberia have been imaged with data from recent temporary deployments and select permanent stations from over 300 broadband seismometers. The stations extended across Morocco and Spain as part of the PICASSO, IberArray, and Morocco-Münster experiments. We present results from S receiver functions (SRF), shear wave splitting, waveform modeling, and geodynamic models that help constrain the tectonic evolution of the westernmost Mediterranean, including orogenesis of the Atlas Mountains and occurrence of localized alkaline volcanism. Our receiver function images, in agreement with previous geophysical modeling, show that the lithosphere is thin (~65 km) beneath the Atlas, but thickens (~100 km) over a very short length scale at the flanks of the mountains. We find that these dramatic changes in lithospheric thickness also correspond to dramatic decreases in delay times inferred from S and SKS splitting observations of seismic anisotropy. Pockets and conduits of low seismic velocity material below the lithosphere extend along much of the Atlas to Southern Spain and correlate with the locations of Pliocene-Quaternary magmatism. Waveform analysis from the USC linear seismic array across the Atlas Mountains constrains the position, shape, and physical characteristics of one localized, low velocity conduit that extends from the uppermost mantle (~200 km depth) up to the volcanoes in the Middle Atlas. The shape, position and temperature of these seismically imaged low velocity anomalies, topography of the base of the lithosphere, morphology of the subducted slab beneath the Alboran Sea, position of the West African Craton and correlation with mantle flow inferred from shear wave splitting suggest that the unusually high topography of the Atlas Mountains and isolated recent volcanics are due to active mantle support that may be from material channeled from the Canary Island plume.
NASA Technical Reports Server (NTRS)
Raikes, S. A.
1978-01-01
The compressional velocity within the upper mantle beneath Southern California is investigated through observations of the dependence of teleseismic P-delays at all stations of the array on the distance and azimuth to the event. The variation of residuals with azimuth was found to be as large as 1.3 sec at a single station; the delays were stable as a function of time, and no evidence was found for temporal velocity variations related to seismic activity in the area. These delays were used in the construction of models for the upper mantle P-velocity structure to depths of 150 km, both by ray tracing and inversion techniques. The models exhibit considerable lateral heterogeneity including a region of low velocity beneath the Imperial Valley, and regions of increased velocity beneath the Sierra Nevada and much of the Transverse Ranges. The development is described of a technique for the experimental determination of post-shock temperatures, and its application to several metals and silicates shocked to pressures in the range 5 to 30 GPa. The technique utilizes an infra-red radiation detector to determine the brightness temperature of the free surface of the sample after the shock wave has passed through it.
Seismological evidence of the Hales discontinuity in northeast India
NASA Astrophysics Data System (ADS)
Anand, Aakash; Bora, Dipok K.; Borah, Kajaljyoti; Madhab Borgohain, Jayanta
2018-04-01
The crust and upper mantle shear wave velocity structure beneath the northeast India is estimated by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data recorded at nine broadband seismic stations. The Assam valley and the Shillong-Mikir plateau are the two important tectonic blocks in the northeast India, which are surrounded by the Himalayan collision zone in the north, Indo-Burma subduction zone in the east and by the Bengal basin in the south. The joint inversion followed by forward modeling reveal crustal thicknesses of 30-34 km beneath the Shillong plateau, 36 km beneath the Mikir hills and 38-40 km beneath the Assam valley with an average shear wave velocity (Vs) of 3.4-3.5 km/s. The estimated low upper mantle shear wave velocity (Vsn) 4.2-4.3 km/s may be due to the rock composition or grain size or increased temperature and partial melt (<1%) in the upper mantle, or an effect of all. Also, we report for the first time, the existence of the Hales discontinuity at depths 56-74 km with Vs ∼4.4-4.6 km/s. Variable depth of the Hales discontinuity may be explained by the geotherm and/or addition of Cr3+ and Fe2+ in the spinel-garnet system.
Structure of the European upper mantle revealed by adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, Hejun; Bozdağ, Ebru; Peter, Daniel; Tromp, Jeroen
2012-07-01
Images of the European crust and upper mantle, created using seismic tomography, identify the Cenozoic Rift System and related volcanism in central and western Europe. They also reveal subduction and slab roll back in the Mediterranean-Carpathian region. However, existing tomographic models are either high in resolution, but cover only a limited area, or low in resolution, and thus miss the finer-scale details of mantle structure. Here we simultaneously fit frequency-dependent phase anomalies of body and surface waveforms in complete three-component seismograms with an iterative inversion strategy involving adjoint methods, to create a tomographic model of the European upper mantle. We find that many of the smaller-scale structures such as slabs, upwellings and delaminations that emerge naturally in our model are consistent with existing images. However, we also derive some hitherto unidentified structures. Specifically, we interpret fast seismic-wave speeds beneath the Dinarides Mountains, southern Europe, as a signature of northeastward subduction of the Adria plate; slow seismic-wave speeds beneath the northern part of the Rhine Graben as a reservoir connected to the Eifel hotspot; and fast wave-speed anomalies beneath Scandinavia as a lithospheric drip, where the lithosphere is delaminating and breaking away. Our model sheds new light on the enigmatic palaeotectonic history of Europe.
Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite
NASA Astrophysics Data System (ADS)
Walowski, K. J.; Wallace, P. J.; Hauri, E. H.; Wada, I.; Clynne, M. A.
2015-05-01
Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water--subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate--is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab--hydrated mantle peridotite in the slab interior--compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.
Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite
Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.
2015-01-01
Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.
Deformation in D″ Beneath North America From Anisotropy
NASA Astrophysics Data System (ADS)
Nowacki, A. J.; Wookey, J.; Kendall, J. M.
2009-12-01
The lowermost few hundred kilometres of the Earth's mantle—known as D″—form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a strong heterogeneity in seismic wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (VS) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. A phase change of MgSiO3-perovskite (pv) to a post-perovskite (ppv) structure at near-core-mantle boundary (CMB) conditions is a compelling mechanism to explain the seismic features of D″. An outstanding question is how this and other mineral phases may deform to produce anisotropy, with different mechanisms possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can potentially determine the other with observations of the resulting seismic anisotropy. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW>5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained—a single azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically-distinct material such as melt. TTI planes of isotropy dip south beneath Florida, southwest beneath western USA and southeast beneath Yucatan. However we test other slip systems in MgO, pv and ppv to determine if deformation in these phases can account for the observed anisotropy. The systems [100](010) and [1̅10](110) in ppv are consistent everywhere; pv is not beneath Yucatan. If we assume a general downwelling and displacement of mantle material in the seismically fast D″, corresponding to the impingement of slab material, slip along [100](010) seems more likely, with the possibility that slip along (110) as a transformation texture also occurs in the seismically fastest regions (Walte et al, GRL, 2009). With a new breed of detailed mantle deformation models, or experimental evidence of which system dominates, seismic anisotropy may be used to map deformation in D″ and provide greater insight into Earth's convecting interior.
Yellowstone Hotspot Geodynamics
NASA Astrophysics Data System (ADS)
Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.
2012-12-01
The Yellowstone hotspot results from the interaction of a mantle plume with the overriding N. America plate producing a ~300-m high topographic swell centered on the Late Quaternary Yellowstone volcanic field. The Yellowstone area is dominated by earthquake swarms including a deadly M7.3 earthquake, extraordinary high heat flow up to ~40,000 mWm-2, and unprecedented episodes of crustal deformation. Seismic tomography and gravity data reveal a crustal magma reservoir, 6 to 15 km deep beneath the Yellowstone caldera but extending laterally ~20 km NE of the caldera and is ~30% larger than previously hypothesized. Kinematically, deformation of Yellowstone is dominated by regional crustal extension at up to ~0.4 cm/yr but with superimposed decadal-scale uplift and subsidence episodes, averaging ~2 cm/yr from 1923. From 2004 to 2009 Yellowstone experienced an accelerated uplift episode of up to 7 cm/yr whose source is modeled as magmatic recharge of a sill at the top of the crustal magma reservoir at 8-10-km depth. New mantle tomography suggest that Yellowstone volcanism is fed by an upper-mantle plume-shaped low velocity body that is composed of melt "blobs", extending from 80 km to 650 km in depth, tilting 60° NW, but then reversing tilt to ~60° SE to a depth of ~1500 km. Moreover, images of upper mantle conductivity from inversion of MT data reveal a high conductivity annulus around the north side of the plume in the upper mantle to resolved depths of ~300 km. On a larger scale, upper mantle flow beneath the western U.S. is characterized by eastward flow beneath Yellowstone at 5 cm/yr that deflects the plume to the west, and is underlain by a deeper zone of westerly return flow in the lower mantle reversing the deflection of the plume body to the SE. Dynamic modeling of the Yellowstone plume including a +15 m geoid anomaly reveals low excess plume temperatures, up to 150°K, consistent with a weak buoyancy flux of ~0.25 Mg/s. Integrated kinematic modeling of GPS, Quaternary fault slip, and seismic data suggest that the gravitational potential of the Yellowstone swell creates a regional extension affecting much of the western U.S. Overall, the Yellowstone hotspot swell is the vertex of tensional stress axes rotation from E-W in the Basin-Range to NE-SW at the Yellowstone Plateau as well as the cause of edge faulting, nucleating the nearby Teton and Centennial faults. We extrapolate the original location of the Yellowstone mantle-source southwestward 800 km to an initial position at 17 million years ago beneath eastern Oregon and Washington suggesting a common origin for the YSRP and Columbia Plateau volcanism. We propose that the original plume head ascended vertically behind the subducting Juan de Fuca plate, but was entrained ~12 Ma ago in a faster mantle flow beneath the continental lithosphere and tilted into its present configuration.
Complex deformation in western Tibet revealed by anisotropic tomography
NASA Astrophysics Data System (ADS)
Zhang, Heng; Zhao, Junmeng; Zhao, Dapeng; Yu, Chunquan; Liu, Hongbing; Hu, Zhaoguo
2016-10-01
The mechanism and pattern of deformation beneath western Tibet are still an issue of debate. In this work we present 3-D P- and S-wave velocity tomography as well as P-wave radial and azimuthal anisotropy along the ANTILOPE-I profile and surrounding areas in western Tibet, which are determined by using a large number of P and S arrival-time data of local earthquakes and teleseismic events. Our results show that low-velocity (low-V) zones exist widely in the middle crust, whereas low-V zones are only visible in the lower crust beneath northwestern Tibet, indicating the existence of significant heterogeneities and complex flow there. In the upper mantle, a distinct low-V gap exists between the Indian and Asian plates. Considering the P- and S-wave tomography and P-wave azimuthal and radial anisotropy results, we interpret the gap to be caused mainly by shear heating. Depth-independent azimuthal anisotropy and high-velocity zones exist beneath the northern part of the study region, suggesting a vertically coherent deformation beneath the Tarim Basin. In contrast, tomographic and anisotropic features change with depth beneath the central and southern parts of the study region, which reflects depth-dependent (or decoupled) deformations there. At the northern edge of the Indian lithospheric mantle (ILM), P-wave azimuthal anisotropy shows a nearly east-west fast-velocity direction, suggesting that the ILM was re-built by mantle materials flowing to the north.
Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.
2014-04-01
The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.
Tomography-based mantle flow beneath Mongolia-Baikal area
NASA Astrophysics Data System (ADS)
Zhu, Tao
2014-12-01
Recent progress in seismic tomography of Asia allows us to explore and understand more clearly the mantle flow below the Mongolia-Baikal area. We present a tomography-based model of mantle convection that provides a good match to the residual topography. The model provides predictions on the present-day mantle flow and flow-induced asthenospheric deformation which give us new insights on the mantle dynamics in the Mongolia-Baikal area. The predicted mantle flow takes on a very similar pattern at the depths shallower or deeper than 400 km and almost opposite flow directions between the upper (shallower than 400 km) and lower (deeper than 400 km) parts. The flow pattern could be divided into the 'simple' eastern region and the 'complex' western region in the Mongolia. The upwelling originating from about 350 km depth beneath Baikal rift zone is an important possible drive force to the rifting. The seismic anisotropy cannot be simply related with asthenospheric flow and flow-induced deformation in the entire Mongolia-Baikal area, but they could be considered as an important contributor to the seismic anisotropy in the eastern region of Mongolia and around and in Sayan-Baikal orogenic belt.
Upper-mantle origin of the Yellowstone hotspot
Christiansen, R.L.; Foulger, G.R.; Evans, J.R.
2002-01-01
Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.
Linking TERRA and DRex to relate mantle convection and seismic anisotropy
NASA Astrophysics Data System (ADS)
Walker, Andrew; Davies, Huw; Davies, Rhodri; Wookey, James
2015-04-01
Seismic anisotropy caused by flow induced alignment of the olivine crystals in Earth's upper mantle provides a powerful way to test our ideas of mantle convection. We have been working to directly combine computer simulations of mantle dynamics, using fluid mechanics at the continuum scale, with models of rock deformation to capture fabric evolution at the grain scale. By combining models of deformation at these two scales we hope to be able to rigorously test hypothesis linking mantle flow to seismic anisotropy in regions as diverse as subduction zones, the lithosphere-asthenosphere boundary, and the transition zone. We also intend to permit feedback, for example via geometrical softening, from the model of fabric development into the material properties used in the convection simulation. We are building a flexible framework for this approach which we call Theia. Our initial implementation uses the TERRA convection code (Baumgardner, J. Stat. Phys. 39:501-511, 1985; Davies et al. Geosci. Model Dev. 6:1095-1107, 2013) to drive DRex (Kaminski et al. Geophys. J. Int. 158:744-752, 2004), which is used to predict the evolution of crystallographic preferred orientation in the upper mantle. Here we describe our current implementation which makes use of the ability of TERRA to track markers, or particles, through the evolving flow field. These tracers have previously been used to track attributes such as the bulk chemical composition or trace element ratios. Our modification is to use this technology to track a description of the current state of the texture and microstructure (encompassing an orientation distribution function, grain size parameters and dislocation density) such that we can advance models of polycrystalline deformation for many simultaneous DRex instances alongside and in sync with models of mantle convection. We will also describe initial results from our first use of the Theia framework where we are investigating the effect of asthenospheric viscosity on seismic anisotropy beneath the oceans. Key to this work is the ability of TERRA to incorporate plate motion history which acts to correctly locate the predicted anisotropy such that it can be directly compared with the anisotropy measured for the Earth.
Reconstructing hotspot-induced dynamic topography through palaeogeomorphology
NASA Astrophysics Data System (ADS)
Whitchurch, A. L.; Gupta, S.; Barfod, D.
2009-12-01
The interaction of a buoyant mantle plume head with the overlying lithosphere is thought to generate significant, kilometre-scale topographic doming of the crust. Consequently, continental mantle plumes should have an observable response in river drainage systems and should potentially drive large-scale erosional denudation. The key to understanding the complex landscape evolution associated with the life cycle of a mantle plume is therefore locked within the sedimentary record of basins neighbouring such uplifts. The Yellowstone region, western USA, provides the perfect natural laboratory in which to test the above hypothesis. The Yellowstone hotspot initiated at the Oregon-Nevada border ca. 16 Ma. It is associated with a hotspot track, marked by time-transgressive volcanic centres which line the Snake River Plain, generated through migration of the North American plate across this stationary mantle plume. Today the hotspot is located beneath Yellowstone National Park and is thought to generate crustal-scale doming. We investigate the Mio-Pliocene Sixmile Creek Formation within the Ruby Basin, a rift basin located on the northern shoulder of the hotspot track between ~16-6 Ma. Through the temporal reconstruction of sedimentary architecture, grain size, palaeoslope and palaeocurrent trends, we show that hotspot-related crustal doming acted to uplift the headwaters of a fluvial system supplying the basin, driving exhumation that was associated with distinct fluvial reconfiguration. Evolution of the axial river system is evidenced by the transition from isolated, single-storey ribbon channels to amalgamated, multi-storey, braided fluvial deposition. This subsequently drove a pulse of coarse-grained gravel progradation through the basin. Detailed grain size analysis and calculation of fluvial palaeoslopes indicates a distinct coarsening of the axial river sediment and an increase in depositional slope from ~0.47 m/km to ~1.90 m/km between ~12-6 Ma. Our results help to constrain the scale, geometry and evolution of hotspot-generated topographic doming over the life cycle of the Yellowstone mantle plume. This study demonstrates the use of field geologic work in providing insight into large-scale geodynamic problems.
NASA Astrophysics Data System (ADS)
Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu
2014-03-01
New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.
NASA Astrophysics Data System (ADS)
Guo, Zhen; Wang, Kai; Yang, Yingjie; Tang, Youcai; John Chen, Y.; Hung, Shu-Huei
2018-03-01
We present a 3-D model of NE China by joint inversion of body and surface waves. The joint inversion significantly improves the resolution at shallow depths compared with body wave tomography alone and provides seismic evidence for the origin of Quaternary volcanism in NE China. Our model reveals that the mantle upwelling beneath the Changbaishan volcano originates from the transition zone and extends up to 60 km, and spreads at the base of the lithosphere with the upwelling head 5 times wider than the raising tail in the lower upper mantle. However, low velocities beneath the Halaha and Abaga volcanoes in the Xingmeng belt are confined to depths shallower than 150 km, suggesting that magmatism in the Xingmeng belt is more likely caused by localized asthenospheric upwelling at shallow depths rather than from the common deep source. A small-scale sublithospheric mantle convection may control the spatial and temporal distribution of Quaternary magmatism in NE China; that is, the upwelling beneath the Changbaishan volcano triggers the downwelling beneath the southern Songliao basin, where the high velocity imaged extends to 300 km. The downwelling may further induce localized upwelling in the surrounding areas, such as the Halaha and Abaga volcanoes. Thanks to the joint constraints from both surface and body waves, we can estimate the dimension of the convection cell. The convection cell is located between 42°N and 45°N, spreads around 500 km in the W-E direction measured from the distance between centers of downwelling and upwelling, and extends to 300 km vertically.
Mantle heat flow and thermal structure of the northern block of Southern Granulite Terrain, India
NASA Astrophysics Data System (ADS)
Manglik, Ajay
2006-07-01
Continental shield regions are normally characterized by low-to-moderate mantle heat flow. Archaean Dharwar craton of the Indian continental shield also follows the similar global pattern. However, some recent studies have inferred significantly higher mantle heat flow for the Proterozoic northern block of Southern Granulite Terrain (SGT) in the immediate vicinity of the Dharwar craton by assuming that the radiogenic elements depleted exposed granulites constitute the 45-km-thick crust. In this study, we use four-layered model of the crustal structure revealed by integrated geophysical studies along a geo-transect in this region to estimate the mantle heat flow. The results indicate that: (i) the mantle heat flow of the northern block of SGT is 17 ± 2 mW/m 2, supporting the global pattern, and (ii) the lateral variability of 10-12 mW/m 2 in the surface heat flow within the block is of crustal origin. In terms of temperature, the Moho beneath the eastern Salem-Namakkal region appears to be at 80-100 °C higher temperature than that beneath the western Avinashi region.
Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves
NASA Astrophysics Data System (ADS)
Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.
2017-12-01
New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.
NASA Astrophysics Data System (ADS)
Agius, Matthew R.; Lebedev, Sergei
2013-04-01
Seismic deployments over the last two decades have produced dense broadband data coverage across the Tibetan Plateau. Yet, the lithospheric dynamics of Tibet remains enigmatic, with even its basic features debated and with very different end-member models still advocated today. Most body-wave tomographic models do not resolve any high-velocity anomalies in the upper mantle beneath central and northern Tibet, which motivated the inference that the Indian lithosphere may sink into deep mantle beneath the Himalayas in the south, with parts of it possibly extruded laterally eastward. In contrast, surface-wave tomographic models all show pronounced high-velocity anomalies beneath much of Tibet at depths around 200 km. Uncertainties over the shapes and amplitudes of the anomalies, however, contribute to the uncertainty of their interpretations, ranging from the subduction of India or Asia to the extreme viscous thickening of the Tibetan lithosphere. Within the lithosphere itself, a low-viscosity layer in the mid-lower crust is evidenced by many observations. It is still unclear, however, whether this layer accommodates a large-scale channel flow (which may have uplifted eastern Tibet, according to one model) or if, instead, deformation within it is similar to that observed at the surface. Broad-band surface waves provide resolving power from the upper crust down to the asthenosphere, for both the isotropic-average shear-wave speeds (characterising the composition and thermal state of the lithosphere) and the radial and azimuthal shear-wave anisotropy (indicative, in an actively deforming region, of the current and recent flow). We measured highly accurate Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of inter-station measurements made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by extensive series of non-linear inversions, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy consistent with the data. Temperature anomalies in the upper mantle were estimated from shear-velocity using pre-computed petro-physical relationships. Azimuthal anisotropy in the crust and upper mantle was determined by surface-wave tomography and, also, by sub-array analysis targeting the anisotropy amplitude. Our results show that the prominent high-velocity anomalies in the upper mantle are most consistent with the presence of subducted Indian lithosphere beneath much of Tibet. The large estimated thermal anomalies within the high-velocity features match those to be expected within subducted India. The morphology of India's subduction beneath Tibet is complex and shows pronounced west-east variations. Beneath eastern and northeastern Tibet, in particular, the subducted Indian lithosphere appears to have subducted, at a shallow angle, hundreds of km NNE-wards. Azimuthal anisotropy beneath Tibet is distributed in multiple layers with different fast-propagations directions, which accounts for the complexity of published shear-wave splitting observations. The fast directions within the mid-lower crust are parallel to the extensional components of the current strain rate field at the surface, consistent with similar deformation through the entire crust, rather than channel flow. Anisotropy within the asthenosphere beneath northeastern Tibet (sandwiched between the Tibetan lithosphere above and the subducted Indian lithosphere below) indicates SSW-NNE flow, parallel to the direction of motion of the Indian Plate, including its subducted leading edge.
NASA Astrophysics Data System (ADS)
Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.
2015-12-01
Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.
Crustal evolution derived from the Izu-Bonin-Mariana arc velocity images
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Tatsumi, Y.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takahashi, T.; Noguchi, N.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.
2010-12-01
The Izu-Bonin-Mariana arc is known as one of typical oceanic island arcs, which has developed by subduction between oceanic crusts producing continental materials. Japan Agency for Marine-Earth Science and Technology has carried out seismic surveys using a multi-channel reflection survey system (MCS) and ocean bottom seismographs (OBSs) in the Izu-Bonin-Mariana (IBM) arc since 2002, and reported these crustal images. As the results, we identified the structural characteristics of whole Izu-Bonin-Mariana arc. Rough structural characteristics are, 1) middle crust with Vp of 6 km/s, 2) upper part of the lower crust with Vp of 6.5-6.8 km/s, 3) lower part of the lower crust with Vp of 6.8-7.5 km/s, and 4) lower mantle velocity beneath the arc crusts. In addition, structural variation along the volcanic front, for example, thickness variation of andesitic layers was imaged and the distributions is consistent with those of rhyolite volcanoes, that is, it suggested that the cause the structural variation is various degree of crustal growth (Kodaira et al., 2007). Moreover, crustal thinning with high velocity lower crust across arc was also imaged, and it is interpreted that such crust has been influenced backarc opening (Takahashi et al., 2009). According to Tatsumi et al. (2008), andesitic middle crust is produced by differentiation of basaltic lower crust and a part of the restites are transformed to the upper mantle. This means that region showing much crustal differentiation has large volume of transformation of dense crustal materials to the mantle. We calculated volume profiles of the lower crust along all seismic lines based on the petrologic model, and compared them with observed real volumes obtained by seismic images. If the real volume of the lower crust is large, it means that the underplating of dense materials to the crustal bottom is dominant rather than transformation of dense materials to the upper mantle. According to obtained profiles to judge if the region is the transformation dominant or underplating, the transformation dominant regions are located along the volcanic front, the remnant arc for the incipient rifting like the Sumisu Rift just behind the volcanic front, rear arc regions, and fore-arc basins. Beneath the fore-arc basins, multiple rows showing transformation dominant distribute, and it extends from north to south around the Ogasawara Trough. On the other hand, the underplating dominant regions distribute between the volcanic front and the rear arc region, beneath the incipient rift, and between the multiple rows beneath the fore-arc basins. These locations showing underplating dominant are consistent with those with high velocity lower crust.
Large-scale variation in lithospheric structure along and across the Kenya rift
Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.
1991-01-01
The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.
D" Anisotropy Beneath the Caribbean, Central America and the East Pacific
NASA Astrophysics Data System (ADS)
Nowacki, A.; Wookey, J.; Kendall, J.
2009-05-01
Whilst the majority of the Earth's lower mantle appears to be relatively homogeneous, by contrast the few hundred kilometres above the core-mantle boundary (CMB) are host to a region of probable large chemical and thermal heterogeneity. Seismic observations of this region---known as D"---include a large increase in S-wave velocity that can vary in depth laterally over distances of <~100~km and significant seismic anisotropy (the variation of wavespeed with direction). The most recent candidate to explain these features in D" (including its anisotropy and bounding discontinuity) is the experimentally observed transformation of MgSiO3-perovskite to a post-perovskite structure at near CMB pressures and temperatures. As the phase change has a positive Clapeyron slope, regions where the geotherm is colder than average at the CMB---such as areas beneath long-term subduction---should show evidence of such a discontinuity and, depending on the alignment of mantle minerals or other structure, should also exhibit seismic anisotropy. We study the D" region beneath the Caribbean, Central America and the east Pacific using S and ScS phases mainly from deep-focus earthquakes with magnitude >~Mw~5.5 and depths >~550 km. Our method allows the incorporation of previous estimates of source-side upper mantle anisotropy, and by comparing the splitting parameters of the two phases (thus correcting for anisotropy in the upper mantle below the receiver), we obtain measurements of splitting in ScS alone; hence measuring the anisotropy in the lowermost mantle. The S and ScS phases are detected on around 450 seismic stations in Canada and the US (including Hawaii), yielding over 270 measurements of anisotropy in D". The measurements cover an area ˜4,000~km by ˜2,000~km centred on the CMB beneath Central America, and exhibit ˜1% S-wave anisotropy. In the Caribbean, they show a small but detectable departure from the first-order transverse isotropy with a vertical axis of symmetry (VTI) which can be explained as the same but with a tilted axis of symmetry (TTI). Here this dips a few degrees to the west; beneath Central America it dips to the east. Previous waveform studies agree with our results (e.g., Maupin et al., JGR, 2005). Beneath the east Pacific, where global S-wave models show a much less positive shear velocity anomaly, measurements show a significant degree of TTI, probably dipping by ˜30° to the east or southeast. Our interpretation (similarly to previous studies) of these features proposes that this is a result of the dynamics of the interaction of slab material with that already present at the base of the mantle, leading to deformation into 'ridges' aligned roughly perpendicular to the direction of palaeo-subduction over short scales (˜100 km and less) and the subsequent alignment of the crystals, melt pockets or other features which give rise to the TTI.
Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.
2010-12-01
Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.
NASA Astrophysics Data System (ADS)
Saki, Morvarid; Thomas, Christine; Nippress, Stuart E. J.; Lessing, Stephan
2015-01-01
We are mapping the topography of upper mantle seismic discontinuities beneath the North Atlantic and surrounding regions by using precursor arrivals to PP and SS seismic waves that reflect off the seismic discontinuities. Numerous source-receiver combinations have been used in order to collect a large dataset of reflection points beneath our investigation area. We analysed over 1700 seismograms from MW > 5.8 events using array seismic methods to enhance the signal to noise ratio. The measured time lag between PP (SS) arrivals and their corresponding precursors on robust stacks are used to measure the depth of the transition zone boundaries. The reflectors' depths show a correlation between the location of known hotspots and a significantly depressed 410 km discontinuity indicating a temperature increase of 50-300 K compared to the surrounding mantle. For the 660 km discontinuity three distinct behaviours are visible: (i) normal depths beneath Greenland and at a distance of a few hundred kilometres away from known hotspots, (ii) shallower 660 km discontinuity compared with the global average value near hotspots closer to the Mid-Atlantic Ridge, and (iii) very few observations of a 660 km discontinuity at the hotspot locations. We interpret our observations as a large upwelling beneath the southern parts of our study region, possibly due to the South Atlantic convection cell. The thermal anomaly may be ponding beneath the endothermic 660 km phase transformation and likely does not extend through the top of the transition zone as a whole, except for those branches which appear as the thinner upwellings of Azores, Canaries and Cape Verde hotspots at the surface.
Ramachandran, K.; Dosso, S.E.; Spence, G.D.; Hyndman, R.D.; Brocher, T.M.
2005-01-01
This paper presents a three-dimensional compressional wave velocity model of the forearc crust and upper mantle and the subducting Juan de Fuca plate beneath southwestern British Columbia and the adjoining straits of Georgia and Juan de Fuca. The velocity model was constructed through joint tomographic inversion of 50,000 first-arrival times from earthquakes and active seismic sources. Wrangellia rocks of the accreted Paleozoic and Mesozoic island arc assemblage underlying southern Vancouver Island in the Cascadia forearc are imaged at some locations with higher than average lower crustal velocities of 6.5-7.2 km/s, similar to observations at other island arc terranes. The mafic Eocene Crescent terrane, thrust landward beneath southern Vancouver Island, exhibits crustal velocities in the range of 6.0-6.7 km/s and is inferred to extend to a depth of more than 20 km. The Cenozoic Olympic Subduction Complex, an accretionary prism thrust beneath the Crescent terrane in the Olympic Peninsula, is imaged as a low-velocity wedge to depths of at least 20 km. Three zones with velocities of 7.0-7.5 km/s, inferred to be mafic and/or ultramafic units, lie above the subducting Juan de Fuca plate at depths of 25-35 km. The forearc upper mantle wedge beneath southeastern Vancouver Island and the Strait of Georgia exhibits low velocities of 7.2-7.5 km/s, inferred to correspond to ???20% serpentinization of mantle peridotites, and consistent with similar observations in other warm subduction zones. Estimated dip of the Juan de Fuca plate beneath southern Vancouver Island is ???11??, 16??, and 27?? at depths of 30, 40, and 50 km, respectively. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Byrnes, J. S.; Bezada, M.
2017-12-01
Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.
NASA Astrophysics Data System (ADS)
Xu, Yi; Li, Xuelei; Wang, Sheng
2018-05-01
Tengchong is a young volcanic area on the collision boundary between the Indian and Euro-Asian plates of the southeastern Tibetan margin. Holocene volcanoes are concentrated in the Tengchong basin, where they align an N-S trending string-like cluster. To study the magma activity and its relation with the volcanoes, we deployed a passive seismic observation across the volcanic area in northern Tengchong. Using tele-seismic data and receiver function technique, we determined the S-wave velocity structure beneath nine temporary stations. Results show that the Tengchong basin is underlain by prominent low-velocity zones that are associated with the magma chambers of the volcanoes. In the north, a small and less pronounced magma chamber lies beneath two crater lakes, with a depth range of 9-16 km and a lateral width of <8 km. To the south, an interconnected magma chamber is found between the Dayingshan (DYS) volcano and the Dakongshan (DKS) volcanic cluster, with a depth range of 6-15 km and a lateral width of <12 km. In the south, the Laoguipo (LGP) volcano is characterized by anomalous low velocities throughout the upper-mid crust. Combined with other studies, we infer that the DYS volcano shares the same magma chamber with the DKS volcanic cluster, whereas the heat flow beneath the LGP volcano belongs to another thermal system, probably relating to the magma activity beneath the Rehai geothermal field in the south or affected by the intersection between the Tengchong volcanic fault zone and the Dayingjiang fault zone. In addition, mantle intrusion has resulted in the Moho elevation beneath the DKS volcanic cluster, and the thick transition zones on the crust-mantle boundary imply a possible penetration of the heat flow from the uppermost mantle into the lower crust.
NASA Astrophysics Data System (ADS)
Spieker, Kathrin; Rondenay, Stéphane; Ramalho, Ricardo; Thomas, Christine; Helffrich, George
2018-05-01
The Azores Archipelago is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, resting on both sides of the ridge. Various methods including seismic reflection, gravity and passive seismic imaging have previously been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 and 30 km, but until now models of the more fine-scale crustal structure have been lacking. Pending questions include the thickness of the volcanic edifice beneath the islands and whether crustal intrusions or even underplating can be observed beneath any island. In this study, we use data from nine seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. Our results indicate that the base of the volcanic edifice is located approximately 1 to 4 km depth beneath the different islands and that the crust-mantle boundary has an average depth of ˜17 km. There is strong evidence for magmatic underplating beneath the island of São Jorge, and indications that the underplating is also present beneath São Miguel and possibly Santa Maria. Additionally, the seismological lithosphere-asthenosphere boundary, defined as a seismic velocity drop in the uppermost mantle, seems to deepen with increasing distance from the MAR. It has a depth of ˜45 km beneath the islands close to the MAR, compared to depths >70 km beneath the more distal islands.
Constraints on radial anisotropy in the central Pacific upper mantle from the NoMelt OBS array
NASA Astrophysics Data System (ADS)
Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Zebker, M.
2016-12-01
Observations of seismic anisotropy in ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70-Ma seafloor in the central Pacific with the aim of constraining upper-mantle circulation and the evolution of the lithosphere-asthenosphere system. Azimuthal variations in Rayleigh-wave velocity suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere, and we aim to evaluate whether radial anisotropy shows a similar pattern. We use a combination of Love waves from earthquakes (20-100 s) as well as high-frequency ambient noise (5-10 s) to estimate VSH in the upper 300 km beneath the NoMelt array. Waveform fitting of the ambient-noise cross spectra provide phase-velocity estimates that are sensitive to the upper 50 km of the mantle. To constrain structure beneath the lid, we employ an array-based approach to measure Love-wave phase velocities across the array using seven shallow-focus events (< 25 km) with high signal-to-noise ratio and diverse azimuthal coverage. The Love wave phase-velocity measurements suggest strong interference of the first overtone for intermediate periods (20-50 s), while longer periods (>60 s) are mostly dominated by fundamental mode energy. Through forward modeling of Love wave Fréchet kernels, we find an extremely strong nonlinearity in individual mode-branch sensitivity that is dependent on the relative velocity difference between the low-velocity zone (LVZ) and the overlying Pacific lid. For the fundamental mode in the presence of a strong LVZ, intermediate periods (20-50 s) have little sensitivity within the lithospheric mantle with peak sensitivity pushed to the base of the low-velocity zone. This peak sensitivity migrates to much shallower depth as the lid/LVZ contrast is reduced. Therefore, we use a Monte Carlo approach to systematically explore the model space and identify the most robust model features required to minimize phase-velocity misfit of the full multimode Love wave arrivals. The resulting VSH model is combined with the NoMelt VSV model to obtain estimates of radial anisotropy for the top 300km of the central Pacific upper-mantle.
NASA Astrophysics Data System (ADS)
Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.
2015-12-01
Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical conductivity variations within the arc, providing unique constraints on temperature, mineralogy and fluid content. This abstract covers preliminary MT constraints on the mantle and deep crust as inferred from the 300 km long amphibious profile. A companion abstract (Bennington et al.) considers the crustal magma chamber imaged by the 3D array.
NASA Astrophysics Data System (ADS)
Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando
2015-02-01
The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.
Formation and modification of chromitites in the mantle
NASA Astrophysics Data System (ADS)
Arai, Shoji; Miura, Makoto
2016-11-01
Podiform chromitites have long supplied us with unrivaled information on various mantle processes, including the peridotite-magma reaction, deep-seated magmatic evolution, and mantle dynamics. The recent discovery of ultrahigh-pressure (UHP) chromitites not only sheds light on a different aspect of podiform chromitites, but also changes our understanding of the whole picture of podiform chromitite genesis. In addition, new evidence was recently presented for hydrothermal modification/formation chromite/chromitite in the mantle, which is a classical but innovative issue. In this context, we present here an urgently needed comprehensive review of podiform chromitites in the upper mantle. Wall-rock control on podiform chromitite genesis demonstrates that the peridotite-magma reaction at the upper mantle condition is an indispensable process. We may need a large system in the mantle, far larger than the size of outcrops or mining areas, to fulfill the Cr budget requirement for podiform chromitite genesis. The peridotite-magma reaction over a large area may form a melt enriched with Na and other incompatible elements, which mixes with a less evolved magma supplied from the depth to create chromite-oversaturated magma. The incompatible-element-rich magma trapped by the chromite mainly precipitates pargasite and aspidolite (Na analogue of phlogopite), which are stable under upper mantle conditions. Moderately depleted harzburgites, which contain chromite with a moderate Cr# (0.4-0.6) and a small amount of clinopyroxene, are the best reactants for the chromitite-forming reaction, and are the best hosts for podiform chromitites. Arc-type chromitites are dominant in ophiolites, but some are of the mid-ocean ridge type; chromitites may be common beneath the ocean floor, although it has not yet been explored for chromitite. The low-pressure (upper mantle) igneous chromitites were conveyed through mantle convection or subduction down to the mantle transition zone to form ultrahigh-pressure chromitites. Some of these reappear at the shallower mantle, and can coexist with newly formed low-pressure igneous chromitites. High-temperature hydrothermal fluids can dissolve and precipitate chromite, and hydrothermal chromitites (chromitites precipitated from aqueous fluids) are possibly formed within the mantle where the circulation of hydrous fluid is available, e.g., at the mantle wedge.
Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica
NASA Astrophysics Data System (ADS)
Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry
2015-04-01
Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL). The MBL Dome and adjacent coastal areas show extremely low viscosity (~1018Pa-s) for most parameterizations, suggesting that low mantle viscosity may produce a very rapid response to ice mass loss in this region.
NASA Astrophysics Data System (ADS)
Dai, H. K.; Zheng, J.; Su, Y. P.; Xiong, Q.; Pan, S. K.
2017-12-01
The nature of the sub-continental lithospheric mantle (SCLM) beneath the western North China Craton (NCC) is poorly known, which hinders understanding the cratonic response to the southward subduction of the Paleo-Asian Ocean. Mineral chemical data of spinel lherzolite xenoliths from newly discovered Cenozoic Langshan basalts in the northwestern part of the craton have been integrated with data from other localities across the western NCC, to put constrains on the SCLM nature and to explore the reworking processes involved. Compositions of mineral cores (i.e., Mg# in olivine = 88 91) and P-T estimates ( 1.2 GPa, 950 oC) suggest the Langshan xenoliths/xenocrysts represent fragments of the uppermost SCLM and experienced <15% melt extraction. These characteristics are similar to those of mantle xenoliths from other locaties (Siziwangqi and Hannuoba) along the northern margin of the western NCC. Disequilibrium characteristics are observed in xenoliths/xenocrysts in this study, including pyroxene spongy coronae and compositionally zoned olivine. They are interpreted to be induced by partial melting and by ironic diffusion with silicate melts in the mantle respectively, shortly before the eruption of host basalt. Metasomatism is recorded in clinopyroxene cores by concomitant enrichments in light rare earth elements and high field strength elements and was likely related to the migration of silicate melts derived from a mantle modified by slab melts during the Paleozoic time. The SCLM along the northern margin of the western NCC is fertile in nature constrained by mantle xenoliths from several localities (Langshan in this study, Siziwangqi and Hannuoba in references). Considering 1) the coexistence of fertile lithospheric mantle (similar to the Phanerozoic SCLM of the eastern NCC) and the overlying ancient continental crust, and 2) the sharp decrease in lithospheric thickness from the inner part to the northern margin of the western NCC, the SCLM beneath the northwestern part should have been strongly rejuvenated or replaced by fertile and non-cratonic mantle. Combined with other geological evidence on the northwestern margin, the mantle replacement and metasomatism were likely triggered by southward subduction of the Paleo-Asian Ocean.
Mantle thermal history during supercontinent assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Zhong, S.
2013-12-01
We use mantle convection simulations driven by plate motion boundary conditions to investigate changes in mantle temperature through time. It has been suggested that circum-Pangean subduction prevented convective thermal mixing between sub-continental and sub-oceanic regions. We performed thermo-chemical simulations of mantle convection with velocity boundary conditions based on plate motions for the past 450 Myr using Earth-like Rayleigh number and ~60% internal heating using three different plate motion models for the last 200 Myr [Lithgow-Bertelloni and Richards 1998; Gurnis et al. 2012; Seton et al. 2012; Zhang et al. 2010]. We quantified changes in upper-mantle temperature between 200-1000 km depth beneath continents (defined as the oldest 30% of Earth's surface) and beneath oceans. Sub-continental upper mantle temperature was relatively stable and high between 330 and 220 Ma, coincident with the existence of the supercontinent Pangea. The average sub-continental temperature during this period was, however, only ~10 K greater than during the preceding 100 Myr. In the ~200 Myr since the breakup of Pangea, sub-continental temperatures have decreased only ~15 K in excess of the 0.02 K/Myr secular cooling present in our models. Sub-oceanic upper mantle temperatures did not vary more than 5 K between 400 and 200 Ma and the cooling trend following Pangea breakup is less pronounced. Recent geochemical observations imply rapid upper mantle cooling of O(10^2) K during continental breakup; our models do not produce warming of this magnitude beneath Pangea or cooling of similar magnitude associated with the breakup of Pangea. Our models differ from those that produce strong sub-continental heating in that the circum-Pangean subduction curtain does not completely inhibit mixing between the sub-continental and sub-oceanic regions and we include significant internal heating, which limits the rate of temperature increase. Heat transport in our simulations is controlled to first order by plate motions. Most of the temporal variability in surface heat flow is driven by variations in seafloor spreading rate and the accompanying changes in slab velocities dominate variations in buoyancy flux at all mantle depths. Variations in plume buoyancy flux are small but are correlated with the slab buoyancy flux variations.
Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction
NASA Astrophysics Data System (ADS)
Turner, A. J.; Katz, R. F.; Behn, M. D.
2014-12-01
The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099, 2008. [2] N. J. Austin and B. Evans, Geology, 35:354, 2007. [3] G. Hirth and D. Kohlstedt, In Inside the Subduction Factory, volume 138 of AGU Geophysical Monograph, 2003. [4] L. N. Hansen et al., JGR (Solid Earth), 116:B08201, 2011.
NASA Astrophysics Data System (ADS)
Elsheikh, Ahmed A.; Gao, Stephen S.; Liu, Kelly H.; Mohamed, Abdelnasser A.; Yu, Youqiang; Fat-Helbary, Raafat E.
2014-04-01
For most continental areas, the mechanisms leading to mantle fabrics responsible for the observed anisotropy remain ambiguous, partially due to the lack of sufficient spatial coverage of reliable seismological observations. Here we report the first joint analysis of shear-wave splitting measurements obtained at stations on the Arabian and Nubian Plates adjacent to the Red Sea. More than 1100 pairs of high-quality splitting parameters show dominantly N-S fast orientations at all 47 stations and larger-than-normal splitting times beneath the Afro-Arabian Dome (AAD). The uniformly N-S fast orientations and large splitting times up to 1.5 s are inconsistent with significant contributions from the lithosphere, which is about 50-80 km thick beneath the AAD and even thinner beneath the Red Sea. The results can best be explained by simple shear between the lithosphere and the asthenosphere associated with northward subduction of the African/Arabian Plates over the past 150 Ma.
Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan
NASA Astrophysics Data System (ADS)
Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.
2018-02-01
Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.
The upper mantle beneath the Cascade Range: A comparison with the Gulf of California
NASA Technical Reports Server (NTRS)
Walck, M. C.
1984-01-01
Seismograms from 22 earthquakes along the northeast Pacific rim recorded in southern California form the data set for investigation of the upper mantle beneath the Cascade Range-Juan de Fuca region, a transitional area encompassing both very young ocean floor and a continental margin. These data consist of 853 seismograms (6 deg delta 42 deg) which produce 1068 travel times and 40 ray parameter estimates. These data are compared directly to another large suite of records representative of structure beneath the Gulf of California, an active spreading center. The spreading center model, GCA, was used as a starting point in WKBJ synthetic seismogram modeling and perturb GCA until the northeast Pacific data are matched. Application of wave field continuation to these two groups of data provides checks on model's consistency with the data as well as an estimate of the resolvability of differences between the two areas. Differences between the models derived from these two data sets are interpretable in terms of lateral structural variation beneath the two regimes.
Morphological indicators of a mascon beneath Ceres' largest crater, Kerwan
Bland, Michael T.; Ermakov, Anton; Raymond, Carol A.; Williams, David A.; Bowling, Tim J.; Preusker, F.; Park, Ryan S.; Marchi, Simone; Castillo-Rogez, Julie C.; Fu, R.R.; Russell, Christopher T.
2018-01-01
Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long‐term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact‐induced uplift of the high‐density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest‐degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin‐associated gravity anomalies, although their origin may differ substantially.
NASA Astrophysics Data System (ADS)
Quinn, D. P.; Saleeby, J.; Ducea, M. N.; Luffi, P. I.
2013-12-01
We present the first petrogenetic analysis of a suite of peridotite xenoliths from the Crystal Knob volcanic neck in the Santa Lucia Range, California. The neck was erupted during the Plio-Pleistocene through the Salinia terrane, a fragment of the Late Cretaceous southern Sierra-northwest Mojave supra-subduction core complex that was displaced ~310 km in the late Cenozoic along the dextral San Andreas fault. The marginal tectonic setting makes these xenoliths ideal for testing different models of upper-mantle evolution along the western North American plate boundary. Possible scenarios include the early Cenozoic underplating of Farallon-plate mantle lithosphere nappes (Luffi et al., 2009), Neogene slab window opening (Atwater and Stock, 1998), and the partial subduction and stalling of the Monterey microplate (Pisker et al., 2012). The xenoliths from Crystal Knob are spinel lherzolites, which sample the mantle lithosphere underlying Salinia, and dunite cumulates apparently related to the olivine-basalt host. Initial study is focused on the spinel lherzolites: these display an allotriomorphic granular texture with anisotropy largely absent. However, several samples exhibit a weak shape-preferred orientation in elongate spinels. Within each xenolith, the silicate phases are in Fe-Mg equilibrium; between samples, Mg# [molar Mg/(Mg+Fe)*100] ranges from 87 to 91. Spinels have Cr# [molar Cr/(Cr+Al)*100] ranging from 10 to 27. Clinopyroxene Rb-Sr and Sm-Nd radiogenic isotope data show that the lherzolites are depleted in large-ion lithophile (LIL) elements, with uniform enrichment in 143Nd (ɛNd from +10.3 to +11.0) and depletion in 87Sr (87/86Sr of .702). This data rules out origin in the continental lithosphere, such as that observed in xenoliths from above the relict subduction interface found at at Dish Hill and Cima Dome in the Mojave (Luffi et al., 2009). The Mesozoic mantle wedge, which is sampled by xenoliths from beneath the southern Sierra Nevada batholith (Ducea and Saleeby, 1998), is also ruled out as a source locale. The isotopic data are consistent with oceanic mantle originating from either the Farallon plate (underplated during Paleocene shallow subduction) or the Monterey plate (partially subducted during the Miocene). Ascended asthenosphere, presumably of slab-window origin, is also a possible source. Pyroxene Ca-Mg exchange geothermometry is in progress and will enable thermal modeling and comparisons with contemporary heat flow data. These results, along with trace-element analysis of clinopyroxene crystals, will be used to distinguish between the possible sources of LIL-depleted mantle in the sub-Salinia mantle lithosphere. The full petrogenetic survey of these xenoliths adds a distal constraint to the makeup of the mantle lithosphere beneath the western North American margin.
Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap
NASA Astrophysics Data System (ADS)
Jadamec, M.; Fischer, K. M.
2012-12-01
In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application to geochemical and geologic studies of the region. In addition, 3D geodynamic models of this kind can further test the hypothesis of rapid mantle flow in subduction zones as a global process and the non-Newtonian rheology as a mechanism for decoupling the mantle from lithospheric plate motion.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Geophysicist, born in New York City, professor of geology at Princeton, led Project Mohole, the first expedition to drill through the Earth's oceanic crust to the mantle beneath, theorized that spreading of mid-ocean ridges was the source of new mantle-derived continental material. Also a lunar geologist....
NASA Astrophysics Data System (ADS)
Martelli, M.; Nuccio, P. M.; Stuart, F. M.; Burgess, R.; Ellam, R. M.; Italiano, F.
2004-08-01
A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP), Italy, is presented together with 87Sr/ 86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/ 4He=5.2 Ra and 87Sr/ 86Sr=0.7056 in south Campania, to 3He/ 4He=0.44 Ra and 87Sr/ 86Sr=0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/ 4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma-crust interaction. The 3He/ 4He- 87Sr/ 86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (˜30 Ma), can ingrowth in the mantle wedge account for the 3He/ 4He of the most radiogenic basalts.
The initiation of segmented buoyancy-driven melting during continental breakup
Gallacher, Ryan J.; Keir, Derek; Harmon, Nicholas; Stuart, Graham; Leroy, Sylvie; Hammond, James O. S.; Kendall, J-Michael; Ayele, Atalay; Goitom, Berhe; Ogubazghi, Ghebrebrhan; Ahmed, Abdulhakim
2016-01-01
Melting of the mantle during continental breakup leads to magmatic intrusion and volcanism, yet our understanding of the location and dominant mechanisms of melt generation in rifting environments is impeded by a paucity of direct observations of mantle melting. It is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. Here, we use Rayleigh-wave tomography to construct a high-resolution absolute three-dimensional shear-wave velocity model of the upper 250 km beneath the Afar triple junction, imaging the mantle response during progressive continental breakup. Our model suggests melt production is highest and melting depths deepest early during continental breakup. Elevated melt production during continental rifting is likely due to localized thinning and melt focusing when the rift is narrow. In addition, we interpret segmented zones of melt supply beneath the rift, suggesting that buoyancy-driven active upwelling of the mantle initiates early during continental rifting. PMID:27752044
Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska
McNamara, D.E.; Pasyanos, M.E.
2002-01-01
Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.
Rayleigh Wave Phase Velocity in the Upper Mantle Beneath the Indian Ocean
NASA Astrophysics Data System (ADS)
Godfrey, K. E.; Dalton, C. A.; Ritsema, J.
2016-12-01
Most of what is currently understood about the seismic properties of oceanic upper mantle is based on either global studies or regional studies of the upper mantle beneath the Pacific Ocean. However, global seismic models and geochemical studies of mid-ocean ridge basalts indicate differences in the properties of the upper mantle beneath the Pacific, Atlantic, and Indian oceans. Though the Indian Ocean is not as well studied seismically, it is host to a number of geologically interesting features including 16,000 km of mid-ocean ridge with a range of spreading rates from 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. The Indian Ocean also contains multiple volcanic hotspots, the Australian-Antarctic Discordance, and a low geoid anomaly south of India, and it overlies a portion of a large low-shear-velocity province. We are using Rayleigh waves to construct a high-resolution seismic velocity model of the Indian Ocean upper mantle. We utilize a global dataset of phase delays measured at 20 periods, between 37 and 375 seconds; the dataset includes between 700 and 20,000 that traverse our study region exclusively, with a larger number of paths at shorter periods. We explore variations in phase velocity using two separate approaches. One, we allow phase velocity to vary only as a function of seafloor age. Two, we perform a damped least-squares inversion to solve for 2-D phase velocity maps at each period. Preliminary results indicate low velocities along the Southeast Indian Ridge and Central Indian Ridge, but the expected low velocities are less apparent along the slow-spreading Southwest Indian Ridge. We observe a region of fast velocities extending from Antarctica northward between the Kerguelen and Crozet hotspots, and lower than expected velocities beneath the Reunion hotspot. Additionally, we find low velocities associated with a region of extinct seafloor spreading in the Wharton basin.
NASA Astrophysics Data System (ADS)
Behn, M. D.; Conrad, C. P.; Silver, P. G.
2005-12-01
Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere viscosity. These models can be used to separate the contributions of asthenospheric flow and lithospheric fossil fabric in observations of continental anisotropy.
Seismic Discontinuities beneath the Southwestern United States from S Receiver Functions
NASA Astrophysics Data System (ADS)
Akanbi, O. E.; Li, A.
2015-12-01
S- Receiver functions along the Colorado Plateau-Rio Grande Rift-Great Plains Transect known as La RISTRA in the southwestern United States have been utilized to map the Moho and lithosphere-asthenosphere boundary (LAB) beneath this tectonically active region. The receiver functions were stacked according to ray piercing points with moveout corrections in order to improve the signal-to-noise ratio of converted S-to-P phases. The Moho appears at 30-40 km beneath the Rio Grande Rift (RGR) and deepens to 35-45 km beneath the Great Plains (GP) and the Colorado Plateau (CP). A sharp discontinuity is observed along the profile with the average depth of 80 km beneath the RGR, 100 km beneath the GP, and 160 km beneath the CP. This discontinuity is consistent with the top of a low velocity zone in a shear wave model beneath the array and is interpreted as the LAB. Strong phases imaged at ~90 km beneath the CP and GP could be a combination of side-lobes of the Moho conversions and primary Sp phases from a mid-lithosphere discontinuity (MLD). The relatively shallow Moho and LAB beneath the Rio Grande Rift is indicative of lithosphere extension and asthenosphere upwarp. In addition, the LAB shows depth-step depressions at the RGR-CP and RGR-GP boundaries, providing evidence for mantle downwelling. The variation of the lithospheric depth across the RISTRA array supports that edge-driven, small-scale mantle convection is largely responsible for the recent extension and uplift in the Rio Grande Rift and the Colorado Plateau.
NASA Technical Reports Server (NTRS)
vanAcken, D.; Brandon, A. D.; Peslier, A. H.; Lee, C.-T. A.
2010-01-01
Peridotite xenoliths from San Carlos, Arizona, and Kilbourne Hole, New Mexico, have been studied since the 1970 s to give insights into melting and metasomatism in the subcontinental mantle beneath the southwestern USA. More recently, the highly siderophile elements (HSE; Os, Ir, Ru, Rh, Pt, Pd, and Re) and the included Re-Os isotope system have been established as powerful tools for the study of mantle processes because of their range in compatibility during mantle melting and their siderophile and chalcophile geochemical behavior. Model aluminachron Re-Os ages for San Carlos and Kilbourne Hole, as well as for the nearby Dish Hill and Vulcan's Throne sites, give consistent depletion ages of around 2.2 Ga. This age can be interpreted as a single large scale mantle melting event linked to crustal formation and continental growth under the southwestern USA. Highly siderophile elements, however, may be added to depleted peridotites via melt-rock interaction, especially the more incompatible and hence mobile Pt, Pd, and Re. This may result in overprinting of the signature of melt extraction, thus abating the usefulness of Re-Os mantle extraction model ages. A comprehensive characterization of the suite of mantle xenoliths from the SW USA in terms of HSE concentrations is thus necessary to re-assess the Re-Os system for dating purposes. San Carlos peridotites are depleted to moderately fertile, as indicated by their bulk Al2O3 contents between 0.66 wt% and 3.13 wt%. Bulk Os-187/Os-188 in San Carlos peridotites range from 0.1206 to 0.1357. In contrast, Kilbourne Hole peridotites tend to be more fertile with Al2O3 between 2.11 and 3.78 wt%, excluding one extremely depleted sample with 0.30 wt% Al2O3, and have Os-187/Os-188 between 0.1156 and 0.1272, typical for mantle peridotites. No large fractionation between the more compatible HSE Os, Ir, and Ru are observed. The more incompatible HSE Re, Pd, and to a minor extent, Pt, however, are depleted in a number of samples by factors of up to 4 for Pt, 6 for Pd, and 20 for Re, compared to primitive mantle estimates. This is in agreement with previous studies from the same locales, which demonstrated the presence of different populations of mantle xenoliths having undergone various degrees of melt extraction. The depletion of the more incompatible elements (Re, Pd, and Pt) also suggests that the HSE budgets of the SW USA peridotites were primarily established by extraction of basaltic melt, and reflect only minor influence from later episodes of metasomatism. Model Re-Os ages obtained from San Carlos and Kilbourne Hole xenoliths may thus reflect ages of crustal formation and mantle depletion in the SW USA region.
Formation of plate boundaries: The role of mantle volatilization
NASA Astrophysics Data System (ADS)
Seno, Tetsuzo; Kirby, Stephen H.
2014-02-01
In the early Earth, convection occurred with the accumulation of thick crust over a weak boundary layer downwelling into the mantle (Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963-966.). This would have transitioned to stagnant-lid convection as the mantle cooled (Solomatov, V.S., Moresi, L.-N., 1997. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907-1910.) or back to a magma ocean as the mantle heated (Sleep, N., 2000. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105(E7): 17563-17578). Because plate tectonics began operating on the Earth, subduction must have been initiated, thus avoiding these shifts. Based on an analogy with the continental crust subducted beneath Hindu Kush and Burma, we propose that the lithosphere was hydrated and/or carbonated by H2O-CO2 vapors released from magmas generated in upwelling plumes and subsequently volatilized during underthrusting, resulting in lubrication of the thrust above, and subduction of the lithosphere along with the overlying thick crust. Once subduction had been initiated, serpentinized forearc mantle may have formed in a wedge-shaped body above a dehydrating slab. In relict arcs, suture zones, or rifted margins, any agent that warms and dehydrates the wedge would weaken the region surrounding it, and form various types of plate boundaries depending on the operating tectonic stress. Thus, once subduction is initiated, formation of plate boundaries might be facilitated by a major fundamental process: weakening due to the release of pressurized water from the warming serpentinized forearc mantle.
NASA Astrophysics Data System (ADS)
Yu, Yao; Xu, Xisheng; Chen, Xiaoming
2010-09-01
Zircon megacrysts are found in alluvial deposits associated with Cenozoic basalts from Changle in Shandong Province, Mingxi in Fujian Province and Penglai in Hainan Province within the coastal area of eastern China. They are colourless, transparent to light brown-maroon, and some of them are up to 16 mm long. U-Pb ages of zircon megacrysts from Changle, Mingxi and Penglai are 19.2 ± 0.7 Ma, 1.2 ± 0.1 Ma and 4.1 ± 0.2 Ma respectively, slightly older than the eruption ages of their corresponding host rocks (16.05-18.87 Ma, 0.9-2.2 Ma, 3 Ma). ɛHf(t) values of zircon megacrysts are 9.02 ± 0.49, 6.83 ± 0.47, 4.46 ± 0.48 for Changle, Mingxi and Penglai, respectively, which indicates their mantle origin. We suggest that the zircon megacrysts originated from metasomatised lithospheric mantle and were later brought up quickly by the host basaltic magma. The euhedral forms, uniform internal structure and chemical homogeneity within a single grain suggest crystallization under stable conditions. Pronounced positive Ce anomalies and negligible Eu anomalies suggest oxidizing conditions and little or no fractional crystallization of plagioclase. The differences in Hf-isotope compositions among the zircon megacrysts from different localities are consistent with the Sr-Nd-Pb isotopic compositions of their respective host basalts. This indicates that the host basalts acquired their isotopic signatures from the lithospheric mantle from which the zircon megacrysts derived. These data document the lateral compositional heterogeneity in the upper mantle beneath eastern China. Like mantle xenoliths, zircon megacrysts also have the potential to fingerprint the composition and evolution of the subcontinental lithospheric mantle.
NASA Astrophysics Data System (ADS)
Tang, Gong-Jian; Cawood, Peter A.; Wyman, Derek A.; Wang, Qiang; Zhao, Zhen-Hua
2017-11-01
Magmatism postdating the initiation of continental collision provides insight into the late stage evolution of orogenic belts including the composition of the contemporaneous underlying subcontinental mantle. The Awulale Mountains, in the heart of the Tianshan Orogen, display three types of postcollisional mafic magmatic rocks. (1) A medium to high K calc-alkaline mafic volcanic suite (˜280 Ma), which display low La/Yb ratios (2.2-11.8) and a wide range of ɛNd(t) values from +1.9 to +7.4. This suite of rocks was derived from melting of depleted metasomatized asthenospheric mantle followed by upper crustal contamination. (2) Mafic shoshonitic basalts (˜272 Ma), characterized by high La/Yb ratios (14.4-20.5) and more enriched isotope compositions (ɛNd(t) = +0.2 - +0.8). These rocks are considered to have been generated by melting of lithospheric mantle enriched by melts from the Tarim continental crust that was subducted beneath the Tianshan during final collisional suturing. (3) Mafic dikes (˜240 Ma), with geochemical and isotope compositions similiar to the ˜280 Ma basaltic rocks. This succession of postcollision mafic rock types suggests there were two stages of magma generation involving the sampling of different mantle sources. The first stage, which occurred in the early Permian, involved a shift from depleted asthenospheric sources to enriched lithospheric mantle. It was most likely triggered by the subduction of Tarim continental crust and thickening of the Tianshan lithospheric mantle. During the second stage, in the middle Triassic, there was a reversion to more asthenospheric sources, related to postcollision lithospheric thinning.
Linking Upper Mantle Processes and Long-wavelength Topographic Swells in Cenozoic Africa
NASA Astrophysics Data System (ADS)
Nixon, S.; Maclennan, J.; White, N.; Fishwick, S.
2008-12-01
The topography of present day Africa is influenced by two different wavelengths of dynamic support. The South African Superplume sits beneath Sub-equatorial Africa and is thought to be supported by a lower mantle thermo-chemical anomaly. On a smaller scale a series of topographic domal swells, 1000km in diameter, occur across the continent. The swells are characterised by elevated dynamic topography, a positive long-wavelength gravity anomaly and a negative velocity perturbation from a higher mode surface wave tomography model. In addition, where the lithosphere is thinner than 100km, the swells are capped with volcanic products, erupted periodically since ~30 Ma. These areas include the Cameroon Volcanic line, Hoggar, Tibesti and Darfur in North Africa, and the Ethiopian Plateau and the Kenyan dome found along the East African Rift system. The given relationships suggest the domal swells result from and are supported by upper mantle convection. In order to investigate these relationships a database of 3000 geochemical analyses has been assembled for Cenozoic African volcanism, from both literature search and by new analyses of samples collected from the Al Haruj volcanic field in Libya. Incompatible trace element ratios and REE trends from primitive basalts (>7wt% MgO) erupted less then 10Ma, representing the products of mantle melting, are compared with the upper mantle velocity structure. At depths of 75-100km the greatest velocity perturbation is associated with the Afar/Ethiopia region, where as smaller perturbations are found beneath the North African swells of Hoggar, Tibesti and Darfur. The comparison of absolute velocities, taken from the higher mode tomography model, with trace element ratios has found the low seismic velocity Afar/Ethiopia region to have shallow melting at high melt fractions (La/Yb~9) whereas North African swells with faster seismic velocities at 100 km depth, show deeper melting with smaller melt fractions (La/Yb~30). This positive correlation continues to depths of 150km and is believed to represent variations in mantle potential temperature beneath the African continent. With further modelling of major, trace and REE data we hope to provide insights into variations in mantle potential temperature, melt fraction and velocity structure beneath the topographic swells across the African continent.
P wave velocity of Proterozoic upper mantle beneath central and southern Asia
NASA Astrophysics Data System (ADS)
Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.
1996-05-01
P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not consistent with explanations for the African superswell invoking extensive amounts of lithospheric thinning. If extensive lithospheric thinning had occurred beneath southern Africa, as suggested previously, then upper mantle P wave velocities beneath southern Africa would likely be lower than those in our models.
Tomography images of the Alpine roots and surrounding upper mantle
NASA Astrophysics Data System (ADS)
Plomerova, Jaroslava; Babuska, Vladislav
2017-04-01
Teleseismic body-wave tomography represents powerful tool to study regional velocity structure of the upper mantle and to image velocity anomalies, such as subducted lithosphere plates in collisional zones. In this contribution, we recapitulate 3D models of the upper mantle beneath the Alps, which developed at a collision zone of the Eurasian and African plates. Seismic tomography studies indicate a leading role of the rigid mantle lithosphere that functioned as a major stress guide during the plate collisions. Interactions of the European lithosphere with several micro-plates in the south resulted in an arcuate shape of this mountain range on the surface and in a complicated geometry of the Alpine subductions in the mantle. Early models with one bended lithosphere root have been replaced with more advanced models showing two separate lithosphere roots beneath the Western and Eastern Alps (Babuska et al., Tectonophysics 1990; Lippitsch et al., JGR 2003). The standard isotropic velocity tomography, based on pre-AlpArray data (the currently performed passive seismic experiment in the Alps and surroundings) images the south-eastward dipping curved slab of the Eurasian lithosphere in the Western Alps. On the contrary, beneath the Eastern Alps the results indicate a very steep northward dipping root that resulted from the collision of the European plate with the Adriatic microplate. Dando et al. (2011) interpret high-velocity heterogeneities at the bottom of their regional tomographic model as a graveyard of old subducted lithospheres. High density of stations, large amount of rays and dense ray-coverage of the volume studied are not the only essential pre-requisites for reliable tomography results. A compromise between the amount of pre-processed data and the high-quality of the tomography input (travel-time residuals) is of the high importance as well. For the first time, the existence of two separate roots beneath the Alps has been revealed from carefully pre-processed, mostly the ISC-bulletin data (Babuska et al., Tectonophysics 1990). Calculated relative travel-time residuals have been assigned to source clusters and filtered relative to the residual mean of each cluster of events. We expect that future 3D studies of the mantle velocities and mantle fabrics with the use of body-wave anisotropic parameters from the AlpArray data will shed a new light on tectonic development of the complex Alpine region and its surroundings.
Levandowski, William Brower; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.
2015-01-01
We test this algorithm on the Proterozoic Midcontinent Rift (MCR), north-central U.S. The MCR provides a challenge because it hosts a gravity high overlying low shear-wave velocity crust in a generally flat region. Our initial density estimates are derived from a seismic velocity/crustal thickness model based on joint inversion of surface-wave dispersion and receiver functions. By adjusting these estimates to reproduce gravity and topography, we generate a lithospheric-scale model that reveals dense middle crust and eclogitized lowermost crust within the rift. Mantle lithospheric density beneath the MCR is not anomalous, consistent with geochemical evidence that lithospheric mantle was not the primary source of rift-related magmas and suggesting that extension occurred in response to far-field stress rather than a hot mantle plume. Similarly, the subsequent inversion of normal faults resulted from changing far-field stress that exploited not only warm, recently faulted crust but also a gravitational potential energy low in the MCR. The success of this density modeling algorithm in the face of such apparently contradictory geophysical properties suggests that it may be applicable to a variety of tectonic and geodynamic problems.
NASA Astrophysics Data System (ADS)
Diaz Cusi, J.; Grevemeyer, I.; Thomas, C.; Harnafi, M.
2012-12-01
The data provided by the dense Iberarray broad-band seismic network deployed in the framework of the large-scale TopoIberia project, as well as from permanent broad-band stations operating in Morocco, Portugal and Spain has allowed to get a large scale view of the anisotropic properties of the mantle beneath the western termination of the Mediterranean region and its transition to the Atlantic ocean. In this contribution we will gather the previously presented results with the analysis of the data provided by IberArray stations in the central part of Iberia, broad-band OBSs deployments in the Alboran Sea and the Gulf of Cadiz and new seismic networks deployed in the High Atlas and the Moroccan Meseta. The High Atlas has been investigated using data from a broad-band network installed by the Univ. of Munster with a primary focus on the study of the properties of the deep mantle. Additionally, up to 10 Iberarray stations have been shifted southward to complete the survey along the Atlas and to investigate the Moroccan Meseta. In agreement with the results presented by the Picasso team along a profile crossing the Atlas northward, the anisotropy observed in this area is small (0.6 - 0.9 s) with a fast polarization direction (FPD) oriented roughly E-W. It is important to note that there is a very significant number of high quality events without evidence for anisotropy. This may be the result of the combined effect of two or more anisotropic layers or of the presence of a large vertical component of flow in the upper mantle. Moving northwards, the first TopoIberia-Iberarray deployment in the Betics-Alboran zone has evidenced a spectacular rotation of the FPD along the Gibraltar arc following the curvature of the Rif-Betic chain, from roughly N65E beneath the Betics to close to N65W beneath the Rif chain. To complete this image, we have now processed data from two OBS deployments in the Alboran Sea and Gulf of Cadiz installed by Geomar as part of the TopoMed project. The short period of registration and the intrinsic problems related to noise and instrument stability in the seafloor has not allowed getting a large database of anisotropic measurements. However, the few events providing good quality SKS measurements show interesting results which may provide significant clues to the knowledge of the geodynamic evolution of this area. Beneath Iberia, the second Iberarray deployment encompasses mainly the Variscan units of the Central Iberian Massif. The results show a small amount of anisotropy and suggest complex anisotropy features, confirming what has been observed in the first deployment. A significant change in both FPD and delay times across the two main units of the Variscan domain, the Ossa-Morena and the Central Iberian zones seem to exist. Permanent stations in southern Portugal show a significant number of null measurements, similar to what has previously discussed for the High Atlas stations. Beneath Eastern Iberia, the FPD have a roughly E-W orientation. No significant changes are observed between the anisotropic parameters beneath the Balearic Islands and those in the Eastern Betics.
NASA Astrophysics Data System (ADS)
Kerr, A. C.; Pearson, G.; Nowell, G.
2008-12-01
Ocean Drilling Project Leg 165 sampled 38m of the basaltic basement of the Caribbean plate at Site 1001 on the Hess Escarpment. The recovered section consists of 12 basaltic flow units which yield a weighted mean Ar-Ar age of 80.9±0.9 Ma (Sinton et al., 2000). The basalts (6.4-8.5 wt.% MgO) are remarkably homogeneous in composition and are more depleted in incompatible trace elements than N-MORB. Markedly, depleted initial radiogenic isotope ratios reveal a long-term history of depletion. Although the Site 1001 basalts are superficially similar to N-MORB, radiogenic isotopes in conjunction with incompatible trace element ratios show that the basalts have more similarity to the depleted basalts and komatiites of Gorgona Island. This chemical composition strongly implies that the Site 1001 basalts are derived from a depleted mantle plume component and not from depleted ambient upper mantle. Therefore the Site 1001 basalts are, both compositionally and tectonically, a constituent part of the Caribbean oceanic plateau. Mantle melt modelling suggests that the Site 1001 lavas have a composition which is consistent with second-stage melting of compositionally heterogeneous mantle plume source material which had already been melted, most likely to form the 90Ma basalts of the plateau. The prolonged residence (>10m.y.) of residual mantle plume source material below the region, confirms computational model predictions and places significant constraints on tectonic models of Caribbean evolution in the late Cretaceous, and the consequent environmental impact of oceanic plateau volcanism. Reference Sinton, C.W., et al., 2000. Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. Proceedings of the Ocean Drilling Program, Scientific Results. Leg 165. pp. 233-236.
Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan plateau
NASA Astrophysics Data System (ADS)
Liang, Hongda; Jin, Sheng; Wei, Wenbo; Gao, Rui; Ye, Gaofeng; Zhang, Letian; Yin, Yaotian; Lu, Zhanwu
2018-04-01
The Lhasa terrane in southern Tibetan plateau is a huge tectono-magmatic belt and an important metallogenic belt. Its formation evolution process and mineralization are affected by the subduction of oceanic plate and subsequent continental collision. However, the evolution of Lhasa terrane has been a subject of much debate for a long time. The Lithospheric structure records the deep processes of the subduction of oceanic plate and continental collision. The magnetotelluric (MT) method can probe the sub-surface electrical conductivity, newly dense broadband and long period magnetotelluric data were collected along a south-north trending profile that across the Lhasa terrane at 88°-89°E. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, and the regional strike direction was determined as N110°E.Based on data analysis results, a two-dimensional (2-D) resistivity model of crust and upper mantle was derived from inversion of the transverse electric mode, transverse magnetic mode and vertical magnetic field data. Inversion model shows a large north-dipping resistor that extended from the upper crust to upper mantle beneath the Himalaya and the south of Lhasa Terrane, which may represent the subducting Indian continental lithosphere. The 31°N may be an important boundary in the Lhasa Terrane, the south performs a prominent high-conductivity anomaly from the lower crust to upper mantle which indicates the existence of asthenosphere upwelling, while the north performs a higher resistivity and may have a reworking ancient basement. The formation of the ore deposits in the study area may be related to the upwelling of the mantle material triggered by slab tearing and/or breaking off of the Indian lithosphere, and the mantle material input also contributed the total thickness of the present-day Tibetan crust. The results provide helpful constrains to understand the mechanism of the continent-continent collision and the regional exploratory prospect of the deep resources.
Universal single grain amphibole thermobarometer for mantle rocks - preliminary calibration.
NASA Astrophysics Data System (ADS)
Ashchepkov, Igor
2017-04-01
Calibration of S-Al- K-Na-Ca distribution in the structure of the mantle amphiboles (Cr- hornblende, pargasite, kaersutite) using experimental data (Niida, Green, 1999; Wallace Green, 1991, Conceicao, Green, 2004; Medard et al, 2006; Safonov, Butvina, 2013; 2016; Pirard, Hermann, 2015 etc) allows to obtain an equation for pressure estimates in 0.5 - 4.5 GPa interval. Regression calculated pressures with experimental values (R 0.82) and precision 5 kbar allow to use barometer for a wide range of mantle rocks from peridotite to pyroxenites and megacrystals. For the higher pressures (Cr- pargasite richterite) calibration is carried by the cross- correlations with the estimates calculated for the natural associations obtained using clino- and orthopyroxene. IT was used KD =Si/(8-Al-2.2*Ti)*(Na+K))/Ca for the following equation: P(GPa)=0.0035*(4+K/(Na+K))*2*Mg)/Fe+3.75*(K+Na)/Ca))*KD*ToK**0.75/ (1+3.32*Fe)-ln(1273/ToK*5*(8*Mg-Al*2 +3*Ti+8*Cr+3*K)/10 Th advantage of this barometer comparing with the previous (Ridolfi, Renzulli, 2012) is that is working with all mantle amphibole types. For the calculations of the PT parameters of the natural xenocrysts it was used monomineral version of Gar-Amph termometer (Ravna et al., 2000) in combination with the received barometer. Contents of Ca- Mg and Fe in associated garnets were calculated usinf the regressions obtained from natural and experimental associations. Aplication of the mantle amphibole thermobarometry for the reconstruction of sections of the cratonic mantle lithosphere of Yakutia show that amphibloles are distributed in various parts of mantle sections in deifferent mantle terranes of Yakutia. The most abundant amphoboles from Alakite region are distributed within all mantle section. In the SCLM beneat Yubileyaya pipe thehalf of them belong to the spinel garnet facie refering to the upper pyroxenitic suit and Cr- hornblende - mica viens. The second group reffer to the eclogite pyroxenite layer in the middle part of SCLM and the third group refer to richterites form the depleted manle peridotites. In SCLM beneat the Sytykanskaya they are more frequent and trace through all the mantle layers. In SCLM beneat the Aykhal they mostly are from the lower and in Komsomolskaya from the middle SCLM parts. In Daldyn field rare amdphibles from Dalnaya are Fe- enriched pargasites belonging to the Ilm bearing peridotites in middle SCLM part as well as in SCLM beneath thr Udachnaya. But there are Fe- low amphiboles substitutng the orthopyroxenes. In Zarnitsa the Cr - hornblendes occur in shallow garnet pyroxenites. One deep seated richterite substitute garnet grains. Rare amphiboles were detedted in Mirninsky filed in Internatiolnaya pipe and reffer to the resorbed and deformed granets from the Garnet -Spinel facies and from 4.0 GPa boundary. Amphiboles are frequent in the SCLM from the northern part of Siberian craton. In SCLM beneath the Kharmai the Fe- encriched varietes are from the Moho boundary. Common Cr-pargasite occurs to 3 GPa in Obnazhennay, pipe, Kharamai field In mantle SCLM beneath Obnazhennaya pipe and circum Anabr region friquent Cr- pargasies and horblendes refer to the relatively hot branch of mantle lithosphere and probably corresponds to the Triassic mantle reactivation. Mantle Cr- hornbleneds occurs on most upper part of the mantle column beneath Quaternary mujeritic Bartoy vocanoes in Transbaikal. The pargasites and kaersutites in this locality refer to more heated conditions and could be found to 2.0 GPa. Grant RFBR 16.-05-000860
Interaction of the Cyprus/Tethys Slab With the Mantle Transition Zone Beneath Anatolia
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Rost, S.; Taylor, G.; Cornwell, D. G.
2017-12-01
The geodynamics of the eastern Mediterranean are dominated by northward motion of the Arabian/African continents and subduction of the oldest oceanic crust on the planet along the Aegean and Cyprean trenches. These slabs have previously been imaged using seismic tomography on a continental scale, but detailed information regarding their descent from upper to lower mantle and how they interact with the mantle transition zone have been severely lacking. The Dense Array for North Anatolia (DANA) was a 73 station passive seismic deployment active between 2012-2013 with the primary aim of imaging shallow structure beneath the North Anatolian Fault. However, we exploit the exceptional dataset recorded by DANA to characterise a region where the Cyprus Slab impinges upon the mantle transition zone beneath northern Turkey, providing arguably the most detailed view of a slab as it transits from the upper to lower mantle. We map varying depths and amplitudes of the transition zone seismic discontinuities (`410', `520' and `660') in 3D using over 1500 high quality receiver functions over an area of approximately 200km x 300km. The `410' is observed close to its predicted depth, but the `660' is depressed to >670 km across the entirety of the study region. This is consistent with an accumulation of cold subducted material at the base of the upper mantle, and the presence of a `520' discontinuity in the vicinity of the slab surface also suggests that the slab is present deep within the transition zone. Anomalous low velocity layers above and within the transition zone are constrained and may indicate hydration and ongoing mass/fluid flux between upper and lower mantle in the presence of subduction. The results of the study have implications not only for the regional geodynamics of Anatolia, but also for slab dynamics globally.
A Receiver Function Study of Mantle Transition Zone Discontinuities beneath Egypt and Saudi Arabia
NASA Astrophysics Data System (ADS)
Liu, K. H.; Mohamed, A. A.; Gao, S. S.; Elsheikh, A. A.; Yu, Y.; Fat-Helbary, R. E.
2014-12-01
The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms, and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broadband seismic data on the African plate adjacent to the Red Sea. Here we report the first results from a receiver function study of the mantle transition zone (MTZ) discontinuities using data from the Egyptian National Seismic Network, and compare the resulting depths of the 410 and 660 km discontinuities (d410 and d660) with those observed on the Arabian side. Results using more than 6000 P-to-S receiver functions recorded at 49 broadband seismic stations in Egypt, Saudi Arabia and adjacent areas show that when the IASP91 Earth model is used for time-to-depth conversion, the resulting depth of the discontinuities increases systematically toward the axis of the Afro-Arabian Dome (AAD) from both the west and east. Relative to the westernmost area, the maximum depression of the 410-km discontinuity is about 30 km, and that of the 660-km discontinuity is about 45 km. Highly correlated d410 and d660 depths suggest that the observed apparent depth variations are mostly caused by lateral velocity anomalies in the upper mantle, while the 15 km additional depression of the d660 relative to the d410 requires either a colder-than-normal MTZ or the presence of water in the MTZ. We tested several models involving upper mantle and MTZ velocity anomalies and undulations of the MTZ discontinuities due to temperature anomalies and water content, and found that the observed systematic variations can best be explained by a model involving a hydrated MTZ and an upper-mantle low-velocity zone beneath the AAD (Mohamed et al., 2014, doi: 10.1093/gji/ggu284). Models invoking one or more mantle plumes originated from the MTZ or the lower-mantle beneath the study area are not consistent with the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Nyblade, A; Rodgers, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanicmore » line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.« less
East African upper mantle shear wave velocity structure derived from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
O'Donnell, J.; Nyblade, A.; Adams, A. N.; Mulibo, G.; Tugume, F.
2011-12-01
An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa is being developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset encompasses seismic stations which span Tanzania, Uganda and Zambia. From the new data, fundamental mode Rayleigh wave phase velocities are being measured at periods ranging from 20 to 180 seconds using the two-plane-wave method. These measurements will be combined with similarly processed measurements from previous studies and inverted for an upper mantle three-dimensional shear wave velocity model. In particular, the model will further constrain the morphology of the low velocity anomaly which underlies the East African Plateau extending to the southwest beneath Zambia.
NASA Astrophysics Data System (ADS)
Thomas, C.; Saki, M.; Nippress, S. E. J.; Lessing, S.
2014-12-01
We are mapping the topography of upper mantle seismic discontinuities beneath the North Atlantic and surrounding regions by using precursor arrivals to PP and SS seismic waves that reflect off the seismic discontinuities. Numerous source-receiver combinations have been used in order to collect a large dataset of reflection points beneath our investigation area. We analysed over 1700 seismograms from MW>5.8 events using array seismic methods to enhance the signal to noise ratio. The measured time lag between PP (SS) arrivals and their corresponding precursors on robust stacks are used to measure the depth of the transition zone boundaries. The reflectors' depths show a correlation between the location of known hotspots and a significantly depressed 410 km discontinuity indicating a temperature increase of 50-300 K compared to the surrounding mantle. For the 660 km discontinuity three distinct behaviours are visible: i) normal depths beneath Greenland and at a distance of a few hundred kilometres away from known hotspots, ii) shallower 660 km discontinuity compared with the global average value near hotspots closer to the Mid-Atlantic Ridge and iii) very few observations of a 660 km discontinuity at the hotspot locations. We interpret our observations as a large upwelling beneath the southern parts of our study region, possibly due to the South Atlantic convection cell. The thermal anomaly may be blocked by endothermic phase transformation and likely does not extend through the top of the transition zone except for those branches which appear as the Azores, Canaries and Cape Verde hotspots at the surface.
NASA Astrophysics Data System (ADS)
Saki, Morvarid; Thomas, Christine; Nippress, Stuart E. J.; Lessing, Stephan
2015-04-01
We are mapping the topography of upper mantle seismic discontinuities beneath the North Atlantic and surrounding regions by using precursor arrivals to PP and SS seismic waves that reflect off the seismic discontinuities. Many source-receiver combinations have been used in order to collect a large dataset of reflection points beneath our investigating area. We analyzed over 1700 seismograms from MW>5.8 events using array seismic methods to enhance the signal to noise ratio. The measured time lag between PP (SS) arrivals and their corresponding precursors on robust stacks are used to measure the depth of the transition zone boundaries. The reflectors' depths show a correlation between the location of hotspots and a significantly depressed 410 km discontinuity indicating a temperature increase of 200-300 K compared to the surrounding mantle. For the 660 km discontinuity three distinct behaviours are visible: i) normal depths beneath Greenland and at a distance of a few hundred kilometres away from the hotspots and ii) shallower 660 km discontinuity compared with the global average value near hotspots closer to the Mid-Atlantic Ridge and iii) very few observations of a 660 km discontinuity at the hotspot locations. We interpret our observations as a large upwelling beneath the southern parts of our study region, possibly due to the South Atlantic convection cell. The thermal anomaly may be blocked by endothermic phase transformation and likely does not extend through the top of the transition zone as whole except for those branches which appear as the Azores, Canaries and Cape Verde hotspots at the surface.
Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction.
Turner, Andrew J; Katz, Richard F; Behn, Mark D
2015-03-01
Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise. The grain-size field beneath MORs can vary over orders of magnitude The grain-size field affects the rheology and permeability of the asthenosphere The grain-size field may focus melt toward the ridge axis.
NASA Astrophysics Data System (ADS)
Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh
2017-08-01
This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.
NASA Astrophysics Data System (ADS)
Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.
2016-09-01
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.
NASA Astrophysics Data System (ADS)
Idárraga-García, J.; Kendall, J.-M.; Vargas, C. A.
2016-09-01
To investigate the subduction dynamics in northwestern South America, we measured SKS and slab-related local S splitting at 38 seismic stations. Comparison between the delay times of both phases shows that most of the SKS splitting is due to entrained mantle flow beneath the subducting Nazca and Caribbean slabs. On the other hand, the fast polarizations of local S-waves are consistently aligned with regional faults, which implies the existence of a lithosphere-confined anisotropy in the overriding plate, and that the mantle wedge is not contributing significantly to the splitting. Also, we identified a clear change in SKS fast directions at the trace of the Caldas Tear (˜5°N), which represents a variation in the subduction style. To the north of ˜5°N, fast directions are consistently parallel to the flat subduction of the Caribbean plate-Panama arc beneath South America, while to the south fast polarizations are subparallel to the Nazca-South America subduction direction. A new change in the SKS splitting pattern is detected at ˜2.8°N, which is related to another variation in the subduction geometry marked by the presence of a lithosphere-scale tearing structure, named here as Malpelo Tear; in this region, NE-SW-oriented SKS fast directions are consistent with the general dip direction of the underthrusting of the Carnegie Ridge beneath South America. Further inland, this NE-SW-trending mantle flow continues beneath the Eastern Cordillera of Colombia and Merida Andes of Venezuela. Finally, our results suggest that the subslab mantle flow in northwestern South America is strongly controlled by the presence of lithospheric tearing structures.
NASA Astrophysics Data System (ADS)
Stanciu, A. C.; Humphreys, E.; Clayton, R. W.
2017-12-01
We construct a P-wave model of the upper mantle based on new and previously acquired data from the USArray-TA stations and regional deployments, including the HLP, ID-OR, and the currently recording Wallowa stations. Our teleseismic arrival times are corrected for crustal structure (based on surface wave, receiver function, and controlled-source models from the region). Our modeling incorporates 3-D ray tracing and several simple considerations of radial anisotropy on travel time. As imaged previously, we find high P-wave velocity anomalies located beneath the Wallowa Mountains and beneath the Idaho Batholith in central west Idaho. Our improved imaging finds that these two anomalies are located down to 350 km depth, and are clearly separated from one another and from a shallower fast anomaly in the uppermost mantle beneath the westernmost Snake River Plain. Our preferred interpretation includes a combination of delamination and slab fragments in this region. As fast (and presumably cool) structures, these upper-mantle anomalies are thought to have a lithospheric origin. The anomaly beneath central Idaho is interpreted as the leading edge of the Farallon slab associated with the accretion of Siletzia terrane to North America. This anomaly may include some North American lithosphere that delaminated from the Laramide-thickened lithospheric mantle, perhaps related to Challis magmatism. The Wallowa anomaly is likely to represent Farallon lithosphere that delaminated during the Columbia River flood basalt event. The small anomaly between the two deeper fast anomalies, occurring at depths above 150km, could represent an isolated lithospheric fragment or a structure created by the Columbia River flood basalt event.
Imaging the Lowermost Mantle (D'') Beneath the Pacific Ocean with SKKS coda waves
NASA Astrophysics Data System (ADS)
Yu, Z.; Shang, X.; van der Hilst, R. D.
2013-12-01
Previous studies indicate considerable complexity in the lowermost mantle beneath the Pacific Ocean on a variety of spatial scales, such as large low-shear-velocity province (LLSVP), intermittent D'' discontinuities and isolated ultra-low-velocity zones (ULVZs). However, the resolution of travel time tomography is typically greater than 1000 km in deep mantle, and only a few regions can satisfy contingent sampling requirement for waveform modeling. On the other hand, generalized Radon transform (GRT) has a higher resolution (~400 km horizontally and ~30 km vertically) and can relax the restriction of source-receiver configuration. It has been successfully applied to central America and east Asia, which are speculated as the graveyard of subducted slabs. In this study we apply GRT to obtain a large-scale high-resolution image beneath (almost the whole) Pacific Ocean near the core-mantle boundary (CMB). More than 400,000 traces from ~8,000 events (5.8
NASA Astrophysics Data System (ADS)
Xu, Yi-Gang; Ma, Jin-Long; Huang, Xiao-Long; Iizuka, Yoshiyuki; Chung, Sun-Lin; Wang, Yan-Bin; Wu, Xiang-Yang
2004-12-01
Sensitive high resolution ion microprobe (SHRIMP) zircon U Pb ages, geochemical and Sr-Nd-Pb isotopic data are reported for the gabbroic complex from Yinan (Shandong Province) with the aims of characterizing the nature of the Mesozoic mantle beneath the North China Craton. The Yinan gabbros contain alkali feldspar and biotite, and are characterized by moderate Mg#, high SiO2, low FeO and TiO2 contents and a strong enrichment of light rare earth elements [(La/Yb)n=11 50], but no Eu anomaly. They have low Nb/La (0.07 0.29), radiogenic 87Sr/86Sr (0.710) and unradiogenic ɛNd(t) (-15 to -13). These “crustal fingerprints” cannot be attributed to crustal contamination, given the lack of correlation between isotopic ratios and differentiation indices and the unreasonably high proportion of crustal contaminant (>20%) required in modeling. Instead, compositional similarities to contemporaneous basalts from nearby regions imply that the Yinan gabbros were not significantly affected by crystal cumulation. Isotopic data available for the Mesozoic mafic magmas reveal two distinct mantle domains beneath Shandong. While the EM1-like domain (with low 87Sr/86Sr) is confined to western Shandong, the mantle beneath eastern Shandong is dominated by EM2-type (with high 87Sr/86Sr) affinities. This aerial distinction suggests that the EM2-like signature of the Yinan gabbros may have been inherited from westerly-subducted Yangtze crust during the Triassic North China-South China collision. Emplacement of the Yinan gabbros (127 Ma) is likely affiliated with the widespread and protracted extension during the late Mesozoic in this region.
NASA Astrophysics Data System (ADS)
Lloyd, Andrew J.; Wiens, Douglas A.; Nyblade, Andrew A.; Anandakrishnan, Sridhar; Aster, Richard C.; Huerta, Audrey D.; Wilson, Terry J.; Dalziel, Ian W. D.; Shore, Patrick J.; Zhao, Dapeng
2015-12-01
West Antarctica consists of several tectonically diverse terranes, including the West Antarctic Rift System, a topographic low region of extended continental crust. In contrast, the adjacent Marie Byrd Land and Ellsworth-Whitmore mountains crustal blocks are on average over 1 km higher, with the former dominated by polygenetic shield and stratovolcanoes protruding through the West Antarctic ice sheet and the latter having a Precambrian basement. The upper mantle structure of these regions is important for inferring the geologic history and tectonic processes, as well as the influence of the solid earth on ice sheet dynamics. Yet this structure is poorly constrained due to a lack of seismological data. As part of the Polar Earth Observing Network, 13 temporary broadband seismic stations were deployed from January 2010 to January 2012 that extended from the Whitmore Mountains, across the West Antarctic Rift System, and into Marie Byrd Land with a mean station spacing of ~90 km. Relative P and S wave travel time residuals were obtained from these stations as well as five other nearby stations by cross correlation. The relative residuals, corrected for both ice and crustal structure using previously published receiver function models of crustal velocity, were inverted to image the relative P and S wave velocity structure of the West Antarctic upper mantle. Some of the fastest relative P and S wave velocities are observed beneath the Ellsworth-Whitmore mountains crustal block and extend to the southern flank of the Bentley Subglacial Trench. However, the velocities in this region are not fast enough to be compatible with a Precambrian lithospheric root, suggesting some combination of thermal, chemical, and structural modification of the lithosphere. The West Antarctic Rift System consists largely of relative fast uppermost mantle seismic velocities consistent with Late Cretaceous/early Cenozoic extension that at present likely has negligible rift related heat flow. In contrast, the Bentley Subglacial Trench, a narrow deep basin within the West Antarctic Rift System, has relative P and S wave velocities in the uppermost mantle that are ~1% and ~2% slower, respectively, and suggest a thermal anomaly of ~75 K. Models for the thermal evolution of a rift basin suggest that such a thermal anomaly is consistent with Neogene extension within the Bentley Subglacial Trench and may, at least in part, account for elevated heat flow reported at the nearby West Antarctic Ice Sheet Divide Ice Core and at Subglacial Lake Whillans. The slowest relative P and S wave velocity anomaly is observed extending to at least 200 km depth beneath the Executive Committee Range in Marie Byrd Land, which is consistent with warm possibly plume-related, upper mantle. The imaged low-velocity anomaly and inferred thermal perturbation (~150 K) are sufficient to support isostatically the anomalous long-wavelength topography of Marie Byrd Land, relative to the adjacent West Antarctic Rift System.
What Hf isotopes in zircon tell us about crust-mantle evolution
NASA Astrophysics Data System (ADS)
Iizuka, Tsuyoshi; Yamaguchi, Takao; Itano, Keita; Hibiya, Yuki; Suzuki, Kazue
2017-03-01
The 176Lu-176Hf radioactive decay system has been widely used to study planetary crust-mantle differentiation. Of considerable utility in this regard is zircon, a resistant mineral that can be precisely dated by the U-Pb chronometer and record its initial Hf isotope composition due to having low Lu/Hf. Here we review zircon U-Pb age and Hf isotopic data mainly obtained over the last two decades and discuss their contributions to our current understanding of crust-mantle evolution, with emphasis on the Lu-Hf isotope composition of the bulk silicate Earth (BSE), early differentiation of the silicate Earth, and the evolution of the continental crust over geologic history. Meteorite zircon encapsulates the most primitive Hf isotope composition of our solar system, which was used to identify chondritic meteorites best representative of the BSE (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Hadean-Eoarchean detrital zircons yield highly unradiogenic Hf isotope compositions relative to the BSE, providing evidence for the development of a geochemically enriched silicate reservoir as early as 4.5 Ga. By combining the Hf and O isotope systematics, we propose that the early enriched silicate reservoir has resided at depth within the Earth rather than near the surface and may represent a fractionated residuum of a magma ocean underlying the proto-crust, like urKREEP beneath the anorthositic crust on the Moon. Detrital zircons from world major rivers potentially provide the most robust Hf isotope record of the preserved granitoid crust on a continental scale, whereas mafic rocks with various emplacement ages offer an opportunity to trace the Hf isotope evolution of juvenile continental crust (from εHf[4.5 Ga] = 0 to εHf[present] = + 13). The river zircon data as compared to the juvenile crust composition highlight that the supercontinent cycle has controlled the evolution of the continental crust by regulating the rates of crustal generation and intra-crustal reworking processes and the preservation potential of granitoid crust. We use the data to explore the timing of generation of the preserved continental crust. Taking into account the crustal residence times of continental crust recycled back into the mantle, we further propose a model of net continental growth that stable continental crust was firstly established in the Paleo- and Mesoarchean and significantly grew in the Paleoproterozoic.
Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs
NASA Astrophysics Data System (ADS)
Zhou, Quan; Liu, Lijun; Hu, Jiashun
2018-01-01
The origin of late Cenozoic intraplate volcanism over the western United States is debated. One important reason is the lack of a clear understanding of the mantle dynamics during this volcanic history. Here we reconstruct the mantle thermal states beneath North America since 20 million years ago using a hybrid inverse geodynamic model with data assimilation. The model simultaneously satisfies the past subduction kinematics, present mantle tomographic image and the volcanic history. We find that volcanism in both the Yellowstone volcanic province and the Basin and Range province corresponds to a similar eastward-intruding mantle derived from beneath the Pacific Ocean and driven mostly by the sinking Farallon slab below the central-eastern United States. The hot mantle that forms the Columbia River flood basalt and subsequent Yellowstone-Newberry hotspot tracks first enters the western United States through tears within the Juan de Fuca slab. Subsequent coexistence of the westward asthenospheric flow above the retreating Juan de Fuca slab and eastward-propagating mantle beyond the back-arc region reproduces the bifurcating hotspot chains. A similar but weaker heat source intrudes below the Basin and Range around the southern edge of the slab, and can explain the diffuse basaltic volcanism in this region. According to our models, the putative Yellowstone plume contributes little to the formation of the Yellowstone volcanic province.
NASA Astrophysics Data System (ADS)
Khan, A.; Shankland, T. J.
2012-02-01
This paper applies electromagnetic sounding methods for Earth's mantle to constrain its thermal state, chemical composition, and "water" content. We consider long-period inductive response functions in the form of C-responses from four stations distributed across the Earth (Europe, North America, Asia and Australia) covering a period range from 3.9 to 95.2 days and sensitivity to ~ 1200 km depth. We invert C-responses directly for thermo-chemical state using a self-consistent thermodynamic method that computes phase equilibria as functions of pressure, temperature, and composition (in the Na2O-CaO-FeO-MgO-Al2O3-SiO2 model system). Computed mineral modes are combined with recent laboratory-based electrical conductivity models from independent experimental research groups (Yoshino (2010) and Karato (2011)) to compute bulk conductivity structure beneath each of the four stations from which C-responses are estimated. To reliably allocate water between the various mineral phases we include laboratory-measured water partition coefficients for major upper mantle and transition zone minerals. This scheme is interfaced with a sampling-based algorithm to solve the resulting non-linear inverse problem. This approach has two advantages: (1) It anchors temperatures, composition, electrical conductivities, and discontinuities that are in laboratory-based forward models, and (2) At the same time it permits the use of geophysical inverse methods to optimize conductivity profiles to match geophysical data. The results show lateral variations in upper mantle temperatures beneath the four stations that appear to persist throughout the upper mantle and parts of the transition zone. Calculated mantle temperatures at 410 and 660 km depth lie in the range 1250-1650 °C and 1500-1750 °C, respectively, and generally agree with the experimentally-determined temperatures at which the measured phase reactions olivine → β-spinel and γ-spinel → ferropericlase + perovskite occur. The retrieved conductivity structures beneath the various stations tend to follow trends observed for temperature with the strongest lateral variations in the uppermost mantle; for depths > 300 km conductivities appear to depend less on the particular conductivity database. Conductivities at 410 km and at 660 km depth are found to agree overall with purely geophysically-derived global and semi-global one-dimensional conductivity models. Both electrical conductivity databases point to < 0.01 wt.% H2O in the upper mantle. For transition zone minerals results from the laboratory database of Yoshino (2010) suggest that a much higher water content (up to 2 wt.% H2O) is required than in the other database (Karato, 2011), which favors a relatively "dry" transition zone (< 0.01 wt.% H2O). Incorporating laboratory measurements of hydrous silicate melting relations and available conductivity data allows us to consider the possibility of hydration melting and a high-conductivity melt layer above the 410-km discontinuity. The latter appears to be 1) regionally localized and 2) principally a feature from the Yoshino (2010) database. Further, there is evidence of lateral heterogeneity: The mantle beneath southwestern North America and central China appears "wetter" than that beneath central Europe or Australia.
NASA Astrophysics Data System (ADS)
Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang
2018-02-01
Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) < -6.3, (206Pb/204Pb) i > 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) < -22.4). The Weijiazhuang dykes are sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) < -7.0, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -23.3). The Mengjiazhuang dykes are also sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) < -18.4, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). The Jiayou dykes also display sub-alkaline affinity with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) < -15.3, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -18.4). The Huangmi dykes are alkaline (with Na2O + K2O ranging to more than 5.9 wt.%)) with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) < -15.1, (206Pb/204Pb) i > 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) < -12.2). The Xiahonghe dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N = 2.12-2.84) and similar EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.705; ε Nd (t)<-18.0, (206Pb/204Pb) i > 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). Our data from the various mafic dyke suites suggest that the magmas were derived from EM1-like lithospheric mantle, corresponding to lithospheric mantle modified by the previously foundered lower crust beneath the eastern NCC. Our results suggest contrasting lithospheric evolution from Triassic (212 Ma) to Cretaceous (123 Ma) beneath the NCC. These mafic dykes mark an important phase of lithospheric thinning in the eastern North China Craton.
NASA Astrophysics Data System (ADS)
Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo
2018-03-01
The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.
Osmium isotope constraints on ore metal recycling in subduction zones
McInnes; McBride; Evans; Lambert; Andrew
1999-10-15
Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.
Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.
French, Scott W; Romanowicz, Barbara
2015-09-03
Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection.
Piecewise Delamination Drives Uplift in the Atlas Mountains Region of Morocco
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Humphreys, E.; Martin Davila, J.; mimoun, H.; Josep, G.; Palomeras, I.
2013-12-01
The elevation of the intra-continental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco by inverting teleseimic p-wave delay times, complemented with local delays, recorded on a dense array of stations in the Iberian peninsula and Morocco. A surface wave model provides constraint on the shallower layers. We determine the geometry of lithospheric cavities and mantle upwelling beneath the Middle Atlas and central High Atlas, and image delaminated lithosphere at ~400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle, sourced from regional upwellings in northern Africa or the Canary Islands, enabled the mobilization of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, where we image the most recent delamination. The Atlas Mountains of Morocco stand as an example of mantle-generated uplift and large-scale lithospheric loss in a mildly contractional orogen.
NASA Astrophysics Data System (ADS)
Legendre, C.; Meier, T.; Lebedev, S.; Friederich, W.; Viereck-Götte, L.
2012-04-01
Broadband waveforms recorded at stations in Europe and surrounding regions were inverted for shear-wave velocity of the European upper mantle. For events between 1995 and 2007 seismograms were collected from all permanent stations for which data are available via the data centers ORFEUS, GEOFON, ReNaSs and IRIS. In addition, we incorporated data from temporary experiments, including SVEKALAPKO, TOR, Eifel Plume, EGELADOS and other projects. Automated Multimode Inversion of surface and S-wave forms was applied to extract structural information from the seismograms, in the form of linear equations with uncorrelated uncertainties. Successful waveform fits for about 70,000 seismograms yielded over 300,000 independent linear equations that were solved together for a three-dimensional tomographic model. Resolution of the imaging is particularly high in the mantle lithosphere and asthenosphere. The highest velocities in the mantle lithosphere of the East European Craton are found at about 150 km depth. There are no indications for a large scale deep cratonic root below about 330 km depth. Lateral variations within the cratonic mantle lithosphere are resolved by our model as well. The locations of diamond bearing kimberlites correlate with reduced S-wave velocities in the cratonic mantle lithosphere. This anomaly is present in regions of both Proterozoic and Archean crust, pointing to an alteration of the mantle lithosphere after the formation of the craton. Strong lateral changes in S-wave velocity are found at the western margin of the East European Craton and hint to erosion of cratonic mantle lithosphere beneath the Scandes by hot asthenosphere. The mantle lithosphere beneath Western Europe and between the Tornquist-Teyissere Zone and the Elbe Line shows moderately high velocities and is of an intermediate character, between cratonic lithosphere and the thin lithosphere of central Europe. In central Europe, Caledonian and Variscian sutures are not associated with strong lateral changes in the lithosphere-asthenosphere system. Cenozoic anorogenic intraplate volcanism in central Europe and the Circum Mediterranean is found in regions of shallow asthenosphere and close to sharp gradients in the depth of the lithosphere-asthenosphere boundary. Low-velocity anomalies extending vertically from shallow upper mantle down to the transition zone are found beneath the Massive Central, Sinai, Canary Islands and Iceland.
Depth variations of P-wave azimuthal anisotropy beneath Mainland China
Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin
2016-01-01
A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744
Depth variations of P-wave azimuthal anisotropy beneath Mainland China
NASA Astrophysics Data System (ADS)
Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin
2016-07-01
A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.
New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion
NASA Astrophysics Data System (ADS)
Chen, Chin-Wu; Rondenay, Stéphane; Weeraratne, Dayanthie S.; Snyder, David B.
2007-05-01
Rayleigh wave phase and amplitude data are analyzed to provide new insight into the velocity structure of the upper mantle beneath the Slave craton, in the northwestern Canadian Shield. We invert for phase velocities at periods between 20 s-142 s (with greatest sensitivity at depths of 28-200 km) using crossing ray paths from events recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained for the Slave province are comparable to those from other cratons at shorter periods, but exceed the global average by ~2% at periods above 60 s, suggesting that the Slave craton may be an end member in terms of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high upper-mantle S-wave velocities of 4.7 +/- 0.2 km/s that persist to 220 +/- 65 km depth and thus define the cratonic lithosphere. Azimuthal anisotropy is well resolved at all periods with a dominant fast direction of N59°E +/- 20°, suggesting that upper mantle anisotropy beneath the Slave craton is influenced by both lithospheric fabric and sub-lithospheric flow.
NASA Astrophysics Data System (ADS)
Dugda, M. T.; Nyblade, A. A.; Julia, J.
2007-12-01
Shear-wave velocity structure of the crust and upper mantle beneath Kenya has been investigated using joint inversion of receiver functions, and Rayleigh wave group and phase velocities. Most of the data for this study come from the Kenya broadband seismic experiment, conducted between 2001 and 2002. Shear velocity models obtained from the joint inversion show crustal thicknesses of 37 to 42 km beneath the East African Plateau in Kenya and near the edge of the Kenya Rift, and a crustal thickness of about 30 km beneath the Kenya Rift. These crustal parameters are consistent with crustal thicknesses published previously by different authors. A comparison has been made between the lithosphere under Kenya and other parts of the East African Plateau in Tanzania. A comparison between the lithosphere under Kenya and that under Ethiopia has also been made, specifically between the lithosphere under the Ethiopian Plateau and the Kenya Plateau, and between the lithosphere beneath the Main Ethiopian Rift (MER) and the Kenya (Gregory) Rift. The lithospheric mantle beneath the East African Plateau in Kenya has a maximum shear wave velocity of about 4.6 km/s, similar to the value obtained under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ~75 km. The average velocity of the mantle lithosphere under the East African Plateau in Kenya appears to be similar to the lithosphere under Tanzania away from the East African Rift System. The lithosphere under the Kenya Plateau is not perturbed as compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. The lithosphere under the Kenya Rift is perturbed as compared to the rest of the region but is not as perturbed as that under the Main Ethiopian Rift or the Afar. Though Kenya and Ethiopia have similar uplift, volcanism and rifting at the surface, they have different lithospheric structures at the bottom. The Afar Flood Basalt Volcanism (AFB) may be the cause of this striking difference in the two lithosphere.
NASA Astrophysics Data System (ADS)
Ahmed, Ahmed H.; Moghazi, Abdel Kader M.; Moufti, Mohamed R.; Dawood, Yehia H.; Ali, Kamal A.
2016-01-01
The Harrat Kishb area of western Saudi Arabia is part of the Cenozoic volcanic fields in the western margin of the Arabian Shield. Numerous fresh ultramafic xenoliths are entrained in the basanite lava of Harrat Kishb, providing an opportunity to study the nature and petrogenetic processes involved in the evolution of the lithospheric mantle beneath the Arabian Shield. Based on the petrological characteristics and mineralogical compositions, the majority of the mantle xenoliths ( 92%) are peridotites (lherzolites and pyroxene-bearing harzburgites); the remaining xenoliths ( 8%) are unusual spinel-rich wehrlites containing black Al-spinel micropods. The two types of mantle xenoliths display magmatic protogranular texture. The peridotite xenoliths have high bulk-rock Mg#, high forsterite (Fo90-Fo92) and NiO (0.24-0.46 wt.%) contents of olivine, high clinopyroxene Mg# (0.91-0.93), variable spinel Cr# (0.10-0.49, atomic ratio), and approximately flat chondrite-normalized REE patterns. These features indicate that the peridotite xenoliths represent residues after variable degrees of melt extraction from fertile mantle. The estimated P (9-16 kbar) and T (877-1227 °C) as well as the oxidation state (ΔlogfO2 = - 3.38 to - 0.22) under which these peridotite xenoliths originated are consistent with formation conditions similar to most sub-arc abyssal-type peridotites worldwide. The spinel-rich wehrlite xenoliths have an unusual amount ( 30 vol.%) of Al-spinel as peculiar micropods with very minor Cr2O3 content (< 1 wt.%). Olivines of the spinel-rich wehrlites have low-average Fo (Fo81) and NiO (0.18 wt.%) contents, low-average cpx Mg# (0.79), high average cpx Al2O3 content (8.46 wt.%), and very low-average spinel Cr# (0.01). These features characterize early mantle cumulates from a picritic melt fraction produced by low degrees of partial melting of a garnet-bearing mantle source. The relatively high Na2O and Al2O3 contents of cpx suggest that the spinel-rich wehrlites are formed under high P (11-14 kbar), T (1090-1130 °C), and oxidation state (ΔlogfO2 FMQ = + 0.14 to + 0.37), which occurred slightly below the crust-mantle boundary. The REE patterns of spinel-rich wehrlites are almost similar to those of the associated peridotite xenoliths, which confirm at least a spatial genetic linkage between them. Regarding the formation of Al-spinel micropods in spinel-rich wehrlite cumulates, it is suggested that the melt-rock reaction mechanism is not the only process by which podiform chromitite is formed. Early fractionation of picritic melts produced by partial melting of a mantle source under high P-T conditions could be another mechanism. The cpx composition, not opx, as it was assumed, seems to be the main control of the size and composition of spinel concentrations.
Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?
NASA Astrophysics Data System (ADS)
Knapp, J.
2003-04-01
Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary Province), despite the inferred distant locus of the initial plume head. Alternatively, preservation of large-scale pre-plume fabric in the Scottish mantle would imply long-lived tectonic heredity in the continental lithospheric mantle, and place important constraints on the plume-related effects (or lack thereof) in the mantle lithosphere.
Multiple mantle upwellings through the transition zone beneath the Afar Depression?
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.
2012-12-01
Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect with the northeast flowing African superswell in the upper mantle.
Mantle convection pattern and subcrustal stress field under Asia
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1978-01-01
Satellite tracking and surface gravity data are used to model the subcrustal stress fields in the terrestrial mantle beneath Asia; the results permit interpretation of the tectonic and seismic systems in China. The east and west China blocks, together with five seismic zones, are identified and related to metallogenic domains on the Chinese mainland. In addition, it is shown that the subcrustal stresses beneath China are arranged perpendicularly to the major fault systems and seismic belts. Stress calculations indicate a notable zone of compression in north China, associated with the Shansi Graben, the Linfen Basin Systems and, possibly, the high seismicity of the region.
NASA Astrophysics Data System (ADS)
Liu, Xin; Zhao, Dapeng
2016-10-01
We present the first high-resolution Rayleigh-wave phase-velocity azimuthal anisotropy tomography of the Japan subduction zone at periods of 20-150 s, which is determined using a large number of high-quality amplitude and phase data of teleseismic fundamental-mode Rayleigh waves. The obtained 2-D anisotropic phase-velocity models are then inverted for a 3-D shear-wave velocity azimuthal anisotropy tomography down to a depth of ˜300 km beneath Japan. The subducting Pacific slab is imaged as a dipping high-velocity zone with trench-parallel fast-velocity directions (FVDs) which may indicate the anisotropy arising from the normal faults produced at the outer-rise area near the Japan trench axis, overprinting the slab fossil fabric, whereas the mantle wedge generally exhibits lower velocities with trench-normal FVDs which reflect subduction-driven corner flow and anisotropy. Depth variations of azimuthal anisotropy are revealed in the big mantle wedge beneath the Japan Sea, which may reflect past deformations in the Eurasian lithosphere related to backarc spreading during 21 to 15 Ma and complex current convection in the asthenosphere induced by active subductions of both the Pacific and Philippine Sea plates.
Seismic structure of the uppermost mantle beneath the Kenya rift
Keller, Gordon R.; Mechie, J.; Braile, L.W.; Mooney, W.D.; Prodehl, C.
1994-01-01
A major goal of the Kenya Rift International Seismic Project (KRISP) 1990 experiment was the determination of deep lithospheric structure. In the refraction/wide-angle reflection part of the KRISP effort, the experiment was designed to obtain arrivals to distances in excess of 400 km. Phases from interfaces within the mantle were recorded from many shotpoints, and by design, the best data were obtained along the axial profile. Reflected arrivals from two thin (< 10 km), high-velocity layers were observed along this profile and a refracted arrival was observed from the upper high-velocity layer. These mantle phases were observed on record sections from four axial profile shotpoints so overlapping and reversed coverage was obtained. Both high-velocity layers are deepest beneath Lake Turkana and become more shallow southward as the apex of the Kenya dome is approached. The first layer has a velocity of 8.05-8.15 km/s, is at a depth of about 45 km beneath Lake Turkana, and is observed at depths of about 40 km to the south before it disappears near the base of the crust. The deeper layer has velocities ranging from 7.7 to 7.8 km/s in the south to about 8.3 km/s in the north, has a similar dip as the upper one, and is found at depths of 60-65 km. Mantle arrivals outside the rift valley appear to correlate with this layer. The large amounts of extrusive volcanics associated with the rift suggest compositional anomalies as an explanation for the observed velocity structure. However, the effects of the large heat anomaly associated with the rift indicate that composition alone cannot explain the high-velocity layers observed. These layers require some anisotropy probably due to the preferred orientation of olivine crystals. The seismic model is consistent with hot mantle material rising beneath the Kenya dome in the southern Kenya rift and north-dipping shearing along the rift axis near the base of the lithosphere beneath the northern Kenya rift. This implies lithosphere thickening towards the north and is consistent with a thermal thinning of the lithosphere from below in the south changing to thinning of the lithosphere due to stretching in the north. ?? 1994.
NASA Astrophysics Data System (ADS)
Karaoǧlu, Haydar; Romanowicz, Barbara
2018-06-01
We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the southwestern Pacific and eastern Africa, while low attenuation zones fade beneath most of the cratons. The strong negative correlation of Q^{-1}_μ and VS anomalies at shallow upper-mantle depths points to a common dominant origin for the two, likely due to variations in thermal structure. A comparison with two other global upper-mantle attenuation models shows promising consistency. As we updated the elastic 3-D model in alternate iterations, we found that the VS part of the model was stable, while the ξ structure evolution was more pronounced, indicating that it may be important to include 3-D attenuation effects when inverting for ξ, possibly due to the influence of dispersion corrections on this less well-constrained parameter.
NASA Technical Reports Server (NTRS)
Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.
2014-01-01
The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.
Uppermost mantle structure beneath eastern China and its surroundings from Pn and Sn tomography
NASA Astrophysics Data System (ADS)
Sun, Weijia; Kennett, B. L. N.
2016-04-01
The Pn and Sn residuals from regional events provide strong constraints on the structure and lithological characteristics of the uppermost mantle beneath eastern China and its surroundings. With the dense Chinese Digital Seismic Network in eastern China, separate Pn and Sn tomographic inversions have been exploited to obtain P and S velocities at a resolution of 2° × 2° or better. The patterns of P velocities are quite consistent with the S velocities at depth of 50 and 60 km, but the amplitude of P wave speed anomalies are a little larger than those of S wave speed. The low P wave speed, high S wave speed, and low Vp/Vs ratio beneath the northern part of Ordos Basin are related to upwelling hot material. Abrupt changes in material properties are indicated from the rapid variations in the Vp/Vs ratio.
Mantle transition zone structure beneath Tanzania, east Africa
NASA Astrophysics Data System (ADS)
Owens, Thomas J.; Nyblade, Andrew A.; Gurrola, Harold; Langston, Charles A.
2000-03-01
We apply a three-dimensional stacking method to receiver functions from the Tanzania Broadband Seismic Experiment to determine relative variations in the thickness of the mantle transition zone beneath Tanzania. The transition zone under the Eastern rift is 30-40 km thinner than under areas of the Tanzania Craton in the interior of the East African Plateau unaffected by rift faulting. The region of transition zone thinning under the Eastern rift is several hundred kilometers wide and coincides with a 2-3% reduction in S wave velocities. The thinning of the transition zone, as well as the reduction in S wave velocities, can be attributed to a 200-300°K increase in temperature. This thermal anomaly at >400 km depth beneath the Eastern rift cannot be easily explained by passive rifting and but is consistent with a plume origin for the Cenozoic rifting, volcanism and plateau uplift in East Africa.
Benz, H.M.; McCarthy, J.
1994-01-01
A 370-km-long seismic refraction/wide-angle reflection profile recorded during the Pacific to Arizona Crustal Experiment (PACE) detected an upper mantle P-wave low-velocity zone (LVZ) in the depth range 40 to 55 km beneath the Basin and Range in southern Arizona. Interpretation of seismic data places constraints on the sub-crustal lithosphere of the southern Basin and Range Province, which is important in light of the active tectonics of the region and the unknown role of the sub-crustal lithosphere in the development of the western United States. Forward travel time and synthetic seismogram techniques are used to model this shallow upper mantle LVZ. Modeling results show that the LVZ is defined by a 5% velocity decrease relative to a Pn velocity of 7.95 km s−1, suggesting either a ∼3–5% mafic partial melt or high-temperature, sub-solidus peridotite.
Tectonic evolution of the Mexico flat slab and patterns of intraslab seismicity.
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Sandiford, D.
2017-12-01
The Cocos plate slab is horizontal for about 250 km beneath the Guerrero region of southern Mexico. Analogous morphologies can spontaneously develop in subduction models, through the presence of a low-viscosity mantle wedge. The Mw 7.1 Puebla earthquake appears to have ruptured the inboard corner of the Mexican flat slab; likely in close proximity to the mantle wedge corner. In addition to the historical seismic record, the Puebla earthquake provides a valuable constraint through which to assess geodynamic models for flat slab evolution. Slab deformation predicted by the "weak wedge" model is consistent with past seismicity in the both the upper plate and slab. Below the flat section, the slab is anomalously warm relative to its depth; the lack of seismicity in the deeper part of the slab fits the global pattern of temperature-controlled slab seismicity. This has implications for understanding the deeper structure of the slab, including the seismic hazard from source regions downdip of the Puebla rupture (epicenters closer to Mexico City). While historical seismicity provides a deformation pattern consistent with the weak wedge model , the Puebla earthquake is somewhat anomalous. The earthquake source mechanism is consistent with stress orientations in our models, however it maps to a region of relatively low deviatoric stress.
NASA Astrophysics Data System (ADS)
Niu, Y.; O'Hara, M. J.
2014-12-01
Mantle temperature variation, plate spreading rate variation and mantle compositional variation have been considered to be the three fundamental variables that govern the working of global ocean ridges [1]. An analysis demonstrates that mantle compositional variation exerts the primary control on ocean ridge processes; it determines (1) variation in both composition and mode of mantle mineralogy, (2) variation of mantle density, (3) variation of ridge axial depth, (4) source-inherited MORB compositional variation, (4) density-controlled variation in the amplitude of mantle upwelling, (5) apparent variation in the extent of melting, and (6) the correlated variation of MORB chemistry with ridge axial depth [2]. The above interpretations are reinforced by the updated MORB database [3]. The new database also confirms spreading rate control on the extent of melting as shown previously [4]. Mantle temperature variation could play a part, but its overstated role [3,5] results from a basic error (1) in treating ridge axial depth variation as evidence of mantle temperature variation by ignoring the intrinsic control of mantle composition, (2) in treating "mantle plume" influenced ridges (e.g., Iceland) as normal ridges of plate spreading origin, and (3) in treating low Vs at greater depths (> 300 km vs. < 200 km beneath ridges) beneath these "mantle plume" influenced ridges as evidence for hot ridge mantle. In order to understand the working of global ocean ridges, we must avoid plume-influenced ridges (e.g., in the vicinity of Iceland) and remove/average out data from such ridges. As a result, the correlations (e.g., between ridge axial depth, mantle low Vs anomaly, and some geochemical parameters) required for the interpretation of mantle temperature control all disappear. There is thus no evidence for large mantle temperature variation away from ridges influenced by "mantle plumes". References: [1] Niu et al., 2001, Earth Planet Sci. Lett., 186, 383-399; [2] Niu & O'Hara, 2008, J. Petrol., 49, 633-664; [3] Gale et al., 2014, J. Petrol, 55, 1051-1082; [4] Niu & Hékinian, 1997, Nature, 385, 326-329; [5] Dalton et al., 2014, Science, 334, 80-83; [6]Niu & Hékinian, 2004, In Oceanic Hotspots, Springer-Verlag, 285-307.
NASA Astrophysics Data System (ADS)
Tesoniero, Andrea; Auer, Ludwig; Boschi, Lapo; Cammarano, Fabio
2015-11-01
We present a new global model of shear and compressional wave speeds for the entire mantle, partly based on the data set employed for the shear velocity model savani. We invert Rayleigh and Love surface waves up to the sixth overtone in combination with major P and S body wave phases. Mineral physics data on the isotropic δlnVS/δlnVP ratio are taken into account in the form of a regularization constraint. The relationship between VP and VS that we observe in the top 300 km of the mantle has important thermochemical implications. Back-arc basins in the Western Pacific are characterized by large VP/VS and not extremely low VS at ˜150 km depth, consistently with presence of water. Most pronounced anomalies are located in the Sea of Japan, in the back-arc region of the Philippine Sea, and in the South China Sea. Our results indicate the effectiveness of slab-related processes to hydrate the mantle and suggest an important role of Pacific plate subduction also for the evolution of the South China Sea. We detect lateral variations in composition within the continental lithospheric mantle. Regions that have been subjected to rifting, collisions, and flood basalt events are underlain by relatively large VP/VS ratio compared to undeformed Precambrian regions, consistently with a lower degree of chemical depletion. Compositional variations are also observed in deep lithosphere. At ˜200 km depth, mantle beneath Australia and African cratons has comparable positive VS anomalies with other continental regions, but VP is ˜1% higher.
NASA Astrophysics Data System (ADS)
Park, Keunsu; Choi, Sung Hi; Cho, Moonsup; Lee, Der-Chuen
2017-08-01
Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine (Fo89.3-91.0), enstatite (Wo1-2En88-90Fs8-11), diopside (Wo45-50En45-51Fs4-6), and spinel (Cr# = 8.8-54.7). The peridotite residues underwent up to 25% partial melting in fertile mid-ocean-ridge basalt (MORB) mantle. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1010 °C, reflecting their lithospheric mantle origin. The rare earth element (REE) patterns in clinopyroxenes of the peridotites varied from light REE (LREE) depleted to spoon shaped to LREE enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in large-ion lithophile elements, Th and U together with slight fractionation in heavy REEs (HREEs) and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying well above the mantle array. The Lu-Hf and Sm-Nd model ages of residual clinopyroxenes yielded Early Proterozoic to Phanerozoic ages. No signature of Archean cratonic mantle was present. Therefore, Mt. Baekdu peridotite is residual lithospheric mantle that has undergone variable degrees of diachronous melt extraction and infiltration metasomatism involving subduction-related, fluid-bearing silicate melts. The predominance of Phanerozoic Hf model ages indicates that the lherzolites represent lithospheric mantle fragments newly accreted underneath the eastern NCC.
Geochemical Characterization of Endmember Mantle Components
2005-06-01
from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands); consequences for crustal contamination of ascending magmas, Chemical...Enriched Mantle II (EM2) Endmember: Evidence from the Samoan Volcanic Chain .................................................... 19 Abstract...DMM). On the other hand, ocean island basalts (OIBs), erupted by hotspot volcanism , are isotopically heterogeneous in terms of most radiogenic
NASA Astrophysics Data System (ADS)
Haldar, C.; Kumar, P.; Kumar, M. Ravi
2014-05-01
Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.
Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study
Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.
2006-01-01
A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Li, Guohui; Bai, Ling; Zhou, Yuanze; Wang, Xiaoran; Cui, Qinghui
2017-11-01
P-wave triplications related to the 410 km discontinuity (the 410) were clearly observed from the vertical component seismograms of three intermediate-depth earthquakes that occurred in the Indo-Burma Subduction Zone (IBSZ) and were recorded by the Chinese Digital Seismic Network (CDSN). By matching the observed P-wave triplications with synthetics through a grid search, we obtained the best-fit models for four azimuthal profiles (I-IV from north to south) to constrain the P-wave velocity structure near the 410 beneath the southeastern margin of the Tibetan Plateau (TP). A ubiquitous low-velocity layer (LVL) resides atop the mantle transition zone (MTZ). The LVL is 25 to 40 km thick, with a P-wave velocity decrement ranging from approximately - 5.3% to - 3.6% related to the standard Earth model IASP91. An abrupt transition in the velocity decrement of the LVL was observed between profiles II and III. We postulate that the mantle structure beneath the southeastern margin of the TP is primarily controlled by the southeastern extrusion of the TP to the north combined with the eastward subduction of the Indian plate to the south, but not affected by the Emeishan mantle plume. We attribute the LVL to the partial melting induced by water and/or other volatiles released from the subducted Indian plate and the stagnant Pacific plate, but not from the upwelling or the remnants of the Emeishan mantle plume. A high-velocity anomaly ranging from approximately 1.0% to 1.5% was also detected at a depth of 542 to 600 km, providing additional evidence for the remnants of the subducted Pacific plate within the MTZ.
Thermo-mechanically coupled subduction with a free surface using ASPECT
NASA Astrophysics Data System (ADS)
Fraters, Menno; Glerum, Anne; Thieulot, Cedric; Spakman, Wim
2014-05-01
ASPECT (Kronbichler et al., 2012), short for Advanced Solver for Problems in Earth's ConvecTion, is a new Finite Element code which was originally designed for thermally driven (mantle) convection and is built on state of the art numerical methods (adaptive mesh refinement, linear and nonlinear solver, stabilization of transport dominated processes and a high scalability on multiple processors). Here we present an application of ASPECT to modeling of fully thermo-mechanically coupled subduction. Our subduction model contains three different compositions: a crustal composition on top of both the subducting slab and the overriding plate, a mantle composition and a sticky air composition, which allows for simulating a free surface for modeling topography build-up. We implemented a visco-plastic rheology using frictional plasticity and a composite viscosity defined by diffusion and dislocation creep. The lithospheric mantle has the same composition as the mantle but has a higher viscosity because of a lower temperature. The temperature field is implemented in ASPECT as follows: a linear temperature gradient for the lithosphere and an adiabatic geotherm for the sublithospheric mantle. Initial slab temperature is defined using the analytical solution of McKenzie (1970). The plates can be pushed from the sides of the model, and it is possible to define an additional independent mantle in/out flow through the boundaries. We will show a preliminary set of models, highlighting the codes capabilities, such as the Adaptive Mesh Refinement, topography development and the influence of mantle flow on the subduction evolution. Kronbichler, M., Heister, T., and Bangerth, W. (2012), High accuracy mantle convection simulation through modern numerical methods, Geophysical Journal International,191, 12-29, doi:10.1111/j.1365-246X.2012.05609. McKenzie, D.P. (1970), Temperature and potential temperature beneath island arcs, Teconophysics, 10, 357-366, doi:10.1016/0040-1951(70)90115-0.
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan V.; Gao, Yuan; Li, Aibing; Li, Lun; Chen, Anguo
2017-06-01
Lithospheric shear wave velocity beneath the southeastern margin of the Tibetan Plateau is obtained from Rayleigh wave tomography using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Rayleigh wave phase velocities at periods of 20-100 s are determined and used to construct the 3-D shear wave velocity model. Low-velocity anomalies appear along or close to the major faults in the middle crust and become a broad zone in the lower crust, suggesting block extrusion in the shallow crust and diffuse deformation in the lower crust, both of which play important roles in accommodating the collision between the Indian and Eurasian plates. A vertical low-velocity column beneath the Tengchong Volcano is observed, which could be caused by upwelling of warm mantle due to the lithosphere extension in the Thailand rift basin to the south or by fluid-induced partial melting due to the subduction of the Burma slab. The western Yangtze Craton is characterized by low velocity in the crust and uppermost mantle above the fast mantle lithosphere, indicating possible thermal erosion at the western craton edge resulted from the extrusion of the Tibetan Plateau. A low-velocity zone is imaged at the depths of 70-150 km beneath the eastern part of the Yangtze Craton, which could be caused by small-scale mantle convection associated with the subduction of the Burma microplate and/or the opening of the South China Sea.
NASA Astrophysics Data System (ADS)
Brenn, G.; Hansen, S. E.; Park, Y.
2016-12-01
Stretching 3500 km across Antarctica, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth. It has been suggested that the TAMs may have served as a nucleation point for the large-scale glaciation of Antarctica, and understanding their tectonic history has important implications for ice sheet modeling. However, the origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; δVP= -2.0%; δVS=-1.5% to -4.0%) and Terra Nova Bay (TNB; δVP=-1.5% to -2.0%; δVS= -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (δVP=0.5% to 2%; δVS=1.5% to 4.0%). A low velocity region (δVP= -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.
NASA Astrophysics Data System (ADS)
McCormack, K. A.; Wirth, E. A.; Long, M. D.
2011-12-01
The recycling of oceanic plates back into the mantle through subduction is an important process taking place within our planet. However, many fundamental aspects of subduction systems, such as the dynamics of mantle flow, have yet to be completely understood. Subducting slabs transport water down into the mantle, but how and where that water is released, as well as how it affects mantle flow, is still an open question. In this study, we focus on the Ryukyu subduction zone in southwestern Japan and use anisotropic receiver function analysis to characterize the structure of the mantle wedge. We compute radial and transverse P-to-S receiver functions for eight stations of the broadband F-net array using a multitaper receiver function estimator. We observe coherent P-to-SV converted energy in the radial receiver functions at ~6 sec for most of the stations analyzed consistent with conversions originating at the top of the slab. We also observe conversions on the transverse receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. The character of the transverse receiver functions varies significantly along strike, with the northernmost three stations exhibiting markedly different behavior than stations located in the center of the Ryukyu arc. We compute synthetic receiver functions using a forward modeling scheme that can handle dipping interfaces and anisotropic layers to create models for the depths, thicknesses, and strengths of anisotropic layers in the mantle wedge beneath Ryukyu.
NASA Astrophysics Data System (ADS)
Benoit, M. H.; Nyblade, A. A.; Pasyanos, M.; Owens, T. J.
2005-12-01
Throughout much of the Cenozoic, Ethiopia has undergone extensive tectonism, including rifting, volcanism and uplift, and the origin of this tectonism remains enigmatic. While the cause of the tectonism has often been attributed to one or more mantle plumes, recent global tomographic studies suggest that the African Superplume, a broad, through-going mantle upwelling, may be related to the tectonism. To further understand the origin of the tectonism in Ethiopia, we employ a variety of methods, including an S wave travel time body wave tomography, receiver function analysis of the 410 and 660 km discontinuities, and surface wave tomography. Using data from the Ethiopia Broadband Seismic Experiment [2000-2002], we computed new S wave models of the upper mantle seismic velocity structure from 150 - 400 km depth. The S wave model revealed an elongated low wave speed region that is deep (> 300 km) and wide (> 500 km). The location of the low wave speed anomaly aligns with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but the center of the anomaly shifts to the west with depth. Results from receiver function stacking of the 410 and 660 km discontinuities show a shallow 660 beneath most of Ethiopia, implying that the low wave speed anomaly found in the S wave model likely extends to at least 660 km depth. This result suggests that the low velocity anomaly may be related to the African Superplume. A group velocity surface wave tomographic study of East Africa was also computed using data from permanent and temporary stations from Africa and Arabia. Results of this study reveal low Sn velocities beneath much of the region, and suggest that low elevations found in the region between the Ethiopian and East African Plateaus likely reflect an isostatic response to crustal thinning. If the crust in this region had not been thinned by approximately 10 - 15 km, then it is likely that the high elevation of the Ethiopian and East African Plateaus would be continuous and that these plateaus would not be viewed as separate, distinct regions of uplift. This finding further suggests that a large scale, buoyant feature, such as the African Superplume, exists in the mantle beneath the Ethiopia and East African Plateaus that contributes to the uplift of the region.
Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru
NASA Astrophysics Data System (ADS)
Jang, H.; Kim, Y.; Clayton, R. W.
2017-12-01
We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.
Imaging Mantle Convection Processes Beneath the Western USA Using the EarthScope Transportable Array
NASA Astrophysics Data System (ADS)
Xue, M.; Allen, R. M.
2007-12-01
High resolution velocity models beneath western USA can provide important clues to mantle convection processes in this tectonically active region, e.g., the subduction of the Juan de Fuca plate, the upwelling of the Yellowstone plume, and their possible interactions. In this study, we apply the tomography technique using the Transportable Array data complemented by regional networks data resulting in a total of 732 stations. In our preliminary models we use 57 earthquakes sources. We derived two preliminary Vs models and one preliminary Vp model using tangential, radial, and vertical components respectively. Our preliminary tomographic images show some common features which have been imaged before such as the high velocity anomaly beneath the Cascades and the low velocity anomaly beneath the Yellowstone National Park. However, the unprecedented dense station distribution allows us to see deeper and reveals some new features: (1) the imaged Juan de Fuca subduction system goes deeper than previously been imaged. It reaches more than 500 km depth in Washington and northern California while in Oregon it seems break off and is segmented, implying a possible interaction with the proposed Yellowstone plume; (2) immediately south of the Juan de Fuca subduction system, we image low velocity anomalies down to ~{400} km depth, coincident with the proposed location of the slab gap; (3) we image the low velocity anomaly beneath the northeast Oregon down to ~{300} km depth, deeper than has previously been imaged, which has been hypothesized as the depleted mantle after the eruption of the Columbia River flood basalts, a result of delamination of the Wallowa plutonic roots [Hales, et. al., 2005]; (4) we see the high velocity Pacific plate abutting against the low velocity North American plate along the trace of the San Andreas Fault System. These observations suggest we are only just beginning to image the complex interactions between geologic objects beneath the western USA.
NASA Astrophysics Data System (ADS)
Zhang, Baolong; Ni, Sidao; Sun, Daoyuan; Shen, Zhichao; Jackson, Jennifer M.; Wu, Wenbo
2018-05-01
Volumetric heterogeneities on large (∼>1000 km) and intermediate scales (∼>100 km) in the lowermost mantle have been established with seismological approaches. However, there are controversies regarding the level of heterogeneity in the lowermost mantle at small scales (a few kilometers to tens of kilometers), with lower bound estimates ranging from 0.1% to a few percent. We take advantage of the small amplitude PcP waves at near podal distances (0-12°) to constrain the level of small-scale heterogeneity within 250 km above the CMB. First, we compute short period synthetic seismograms with a finite difference code for a series of volumetric heterogeneity models in the lowermost mantle, and find that PcP is not identifiable if the small-scale heterogeneity in the lowermost mantle is above 2.5%. We then use a functional form appropriate for coda decay to suppress P coda contamination. By comparing the corrected envelope of PcP and its precursors with synthetic seismograms, we find that perturbations of small-scale (∼8 km) heterogeneity in the lowermost mantle is ∼0.2-0.5% beneath regions of the China-Myanmar border area, Okhotsk Sea and South America. Whereas strong perturbations (∼1.0%) are found beneath Central America. In the regions studied, we find that this particular type of small-scale heterogeneity in the lowermost mantle is weak, yet there are some regions requiring heterogeneity up to 1.0%. Where scattering is stronger, such as under Central America, more chemically complex mineral assemblages may be present at the core-mantle boundary.
NASA Astrophysics Data System (ADS)
Van der Werf, Thomas F.; Chatzaras, Vasileios; Tikoff, Basil; Drury, Martyn R.
2016-04-01
Baja California is an active transtensional rift zone, which links the San Andreas Fault with the East Pacific Rise. The erupted basalts of the Holocene San Quintin volcanic field contain xenoliths, which sample the lower crust and upper mantle beneath Baja California. The aim of this research is to gain insight in the rheology of the lower crust and the upper mantle by investigating the xenolith microstructure. Microstructural observations have been used to determine the dominant deformation mechanisms. Differential stresses were estimated from recrystallized grain size piezometry of plagioclase and clinopyroxene for the lower crust and olivine for the upper mantle. The degree of deformation can be inferred from macroscopic foliations and the deformation microstructures. Preliminary results show that both the lower crust and the upper mantle have been affected by multiple stages of deformation and recrystallization. In addition the dominant deformation mechanism in both the lower crust and the upper mantle is dislocation creep based on the existence of strong crystallographic preferred orientations. The differential stress estimates for the lower crust are 10-29 MPa using plagioclase piezometry and 12-35 MPa using clinopyroxene piezometry. For the upper mantle, differential stress estimates are 10-20 MPa. These results indicate that the strength of the lower crust and the upper mantle are very similar. Our data do not fit with the general models of lithospheric strength and may have important implications for the rheological structure of the lithosphere in transtensional plate margins and for geodynamic models of the region.
Crust and Upper Mantle Structure of Antarctica from Rayleigh Wave Tomography
NASA Astrophysics Data System (ADS)
Wiens, D. A.; Heeszel, D. S.; Sun, X.; Chaput, J. A.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Wilson, T. J.; Huerta, A. D.
2012-12-01
We combine data from three temporary arrays of seismometers (AGAP/GAMSEIS 2007-2010, ANET/POLENET 2007-2012, TAMSEIS 2001-2003) deployed across Antarctica, along with permanent stations in the region, to produce a large scale shear velocity model of the continent extending from the Gamburtsev Subglacial Mountains (GSM) in East Antarctica, across the Transantarctic Mountains (TAM) and West Antarctic Rift System (WARS) to Marie Byrd Land (MBL) in West Antarctica. Our combined dataset consists of Rayleigh wave phase and amplitude measurements from 112 stations across the study region. We first invert for 2-D Rayleigh wave phase velocities using the two-plane wave method. These results are then inverted for shear velocity structure using crustal thicknesses derived from ambient noise tomography and teleseismic receiver functions. We refine our shear velocity model by performing a Monte Carlo simulation that explores the tradeoff between crustal thickness and upper mantle seismic velocities. The resulting model is higher resolution than previous studies (~150 km resolution length) and highlights significant differences in crustal and uppermost mantle structure between East and West Antarctica in greater detail than previously possible. East Antarctica is underlain by thick crust (reaching ~55 km beneath the GSM) and fast, cratonic lithosphere. West Antarctica is defined by thinner crust and slow upper mantle velocities indicative of its more recent tectonic activity. The observed boundary in crustal thickness closely follows the TAM front. MBL is underlain by a thicker lithosphere than that observed beneath the WARS, but slow mantle velocities persist to depths greater than 200 km, indicating a 'deep seated' (i.e. deeper than the deepest resolvable features of our model) thermal source for volcanism in the region. The slowest seismic velocities at shallow depths are observed in the Terror Rift region of the Ross Sea along an arc following the TAM front, where the most recent extension has occurred, and in another region of active volcanism. The Ellsworth-Whitmore Mountains are underlain by relatively thick crust and an intermediate thickness lithosphere, consistent with its hypothesized origin as a remnant Precambrian crustal block. We also produce upper mantle viscosity models for the study region using a temperature-dependent rheology, assuming that mantle seismic anomalies are dominated by temperature variations. Initial results closely correlate with the velocity model, with viscosities beneath West Antarctica inferred to be orders of magnitude lower than beneath East Antarctica. These viscosity results have important implications for our understanding of glacial isostatic adjustment, which is of particular interest in producing models of past and future changes in the Antarctic Ice Sheets.
NASA Astrophysics Data System (ADS)
Beghein, Caroline; Trampert, Jeannot
2004-01-01
The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.
NASA Astrophysics Data System (ADS)
Haberland, Christian; Rietbrock, Andreas
2001-06-01
High-quality data from 1498 local earthquakes recorded by the PISCO '94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) and ANCORP '96 (Andean Continental Research Project, 1996) temporary seismological networks allowed the detailed determination of the three-dimensional (3-D) attenuation structure (Qp-1) beneath the recent magmatic arc in the western central Andes (20° to 24°S). Assuming a frequency-independent Qp-1 in a frequency band between 1 and 30 Hz, whole path attenuation (t*) was estimated from the amplitude spectra of the P waves using spectral ratios and a spectral inversion technique. The damped least squares inversion (tomography) of the data reveals a complex attenuation structure. Crust and mantle of the forearc and subducting slab are generally characterized by low attenuation (Qp > 1000). Crust and mantle beneath the magmatic arc show elevated attenuation. The strongest anomaly of extremely low Qp is found in the crust between 22° and 23°S beneath the recent volcanic arc (Qp < 100). N-S variations can be observed: The western flank of the crustal attenuation anomaly follows the curved course of the volcanic front. North of 21°S the attenuation is less developed. In the northern part of the study area the low-Qp zone penetrates in the forearc mantle down to the subducting slab. In the south a deeper zone of high attenuation is resolved between 23° and 24°S directly above the subducting slab. Low Qp in the mantle correlates with earthquake clusters. The strong crustal attenuation is confined to the distribution of young ignimbrites and silicic volcanism and is interpreted as a thermally weakened zone with partial melts. The attenuation pattern in the upper mantle might reflect the variable extent of the asthenosphere and maps variations of subduction-related hydration processes in the mantle wedge from slab-derived fluids.
NASA Astrophysics Data System (ADS)
Smart, Katie A.; Chacko, Thomas; Stachel, Thomas; Tappe, Sebastian; Stern, Richard A.; Ickert, Ryan B.; EIMF
2012-02-01
We report the geochemical and oxygen isotope compositions for eclogitic mineral inclusions in diamonds hosted by high-MgO eclogite xenoliths from the Jericho kimberlite, Canada. These data are used to constrain the nature and evolution of the eclogite protolith. The garnet and clinopyroxene diamond inclusions (DIs) are compositionally different than their host eclogite counterparts. In particular, garnet DIs have much lower Mg-numbers (54 vs. 82) and Cr2O3 contents (0.1 vs. 0.6 wt.%) and higher CaO contents (7.6 vs. 4.3 wt.%) than host eclogite garnet. DI and host eclogite clinopyroxenes are more similar but differences include lower Mg-numbers (78-81 vs. 93) and higher Na2O contents (2.3 vs. 1.8 wt.%) in the DIs. The DIs lack typical shallow oceanic crust signatures such as strong positive Eu and Sr anomalies, and oxygen isotope compositions that deviate significantly from the pristine mantle average. On the contrary, both the Jericho DIs and host eclogite garnets have small negative Eu and Sr anomalies, fractionated HREE patterns ((LuN/GdN) ~ 3-5) and pristine mantle-like δ18O values of 5.2-6.0‰, indicating that shallow, plagioclase-rich oceanic crust protoliths are unlikely. The eclogitic DI trace-element characteristics require that both garnet and plagioclase were present in the protolith, which likely crystallized in the shallow upper mantle. DI-based reconstructed whole-rock eclogite compositions have higher Mg-numbers and lower Al2O3 contents than found in typical basaltic or gabbroic oceanic crust, and are similar to pyroxenitic veins found in orogenic peridotite massifs. Due to the lack of clear oceanic crust signatures and the mantle-like δ18O values of the studied DIs, we propose that the Jericho diamond eclogites originally crystallized as pyroxenite cumulates that formed veins within the oceanic mantle lithosphere. Following partial melt extraction, the eclogite protoliths were subducted into the diamond stability field beneath the evolving Slave craton. Hence, the Jericho DIs and host high-MgO eclogites may represent an example of eclogite formation in an oceanic setting without the diagnostic 'crustal signatures' that are typically observed in cratonic eclogite xenolith suites worldwide.
NASA Astrophysics Data System (ADS)
Kalberg, Thomas; Gohl, Karsten
2013-04-01
The Amundsen Sea Embayment of West Antarctica is a centrepiece in understanding the history of the New Zealand - Antarctica breakup. This region plays a key role in plate kinematic reconstruction of the southern Pacific from the collision of the Hikurangi Plateau with the Gondwana subduction margin to the evolution of the West Antarctic Rift System. During two RV Polarstern cruises in 2006 and 2010, a large geophysical dataset was collected consisting of seismic refraction and reflection profiles, shipborne gravity and helicopter magnetic measurements. The data provide constraints on the crustal architecture, the structural evolution and the tectonic block formation during and after the Cretaceous continental breakup. We present two continental rise-to-shelf P-wave velocity models which were derived from forward travel-time modelling of ocean bottom hydrophone recordings which provide an insight into the crustal and upper mantle architecture beneath the Amundsen Sea Embayment for the first time. The sedimentary sequences and the basement were constrained by seismic reflection data. A 2-D density-depth model supports and complements the P-wave modelling. Observed P-wave velocities show 10 to 14 km thick crust of the continental rise and up to 28 km thick crust beneath the middle and inner shelf. The crust of the continental rise is characterized by a small gradient in thickness. Including horst and graben structures this can be associated with wide-mode rifting. A high velocity zone with velocities ranging between 7.1 and 7.6 km/s indicate magmatic underplating of variable thickness along the entire transect. We classify this margin as one of volcanic type rather than magma poor because of the high-velocity zone and seaward dipping reflectors observed from the seismic reflection data. We discuss the possibility of a serpentinized upper mantle caused by seawater penetration at the Marie Byrd Seamounts. The crustal structure, distinct zones in potential field anomalies indicate several phases of fully developed and failed rift systems and a possible branch of the West Antarctic Rift System in the Amundsen Sea Embayment.
NASA Astrophysics Data System (ADS)
Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.
2004-05-01
The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle
Lee, Changyeol; Wada, Ikuko
2017-01-01
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering. PMID:28660880
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.
Lee, Changyeol; Wada, Ikuko
2017-06-29
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.
NASA Astrophysics Data System (ADS)
Schierjott, Jana; Rozel, Antoine; Tackley, Paul
2017-04-01
Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs, their viscosity is still debated. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size-dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011). Further, we consider a basal primordial layer and a time-dependent basalt production to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). Our study comprises three main parts: 1) We perform a parameter study which includes different densities and viscosities of the imposed primordial layer. 2) We detect possible piles and compute their average effective viscosity, density, rheology and grain size. 3) We test the influence of grain size evolution on the development and morphology of piles and compare it to non-grain size models. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the imposed primordial material is lower than basalt. In that case the average temperature of the pile is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the pile but not for a different average grain size.
Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi
2018-01-01
The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40–80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150–200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift and a ∼3–4 Ma pulse of basaltic magmatism.
NASA Astrophysics Data System (ADS)
Tsang, Stephanie Doris
The motion of the mantle beneath the tectonic plates is still unknown. Mantle shears associated with flow generate anisotropy. In order to investigate the anisotropic properties within the Earth to a range of depths within the crust and upper mantle (and perhaps beyond), long-period Rayleigh waves (periods of 51:282 ≤
On the origin of the anisotropy observed beneath the westernmost Mediterranean region
NASA Astrophysics Data System (ADS)
Diaz, Jordi
2017-04-01
The Iberian Peninsula and Northern Morocco region provides an excellent opportunity to investigate the origin of subcrustal anisotropy. Following the TopoIberia-Iberarray experiment, anisotropic properties have been explored in a dense network of 60x60 km spaced broad-band stations, resulting in more than 300 sites investigated over an area extending from the Bay of Biscay to the Sahara platform and covering more than 6000.000 km2. The rather uniform N100°E FPD retrieved beneath the Variscan Central Iberian Massif is consistent with global mantle flow models taking into account contributions of surface plate motion, density variations and net lithosphere rotation. The origin of this anisotropy is hence globally related to the lattice preferred orientation of mantle minerals generated by mantle flow at asthenospheric depths, although significant regional variations are observed. The anisotropic parameters retrieved from single events providing high quality data show significant differences for stations located in the Variscan units of NW Iberia, suggesting that the region includes multiple anisotropic layers or complex anisotropy systems have to be considered there. The rotation of the FDE along the Gibraltar arc following the curvature of the Rif-Betic chain has been interpreted as an evidence of mantle flow deflected around the high velocity slab beneath the Gibraltar Arc. Beneath the SW corner of Iberia and the High Atlas zone, small delay times and inconsistent FPD have been detected, suggesting the presence of vertical mantle flow affecting the anisotropic structure of the asthenosphere. Future developments will include a better integration with the anisotropic estimations provided by Pn tomography and, in particular, with those arising from surface wave tomographic inversions using TopoIberia-Ibearray results. Additionally, the contribution of crustal anisotropy could be estimated from the analysis of receiver functions. The detailed knowledge on the anisotropic structure of this area could be used to test the recently developed multiparametric modeling methods inverting jointly observables as surface waves dispersion, receiver functions, surface heat flow, geoid height, elevation and anisotropy. (partially founded by: MISTERIOS project, CGL2013-48601-C2-1-R)
NASA Astrophysics Data System (ADS)
Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi
2018-04-01
The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40-80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150-200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift and a ∼3-4 Ma pulse of basaltic magmatism.
Large-scale trench-perpendicular mantle flow beneath northern Chile
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.; Woelbern, I.
2017-12-01
We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.
NASA Astrophysics Data System (ADS)
Panza, G. F.; Peccerillo, A.; Aoudia, A.; Farina, B.
2007-01-01
Information on the physical and chemical properties of the lithosphere-asthenosphere system (LAS) can be obtained by geophysical investigation and by studies of petrology-geochemistry of magmatic rocks and entrained xenoliths. Integration of petrological and geophysical studies is particularly useful in geodynamically complex areas characterised by abundant and compositionally variable young magmatism, such as in the Tyrrhenian Sea and surroundings. A thin crust, less than 10 km, overlying a soft mantle (where partial melting can reach about 10%) is observed for Magnaghi, Vavilov and Marsili, which belong to the Central Tyrrhenian Sea backarc volcanism where subalkaline rocks dominate. Similar characteristics are seen for the uppermost crust of Ischia. A crust about 20 km thick is observed for the majority of the continental volcanoes, including Amiata-Vulsini, Roccamonfina, Phlegraean Fields-Vesuvius, Vulture, Stromboli, Vulcano-Lipari, Etna and Ustica. A thicker crust is present at Albani - about 25 km - and at Cimino-Vico-Sabatini — about 30 km. The structure of the upper mantle, in contrast, shows striking differences among various volcanic provinces. Volcanoes of the Roman region (Vulsini-Sabatini-Alban Hills) sit over an upper mantle characterised by Vs mostly ranging from about 4.2 to 4.4 km/s. At the Alban Hills, however, slightly lower Vs values of about 4.1 km/s are detected between 60 and 120 km of depth. This parallels the similar and rather homogeneous compositional features of the Roman volcanoes, whereas the lower Vs values detected at the Alban Hills may reflect the occurrence of small amounts of melts within the mantle, in agreement with the younger age of this volcano. The axial zone of the Apennines, where ultrapotassic kamafugitic volcanoes are present, has a mantle structure with high-velocity lid ( Vs ˜ 4.5 km/s) occurring at the base of a 40-km-thick crust. Beneath the Campanian volcanoes of Vesuvius and Phlegraean Fields, the mantle structure shows a rigid body dipping westward, a feature that continues southward, up to the eastern Aeolian arc. In contrast, at Ischia the upper mantle contains a shallow low-velocity layer ( Vs = 3.5-4.0 km/s) just beneath a thin but complex crust. The western Aeolian arc and Ustica sit over an upper mantle with Vs ˜ 4.2-4.4 km/s, although a rigid layer ( Vs = 4.55 km/s) from about 80 to 150 km occurs beneath the western Aeolian arc. In Sardinia, no significant differences in the LAS structure are detected from north to south. The petrological-geochemical signatures of Italian volcanoes show strong variations that allow us to distinguish several magmatic provinces. These often coincide with mantle sectors identified by Vs tomography. For instance, the Roman volcanoes show remarkable similar petrological and geochemical characteristics, mirroring similar structure of the LAS. The structure and geochemical-isotopic composition of the upper mantle change significantly when we move to the Stromboli-Campanian volcanoes. The geochemical signatures of Ischia and Procida volcanoes are similar to other Campanian centres, but Sr-Pb isotopic ratios are lower marking a transition to the backarc mantle of the Central Tyrrhenian Sea. The structural variations from Stromboli to the central (Vulcano and Lipari) and western Aeolian arc are accompanied by strong variations of geochemical signatures, such as a decrease of Sr-isotope ratios and an increase of Nd-, Pb-isotope and LILE/HFSE ratios. The dominance of mafic subalkaline magmatism in the Tyrrhenian Sea basin denotes large degrees of partial melting, well in agreement with the soft characteristics of the uppermost mantle in this area. In contrast, striking isotopic differences of Plio-Quaternary volcanic rocks from southern to northern Sardinia does not find a match in the LAS geophysical characteristics. The combination of petrological and geophysical constraints allows us to propose a 3D schematic geodynamic model of the Tyrrhenian basin and bordering volcanic areas, including the subduction of the Ionian-Adria lithosphere in the southern Tyrrhenian Sea, and to place constraints on the geodynamic evolution of the whole region.
Small subsidence of the 660-km discontinuity beneath Japan probed by ScS reverberations
NASA Astrophysics Data System (ADS)
Kato, Mamoru; Misawa, Mika; Kawakatsu, Hitoshi
We investigate layering structure in the mantle beneath Japan using ScS reverberation waveforms of two recent large deep events in the northwest Pacific. We estimate regional variation of the elastic and anelastic structure of the mantle as well as properties of the major velocity discontinuities by modeling broadband seismograms recorded at two dense networks, J-Array and FREESIA. The 660-km discontinuity is the deepest in the region where the stagnant subducting slab in the transition zone is tomographically imaged, but the subsidence is of ∼10 km, much smaller than previous estimates with SS precursors. No significant elevation is detected for the 410-km discontinuity.
Plate Tectonic Cycling and Whole Mantle Convection Modulate Earth's 3He/22Ne Ratio
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Jackson, C.; Hesse, M. A.; Tremblay, M. M.; Shuster, D. L.; Gu, J.
2016-12-01
3He and 22Ne are not produced in the mantle or fractionated by partial melting, and neither isotope is recycled back into the mantle by subduction of oceanic basalt or sediment. Thus, it is a surprise that large 3He/22Ne variations exist within the mantle and that the mantle has a net elevated 3He/22Ne ratio compared to volatile-rich planetary precursor materials. Depleted subcontinental lithospheric mantle and mid-ocean ridge basalt (MORB) mantle have distinctly higher 3He/22Ne compared to ocean island basalt (OIB) sources ( 4-12.5 vs. 2.5-4.5, respectively) [1,2]. The low 3He/22Ne of OIBs approaches chondritic ( 1) and solar nebula values ( 1.5). The high 3He/22Ne of the MORB mantle is not similar to solar sources or any known family of meteorites, requiring a mechanism for fractionating He from Ne in the mantle and suggesting isolation of distinct mantle reservoirs throughout geologic time. We model the formation of a MORB source with elevated and variable 3He/22Ne though diffusive exchange between dunite channel-hosted basaltic liquids and harzburgite wallrock beneath mid-ocean ridges. Over timescales relevant to mantle upwelling beneath spreading centers, He may diffuse tens to hundreds of meters into wallrock while Ne is relatively immobile, producing a regassed, depleted mantle lithosphere with elevated 3He/22Ne. Subduction of high 3He/22Ne mantle would generate a MORB source with high 3He/22Ne. Regassed, high 3He/22Ne mantle lithosphere has He concentrations 2-3 orders of magnitude lower than undegassed mantle. To preserve the large volumes of high 3He/22Ne mantle required by the MORB source, mixing between subducted and undegassed mantle reservoirs must have been limited throughout geologic time. Using the new 3He/22Ne constraints, we ran a model similar to [3] to quantify mantle mixing timescales, finding they are on the order of Gyr assuming physically reasonable seafloor spreading rates, and that Earth's convecting mantle has lost >99% of its primordial volatile elements. Most significantly, mantle convection is not and cannot have been layered for most of geologic time. [1] Graham (2002), RiMG 74, 247-317. [2] Jalowitzki et al. (2016), EPSL 450, 263-273. [3] Gonnermann & Mukhopadhyay (2009), Nature, 560-563.
Complex seismic anisotropy beneath Germany from shear wave splitting and surface wave models
NASA Astrophysics Data System (ADS)
Campbell, L.; Long, M. D.; Becker, T. W.; Lebedev, S.
2013-12-01
Seismic anisotropy beneath stable continental interiors likely reflects a host of processes, including deformation in the lower crust, frozen anisotropy from past deformation processes in the lithospheric mantle, and present-day mantle flow in the asthenosphere. Because the anisotropic structure beneath continental interiors is generally complicated and often exhibits heterogeneity both laterally and with depth, a complete characterization of anisotropy and its interpretation in terms of deformational processes is challenging. In this study, we aim to expand our understanding of continental anisotropy by characterizing in detail the geometry and strength of azimuthal anisotropy beneath Germany and the surrounding region, using a combination of shear wave splitting and surface wave constraints. We utilize data from long-running broadband stations in and around Germany, collected from a variety of national and temporary European networks. We measure the splitting of SKS, SKKS, and PKS phases, with the aim of obtaining the best possible backazimuthal coverage. Preliminary results indicate that anisotropy beneath Germany is generally complex; we observe shear wave splitting patterns that are complicated and are inconsistent with a single horizontal layer of anisotropy beneath the station. Observed delay times are generally small (<1 sec), and there is a preponderance of null *KS arrivals in the dataset, with null measurements detected over a fairly large range of backazimuths. We also observe dramatic differences in splitting patterns over relatively short horizontal distances. Although we note backazimuthal variations in splitting at several stations, we do not observe a clear 90-degree periodicity that one would expect for the case of multiple anisotropic layers. We are currently carrying out comparisons between our observed splitting patterns and those predicted from tomographic models of azimuthal anisotropy derived from surface wave observations. The ultimate goal of this work is to combine different types of observations (shear wave splitting, surface wave models, and eventually anisotropic receiver function analysis) to place precise constraints on the anisotropic structure beneath Germany, and to interpret this structure in terms of on-going and past deformational processes in the crust and mantle.
Mantle wedge anisotropy beneath the Western Alps: insights from Receiver Function analysis
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Salimbeni, Simone; Pondrelli, Silvia; Malusa', Marco; Zhao, Liang; Eva, Elena; Solarino, Stefano; Paul, Anne; Guillot, Stéphane; Schwartz, Stéphane; Dumont, Thierry; Aubert, Coralie; Wang, Qingchen; Zhu, Rixiang
2017-04-01
Orogens and subductions zones are the locus where crustal materials are recycled into the upper mantle. Such rocks undergo to several metamorphic reactions during which their seismic properties vary due to the changes in P-T conditions. Metamorphic reactions can imply: (a) the formation of schist-like materials, and (b) a pronounced water flux from the subducted crust. Both these processes should generate highly anisotropic volumes at upper mantle depths. Thus, unveiling the presence of seismic anisotropy at such depth level can put constraints on the metamorphic reactions and the P-T conditions of the subducted materials. The Alpine orogen is composed of three main regions where different geodynamic processes shaped a highly heterogeneous mountain chain. Beneath the Alps, a high velocity body has been imaged sinking in the upper mantle, indicating the presence of a relict of subduction. Such subduction process has been probably terminated with the closure of the Piemont-Liguria Ocean, but evidence of continental subduction has been found beneath the Western Alps. Seismic anisotropy is likely to develop both in the subducted materials and in the mantle wedge, where serpentinized materials could be found due to the low T conditions. We analysed P receiver function (RF) from 46 seismic stations deployed along a linear array crossing the Western Alps, where previous studies revealed the presence of the subducted European lower crust to 80 km depth. RF is a widely used tool for reconstructing subsurface seismic structures, based on the recognition of P-to-S converted phases in teleseismic P-wave coda. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of the P-wave through anisotropic materials (recorded on the k=1 harmonics). Preliminary results show the presence of a Ps phase on the k=0 harmonics along the western portion of the profile, with increasing time-delay toward East. This phase is interpreted as the European Moho Ps, confirming the geometry of the European Moho beneath the Western Alps. Beneath the internal portion of the orogen, the k=1 harmonics display energetic pulses between 3-7 s, indicating the development of anisotropy within a broad volume of rocks, at lower crustal and upper mantle depths. The presence of anisotropic materials is jointly interpreted with the depicted geometry of the main seismic discontinuities and the location of the intermediate-depth seismicity recorded in the region.
NASA Astrophysics Data System (ADS)
Zhang, H.; Schmandt, B.
2017-12-01
The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic or dipping interfaces that may be present at transition zone depths. The locations of sporadic velocity decreases will be compared with mantle flow models to evaluate the possibility of dehydration melting.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, Karin; Barruol, Guilhem
2013-04-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, K.; Barruol, G.
2012-12-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
NASA Astrophysics Data System (ADS)
Contenti, Sean; Gu, Yu Jeffrey; Ökeler, Ahmet; Sacchi, Mauricio D.
2012-01-01
In this study we utilize over 5000 SS waveforms to investigate the high-resolution mantle reflectivity structure down to 1200 km beneath the South American convergent margin. Our results indicate that the dynamics of the Nazca subduction are more complex than previously suggested. The 410- and 660-km seismic discontinuities beneath the Pacific Ocean and Amazonian Shield exhibit limited lateral depth variations, but their depths vary substantially in the vicinity of the subducting Nazca plate. The reflection amplitude of the 410-km discontinuity is greatly diminished in a ˜1300-km wide region in the back-arc of the subducting plate, which is likely associated with a compositional heterogeneity on top of the upper mantle transition zone. The underlying 660-km discontinuity is strongly depressed, showing localized depth and amplitude variations both within and to the east of the Wadati-Benioff zone. The width of this anomalous zone (˜1000 km) far exceeds that of the high-velocity slab structure and suggesting significant slab deformation within the transition zone. The shape of the 660-km discontinuity and the presence of lower mantle reflectivity imply both stagnation and penetration are possible as the descending Nazca slab impinges upon the base of the upper mantle.
Ishii; Tromp
1999-08-20
With the use of a large collection of free-oscillation data and additional constraints imposed by the free-air gravity anomaly, lateral variations in shear velocity, compressional velocity, and density within the mantle; dynamic topography on the free surface; and topography on the 660-km discontinuity and the core-mantle boundary were determined. The velocity models are consistent with existing models based on travel-time and waveform inversions. In the lowermost mantle, near the core-mantle boundary, denser than average material is found beneath regions of upwellings centered on the Pacific Ocean and Africa that are characterized by slow shear velocities. These anomalies suggest the existence of compositional heterogeneity near the core-mantle boundary.
NASA Astrophysics Data System (ADS)
Canil, Dante; Fellows, Steven A.
2017-07-01
The redox budget during subduction is tied to the evolution of oxygen and biogeochemical cycles on Earth's surface over time. The sulphide-sulphate couple in subducted crust has significant potential for redox and control on extraction of chalcophile metals from the arc mantle. We derive oxygen buffers for sulphide-sulphate stability ('SSO buffers') using mineral assemblages in subducted crust within the eclogite facies, and examine their disposition relative to the fO2 in the arc mantle along various P-T trajectories for subduction. The fO2 required for sulphide stability in subducted crust passing beneath an arc is shifted by variations in the bulk Ca/(Ca + Mg + Fe) of the subducting crust alone. Hotter slabs and more Fe-rich sediments stabilize sulphide and favour chalcophile sequestration deep into the mantle, whereas colder slabs and calcic sediment will stabilize anhydrite, in some cases at depths of melt generation in the arc mantle (<130 km). The released sulphate on melting potentially increases the fO2 of the arc mantle. We performed melting experiments on three subducted sediment compositions varying in bulk Ca/(Ca + Mg + Fe) from 0.3 to 0.6 at 2.5 GPa and 900-1100 °C to confirm how anhydrite stability can change by orders of magnitude the S, Cu, As, Zn, Mo, Pb, and Sb contents of sediment melts, and their subsequent liberation to the arc mantle. Using Cu/Sc as a proxy for the behaviour of S, the effect of variable subducted sediment composition on sulphide-sulphate stability and release of chalcophiles to the arc mantle is recognizable in volcanic suites from several subduction zones in space and time. The fO2 of the SSO buffers in subducted sediment relative to the arc mantle may have changed with time by shifts in the nature of pelagic sedimentation in the oceans over earth history. Oxidation of arc mantle and the proliferation of porphyry Cu deposits may be latter-day advents in earth history partly due to the rise of planktic calcifiers in the oceans in only the past 250 million years.
Comet 67P/Churyumov-Gerasimenko, is the pristine material present anywhere close to the surface?
NASA Astrophysics Data System (ADS)
Kossacki, Konrad
2016-10-01
Observations of the nucleus of comet 67P/Churyumov-Gerasimenko indicate high complexity of the topography (Thomas et al., 2015). Presence of numerous pits, and depressions, as well as scarps suggests complex evolution of the nucleus. This in turn makes uncertain presence of the pristine material anywhere close to the surface. However, non-uniformity of the mechanical strength of the nucleus suggests, that in some locations material can retain initial structure. This should be expected neither in the final Philae landing site Abydos, where the compressive strength of the material is about 2 MPa (Spohn et al., 2015), neither in the location of the first touch down, where beneath a layer of unconsolidated material possibly is a hard material (Biele et al., 2015). Both locations are at low latitudes, where the flux of solar energy is much higher than northern parts of the lobes, illuminated when the comet is far form perihelion. Groussin et al. (2015) investigated what inclination of slopes corresponds to the presence of falling-out boulders and have found, that the average strength is probably lower than 1.5 kPa.I attempted to answer the question, whether in poorly illuminated regions of the nucleus of comet 67P/Churyumov-Gerasimenko are possible thermal conditions suitable for preservation of a pristine unconsolidated ice-dust material. For this purpose I calculated evolution of the temperature and structure of the material versus depth in selected locations in region Ma'at. This region is in general smooth (El-Maary et al., 2015), which may indicate presence of a loose dust mantle on the surface. The applied shape model is SHAP4s v1.0 (Preuskner et al., 2015). The performed simulations indicate, that in Scenario A preservation of low uni-axial compressive strength is possible, but only in shadowed locations, beneath a dust mantle of low thermal conductivity, at least few centimeters thick.
NASA Astrophysics Data System (ADS)
Yang, T.; Moresi, L. N.; Zhao, D.; Sandiford, D.
2017-12-01
Northeast China lies at the continental margin of the western Pacific subduction zone where the Pacific Plate subducts beneath the Eurasia Plate along the Kuril-Japan trench during the Cenozoic, after the consumption of the Izanagi Plate. The Izanagi Plate and the Izanagi-Pacific mid-ocean ridge recycled to the mantle beneath Eurasia before the early Cenozoic. Plate reconstructions suggest that (1) age of the incoming Pacific Plate at the trench increases with time; (2) convergence rate between the Pacific and Eurasia Plates increased rapidly from the late Eocene to the early Miocene. Northeast China and surrounding areas suffered widespread extension and magmatism during the Cenozoic, culminating in the opening of the Japan Sea and the rifting of the Baikal Rift Zone. The Japan Sea opened during the early Miocene and kept spreading until the late Miocene, since when compression tectonics gradually prevailed. The Baikal Rift Zone underwent slow extension in the Cenozoic but its extension rate has increased rapidly since the late Miocene. We investigate the Cenozoic tectonic evolution of Northeast China and surrounding areas with geodynamic models. Our study suggests that the rapid aging of the incoming Pacific Plate at the subduction zone leads to the increase of plate convergence and trench motion rates, and explains the observed sequence of regional tectonic events. Our geodynamic model, which reproduces the Cenozoic regional tectonic events, predicts slab morphology and stress state consistent with seismic observations, including over 1000 km of slab stagnant in the transition zone, and the along-dip principal compressional stress direction. Our model requires a value of the 660 km phase transition Clapeyron slope of -2.5 MPa/K to reproduce the stagnant slab and tectonic events in the study region. This suggests that the Pacific slab is hydrated in the transition zone, explaining geochemical characteristics of some regional Cenozoic igneous rocks which were suggested to originate from a hydrous mantle transition zone.
NASA Astrophysics Data System (ADS)
He, X.
2015-12-01
The fate of subducted slabs is enigmatic, yet intriguing. We analyze seismic arrivals at ~20-50 s after the direct P wave in an array in northeast China (NECESSArray) recordings of four deep earthquakes occurring beneath the west-central Pacific subduction zones (from the eastern Indonesia to Tonga region). We employ the array analyzing techniques of 4th root vespagram and beam-form analysis to constrain the slowness and back azimuth of later arrivals. Our analyses reveal that these arrivals have a slightly lower slowness value than the direct P wave and the back azimuth deviates slightly from the great-circle direction. Along with calculation of one-dimensional synthetic seismograms, we conclude that the later arrival is corresponding to an energy of S-to-P converted at a scatterer below the sources. Total five scatterers are detected at depths varying from ~700 to 1110 km in the study region. The past subducted oceanic crust most likely accounts for the seismic scatterers trapped in the mid-mantle beneath the west-central subduction zones. Our observation in turn reflects that oceanic crust at least partly separated from subducted oceanic lithosphere and may be trapped substantially in the mid-mantle surrounding subduction zones, in particular in the western Pacific subduction zones.
NASA Astrophysics Data System (ADS)
Wilson, M.; Houlie, N.; Khan, A.; Lithgow-Bertelloni, C. R.
2012-12-01
The Azores Plateau and Archipelago in the Central Atlantic Ocean has traditionally been considered as the surface expression of a deep mantle plume or hotspot that has interacted with a mid-ocean ridge. It is geodynamically associated with the triple junction between the North American, African and Eurasian plates. (Yang et al., 2006) used finite frequency seismic tomography to demonstrate the presence of a zone of low P-wave velocities (peak magnitude -1.5%) in the uppermost 200km of the mantle beneath the plateau. The tomographic model is consistent with SW deflection of a mantle plume by regional upper mantle shear flow driven by absolute plate motions. The volcanic island of Sao Miguel is located within the Terceira Rift, believed to represent the boundary between the African and Eurasian plates; magmatic activity has been characterised by abundant basaltic eruptions in the past 30,000 years. The basalts are distinctive within the spectrum of global ocean island basalts for their wide range in isotopic composition, particularly in 87Sr/86Sr. Their Sr-Nd-Pb isotopic compositions show systematic variations from west to east across the island which can be interpreted in terms of melting of a two-component mantle source. The low melting point (enriched) component in the source has been attributed to recycled ancient (~3 Ga) oceanic crust(Elliott et al., 2007). Using the thermo-barometry approach of (Lee et al., 2009) we demonstrate that the pressure and temperature of magma generation below Sao Miguel increase from west (2 GPa, 1425 °C) to east (3.8 GPa, 1575 °C), consistent with partial melting along a mantle geotherm with a potential temperature of ~ 1500 °C. This is consistent with the magnitude of the thermal anomaly beneath the Azores Plateau (ΔT ~ 150-200 °C) inferred on the basis of the seismic tomography study. The site of primary magma generation extends from the base of the local lithosphere (~ 50 km) to ~ 125 km depth. To understand the geodynamic setting of the Sao Miguel magmatism we combine GPS data and mantle convection models with our interpretation of the geochemistry of the basalts. We demonstrate strong south-westerly and downward flow in the asthenospheric mantle above the Transition Zone (410 km seismic discontinuity), consistent with a zone of upper mantle shearing below the base of the lithosphere. The maximum flow velocity is broadly consistent with the depth of magma generation. The advection of the mantle with respect to the oceanic plate "moves" an isotopically distinct mantle source component beneath the active volcanoes of Sao Miguel and carries its previous melting residues to the south-west. We discuss the nature of this mantle source and its contribution to the mantle velocity anomalies determined by seismic tomography. This study opens-up new perspectives for seismic tomography and potentially new connections between the fields of geophysics and geochemistry in oceanic domains.
NASA Astrophysics Data System (ADS)
Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun
2018-05-01
Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence, the 263-232 Ma arc-like granitoids clearly indicate that final closure of the Paleo-Tethys ocean have not occurred until the end of the Triassic.
NASA Astrophysics Data System (ADS)
Foster, K.; Dueker, K.; McClenahan, J.; Hansen, S. M.; Schmandt, B.
2012-12-01
The Transportable Array, with significant supplement from past PASSCAL experiments, provides an unprecedented opportunity for a holistic view over the geologically and tectonically diverse continent. New images from 34,000 Sp Receiver Functions image lithospheric and upper mantle structure that has not previously been well constrained, significant to our understanding of upper mantle processes and continental evolution. The negative velocity gradient (NVG) found beneath the Moho has been elusive and is often loosely termed the "Lithosphere-Asthenosphere Boundary" (LAB).This label is used by some researchers to indicate a rheological boundary, a thermal gradient, an anisotropic velocity contrast, or a compositional boundary, and much confusion has arisen around what observed NVG arrivals manifest. Deconvolution across up to 400 stations simultaneously has enhanced the source wavelet estimation and allowed for more accurate receiver functions. In addition, Sdp converted phases are precursory to the direct S phase arrival, eliminating the issue of contamination from reverberated phases that add noise to Ps receiver functions in this lower-lithospheric and upper mantle depth range. We present taxonomy of the NVG arrivals beneath the Moho across the span of the Transportable Array (125° - 85° W). The NVG is classified into three different categories, primarily distinguished by the estimated temperature at the depth of the arrival. The first species of Sp NVG arrivals is found to be in the region west of the Precambrian rift hinge line, at a depth range of 70 - 90 km, corresponding to a temperature of >1150° C. This temperature and depth is predicted to be supersolidus for a 0.02% weight H2O Peridotite (Katz et al., 2004), supporting the theory that these arrivals are due to a melt-staging area (MSA), which could be correlated with the base of the thermal lithosphere. The current depth estimate of the cratonic US thermal LAB ranges from 150-220 km (Yuan and Romanowitz, 2010), and yet a pervasive arrival in our Sp and Ps images shows a NVG ranging from 80 - 110 km depth, with temperature estimates of ~800° C. Clearly internal to the lithosphere, this signal cannot be a LAB arrival. Hence, our second species of NVG is a Mid-Lithospheric Discontinuity (MLD) that we interpret as a layer of sub-solidus metasomatic minerals that have solidus in the 1000-1100°C range near three Gpa. These low solidus minerals are amphibole, phlogophite, and carbon-bearing phases. A freezing front (solidus) near three Gpa freezing front would concentrate these low velocity minerals to make a metasomatic layer over Ga time-scales to explain our NVG MLD arrivals. A third species of NVG, in the "warm" category of 950-1150° C, exists beneath the intermountain west region of Laramide shortening that extends from Montana to New Mexico. This region has experienced abundant post-Eocene alkaline magmatism. Mantle xenoliths from this region provide temperature at depth measurements which are in agreement with our surface wave velocity based temperature estimates. Thus, this NVG arrival is interpreted as a near to super-solidus metasomatic layer. Noteworthy is that a deeper arrival (150-190 km) is intermittently observed which would be more relative to the base of the thermal lithosphere.
NASA Astrophysics Data System (ADS)
Brown, E.; Lesher, C. E.
2014-12-01
The compositions and volumes of basalts erupted at the earth's surface are a function of mantle temperature, mantle composition, and the rate at which the mantle upwells through the melting zone. Thus, basaltic magmatism has long been used to probe the thermal and physiochemical state of the earth's mantle. Great insight has been gained into the mantle beneath the global spreading ridge system, where the mantle source is assumed to be homogeneous peridotite that upwells passively [1]. However, it is now recognized that many basalt source regions are lithologically heterogeneous (i.e. containing recycled lithospheric material ranging from harzburgite to pyroxenite) and upwell at rates in excess of those governed by plate separation. To account for these complexities, we have developed a forward melting model for lithologically heterogeneous mantle that incorporates thermodynamically and experimentally constrained melting functions for a range of peridotite and pyroxenite lithologies. The model is unique because it quantifies mantle upwelling rates based on the net buoyancy of the source, thus providing a means for linking basalt compositions/volumes to mantle flow while accounting for source heterogeneity. We apply the model to investigate the mantle properties governing magmatism along different rift segments in Iceland, where lithologic heterogeneity and variable upwelling rates have been inferred through geochemical means [2,3]. Using constraints from seismically determined crustal thicknesses and recent estimates of the proportion of pyroxenite-derived melt contributing to Icelandic basalt compositions [4,5], we show that mantle sources beneath Iceland have excess potential temperatures >85 °C, contain <7% pyroxenite, and maximum upwelling rates ~14 times the passive rate. Our modeling highlights the dominant role of elevated mantle temperature and enhanced upwelling for high productivity magmatism in Iceland, and a subordinate role for mantle heterogeneity, which is required to account for much of the observed chemical and isotopic diversity. [1] Langmuir et al, 1992, AGU Geophys. Mono. Ser. 71 [2] Chauvel & Hemond, 2000, G-cubed, v 1 [3] Kokfelt et al, 2003, EPSL, v 214 [4] Sobolev et al, 2007, Science, v 316 [5] Shorttle et al, 2014, EPSL, v 395
NASA Astrophysics Data System (ADS)
Drew, S.; Schoenbohm, L.; Ducea, M.
2008-12-01
The tectonic and magmatic evolution of the Puna Plateau (NW Argentina) has generated much debate over the past two decades. This study focuses on the young (< 7 Ma), mafic magmatism that led to the creation of monogenetic and simple polygenetic volcanoes throughout the plateau. These volcanics provide a means to evaluate the recent petro-tectonic development of the plateau and, in combination with Ordovician intrusive rocks, determine the isotopic composition and long term evolution of the sub-continental lithospheric mantle (SCLM) beneath the Andean back-arc domain. Here we present new whole rock major and trace element data and isotopic values for volcanic samples collected from the Antofagasta and Pasto Ventura basins in the southern Puna Plateau. Major element chemistry shows most of our samples are basalt, trachybasalt, basaltic andesite and basaltic trachyandesites, some with < 50.0 wt% SiO2 and > 8.0 wt% MgO, which is indicative of a strong mantle component. The more primitive lavas likely have a sub-crustal origin and experienced minimal interaction with overlying crust during transport to the surface. Two of our samples with low wt% MgO, a silicic andesite and a dacite, indicate an extensive crustal component and possibly a lower crust origin for evolved magmas. All samples have light trace element enrichment compared to NMORB and elevated abundances of LIL and LRE elements compared to HFS and HRE elements, indicating the magmas originated from a metasomatized source region. The samples also have variable (low and high) Nb, Ta and Ti negative anomalies, which are interpreted to be a signature of the source region. Our samples do not have a lithospheric delamination (~OIB) trace element signature as proposed by previous workers in support of a delamination model. Additionally, the samples have isotopic values (e.g. 87Sr/86Sr >0.7055 and ɛNd <0) that are not comparable to depleted asthenosphere. It is impossible for asthenospheric magma to obtain these isotopic values through crustal assimilation or AFC processes while maintaining a basalt major element composition and high Ni and Cr concentrations. Therefore, we propose the mafic magmas are sourced from a SCLM that, in accord with the LIL and LRE element concentrations, has been metasomatized during dehydration and possibly melting of a subducting oceanic plate. The young volcanics have isotopic values nearly identical to those of Early Ordovician Famatinian gabbros and norites. We suggest the most primitive Puna volcanic and Famatinian samples originated from the same SCLM source region. This implies at least a thin portion of the SCLM has remained intact beneath NW Argentina for the last ~485 million years. Resultantly, the SCLM was likely thinned to its present thickness sometime between the Early Ordovician and the Late Miocene. Thinning may have occurred by long term mantle wedge processes. Steady shortening and thickening of the continental crust and gradual removal of the SCLM by convection is envisioned here. The occurrence of discrete, intermittent delamination events is not favored because removal and then regeneration of the SCLM would not have allowed for preservation of the Famatinian isotopic signature.
NASA Astrophysics Data System (ADS)
Xin, L.; Kawakatsu, H.; Takeuchi, N.
2017-12-01
Differential travel time residuals of PKPbc and PKPdf for the path from South Sandwich Islands (SSI) to Alaska are usually used to constrain anisotropy of the western hemisphere of the Earth's inner-core. For this polar path, it has been found that PKPbc-df differential residuals are generally anomalously larger than data that sample other regions, and also show strong lateral variation. Due to sparse distribution of seismic stations in Alaska in early times, previous researches have been unable to propose a good model to explain this particular data set. Using data recorded by the current dense stations in Alaska for SSI earthquakes, we reexamine the anomalous behavior of core phase PKPbc-df differential travel times and try to explain the origin. The data sample the inner-core for the polar paths, as well as the lowermost mantle beneath Alaska. Our major observations are: (1) fractional travel time residuals of PKPbc-df increase rapidly within 2° (up to 1%). (2) A clear shift of the residual pattern could be seen for earthquakes with different locations. (3) The residual shows systematic lateral variation: at northern part, no steep increase of residual can be seen. A sharp lateral structural boundary with a P-wave velocity contrast of about 3% at lowermost mantle beneath East Alaska is invoked to explain the steep increase of the observed residuals. By combining the effects of a uniformly anisotropic inner-core and the heterogeneity, the observed residual patterns could be well reproduced. This high velocity anomaly might be related with an ancient subducted slab. Lateral variation of the PKPbc-df residuals suggests that the heterogeneity layer is not laterally continuous and may terminate beneath Northeastern Alaska. We also conclude that core phases may be strongly affected by heterogeneities at lowermost mantle, and should be carefully treated if they are used to infer the inner-core structure.
NASA Astrophysics Data System (ADS)
Reiss, Anne-Sophie; Thomas, Christine
2015-04-01
As part of the RHUM-RUM project we investigate the upwelling plume beneath the island La Réunion, located in the Indian Ocean 200 km east of Madagascar. This plume belongs to one of the most active hotspot regions in the world and is still active today. Understanding the depth origin and dimensions of such a plume helps to better understand mantle processes and the heat flux of the Earth. If the plume originates at the core-mantle boundary the Earth is cooled down differently compared with an indirect cooling of plumes originating in the upper mantle. Here we use underside reflections of PP and SS waves off the seismic discontinuities at 410 km and 660 km depth that arrive as precursors to the main phase in order to investigate the topography of these discontinuities that mark the top and bottom of the mantle transition zone. If hotter or colder material intersects the mantle transition zone, the discontinuities at 410 km and 660 km depth are deflected, hence the topography of the mantle transition zone can be an indicator for an upwelling plume. The 410 km discontinuity, which exists due to the phase change of olivine to spinel, should be depressed significantly in the presence of hot upwelling material. Because of the opposite Clapeyron slope of the phase change of spinel to magnesiowuestite and perovskite at 660 km depth, the topography of this discontinuity should be elevated. For this study we analyse over 200 events with Mw ≥ 5.8 and bounce points distributed over the entire Indian Ocean. Array seismology methods, such as vespagrams and slowness-backazimuth analysis, are used to enhance the signal-to-noise-ratio and detect and identify precursors. Using different source-receiver combinations enables us to get a dense coverage of bounce points of PP and SS waves in the Indian Ocean and especially around La Réunion, also with crossing ray paths. The differential travel times of PP and SS arrivals and their precursors of robust stacks are converted into depth values of the seismic discontinuities. In our data, we can detect clear underside reflections off the 410 km discontinuity and also some off the 660 km discontinuity. The preliminary topography of the two discontinuities indicates a thinned mantle transition zone, which we interpret as a large upwelling beneath La Réunion.
Seismically imaging the Afar plume
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.
2011-12-01
Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect in the upper mantle. This coupled with measurements of seismic anisotropy suggest that mantle material flows northeast towards Arabia, and may be responsible for the dramatic dynamic topography observed in northeast Africa and western Arabia.
Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes
NASA Astrophysics Data System (ADS)
Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John
2015-12-01
Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially the lithospheric stresses imposed by increasing edifice load.
Morgan, J.W.; Czamanske, G.K.; Gregory, Wandless A.
1985-01-01
Instrumental-neutron-activation analyses are reported for two uncontaminated rocks, a phlogopite-rich clot, and two contaminated rocks from the Coyote Peak diatreme, northwestern California. These data, combined with Nd, Sr, and Pb isotopic evidence, have been modeled to a multi-stage evolution for the uncontaminated rocks. Fertile mantle material (refractory elements 2.5?? chondritic abundances; Rb/Sr = 0.029 by weight) was depleted about 900 m.y. ago by congruent melting and removal of ~4% basaltic liquid; this depleted residue provided the source rock from which the Coyote Peak magma was ultimately derived. About 66 m.y. ago, the depleted mantle residue was incongruently melted in the presence of H2O and CO2 at a total pressure > 26 kb to yield ~0.5% of a Si-poor, Ca-rich melt. This melt then metasomatized depleted garnet-free harzburgite in the upper mantle at about 26 kb to produce a rock similar to phlogopite-bearing wehrlite. About 29 m.y. ago, this rock was subjected to an increase in pressure to >26 kb and incongruently melted to give ~0.5% of a second-stage melt resembling olivine melilitite in composition. Enroute to the surface, about 28% olivine and 2% titanomagnetite were lost from the highly fluid melt. Coarse-grained phlogopite-rich clots in the uncontaminated rocks apparently crystallized from a latestage liquid derived from the uncontaminated melt. Contaminated rocks appear to be the result of partial assimilation of, and dilution by, ~14% Franciscan graywacke country rock. The diatreme was emplaced near a converging plate margin where young hot oceanic mantle and crust of the Juan de Fuca plate was probably subducting obliquely beneath a thin lip of the North American plate. The unusual chemistry of the rocks may be the result of this complex tectonic setting which could also have included local strike-slip and extensional environments within the two plates pierced by the diatreme. ?? 1985.
NASA Astrophysics Data System (ADS)
Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili
2018-03-01
The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.
NASA Astrophysics Data System (ADS)
Das, S.; Basu, A. R.
2017-12-01
Our recently discovered transition zone ( 410 - 660 Km) -derived peridotites in the Indus Ophiolite, Ladakh Himalaya [1] provide a unique opportunity to study changes in oxygen fugacity from shallow mantle beneath ocean ridges to mantle transition zone. We found in situ diamond, graphite pseudomorphs after diamond crystals, hydrocarbon (C - H) and hydrogen (H2) fluid inclusions in ultra-high pressure (UHP) peridotites that occur in the mantle - section of the Indus ophiolite and sourced from the mantle transition zone [2]. Diamond occurs as octahedral inclusion in orthoenstatite of one of these peridotites. The graphite pseudomorphs after diamond crystals and primary hydrocarbon (C-H), and hydrogen (H2) fluids are included in olivine of this rock. Hydrocarbon fluids are also present as inclusions in high pressure clinoenstatite (> 8 GPa). The association of primary hydrocarbon and hydrogen fluid inclusions in the UHP peridotites suggest that their source-environment was highly reduced at the base of the upper mantle. We suggest that during mantle upwelling beneath Neo Tethyan spreading center, the hydrocarbon fluid was oxidized and precipitated diamond. The smaller diamonds converted to graphite at shallower depth due to size, high temperature and elevated oxygen fugacity. This process explains how deep mantle upwelling can oxidize reduced fluid carried from the transition zone to produce H2O - CO2. The H2O - CO2 fluids induce deep melting in the source of the mid oceanic ridge basalts (MORB) that create the oceanic crust. References: [1] Das S, Mukherjee B K, Basu A R, Sen K, Geol Soc London, Sp 412, 271 - 286; 2015. [2] Das S, Basu A R, Mukherjee B K, Geology 45 (8), 755 - 758; 2017.
Linking petrology and seismology of the southwest Greenland lithosphere
NASA Astrophysics Data System (ADS)
Lesher, C. E.; Vestergaard, C.; Brown, E.; Schutt, D.
2015-12-01
Mantle xenoliths from late-Proterozoic diamond-bearing kimberlitic dikes in the Kangerlussuaq, Sarfartoq and Maniitsoq areas of southwestern Greenland provide constraints on the composition and thermal state of lithospheric mantle beneath Greenland to depths of ~200 km [1]. Similarly, surface wave tomography studies carried out as part of the GLATIS project use a range of Rayleigh wave periods sensitive to structures at a similar depth interval within southwestern Greenland lithospheric mantle [2]. Here we link petrologic and seismologic constraints on the mantle lithosphere beneath Greenland utilizing methods of [3] that show that inferred chemical and mineralogical stratification inferred from petrology, showing mantle peridotite transitioning from garnet-free harzburgite to garnet lherzolite between ~70 and 180 km, cannot readily be resolved with fundamental mode Rayleigh waves. On the other hand, comparing phase velocities predicted from xenolith compositions, mineralogy and last equilibration temperatures and pressures, defining the continental geotherm during late-Proterozoic time, with those for the present-day mantle lithosphere suggest significant cooling of the cratonic mantle to a modern geotherm characterized by a heat flux of 30 mW/m2 and average crustal heat production of 0.3 mW/m3 [4]. These preliminary findings point to the weak dependence of shear wave velocities on mantle peridotite composition and mineralogy, and further illustrate its strong temperature dependence. Comparison of ancient and modern continental geotherms made possible by combining petrologic and seismological data, as shown here for southwest Greenland, provide additional constraints on secular cooling of cratonic regions linked to large-scale tectonic processes. [1] Bizzarro et al., 2003, CMP, 146; Sand et al., Lithos, 112. [2] Darbyshire et al., 2004, GJI, 158. [3] Schutt and Lesher, 2006, JGR, 111. [4] Meirerbachtol et al., 2015, JGR/ES, 120.
NASA Astrophysics Data System (ADS)
Ojo, Adebayo Oluwaseun; Ni, Sidao; Chen, Haopeng; Xie, Jun
2018-01-01
To understand the depth variation of deformation beneath Cameroon, West Africa, we developed a new 3D model of S-wave isotropic velocity and azimuthal anisotropy from joint analysis of ambient seismic noise and earthquake surface wave dispersion. We found that the Cameroon Volcanic Line (CVL) is well delineated by slow phase velocities in contrast with the neighboring Congo Craton, in agreement with previous studies. Apart from the Congo Craton and the Oubanguides Belt, the uppermost mantle revealed a relatively slow velocity indicating a thinned or thermally altered lithosphere. The direction of fast axis in the upper crust is mostly NE-SW, but trending approximately N-S around Mt. Oku and the southern CVL. The observed crustal azimuthal anisotropy is attributed to alignment of cracks and crustal deformation related to magmatic activities. A widespread zone of weak-to-zero azimuthal anisotropy in the mid-lower crust shows evidence for vertical mantle flow or isotropic mid-lower crust. In the uppermost mantle, the fast axis direction changed from NE-SW to NW-SE around Mt. Oku and northern Cameroon. This suggests a layered mechanism of deformation and revealed that the mantle lithosphere has been deformed. NE-SW fast azimuths are observed beneath the Congo Craton and are consistent with the absolute motion of the African plate, suggesting a mantle origin for the observed azimuthal anisotropy. Our tomographically derived fast directions are consistent with the local SKS splitting results in some locations and depths, enabling us to constrain the origin of the observed splitting. The different feature of azimuthal anisotropy in the upper crust and the uppermost mantle implies decoupling between deformation of crust and mantle in Cameroon.
NASA Technical Reports Server (NTRS)
Gibler, Robert; Peslier, Anne H.; Schaffer, Lillian Aurora; Brandon, Alan D.
2014-01-01
Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by < 5% melting of a spinel peridotite source. Clinopyroxenes contain from 272 to 313 ppm weight H2O similar to the lower limit of KH peridotite clinopyroxenes (250-530 ppm H2O). This is unexpected as crystallized melts like pyroxenites should concentrate water more than residual mantle-like peridotites, given that H is incompatible. PUM normalized bulk REE of the DH pyroxenites are characterized by flat to LREE depleted REE profiles consistent with > 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and <1ppm in clinopyroxene. The DH pyroxenites may thus come from a dry mantle source, potentially unaffected by the subduction of the Farallon plate. These water-poor melts either originated from shallow oceanic lithosphere overlaying the Farallon slab or from continental mantle formed > 2 Ga. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau.
NASA Astrophysics Data System (ADS)
Heeszel, David S.; Wiens, Douglas A.; Anandakrishnan, Sridhar; Aster, Richard C.; Dalziel, Ian W. D.; Huerta, Audrey D.; Nyblade, Andrew A.; Wilson, Terry J.; Winberry, J. Paul
2016-03-01
The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two-plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three-dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70-100 km thick lithosphere, underlain by a low-velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow-velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher-velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth-Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity.
Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge
NASA Astrophysics Data System (ADS)
D'Errico, Megan E.; Warren, Jessica M.; Godard, Marguerite
2016-02-01
Ultraslow spreading at mid-ocean ridges limits melting due to on-axis conductive cooling, leading to the prediction that peridotites from these ridges are relatively fertile. To test this, we examined abyssal peridotites from the Gakkel Ridge, the slowest spreading ridge in the global ocean ridge system. Major and trace element concentrations in pyroxene and olivine minerals are reported for 14 dredged abyssal peridotite samples from the Sparsely Magmatic (SMZ) and Eastern Volcanic (EVZ) Zones. We observe large compositional variations among peridotites from the same dredge and among dredges in close proximity to each other. Modeling of lherzolite trace element compositions indicates varying degrees of non-modal fractional mantle melting, whereas most harzburgite samples require open-system melting involving interaction with a percolating melt. All peridotite chemistry suggests significant melting that would generate a thick crust, which is inconsistent with geophysical observations at Gakkel Ridge. The refractory harzburgites and thin overlying oceanic crust are best explained by low present-day melting of a previously melted heterogeneous mantle. Observed peridotite compositional variations and evidence for melt infiltration demonstrates that fertile mantle components are present and co-existing with infertile mantle components. Melt generated in the Gakkel mantle becomes trapped on short length-scales, which produces selective enrichments in very incompatible rare earth elements. Melt migration and extraction may be significantly controlled by the thick lithosphere induced by cooling at such slow spreading rates. We propose the heterogeneous mantle that exists beneath Gakkel Ridge is the consequence of ancient melting, combined with subsequent melt percolation and entrapment.
NASA Astrophysics Data System (ADS)
Tan, P.; Sippel, J.; Breivik, A. J.; Scheck-Wenderoth, M.; Meeßen, C.
2017-12-01
Unraveling the density structure of the oceanic lithosphere north of Iceland is key for understanding the effects of the Iceland Plume on the mid-ocean ridges of the greater Jan Mayen-East Greenland Region. We use a data-integrative approach for 3D gravity modeling to develop new insights into the crust and upper mantle density structure of this region. First, we obtain the 3D density structure of the sediments and crust from interpretations of regional reflection and refraction seismic lines. Then, the temperature and density structure of the mantle between 50 and 250 km are derived from a published shear-wave velocity (Vs) tomography model. To assess the density configuration between the Moho and 50 km depth, we follow a combined forward and inverse 3D gravity modeling approach. The Vs tomography and derived density of the deeper mantle (>50 km depth) reveal that the low-density anomaly related to the Iceland plume gets weaker with increasing distance from the plume, i.e. from the strongly influenced Middle Kolbeinsey Ridge (MKR) to the Mohn's Ridge. The West Jan Mayen Fracture Zone is identified as a main mantle density contrast, indicative of differences in the thermal evolution of the ridge systems it separates. Beneath the MKR region, the low-density anomaly at depths of >50 km continues upwards into the uppermost mantle, where its lateral dimensions narrow considerably. This elongated density anomaly is consistent with a basement high and indicates a channelization of the Iceland plume effects. The NE-SW elongated mantle anomaly does not, however, coincide with the topographical NNE-SSW striking ridge axis. Thus, the modelled plume-affected oceanic lithosphere reveals discrepancies with the half-space cooling model. We discuss the 3D density model in terms of such spatial relations between deeper mantle anomalies and the shallow crustal structure.
NASA Astrophysics Data System (ADS)
Yu, Zhiteng; Zhao, Dapeng; Niu, Xiongwei; Li, Jiabiao
2018-01-01
Low-frequency earthquakes (LFEs) in the lower crust and uppermost mantle are widely observed in Southwest Japan, and they occur not only along the subducting Philippine Sea (PHS) slab interface but also beneath active arc volcanoes. The volcanic LFEs are still not well understood because of their limited quantities and less reliable hypocenter locations. In this work, seismic tomography is used to determine detailed three-dimensional (3-D) P- and S-wave velocity (Vp and Vs) models of the crust and upper mantle beneath Southwest Japan, and then the obtained 3-D Vp and Vs models are used to relocate the volcanic LFEs precisely. The results show that the volcanic LFEs can be classified into two types: pipe-like and swarm-like LFEs, and both of them are located in or around zones of low-velocity and high-Poisson's ratio anomalies in the crust and uppermost mantle beneath the active volcanoes. The pipe-like LFEs may be related to the fluid migration from the lower crust or the uppermost mantle, whereas the swarm-like LFEs may be related to local magmatic activities or small magma chambers. The number of LFEs sometimes increases sharply before or after a nearby large crustal earthquake which may cause cracks and fluid migration. The spatiotemporal distribution of the LFEs may indicate the track of migrating fluids. As compared with the tectonic LFEs along the PHS slab interface, the volcanic LFEs are more sensitive to fluid migration and local magmatic activities. High pore pressures play an important role in triggering both types of LFEs in Southwest Japan.
NASA Astrophysics Data System (ADS)
Zirakparvar, N. Alex; Setera, Jacob; Mathez, Edmond; Vantongeren, Jill; Fossum, Ryanna
2017-02-01
This paper presents laser ablation U-Pb age and Hf isotope data for zircons from basement rocks and glacial deposits in northern New Jersey and southeastern New York. The purpose is to understand the eastern Laurentian continental margin's Hf isotope record in relation to its geologic evolution prior to the opening of the Atlantic Ocean. The basement samples encompass a Meso- to Neoproterozoic continental margin arc, an anatectic magmatic suite, as well as a Late Ordovician alkaline igneous suite emplaced during post-orogenic melting of the lithospheric mantle. Additional samples were collected from terminal moraines of two Quaternary continental ice sheets. Across the entire dataset, zircons with ages corresponding to the timing of continental margin arc magmatism ( 1.4 Ga to 1.2 Ga) have positive εHf(initial) values that define the more radiogenic end of a crustal evolution array. This array progresses towards more unradiogenic εHf(initial) values along a series of low 176Lu/177Hf (0.022 to 0.005) trajectories during subsequent anatectic magmatism ( 1.2 Ga to 1.0 Ga) and later metamorphic and metasomatic re-working ( 1.0 Ga to 0.8 Ga) of the continental margin arc crust. In contrast, nearly chondritic εHf(initial) values from the Late Ordovician alkaline magmas indicate that the Laurentian margin was underlain by a re-fertilized mantle source. Such a source may have developed by subduction enrichment of the mantle wedge beneath the continental margin during the Mesoproterozoic. Additionally, preliminary data from a metasedimentary unit of unknown provenance hints at the possibility that some of the sediments occupying this portion of the Laurentian margin prior to the Ordovician were sourced from crust older than 1.9 Ga.
NASA Astrophysics Data System (ADS)
Harmon, N.; Salas, M.; Rychert, C. A.; Fischer, K. M.; Abers, G. A.
2012-12-01
The Costa Rica-Nicaragua subduction zone shows systematic along strike variation in arc chemistry, geology and seismic velocity and attenuation, presenting global extremes within a few hundred kilometres. In this study we use teleseismic and ambient noise derived surface wave tomography to produce a 3-D shear velocity model of the region. We use the 48 stations of the TUCAN array, and up to 96 events for the teleseismic Rayleigh wave inversion, and 20 months of continuous data for cross correlation to estimate Green's functions from ambient noise. In the shallow crust (0-15 km) we observe low shear velocities directly beneath the arc volcanos (< 3 km/s) with higher velocities in the back arc of Nicaragua. The anomalies are likely caused by heated crust, possibly intruded by magma. We observe > 40 km thick crust beneath the Costa Rican arc and the Nicaraguan Highlands, with thinned crust (~20 km) beneath the Nicaraguan Depression, with increasing crustal thickness in the back arc region. At mantle depths (55-120 km depth) we observe lower shear velocities (~2%) beneath the Nicaraguan arc and back arc relative to Costa Rica. This is well-correlated with a Vp/Vs anomaly beneath Nicaragua. The lower shear velocity beneath Nicaragua may indicate higher melt content in the mantle perhaps due to higher volatile flux from the slab. Finally, we observe a linear high velocity region at depths > 120 km parallel to the trench, which is consistent with the subducting slab.
Slab-plume interaction beneath the Pacific Northwest
NASA Astrophysics Data System (ADS)
Obrebski, Mathias; Allen, Richard M.; Xue, Mei; Hung, Shu-Huei
2010-07-01
The Pacific Northwest has undergone complex plate reorganization and intense tectono-volcanic activity to the east during the Cenozoic (last 65 Ma). Here we show new high-resolution tomographic images obtained using shear and compressional data from the ongoing USArray deployment that demonstrate first that there is a continuous, whole-mantle plume beneath the Yellowstone Snake River Plain (YSRP) and second, that the subducting Juan de Fuca (JdF) slab is fragmented and even absent beneath Oregon. The analysis of the geometry of our tomographic models suggests that the arrival and emplacement of the large Yellowstone plume had a substantial impact on the nearby Cascadia subduction zone, promoting the tearing and weakening of the JdF slab. This interpretation also explains several intriguing geophysical properties of the Cascadia trench that contrast with most other subduction zones, such as the absence of deep seismicity and the trench-normal fast direction of mantle anisotropy. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu.
P and S wave attenuation tomography of the Japan subduction zone
NASA Astrophysics Data System (ADS)
Wang, Zewei; Zhao, Dapeng; Liu, Xin; Chen, Chuanxu; Li, Xibing
2017-04-01
We determine the first high-resolution P and S wave attenuation (Q) tomography beneath the entire Japan Islands using a large number of high-quality t∗ data collected from P and S wave velocity spectra of 4222 local shallow and intermediate-depth earthquakes. The suboceanic earthquakes used in this study are relocated precisely using sP depth phases. Significant landward dipping high-Q zones are revealed clearly, which reflect the subducting Pacific slab beneath Hokkaido and Tohoku, and the subducting Philippine Sea (PHS) slab beneath SW Japan. Prominent low-Q zones are visible in the crust and mantle wedge beneath the active arc volcanoes in Hokkaido, Tohoku, and Kyushu, which reflect source zones of arc magmatism caused by fluids from the slab dehydration and corner flow in the mantle wedge. Our results also show that nonvolcanic low-frequency earthquakes (LFEs) in SW Japan mainly occur in the transition zone between a narrow low-Q belt and its adjacent high-Q zones right above the flat segment of the PHS slab. This feature suggests that the nonvolcanic LFEs are caused by not only fluid-affected slab interface but also specific conditions such as high pore pressure which is influenced by the overriding plate.
Primordial helium entrained by the hottest mantle plumes
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Konter, J. G.; Becker, T. W.
2017-02-01
Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.
Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles.
Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun
2017-07-10
Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60-100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120-160 km depth suggests that the slab's mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics.
Lai, Voon; Graves, Robert; Wei, Shengji; Helmberger, Don
2017-01-01
Regional seismograms from earthquakes in Northern California show a systematic difference in arrival times across Southern California where long period (30–50 seconds) SH waves arrive up to 15 seconds earlier at stations near the coast compared with sites towards the east at similar epicentral distances. We attribute this time difference to heterogeneity of the velocity structure at the crust-mantle interface beneath the California margin. To model these observations, we propose a fast seismic layer, with thickness growing westward from the San Andreas along with a thicker and slower continental crust to the east. Synthetics generated from such a model are able to match the observed timing of SH waveforms better than existing 3D models. The presence of a strong upper mantle buttressed against a weaker crust has a major influence in how the boundary between the Pacific plate and North American plate deforms and may explain the observed asymmetric strain rate across the boundary.
The proximity of hotspots to convergent and divergent plate boundaries
NASA Technical Reports Server (NTRS)
Weinstein, Stuart A.; Olson, Peter L.
1989-01-01
An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.
NASA Astrophysics Data System (ADS)
Takeuchi, N.; Morita, Y.; Xuyen, N. D.; Zung, N. Q.
2008-03-01
We present evidence showing the extent of the low-velocity region in the lowermost mantle beneath the western Pacific. We analyzed S, sS, ScS-S, and sScS-sS travel times observed by the Vietnamese broadband seismograph array deployed as part of the Ocean Hemisphere Project. The abrupt changes in ScS-S and sScS-sS travel times suggest that the western geographical boundary of the low-velocity region is located around 140°E and is sharp (more than 4% velocity contrast within 200 km). The dependency of S and sS travel time anomalies of epicentral distances suggests that the strong low-velocity region is confined to within 400 km from the CMB (core-mantle boundary). The existence of lateral heterogeneities with a 100 km scale inside the low-velocity region is also suggested by the abrupt changes in S and ScS waveforms.
Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles
Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun
2017-01-01
Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics. PMID:28691714
Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.
McGary, R Shane; Evans, Rob L; Wannamaker, Philip E; Elsenbeck, Jimmy; Rondenay, Stéphane
2014-07-17
Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.
Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier
NASA Astrophysics Data System (ADS)
McGary, R. Shane; Evans, Rob L.; Wannamaker, Philip E.; Elsenbeck, Jimmy; Rondenay, Stéphane
2014-07-01
Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.
NASA Astrophysics Data System (ADS)
Saiga, Atsushi; Kato, Aitaro; Kurashimo, Eiji; Iidaka, Takashi; Okubo, Makoto; Tsumura, Noriko; Iwasaki, Takaya; Sakai, Shin'ichi; Hirata, Naoshi
2013-03-01
is an important feature of elastic wave propagation in the Earth and can arise from a variety of ordered architectures such as fractures with preferential alignments or preferred crystal orientations. We studied the regional variations in shear wave anisotropy around a deep Low-Frequency Earthquake (LFE) zone beneath the Kii Peninsula, SW Japan, using waveforms of local earthquakes observed by a dense linear array along the LFE zone. The fast directions of polarization are subparallel to the strike of the margin for both crustal and intraslab earthquakes. The delay time of the split shear waves in intraslab earthquakes is larger than that in crustal earthquakes and shows a down-dip variation across the LFE zone. This indicates that anisotropy exists in the mantle wedge and in the lower crust and/or oceanic slab. We explain the observed delay time of 0.015-0.045 s by suggesting that the mantle wedge consists of a deformed, 1-15 km thick serpentine layer if the mantle wedge is completely serpentinized. In addition to high-fluid pressures within the oceanic crust, the sheared serpentine layer may be a key factor driving LFEs in subduction zones.
Response of mantle transition zone thickness to plume buoyancy flux
NASA Astrophysics Data System (ADS)
Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.
2010-01-01
The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).
NASA Astrophysics Data System (ADS)
Zhang, Nan; Li, Zheng-Xiang
2018-01-01
It has been established that almost all known mantle plumes since the Mesozoic formed above the two lower mantle large low shear velocity provinces (LLSVPs). The Hainan plume is one of the rare exceptions in that instead of rising above the LLSVPs, it is located within the broad global mantle downwelling zone, therefore classified as a "lone plume". Here, we use the Hainan plume example to investigate the feasibility of such lone plumes being generated by subducting slabs in the mantle downwelling zone using 3D geodynamic modelling. Our geodynamic model has a high-resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adaptive-mesh-refined, 3D mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). We use a recently published plate motion model to define the top mechanical boundary condition. Our modelling results suggest that cold slabs under the present-day Eurasia, formed from the Mesozoic subduction and closure of the Tethys oceans, have prevented deep mantle hot materials from moving to the South China Sea from regions north or west of the South China Sea. From the east side, the Western Pacific subduction systems started to promote the formation of a lower-mantle thermal-chemical pile in the vicinity of the future South China Sea region since 70 Ma ago. As the top of this lower-mantle thermal-chemical pile rises, it first moved to the west, and finally rested beneath the South China Sea. The presence of a thermochemical layer (possible the D″ layer) in the model helps stabilizing the plume root. Our modelling is the first implementation of multi-scale mesh in the regional model. It has been proved to be an effective way of modelling regional dynamics within a global plate motion and mantle dynamics background.
NASA Astrophysics Data System (ADS)
Sun, Jing; Liu, Chuan-Zhou; Kostrovisky, Sergey I.; Wu, Fu-Yuan; Yang, Jin-Hui; Chu, Zhu-Yin; Yang, Yue-Heng; Kalashnikova, Tatiana; Fan, Sheng
2017-12-01
The character of the lithospheric mantle of the northern Siberian craton is not well established; nearly all published data are for mantle xenoliths from a single kimberlite in the center of the craton (Udachnaya). We report major elements of the whole rock, trace elements data of clinopyroxene and Re-Os isotope and PGE concentration of mantle xenoliths from the Obnazhennaya kimberlite pipe (160 Ma) in the northern part of Siberian craton. The Obnazhennaya mantle xenoliths include spinel harzburgites, spinel dunites, spinel lherzolites and spinel-garnet lherzolite. The spinel harzburgites and dunites have refractory compositions, with 0.23-1.35 wt% Al2O3, 0.41-3.11 wt% CaO and 0.00-0.09 wt% TiO2, whereas the lherzolites (both spinel- and spinel-garnet-) have more fertile compositions, containing 2.16-6.55 wt% Al2O3, 2.91-7.55 wt% CaO and 0.04-0.15 wt% TiO2. The trace element compositions and mineralogical textures of the Obnazhennaya xenoliths indicate the occurrence of metasomatic enrichments, including carbonatite melts, basaltic melts from Siberian Trap and kimberlitic melts. The spinel harzburgites and dunites have 187Os/188Os of 0.11227-0.11637, giving a TRD age of 1.6-2.2 Ga. This suggests that old cratonic mantle still existed beneath the Obnazhennaya. In contrast, both spinel and spinel-garnet lherzolites have more radiogenic 187Os/188Os ratios (0.11931-0.17627), enriched P-PGEs. But the higher Al2O3 and Os character of these lherzolites suggest that they were not juvenile mantle but the refertilized ancient mantle. Therefore, our results suggest that the cratonic mantle beneath the northern part of Siberian craton contain both ancient and reworked lithospheric mantle, and the metasomatism may not be effective at overprinting/eroding the pre-existing lithosphere.
NASA Astrophysics Data System (ADS)
Erickson, S. G.; Nelson, W. R.; Peslier, A. H.; Snow, J. E.
2014-12-01
The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 km3 [1] of continental flood basalts ~30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability [e.g. 2, 3]. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle [2] except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle. [1] Hoffman et al., 1997 Nature 389, 838-841. [2] Peslier et al., 2010 Nature 467, 78-81. [3] Lee et al., 2011 AREPS 39, 59-90.
Chemistry in protoplanetary disks
NASA Astrophysics Data System (ADS)
Semenov, D. A.
2012-01-01
In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.
Catchings, R.D.
1999-01-01
Models of P- and S-wave velocity, Vp/Vs ratios, Poisson's ratios, and density for the crust and upper mantle are presented along a 400-km-long profile trending from Memphis, Tennessee, to St. Louis, Missouri. The profile crosses the New Madrid seismic zone and reveals distinct regional variations in the crustal velocity structure north and south of the latitude of New Madrid. In the south near Memphis, the upper few kilometers of the crust are dominated by upper crustal sedimentary basins or graben with P-wave velocities less than 5 km/sec and S-wave velocities of about 2 km/sec. P-wave velocities of the upper and middle crust range from 6.0 to 6.5 km/sec at depths above 25 km, and corresponding S-wave velocities range from 3.5 to 3.7 km/sec. The lower crust consists of a high-velocity layer (Vp = 7.4 km/sec; Vs ~4.2 km/sec) that is up to 20-km thick at the latitude of New Madrid but thins to about 15 km near Memphis. To the north, beneath the western-most Illinois basin, low-velocity (Vp < 5 km/sec; Vs < 2.3 km/sec) sedimentary basins are less than 1-km deep. The average velocities (Vp = 6.0 km/sec; Vs = 3.5 km/sec) of the underlying, near-surface rocks argue against large thickness of unconsolidated noncarbonate sediments within 50 km of the western edge of the Illinois basin. Most of the crust beneath the Illinois basin is modeled as one layer, with velocities up to 6.8 km/sec (Vs = 3.7 km/sec) at 37-km depth. The thick, high-velocity (Vp = 7.4 km/sec; Vs ~4.2 km/sec) lower crustal layer thins from about 20 km near New Madrid to about 6 km beneath the western Illinois basin. Refractions from the Moho and upper mantle occur as first arrivals over distances as a great as 160 km and reveal upper mantle layering to 60 km depth. Upper mantle layers with P-wave velocities of 8.2 km/sec (Vs = 4.5 km/sec) and 8.4 km/sec (Vs = 4.7 km/sec) are modeled at 43 and 60 km depth, respectively. Crustal Vp/Vs ratios range between 1.74 and 1.83, and upper mantle Vp/V s ratios range from 1.78 to 1.84. Poisson's ratios range from about 0.26 to 0.33 in the crust and from about 0.27 to 0.29 in the upper mantle. Modeled average densities range from about 2.55 in the sedimentary basins to 3.43 in the upper mantle. Geophysical characteristics of the crust and upper mantle within the New Madrid seismic zone are consistent with other continental rifts, but the crustal structure of the Illinois basin is not characteristics of most continental rift settings. Seismic and gravity data suggest a buried horst near the middle of Reelfoot rift, beneath which is a vertical zone of seismicity and velocity anomalies. The relative depth of the Reelfoot rift north and south of the Reelfoot graben suggests that the rift and its bounding faults may extend eastward beneath the city of Memphis.
NASA Astrophysics Data System (ADS)
Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda
2017-10-01
We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the far-field effects of the India-Eurasian Collision.
NASA Astrophysics Data System (ADS)
Mann, M. E.; Abers, G. A.; Creager, K. C.; Ulberg, C. W.; Crosbie, K.
2017-12-01
Mount St. Helens (MSH) is unusual as a prolific arc volcano located 50 km towards the forearc of the main Cascade arc. The iMUSH (imaging Magma Under mount St. Helens) broadband deployment featured 70 seismometers at 10-km spacing in a 50-km radius around MSH, spanning a sufficient width for testing along-strike variation in subsurface geometry as well as deep controls on volcanism in the Cascade arc. Previous estimates of the geometry of the subducting Juan de Fuca (JdF) slab are extrapolated to MSH from several hundred km to the north and south. We analyze both P-to-S receiver functions and 2-D Born migrations of the full data set to locate the upper plate Moho and the dip and depth of the subducting slab. The strongest coherent phase off the subducting slab is the primary reverberation (Ppxs; topside P-to-S reflection) from the Moho of the subducting JdF plate, as indicated by its polarity and spatial pattern. Migration images show a dipping low velocity layer at depths less than 50 km that we interpret as the subducting JdF crust. Its disappearance beyond 50 km depth may indicate dehydration of subducting crust or disruption of high fluid pressures along the megathrust. The lower boundary of the low velocity zone, the JdF Moho, persists in the migration image to depths of at least 90 km and is imaged at 74 km beneath MSH, dipping 23 degrees. The slab surface is 68 km beneath MSH and 85 km beneath Mount Adams volcano to the east. The JdF Moho exhibits 10% velocity contrasts as deep as 85 km, an observation difficult to reconcile with simple models of crustal eclogitization. The geometry and thickness of the JdF crust and upper plate Moho is consistent with similar transects of Cascadia and does not vary along strike beneath iMUSH, indicating a continuous slab with no major disruption. The upper plate Moho is clear on the east side of the array but it disappears west of MSH, a feature we interpret as a result of both serpentinization of the mantle wedge and a westward increase in wavespeed of the continental crust. The seismically-imaged surface of the subducting JdF slab at 68 km beneath MSH is the shallowest yet documented beneath an arc volcano. Combined with the inference of serpentinization in the mantle wedge, this geometry presents a problem in that vertical mantle melt migration seems unfeasible, yet mantle melts contribute to erupted MSH magmas.
NASA Astrophysics Data System (ADS)
Dupuis, Nicolle E.; Murphy, J. Brendan; Braid, James A.; Shail, Robin K.; Nance, R. Damian
2016-06-01
The geology of SW England has long been interpreted to reflect Variscan collisional processes associated with the closure of the Rhenohercynian Ocean and the formation of Pangea. The Cornish peninsula is composed largely of Early Devonian to Late Carboniferous volcanosedimentary successions that were deposited in pre- and syn-collisional basins and were subsequently metamorphosed and deformed during the Variscan orogeny. Voluminous Early Permian granitic magmatism (Cornubian Batholith) is broadly coeval with the emplacement of ca. 280-295 Ma lamprophyric dykes and flows. Although these lamprophyres are well mapped and documented, the processes responsible for their genesis and their relationship with regional Variscan tectonic events are less understood. Pre- to syn-collisional basalts have intra-continental alkalic affinities, and have REE profiles consistent with derivation from the spinel-garnet lherzolite boundary. εNd values for the basalts range from + 0.37 to + 5.2 and TDM ages from 595 Ma to 705 Ma. The lamprophyres are extremely enriched in light rare earth elements, large iron lithophile elements, and are depleted in heavy rare earth elements, suggesting a deep, garnet lherzolite source that was previously metasomatised. They display εNd values ranging from - 1.4 to + 1.4, initial Sr values of ca. 0.706, and TDM ages from 671 Ma to 1031 Ma, suggesting that metasomatism occurred in the Neoproterozoic. Lamprophyres and coeval granite batholiths of similar chemistry to those in Cornwall occur in other regions of the Variscan orogen, including Iberia and Bohemia. By using new geochemical and isotopic data to constrain the evolution of the mantle beneath SW England and the processes associated with the formation of these post-collisional rocks, we may be able to gain a more complete understanding of mantle processes during the waning stages of supercontinent formation.
NASA Astrophysics Data System (ADS)
Mazzotti, Stephane; Baratin, Laura-May; Chéry, Jean; Vernant, Philippe; Gueydan, Frédéric; Tahayt, Abdelilah; Mourabit, Taoufik
2017-04-01
In Western Mediterranean, the Betic-Alboran-Rif orocline accommodates the WNW-ESE convergence between the Nubia and Eurasia plates. Recent geodetic data show that present-day tectonics in northern Morocco and southernmost Spain are not compatible with this simple two-plate-convergence model: GPS observations indicate significant (2-4 mm/a) deviations from the expected plate motion, and gravity data define two major negative Bouguer anomalies beneath the Betic and south of the Rif, interpreted as a thickened crust in a state of non-isostatic equilibrium. These anomalous geodetic patterns are likely related to the recent impact of the sub-vertical Alboran slab on crustal tectonics. Using 2-D finite-element models, we study the first-order behavior of a lithosphere affected by a downward normal traction, representing the pull of a high-density body in the upper mantle (slab pull or mantle delamination). We show that a specific range of lower crust and upper mantle viscosities allow a strong coupling between the mantle and the base of the brittle crust, thus enabling (1) the efficient conversion of vertical movement (resulting from the downward traction) to horizontal movement and (2) shortening and thickening on the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to the Alboran slab pull, can explain the present-day abnormal tectonics and non-isostatic equilibrium in northern Morocco. Similar processes may be at play in the whole Betic-Alboran-Rif region, although the fast temporal evolution of the slab - upper plate interactions needs to be taken into account to better understand this complex system.
Local strong slow S-wave anomalies at western edge of Pacific LLSVP
NASA Astrophysics Data System (ADS)
Obayashi, M.; Niu, F.; Yoshimitsu, J.
2017-12-01
Seismic tomography studies have revealed two broad slow shear-wave speed anomalies regions beneath the Pacific and Africa called as LLSVPs (Large Low Seismic Velocity Provinces). There are geographic correlations between the LLSVPs and hotspots, and the LLSVPs could probably play an important role for convection throughout the mantle and thermal structure and evolution of the earth. The LLSVPs have been considered to be heterogeneous in composition since the boundaries between the normal mantle are sharp. To investigate the details of the sharp LLSVP edge we measure ScS-S and SKS-S differential traveltimes in the hypocentral distance of about 60°-90° using Japanese and Chinese seismic networks. We used 25events for the Chinese network and 16 events for Japanese network that occurred in Tonga-Kermadec region and obtained 3750 event-station pairs of ScS-S and 1500 pairs of SKS-S differential travel times. We found anomalously large (more than 5 sec) ScS-S travel times accompanying normal SKS-S travel times, suggesting local strong slow region in the vicinity of the ScS bounce points (red circles in Figure 1). Such ScS bounce points locate to the northeast of New Guinea Island extending over 20 degrees in NE-SW direction. However below New Guinea Island, both ScS-S and SKS-S travel times are normal (green circles in Figure 1), indicating abrupt end of the local strong slow anomalies. We inverted the ScS-S and SKS-S differential traveltimes for lowermost mantle S-wave speed structure, assuming isotropic mantle. The result shows very strong slow anomalies of more than 5% at western edge of Pacific LLSVP that extend vertically not more than 200 km from the core mantle boundary.
Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray
NASA Astrophysics Data System (ADS)
Zhu, Hejun; Komatitsch, Dimitri; Tromp, Jeroen
2017-10-01
We use seismic data from USArray to image the upper mantle underneath the United States based on a so-called `adjoint tomography', an iterative full waveform inversion technique. The inversion uses data from 180 regional earthquakes recorded by 4516 seismographic stations, resulting in 586 185 frequency-dependent measurements. Three-component short-period body waves and long-period surface waves are combined to simultaneously constrain deep and shallow structures. The transversely isotropic model US22 is the result of 22 pre-conditioned conjugate-gradient iterations. Approximate Hessian maps and point-spread function tests demonstrate good illumination of the study region and limited trade-offs among different model parameters. We observe a distinct wave-speed contrast between the stable eastern US and the tectonically active western US. This boundary is well correlated with the Rocky Mountain Front. Stable cratonic regions are characterized by fast anomalies down to 250-300 km, reflecting the thickness of the North American lithosphere. Several fast anomalies are observed beneath the North American lithosphere, suggesting the possibility of lithospheric delamination. Slow wave-speed channels are imaged beneath the lithosphere, which might indicate weak asthenosphere. Beneath the mantle transition zone of the central US, an elongated north-south fast anomaly is observed, which might be the ancient subducted Farallon slab. The tectonically active western US is dominated by prominent slow anomalies with magnitudes greater than -6 per cent down to approximately 250 km. No continuous lower to upper mantle upwellings are observed beneath Yellowstone. In addition, our results confirm previously observed differences between oceans and continents in the anisotropic parameter ξ = (βh/βv)2. A slow wave-speed channel with ξ > 1 is imaged beneath the eastern Pacific at depths from 100 to 200 km, reflecting horizontal shear within the asthenosphere. Underneath continental areas, regions with ξ > 1 are imaged at shallower depths around 100 km. They are characterized by fast shear wave speeds, suggesting different origins of anisotropy underneath oceans and continents. The wave speed and anisotropic signatures of the western Atlantic are similar to continental areas in comparison with the eastern Pacific. Furthermore, we observe regions with ξ < 1 beneath the tectonically active western US at depths between 300 and 400 km, which might reflect vertical flows induced by subduction of the Farallon and Juan de Fuca Plates. Comparing US22 with several previous tomographic models, we observe relatively good correlations for long-wavelength features. However, there are still large discrepancies for small-scale features.
NASA Astrophysics Data System (ADS)
Brenn, Gregory Randall
Stretching 3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional continental mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; deltaVP ≈ -2.0%; deltaV S ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; deltaVP ≈ -1.5% to -2.0%; deltaVS ≈ -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (deltaVP ≈ 0.5% to 2%; deltaV S ≈ 1.5% to 4.0%). A low velocity region (deltaVP ≈ -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.
NASA Astrophysics Data System (ADS)
Russo, R. M.; Okal, E. A.
1998-07-01
We determined shear wave splitting parameters at four island sites in French Polynesia: Tiputa (TPT) on Rangiroa in the Tuamotu archipelago; Papeete (PPT) on Tahiti in the Society Islands; Tubuai (TBI) in the Cook-Austral island chain; and Rikitea (RKT) on Mangareva in the Gambier Islands. We also examined splitting at Pitcairn (PTCN) on Pitcairn Island; because of the short time of operation of PTCN, our results there are preliminary. We find substantial differences in splitting, most likely caused by variable upper mantle deformation beneath the five stations. At TPT the fast split shear wave (ϕ) direction is N66°W±4°, parallel to the current Pacific-hotspots relative motion (APM) vector; the delay time between fast and slow waves is 1.3±0.2 s. At PPT, on Tahiti, we could detect no splitting despite many clear SKS observations. At TBI, on Tubuai we detected splitting with a delay time of 1.1±0.1 s and a ϕ direction midway between the local APM direction and the fossil spreading direction (N86°W±2°), as locally indicated by the nearby Austral Fracture Zone. At RKT in the Gambier Islands, ϕ trends N53°W±6°, 16° clockwise of the local APM azimuth, and delay time at RKT is 1.1±0.1 s. Results at PTCN include ϕ near N38°W±9° and a delay time of 1.1±0.3 s. These different results imply variable upper mantle deformation beneath the five sites. We interpret splitting at TPT and, possibly, RKT as indicative of asthenospheric flow or shear in the APM direction beneath the stations. At PPT, azimuthal isotropy indicates deformed upper mantle with a vertical symmetry axis, or absence of strong or consistently oriented mantle deformation fabric beneath Tahiti. Either effect could be related to recent hotspot magmatism on Tahiti. At TBI, splitting may be complicated by juxtaposition of different lithospheric thicknesses along the nearby Austral Fracture Zone, resulting in perturbation of asthenospheric flow. The absence of splitting related to fossil spreading in French Polynesia indicates that upper mantle deformation processes postdating lithosphere formation are important at all four sites within that region. The ϕ azimuth at PTCN does not align with either the fossil direction or the APM direction, but our best individual determination of splitting parameters at this station lies within 10° of the local APM at Pitcairn Island.
Adjoint tomography of crust and upper-mantle structure beneath Continental China
NASA Astrophysics Data System (ADS)
Chen, M.; Niu, F.; Liu, Q.; Tromp, J.
2013-12-01
Four years of regional earthquake recordings from 1,869 seismic stations are used for high-resolution and high-fidelity seismic imaging of the crust and upper-mantle structure beneath Continental China. This unprecedented high-density dataset is comprised of seismograms recorded by the China Earthquake Administration Array (CEArray), NorthEast China Extended SeiSmic Array (NECESSArray), INDEPTH-IV Array, F-net and other global and regional seismic networks, and involves 1,326,384 frequency-dependent phase measurements. Adjoint tomography is applied to this unprecedented dataset, aiming to resolve detailed 3D maps of compressional and shear wavespeeds, and radial anisotropy. Contrary to traditional ray-theory based tomography, adjoint tomography takes into account full 3D wave propagation effects and off-ray-path sensitivity. In our implementation, it utilizes a spectral-element method for precise wave propagation simulations. The tomographic method starts with a 3D initial model that combines smooth radially anisotropic mantle model S362ANI and 3D crustal model Crust2.0. Traveltime and amplitude misfits are minimized iteratively based on a conjugate gradient method, harnessing 3D finite-frequency kernels computed for each updated 3D model. After 17 iterations, our inversion reveals strong correlations of 3D wavespeed heterogeneities in the crust and upper mantle with surface tectonic units, such as the Himalaya Block, the Tibetan Plateau, the Tarim Basin, the Ordos Block, and the South China Block. Narrow slab features emerge from the smooth initial model above the transition zone beneath the Japan, Ryukyu, Philippine, Izu-Bonin, Mariana and Andaman arcs. 3D wavespeed variations appear comparable to or much sharper than in high-frequency P-and S-wave models from previous studies. Moreover our results include new information, such as 3D variations of radial anisotropy and the Vp/Vs ratio, which are expected to shed new light to the composition, thermal state, flow or fabric structure in the crust and upper mantle, as well as the related dynamical processes. We intend to use these seismic images to answer important tectonic questions, namely, 1) what controls the strength of the lithosphere; 2) how does lithosphere deform during the formation of orogens, basins and plateaus; 3) how pervasive is lithospheric delamination or partial removal beneath orogens and plateaus; 3) whether or not (and how) are slab segmentation and penetration into the lower mantle linked to upwellings associated with widespread magmatism in East Asia.
Lithospheric Instability beneath the Southeast Carpathians
NASA Astrophysics Data System (ADS)
Houseman, G. A.; Lorinczi, P.; Ren, Y.; Stuart, G. W.
2012-12-01
The South Carpathian Project, a major seismological experiment carried out during 2009-2011 by the University of Leeds, the National Institute of Earth Physics in Bucharest, the Eötvös Loránd Geophysical Institute in Budapest, and the Seismological Survey of Serbia in Belgrade, has resulted in the most detailed tomographic images yet obtained of the upper mantle structure beneath the Pannonian - Carpathian region (Ren et al., EPSL, 2012). These images illuminate the upper mantle over a wide region, but they specifically shed new light on the unique geological structure which is responsible for the damaging earthquakes that occur in the upper mantle beneath the Vrancea Zone of the South-east Carpathians. The earthquakes occur at the NE end of an asymmetric high velocity structure that extends upward to the SW, oblique to the southern edge of the South Carpathians. This sub-vertical high-velocity body is bounded by slow anomalies to the NW and SE, which extend down to the top of the Mantle Transition Zone. With increasing depth, the fast region becomes more circular in cross-section until about 400 km where the fast anomaly fades out. The main mass of fast (presumably dense) material is located directly beneath the seismic activity. The earthquakes are all characterised by near-vertical T-axes, which means they are caused by vertical stretching. The seismic moment release rate can be used to estimate vertical strain rates; these strain-rates imply that the mantle at 200 km is moving downward at about 20 mm/yr relative to the surface. The depth distribution of seismic-moment release rate follows a characteristic pattern that is most easily explained if this high velocity structure is produced by a Rayleigh-Taylor instability acting on an unstable stratification of mantle lithosphere above asthenosphere. Three-dimensional numerical experiments assuming viscous flow confirm that the drip-like structure that we image may be a natural consequence of a Rayleigh-Taylor instability triggered by recent convergence of Adria and Europe. One property of Rayleigh-Taylor instability is that rates of deformation increase with time during the peak development phase of the instability. The present high rate of tectonic activity in this region therefore is probably short-lived on a geological scale (< 1 Myr) but is likely to increase in energy before it is abates. These unique tomographic and seismological datasets provide clear evidence of lithospheric gravitational instability occurring on a short length-scale and fast time-scale via a mode that is best described as a form of Rayleigh-Taylor instability.
Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan
2018-03-01
We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.
NASA Astrophysics Data System (ADS)
Guo, Z.; Zhou, Y.
2017-12-01
We report global structure of the 410-km and 660-km discontinuities from finite-frequency tomography using frequency-dependent traveltime measurements of SS precursors recorded at the Global Seismological Network (GSN). Finite-frequency sensitivity kernels for discontinuity depth perturbations are calculated in the framework of traveling-wave mode coupling. We parametrize the global discontinuities using a set of spherical triangular grid points and solve the tomographic inverse problem based on singular value decomposition. Our global 410-km and 660-km discontinuity models reveal distinctly different characteristics beneath the oceans and subduction zones. In general, oceanic regions are associated with a thinner mantle transition zone and depth perturbations of the 410-km and 660-km discontinuities are anti-correlated, in agreement with a thermal origin and an overall warm and dry mantle beneath the oceans. The perturbations are not uniform throughout the oceans but show strong small-scale variations, indicating complex processes in the mantle transition zone. In major subduction zones (except for South America where data coverage is sparse), depth perturbations of the 410-km and 660-km discontinuities are correlated, with both the 410-km and the 660-km discontinuities occurring at greater depths. The distributions of the anomalies are consistent with cold stagnant slabs just above the 660-km discontinuity and ascending return flows in a superadiabatic upper mantle.
Mantle transition zone structure beneath the Canadian Shield
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.
2010-12-01
The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.
The shear-wave splitting in the crust and the upper mantle around the Bohai Sea, North China
NASA Astrophysics Data System (ADS)
Yutao, Shi; Yuan, Gao; Lingxue, Tai; Yuanyuan, Fu
2015-11-01
In order to infer the distribution of local stress and the deep geodynamic process in North China, this study detects seismic anisotropy in the crust and upper mantle beneath the Bohai Sea area. A total of 535 local shear-wave and 721 XKS (including SKS, PKS and SKKS phases) splitting measurements were obtained from stations in permanent regional seismograph networks and a temporary seismic network called ZBnet-E. The dominant fast polarization orientation of local shear-waves in the crust is nearly East-West, suggesting an East-West direction of local maximum compressive stress in the area. Nearly North-South fast orientation was obtained at some stations in the Tan-Lu fault belt and the Zhang-Bo seismic belt. The average fast orientation from XKS splitting analysis is 87.4° measured clockwise from the North. The average time-delays of XKS splitting are range from 0.54 s to 1.92 s, corresponding to a 60-210 km thick layer of anisotropy. The measured results indicate that upper mantle anisotropy beneath Bohai Sea area, even the eastern part of North China, is mainly from asthenospheric mantle flow from the subduction of the Pacific plate. From the complicated anisotropic characteristics in this study, we infer that there might be multiple mechanisms in the crust and upper mantle around the Bohai Sea area that led to the observed anisotropy.
NASA Astrophysics Data System (ADS)
Lloyd, Andrew J.; Nyblade, Andrew A.; Wiens, Douglas A.; Hansen, Samantha E.; Kanao, Masaki; Shore, Patrick J.; Zhao, Dapeng
2013-04-01
The Gamburtsev Subglacial Mountains (GSM), located near the center of East Antarctica, are the highest feature within the East Antarctic highlands and have been investigated seismically for the first time during the 2007/2008 International Polar Year by the Gamburtsev Mountains Seismic Experiment. Using data from a network of 26 broadband seismic stations and body wave tomography, the P and S wave velocity structure of the upper mantle beneath the GSM and adjacent regions has been examined. Tomographic images produced from teleseismic P and S phases reveal several large-scale, small amplitude anomalies (δVp = 1.0%, δVs = 2.0%) in the upper 250 km of the mantle. The lateral distributions of these large-scale anomalies are similar in both the P and S wave velocity models and resolution tests show that they are well resolved. Velocity anomalies indicate slower, thinner lithosphere beneath the likely Meso- or Neoproterozoic Polar Subglacial Basin and faster, thicker lithosphere beneath the likely Archean/Paleoproterozoic East Antarctic highlands. Within the region of faster, thicker lithosphere, a lower amplitude (δVp = 0.5%, δVs = 1.0%) slow to fast velocity pattern is observed beneath the western flank of the GSM, suggesting a suture between two lithospheric blocks possibly of similar age. These findings point to a Precambrian origin for the high topography of the GSM, corroborating other studies invoking a long-lived highland landscape in central East Antarctica, as opposed to uplift caused by Permian/Cretaceous rifting or Cenozoic magmatism. The longevity of the GSM makes them geologically unusual; however, plausible analogs exist, such as the 550 Ma Petermann Ranges in central Australia. Additional uplift may have occurred by the reactivation of pre-existing faults, for example, during the Carboniferous-Permian collision of Gondwana and Laurussia.
NASA Astrophysics Data System (ADS)
Hoots, C. R.; Schmandt, B.; Clayton, R. W.; Hansen, S. M.; Dougherty, S. L.
2015-12-01
The Isabella Anomaly is a volume of relatively high seismic velocity upper mantle beneath the southern Great Valley in California. We deployed ~45 broadband seismometers in central California to test two main hypotheses for the origin of the Isabella Anomaly. One suggests that the Isabella Anomaly is the foundered lithospheric root of the southern Sierra Nevada batholith, which delaminated on account of eclogite-rich composition and translated westward as it began to sink into the asthenosphere. The other hypothesis suggests that the Isabella Anomaly is a fossil slab fragment attached to the Monterey microplate that lies offshore of central California and thus it is mechanically coupled to the Pacific plate. Prior seismic imaging with ~70 km station spacing cannot resolve the landward termination of Monterey microplate lithosphere beneath coastal California or where/if the Isabella Anomaly is attached to North America lithosphere beneath the Great Valley. The new temporary broadband array consists of 40 broadband seismometers with ~7 km spacing extending from the central California coast to the western Sierra Nevada batholith, plus some outliers to fill gaps in the regional network coverage. The temporary array was initially deployed in early 2014 and will continue to record until October 2015 so the complete data are not yet available. Preliminary Ps scattered wave images show an abrupt ~6 km increase in Moho depth eastward across the San Andreas fault, a strong positive impedance contrast that dips westward from ~7-25 km beneath Great Valley, and a sharp Moho with a slight westward dip beneath the western edge of the Sierra Nevada batholith. Apparently low impedance contrast characterizes the Moho beneath the eastern Great Valley and foothills, consistent with near mantle velocities in the lower crust. Processing of the cumulative data that will be available in October 2015 and incorporation of new tomography models into scattered wave imaging are needed before assessing the significance of potential uppermost mantle interfaces that may represent edges of the Isabella Anomaly. Results from Ps and Sp scattered wave imaging, ambient noise surface wave tomography, teleseismic body-wave tomography, and teleseismic shear wave splitting will be presented.
Crustal structure beneath western and eastern Iceland from surface waves and receiver functions
Du, Z.; Foulger, G.R.; Julian, B.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.
2002-01-01
We determine the crustal structures beneath 14 broad-band seismic stations, deployed in western, eastern, central and southern Iceland, using surface wave dispersion curves and receiver functions. We implement a method to invert receiver functions using constraints obtained from genetic algorithm inversion of surface waves. Our final models satisfy both data sets. The thickness of the upper crust, as defined by the velocity horizon Vs = 3.7 km s-1, is fairly uniform at ???6.5-9 km beneath the Tertiary intraplate areas of western and eastern Iceland, and unusually thick at 11 km beneath station HOT22 in the far south of Iceland. The depth to the base of the lower crust, as defined by the velocity horizon Vs = 4.1 km s-1 is ???20-26 km in western Iceland and ???27-33 km in eastern Iceland. These results agree with those of explosion profiles that detect a thinner crust beneath western Iceland than beneath eastern Iceland. An earlier report of a substantial low-velocity zone beneath the Middle Volcanic Zone in the lower crust is confirmed by a similar observation beneath an additional station there. As was found in previous receiver function studies, the most reliable feature of the results is the clear division into an upper sequence that is a few kilometres thick where velocity gradients are high, and a lower, thicker sequence where velocity gradients are low. The transition to typical mantle velocities is variable, and may range from being very gradational to being relatively sharp and clear. A clear Moho, by any definition, is rarely seen, and there is thus uncertainty in estimates of the thickness of the crust in many areas. Although a great deal of seismic data are now available constraining the structures of the crust and upper mantle beneath Iceland, their geological nature is not well understood.
Seismic character of the crust and upper mantle beneath the Sierra Nevada
NASA Astrophysics Data System (ADS)
Frassetto, A.; Gilbert, H.; Zandt, G.; Owens, T. J.; Jones, C.
2008-12-01
Recent geophysical studies of the Southern Sierra Nevada suggest that the removal of a gravitationally unstable, eclogitic residue links to recent volcanism and uplift in the Eastern Sierra. The Sierra Nevada EarthScope Project (SNEP) investigates the extent of this process beneath Central and Northern Sierra Nevada. We present receiver functions, which provide estimates of crustal thickness and Vp/Vs and image the response of the crust and upper mantle to lithospheric removal. For completeness this study combines data from the 2005-2007 SNEP broadband experiment, EarthScope's BigFoot Array, regional backbone stations, and earlier PASSCAL deployments. We analyze transects of teleseismic receiver functions generated using a common-conversion-point stacking algorithm. These identify a narrow, "bright" conversion from the Moho at depths of ~25-35 km along the crest of the Eastern Sierra and adjacent Basin and Range northward to the Cascade Arc. Trade-off analysis using the primary conversion and reverberations shows a high Vp/Vs (~1.9) throughout the Eastern Sierra, which may relate to partial melt present in the lower crust. To the west the crust-mantle boundary vanishes beneath the western foothills. However, low frequency receiver functions do image the crust-mantle boundary exceeding 50 km depth along the foothills to the west and south of Yosemite National Park. Unusually deep, intraplate earthquakes (Ryan et al., this session) occur in the center of this region. The frequency dependence of the Moho conversion implies a gradational increase from crust to mantle wavespeeds over a significant depth interval. The transition from a sharp to gradational Moho probably relates to the change from a delaminated granitic crust to crust with an intact, dense, eclogitic residue. The spatial correlation and focal mechanisms of the deep earthquakes suggest that a segment of this still intact residue is currently delaminating.
NASA Astrophysics Data System (ADS)
Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Miura, S.; Shinohara, M.
2016-12-01
Subduction of oceanic plates plays an important role in the water transportation from the earth surface into the deep mantle. Recent active seismic survey studies succeed to image that the seismic velocities within the oceanic crust and the uppermost mantle in the outer rise region decreases toward the trench axis. These velocity changes are considered as an indication of the hydration and alteration of the incoming oceanic plates prior to the subduction. However, the area with sufficient resolution of the active seismic studies is often limited at depths corresponding to the oceanic crust and several km beneath the oceanic Moho. In this study, we have examined the seismic velocity structure of the incoming/subducting Pacific Plate beneath the trench axis and outer trench-slope of the central part of the Japan Trench. The seismicity in the Pacific Plate, including several M7-class intra-plate earthquakes, has been active since the 2011 Tohoku-Oki earthquake in the study area. These activities were observed by the ocean bottom seismographs (OBS) deployed repeatedly. The data obtained from these OBS observations allow us to resolve the seismic velocity structures at greater depths compared to the active seismic surveys. We conducted 3-D traveltime tomography by using double-difference tomography method (Zhang and Thurber, 2003). The results show that the seismic velocities within the oceanic mantle decreased toward the trench axis. The velocity reduction begins at about 80 km seaward of the trench axis and extended to a depth of at least 30 km beneath the trench axis area. If the observed P-wave velocity reduction from 8.4 km/s to 7.7 km/s at a depth of 15 km below the oceanic Moho is caused by the serpentinization of the oceanic mantle (Carlson and Miller, 2003), roughly 2.5 weight per cent of water is expected in the low velocity anomalies in the oceanic mantle.
NASA Astrophysics Data System (ADS)
Zhang, Zhu; Dueker, Kenneth G.; Huang, Hsin-Hua
2018-06-01
We analyze teleseismic P-to-S conversions for high-resolution imaging of the mantle transition zone beneath the Colorado Rocky Mountains using data from a dense PASSCAL seismic broadband deployment. A total of 6,021 P-to-S converted receiver functions are constructed using a multi-channel minimum-phase deconvolution method and migrated using the common converted point technique with the 3-D teleseismic P- and S-wave tomography models of Schmandt and Humphreys (2010). The image finds that the average depths of the 410-km discontinuity (the 410) and 660-km discontinuity (the 660) at 408 ± 1.9 km and 649 ± 1.6 km respectively. The peak-to-peak topography of both discontinuities is 33 km and 27 km respectively. Additionally, prominent negative polarity phases are imaged both above and below the 410. To quantify the mean properties of the low-velocity layers about 410 km, we utilize double gradient layer models parameterization to fit the mean receiver function waveform. This waveform fitting is accomplished as a grid-search using anelastic synthetic seismograms. The best-fitting model reveals that the olivine-wadsleyite phase transformation width is 21 km, which is significantly larger than anhydrous mineral physics prediction (4-10 km) (Smyth and Frost, 2002). The findings of a wide olivine-wadsleyite phase transformation and the negative polarity phases above and below the 410, suggest that the mantle, at least in the 350-450 km depth range, is significantly hydrated. Furthermore, a conspicuous negative polarity phase below the 660 is imaged in high velocity region, we speculate the low velocity layer is due to dehydration flux melting in an area of convective downwelling. Our interpretation of these results, in tandem with the tomographic image of a Farallon slab segment at 800 km beneath the region (Schmandt and Humphreys, 2010), is that hydrous and upwelling mantle contributes to the high-standing Colorado Rocky Mountains.
Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc
McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke
2016-01-01
The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.
Deng, Yangfan; Levandowski, William Brower; Kusky, Tim
2017-01-01
Intraplate strain generally focuses in discrete zones, but despite the profound impact of this partitioning on global tectonics, geodynamics, and seismic hazard, the processes by which deformation becomes localized are not well understood. Such heterogeneous intraplate strain is exemplified in central Asia, where the Indo-Eurasian collision has caused widespread deformation while the Tarim block has experienced minimal Cenozoic shortening. The apparent stability of Tarim may arise either because strain is dominantly accommodated by pre-existing faults in the continental suture zones that bound it—essentially discretizing Eurasia into microplates—or because the lithospheric-scale strength (i.e., viscosity) of the Tarim block is greater than its surroundings. Here, we jointly analyze seismic velocity, gravity, topography, and temperature to develop a 3-D density model of the crust and upper mantle in this region. The Tarim crust is characterized by high density, vs, vp, and vp/vs, consistent with a dominantly mafic composition and with the presence of an oceanic plateau beneath Tarim. Low-density but high-velocity mantle lithosphere beneath southern (southwestern) Tarim underlies a suite of Permian plume-related mafic intrusions and A-type granites sourced in previously depleted mantle lithosphere; we posit that this region was further depleted, dehydrated, and strengthened by Permian plume magmatism. The actively deforming western and southern margins of Tarim—the Tien Shan, Kunlun Shan, and Altyn Tagh fault—are underlain by buoyant upper mantle with low velocity; we hypothesize that this material has been hydrated by mantle-derived fluids that have preferentially migrated along Paleozoic continental sutures. Such hydrous material should be weak, and herein strain focuses there because of lithospheric-scale variations in rheology rather than the pre-existence of faults in the brittle crust. Thus this world-class example of strain partitioning arises not simply from the pre-existence of brittle faults but from the thermo-chemical and therefore rheological variations inherited from prior tectonism.
1978-12-31
Koyanagi, Three-dimensional crust and mantle structure of Kilauea Volcano , Hawaii , J. Geophys. Res., 82, 5379-5394, 1977. Engdahl, E.R., J.G. Sindorf, and...Johnson, 1967), in Japan (Zandt, 1975; Hirahara, 1977), at NORSAR (Aki, 1977), in Yellowstone National Park (1yer, 1975; Zandt, 1978), in Hawaii ...1962. Ellsworth, W.L., Three-dimensional structure of the crust and mantle beneath the island of Hawaii , unpublished Ph.D. thesis, Massachusetts
Seismic imaging beneath southwest Africa based on finite-frequency body wave tomography
NASA Astrophysics Data System (ADS)
Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi
2016-04-01
We present a seismic model of southwest Africa from teleseismic tomographic inversion of the P- and S- wave data recorded by an amphibious temporary seismic network. The area of study is located at the intersection of the Walvis Ridge with the continental margin of northern Namibia, and extends into the Congo craton. Utilizing 3D finite-frequency sensitivity kernels, we invert traveltime residuals of the teleseismic body waves to image seismic structures in the upper mantle. To test the robustness of our tomographic imaging, we employed various resolution assessments that allow us to inspect the extent of smearing effects and to evaluate the optimum regularization weights (i.e., damping and smoothness). These tests include applying different (ir)regular parameterizations, classical checkerboard and anomaly tests and squeezing modeling. Furthermore, we performed different kinds of weighing schemes for the traveltime dataset. These schemes account for balancing between the picks data amount with their corresponding events directions. Our assessment procedure involves also a detailed investigation of the effect of the crustal correction on the final velocity image, which strongly influenced the image resolution for the mantle structures. Our model can resolve horizontal structures of 1° x 1° below the array down to 300-350 km depth. The resulting model is mainly dominated by the difference in the oceanic and continental mantle lithosphere beneath the study area, with second-order features related to their respective internal structures. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. The orogenic Damara Belt and continental flood basalt areas are characterized by low velocity perturbations down to a depth of ~150 km, indicating a normal fertile mantle. High velocities in the oceanic lithosphere beneath the Walvis Ridge appear to show signatures of chemical depletion. A pronounced anomaly of fast velocity is imaged underneath continental NW Namibia and is separated from the high velocity anomaly of the Congo Craton. We interpret this positive perturbation as depleted mantle materials. The depletion event is most probably related to the emplacement of the Parana-Etendeka flood basalts at about 132 Ma triggered by a mantle plume, which has left traces on the Walvis Ridge as well.
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Kelemen, P. B.; Liang, Y.
2015-12-01
The Wadi Tayin massif in the southern Oman ophiolite has a more than 10 km thick mantle section and is believed to have formed in a mid-ocean ridge like environment with an intermediate to fast spreading rate. Previously, [1] used major element geothermometers to investigate spatial variations in temperatures recorded in mantle peridotites and observed that samples near the paleo-Moho have higher closure temperatures than samples at the base of the mantle section. Motivated by these observations, we measured major and trace elements in orthopyroxene and clinopyroxene in peridotites from depths of ~1-8km beneath the Moho to determine closure temperatures of REE in the samples using the REE-in-two-pyroxene thermometer [2]. Clinopyroxene are depleted in LREE and have REE concentrations that vary depending on distance from the Moho. Samples nearer the Moho have lower REE concentrations than those deeper in the section (e.g., chondrite normalized Yb ranges from ~1.5 at the Moho to 4 at 8km depth), consistent with near fractional melting along a mantle adiabat. Orthopyroxene are highly depleted in LREE but measurements of middle to heavy REE have good reproducibility. We find that REE-in-two-pyroxene temperatures decrease with increasing distance from the Moho, ranging from 1325±10°C near the Moho to 1063±24°C near the base of the mantle section. Using methods from [3], we calculate cooling rates of >1000°C/Myr near the Moho, dropping to rates of <10°C/Myr at the bottom of the section. The faster cooling rate is inconsistent with conductive cooling models. Fast cooling of the mantle lithosphere could be facilitated by infiltration of seawater to or beneath the petrologic Moho. This can explain why abyssal peridotites from ultra-slow spreading centers (which lack a crustal section) have cooling rates comparable to those of Oman peridotites [3]. [1] Hanghøj et al. (2010), JPet 51(1-2), 201-227. [2] Liang et al. (2013), GCA 102, 246-260. [3] Dygert & Liang (2015), EPSL 420, 151-161.
NASA Astrophysics Data System (ADS)
Akizawa, Norikatsu; Arai, Shoji; Tamura, Akihiro
2012-10-01
Relationships of lithologies in uppermost mantle section of Oman ophiolite are highly complicated, harzburgites especially being closely associated with dunites, wehrlites, and gabbros. The petrology and geochemistry of the uppermost mantle section provide constrains on how MORB (mid-ocean ridge basalt) magmas migrate from the mantle to crust. We conducted detailed sampling at the uppermost mantle section of the northern Oman ophiolite (along Wadi Fizh), and it provides us with centimeter-scale lithological and mineral chemical heterogeneity. In particular, we found peculiar plagioclase-free harzburgites that have not been recorded from the current ocean floor, which contain high-Mg# [Mg/(Mg + Fe2+) atomic ratio] clinopyroxenes that are almost in equilibrium (saturated) with MORB in terms of REE concentrations. They are from the uppermost mantle section underlying the wehrlite-dunite layer (=Moho transition zone; MTZ) just beneath the layered gabbro. MORBs cannot be in equilibrium with harzburgites; however, we call the peculiar harzburgites as "MORB-saturated harzburgite" for simplicity in this paper. The MORB-saturated harzburgites exhibit slightly enriched mineralogy (e.g., spinels with higher Ti and ferric iron, and clinopyroxenes with higher Ti and Na) and contain slightly but clearly more abundant modal clinopyroxene (up to 3.5 vol.%) than ordinary Oman depleted harzburgites (less than 1 vol.% clinopyroxene), which are similar to abyssal harzburgites. Gabbro-clinopyroxenite bands, which were melt lenses beneath the ridge axis, are dominant around the MTZ. Detailed sampling around the gabbro-clinopyroxenite bands revealed that the MORB-saturated harzburgites appear around the bands. The interaction between a melt that was MORB-like and an ordinary harzburgite induced incongruent melting of orthopyroxenes in harzburgites, and the melt chromatographically intruded into the wall harzburgite and was modified to coexist with olivine and two pyroxenes at low melt/harzburgite ratios. The modified melt left clinopyroxene (not clinopyroxene + plagioclase as in plagioclase-impregnated abyssal harzburgite) to form the MORB-saturated harzburgites in the vicinity (harzburgite) of the fracture, which are left as gabbro-clinopyroxenite bands. This local modification mimics the whole lithological and chemical variation of the MTZ and makes chemical variation of MORB suite at fast-spreading ridge.
NASA Astrophysics Data System (ADS)
Lizarralde, Daniel; Chave, Alan; Hirth, Greg; Schultz, Adam
1995-09-01
We present results of a long-period magnetotelluric (MT) investigation of the electrical structure beneath the eastern North Pacific. The electric field data consist of ˜2 years of continuously recorded voltages across an unpowered, ˜4000-km-long submarine telephone cable (HAW-1) extending from Point Arena, California, to Oahu, Hawaii. The electric field measurements are coherent to some degree with magnetic field measurements from Honolulu Observatory at periods of 0.1 to 45 days. This coherence is enhanced at long periods over that observed with point electric field sensors due to horizontal averaging of the motional electric fields of spatial scale smaller than the cable length, significantly diminishing their effect. Robust, controlled leverage MT response estimates and their jacknife confidence limits are computed for the HAW-1 to Honolulu data. An equivalent scalar MT response obtained from Honolulu magnetic variations data is used to correct the HAW-1 MT response for static shift and to extend the MT response estimate to periods of 100 days. The composite response function satisfies necessary and sufficient conditions for consistency with a one-dimensional conductivity structure and is most sensitive to structure between 150 and 1000 km. Inversion of the MT response reveals a conductive zone (0.05-0.1 S/m) between 150 and 400 km depth and a positive gradient below 500 km; these observations are consistent with previous MT studies in the North Pacific. This upper mantle conductivity is too high to be explained by solid-state conduction in dry olivine using reasonable mantle geotherms. Calculations based on measurements of hydrogen solubility and diffusivity in olivine indicate that H+ dissolved in olivine, possibly combined with a lattice preferred orientation consistent with measured seismic anisotropy, provide sufficient conductivity enhancement to explain the inversion results. The high conductivity may also be explained by the presence of gravitationally stable partial melt. Comparison of the HAW-1 results with long-period MT studies conducted on land reveals differences in upper mantle conductivity between different tectonic regimes. In particular, the upper mantle beneath the Pacific Ocean is considerably more conductive than that beneath the Canadian shield and similar in conductivity to that beneath the Basin and Range.