Tomography-based mantle flow beneath Mongolia-Baikal area
NASA Astrophysics Data System (ADS)
Zhu, Tao
2014-12-01
Recent progress in seismic tomography of Asia allows us to explore and understand more clearly the mantle flow below the Mongolia-Baikal area. We present a tomography-based model of mantle convection that provides a good match to the residual topography. The model provides predictions on the present-day mantle flow and flow-induced asthenospheric deformation which give us new insights on the mantle dynamics in the Mongolia-Baikal area. The predicted mantle flow takes on a very similar pattern at the depths shallower or deeper than 400 km and almost opposite flow directions between the upper (shallower than 400 km) and lower (deeper than 400 km) parts. The flow pattern could be divided into the 'simple' eastern region and the 'complex' western region in the Mongolia. The upwelling originating from about 350 km depth beneath Baikal rift zone is an important possible drive force to the rifting. The seismic anisotropy cannot be simply related with asthenospheric flow and flow-induced deformation in the entire Mongolia-Baikal area, but they could be considered as an important contributor to the seismic anisotropy in the eastern region of Mongolia and around and in Sayan-Baikal orogenic belt.
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Steinberger, Bernhard; Tenzer, Robert; Tassara, Andrés
2018-05-01
Based on Hager and O'Connell's solution to mantle flow equations, the stresses induced by mantle convection are determined using the density and viscosity structure in addition to topographic data and a plate velocity model. The solution to mantle flow equations requires the knowledge of mantle properties that are typically retrieved from seismic information. Large parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative method of modeling the stress field was introduced by Runcorn. He formulated a direct relation between the stress field and gravity data, while adopting several assumptions, particularly disregarding the toroidal mantle flow component and mantle viscosity variations. A possible way to overcome theoretical deficiencies of Runcorn's theory as well as some practical limitations of applying Hager and O'Connell's theory (in the absence of seismic data) is to combine these two methods. In this study, we apply a least-squares analysis to combine these two methods based on the gravity data inversion constraint on mantle flow equations. In particular, we use vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer that are corrected for the gravitational contribution of crustal density heterogeneities prior to applying a localized gravity-gradient inversion. This gravitational contribution is estimated based on combining the Vening Meinesz-Moritz and flexural isostatic theories. Moreover, we treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equation during the inversion. In numerical studies of modeling, the stress field within the South American continental lithosphere we compare the results obtained after applying Runcorn and Hager and O'Connell's methods as well as their combination. The results show that, according to Hager and O'Connell's (mantle flow) solution, the maximum stress intensity is inferred under the northern Andes. Additional large stress anomalies are detected along the central and southern Andes, while stresses under most of old, stable cratonic formations are much less pronounced or absent. A prevailing stress-vector orientation realistically resembles a convergent mantle flow and downward currents under continental basins that separate Andean Orogeny from the Amazonian Shield and adjacent cratons. Runcorn's (gravimetric) solution, on the other hand, reflects a tectonic response of the lithosphere to mantle flow, with the maximum stress intensity detected along the subduction zone between the Nazca and Altiplano plates and along the convergent tectonic margin between the Altiplano and South American plates. The results also reveal a very close agreement between the results obtained from the combined and Hager and O'Connell's solutions.
Sublithospheric flows in the mantle
NASA Astrophysics Data System (ADS)
Trifonov, V. G.; Sokolov, S. Yu.
2017-11-01
The estimated rates of upper mantle sublithospheric flows in the Hawaii-Emperor Range and Ethiopia-Arabia-Caucasus systems are reported. In the Hawaii-Emperor Range system, calculation is based on motion of the asthenospheric flow and the plate moved by it over the branch of the Central Pacific plume. The travel rate has been determined based on the position of variably aged volcanoes (up to 76 Ma) with respect to the active Kilauea Volcano. As for the Ethiopia-Arabia-Caucasus system, the age of volcanic eruptions (55-2.8 Ma) has been used to estimate the asthenospheric flow from the Ethiopian-Afar superplume in the northern bearing lines. Both systems are characterized by variations in a rate of the upper mantle flows in different epochs from 4 to 12 cm/yr, about 8 cm/yr on average. Analysis of the global seismic tomographic data has made it possible to reveal rock volumes with higher seismic wave velocities under ancient cratons; rocks reach a depth of more than 2000 km and are interpreted as detached fragments of the thickened continental lithosphere. Such volumes on both sides of the Atlantic Ocean were submerged at an average velocity of 0.9-1.0 cm/yr along with its opening. The estimated rates of the mantle flows clarify the deformation properties of the mantle and regulate the numerical models of mantle convection.
NASA Astrophysics Data System (ADS)
Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing
2018-01-01
The Emeishan large igneous province (ELIP) is widely considered to be a consequence of a mantle plume. The supporting evidence includes rapid emplacement, voluminous flood basalt eruptions, and high mantle potential temperature estimates. Several studies have suggested that there was surface uplift prior to the eruption of the Emeishan flood basalts. Additionally, the plume's lateral extent is hard to constrain and has been variously estimated to be 800-1400 km in diameter. In this study, we analyzed present-day heat flow data and reconstructed the Permian paleo-heat flow using vitrinite reflectance and zircon (U-Th)/He thermochronology data in the ELIP region and discussed implications for the geodynamics of the Emeishan mantle plume. The present-day heat flow is higher in the inner and intermediate zones than in the outer zone, with a decrease of average heat flow from 76 mW/m2 to 51 mW/m2. Thermal history modeling results show that an abnormal high paleo-heat flow of 90-110 mW/m2 was caused by the Emeishan mantle plume activity. Based on the present-day heat flow data, we can calculate that there is lithospheric thinning in the central ELIP region, which may be due to the destruction of the lithosphere by mantle plume upwelling and magmatic underplating. The Permian paleo-heat flow anomaly implies that there was a temperature anomaly in the mantle. The ascending high-temperature mantle plume and the thinned lithosphere may have induced the large-scale uplift in the ELIP region. According to the range of the surface heat flow anomaly, it can be estimated that the diameter of the flattened head of the Emeishan mantle plume could have reached 1600-1800 km. Our research provides new insights into the geodynamics of the Emeishan mantle plume through study of heat flow.
NASA Astrophysics Data System (ADS)
Yoshida, Masaki
2017-07-01
Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be compressed above the upwelling flow. The reason for this is that the strong lateral mantle flow originating from the upwelling flow generates resistance drag force at the base of the overriding plates. This situation may apply to a case of East Asia, under which the typical morphology of sub-horizontal slabs can be seen by seismic tomography. The strong lateral velocity observed in the shallower mantle wedge in the present numerical simulation may account for both the compressional subduction tectonics and back arc compression in the Japan-Kuril-Kamchatka, Aleutian, and South Chile trenches, as well as for weak plate-slab coupling, strong seismic coupling, and the possibility of great earthquakes along these trenches.
NASA Astrophysics Data System (ADS)
Ford, Heather A.; Long, Maureen D.
2015-08-01
The study of flow patterns and seismic anisotropy in the lowermost mantle is fraught with uncertainties, given the limitations in our understanding of the physical properties of the lowermost mantle and the relationships between deformation and anisotropy. Here we use a set of SKS, SKKS, and ScS splitting measurements that sample the eastern edge of the African Large Low Shear Velocity Province to test predictions of seismic anisotropy derived from previously published 3D global mantle flow models and anisotropy modeling (Walker et al., 2011). The observations can be fit by a model that invokes flow directed to the southwest with a component of downwelling in our study region, and slip that occurs along the (0 1 0) plane of post-perovskite. Most importantly, we demonstrate the ability of a regional shear wave splitting data set to test the robustness of models for flow and deformation in the lowermost mantle.
NASA Astrophysics Data System (ADS)
Forte, A. M.; Moucha, R.; Simmons, N. A.; Grand, S. P.; Mitrovica, J. X.
2011-12-01
The enigmatic origin of large-magnitude earthquakes far from active plate boundaries, especially those occurring in so-called "stable" continental interiors, is a source of continuing controversy that has eluded a satisfactory explanation using past geophysical models of intraplate deformation and faulting. One outstanding case of such major intraplate earthquakes is the 1811-1812 series of events in the New Madrid Seismic Zone (NMSZ). We contend that the origin of some of these enigmatic intraplate events is due to regional variations in the pattern of tectonic stress generated by mantle convective flow acting on the overlying lithosphere and crust. Mantle convection affects the entire surface of the planet, irrespective of the current configuration of surface plate boundaries. In addition, it must be appreciated that plate tectonics is not a 2-D process, because the convective flow that drives the observed horizontal motions of the tectonic plates also drives vertical displacements of the crust across distances as great as 2 to 3 km. This dynamic topography is directly correlated with convection-driven stress field variations in the crust and lithosphere and these stresses can be locally focussed if the mantle rheology below the lithosphere is characterised by sufficiently low viscosities. We have developed global models of convection-driven mantle flow [Forte et al. 2009,2010] that are based on recent high-resolution 3-D tomography models derived from joint inversions of seismic, geodynamic and mineral physics data [Simmons et al. 2007,2008,2010]. These tomography-based mantle convection models also include a full suite of surface geodynamic (postglacial rebound and convection) constraints on the depth-dependent average viscosity of the mantle [Mitrovica & Forte 2004]. Our latest tomography-based and geodynamically-constrained convection calculations reveal that mantle flow under the central US are driven by density anomalies within the lower mantle associated with the descent of the ancient Farallon plate and shallow buoyant anomalies in the upper mantle under the eastern US coastal margin. The viscous coupling of this mantle flow to the overlying crust and lithosphere gives rise to a focussed, convergent stress pattern below the NMSZ which is favourably oriented with respect the local fault geometry. In summary, mantle-flow induced surface depression and associated bending stress may be an important and long-lived contributor to (clustered, migrating) seismic activity in the Mississippi Basin, extending from the Great Lakes to the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Bouin, Marie-Paule
2016-04-01
Subduction is a key process in the formation of continental crust. However, the interaction of the mantle with the subducting slab is not fully understood and varies between subduction zones. The flow geometry and stress patterns influence seismic anisotropy; since anisotropic layers lead to variations in the speed of seismic waves as a function of the direction of wave propagation, mantle flow can be constrained by investigating the structure of these anisotropic layers. In this study we investigate seismic anisotropy in the eastern Greater and the Lesser Antilles along a subduction environment, including the crust and the upper mantle as regions of interest. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to observe and distinguish between anisotropy in the crust, the mantle wedge and the sub-slab mantle. Local event delay times (0.21±0.12s) do not increase with depth, indicating a crustal origin and an isotropic mantle wedge. Teleseismic delay times are larger (1.34±0.47s), indicating sub-slab anisotropy. The results suggest trench-parallel mantle flow, with the exception of trench-perpendicular alignment in narrow regions east of Puerto Rico and south of Martinique, suggesting mantle flow through gaps in the slab. This agrees with the continuous northward mantle flow that is caused by the subducting slab proposed by previous studies of that region. We were able to identify a pattern previously unseen by other studies; on St. Lucia a trench-perpendicular trend also indicated by the stations around can be observed. This pattern can be explained by a mantle flow through a gap induced by the subduction of the boundary zone between the North and South American plates. This feature has been proposed for that area using tomographic modelling (van Benthem et al., 2013). It is based on previous results by Wadge & Shepherd (1984), who observed a vertical gap in the Wadati-Benioff zone at that location using a seismicity catalogue from local seismic networks. This work strengthens the argument for that location to be the plate boundary between the North and South American plates.
Plumes in the mantle. [free air and isostatic gravity anomalies for geophysical interpretation
NASA Technical Reports Server (NTRS)
Khan, M. A.
1973-01-01
Free air and isostatic gravity anomalies for the purposes of geophysical interpretation are presented. Evidence for the existance of hotspots in the mantle is reviewed. The prosposed locations of these hotspots are not always associated with positive gravity anomalies. Theoretical analysis based on simplified flow models for the plumes indicates that unless the frictional viscosities are several orders of magnitude smaller than the present estimates of mantle viscosity or alternately, the vertical flows are reduced by about two orders of magnitude, the plume flow will generate implausibly high temperatures.
Evidence of active mantle flow beneath South China
NASA Astrophysics Data System (ADS)
Wang, Chun-Yung; Flesch, Lucy M.; Chang, Lijun; Zheng, Tianyu
2013-10-01
The India-Eurasia collision is responsible for producing the Himalayan Mountains and Tibetan plateau and has been hypothesized to have significant far field influences, including driving the Baikal rift and the eastward extrusion of South China. However, quantification of lithospheric buoyancy forces and integrated effect of tractions acting at base of the lithosphere are unable to explain the observed surface motions within South China. We present 198 new SKS shear wave splitting observations beneath South China and invert these data along with published GPS data to solve for the subasthenospheric flow field beneath South China to assess the role of small-scale convection here. We find a 15-20 mm/yr southwestward-directed mantle flow toward the Burma slab. This flow is consistent with the mantle response of slab retreat over the past 25 Ma, and counter flow due to subduction of Burma/Sunda slabs demonstrating the importance of localized mantle convection on present-day plate motions.
NASA Astrophysics Data System (ADS)
Portner, D. E.; Kiraly, A.; Makushkina, A.; Parks, B. H.; Ghosh, T.; Haynie, K. L.; Metcalf, K.; Manga, M.; O'Farrell, K. A.; Moresi, L. N.; Jadamec, M. A.; Stern, R. J.
2017-12-01
Large-scale detachment of subducting slabs can have a significant geologic footprint by altering the slab-driven mantle flow field as hot subslab mantle can flow upward through the newly developed opening in the slab. The resulting increase in heat and vertical motion in the mantle wedge may contribute to volcanism and broad surface uplift. Recent geodynamic modeling results show that smaller tears and holes are similarly likely to form in many settings, such as where oceanic ridges or continental fragments subduct. High-resolution seismic tomography models are imaging an increasing number of these gaps and tears ranging in size from tens to hundreds of km in size, many of which occur proximal to alkali volcanism. Here we investigate the role of such gaps on the subduction-induced mantle flow field and related surface response. In particular, we address the relationships between slab hole size, depth, and distance from the slab edge and the magnitude of dynamic response of the mantle using analog experiments and numerical simulations. In the laboratory models, the subduction system is simplified to a two-layered Newtonian viscous sheet model. Our setup consists of a tank filled with glucose syrup and a plate made from silicon putty to model the upper mantle and subducting lithosphere, respectively. In each experiment, we pre-cut a rectangular hole with variable width into the silicon putty plate. Additionally, we perform a series of complementary numerical models using the Underworld geophysical modeling code to calculate the more detailed instantaneous mantle flow perturbation induced by the slab hole. Together, these results imply a strong effect of hole size on mantle flow. Similarly, the depth of the slab hole influences near-surface flow, with significant surface flow alteration when the hole is near the trench and diminishing surface deformation as the hole is dragged deeper into the mantle. The inferred consequence of the dependence of vertical mantle flux on slab hole position and size is that the induced surface response can vary based on slab hole parameters.
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; MacDougall, J.; Fischer, K. M.
2017-12-01
The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.
Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap
NASA Astrophysics Data System (ADS)
Jadamec, M.; Fischer, K. M.
2012-12-01
In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application to geochemical and geologic studies of the region. In addition, 3D geodynamic models of this kind can further test the hypothesis of rapid mantle flow in subduction zones as a global process and the non-Newtonian rheology as a mechanism for decoupling the mantle from lithospheric plate motion.
Mantle convection patterns reveal the enigma of the Red Sea rifting
NASA Astrophysics Data System (ADS)
Petrunin, Alexey; Kaban, Mikhail; El Khrepy, Sami; Al-Arifi, Nassir
2017-04-01
Initiation and further development of the Red Sea rift (RSR) is usually associated with the Afar plume at the Oligocene-Miocene separating the Arabian plate from the rest of the continent. Usually, the RSR is divided into three parts with different geological, tectonic and geophysical characteristics, but the nature of this partitioning is still debatable. To understand origin and driving forces responsible for the tectonic partitioning of the RSR, we have developed a global mantle convection model based on the refined density model and viscosity distribution derived from tectonic, rheological and seismic data. The global density model of the upper mantle is refined for the Middle East based on the high-resolution 3D model (Kaban et al., 2016). This model based on a joint inversion of the residual gravity and residual topography provides much better constraints on the 3D density structure compared to the global model based on seismic tomography. The refined density model and the viscosity distribution based on a homologous temperature approach provide an initial setup for further numerical calculations. The present-day snapshot of the mantle convection is calculated by using the code ProSpher 3D that allows for strong lateral variations of viscosity (Petrunin et al., 2013). The setup includes weak plate boundaries, while the measured GPS velocities are used to constrain the solution. The resulting mantle flow patterns show clear distinctions among the mantle flow patterns below the three parts of the RSR. According to the modeling results, tectonics of the southern part of the Red Sea is mainly determined by the Afar plume and the Ethiopian rift opening. It is characterized by a divergent mantle flow, which is connected to the East African Rift activity. The rising mantle flow is traced down to the transition zone and continues in the lower mantle for a few thousand kilometers south-west of Afar. The hot mantle anomaly below the central part of the RSR can be explained either by the asthenospheric upwelling due to the Red Sea floor spreading or by a secondary plume rising from the transition zone. According to our model, there is no obvious evidence for a direct connection of the hot anomaly below the central part of the RSR and the Afar plume in the upper mantle. In the northern part of the RSR, we found the ridge-axis aligned downstream flow contradicting the hypothesis of the intra-continental rifting in this area. Likely, the tectonics of this area implies a complex interplay of the Dead Sea transform fault development and the Sinai and Mediterranean tectonics. Kaban, M. K., S. El Khrepy, N. Al-Arifi, M. Tesauro, and W. Stolk (2016), Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012755. Petrunin, A. G.; Kaban, M. K.; Rogozhina, I.; Trubitsyn, V. (2013). Revising the spectral method as applied to modeling mantle dynamics. Geochemistry Geophysics Geosystems (G3), EDOC: 21048.
Abnormal high surface heat flow caused by the Emeishan mantle plume
NASA Astrophysics Data System (ADS)
Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing
2016-04-01
It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.
Trench-parallel flow beneath the nazca plate from seismic anisotropy.
Russo, R M; Silver, P G
1994-02-25
Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Parmentier, E. Marc
1990-01-01
The crust and mantle of Venus can be represented by a model of a layered structure stratified in both density and viscosity. This structure consists of a brittle-elastic upper crustal layer; a ductile weaker crustal layer; a strong upper mantle layer, about 10 percent denser than the crust; and a weaker substrate, representing the portion of the mantle in which convective flow occurs which is a primary source of large-scale topographic and tectonic features. This paper examines the interactions between these four layers and the mantle flow driven by thermal or compositional variations. Solutions are found for a flow driven by a buoyancy-force distribution within the mantle and by relief at the surface and crust-mantle boundary. It is shown that changes in crustal thickness are driven by vertical normal stresses due to mantle flow and by shear coupling of horizontal mantle flow into the crust.
Radiative conductivity and abundance of post-perovskite in the lowermost mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu
Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure–temperature conditions of Earth's core–mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core–mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (~1.1 W/m/K) is almost two times smaller than that of bridgmanite (~2.0 W/m/K) at the base of the mantle. By combining this result with the present-day core–mantle heat flow and availablemore » estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.« less
Radiative conductivity and abundance of post-perovskite in the lowermost mantle
NASA Astrophysics Data System (ADS)
Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu; Goncharov, Alexander F.
2017-12-01
Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure-temperature conditions of Earth's core-mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core-mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (∼1.1 W/m/K) is almost two times smaller than that of bridgmanite (∼2.0 W/m/K) at the base of the mantle. By combining this result with the present-day core-mantle heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.
ERIC Educational Resources Information Center
Weisburd, Stefi
1986-01-01
Reviews current ideas and research findings related to the flow patterns of mantle rocks. Highlights the components of the two-layer convection and whole-mantle models of mantle flow. Proposes that mantle flow is the key to understanding how the earth has cooled and chemically evolved. (ML)
NASA Astrophysics Data System (ADS)
Chertova, Maria; Spakman, Wim; Faccenda, Manuele
2017-04-01
We investigate the development of mantle anisotropy associated with the evolution of the Rif-Gibraltar-Betic (RGB) slab of the western Mediterranean and predict SKS-splitting directions for comparison with the recent observations compiled in Diaz and Gallart (2014). Our numerical model of slab evolution starts at 35 Ma and builds on our on recent work (Chertova et al., 2014) with the extension of imposing mantle flow velocities on the side boundaries of the model (Chertova et al., 2017). For the calculation of the evolution of finite strain deformation from the mantle flow field and for prediction of SKS-splitting directions we use the modified D-Rex program of Faccenda (2014). We test the predicted splitting observations against present-day shear wave splitting observations for subduction models with open boundary conditions (Chertova, 2014) and for models with various prescribed mantle flow conditions on the model side boundaries. The latter are predicted time-dependent (1 Myr time steps) velocity boundary conditions computed from back-advection of a temperature and density model of the present-day mantle scaled from a global seismic tomography model (Steinberger et al., 2015). These boundary conditions where used recently to demonstrate the relative insensitivity of RGB slab position and overall slab morphology for external mantle flow (Chertova et al., 2017). Using open boundaries only we obtain a poor to moderate fit between predicted and observed splitting directions after 35 Myr of slab and mantle flow evolution. In contrast, a good fit is obtained when imposing the computed mantle flow velocities on the western, southern, and northern boundaries during 35 Myr of model evolution. This successful model combines local slab-driven mantle flow with remotely forced mantle flow. We are in the process to repeat these calculations for shorter periods of mantle flow evolution to determine how much of past mantle flow is implicitly recorded in present-day observation of SKS splitting. In combination with our recent work on the influence of external mantle flow on RGB slab evolution (Chertova et al., 2017) we have also demonstrated that (1) the preferred slab evolution model of Chertova et al. (2014; their "Scenario 1" in which RGB subduction starts at the Baleares margin some 35 Myr ago and then rolls back southward to Africa and next to the W and finally to NW to create the future Rif-Gibraltar-Betics cordillera), is robust with respect to the impact of global mantle flow for the past 35 Myr and that (2) only the combination of global flow with local slab-induced flow leads to mantle anisotropy prediction that consistent with present-day observations of present-day SKS splitting. Steinberger, B., W.Spakman, P.Japsen and T.H.Torsvik (2015), The key role of global solid Earth processes in the late Cenozoic intensification of Greenland glaciation. Terra Nova, 27 Chertova, M.V., W.Spakman, T. Geenen, A.P. van den Berg, D.J.J. van Hinsbergen (2014), Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling. J. Geophys. Res. Solid Earth Chertova, M., W.Spakman and B.Steinberger (2017), Mantle flow influence on subduction evolution, submitted to J. Geophys. Res. Solid Earth Faccenda, M. (2014), Mid mantle seismic anisotropy around subduction zones, Physics of the Earth and Planetary Interiors Diaz, J., and J. Gallart (2014) Seismic anisotropy from the Variscan core of Iberia to the western African Craton: New constraints on upper mantle flow at regional scale. Earth and Planetary Science Letters
Reconciling laboratory and observational models of mantle rheology in geodynamic modelling
NASA Astrophysics Data System (ADS)
King, Scott D.
2016-10-01
Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high-stress regions of the lower mantle, may be in the dislocation creep (power-law) regime. Due to our limited knowledge of mantle grain size, the best hope to resolve the question of whether a region is in diffusion creep (Newtonian rheology) or dislocation or grain-boundary creep (power-law rheology), may be the presence of absence of seismic anisotropy, because there is no mechanism to rotate crystals in diffusion creep which would be necessary to develop anisotropy from lattice preferred orientation. While non-intuitive, the presence or absence of a weak region in the upper mantle has a profound effect on lower mantle flow. With an asthenosphere, the lower mantle organizes into a long-wavelength plan form with one or two (degree 1 or degree 2) large downwellings and updrafts, which may contain a cluster of plumes. The boundary between the long-wavelength lower mantle flow and upper region flow may be deeper, likely 800-1200 km, than the usually assumed base of the transition zone. There are competing hypotheses as to whether this change in flow pattern is caused by a change in rheology, composition, or phase.
The Cascadia Paradox: Understanding Mantle Flow in the Cascadia Subduction System
NASA Astrophysics Data System (ADS)
Long, M. D.
2015-12-01
The pattern of mantle flow in subduction systems, and the processes that control the mantle flow field, is a fundamental but still poorly understood aspect of subduction dynamics. Mantle flow plays a key role in controlling the transport of volatiles and melt in the wedge, deformation of the overriding plate, mass transfer between the upper and lower mantle, and the morphology and dynamics of slabs. The Cascadia subduction zone provides a compelling system in which to understand the controls on mantle flow, particularly given the dense geophysical observations provided by EarthScope, GeoPRISMS, the Cascadia Initiative, and related efforts. Cascadia is a particularly intriguing system because observations of seismic anisotropy, which provide relatively direct constraints on mantle flow, seem to yield contradictory views of the mantle flow field in different parts of the system. Observations of seismic anisotropy on the overriding plate apparently require a significant component of three-dimensional, toroidal flow around the slab edge, while new observations from offshore stations are compellingly explained with a simple two-dimensional entrained flow model. Recent evidence from seismic tomography for the fragmentation of the Cascadia slab at depth provides a further puzzle: how can a fragmented slab provide a driving force for either two-dimensional entrained flow or three-dimensional toroidal flow due to slab rollback? I will present a synthesis of recent observations of seismic anisotropy in the Cascadia subduction system, and how they can be integrated with constraints from geodynamical modeling, geochemistry, and the history and timing of Pacific Northwest volcanism. I will discuss the compelling but contradictory evidence for each of the endmember mantle flow models (two-dimensional entrained flow vs. three-dimensional toroidal flow) and explore possible avenues for resolving the Cascadia Paradox.
Thermal buoyancy on Venus - Underthrusting vs subduction
NASA Technical Reports Server (NTRS)
Burt, Jeffrey D.; Head, James W.
1992-01-01
The thermal and buoyancy consequences of the subduction endmember are modeled in an attempt to evaluate the conditions distinguishing underthrusting and subduction. Thermal changes in slabs subducting into the Venusian mantle with a range of initial geotherms are used to predict density changes and, thus, slab buoyancy. Based on a model for subduction-induced mantle flow, it is then argued that the angle of the slab dip helps differentiate between underthrusting and subduction. Mantle flow applies torques to the slab which, in combination with torques due to slab buoyancy, act to change the angle of slab dip.
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
Bunge, Hans-Peter; Richards, M A; Baumgardner, J R
2002-11-15
Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories limited in age to the Cretaceous. This result implies that sequential assimilation of past plate-motion models is ineffective in studying the temporal evolution of core-mantle-boundary heterogeneity, and that a method for extrapolating present-day information backwards in time is required. For short time periods (of the order of perhaps a few tens of Myr) such a method exists in the form of crude 'backward' convection calculations. For longer time periods (of the order of a mantle overturn), a rigorous approach to extrapolating information back in time exists in the form of iterative nonlinear optimization methods that carry assimilated information into the past through the use of an adjoint mantle convection model.
Insights into asthenospheric anisotropy and deformation in Mainland China
NASA Astrophysics Data System (ADS)
Zhu, Tao
2018-03-01
Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.
NASA Astrophysics Data System (ADS)
Cerpa, N. G.; Wada, I.; Wilson, C. R.; Spiegelman, M. W.
2016-12-01
We develop a 2D numerical porous flow model that incorporates both grain size distribution and matrix compaction to explore the fluid migration (FM) pathways in the mantle wedge. Melt generation for arc volcanism is thought to be triggered by slab-derived fluids that migrate into the hot overlying mantle and reduce its melting temperature. While the narrow location of the arcs relative to the top of the slab ( 100±30 km) is a robust observation, the release of fluids is predicted to occur over a wide range of depth. Reconciling such observations and predictions remains a challenge for the geodynamic community. Fluid transport by porous flow depends on the permeability of the medium which in turn depends on fluid fraction and mineral grain size. The grain size distribution in the mantle wedge predicted by laboratory derived laws was found to be a possible mechanism to focusing of fluids beneath the arcs [Wada and Behn, 2015]. The viscous resistance of the matrix to the volumetric strain generates compaction pressure that affects fluid flow and can also focus fluids towards the arc [Wilson et al, 2014]. We thus have developed a 2D one-way coupled Darcy's-Stokes flow model (solid flow independent of fluid flow) for the mantle wedge that combines both effects. For the solid flow calculation, we use a kinematic-dynamic approach where the system is driven by the prescribed slab velocity. The solid rheology accounts for both dislocation and diffusion creep and we calculate the grain size distribution following Wada and Behn [2015]. In our fluid flow model, the permeability of the medium is grain size dependent and the matrix bulk viscosity depends on solid shear viscosity and fluid fraction. The fluid influx from the slab is imposed as a boundary condition at the base of the mantle wedge. We solve the discretized governing equations using the software package TerraFERMA. Applying a range of model parameter values, including slab age, slab dip, subduction rate, and fluid influx, we quantify the combined effects of grain size and compaction on fluid flow paths.
NASA Astrophysics Data System (ADS)
McLean, K. A.; Jadamec, M.; Durance-Sie, P. M.; Moresi, L. N.
2011-12-01
The Vanuatu area of the south-west Pacific is a dynamic region of high heat-flow and strain-rate, dominated by ongoing plate boundary processes. At the southern termination of the Vanuatu arc the curved geometry of the New Hebrides trench juxtaposes the slab edge perpendicular to its back-arc spreading center. While existing 3D subduction models have demonstrated the importance of mantle flow around a slab edge, the nature of interaction between back-arc upwelling and circum-slab edge mantle flow is not well understood. We use 3D instantaneous numerical models of a Newtonian mantle rheology to test the effect of the slab edge and back-arc upwelling on the mantle flow vector field beneath southern Vanuatu. These high-resolution models simulate temperature-dependent buoyancy-driven deformation of the lithosphere and mantle for a realistic slab geometry. Model results show a small but significant component of vertical mantle flow velocity associated with the slab edge and back-arc spreading center. We also see strain-rate and dynamic topography commensurate with surface observations. Mantle flow by toroidal-type motion brings hotter mantle material from behind the slab into the mantle wedge, elevating geothermal gradients in the slab edge vicinity. The implications of moderate vertical displacement of this hot mantle material at the slab edge are wide-ranging, and such a tectonic framework might aid interpretation of a number of surface observations. For example, induced decompression partial-melting in the mantle wedge and/or slab, and thermal erosion of the slab may contribute to the diverse magma compositions from this region.
NASA Astrophysics Data System (ADS)
McNamara, Allen; Li, Mingming; Garnero, Ed; Marin, Nicole
2017-04-01
Seismic observations of the lower mantle infer multiple scales of compositional heterogeneity. The largest-scale heterogeneity, observed in seismic tomography models, is in the form of large, nearly antipodal regions referred to as the Large Low Shear Velocity Provinces (LLSVPs). In contrast, diffracted wave and core-reflection precursor seismic studies reveal small-scale Ultra Low Velocity Zones (ULVZs) at the base of the mantle that are almost two orders of magnitude smaller than the LLSVPs. We hypothesize that ULVZs provide insight into the nature of LLSVPs, and the LLSVPs, in turn, provide clues to the nature of global-scale mantle convection and compositional state. However, both LLSVPs and ULVZs are observations, and it remains unclear what is causing them. Here, we examine several related questions to aid in understanding their cause and the dynamical processes associated with them. Can we use seismic observations of ULVZ locations to differentiate whether they are caused by compositional heterogeneity or simply partial melting in otherwise normal mantle? Can we use the map-view shape of ULVZs to tell us about lowermost mantle flow directions and the temporal stability of these flow directions? Can the cross-sectional morphology of ULVZs tell us something about the viscosity difference between LLSVPs and background mantle? We performed geodynamical experiments to help answer these questions. We find that ULVZs caused by compositional heterogeneity preferentially form patch-like shapes along the margins of LLSVPs. Rounded patches indicate regions with long-lived stable mantle flow patterns, and linear patches indicate changing mantle flow patterns. Typically, these ULVZ patches have an asymmetrical cross-sectional shape; however, if LLSVPs have a larger grain-size than background mantle, their increased diffusion creep viscosity will act to make them more symmetrical. Alternatively, ULVZs caused simply by partial melting of normal mantle are preferentially located significantly inboard of LLSVP margins and have relatively symmetrical cross-sectional shapes. These results can prompt new seismic studies to better constrain the cause and dynamic significance of multi-scale compositional heterogeneity in the Earth's mantle.
Flow in the Deep Mantle from Seisimc Anisotropy: Progress and Prospects
NASA Astrophysics Data System (ADS)
Long, M. D.
2017-12-01
Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's mantle. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper mantle anisotropy has led to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep mantle (transition zone, uppermost lower mantle, and lowermost mantle), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-mantle anisotropy (transition zone and uppermost lower mantle), particularly in subduction systems, which may eventually lead to a better understanding of mid-mantle deformation and the dynamics of slab interaction with the surrounding mid-mantle. New approaches to the observation and modeling of lowermost mantle anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different mantle flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing improvements in seismic observational strategies, experimental and computational mineral physics, and geodynamic modeling approaches are leading to new avenues for understanding flow in the deep mantle through the study of seismic anisotropy.
NASA Astrophysics Data System (ADS)
Ribeiro, Julia M.; Stern, Robert J.; Martinez, Fernando; Woodhead, Jon; Chen, Min; Ohara, Yasuhiko
2017-11-01
At subduction zones, sinking of the downgoing lithosphere is thought to enable a return flow of asthenospheric mantle around the slab edges, so that the asthenosphere from underneath the slab invades the ambient mantle flowing underneath the volcanic arc and the backarc basin. For instance at the northern end of the Lau Basin, trench retreat and slab rollback enable toroidal return flow of Samoan mantle beneath a transform margin to provide a supply of fresh, undepleted Indian mantle that feeds the backarc spreading center. Questions, however, arise about the sense of mantle flow when plate kinematics predict that the trench is advancing, as seen in the Mariana convergent margin. Does the mantle flow in or does it escape outward through slab tears or gaps? Here, we address the origin and sense of asthenospheric mantle flow supplying the southern Mariana convergent margin, a region of strong extension occurring above the subducting Pacific plate. Does the asthenosphere flow northward, from underneath the Pacific plate and Caroline hotspot through a slab tear or gap, or does it flow outward from the Mariana Trough, which possesses a characteristic Indian Ocean isotopic signature? To address these questions, we integrate geodetic data along with new Hf-Nd isotopic data for fresh basaltic lavas from three tectonic provinces in the southernmost Marianas: the Fina Nagu volcanic complex, the Malaguana-Gadao backarc spreading ridge and the SE Mariana forearc rift. Our results indicate that Indian mantle flows outward and likely escapes through slab tears or gaps to accommodate shrinking of the Philippine Sea plate. We thus predict that asthenospheric flow around the Pacific slab at the southern Mariana Trench is opposite to that predicted by most subduction-driven mantle flow models.
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle
Lee, Changyeol; Wada, Ikuko
2017-01-01
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering. PMID:28660880
Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.
Lee, Changyeol; Wada, Ikuko
2017-06-29
Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.
Role of mantle flow in Nubia-Somalia plate divergence
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Iaffaldano, G.; Calais, E.
2015-01-01
Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.
Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland
Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.
2002-01-01
Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.
Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics
NASA Astrophysics Data System (ADS)
Pan, J.; Huang, F.; He, L.; Wu, Q.
2015-12-01
The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.
NASA Astrophysics Data System (ADS)
Tirone, Massimiliano
2018-03-01
In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.
The mantle flow field beneath western North America.
Silver, P G; Holt, W E
2002-02-08
Although motions at the surface of tectonic plates are well determined, the accompanying horizontal mantle flow is not. We have combined observations of surface deformation and upper mantle seismic anisotropy to estimate this flow field for western North America. We find that the mantle velocity is 5.5 +/- 1.5 centimeters per year due east in a hot spot reference frame, nearly opposite to the direction of North American plate motion (west-southwest). The flow is only weakly coupled to the motion of the surface plate, producing a small drag force. This flow field is probably due to heterogeneity in mantle density associated with the former Farallon oceanic plate beneath North America.
Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling
Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; Glišović, Petar; Moucha, Robert; Grand, Stephen P.; Simmons, Nathan A.
2016-01-01
Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region. PMID:28028535
Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling.
Rowley, David B; Forte, Alessandro M; Rowan, Christopher J; Glišović, Petar; Moucha, Robert; Grand, Stephen P; Simmons, Nathan A
2016-12-01
Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.
Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.
Jadamec, Margarete A; Billen, Magali I
2010-05-20
The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.
Using the heterogeneity distribution in Earth's mantle to study structure and flow
NASA Astrophysics Data System (ADS)
Rost, S.; Frost, D. A.; Bentham, H. L.
2016-12-01
The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.
Mantle flow through a tear in the Nazca slab inferred from shear wave splitting
NASA Astrophysics Data System (ADS)
Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh
2017-07-01
A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.
Mantle plumes and associated flow beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Van der Lee, Suzan
2011-02-01
We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.
NASA Astrophysics Data System (ADS)
Ogawa, M.
2017-12-01
The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra < 107, basaltic materials generated by the initial widespread magmatism accumulate in the deep mantle to form a layer; the basaltic layer is colder than the overlying shallow mantle. At Ra > 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.
On retrodictions of global mantle flow with assimilated surface velocities
NASA Astrophysics Data System (ADS)
Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.
2016-04-01
Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.
On retrodictions of global mantle flow with assimilated surface velocities
NASA Astrophysics Data System (ADS)
Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.
2015-10-01
Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.
NASA Astrophysics Data System (ADS)
Mareschal, J.; Jaupart, C. P.
2013-12-01
Most of the variations in surface heat flux in stable continents are caused by variations in crustal heat production, with an almost uniform heat flux at the base of the crust ( 15+/-3 mW/m2). Such relatively small differences in Moho heat flux cannot be resolved by heat flow data alone, but they lead to important lateral variations in lithospheric temperatures and thicknesses. In order to better constrain temperatures in the lower lithosphere, we have combined surface heat flow and heat production data from the southern Superior Province in Canada with vertical shear wave velocity profiles obtained from surface wave inversion. We use the Monte-Carlo method to generate lithospheric temperature profiles from which shear wave velocity can be calculated for a given mantle composition. We eliminate thermal models which yield lithospheric and sub-lithospheric velocities that do not fit the shear wave velocity profile. Surface heat flux being constrained, the free parameters of the thermal model are: the mantle heat flux, the mantle heat production, the crustal differentiation index (ratio of surface to bulk crustal heat production) and the temperature of the mantle isentrope. Two conclusions emerge from this study. One is that, for some profiles, the vertical variations in shear wave velocities cannot be accounted for by temperature alone but also require compositional changes within the lithosphere. The second is that there are long wavelength horizontal variations in mantle temperatures (~80-100K) at the base of the lithosphere and in the mantle below
Chichester, D.C.
1996-01-01
The U.S. Geological Survey conducted a study in a highly productive and complex regolith-mantled carbonate valley in the northeastern part of the Cumberland Valley, Pa., as part of its Appalachian Valleys and Piedmont Regional Aquifer-system Analysis program. The study was designed to quantify the hydrogeologic characteristics and understand the ground-water flow system of a highly productive and complex thickly mantled carbonate valley. The Cumberland Valley is characterized by complexly folded and faulted carbonate bedrock in the valley bottom, by shale and graywacke to the north, and by red-sedimentary and diabase rocks in the east-southeast. Near the southern valley hillslope, the carbonate rock is overlain by wedge-shaped deposit of regolith, up to 450 feet thick, that is composed of residual material, alluvium, and colluvium. Locally, saturated regolith is greater than 200 feet thick. Seepage-run data indicate that stream reaches, near valley walls, are losing water from the stream, through the regolith, to the ground-water system. Results of hydrograph-separation analyses indicate that base flow in stream basins dominated by regolith-mantled carbonate rock, carbonate rock, and carbonate rock and shale are 81.6, 93.0, and 67.7 percent of total streamflow, respectively. The relative high percentage for the regolith-mantled carbonate-rock basin indicates that the regolith stores precipitation and slowly, steadily releases this water to the carbonate-rock aquifer and to streams as base flow. Anomalies in water-table gradients and configuration are a result of topography and differences in the character and distribution of overburden material, permeability, rock type, and geologic structure. Most ground-water flow is local, and ground water discharges to nearby springs and streams. Regional flow is northeastward to the Susquehanna River. Average-annual water budgets were calculated for the period of record from two continuous streamflow-gaging stations. Average-annual precipitation range from 39.0 to 40.5 inches, and averages about 40 inches for the model area. Average-annual recharge, which was assumed equal to the average-annual base flow, ranged from 12 inches for the Conodoguinet Creek, and 15 inches for the Yellow Breeches Creek. The thickly-mantled carbonate system was modeled as a three- dimensional water-table aquifer. Recharge to, ground-water flow through, and discharge from the Cumberland Valley were simulated. The model was calibrated for steady-state conditions using average recharge and discharge data. Aquifer horizontal hydraulic conductivity was calculated from specific-capacity data for each geologic unit in the area. Particle-tracking analyses indicate that interbasin and intrabasin flows of groundwater occur within the Yellow Breeches Creek Basin and between the Yellow Breeches and Conodoguinet Creek Basins.
Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.
Carrez, Philippe; Ferré, Denise; Cordier, Patrick
2007-03-01
The dynamics of the Earth's interior is largely controlled by mantle convection, which transports radiogenic and primordial heat towards the surface. Slow stirring of the deep mantle is achieved in the solid state through high-temperature creep of rocks, which are dominated by the mineral MgSiO3 perovskite. Transformation of MgSiO3 to a 'post-perovskite' phase may explain the peculiarities of the lowermost mantle, such as the observed seismic anisotropy, but the mechanical properties of these mineralogical phases are largely unknown. Plastic flow of solids involves the motion of a large number of crystal defects, named dislocations. A quantitative description of flow in the Earth's mantle requires information about dislocations in high-pressure minerals and their behaviour under stress. This property is currently out of reach of direct atomistic simulations using either empirical interatomic potentials or ab initio calculations. Here we report an alternative to direct atomistic simulations based on the framework of the Peierls-Nabarro model. Dislocation core models are proposed for MgSiO3 perovskite (at 100 GPa) and post-perovskite (at 120 GPa). We show that in perovskite, plastic deformation is strongly influenced by the orthorhombic distortions of the unit cell. In silicate post-perovskite, large dislocations are relaxed through core dissociation, with implications for the mechanical properties and seismic anisotropy of the lowermost mantle.
NASA Astrophysics Data System (ADS)
Bunge, H.; Hagelberg, C.; Travis, B.
2002-12-01
EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid-Cretaceous mantle structure can be inferred accurately from our inverse approach assuming present-day mantle structure is well-known, even if an initial first guess assumption about the mid-Cretaceous mantle involved only a simple 1-D radial temperature profile. We suggest that geodynamic inverse modeling should make it possible to infer a number of flow parameters from observational constraints of the mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.
Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pullmore » should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. Lastly, the mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.« less
Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; ...
2016-12-23
Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pullmore » should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. Lastly, the mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.« less
Stability of active mantle upwelling revealed by net characteristics of plate tectonics.
Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H
2013-06-27
Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.
Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C. R.
2015-12-01
Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based upon 2-D, steady-state thermal and flow regimes. We reiterate the importance of 4-D time evolution in subduction models. Analogue experiments allow added feedbacks and complexity improving intuition and providing insight for further investigation.
Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data
NASA Astrophysics Data System (ADS)
Petricca, Patrizio; Carminati, Eugenio
2016-01-01
3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.
NASA Astrophysics Data System (ADS)
Stamps, S.; Bangerth, W.; Hager, B. H.
2014-12-01
The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.
The dynamics of plate tectonics and mantle flow: from local to global scales.
Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar
2010-08-27
Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.
Mantle shear-wave tomography and the fate of subducted slabs.
Grand, Steven P
2002-11-15
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography
NASA Astrophysics Data System (ADS)
Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.
2018-05-01
The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.
Mantle Flow Induced by Subduction Beneath Taurides Mountains
NASA Astrophysics Data System (ADS)
Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.
2017-12-01
GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the mantle, we explore the mantle strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the mantle. In our numerical model, we observe a poloidal component of the mantle flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of mantle flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric mantle below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This mantle flow pattern may explain the shear-wave splitting directions in central Anatolia.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Dunham, C.; Stuart, G. W.; Brisbourne, A.; Nield, G. A.; Whitehouse, P. L.; Hooper, A. J.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.; Winberry, J. P.
2017-12-01
Quantifying the geothermal heat flux at the base of ice sheets is necessary to understand their dynamics and evolution. The heat flux is a composite function of concentration of upper crustal radiogenic elements and flow of heat from the mantle into the crust. Radiogenic element concentration varies with tectonothermal age, while heat flow across the crust-mantle boundary depends on crustal and lithospheric thicknesses. Meanwhile, accurately monitoring current ice mass loss via satellite gravimetry or altimetry hinges on knowing the upper mantle viscosity structure needed to account for the superimposed glacial isostatic adjustment (GIA) signal in the satellite data. In early 2016 the UK Antarctic Network (UKANET) of 10 broadband seismometers was deployed for two years across the southern Antarctic Peninsula and Ellsworth Land. Using UKANET data in conjunction with seismic records from our partner US Polar Earth Observing Network (POLENET) and the Antarctic Seismographic Argentinian Italian Network (ASAIN), we have developed a 3D shear wave velocity model of the West Antarctic crust and uppermost mantle based on Rayleigh and Love wave phase velocity dispersion curves extracted from ambient noise cross-correlograms. We combine seismic receiver functions with the shear wave model to help constrain the depth to the crust-mantle boundary across West Antarctica and delineate tectonic domains. The shear wave model is subsequently converted to temperature using a database of densities and elastic properties of minerals common in crustal and mantle rocks, while the various tectonic domains are assigned upper crustal radiogenic element concentrations based on their inferred tectonothermal ages. We combine this information to map the basal geothermal heat flux variation across West Antarctica. Mantle viscosity depends on factors including temperature, grain size, the hydrogen content of olivine and the presence of melt. Using published mantle xenolith and magnetotelluric data to constrain grain size and hydrogen content, respectively, we use the temperature model to estimate the regional upper mantle viscosity structure. The viscosity information will be incorporated in a 3D GIA model that will better constrain estimates of current ice loss from the West Antarctic Ice Sheet.
Modes of mantle convection and the removal of heat from the earth's interior
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thermal histories for two-layer and whole-mantle convection models are calculated and presented, based on a parameterization of convective heat transport. The model is composed of two concentric spherical shells surrounding a spherical core. The models were constrained to yield the observed present-day surface heat flow and mantle viscosity, in order to determine parameters. These parameters were varied to determine their effects on the results. Studies show that whole-mantle convection removes three times more primordial heat from the earth interior and six times more from the core than does two-layer convection (in 4.5 billion years). Mantle volumetric heat generation rates for both models are comparable to that of a potassium-depleted chondrite, and thus surface heat-flux balance does not require potassium in the core. Whole and two-layer mantle convection differences are primarily due to lower mantle thermal insulation and the lower heat removal efficiency of the upper mantle as compared with that of the whole mantle.
NASA Astrophysics Data System (ADS)
Boutelier, D.; Cruden, A. R.
2005-12-01
New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch from compression to extension. The density contrast between the downgoing plate and asthenosphere is varied from 0% to ~2% in order to investigate the relative contributions of mantle flow and slab pull force on the geometry of the slab and tectonic regime (compressional or extensional).
Numerical Mantle Convection Models With a Flexible Thermodynamic Interface
NASA Astrophysics Data System (ADS)
van den Berg, A. P.; Jacobs, M. H.; de Jong, B. H.
2001-12-01
Accurate material properties are needed for deep mantle (P,T) conditions in order to predict the longterm behavior of convection planetary mantles. Also the interpretation of seismological observations concerning the deep mantle in terms of mantle flow models calls for a consistent thermodynamical description of the basic physical parameters. We have interfaced a compressible convection code using the anelastic liquid approach based on finite element methods, to a database containing a full thermodynamic description of mantle silicates (Ita and King, J. Geophys. Res., 99, 15,939-15,940, 1994). The model is based on high resolution (P,T) tables of the relevant thermodynamic properties containing typically 50 million (P,T) table gridpoints to obtain resolution in (P,T) space of 1 K and an equivalent of 1 km. The resulting model is completely flexible such that numerical mantle convection experiments can be performed for any mantle composition for which the thermodynamic database is available. We present results of experiments for 2D cartesian models using a data base for magnesium-iron silicate in a pyrolitic composition (Stixrude and Bukowinski, Geoph.Monogr.Ser., 74, 131-142, 1993) and a recent thermodynamical model for magnesium silicate for the complete mantle (P,T) range, (Jacobs and Oonk, Phys. Chem. Mineral, 269, inpress 2001). Preliminary results of bulksound velocity distribution derived in a consistent way from the convection results and the thermodynamic database show a `realistic' mantle profile with bulkvelocity variations decreasing from several percent in the upper mantle to less than a percent in the deep lower mantle.
Thermal structure and geodynamics of subduction zones
NASA Astrophysics Data System (ADS)
Wada, Ikuko
The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.
Large-scale trench-normal mantle flow beneath central South America
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rümpker, G.; Wölbern, I.
2018-01-01
We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.
Electrical image of passive mantle upwelling beneath the northern East Pacific Rise.
Key, Kerry; Constable, Steven; Liu, Lijun; Pommier, Anne
2013-03-28
Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling that suggest anomalous mantle pressure and temperature gradients, and by observations of concentrated upwelling centres consistent with active models where buoyancy forces give rise to focused convective flow. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20-90 kilometres that is consistent with partial melting of passively upwelling mantle. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10-20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly is evidence of shallow magma transport channels rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible.
NASA Astrophysics Data System (ADS)
Ye, Z.; Li, J.; Gao*, R.; Song, X.; Li, Q.; Li, Y.; Huang, X.; Xiong, X.; Li, W.; WANG, Y.
2017-12-01
Based on a dense linear seismic array traversing across the eastern margin of the Tibetan plateau to the Qinling belt, we conducted joint inversion of receiver functions and surface wave dispersions under constraints of P-wave velocity and derived a crustal and uppermost mantle Vs profile simultaneously with a Vp/Vs ratio profile. Our observations indicate that the Qinling belt, which shows ratio Vp/Vs<1.8 indicative of intermediate-to-felsic components in the lower crust, is currently not acting as a channel accommodating extrusion of the mid-lower crustal flow; and extrusion of Tibet's ductile mantle flow through the Qinling belt as a channel would only be feasible in the sub-lithosphere depth (asthenosphere). Our results suggest that ductile material extrusion of the mid-lower crustal flow accompanied with fault-related tectonics and gravitational buoyancy resulted from lithospheric detachment (triggered by the asthenospheric flow) may jointly work on the plateau uplift and expansion in this Tibet-Qinling transition zone. Corresponding Author: R.Gao, ruigao126@126.com
Mantle heat flow and thermal structure of the northern block of Southern Granulite Terrain, India
NASA Astrophysics Data System (ADS)
Manglik, Ajay
2006-07-01
Continental shield regions are normally characterized by low-to-moderate mantle heat flow. Archaean Dharwar craton of the Indian continental shield also follows the similar global pattern. However, some recent studies have inferred significantly higher mantle heat flow for the Proterozoic northern block of Southern Granulite Terrain (SGT) in the immediate vicinity of the Dharwar craton by assuming that the radiogenic elements depleted exposed granulites constitute the 45-km-thick crust. In this study, we use four-layered model of the crustal structure revealed by integrated geophysical studies along a geo-transect in this region to estimate the mantle heat flow. The results indicate that: (i) the mantle heat flow of the northern block of SGT is 17 ± 2 mW/m 2, supporting the global pattern, and (ii) the lateral variability of 10-12 mW/m 2 in the surface heat flow within the block is of crustal origin. In terms of temperature, the Moho beneath the eastern Salem-Namakkal region appears to be at 80-100 °C higher temperature than that beneath the western Avinashi region.
Mantle Flow in the Western United States Constrained by Seismic Anisotropy
NASA Astrophysics Data System (ADS)
Niday, W.; Humphreys, E.
2017-12-01
Shear wave splitting, caused by the lattice preferred orientation (LPO) of olivine crystals under shear deformation, provide a useful constraint on numerical models of mantle flow. Although it is sometimes assumed that shear wave splitting fast directions correspond with mantle flow directions, this is only true in simple shear flows that do not vary strongly with space or time. Observed shear wave splitting in the western United States is complex and inconsistent with simple shear driven by North American and Pacific plate motion, suggesting that the effects of time-dependent subduction history and spatial heterogeneity are important. Liu and Stegman (2011) reproduce the pattern of fast seismic anomalies below the western US from Farallon subduction history, and Chaparro and Stegman (2017) reproduce the circular anisotropy field below the Great Basin. We extend this to consider anisotropic structure outside the Great Basin and evaluate the density and viscosity of seismic anomalies such as slabs and Yellowstone. We use the mantle convection code ASPECT to simulate 3D buoyancy-driven flow in the mantle below the western US, and predict LPO using the modeled flow fields. We present results from a suite of models varying the sub-lithospheric structures of the western US and constraints on density and viscosity variations in the upper mantle.
Report of the panel on earth structure and dynamics, section 6
NASA Technical Reports Server (NTRS)
Dziewonski, Adam M.; Mcadoo, David C.; Oconnell, Richard J.; Smylie, Douglas E.; Yoder, Charles F.
1991-01-01
The panel identified problems related to the dynamics of the core and mantle that should be addressed by NASA programs. They include investigating the geodynamo based on observations of the Earth's magnetic field, determining the rheology of the mantle from geodetic observations of post-glacial vertical motions and changes in the gravity field, and determining the coupling between plate motions and mantle flow from geodetic observations of plate deformation. Also emphasized is the importance of support for interdisciplinary research to combine various data sets with models which couple rheology, structure and dynamics.
NASA Astrophysics Data System (ADS)
Chatzaras, V.; Kruckenberg, S. C.; Titus, S.; Tikoff, B.; Teyssier, C. P.; Drury, M. R.
2016-12-01
We provide geological constraints on mantle deformation across a system of two oceanic paleotransform faults exposed in the Bogota Peninsula area, New Caledonia. Mantle deformation occurred at depths corresponding to temperatures of 900 oC and is highly heterogeneous. The paleotransform faults consist of mylonitic shear zones ( 1 km wide), and are surrounded by broader areas in which rotation of both the shape fabric (foliation and lineation) and olivine crystallographic preferred orientation (CPO) takes place. Outside the plaeotransform faults, mantle flows oblique to the strike of the mylonitic zones and is characterized by lateral variations in the flow direction. To further constrain the kinematics and type of deformation, we determine the orientation of the crystallographic vorticity axes as an independent tool for constraining deformation geometry (e.g., simple shear, transpression, transtension). The observed mantle flow is associated to lateral variations in: 1) the geometry and degree of anisotropy of spinel shape fabric; 2) olivine CPO type; 3) amount of stretching; and 4) the orientation of the crystallographic vorticity axes. Upper mantle in the vicinity of oceanic transform faults may be characterized by complex, three-dimensional flow patterns and deformation geometries deviating from simple shear.
Free and forced convection in Earth's upper mantle
NASA Astrophysics Data System (ADS)
Hall, Paul S.
Convective motion within Earth's upper mantle occurs as a combination of two primary modes: (1) buoyant upwelling due to the formation of gravitational instabilities at thermochemical boundary layers, and (2) passive flow associated with the divergence of lithospheric plates at mid-ocean ridges and their re-entry into the mantle at subduction zones. The first mode is driven by variations in density and is therefore classified as 'free' convection. Examples of free convection within the Earth include the diapiric flow of hydrous and/or partially molten mantle at subduction zones and mantle plumes. The second mode, while ultimately driven by density on a global scale, can be treated kinematically on the scale of the upper mantle. This type of flow is designated 'forced' convection. On the scale of individual buoyant upwellings in the upper mantle, the forced convection associated with plate tectonics acts to modify the morphology of the flow associated with free convection. Regions in which such interactions occur are typically associated with transfer of significant quantities of both mass and energy (i.e., heat) between the deep interior and the surface of the Earth and thus afford a window into the dynamics of the Earth's interior. The dynamics and the consequences of the interaction between these two modes of convection is the focus of this dissertation. I have employed both laboratory and numerical modeling techniques to investigate the interaction between free and forced convection in this study. Each of these approaches has its own inherent strengths and weaknesses. These approaches are therefore complementary, and their use in combination is particularly powerful. I have focused on two examples interaction between free and forced convection in the upper mantle in this study. Chapter I considers the interaction between ascending diapirs of hydrous and/or partially molten mantle and flow in the mantle wedge at subduction zones using laboratory models. Chapter II and Chapter III consider the interaction between an ascending mantle plume and the large scale shear flow associated with the divergence of plates at a nearby ridge axis.
NASA Astrophysics Data System (ADS)
Wilson, M.; Houlie, N.; Khan, A.; Lithgow-Bertelloni, C. R.
2012-12-01
The Azores Plateau and Archipelago in the Central Atlantic Ocean has traditionally been considered as the surface expression of a deep mantle plume or hotspot that has interacted with a mid-ocean ridge. It is geodynamically associated with the triple junction between the North American, African and Eurasian plates. (Yang et al., 2006) used finite frequency seismic tomography to demonstrate the presence of a zone of low P-wave velocities (peak magnitude -1.5%) in the uppermost 200km of the mantle beneath the plateau. The tomographic model is consistent with SW deflection of a mantle plume by regional upper mantle shear flow driven by absolute plate motions. The volcanic island of Sao Miguel is located within the Terceira Rift, believed to represent the boundary between the African and Eurasian plates; magmatic activity has been characterised by abundant basaltic eruptions in the past 30,000 years. The basalts are distinctive within the spectrum of global ocean island basalts for their wide range in isotopic composition, particularly in 87Sr/86Sr. Their Sr-Nd-Pb isotopic compositions show systematic variations from west to east across the island which can be interpreted in terms of melting of a two-component mantle source. The low melting point (enriched) component in the source has been attributed to recycled ancient (~3 Ga) oceanic crust(Elliott et al., 2007). Using the thermo-barometry approach of (Lee et al., 2009) we demonstrate that the pressure and temperature of magma generation below Sao Miguel increase from west (2 GPa, 1425 °C) to east (3.8 GPa, 1575 °C), consistent with partial melting along a mantle geotherm with a potential temperature of ~ 1500 °C. This is consistent with the magnitude of the thermal anomaly beneath the Azores Plateau (ΔT ~ 150-200 °C) inferred on the basis of the seismic tomography study. The site of primary magma generation extends from the base of the local lithosphere (~ 50 km) to ~ 125 km depth. To understand the geodynamic setting of the Sao Miguel magmatism we combine GPS data and mantle convection models with our interpretation of the geochemistry of the basalts. We demonstrate strong south-westerly and downward flow in the asthenospheric mantle above the Transition Zone (410 km seismic discontinuity), consistent with a zone of upper mantle shearing below the base of the lithosphere. The maximum flow velocity is broadly consistent with the depth of magma generation. The advection of the mantle with respect to the oceanic plate "moves" an isotopically distinct mantle source component beneath the active volcanoes of Sao Miguel and carries its previous melting residues to the south-west. We discuss the nature of this mantle source and its contribution to the mantle velocity anomalies determined by seismic tomography. This study opens-up new perspectives for seismic tomography and potentially new connections between the fields of geophysics and geochemistry in oceanic domains.
Asymmetric Subductions in an Asymmetric Earth: Geodynamics and Numerical Modeling
NASA Astrophysics Data System (ADS)
Dal Zilio, L.; Ficini, E.; Doglioni, C.; Gerya, T.
2016-12-01
The driving mechanism of plate tectonics is still controversial. Moreover, mantle kinematics is still poorly constrained due to the limited information available on its composition, thermal state, and physical parameters. The net rotation of the lithosphere, or so-called W-ward drift, however, indicates a decoupling of the plates relative to the underlying asthenosphere at about 100-200 km depth in the Low-Velocity Zone and a relative "E-ward" mantle counterflow. This mantle flow can account for a number of tectonic asymmetries on subduction dynamics such as steep versus shallow slab dip, diverging versus converging subduction hinge, low versus high topography of mountain belts, etc. This asymmetry is generally interpreted to reflect the age-dependent negative buoyancy of the subducting lithosphere. However, slab dip is insensitive to the age of the lithosphere. Here we investigate the role of mantle flow in controlling subduction dynamics using a high-resolution rheologically consistent two-dimensional numerical modeling. Results show the evolution of a subducting oceanic plate beneath a continent: when the subducting plate is dipping in opposite direction with respect to the mantle flow, the slab is sub-vertically deflected by the mantle flow, thus leading the coeval development of a back-arc basin. In contrast, agreement between mantle flow and dipping of the subducting slab relieves shallow dipping subduction zone, which in turn controls the development of a pronounced topography. Moreover, this study confirms that the age of the subducting oceanic lithosphere (i.e. its negative buoyancy) has a second order effect on the dip angle of the slab and, more generally, on subduction dynamics. Our numerical experiments show strong similarities to the observed evolution of subduction zone worldwide and demonstrate that the possibility of a horizontal mantle flow is universally valid.
Mantle flow influence on subduction evolution
NASA Astrophysics Data System (ADS)
Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard
2018-05-01
The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.
Episodic kinematics in continental rifts modulated by changes in mantle melt fraction.
Lamb, Simon; Moore, James D P; Smith, Euan; Stern, Tim
2017-07-05
Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift-processes that are also likely to occur in oceanic spreading centres.
The Upper Mantle Flow Field around South-Africa as Reflected by Isotopic Provinciality
NASA Astrophysics Data System (ADS)
Meyzen, C.; Blichert-Toft, J.; Ludden, J.; Humler, E.; Mevel, C.; Albarede, F.
2006-12-01
Isotopic studies of MORB have established the existence of broad isotopic provinces within the underlying asthenosphere, such as in the Indian Ocean (DUPAL). How these features relate to mantle circulation is, however, still unknown. The steepness of the transition between such isotopic provinces will define the geometry of the velocity field in the upper mantle. In this respect, the transition between the Indian and South Atlantic provinces, two domains that are isotopically contrasted, should be readily identifiable over this long ridge segment. Here, we present Hf isotope data for 60 samples dredged along the SWIR between 35° and 69°E. The new Hf isotope data show that the Indian asthenosphere does not spill directly into the South Atlantic upper mantle: the general decreasing southward gradient observed for ^{176}Hf/^{177}Hf down the mid- Atlantic Ridge, and also for Sr isotopes and model Th/U ratios (derived from Pb isotopes), is overprinted by material with radiogenic Sr, unradiogenic Hf and high Th/U. The Indian domain grades into the South Atlantic around Bouvet, while the South Atlantic collides with the Atlantic province around Tristan. We interpret these features to represent fronts between three adjacent isotopic provinces similar to what has been suggested for the Australian-Antarctic Discordance. The common DUPAL signature of MORB and OIB from the Indian province and the geochemistry of Gulf of Aden MORB and the Afar plume suggest that the source of this distinctive mantle component is deep and lies to the north of the province. This is also what the three-dimensional flow field computed by Behn et al. (2004) from shear-wave splitting shows with a major lower mantle upwelling radiating at the base of the asthenosphere under the Afar plume. Lower mantle gushing out from this source flows southward unimpeded along the Indian ridges, whereas it only reaches the South Atlantic ridge after first having been deflected under the deep roots of the South African Archean cratons. Erosion of these roots by the asthenospheric drift confers a distinct continental signature on the source of South Atlantic MORB. This pattern is also consistent with the observation that the lowest He isotope values occur, on average, along the South Atlantic ridge. To some extent, the dynamics of the North Atlantic upper mantle mirrors the Indian situation: the flow field of Behn et al. (2004) shows that the North Atlantic asthenosphere also fills up through deep mantle upwellings, which is consistent with the Dupal-like isotopic signature of the Arctic ridges. M.D. Behn, C.P. Conrad and P.G. Silver (2004), Detection of upper mantle flow associated with the African Superplume, Earth. Planet. Sci. Lett., 224, 259-274.
Circulation of carbon dioxide in the mantle: multiscale modeling
NASA Astrophysics Data System (ADS)
Morra, G.; Yuen, D. A.; Lee, S.
2012-12-01
Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's mantle mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower mantle depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire mantle by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here mantle mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the mantle rocks, at the large scale the fluid phases in the mantle may control the creeping of mantle rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the mantle from the lowest scale up to the mantle scale and in combination with the creeping flow of the convecting mantle. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer Science, 2011.; Boundary Element solution of a flow through a porous. Left boxes represent the the matrix associated with the integrals. The flow enters below and emerges at the top, the amount of flow is identical. The flow is spread in the porous and is viscousless (Laplace equation).
NASA Astrophysics Data System (ADS)
Glišović, P.; Forte, A. M.; Moucha, R.
2012-08-01
One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth's mantle, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the mantle thermal structure that is as 'realistic' (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D mantle convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on mantle structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green's functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green's function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-mantle formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the mantle. The use of geodynamically constrained spectral Green's functions facilitates the modelling of the dynamic impact on the mantle evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile surface plates and a rigid surface. The thermal interpretation of seismic tomography models does not provide a radial profile of the horizontally averaged temperature (i.e. the geotherm) in the mantle. One important goal of this study is to obtain a steady-state geotherm with boundary layers which satisfies energy balance of the system and provides the starting point for more realistic numerical simulations of the Earth's evolution. We obtain surface heat flux in the range of Earth-like values : 37 TW for a rigid surface and 44 TW for a surface with tectonic plates coupled to the mantle flow. Also, our convection simulations deliver CMB heat flux that is on the high end of previously estimated values, namely 13 TW and 20 TW, for rigid and plate-like surface boundary conditions, respectively. We finally employ these two end-member surface boundary conditions to explore the very-long-time scale evolution of convection over billion-year time windows. These billion-year-scale simulations will allow us to determine the extent to which a 'memory' of the starting tomography-based thermal structure is preserved and hence to explore the longevity of the structures in the present-day mantle. The two surface boundary conditions, along with the geodynamically inferred radial viscosity profiles, yield steady-state convective flows that are dominated by long wavelengths throughout the lower mantle. The rigid-surface condition yields a spectrum of mantle heterogeneity dominated by spherical harmonic degree 3 and 4, and the plate-like surface condition yields a pattern dominated by degree 1. Our exploration of the time-dependence of the spatial heterogeneity shows that, for both types of surface boundary condition, deep-mantle hot upwellings resolved in the present-day tomography model are durable and stable features. These deeply rooted mantle plumes show remarkable longevity over very long geological time spans, mainly owing to the geodynamically inferred high viscosity in the lower mantle.
The many impacts of building mountain belts on plate tectonics and mantle flow
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent
2015-04-01
During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Such an increase of stresses in the lithosphere can impact on plate tectonics and mantle dynamics. We show that mountain belts at plate boundaries increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, this changes the dynamic and kinematic surface conditions of the underlying flowing mantle. Ultimately, this modifies the pattern of mantle flow. This forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among these, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, or the initiation of subduction, the onset of obduction, for the lithosphere. In the mantle, such change in boundary condition redesigns the pattern of mantle flow and, consequently, the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere rests. Our results show that when collision occurs, the mantle flow is highly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) to a modification of the convection style. In turn, the transition between a 'free' convection (mobile lid) and an 'upset' convection (stagnant -or sluggish- lid) highly impacts the dynamics of the lithosphere at the surface of the Earth. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, a fact that may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.
Constraints on Fault Permeability from Helium and Heat Flow in the Los Angeles Basin
NASA Astrophysics Data System (ADS)
Garven, G.; Boles, J. R.
2016-12-01
Faults have profound controls on fluid flow in the Earth's crust. Faults affect the diagenesis of sediments, the migration of brines and petroleum, and the dynamics of hydrothermal mineralization. In southern California, the migration of petroleum and noble gases can be used to constrain fault permeability at both the formation and crustal scale. In the Los Angeles Basin, mantle-derived helium is a significant component of casing gas from deep production wells along the Newport-Inglewood Fault zone (NIFZ). Helium isotope ratios are as high as 5.3 Ra, indicating up to 66% mantle contribution along parts of this strike-slip fault zone (Boles et al., 2015). The 3He inversely correlates with CO2, a potential magmatic-derived carrier gas, and the d13C of the CO2 in the 3He rich samples is between 0 and -10 per mil, suggesting a mantle influence. The strong mantle-helium signal along the NIFZ is surprising, considering that the fault is currently in a transpressional state of stress (rather than extensional), has no history of recent magma emplacement, and lacks high geothermal gradients. Structurally it has been modeled as being truncated by a "potentially seismically active" décollement beneath the LA basin. But the geochemical data demonstrate that the NIFZ is a deep-seated fault connected with the mantle. Assuming that the helium migration is linked to the bulk fluid transport in the crust, we have used 1-D reactive mass transport theory to calculate a maximum inter-seismic Darcy flow rate of 2.2 cm yr-1 and intrinsic permeability of 160 microdarcys (1.6 x 10 -16 m2), vertically averaged across the crust. Based on thermal Peclet numbers and numerical models for the basin, we show that fault-focused fluid flow is too slow to elevate heat flow around the NIFZ. Although heat flow data are sparse, there generally doesn't appear to be any clear pattern of anomalous heat flow with the large strike-slip faults of southern California, suggesting that neither bulk fluid flow nor frictional heating alter the conductive temperature regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, W.
1982-08-10
Tectonic features at the earth's surface can be used to test models for mantle return flow and to determine the geographic pattern of this flow. A model with shallow return and deep continental roots places the strongest constraints on the geographical pattern of return flow and predicts recognizable surface manifestations. Because of the progressive shrinkage of the Pacific (averaging 0.5 km/sup 2//yr over the last 180 m.y.) this model predicts upper mantle outflow through the three gaps in the chain of continents rimming the Pacific (Carribbean, Drake Passage, Australian-Antartic gap). In this model, upper mantle return flow streams originating atmore » the western Pacific trenches and at the Java Trench meet south of Australia, filling in behind this rapidly northward-moving continent and provding an explanation for the negative bathymetric and gravity anomalies of the 'Australian-Antarctic-Discordance'. The long-continued tectonic movements toward the east that characterize the Caribbean and the eastenmost Scotia Sea may be produced by viscous coupling to the predicted Pacific outflow through the gaps, and the Caribbean floor slopes in the predicted direction. If mantle outflow does not pass through the gaps in the Pacific perimeter, it must pass beneath three seismic zones (Central America, Lesser Antiles, Scotia Sea); none of these seismic zones shows foci below 200 km. Mantle material flowing through the Caribbean and Drake Passage gaps would supply the Mid-Atlantic Ridge, while the Java Trench supplies the Indian Ocean ridges, so that deep-mantle upwellings need not be centered under spreading ridges and therefore are not required to move laterally to follow ridge migrations. The analysis up to this point suggests that upper mantle return flow is a response to the motion of the continents. The second part of the paper suggest driving mechanism for the plate tectonic process which may explain why the continents move.« less
Wet plume atop of the flattening slab: Insight into intraplate volcanism in East Asia
NASA Astrophysics Data System (ADS)
He, Lijuan
2017-08-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of slab downgoing, flattening and stagnation. Equation of water transfer is included, and water effects on density and viscosity are considered. Model results indicate the warming of slab by surrounding mantle is rather slow. Water could be successfully dragged into the transition zone if the reference viscosity of the hydrous layer (with initial water of 2 wt%) is higher than 1017 Pa s and that of mantle is 1021 Pa s. Wet plumes could then originate in the flat-lying part of the slab, relatively far from the trench. Generally, the viscosity of the hydrous layer governs the initiation of wet plume, whereas the viscosity of the overlying mantle wedge controls the activity of the ascending wet plumes - they are more active in the weaker wedge. The complex fluid flow superposed by corner flow and free thermal convection influences greatly the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab under some specific thermo-rheological conditions, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of the flattening slab warmed by surrounding mantle, and 3) water spreads over the big mantle wedge. Wet plume from the flattening Pacific Plate arrives at the lithospheric base and induces melting, which can explain the intraplate Cenozoic volcanoes in East Asia.
Multiple mantle upwellings through the transition zone beneath the Afar Depression?
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.
2012-12-01
Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect with the northeast flowing African superswell in the upper mantle.
Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Barnhoorn, Auke; Stocchi, Paolo; Gradmann, Sofie; Wu, Patrick; Drury, Martyn; Vermeersen, Bert
2013-07-01
Models for glacial isostatic adjustment (GIA) can provide constraints on rheology of the mantle if past ice thickness variations are assumed to be known. The Pleistocene ice loading histories that are used to obtain such constraints are based on an a priori 1-D mantle viscosity profile that assumes a single deformation mechanism for mantle rocks. Such a simplified viscosity profile makes it hard to compare the inferred mantle rheology to inferences from seismology and laboratory experiments. It is unknown what constraints GIA observations can provide on more realistic mantle rheology with an ice history that is not based on an a priori mantle viscosity profile. This paper investigates a model for GIA with a new ice history for Fennoscandia that is constrained by palaeoclimate proxies and glacial sediments. Diffusion and dislocation creep flow law data are taken from a compilation of laboratory measurements on olivine. Upper-mantle temperature data sets down to 400 km depth are derived from surface heatflow measurements, a petrochemical model for Fennoscandia and seismic velocity anomalies. Creep parameters below 400 km are taken from an earlier study and are only varying with depth. The olivine grain size and water content (a wet state, or a dry state) are used as free parameters. The solid Earth response is computed with a global spherical 3-D finite-element model for an incompressible, self-gravitating Earth. We compare predictions to sea level data and GPS uplift rates in Fennoscandia. The objective is to see if the mantle rheology and the ice model is consistent with GIA observations. We also test if the inclusion of dislocation creep gives any improvements over predictions with diffusion creep only, and whether the laterally varying temperatures result in an improved fit compared to a widely used 1-D viscosity profile (VM2). We find that sea level data can be explained with our ice model and with information on mantle rheology from laboratory experiments, heatflow and seismology and a pure olivine rheology above 400 km. Moreover, laterally heterogeneous models provide a significantly better fit to relative sea level data than the VM2 viscosity, for our ice model as well as for the ICE-5G model that is based on the VM2 profile. The new ice model gives different constraints on mantle rheology than the ICE-5G model, indicating a possible bias towards mantle viscosity in the latter or shortcomings in our ice model. Present-day uplift rates for a dry rheology are close to GPS observed uplift rate for certain combinations of grain size and temperature fields. Sea level data show a preference for a wet olivine rheology, but in that case uplift rates are too low for all grain sizes and temperature fields. The difficulty to fit sea level data and uplift rate data simultaneously can not be resolved by varying creep parameters below 400 km. Uncertainties in the flow law and the neglect of other materials in the upper mantle, as well as the neglect of flow in the crust could affect our conclusions.
How mantle slabs drive plate tectonics.
Conrad, Clinton P; Lithgow-Bertelloni, Carolina
2002-10-04
The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.
NASA Astrophysics Data System (ADS)
He, L.
2016-12-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of subduction. Equation of water transfer is explicitly included, and water effects on density and viscosity are considered. Modeling results indicate that behavior of water transport relates closely to the transient thermal state and viscosities both of the slab and the surrounding mantle. Generally, initiation of wet plume is mainly influenced by the viscosity of the wet layer in the uppermost slab, whereas the horizontal distance of water transport and its ascending rate is affected strongly by the viscosity of the big mantle wedge. Whether water can be carried successfully by slab into the mantle transition zone and trigger wet plume at the surface of flattening slab depends on the viscosity contrast between wet layer and surrounding mantle. The complex fluid flow superposed by corner flow and free thermal convection controls the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab when water layer viscosity is much higher than the wedge viscosity, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of warm flattening slab if containing water, which arrives at the lithospheric base and induces melting; and 3) water spreads all over the big mantle wedge, mantle convection within the big mantle wedge becomes more active, leading to upwelling of asthenosphere and erosion of the overriding continental lithosphere. Wet plume from the flattening Pacific Plate can explain the intraplate Cenozoic volcanoes in East Asia.
Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea
NASA Astrophysics Data System (ADS)
Hongsresawat, S.; Russo, R. M.
2016-12-01
We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.
Alternate Histories of the Core-Mantle Boundary Region: Discrimination by Heat Flow
NASA Astrophysics Data System (ADS)
Hernlund, J. W.
2017-12-01
Interactions between material that would become Earth's core and mantle began prior to accretion. For example, during and just after the supernova event that is thought to have produced the matter that comprises our solar system, a substantial amount of its iron and other heavy elements were forged in nucleosynthetic processes, establishing a pattern of elemental and isotopic abundances that is reflected in the composition of our planet today, and sets the relative size of the core and mantle. As Earth accreted, metals and silicates were delivered together in mostly small increments, and formation of the core required separation and gravitational settling of the metal to the center, probably facilitated by extensive melting. This process over-printed previous metal-silicate interactions, owing to chemical interactions and re-equilibration at higher pressures and temperatures. The heat of core formation was dissipated largely in the mantle if metal descended as diapirs, or was retained in the metal if it was able to crack the mantle and sink by rapid turbulent injection into the core. These processes established the first temperature contrast between the core and the mantle, controlling the extent to which the core could become a giant heat capacitor and supply thermal energy heat to the mantle. Beginning from this very early stage we are able to correlate different hypothesized processes with their variable implications for core-mantle boundary (CMB) heat flow through time. In fact, CMB heat flow is a thread that runs through almost every important question regarding the evolution of the core and mantle. Whole mantle convection vs. layered convection, the abundance of radioactive isotopes, age of the inner core, sustenance of the ancient geodynamo, the possibility of basal magma oceans, core-mantle chemical interactions, etc., all have close connections to CMB heat flow. Here I will attempt to discriminate hypotheses for many processes into high vs. low CMB heat flow affinities, and attempt to systematize our understanding of the history of the CMB region, thereby improving our ability to test hypotheses by linking many together.
NASA Astrophysics Data System (ADS)
Flament, Nicolas
2017-04-01
Global tectonic reconstructions can be used as boundary conditions of forward mantle convection models to simulate past mantle flow and long-wavelength dynamic topography. The predictions of such models can be compared to seismic tomography, to estimates of residual topography and to geological indicators of past vertical motions. Here we present models that reproduce the present-day structure of the lower mantle, including two large structures that resemble the Pacific and African Large Low Shear Velocity Provinces (LLSVPs, ˜15,000 km in diameter) and a smaller structure that resembles the recently discovered Perm Anomaly (˜1,000 km in diameter). The match between predicted and seismically inferred lower mantle structure is quantified across a series of mantle flow and tomography models. In the models, the Perm-like anomaly forms in isolation within a closed and long-lived subduction network (East Asia, Northern Tethys and Mongol-Okhotsk) ˜22,000 km in circumference before migrating ˜1,500 km westward at an average rate of 1 cm yr-1 since 150 million years ago. These results indicate a greater mobility of deep mantle structures than previously recognized, and illustrate that the predictive power of mantle flow models has significantly increased over the last thirty years. We suggest that the mobile Perm Anomaly could be linked to the ˜258 Ma Emeishan volcanics, in contrast to the previously proposed ˜251 Ma Siberian Traps. We also compare the present-day dynamic topography predicted by forward mantle flow models to residual topography models, and show that radial and lateral viscosity variations significantly influence the distribution of power of predicted dynamic topography as a function of spherical harmonic degree. We finally show how past vertical motions preserved in the geological record and the present-day position of slabs in the mantle inferred from seismic tomography may be used to constrain tectonic reconstructions and mantle rheology, including examples focusing on the large-scale topographic asymmetry of the South Atlantic domain and on the uplift history of the eastern highlands of Australia.
Mantle viscosity structure constrained by joint inversions of seismic velocities and density
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Moulik, P.; Lekic, V.
2017-12-01
The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.
Horizontal mantle flow controls subduction dynamics.
Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V
2017-08-08
It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.
The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Morgan, Jason P.
2016-04-01
The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for discrepancies between idealized plume/hotspot models and geochronological observations will also be briefly discussed. A further consequence of the existence of strong deep mantle plumes is that hot plume material should preferentially pond at the base of the lithosphere, draining towards and concentrating beneath the regions where the lithosphere is thinnest, and asthenosphere is being actively consumed to make new tectonic plates - mid-ocean ridges. This plume-fed asthenosphere hypothesis makes predictions for the structure of asthenosphere flow and anisotropy, patterns of continental edge-volcanism linked to lateral plume drainage at continental margins, patterns of cratonic uplift and subsidence linked to passage from hotter plume-influenced to cooler non-plume-influenced regions of the upper mantle, and variable non-volcanic versus volcanic modes of continental extension linked to rifting above '~1425K cool normal mantle' versus 'warm plume-fed asthenosphere' regions of upper mantle. These will be briefly discussed. My take-home message is that "Mantle Plumes are almost certainly real". You can safely bet they will be part of any successful paradigm for the structure of mantle convection. While more risky, I would also recommend betting on the potential reality of the paradigm of a plume-fed asthenosphere. This is still a largely unexplored subfield of mantle convection. Current observations remain very imperfect, but seem more consistent with a plume-fed asthenosphere than with alternatives, and computational and geochemical advances are making good, falsifiable tests increasingly feasible. Make one!
Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A
2007-09-04
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.
2007-01-01
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806
Quantitative Restoration of the Evolution of Mantle Structures Using Data Assimilation
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Schubert, G.; Tsepelev, I.
2008-12-01
Rapid progress in imaging deep Earth structures and in studies of physical and chemical properties of mantle rocks facilitates research in assimilation of data related to mantle dynamics. We present a quantitative approach to assimilation of geophysical and geodetic data, which allows for incorporating observations and unknown initial conditions for mantle temperature and flow into a three-dimensional dynamic model in order to determine the initial conditions in the geological past. Once the conditions are determined the evolution of mantle structures can be restore backward in time. We apply data assimilation techniques to model the evolution of mantle plumes and lithospheric slabs. We show that the geometry of the mantle structures changes with time diminishing the degree of surface curvature of the structures, because the heat conduction smoothes the complex thermal surfaces of mantle bodies with time. Present seismic tomography images of mantle structures do not allow definition of the sharp shapes of these structures. Assimilation of mantle temperature and flow to the geological past instead provides a quantitative tool to restore thermal shapes of prominent structures in the past from their diffusive shapes at present.
NASA Astrophysics Data System (ADS)
Forte, A. M.; Glisovic, P.; Grand, S. P.; Lu, C.; Simmons, N. A.; Rowley, D. B.
2015-12-01
Convection-related data constrain lower-mantle density anomalies that contribute to mantle convective flow. These include global gravity and topography anomalies, plate motions and excess ellipticity of the core-mantle boundary (CMB). Each datum possesses differing wavelength and depth dependent resolution of heterogeneity and thus the strongest constraints on density anomalies are obtained by jointly inverting all data in combination. The joint-inversions employ viscous response functions (i.e. geodynamic kernels) for a flowing mantle. Non-uniqueness is greatly reduced by including seismic and mineral physics data into the joint inversions. We present the results of inversions where seismic and geodynamic data are singly and jointly inverted to map density anomalies. Employing mineral physical data we estimate thermal and compositional contributions to density anomalies. We evaluate the extent to which "Large Low Shear Velocity Provinces" (LLSVP) are anomalous and we determine their impact on the global pattern of convective flow. The inversions yield consistent maps of lower-mantle flow (see figure) that are dominated by two large upwellings, under the Western Pacific (next to the Caroline microplate) and Eastern Pacific (under the East Pacific Rise). These hot upwellings effectively delimit the margins of the Pacific LLSVP, suggesting intrinsic negative buoyancy within this structure impedes large-scale upwellings in the mantle above. These two upwellings do not resemble classical mantle "plumes" found in simple isoviscous and isochemical convection models but their contribution to mass and heat transport across the lower mantle is significant and thus behave similarly to plumes. The large scale of these upwellings may be understood in terms of the high viscosity in the lower mantle, inferred from geodynamic constraints on mantle rheology. Very-long time convection simulations initiated with present-day structure inferred from these inversions show the two Pacific upwellings possess remarkable geographic fixity and longevity extending over several hundred million years, again a consequence of the high viscosity in the lower mantle. These upwellings are fed by large heat flux across the CMB (from 12 to 20 TW) and should play a major role in the thermal evolution of the mantle.
Can weak crust explain the correlation of geoid and topography on Venus?
NASA Technical Reports Server (NTRS)
Buck, W. Roger
1993-01-01
The effect on geoid and topography of low viscosity crust overlying a steady-state convecting mantle is estimated under the assumption that the shear between crust and mantle does not alter the mantle flow. The weak crustal layer can change the sign of the geoid to topography ratio (admittance). The positive long wavelength admittance for Venus is consistent with a weak crust overlying a mantle with a viscosity that increases strongly with depth. The accepted interpretation of the strong positive correlation of geoid and topography on Venus, is that the convecting mantle of Venus has a constant viscosity with depth. Topography results from vertical normal stresses caused by mantle convection and highlands occur where mantle upwells. For topography to be supported by normal stress, the time scale for crustal flow must be long compared to the time scale for changes in the pattern of mantle flow. Because the high surface temperature of Venus may cause the crust to have a low viscosity, this assumption may be false. Topography should then be dominated by shear coupling between the crust and mantle. In the absence of a crustal layer, convection in a constant viscosity layer gives rise to a geoid anomaly that correlates positively with surface topography. When the viscosity in the layer increases with depth by several orders of magnitude, the surface topography and geoid anomaly become anti-correlated.
NASA Astrophysics Data System (ADS)
Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang
2018-04-01
The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohlstedt, David L.
2016-04-26
The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA) to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitativelymore » describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, William B.
2016-05-02
The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA), to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitativelymore » describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.-« less
Thermal structure of the Kanto region, Japan
NASA Astrophysics Data System (ADS)
Wada, Ikuko; He, Jiangheng
2017-07-01
Using a 3-D numerical thermal model, we investigate the thermal structure of the Kanto region of Japan where two oceanic plates subduct. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, bringing in hot mantle from the back-arc toward the forearc. Beneath Kanto, however, the presence of the subducting Philippine Sea plate between the overlying North American plate and the subducting Pacific plate prevents a typical mantle wedge flow pattern, resulting in a cooler condition. Further, frictional heating and the along-margin variation in the maximum depth of slab-mantle decoupling along the Pacific slab surface affect the thermal structure significantly. The model provides quantitative estimates of spatial variations in the temperature condition that are consistent with the observed surface heat flow pattern and distributions of interplate seismicity and arc volcanoes in Kanto.
A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow.
Hassan, Rakib; Müller, R Dietmar; Gurnis, Michael; Williams, Simon E; Flament, Nicolas
2016-05-12
Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin--probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1998-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.
NASA Technical Reports Server (NTRS)
Parmentier, E. M.; Hess, P. C.
1992-01-01
Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite.
Dynamics of metasomatic transformation of lithospheric mantle rocks under Siberian Craton
NASA Astrophysics Data System (ADS)
Sharapov, Victor; Perepechko, Yury; Tomilenko, Anatoly; Chudnenko, Konstantin; Sorokin, Konstantin
2014-05-01
Numerical problem for one- and two-velocity hydrodynamics of heat and mass transfer in permeable zones over 'asthenospheric lenses' (with estimates for dynamics of non-isothermal metasomatosis of mantle rocks, using the approximation of flow reactor scheme) was formulated and solved based on the study of inclusion contents in minerals of metamorphic rocks of the lithosphere mantle and earth crust, estimates of thermodynamic conditions of inclusions appearance, and the results of experimental modeling of influence of hot reduced gases on rocks and minerals of xenoliths in mantle rocks under the cratons of Siberian Platform (SP): 1) the supply of fluid flows of any composition from upper mantle magma sources results in formation of zonal metasomatic columns in ultrabasic lithosphere mantle in permeable zones of deep faults; 2) when major element or petrogenetic components are supplied from magma source, depleted ultrabasic rocks of the lithosphere mantle are transformed into substrates which can be regarded as deep analogs of crust rodingites; 3) other fluid compositions cause deep calcinations and noticeable salination of metasomated substrate, or garnetization (eclogitization) of primary ultrabasic matrix develops; 4) above these zones the zone of basification appears; it is changed by the area of pyroxenitization, amphibolization, and biotitization; 5) modeling of thermo and mass exchange for two-velocity hydrodynamic problem showed that hydraulic approximation increases velocities of heat front during convective heating and decreases pressure in fluid along the flow. It was shown that grospydites, regarded earlier as eclogites, in permeable areas of lithosphere mantle, are typical zones draining upper mantle magma sources of metasomatic columns. As a result of the convective melting the polybaric magmatic sources may appear. Thus the formation of the (kimberlites?) melilitites or carbonatites is possible at the base of the lithospheric plates. It is shown that the physico - chemical conditions of the carbonation of the depleted mantle peridotites refer to the narrow interval of the possible fluid compositions. The bulk fluid content near 4 weight % with the SiO2 CaO 0.5 - 0.1 molar volumes the 1) the Si/Ca molar ratio is < 1; 2) in the C-H-O system the molar ration should be 1/2/3 - 2/1/2; 3) the pO2 variations should be -8 < lg pO2 < -11; 4) in the fluid the CO2 content is twice higher than H2O and Cl essentially prevail under F. In the system with smaller fraction of the fluid phase less increased by the major element rock components the carbonation is more intensive when the Ca content decrease. The fusions of the basic magmas are possible within the wehrlitization zones. The work is supported by RFBR grant 12-05-00625.
NASA Astrophysics Data System (ADS)
Boles, J. R.; Garven, G.; Camacho, H.; Lupton, J. E.
2015-07-01
Mantle helium is a significant component of the helium gas from deep oil wells along the Newport-Inglewood fault zone (NIFZ) in the Los Angeles (LA) basin. Helium isotope ratios are as high as 5.3 Ra (Ra = 3He/4He ratio of air) indicating 66% mantle contribution (assuming R/Ra = 8 for mantle), and most values are higher than 1.0 Ra. Other samples from basin margin faults and from within the basin have much lower values (R/Ra < 1.0). The 3He enrichment inversely correlates with CO2, a potential magmatic carrier gas. The δ13C of the CO2 in the 3He rich samples is between 0 and -10‰, suggesting a mantle influence. The strong mantle helium signal along the NIFZ is surprising considering that the fault is currently in a transpressional rather than extensional stress regime, lacks either recent magma emplacement or high geothermal gradients, and is modeled as truncated by a proposed major, potentially seismically active, décollement beneath the LA basin. Our results demonstrate that the NIFZ is a deep-seated fault directly or indirectly connected with the mantle. Based on a 1-D model, we calculate a maximum Darcy flow rate q ˜ 2.2 cm/yr and a fault permeability k ˜ 6 × 10-17 m2 (60 microdarcys), but the flow rates are too low to create a geothermal anomaly. The mantle leakage may be a result of the NIFZ being a former Mesozoic subduction zone in spite of being located 70 km west of the current plate boundary at the San Andreas fault.
NASA Astrophysics Data System (ADS)
Bocher, M.; Coltice, N.; Fournier, A.; Tackley, P. J.
2016-01-01
With the progress of mantle convection modelling over the last decade, it now becomes possible to solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter, where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to take into account data observed at different times. Whenever observations are available, an analysis infers the most probable state of the mantle at this time, considering a prior guess (supplied by the forecast) and the new observations at hand, using the classical best linear unbiased estimate. Between two observation times, the evolution of the mantle is governed by the forward model of mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data assimilation. Two parameters control the behaviour of the scheme: the time between two analyses, and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in retrieving temperature field evolutions provided the time between two analyses is ≲10 Myr. If the amplitude of the a priori error on the observations is large (30 per cent), our method provides a better estimate of surface tectonics than the observations, taking advantage of the information within the physics of convection.
Seismic anisotropy in eastern Africa, mantle flow, and the African superplume
NASA Astrophysics Data System (ADS)
Bagley, Brian; Nyblade, Andrew A.
2013-04-01
New estimates of seismic anisotropy from shear wave splitting measurements in eastern Africa reveal a pattern of seismic anisotropy dominated by a NE alignment of fast polarization directions with local changes around the thick Archean lithosphere of the Tanzania craton. The overall pattern is consistent with mantle flow from the African superplume but not with absolute plate motion, a plume head, or fossil anisotropy in the lithosphere. In combination with tomographic images of the African superplume, this finding suggests that plateau uplift, volcanism, and continental breakup along the Afro-Arabian rift system is strongly influenced by flow from the lower mantle and indicates a connection between lower mantle processes and the tectonic deformation of the Earth's surface.
Volcanism on differentiated asteroids (Invited)
NASA Astrophysics Data System (ADS)
Wilson, L.
2013-12-01
The Dawn spacecraft's investigation of 4 Vesta, best-preserved of the early-forming differentiated asteroids, prompts a reappraisal of factors controlling igneous activity on such bodies. Analogy with melt transfer in zones of partial melting on Earth implies that silicate melts moved efficiently within asteroid mantles in complex networks of veins and dikes, so that only a few percent of the mantle consisted of melt at any one time. Thus even in cases where large amounts of mantle melting occurred, the melts did not remain in the mantle to form "magma oceans", but instead migrated to shallow depths. The link between magma flow rate and the stresses needed to keep fractures open and allow flow fast enough to avoid excessive cooling implies that only within asteroids with radii more than ~190-250 km would continuous magma flow from mantle to surface be possible. In all smaller asteroids (including Vesta) magma must have accumulated in sills at the base of the lithosphere (the conductively controlled ~10 km thick thermal boundary layer) or in crustal magma reservoirs near its base. Magma would then have erupted intermittently to the surface from these steadily replenished reservoirs. The average rates of eruption to the surface (or shallow intrusion) should balance the magma production rate, but since magma could accumulate and erupt intermittently from these reservoirs, the instantaneous eruption rates could be hundreds to thousands of cubic m/s, comparable to historic basaltic eruption rates on Earth and very much greater than the average mantle melting rate. The absence of asteroid atmospheres makes explosive eruptions likely even if magmas are volatile-poor. On asteroids with radii less than ~100 km, gases and sub-mm pyroclastic melt droplets would have had speeds exceeding the escape speed assuming a few hundred ppm volatiles, and only cm sized or larger clasts would have been retained. On larger bodies almost all pyroclasts will have returned to the surface after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.
Radial Anisotropy in the Mantle Transition Zone and Its Implications
NASA Astrophysics Data System (ADS)
Chang, S. J.; Ferreira, A. M.
2016-12-01
Seismic anisotropy is a useful tool to investigate mantle flow, mantle convection, and the presence of melts in mantle, since it provides information on the direction of mantle flow or the orientation of melts by combining it with laboratory results in mineral physics. Although the uppermost and lowermost mantle with strong anisotropy have been well studied, anisotropic properties of the mantle transition zone is still enigmatic. We use a recent global radially anisotropic model, SGLOBE-rani, to examine the patterns of radial anisotropy in the mantle transition zone. Strong faster SV velocity anomalies are found in the upper transition zone beneath subduction zones in the western Pacific, which decrease with depth, thereby nearly isotropic in the lower transition zone. This may imply that the origin for the anisotropy is the lattice-preferred orientation of wadsleyite, the dominant anisotropic mineral in the upper transition zone. The water content in the upper transition zone may be inferred from radial anisotropy because of the report that anisotropic intensity depends on the water content in wadsleyite.
Satellites Seek Gravity Signals for Remote Sensing the Seismotectonic Stresses in Earth
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Chen, Jizhong; Li, Jinling
2003-01-01
The ability of the mantle to withstand stress-difference due to superimposed loads would appear to argue against flow in the Earth s mantle, but the ironic fact is that the satellite determined gravity variations are the evidence of density differences associated with mantle flow. The type of flow which is most likely to be involved concerns convection currents. For the past 4 decades, models of mantle convection have made remarkable advancements. Although a large body of evidence regarding the seafloor depth, heat flow, lithospheric strength and forces of slab-pull and swell-push has been obtained, the global seismotectonic stresses in the Earth are yet to be determined. The problem is that no one has been able to come up with a satisfactory scenario that must characterize the stresses in the Earth which cause earthquakes and create tectonic features.
Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia
NASA Astrophysics Data System (ADS)
Ryu, In-Chang; Lee, Changyeol
2017-12-01
A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the Cretaceous and that the mantle plume was entrained into the mantle wedge as a channel-like flow. An intracontinental mantle plume can explain the adakitic rocks, A-type granitoids, high-Mg basalts, and basin-and-range-type fault basins distributed in eastern China. Thus, the mantle plume and its interaction with the overlying continent and subducting slab through time plausibly explain the Cretaceous tectonic history of East Asia.
Modeling the Migration of Fluids in Subduction Zones
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Spiegelman, M.; Van Keken, P. E.; Vrijmoed, J. C.; Hacker, B. R.
2011-12-01
Fluids play a major role in the formation of arc volcanism and the generation of continental crust. Progressive dehydration reactions in the downgoing slab release fluids to the hot overlying mantle wedge, causing flux melting and the migration of melts to the volcanic front. While the qualitative concept is well established, the quantitative details of fluid release and especially that of fluid migration and generation of hydrous melting in the wedge is still poorly understood. Here we present new models of the fluid migration through the mantle wedge for subduction zones. We use an existing set of high resolution metamorphic models (van Keken et al, 2010) to predict the regions of water release from the sediments, upper and lower crust, and upper most mantle. We use this water flux as input for the fluid migration calculation based on new finite element models built on advanced computational libraries (FEniCS/PETSc) for efficient and flexible solution of coupled multi-physics problems. The first generation of one-way coupled models solves for the evolution of porosity and fluid-pressure/flux throughout the slab and wedge given solid flow, viscosity and thermal fields from separate solutions to the incompressible Stokes and energy equations in the mantle wedge. These solutions are verified by comparing to previous benchmark studies (van Keken et al, 2008) and global suites of thermal subduction models (Syracuse et al, 2010). Fluid flow depends on both permeability and the rheology of the slab-wedge system as interaction with rheological variability can induce additional pressure gradients that affect the fluid flow pathways. These non-linearities have been shown to explain laboratory-scale observations of melt band orientation in labratory experiments and numerical simulations of melt localization in shear bands (Katz et al 2006). Our second generation of models dispense with the pre-calculation of incompressible mantle flow and fully couple the now compressible system of mantle and fluid flow equations, introducing complex feedbacks between the rheology, temperature, permeability, strain rate and porosity. Using idealized subduction zone geometries we investigate the effects of this non-linearity and explore the sensitivity of fluid flow paths for a range of fluid flow parameters with emphasis on variability of the location of the volcanic arc with respect to flow paths. We also estimate the expected degrees of hydrous melting using a variety of wet-melting parameterizations (e.g., Katz et al, 2003, Kelley et al, 2010). The current models only include dehydration reactions but work continues on the next generation of models which will include both dehydration and hydration reactions as well as parameterized flux melting in a consistent reactive-flow framework.
NASA Astrophysics Data System (ADS)
Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.
2014-09-01
Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source region and together with 87Sr/86Srinitial ranging from 0.705656 to 0.706980 suggest two stage contamination of parent magma which is much similar to that of Poladpur, Toranmal, Mhow, Chikaldara flows. Ba/Y versus 87Sr/86Sr and Nb/Y versus Rb/Y variations show an Ambenali-Poladpur contamination trend for the Linga basalts thereby suggesting the role of upper continental granitic crust as the contaminant of these flows through magma-crust interaction during melt migration. The lava flows of Linga are geochemically correlatable with the Poladpur flows of southwestern and Toranmal flows of northern Deccan and show genetic coherence with the basalts of Jabalpur, Seoni, Chakhla-Delakhari of eastern Deccan.
Petrology of Hualalai volcano, Hawaii: Implication for mantle composition
Clague, D.A.; Jackson, E.D.; Wright, T.L.
1980-01-01
Hualalai is one of five volcanoes whose eruptions built the island of Hawaii. The historic 1800-1801 flows and the analyzed prehistoric flows exposed at the surface are alkalic basalts except for a trachyte cone and flow at Puu Waawaa and a trachyte maar deposit near Waha Pele. The 1800-1801 eruption produced two flows: the upper Kaupulehu flow and the lower Huehue flow. The analyzed lavas of the two 1800-1801 flows are geochemically identical with the exception of a few samples from the toe of the Huehue flow that appear to be derived from a separate magmatic batch. The analyzed prehistoric basalts are nearly identical to the 1800-1801 flows but include some lavas that have undergone considerable shallow crystal fractionation. The least fractionated alkalic basalts from Hualalai are in equilibrium with mantle olivine (Fo87) indicating that the Hawaiian mantle source region is not unusually iron-rich. The 1800-1801 and analyzed prehistoric basalts can be generated by about 5-10% partial fusion of a garnet-bearing source relatively enriched in the light-rare-earths. The mantle underlying the Hawaiian Islands is chemically and mineralogically heterogeneous before and after extraction of the magmas that make up the volcanoes. ?? 1980 Intern. Association of Volcanology and Chemistry of the Earth's Interior.
Magmatic plumbing system from lower mantle of Hainan plume
NASA Astrophysics Data System (ADS)
Xia, Shaohong; Sun, Jinlong; Xu, Huilong; Huang, Haibo; Cao, Jinghe
2017-04-01
Intraplate volcanism during Late Cenozoic in the Leiqiong area of southernmost South China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. However, detailed features of Hainan plume, such as morphology of magmatic conduits, depth of magmatic pool in the upper mantle and pattern of mantle upwelling, are still enigmatic. Here we present seismic tomographic images of the upper 1100 km of the mantle beneath the southern South China. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with diameter of about 200-300 km that tilts downward to lower mantle beneath north of Hainan hotspot and a head that spreads laterally near the mantle transition zone, indicating a magmatic pool in the upper mantle. Further upward, this head is decomposed into small patches, but when encountering the base of the lithosphere, a pancake-like anomaly is shaped again to feed the Hainan volcanism. Our results challenge the classical model of a fixed thermal plume that rises vertically to the surface, and propose the new layering-style pattern of magmatic upwelling of Hainan plume. This work indicates the spatial complexities and differences of global mantle plumes probably due to heterogeneous compositions and changefully thermochemical structures of deep mantle.
Multi Plumes and Their Flows beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, S.; van der Lee, S.
2010-12-01
The three-dimensional S-velocity structure beneath Arabia and East Africa is estimated down to the lower mantle to investigate vertical and horizontal extension of low-velocity anomalies that bear out the presence of mantle plumes and their flows beneath lithosphere. We estimated this model through joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. With the unprecedented resolution in our S-velocity model, we found different flow patterns of hot materials upwelling beneath Afar beneath the Red Sea and the Gulf of Aden. While the low-velocity anomaly from Afar is well confined beneath the Gulf of Aden, inferring mantle flow along the gulf, N-S channel of low velocity is found beneath Arabia, not along the Red Sea. The Afar plume is distinctively separate from the Kenya plume, showing its origin in the lower mantle beneath southwestern Arabia. We identified another low-velocity extension to the lower mantle beneath Jordan and northern Arabia, which is thought to have caused volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirmed horizontal plume flow from Afar in NS direction beneath Arabia and in NE-SW direction beneath Ethiopia as a likely cause of the observed seismic anisotropy.
Present mantle flow in North China Craton constrained by seismic anisotropy and numerical modelling
NASA Astrophysics Data System (ADS)
Qu, W.; Guo, Z.; Zhang, H.; Chen, Y. J.
2017-12-01
North China Carton (NCC) has undergone complicated geodynamic processes during the Cenozoic, including the westward subduction of the Pacific plate to its east and the collision of the India-Eurasia plates to its southwest. Shear wave splitting measurements in NCC reveal distinct seismic anisotropy patterns at different tectonic blocks, that is, the predominantly NW-SE trending alignment of fast directions in the western NCC and eastern NCC, weak anisotropy within the Ordos block, and N-S fast polarization beneath the Trans-North China Orogen (TNCO). To better understand the origin of seismic anisotropy from SKS splitting in NCC, we obtain a high-resolution dynamic model that absorbs multi-geophysical observations and state-of-the-art numerical methods. We calculate the mantle flow using a most updated version of software ASPECT (Kronbichler et al., 2012) with high-resolution temperature and density structures from a recent 3-D thermal-chemical model by Guo et al. (2016). The thermal-chemical model is obtained by multi-observable probabilistic inversion using high-quality surface wave measurements, potential fields, topography, and surface heat flow (Guo et al., 2016). The viscosity is then estimated by combining the dislocation creep, diffusion creep, and plasticity, which is depended on temperature, pressure, and chemical composition. Then we calculate the seismic anisotropy from the shear deformation of mantle flow by DREX, and predict the fast direction and delay time of SKS splitting. We find that when complex boundary conditions are applied, including the far field effects of the deep subduction of Pacific plate and eastward escaping of Tibetan Plateau, our model can successfully predict the observed shear wave splitting patterns. Our model indicates that seismic anisotropy revealed by SKS is primarily resulting from the LPO of olivine due to the shear deformation from asthenospheric flow. We suggest that two branches of mantle flow may contribute to the observed anisotropy, that are, the westward escaping flow origins from NE Tibet Plateau and/or Mongolia, and the mantle upwelling from the bottom of upper mantle. The proposed mantle flow may also feed the intraplate volcanoes in the TNCO and intensify the erosion to the cratonic keel of Ordos.
Dynamics of Lithospheric Extension and Residual Topography in Southern Tibet
NASA Astrophysics Data System (ADS)
Chen, B.; Shahnas, M. H.; Pysklywec, R.; Sengul Uluocak, E.
2017-12-01
Although the north-south (N-S) convergence between India and Eurasia is ongoing, a number of north-south trending rifts (e.g., Tangra Yum Co Rift, Yadong-Gulu Rift and Cona Rift) and normal faulting are observed at the surface of southern Tibet, suggesting an east-west (E-W) extension tectonic regime. The earthquake focal mechanisms also show that deformation of southern Tibet is dominated by E-W extension across these N-S trending rifts. Because the structure of the lithosphere and underlying mantle is poorly understood, the origin of the east-west extension of southern Tibet is still under debate. Gravitational collapse, oblique convergence, and mantle upwelling are among possible responsible mechanisms. We employ a 3D-spherical control volume model of the present-day mantle flow to understand the relationship between topographic features (e.g., rifts and the west-east extension), intermediate-depth earthquakes, and tectonic stresses induced by mantle flow beneath the region. The thermal structure of the mantle and crust is obtained from P and S-wave seismic inversions and heat flow data. Power-law creep with viscous-plastic rheology, describing the behavior of the lithosphere and mantle material is employed. We determine the models which can best reconcile the observed features of southern Tibet including surface heat flow, residual topography with uplift and subsidence, reported GPS rates of the vertical movements, and the earthquake events. The 3D geodynamic modeling of the contemporary mantle flow-lithospheric response quantifies the relative importance of the various proposed mechanism responsible for the E-W extension and deep earthquakes in southern Tibet. The results also have further implications for the magmatic activities and crustal rheology of the region.
Seismically imaging the Afar plume
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.
2011-12-01
Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect in the upper mantle. This coupled with measurements of seismic anisotropy suggest that mantle material flows northeast towards Arabia, and may be responsible for the dramatic dynamic topography observed in northeast Africa and western Arabia.
Limit of Predictability in Mantle Convection
NASA Astrophysics Data System (ADS)
Bello, L.; Coltice, N.; Rolf, T.; Tackley, P. J.
2013-12-01
Linking mantle convection models with Earth's tectonic history has received considerable attention in recent years: modeling the evolution of supercontinent cycles, predicting present-day mantle structure or improving plate reconstructions. Predictions of future supercontinents are currently being made based on seismic tomography images, plate motion history and mantle convection models, and methods of data assimilation for mantle flow are developing. However, so far there are no studies of the limit of predictability these models are facing. Indeed, given the chaotic nature of mantle convection, we can expect forecasts and hindcasts to have a limited range of predictability. We propose here to use an approach similar to those used in dynamic meteorology, and more recently for the geodynamo, to evaluate the predictability limit of mantle dynamics forecasts. Following the pioneering works in weather forecast (Lorenz 1965), we study the time evolution of twin experiments, started from two very close initial temperature fields and monitor the error growth. We extract a characteristic time of the system, known as the e-folding timescale, which will be used to estimate the predictability limit. The final predictability time will depend on the imposed initial error and the error tolerance in our model. We compute 3D spherical convection solutions using StagYY (Tackley, 2008). We first evaluate the influence of the Rayleigh number on the limit of predictability of isoviscous convection. Then, we investigate the effects of various rheologies, from the simplest (isoviscous mantle) to more complex ones (plate-like behavior and floating continents). We show that the e-folding time increases with the wavelength of the flow and reaches 10Myrs with plate-like behavior and continents. Such an e-folding time together with the uncertainties in mantle temperature distribution suggests prediction of mantle structure from an initial given state is limited to <50 Myrs. References: 1. Lorenz, B. E. N., Norake, D. & Meteorologiake, I. A study of the predictability of a 28-variable atmospheric model. Tellus XXVII, 322-333 (1965). 2. Tackley, P. J. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors 171, 7-18 (2008).
Topography: dusting for the fingerprints of mantle dynamics
NASA Astrophysics Data System (ADS)
Faccenna, C.; Becker, T. W.
2016-12-01
The surface of the Earth is an ever-changing expression of the dynamic processes occurring deep in the mantle and at and above its surface, but our ability to "read" landscapes in terms of their underlying tectonic or climatic forcing is rudimentary. During the last decade, particular attention has been drawn to the deep, convection-related component of topography, induced by the stress produced at the base of the lithosphere by mantle flow, and its relevance compared to the (iso)static component. Despite much progress, several issues, including the magnitude and rate of this dynamic component, remain open. Here, we use key sites from convergent margins (e.g., the Apennines) and from intraplate settings (e.g., Ethiopia) to estimate the amplitude and rate of topography change and to disentangle the dynamic from the static component. On the base of those and other examples, we introduce the concept of a Topographic Fingerprint: any combination of mantle, crustal and surface processes that will result in a distinctive, thus predictable, topographic expression.
Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries
NASA Astrophysics Data System (ADS)
Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald
2016-04-01
Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.
On the respiratory flow in the cuttlefish sepia officinalis.
Bone, Q; Brown, E; Travers, G
1994-09-01
The respiratory flow of water over the gills of the cuttlefish Sepia officinalis at rest is produced by the alternate activity of the radial muscles of the mantle and the musculature of the collar flaps; mantle circular muscle fibres are not involved. Inspiration takes place as the radial fibres contract, thinning the mantle and expanding the mantle cavity. The rise in mantle cavity pressure (up to 0.15 kPa), expelling water via the siphon during expiration, is brought about by inward movement of the collar flaps and (probably) mainly by elastic recoil of the mantle connective tissue network 'wound up' by radial fibre contraction during inspiration. Sepia also shows a second respiratory pattern, in which mantle cavity pressures during expiration are greater (up to 0.25 kPa). Here, the mantle circular fibres are involved, as they are during the large pressure transients (up to 10 kPa) seen during escape jetting. Active contraction of the muscles of the collar flaps is seen in all three patterns of expulsion of water from the mantle cavity, electrical activity increasing with increasing mantle cavity pressures. Respiratory expiration in the resting squid Loligo vulgaris is probably driven as in Sepia, whereas in the resting octopus Eledone cirrhosa, the mantle circular musculature is active during expiration. The significance of these observations is discussed.
Energy Flow Exciting Field-Aligned Current at Substorm Expansion Onset
NASA Astrophysics Data System (ADS)
Ebihara, Y.; Tanaka, T.
2017-12-01
At substorm expansion onset, upward field-aligned currents (FACs) increase abruptly, and a large amount of electromagnetic energy starts to consume in the polar ionosphere. A question arises as to where the energy comes from. Based on the results obtained by the global magnetohydrodynamics simulation, we present energy flow and energy conversion associated with the upward FACs that manifest the onset. Our simulations show that the cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere when the interplanetary magnetic field is southward. Integral curve of the Poynting flux shows a spiral moving toward the ionosphere, probably suggesting the pathway of electromagnetic energy from the cusp/mantle dynamo to the ionosphere. The near-Earth reconnection initiates three-dimensional redistribution of the magnetosphere. Flow shear in the near-Earth region results in the generation of the near-Earth dynamo and the onset FACs. The onset FACs are responsible to transport the electromagnetic energy toward the Earth. In the near-Earth region, the electromagnetic energy coming from the cusp/mantle dynamo is converted to the kinetic energy (known as bursty bulk flow) and the thermal energy (associated with high-pressure region in the inner magnetosphere). Then, they are converted to the electromagnetic energy associated with the onset FACs. A part of electromagnetic energy is stored in the lobe region during the growth phase. The release of the stored energy, together with the continuously supplied energy from the cusp/mantle dynamo, contributes to the energy supply to the ionosphere during the expansion phase.
NASA Astrophysics Data System (ADS)
2014-12-01
The crystalline basement rocks of Ethiopia were traditionally described as one system of regional aquiclude. This attribution was made disregarding variations in groundwater occurrence and potential which often times is promising in some geologic settings. Systematic studies addressing their genesis and spatial variations are lacking. Based on a thorough review of existing data and field observations, this work has shown that the genesis of basement aquifers is the result of complex interplay between the present/past climate and geomorphic processes which are tectonically controlled. It thus follows that the groundwater occurrence and the type of aquifer exhibit important contrasts on the surfaces of crystalline basement terrains of Ethiopia. Three coherent zones have been identified in this work based on their genesis, thickness of regolith, mechanisms of flow and storage properties: (a) in Western Ethiopia the aquifer is characterized by a vertical profile of fractured low to high grade bedrocks mantled by thick weathering profiles leading to high groundwater storage but low hydraulic conductance, (b) in Northern Ethiopia the weathered mantle is stripped to negligible thickness; groundwater occurs in high conducting but low storage fractured low grade bedrocks, (c) in the Borena lowlands (the southern basement region, the occurrence of groundwater is associated with wadi beds. The orientations of wadi beds follow regional fractures. These fractures control groundwater flow regime and enhance preferential weathering of bedrocks. The presence of alluvial sediments (mostly derived from gneiss and inselbergs of gneisses and granites) over the weathered mantle, facilitates infiltration into the weathered mantle and fractured bedrocks underneath. This enhances groundwater storage and movement both in the regolith and fractured bedrock. Elsewhere outside the wadi beds, duri crusts limit vertical recharge and groundwater availability to the bedrock; aquifers are of intermediate type with regard to hydraulic properties. Potential remnants of weathered mantle are still visible but contribute little to groundwater flow. It is therefore suggested here that more comprehension about groundwater in crystalline basement rocks of Ethiopia could be gained given the comparison is made based on the genesis of the aquifers as related to tectonics and climate induced stripping and deep weathering history.
Dynamics of Compressible Convection and Thermochemical Mantle Convection
NASA Astrophysics Data System (ADS)
Liu, Xi
The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.
When mountain belts disrupt mantle flow: from natural evidences to numerical modelling
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent; Guillaume, Benjamin
2016-04-01
During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Here, we show that such mountain belts, at plate boundaries, increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, it changes the dynamic and kinematic surface conditions of the underlying flowing mantle, which ultimately modifies the pattern of mantle flow. Such forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among others, at lithospheric scale, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, the initiation of subductions, or the onset of obductions. In the mantle, such changes in boundary conditions redesign the flow pattern and, consequently, disturb the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere is resting on top. Our results show that when collision occurs, the mantle flow is strongly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) a modification of the convection style. In turn, the transition between a "free" convection (mobile lid) and a "disturbed" convection (stagnant - or sluggish - lid) highly impacts the dynamics of the lithosphere at the surface. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a lithosphere presenting a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction initiation or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, which may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.
NASA Astrophysics Data System (ADS)
Evangelidis, C. P.
2017-12-01
The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve a more definite image of the structure and geodynamics of this area.
NASA Astrophysics Data System (ADS)
Yu, Yong; Chen, Yongshun John
2016-12-01
SKS wave splitting analysis is performed to estimate the seismic anisotropy in the upper mantle using teleseismic data recorded by a temporary seismic array of 180 stations called SOSArray deployed in the southern Ordos block and the Qinling-Dabie orogen. The most important finding is that large delay times with NW-SE fast polarization directions in the northeastern Tibet are continuous across the boundary into the southwestern part of the Ordos block, where the SKS wave splitting results are significantly different from those in the rest of the Ordos block. Based on our SKS wave splitting results in addition to the results from previous studies, we propose an asthenospheric flow model for the eastward extrusion of the Tibetan upper mantle. The model consists of two corner flows around the southwestern corner and the southeastern corner of the Ordos block and the eastward flow along the Weihe graben and the Qinling-Dabie orogen for the escaping Tibetan upper mantle. Finally, the clockwise turning flow of the asthenosphere around the southwestern corner of Ordos block has currently extended laterally into the interior of the Ordos block, suggesting that the thick cold lithospheric root of the southwestern Ordos block there is currently being replaced with hot Tibetan asthenosphere at depths, that is, we observed an on-going process of thermal erosion of a cratonic lithosphere by lateral hot asthenospheric flow.
Geophysical constraints on the mantle structure of the Canadian Cordillera and North America Craton
NASA Astrophysics Data System (ADS)
Yu, T. C.; Currie, C. A.; Unsworth, M. J.
2017-12-01
In western Canada, geophysical data indicate that there is a pronounced contrast in mantle structure between the Canadian Cordillera (CC) and North America craton (NAC). The CC is characterized by lower mantle seismic velocity, higher surface heat flow, lower mantle electrical resistivity and lower effective elastic thickness. These observations are consistent with two distinct thermal regimes: the CC has hot and thin lithosphere, while the NAC lithosphere is cool and thick. The boundary between the CC and NAC coincides with the south-north trending Rocky Mountain Trench - Tintina Fault system. Earlier studies have hypothesized that the thin CC lithosphere is maintained by small-scale convection of hydrated mantle, whereas the NAC lithosphere is dry and resistant to thinning. Here, we test this hypothesis through a detailed examination of two independent data sets: (1) seismic shear-wave (Vs) tomography models and (2) magnetotelluric (MT) measurements of mantle electrical resistivity. We analyze tomography model NA07 at 50-250 km depth and create a mapping of Vs to temperature based on mantle composition (via Perple_X) and a correction for anelasticity. For the CC, the calculated temperature is relatively insensitive to mantle composition but strongly depends on the water content and anelastic correction. With a laboratory-based correction, the estimated temperature is 1150 °C at 100 km depth for wet mantle, compared to 1310 °C for dry mantle; no melt is predicted in either case. An empirical anelastic correction predicts a 115 °C hotter mantle and likely some melt. In contrast, composition is the main control on the calculated temperature for the NAC, especially at depths < 125 km. At 100 km depth, estimated temperatures are 690 °C for a pyrolite mantle and 760 °C for a dunite mantle. In the seismic analysis, there is a trade-off between temperature and water content for the CC; the observed velocities are consistent with a warm wet mantle and a hot dry mantle. To resolve this uncertainty, future work will analyze MT data, as electrical resistivity is sensitive to mantle temperature and hydration.
Mantle convection pattern and subcrustal stress field under South America
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1980-01-01
The tectonic, igneous and metallogenic features of South America are discussed in terms of the crustal deformation associated with stresses due to mantle convection as inferred from the high degree harmonics in the geopotential field. The application of Runcorn's model for the laminar viscous flows in the upper mantle to satellite and gravity data results in a convection pattern which reveals the ascending flows between the descending Nazca plate and the overlying South American plate as well as segments of the descending Nazca plate beneath South America. The arc volcanism in South America is shown apparently to be related to the upwelling of high-temperature material induced by the subduction of the Nazca plate, with the South American basin systems associated with downwelling mantle flows. The resulting tensional stress fields are shown to be regions of structural kinship characterized by major concentrations of ore deposits and related to the cordillera, shield and igneous systems and the upward Andean movements. It is suggested that the upwelling convection flows in the upper mantle, coupled with crustal tension, have provided an uplift mechanism which has forced the hydrothermal systems in the basement rocks to the surface.
NASA Astrophysics Data System (ADS)
Gallego, A.; Ito, G.; Dunn, R. A.
2013-08-01
Surface wave studies of the Reykjanes Ridge (RR) and the Iceland hotspot have imaged an unusual and enigmatic pattern of two zones of negative radial anisotropy on each side of the RR. We test previously posed and new hypotheses for the origin of this anisotropy, by considering lattice preferred orientation (LPO) of olivine A-type fabric in simple models with 1-D, layered structures, as well as in 2-D and 3-D geodynamic models with mantle flow and LPO evolution. Synthetic phase velocities of Love and Rayleigh waves traveling parallel to the ridge axis are produced and then inverted to mimic the previous seismic studies. Results of 1-D models show that strong negative radial anisotropy can be produced when olivine a axes are preferentially aligned not only vertically but also subhorizontally in the plane of wave propagation. Geodynamic models show that negative anisotropy on the sides of the RR can occur when plate spreading impels a corner flow, and in turn a subvertical alignment of olivine a axes, on the sides of the ridge axis. Mantle dehydration must be invoked to form a viscous upper layer that minimizes the disturbance of the corner flow by the Iceland mantle plume. While the results are promising, important discrepancies still exist between the observed seismic structure and the predictions of this model, as well as models of a variety of types of mantle flow associated with plume-ridge interaction. Thus, other factors that influence seismic anisotropy, but not considered in this study, such as power-law rheology, water, melt, or time-dependent mantle flow, are probably important beneath the Reykjanes Ridge.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil
2010-05-01
New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an angle alpha=25°. Constructed finite strain ellipsoid based on the X-axes of the elliptical shaped deformed markers of the diapir cover sequences show trend X-axis of the strain ellipsoid making an angle phai=2° with the boundary zones. The steep plunging stretching lineation primarily controlled by the plastic/viscous flow. This also show that during inclined upwelling boundary-parallel diapers, X-, Y-axes of the strain ellipsoid rotated clockwise and Z-axis experienced counter clockwise rotation with triclinic symmetries relative to the Zagros curvilinear transpression boundary zones with an orientation of N42°plus/minus 24°W.
Thermal invisibility based on scattering cancellation and mantle cloaking
Farhat, M.; Chen, P.-Y.; Bagci, H.; Amra, C.; Guenneau, S.; Alù, A.
2015-01-01
We theoretically and numerically analyze thermal invisibility based on the concept of scattering cancellation and mantle cloaking. We show that a small object can be made completely invisible to heat diffusion waves, by tailoring the heat conductivity of the spherical shell enclosing the object. This means that the thermal scattering from the object is suppressed, and the heat flow outside the object and the cloak made of these spherical shells behaves as if the object is not present. Thermal invisibility may open new vistas in hiding hot spots in infrared thermography, military furtivity, and electronics heating reduction. PMID:25928664
NASA Technical Reports Server (NTRS)
Bridges, N. T.; Lackner, C. N.
2005-01-01
The finding of abundant, apparently young, Martian gullies with morphologies indicative of formation by flowing fluid was surprising in that volumes of near-surface liquid water in sufficient quantities to modify the surface geology were not thought possible under current conditions. Original hypotheses on origin of gullies were mostly centered on groundwater seepage and surface runoff and melting of near-surface ground ice. More recently, melting of snow deposited in periods of higher obliquity has been proposed as a possible origin of the gullies. Tied to this hypothesis is the supposition that the "pasted-on" mantling unit observed in association with many gullies is composed of remnant snowpack. The mantling unit has distinct rounded edge on its upper boundary and exhibits features suggestive of flow noted that the uppermost part of the mantle marks where gullies begin, suggesting that the source of water for the gullies was within the mantle. The mantle is found preferentially on cold, pole-facing slopes and, where mantled and non-mantled slopes are found together, gullies are observed incised into the latter. In other cases, the mantling material lacks gullies.
Predicting seismic anisotropy in D'' from global mantle flow models
NASA Astrophysics Data System (ADS)
Nowacki, A. J.; Walker, A.; Forte, A. M.; Wookey, J.; Kendall, J. M.
2010-12-01
The strong seismic anisotropy of D'' revealed by measurement of shear wave splitting is commonly considered a signature of convectional flow in the lowermost mantle. However, the relationship between the nature of mantle flow and the seismic observations is unclear. In order to test the hypothesis that anisotropy is caused by a deformation-induced crystallographic preferred orientation, we combine 3D models of mantle flow, simulations of the deformation of polycrystalline composites, and new seismic data. We make use of an emerging suite of models of mantle dynamics, which invert data from mineral physics experiments, seismic P- and S-wave travel times, and geodynamic surface observations, to produce an estimate of the current global scale 3D flow in the silicate Earth. Seismic tomography---and hence these dynamic models---is particularly well-constrained beneath Central America because of fortuitous earthquake and seismometer locations. We trace particles through the flow models within three different regions of D'' beneath Central and North America and use the strain field from this tracing as boundary conditions for visco-plastic modelling of texture development in representative polycrystalline samples. In order to simulate texture development we calculate the orientation of each crystal in each sample at each step in the flow. Grain interactions are described using a self-consistent approach, where the crystal is considered embedded in a homogenous effective medium, representing the surrounding grains as an average of the whole sample. Parameters describing the single crystal plasticity (e.g. slip system activities) are chosen to agree with existing experimental results for the deformation of lower mantle minerals, or are taken from parameterisations of the Peierls-Nabarro model of dislocations parameterised using density functional theory. The calculated textures are then used to predict the elastic properties of the deforming lowermost mantle, and thus the magnitude and orientation of shear wave splitting accrued by S waves traversing this region in different directions. We present the first results, and compare them to recent multi-azimuth observations. This allows us to test the efficacy of proposed phase assemblages and slip systems to explain D'' anisotropy. Whilst there are large uncertainties in physical parameters of the deep Earth, we anticipate that the constraints we are able to place on these may allow us in the future to directly map deformation in D'' with anisotropy measurements, hence testing models of deep mantle thermodynamics.
NASA Astrophysics Data System (ADS)
Muller, M. R.; Fullea, J.; Jones, A. G.; Adam, J.; Lebedev, S.; Piana Agostinetti, N.
2012-12-01
Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D seismic velocity, density, electrical resistivity and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB as defined above) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: new surface-wave dispersion data, published SRFs, MT responses, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 μWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model (consistent with mantle xenoliths), with lithospheric thickness in excess of 220 km, is required to match all geophysical constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs will assess whether this chemical transition may account for the reported S-to-P conversion event at 160 km depth. However, in this this instance the SRF conversion event would not represent the petrological/thermal LAB.
Inverse Problems in Geodynamics Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.
2018-01-01
During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.
Relationship between Birkeland current regions, particle precipitation, and electric fields
NASA Technical Reports Server (NTRS)
De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.
1993-01-01
The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.
NASA Astrophysics Data System (ADS)
Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.
2009-12-01
We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.
NASA Astrophysics Data System (ADS)
Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.
2010-11-01
We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.
Mid-Mantle Interaction Between the Big, Active Samoan Plume and the Tonga-Kermadec Slabs
NASA Astrophysics Data System (ADS)
Chang, S. J.; Ferreira, A. M. G.; Faccenda, M.
2015-12-01
Mantle plumes play an efficient role in transferring heat from the core-mantle boundary to the surface, where they significantly influence plate tectonics. It is well known that, upon impinging on the lithosphere at spreading ridges or intra-oceanic settings, mantle plumes generate hotspots, Large Igneous Provinces and considerable dynamic topography. However, it is still poorly understood which is the active role of mantle plumes on subducting slabs. Here we show that the stagnancy and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the big Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3-D anisotropic tomography images and 3-D petrological-thermo-mechanical models, which show complex mantle flow around the slab and intense deformation and anisotropy in the transition zone, explaining several unique features in the Fiji-Tonga area self-consistently. We also found that horizontally polarized shear waves (SH) are faster than vertically polarized shear waves (SV) in the mid mantle beneath the Tonga slab, which may indicate a dominant dislocation creep mechanism during the slab-plume interaction. We propose possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy with thermo-mechanical calculations.
Zehner, Harold H.
1979-01-01
Burial trenches at the Maxey Flats radioactive waste burial site , Fleming County, Ky., cover an area of about 0.03 square mile, and are located on a plateau, about 300 to 400 feet above surrounding valleys. Although surface-water characteristics are known, little information is available regarding the ground-water hydrology of the Maxey Flats area. If transport of radionuclides from the burial site were to occur, water would probably be the principal mechanism of transport by natural means. Most base flow in streams around the burial site is from valley alluvium, and from the mantle of regolith, colluvium, and soil partially covering adjacent hills. Very little base flow is due to ground-water flow from bedrock. Most water in springs is from the mantle, rather than from bedrock. Rock units underlying the Maxey Flats area are, in descending order, the Nancy and Farmers Members of the Borden Formation, Sunbury, Bedford, and Ohio Shales, and upper part of the Crab Orchard Formation. These units are mostly shales, except for the Farmers Member, which is mostly sandstone. Total thickness of the rocks is about 320 feet. All radioactive wastes are buried in the Nancy Member. Most ground-water movement in bedrock probably occurs in fractures. The ground-water system at Maxey Flats is probably unconfined, and recharge occurs by (a) infiltration of rainfall into the mantle, and (b) vertical, unsaturated flow from the saturated regolith on hilltops to saturated zones in the Farmers Member and Ohio Shale. Data are insufficient to determine if saturated zones exist in other rock units. The upper part of the Crab Orchard Formation is probably a hydrologic boundary, with little ground-water flow through the formation. (USGS)
Convection in three dimensions with surface plates - Generation of toroidal flow
NASA Technical Reports Server (NTRS)
Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.
1991-01-01
This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.
Seismic evidence for convection-driven motion of the North American plate.
Eaton, David W; Frederiksen, Andrew
2007-03-22
Since the discovery of plate tectonics, the relative importance of driving forces of plate motion has been debated. Resolution of this issue has been hindered by uncertainties in estimates of basal traction, which controls the coupling between lithospheric plates and underlying mantle convection. Hotspot tracks preserve records of past plate motion and provide markers with which the relative motion between a plate's surface and underlying mantle regions may be examined. Here we show that the 115-140-Myr surface expression of the Great Meteor hotspot track in eastern North America is misaligned with respect to its location at 200 km depth, as inferred from plate-reconstruction models and seismic tomographic studies. The misalignment increases with age and is consistent with westward displacement of the base of the plate relative to its surface, at an average rate of 3.8 +/- 1.8 mm yr(-1). Here age-constrained 'piercing points' have enabled direct estimation of relative motion between the surface and underside of a plate. The relative displacement of the base is approximately parallel to seismic fast axes and calculated mantle flow, suggesting that asthenospheric flow may be deforming the lithospheric keel and exerting a driving force on this part of the North American plate.
NASA Astrophysics Data System (ADS)
Levin, V. L.; Moucha, R.; Yuan, H.
2013-12-01
Global seismic models show gradual and systematic changes in upper mantle seismic properties beneath North America. Faster and thicker lithosphere of the interior thins eastward. Upper mantle rock fabric reflected in observations of seismic anisotropy also varies. Near the coast apparent fast directions of split shear waves are nearly east-west, with considerable scatter. Further inland they are more uniform and align SW-NE, close to the absolute plate motion direction of North America. Mantle convection simulations driven by density inferred from global joint seismic-geodynamic tomography models exhibit complex flow beneath the eastern edge of the North American continent due to the ongoing descent of the Farallon slab deep beneath it (figure 1). Flow predicted beneath the coast is nearly horizontal with a small, though dynamically important, vertical component, while west of the Appalachians it turns downward. Long records of teleseismic observations accumulated at permanent seismic stations HRV, PAL and SSPA (figure 2) are inverted for vertical distribution of anisotropic parameters. We find preference for more than one layer of anisotropy beneath all sites, with significantly different parameters that could reflect either lateral variations in the lithospheric thickness, variations in the asthenospheric flow field, or both. Since we find considerable consistency in directional patterns of P-to-S mode converted waves associated with the lower part of the lithosphere, variations of asthenospheric flow seem to be a more plausible explanation. We explore the links between predicted flow and inferences from seismic data with additional observations of anisotropy and calculations of flow-induced rock fabric.
NASA Astrophysics Data System (ADS)
Ruan, Y.; Forsyth, D. W.; Bell, S. W.
2017-12-01
At mid-ocean-ridge spreading centers, it is still unclear to what extent the upwelling is purely passive, driven by viscous drag of the separating plates, or dynamically driven by the buoyancy induced by melt retention and depletion of the mantle matrix. The distinct sensitivities of seismic wavespeed and attenuation to temperature, melt porosity, water content and major element composition yield some of the primary constraints on mid-ocean ridge processes and the associated flow pattern, melt distribution, and the interaction of spreading centers with hotspots. Extensive arrays of ocean-bottom seismometers (OBS) with better quality, longer deployment periods, and the application of noise-removal techniques together provided higher quality data in this study than in any previous regional study of velocity and attenuation of the upper mantle beneath a spreading center. Based on the fundamental-mode Rayleigh waves, we imaged shear wave attenuation and velocity models in the vicinity of the Juan de Fuca plate with the best resolution to date of any spreading center. There is strong attenuation centered at depths of 70-80 km, just below the expected dry solidus and somewhat deeper than predicted for a model of passive mantle upwelling beneath the spreading center. The shear velocity structure shows lowest velocities west of the spreading center, particularly near Axial Seamount and high velocities east of the axis extending to a greater depth than predicted by the passive flow model. Together, these observations support a model in which buoyant upwelling west of the spreading center first depletes and dehydrates the mantle above the dry solidus by melt removal and then the associated downwelling carries depleted, melt-free, residual mantle downward beneath the Juan de Fuca plate. This depleted, dehydrated, melt-free layer can explain why the average attenuation is lower than expected and the velocity is higher than expected in the 30 to 70 km depth range. The compositional buoyancy of the depleted mantle may in most places limit downwelling to the vicinity of the spinel peridotite to garnet peridotite transition at a depth of 80 km.
NASA Astrophysics Data System (ADS)
Long, M. D.; Benoit, M. H.; Evans, R. L.; King, S. D.; Kirby, E.; Aragon, J. C.; Miller, S. R.; Liu, S.; Elsenbeck, J.
2017-12-01
The eastern margin of North America has undergone multiple episodes of orogenesis and rifting, yielding the surface geology and topography visible today. It is poorly known, however, how the crust and mantle lithosphere have responded to these tectonic forces, and how geologic units preserved at the surface relate to deeper structures. Furthermore, the evolution of Appalachian topography through time, which reflects a complex interplay among erosion, lithology, and mantle flow, remains a major outstanding problem. The MAGIC project involves a multidisciplinary, collaborative effort to understand the structure and evolution of the central Appalachians, from the mantle to the surface. New images of the lithosphere derived from a passive broadband seismic array and a magnetotelluric deployment demonstrate significant along-strike lateral variability across the MAGIC transect. We observe a sharp change in crustal thickness across the eastern edge of the Appalachians, with a deeper Moho beneath the mountains than suggested by simple isostatic models. We find evidence for a relatively shallow lithosphere-asthenosphere boundary (LAB) beneath the Appalachians, with the thinnest LAB coinciding with the location of Eocene volcanism in and around Harrisonburg, VA. This observation is consistent with lithospheric loss as a mechanism for Eocene volcanic activity. Observations of seismic anisotropy suggest deformation of the mantle lithosphere associated with both Appalachian orogenesis and later Mesozoic rifting, with an observable component of anisotropy due to present-day mantle flow. Geodynamic models of mantle flow using a variety of tomographic models and density scaling relationships are being used to generate predictions of dynamic topography and plate motions for comparison with observations, and are currently being refined to incorporate realistic lithospheric morphology based on imaging results. Models of present-day erosion rates throughout the Appalachians from stream profile analysis show particularly fast erosion rates just to the west of Harrisonburg. Integration of results from the MAGIC project is yielding new insight into the structure and evolution of the central Appalachians and into the processes associated with orogenesis, rifting, and post-rift evolution of the passive margin.
The temporal evolution of a subducting plate in the lower mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.
2009-04-01
It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.
The Temporal Evolution Of A Subducting Plate In The Lower Mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Grujic, D.; Fullsack, P.; Thieulot, C.; Yamato, P.; Braun, J.
2008-12-01
It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001)) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle). The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a jellyfish form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.
NASA Astrophysics Data System (ADS)
Immoor, J.; Marquardt, H.; Miyagi, L.; Lin, F.; Speziale, S.; Merkel, S.; Buchen, J.; Kurnosov, A.; Liermann, H.-P.
2018-05-01
Seismic anisotropy in Earth's lowermost mantle, resulting from Crystallographic Preferred Orientation (CPO) of elastically anisotropic minerals, is among the most promising observables to map mantle flow patterns. A quantitative interpretation, however, is hampered by the limited understanding of CPO development in lower mantle minerals at simultaneously high pressures and temperatures. Here, we experimentally determine CPO formation in ferropericlase, one of the elastically most anisotropic deep mantle phases, at pressures of the lower mantle and temperatures of up to 1400 K using a novel experimental setup. Our data reveal a significant contribution of slip on {100} to ferropericlase CPO in the deep lower mantle, contradicting previous inferences based on experimental work at lower mantle pressures but room temperature. We use our results along with a geodynamic model to show that deformed ferropericlase produces strong shear wave anisotropy in the lowermost mantle, where horizontally polarized shear waves are faster than vertically polarized shear waves, consistent with seismic observations. We find that ferropericlase alone can produce the observed seismic shear wave splitting in D″ in regions of downwelling, which may be further enhanced by post-perovskite. Our model further shows that the interplay between ferropericlase (causing VSH > VSV) and bridgmanite (causing VSV > VSH) CPO can produce a more complex anisotropy patterns as observed in regions of upwelling at the margin of the African Large Low Shear Velocity Province.
Craton destruction and related resources
NASA Astrophysics Data System (ADS)
Zhu, Rixiang; Zhang, Hongfu; Zhu, Guang; Meng, Qingren; Fan, Hongrui; Yang, Jinhui; Wu, Fuyuan; Zhang, Zhiyong; Zheng, Tianyu
2017-10-01
Craton destruction is a dynamic event that plays an important role in Earth's evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.
Seismic anisotropy and mantle flow below subducting slabs
NASA Astrophysics Data System (ADS)
Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy
2017-05-01
Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.
Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment
NASA Astrophysics Data System (ADS)
Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan
2013-04-01
One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.
NASA Astrophysics Data System (ADS)
Rajesh, S.
2012-04-01
The Himalaya-Tibet orogen formed as a result of the northward convergence of India into the Asia over the past 55 Ma had caused the north south crustal shortening and Cenozoic upliftment of the Tibetan plateau, which significantly affected the tectonic and climatic framework of the Asia. Geodetic measurements have also shown eastward crustal extrusion of Tibet, especially along major east-southeast strike slip faults at a slip rate of 15-20 mm a-1 and around 40 mm a-1. Such continental scale deformations have been modeled as block rotation by fault boundary stresses developed due to the India-Eurasia collision. However, the Thin Sheet model explained the crustal deformation mechanism by considering varying gravitational potential energy arise out of varying crustal thickness of the viscous lithosphere. The Channel Flow model, which also suggests extrusion is a boundary fault guided flow along the shallow crustal brittle-ductile regime. Although many models have proposed, but no consensus in these models to explain the dynamics of measured surface geodetic deformation of the Tibetan plateau. But what remains conspicuous is the origin of driving forces that cause the observed Tibetan crustal flow towards the South East Asia. Is the crustal flow originated only because of the differential stresses that developed in the shallow crustal brittle-ductile regime? Or should the stress transfer to the shallow crustal layers as a result of gravitational potential energy gradient driven upper mantle flow also to be accounted. In this work, I examine the role of latter in the light of depth distribution of continental geoid anomalies beneath the Himalaya-Tibet across major upper mantle density discontinuities. These discontinuity surfaces in the upper mantle are susceptible to hold the plastic deformation that may occur as a result of the density gradient driven flow. The distribution of geoid anomalies across these density discontinuities at 220, 410 and 660 km depth in the upper mantle beneath the Himalaya-Tibet has been studied by analyzing the geoid undulation data obtained from various satellite geodetic missions along with the recent and old (EGM2008 and EGM2006) Earth Gravity models. Results show that the net geoid anomaly varies from -65 m to -20 m, which signify a density stratified upper mantle beneath the Himalaya-Tibet and the same has been confirmed from the results of regional seismic tomography studies. The density anomaly distribution beneath Tibet from 163 km depth to its upper mantle thickness of 1063 km show a strong NW-SE elliptically oriented positive geoid anomalies of magnitude around 40 meter. Asymmetric density anomaly gradient have been observed along the Himalayan arc from west to east as well as across the arc from north to south. This caused differential gravitational potential gradient and hence an elliptical flow structure of the Tibetan continental mantle along the resultant NW-SE direction, which is in concurrence with the observed present day direction of the Tibetan crustal flow. Thus the geoid anomalies distributed at various depth ranges show how the gradient in the upper mantle gravitational potential energy, especially across the deformed discontinuity surface, is significant in determining the transfer of deviatoric stresses and providing traction to the flow of crustal layers of the Tibetan Plateau. This suggests the viscous flow model could be a preferable choice, which could better accommodate the dynamics of the upper mantle, in explaining the crustal extrusion processes of the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Mosher, Stephen G.; Audet, Pascal; L'Heureux, Ivan
2014-07-01
Tectonic plate reorganization at a subduction zone edge is a fundamental process that controls oceanic plate fragmentation and capture. However, the various factors responsible for these processes remain elusive. We characterize seismic anisotropy of the upper mantle in the Explorer region at the northern limit of the Cascadia subduction zone from teleseismic shear wave splitting measurements. Our results show that the mantle flow field beneath the Explorer slab is rotating anticlockwise from the convergence-parallel motion between the Juan de Fuca and the North America plates, re-aligning itself with the transcurrent motion between the Pacific and North America plates. We propose that oceanic microplate fragmentation is driven by slab stretching, thus reorganizing the mantle flow around the slab edge and further contributing to slab weakening and increase in buoyancy, eventually leading to cessation of subduction and microplate capture.
NASA Technical Reports Server (NTRS)
Thompson, E.
1979-01-01
A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.
The Importance of Lower Mantle Structure to Plate Stresses and Plate Motions
NASA Astrophysics Data System (ADS)
Holt, W. E.; Wang, X.; Ghosh, A.
2016-12-01
Plate motions and plate stresses are widely assumed as the surface expression of mantle convection. The generation of plate tectonics from mantle convection has been studied for many years. Lithospheric thickening (or ridge push) and slab pull forces are commonly accepted as the major driving forces for the plate motions. However, the importance of the lower mantle to plate stresses and plate motions remains less clear. Here, we use the joint modeling of lithosphere and mantle dynamics approach of Wang et al. (2015) to compute the tractions originating from deeper mantle convection and follow the method of Ghosh et al. (2013) to calculate gravitational potential energy per unit area (GPE) based on Crust 1.0 (Laske et al., 2013). Absolute values of deviatoric stresses are determined by the body force distributions (GPE gradients and traction magnitudes applied at the base of the lithosphere). We use the same relative viscosity model that Ghosh et al. (2013) used, and we solve for one single adjustable scaling factor that multiplies the entire relative viscosity field to provide absolute values of viscosity throughout the lithosphere. This distribution of absolute values of lithosphere viscosities defines the magnitudes of surface motions. In this procedure, the dynamic model first satisfies the internal constraint of no-net-rotation of motions. The model viscosity field is then scaled by the single factor until we achieve a root mean square (RMS) minimum between computed surface motions and the kinematic no-net-rotation (NNR) model of Kreemer et al. (2006). We compute plate stresses and plate motions from recently published global tomography models (over 70 based on Wang et al., 2015). We find that RMS misfits are significantly reduced when details of lower mantle structure from the latest tomography models are added to models that contain only upper and mid-mantle density distributions. One of the key reasons is that active upwelling from the Large Low Shear Velocity Provinces (LLSVPs) in the lower mantle in Pacific (Frost and Rost, 2014) provides important components of mantle flow affecting plate stresses and motions. We demonstrate in this paper how lower mantle density heterogeneity has a marked influence on plate stresses and plate motions.
Haeussler, Peter J.; Saltus, Richard W.
2011-01-01
Subduction of the buoyant Yakutat microplate likely caused deformation to be focused preferentially in upper Cook Inlet. The upper Cook Inlet region has both the highest degree of shortening and the deepest part of the Neogene basin. This forearc region has a long-wavelength magnetic high, a large isostatic gravity low, high conductivity in the lower mantle, low p-wave velocity (Vp), and a high p-wave to shear-wave velocity ratio (Vp/Vs). These data suggest that fluids in the mantle wedge caused serpentinization of mafic rocks, which may, at least in part, contribute to the long-wavelength magnetic anomaly. This area lies adjacent to the subducting and buoyant Yakutat microplate slab. We suggest the buoyant Yakutat slab acts much like a squeegee to focus mantle-wedge fluid flow at the margins of the buoyant slab. Such lateral flow is consistent with observed shear-wave splitting directions. The additional fluid in the adjacent mantle wedge reduces the wedge viscosity and allows greater corner flow. This results in focused subsidence, deformation, and gravity anomalies in the forearc region.
NASA Astrophysics Data System (ADS)
Steinberger, Bernhard; Conrad, Clinton
2017-04-01
Two large seismically slow lower mantle regions beneath the Pacific and Africa are sometimes referred to as "superplumes". This names evokes associations of large-scale active upwellings, however it is not clear whether these are real, or rather just regular mantle plumes occur more frequently in these regions. Here we study the implications of new results on dynamic topography, which would be associated with active upwellings, on this question. Recently, Hoggard et al. (2016) developed a detailed model of marine residual topography, after subtracting isostatic crustal topography. Combining this with results from continents, a global model can be expanded in spherical harmonics. Comparison with dynamic topography derived from mantle flow models inferred from seismic tomography (Steinberger, 2016) yields overall good agreement and similar power spectra, except at spherical harmonic degree two where mantle flow models predict about six times as much power as is inferred from observations: Mantle flow models feature two large-scale antipodal upwellings at the seismically slow regions, whereas the actual topography gives only little indication of these. We will discuss here what this discrepancy could possibly mean and how it could be resolved.
Radar, visual and thermal characteristics of Mars: Rough planar surfaces
Schaber, G.G.
1980-01-01
High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249-4291), were found to possess such a recent mantle. At predawn residual temperatures ??? -10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin. ?? 1980.
Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O. S.; Kendall, J.-M.; Wookey, J.; Stuart, G. W.; Keir, D.; Ayele, A.
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti, and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and we directly invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due to shear segregated melt along sharp changes in lithospheric thickness dominates the shear-wave splitting signal in the mantle. Beneath Afar, away from regions with significant lithospheric topography, melt pockets associated with the crustal and uppermost mantle magma storage dominate the signal in localized regions. In general, little anisotropy is seen in the uppermost mantle beneath Afar suggesting melt retains no preferential alignment. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is lacking beneath Afar today, rather a broad flow from the southwest dominates flow in the upper mantle.
Mantle convection on modern supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter
2015-04-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.
NASA Astrophysics Data System (ADS)
Civiero, C.; Custodio, S.; Silveira, G. M.; Rawlinson, N.; Arroucau, P.
2017-12-01
The processes responsible for the geodynamical evolution of the Ibero-Maghrebian domain are still enigmatic. Several geophysical studies have improved our understanding of the region, but no single model has been accepted yet. This study takes advantage of the dense station networks deployed from France in the north to Canary Islands and Morocco in the south to provide a new high-resolution P-wave velocity model of the structure of the upper-mantle and top of the lower mantle. These images show subvertical small-scale upwellings below Atlas Range, Canary Islands and Central Iberia that seem to cross the transition zone. The results, together with geochemical evidence and a comparison with previous global tomographic models, reveal the ponding or flow of deep-plume material beneath the transition zone, which seems to feed upper-mantle "secondary" pulses. In the upper mantle the plumes, in conjunction with the subduction-related upwellings, allow the hot mantle to rise in the surrounding zones. During its rising, the mantle interacts with horizontal SW slab-driven flow which skirts the Alboran slab and connects with the mantle upwelling below Massif Central through the Valencia Trough rift.
NASA Astrophysics Data System (ADS)
Rosenberg, R. H.; Kirby, E.; Aslan, A.; Karlstrom, K. E.; Heizler, M. T.; Kelley, S. A.; Piotraschke, R. E.; Furlong, K. P.
2011-12-01
It is increasingly recognized that dynamic effects associated with changes in mantle flow and buoyancy can influence the evolution of surface topography. In the Rocky Mountain province of the western United States, recent seismic deployments reveal intriguing correlations between anomalies in the velocity structure of the upper mantle and regions of high topography. Here, we investigate whether regional correlations between upper-mantle structure and topography are associated with the history of Late Cenozoic fluvial incision and exhumation. Major tributaries of the upper Colorado River, including the Gunnison and Dolores Rivers, which drain high topography in central and western Colorado overlie upper mantle with slow seismic wave velocities; these drainages exhibit relatively steep longitudinal profiles (normalized for differences in drainage area and discharge) and are associated with ~1000-1500 m of incision over the past 10 Ma. In contrast, tributaries of the Green River that drain the western slope in northern Colorado (White, Yampa, and Little Snake Rivers) overlie mantle of progressively higher seismic wave velocities. River profiles in northern Colorado are two to three times less steep along reaches with comparable bedrock lithologies. New Ar39/Ar40 ages on ~11 Ma basalt flows capping the Tertiary Brown's Park Formation in northern Colorado indicate that the magnitude of exhumation along these profiles ranges from ~400 - 600 m over this time interval. The correspondence of steep river profiles in regions of greater incision implies that the fluvial systems are dynamically adjusting to an external forcing. New constraints on the exhumation history of the upper Colorado River from apatite fission track ages in boreholes near Rifle, Colorado are best explained by an onset of exhumation at ca. 8-10 Ma. Thus, relative base level fall associated with development of Grand Canyon (ca. 6-5 Ma) does not explain the regional onset of incision along the western slope of the Rockies. Additionally, new cosmogenic burial ages from fan-terrace complexes near Rifle, Colorado show that Colorado River incision occurred at similar rates over both 10 Ma and 2 Ma timescales. Fluvial incision in response to relative base level fall or to changes in regional climate cannot easily explain the history of differential incision along the western slope. Given the correspondence of steep channels, large magnitude incision and regions of low seismic velocity mantle, we suggest that differential rock uplift, driven, in part, by differences in the buoyancy and/or convective flow of the mantle beneath western Colorado is the likely driver for Neogene incision.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2005-12-01
Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5-14 TW. In the absence of heat-producing elements in the core, such high heat flow rates require an inner core younger than ~1 Ga and preclude the development of significant 186Os enrichment in the outer core. Experimental studies suggest that potassium may partition into Fe-S-O liquids during core formation. Radioactive decay of potassium in the core could provide an additional heat source and reconcile geophysical evidence for high core/mantle heat flow with apparent geochemical evidence for an ancient inner core. However, high concentrations of chalcophile elements such as Cu in the mantle are inconsistent with significant segregation of a S-rich liquid during core formation, precluding K partitioning into the core by this mechanism. Furthermore, core formation scenarios that would lead to high K content in the core (e.g., core formation prior to terrestrial volatile depletion) also result in high core Pb concentrations. Core/mantle interaction would then produce strong negative correlations between 186Os/188Os and 207Pb/204Pb ratios, but such correlations are not observed. In summary, elevated 186Os/188Os ratios in some plume-derived lavas are unlikely to reflect core/mantle interaction because the inner core is too young for this isotopic signature to have developed in the outer core. Melt generation from pyroxenite or fractionation of PGEs between sulfide melts and monosulfide solid solutions provide alternative mechanisms for generating ancient mantle reservoirs with elevated Pt/Os and 186Os/188Os.
Mantle flow beneath Arabia offset from the opening Red Sea
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Merino, Miguel; Van der Lee, Suzan; Stein, Seth; Stein, Carol A.
2011-02-01
Continental rifting involves a poorly understood sequence of lithospheric stretching, volcanism, and mantle flow that evolves to seafloor spreading. We present new insight from inversion of seismic traveltimes and waveforms beneath Arabia and surroundings. Low velocities occur beneath the southern Red Sea and Gulf of Aden, consistent with active spreading. However, hot material extends not below the northern Red Sea, but is offset eastward beneath Arabia, showing mantle flow from the Afar hotspot. The location of this channel beneath volcanic rocks erupted since rifting began 30 million years ago indicates that flow moves with Arabia. We propose that the absence of seafloor spreading in the northern Red Sea reflects the offset flow. This geometry may evolve to spreading in the Northern Red Sea, rifting of Arabia, or both. This situation has aspects of both active and passive rifting, showing that both can occur before coalescing to seafloor spreading.
NASA Astrophysics Data System (ADS)
Menant, Armel; Jolivet, Laurent; Sternai, Pietro; Ducoux, Maxime; Augier, Romain; Rabillard, Aurélien; Gerya, Taras; Guillou-Frottier, Laurent
2014-05-01
In subduction environment, magmatic-hydrothermal processes, responsible for the emplacement of magmatic bodies and related mineralization, are strongly controlled by slab dynamics. This 3D dynamics is often complex, resulting notably in spatial evolution through time of mineralization and magmatism types and in fast kinematic changes at the surface. Study at different scales of the distribution of these magmatic and hydrothermal products is useful to better constrain subduction dynamics. This work is focused on the eastern Mediterranean, where the complex dynamics of the Tethyan active margin since the upper Cretaceous is still largely debated. We propose new kinematic reconstructions of the region also showing the distribution of magmatic products and mineralization in space and time. Three main periods have thus been identified with a general southward migration of magmatic and ore bodies. (1) From late Cretaceous to lower Paleocene, calc-alkaline magmatism and porphyry Cu deposits emplaced notably in the Balkans, along a long linear cordillera. (2) From late Paleocene to Eocene, a barren period occurred while the Pelagonian microcontinent was buried within the subduction zone. (3) Since the Oligocene, Au-rich deposits and related K-rich magmatism emplaced in the Rhodopes, the Aegean and western Anatolian extensional domains in response to fast slab retreat and related mantle flow inducing the partial melting of the lithospheric mantle or the base of the upper crust where Au was previously stored. The emplacement at shallow level of this mineralization was largely controlled by large-scale structures that drained the magmatic-hydrothermal fluids. In the Cyclades for instance, field studies show that Au-rich but also base metal-rich ore deposits are syn-extensional and spatially related to large-scale detachment systems (e.g. on Tinos, Mykonos, Serifos islands), which are recognized as subduction-related structures. These results highlight the importance at different scales of subduction dynamics and related mantle flow on the emplacement of mineralization and magmatic bodies. Indeed, besides a general southward migration of the magmatic-hydrothermal activity since the upper Cretaceous from the Balkans to the present-day Aegean volcanic arc, a secondary westward migration is observed during the Miocene from the Menderes massif to the Cyclades. This feature is a possible consequence of a slab tearing event and related mantle flow, as suggested notably by tomographic models below western Anatolia. To further test the effects of slab retreat and tearing on the flow and temperature field within the mantle, we performed 3D thermo-mechanical numerical modeling. Models suggest that the asthenospheric flow induced by the development of a slab tear controls the migration of magmatic products stored at the base of the crust, influencing the distribution of potentially fertile magmas within the upper crust.
NASA Astrophysics Data System (ADS)
Bunge, Hans-Peter
2002-08-01
Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.
NASA Astrophysics Data System (ADS)
Mullen, E.; Weis, D.
2013-12-01
Cascadia offers a unique perspective on arc magma genesis as an end-member ';hot' subduction zone in which relatively little water may be available to promote mantle melting. The youngest and hottest subducting crust (~5 Myr at the trench) occurs in the Garibaldi Volcanic Belt, at the northern edge of the subducting Juan de Fuca plate [1]. Geochemical data from GVB primitive basalts provide insights on mantle melting where a slab edge coincides with high slab temperatures. In subduction zones worldwide, including the Cascades, basalts are typically calc-alkaline and produced from a depleted mantle wedge modified by slab input. However, basalts from volcanic centers overlying the northern slab edge (Salal Glacier and Bridge River Cones) are alkalic [2] and lack a trace element subduction signature [3]. The mantle source of the alkalic basalts is significantly more enriched in incompatible elements than the slab-modified depleted mantle wedge that produces calc-alkaline basalts in the southern GVB (Mt. Baker and Glacier Peak) [3]. The alkalic basalts are also generated at temperatures and pressures of up to 175°C and 1.5 GPa higher than those of the calc-alkaline basalts [3], consistent with decompression melting of fertile, hot mantle ascending through a gap in the Nootka fault, the boundary between the subducting Juan de Fuca plate and the nearly stagnant Explorer microplate. Mantle upwelling may be related to toroidal mantle flow around the slab edge, which has been identified in southern Cascadia [4]. In the GVB, the upwelling fertile mantle is not confined to the immediate area around the slab edge but has spread southward along the arc axis, its extent gradually diminishing as the slab-modified depleted mantle wedge becomes dominant. Between Salal Glacier/Bridge River and Glacier Peak ~350 km to the south, there are increases in isotopic ratios (ɛHf = 8.3 to13.0, ɛNd = 7.3 to 8.5, and 208Pb*/206*Pb* = 0.914 to 0.928) and trace element indicators of slab input (e.g., Ba/Nb, Ba/La), along with a transition of basalt compositions from alkalic to calc-alkaline [2]. Mantle upwelling at slab edges and arc-parallel mantle flow are recognized in an increasing number of subduction zones from seismic anisotropy data [5]. In the GVB, the geochemical evidence for these phenomena is reinforced by shear-wave splitting measurements indicating complex mantle flow around the northern Cascadia slab edge [6]. The influx of enriched asthenosphere into the northern Cascadia mantle wedge accounts for why GVB basalts display compositional differences from other Cascade arc basalts. [1] Wilson (2002) USGS Open-File Rep 02-328; [2] Green (2006) Lithos 86, 23; [3] Mullen & Weis (2013) Geochem Geophys Geosys, in press; [4] Zandt & Humphreys (2008) Geology 36, 295; [5] Long & Silver (2008) Science 319, 315; [6] Currie et al. [2004] Geophys J Int 157, 341.
NASA Technical Reports Server (NTRS)
Voorhies, C. V.
1999-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.
NASA Astrophysics Data System (ADS)
Conrad, Clinton P.; Steinberger, Bernhard; Torsvik, Trond H.
2017-04-01
Earth's surface is deflected vertically by stresses associated with convective mantle flow. Although dynamic topography is important for both sea level change and continental uplift and subsidence, the time history of dynamic topography is difficult to constrain because the time-dependence of mantle flow is not known. However, the motions of the tectonic plates contain information about the mantle flow patterns that drive them. In particular, we show that the longest wavelengths of mantle flow are tightly linked to the dipole and quadrupole moments (harmonic degrees 1 and 2) of plate motions. This coupling allows us to infer patterns of long-wavelength mantle flow, and the associated dynamic topography, from tectonic plate motions. After calibrating this linkage using models of present-day mantle flow, we can use reconstructions of global plate motions to infer the basic patterns of long-wavelength dynamic topography back to 250 Ma. We find relatively stable dynamic uplift persists above large-scale mantle upwelling beneath Africa and the Central Pacific. Regions of major downwelling encircled the periphery of these stable upwellings, alternating between primarily east-west and north-south orientations. The amplitude of long-wavelength dynamic topography was likely largest in the Cretaceous, when global plate motions were fastest. Continental motions over this time-evolving dynamic topography predict patterns of continental uplift and subsidence that are confirmed by geological observations of continental surfaces relative to sea level. Net uplift or subsidence of the global seafloor can also induce eustatic sea level changes. We infer that dispersal of the Pangean supercontinent away from stable upwelling beneath Africa may have exposed the seafloor to an increasingly larger area of growing positive dynamic topography during the Mesozoic. This net uplift of the seafloor caused 60 m of sea level rise during the Triassic and Jurassic, ceasing in the Cenozoic once continents fully override degree-2 downwellings. These sea level changes represent a significant component of the estimated 200 m of sea level variations during the Phanerozoic, which exhibit a similar temporal pattern.
NASA Astrophysics Data System (ADS)
Muller, Mark; Fullea, Javier; Jones, Alan G.; Adam, Joanne; Lebedev, Sergei; Piana Agostinetti, Nicola
2013-04-01
Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained - the tLAB) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D electrical resistivity, seismic velocity, density and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: MT responses, new surface-wave dispersion data, published SRFs, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 µWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model, with lithospheric thickness in excess of 230 km, is required to match all geophysical and xenolith constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs indicate that this chemical transition is able to account for the reported S-to-P conversion event at 160 km depth. In this this instance the 160 km deep SRF event does not represent the petrological/thermal LAB.
Full-wave multiscale anisotropy tomography in Southern California
NASA Astrophysics Data System (ADS)
Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei
2014-12-01
Understanding the spatial variation of anisotropy in the upper mantle is important for characterizing the lithospheric deformation and mantle flow dynamics. In this study, we apply a full-wave approach to image the upper-mantle anisotropy in Southern California using 5954 SKS splitting data. Three-dimensional sensitivity kernels combined with a wavelet-based model parameterization are adopted in a multiscale inversion. Spatial resolution lengths are estimated based on a statistical resolution matrix approach, showing a finest resolution length of ~25 km in regions with densely distributed stations. The anisotropic model displays structural fabric in relation to surface geologic features such as the Salton Trough, the Transverse Ranges, and the San Andreas Fault. The depth variation of anisotropy does not suggest a lithosphere-asthenosphere decoupling. At long wavelengths, the fast directions of anisotropy are aligned with the absolute plate motion inside the Pacific and North American plates.
NASA Astrophysics Data System (ADS)
Kincaid, C.
2005-12-01
Subduction of oceanic lithosphere provides a dominant driving force for mantle dynamics and plate tectonics, and strongly modulates the thermal evolution of the mantle. Magma generation in arc environments is related to slab temperatures, slab dehydration/wedge hydration processes and circulation patterns in the mantle wedge. A series of laboratory experiments is used to model three-dimensional aspects of flow in subduction zones, and the consequent temperature variations in the slab and overlying mantle wedge. The experiments utilize a tank of glucose syrup to simulate the mantle and a Phenolic plate to represent subducting oceanic lithosphere. Different modes of plate sinking are produced using hydraulic pistons. The effects of longitudinal, rollback and slab-steepening components of slab motions are considered, along with different thicknesses of the over-riding lithosphere. Models look specifically at how distinct modes of back-arc spreading alter subduction zone temperatures and flow in the mantle wedge. Results show remarkably different temperature and circulation patterns when spreading is produced by rollback of the trench-slab-arc relative to a stationary overriding back-arc plate versus spreading due to motion of the overriding plate away from a fixed trench location. For rollback-induced spreading, flow trajectories in the wedge are shallow (e.g., limited upwelling), both the sub-arc and back-arc regions are supplied by material flowing around the receding slab. Flow lines in the sub-arc wedge are strongly trench-parallel. In these cases, strong lateral variations in slab surface temperature (SST) are recorded (hot at plate center, cool at plate edge). When the trench is fixed in space and spreading is produced by motion of the overriding plate, strong vertical flow velocities are recorded in the wedge, both the shallow sub-arc and back-arc regions are supplied by flow from under the overriding plate producing strong vertical shear. In these cases SSTs are nearly uniform across the plate. Results have implications for geochemical and seismic models of 3-D flow in subduction zones influenced by back-arc spreading, such as the Marianas.
Asymmetric three-dimensional topography over mantle plumes.
Burov, Evgueni; Gerya, Taras
2014-09-04
The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.
Modelling of sea floor spreading initiation and rifted continental margin formation
NASA Astrophysics Data System (ADS)
Tymms, V. J.; Isimm Team
2003-04-01
Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.
Extensional crustal tectonics and crust-mantle coupling, a view from the geological record
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Menant, Armel; Clerc, Camille; Sternai, Pietro; Ringenbach, Jean-Claude; Bellahsen, Nicolas; Leroy, Sylvie; Faccenna, Claudio; Gorini, Christian
2017-04-01
In passive margins or back-arc regions, extensional deformation is often asymmetric, i.e. normal faults or extensional ductile shear zones dip in the same direction over large distances. We examine a number of geological examples in convergent or divergent contexts suggesting that this asymmetry results from a coupling between asthenospheric flow and crustal deformation. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea, the Alboran domain or the Gulf of Lion passive margin. Similar types of observation can be made on some of the Atlantic volcanic passive margins and the Afar region, which were all formed above a mantle plume. We discuss these contexts and search for the main controlling parameters for this asymmetric distributed deformation that imply a simple shear component at the scale of the lithosphere. The different geodynamic settings and tectonic histories of these different examples provide natural case-studies of the different controlling parameters, including a pre-existing heterogeneity of the crust and lithosphere (tectonic heritage) and the possible contribution of the underlying asthenospheric flow through basal drag or basal push. We show that mantle flow can induce deformation in the overlying crust in case of high heat flow and thin lithosphere. In back-arc regions, the cause of asymmetry resides in the relative motion between the asthenosphere below the overriding plate and the crust. When convergence and slab retreat work concurrently the asthenosphere flows faster than the crust toward the trench and the sense of shear is toward the upper plate. When slab retreat is the only cause of subduction, the sense of shear is opposite. In both cases, mantle flow is mostly the consequence of slab retreat and convergence. Mantle flow can however result also from larger-scale convection, controlling rifting dynamics prior to the formation of oceanic crust. In volcanic passive margins, in most cases normal faults dip toward the continent. This asymmetry may either result from the mantle flowing underneath regions evolving above a migrating plume, such as the Afar, when an asymmetry is observed at the scale of the rift, or from necking of the lithosphere when the conjugate margins show an opposite asymmetry. We summarize the various observed situations with normal faults dipping toward the continent ("hot" margins) or toward the ocean ("cold" margins) and discuss whether mantle flow is responsible for the observed asymmetry of deformation or not. Slipping along pre-existing heterogeneities seems a second-order phenomenon at lithospheric or crustal scale, except at the initiation of rifting.
NASA Astrophysics Data System (ADS)
Keller, Tobias; Katz, Richard F.
2015-04-01
Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x
Intraplate deformation, stress in the lithosphere and the driving mechanism for plate motions
NASA Technical Reports Server (NTRS)
Albee, Arden L.
1993-01-01
The initial research proposed was to use the predictions of geodynamical models of mantle flow, combined with geodetic observations of intraplate strain and stress, to better constrain mantle convection and the driving mechanism for plate motions and deformation. It is only now that geodetic observations of intraplate strain are becoming sufficiently well resolved to make them useful for substantial geodynamical inference to be made. A model of flow in the mantle that explains almost 90 percent of the variance in the observed longwavelength nonhydrostatic geoid was developed.
NASA Astrophysics Data System (ADS)
Kaercher, P. M.; Mecklenburgh, J.; Mariani, E.; Wheeler, J.
2016-12-01
The rheology of the lower mantle directly influences mantle viscosity and strength and therefore affects a number of geophysical processes including mantle mixing, formation of mantle plumes and hotspots, slab subduction and stagnation, and plate motion. Experimental flow laws of lower mantle minerals, which quantify rheology of the lower mantle, are needed to help resolve discrepancies in estimates of lower mantle viscosity, better constrain geophysical models, and answer a number of outstanding questions such as, why slabs descend to different depths, and why the lower mantle is mostly isotropic despite large strains predicted by convection models. However, we lack natural lower mantle samples from which to infer deformation history. Furthermore, deformation experiments at lower mantle pressures and temperatures are challenging, and strain rates and stress cannot always be precisely controlled or measured. As a valuable alternative we have synthesized and deformed neighborite (NaMgF3), a low pressure analog of bridgmanite (MgSiO3), the most abundant mineral in the lower mantle and the Earth. Neighborite was deformed at 200 MPa confining pressure and between 500-700°C in compression using a fluid-medium deformation apparatus, and in torsion using a Patterson rig. In these experiments strain rate and stress can be accurately controlled and measured, and flow laws reliably determined. In addition we have recovered samples and examined deformation microstructures in a scanning electron microscope using electron backscatter diffraction. Preliminary mechanical results show a switch from linear-viscous deformation at lower stress (<50 MPa) to power law creep accommodated by grain boundary sliding at higher stress (>50 MPa). We also see strain weakening. Microstructures of samples deformed at a range of stress steps show grain boundary migration recrystallization (likely from lower stress) and crystallographic preferred orientation with poles to (100) planes parallel to compression (likely from higher stress). Further work is in progress to obtain microstructures that can be univocally associated with the observed mechanical behavior. We compare our results to those of other bridgmanite analogs and bridgmanite itself and extrapolate to geologic strain rates.
NASA Astrophysics Data System (ADS)
Behn, M. D.; Conrad, C. P.; Silver, P. G.
2005-12-01
Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere viscosity. These models can be used to separate the contributions of asthenospheric flow and lithospheric fossil fabric in observations of continental anisotropy.
Rheological properties of bridgmanite based on deformation experiments
NASA Astrophysics Data System (ADS)
Tsujino, N.; Yamazaki, D.; Yoshino, T.; Sakurai, M.; Higo, Y.; Tange, Y.
2017-12-01
The lower mantle occupies 65% of Earth's mantle. Therefore, rheology of the Earth's lower mantle is most important to understand dynamic processes in the Earth's mantle. In Tsujino et al. (2016), we developed deformation experimental technique using D-DIA apparatus as Kawai-type (6-8 type). Crystallographic-preferred-orientation (CPO) of bridgmanite at top of the Earth's lower mantle conditions was determined by shear deformation experiments under upper most lower mantle conditions (25 GPa and 1873 K). The observed seismic shear wave anisotropies near several subducted slabs (Tonga-Kermadec, Kurile, Peru and Java) can be explained in terms of the CPO of bridgmanite as induced by mantle flow parallel to the direction of subduction. On the other hands, one dimensional viscosity models of the Earth's mantle were proposed by geophysical observations while there are large inconsistencies of viscosity (2 3 order magnitude) in the lower mantle between suggested models. It is important to determine viscosity of lower mantle minerals by high pressure experiments in order to understand mantle dynamics. In this study, we conducted in-situ stress-strain measurements of MgSiO3-bridgmanite aggregate at 1473-1673 K and 24 GPa using D-DIA type apparatus as Kawai-type at Spring-8 BL04B1. Measured uniaxial stress, strain rate of bridgmanite during deformation experiments were 0.3-1.3 GPa and 4×10-6 - 3×10-5 /s with <6% strain. Creep strength of bridgmanite at 1×10-5 /s is largest in the mantle minerals and 0.5-1 order magnitude larger than those of transition minerals when only the results using D-DIA apparatus are compared.
NASA Astrophysics Data System (ADS)
Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.
2017-01-01
MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.
A mechanism for crustal recycling on Venus
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.; Bindschadler, D. L.
1993-01-01
Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle approximately equal 1 cu km of crust per year under favorable conditions.
The Evolution of Eastern Himalayan Syntaxis of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zhang, S.; Wu, T.; Li, M.; Zhang, Y.; Hua, Y.; Zhang, B.
2017-12-01
Indian plate has been colliding with Eurasian plate since 50Ma years ago, resulting in the Tethys extinction, crust shortening and Tibetan plateau uplift. But it is still a debate how the Tibetan Plateau material escaped. This study tries to invert the distributions of dispersion phase velocity and anisotropy in Eastern Himalayan Syntaxis (EHS) based on the seismic data. We focused on the seven sub-blocks around EHS region. Sub-block "EHS" represents EHS corner with high velocity anomalies, significantly compressed in the axle and strike directions. Sub-blocks "LSD", "QTB" and "SP-GZB" are located at its northern areas with compressions also, and connected with low-velocity anomalies in both crustal and upper mantle rocks. Sub-block "ICB" is located at its southern area with low velocity anomaly, and connected with Tengchong volcano. Sub-blocks "SYDB" and "YZB" are located at its eastern areas with high velocity anomalies in both crustal and upper mantle rocks. Our results demonstrated that significant azimuthal anisotropy of crust (t£30s) and upper mantle (30s£t£60s). Crustal anisotropy indicates the orogenic belt matched well with the direction of fast propagation, and upper mantle anisotropy represents the lattic-preferred orientation (LPO) of mantle minerals (e.g. olivine and basalt), indicating the features of subducting Indian plate. Besides, Red River fault is a dextral strike fault, controlling the crustal and mantle migration. There is a narrow zone to be the channel flow of Tibetan crustal materials escaping toward Yunnan area. The evolution of EHS seems constrained by gravity isostatic mechanism. Keywords: Tibetan Plateau; Eastern Himalayan Syntaxis; Red River fault; crustal flow; surface wave; anisotropy
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Petrunin, A.; Mooney, W. D.
2013-12-01
The impact of basal drag on the long-lived cratonic roots has been debated since the discovering of plate tectonics. Previously, evidence for a shifted mantle structure under North America was postulated from a comparison of the surface expression of the Great Meteor hotspot track versus its location at 200 km depth as inferred from seismic tomography (Eaton and Frederiksen, 2007). We present new results that are based on the integrative modeling of gravity and seismic data. The starting point is the residual gravity anomaly and residual topography, which are computed by removing of the crustal effect and of the effect of temperature variations in the upper mantle from the observed fields (Mooney and Kaban, 2010). After the temperature correction both residual fields chiefly reflect compositional density heterogeneity of the upper mantle. The residual gravity and topography are jointly inverted to determine the 3D density structure of the upper mantle. The inversion technique accounts for the fact that although these parameters are controlled by the same factors, the effect depends on depth and wavelength. Therefore, we can resolve the vertical distribution of density more reliable than by interpreting only one parameter. We found a strong negative anomaly under the North American craton, as expected for a depleted mantle. However, starting from a depth of about 200 km the depleted root is shifted west-southwest. The maximal shift reaches about 1000 km at a depth of 300 km. The direction agrees with the North American plate movement and with the anisotropy pattern in the upper mantle (e.g. Bokelmann, 2002). The results of the gravity modeling are confirmed by geodynamic modeling. The mantle flow is estimated from the density and temperature distribution derived from seismic tomography models. A 3D viscosity model is supplemented with weak boundaries based on an integrated model of plate boundary deformations. The calculated plate velocities are in a good agreement with the GPS-based models. We found a vertical gradient of the horizontal mantle flow velocity under the North American craton that relates to shear stresses deforming the cratonic root. The lateral velocity within the lowermost part of the lithosphere is about 2 mm/y faster than the overlying plate velocity. If we extrapolate this value to the past, the observed shift of the cratonic root could be achieved in about 500 Ma. Bokelmann GHR, (2002) Convection-driven motion of the North American craton: Evidence from P-wave anisotropy, Geoph. J. Int., 148, 278-287. Eaton DW and Frederiksen A, (2007) Seismic evidence for convection-driven motion of the North American plate, Nature 446, 428-431. Mooney WD, Kaban, MK., (2010). The North American Upper Mantle: Density, Composition, and Evolution, J. Geophys. Res., 115, B12424.
NASA Astrophysics Data System (ADS)
Assumpcao, M.; Melo, B. C.
2017-12-01
Shear-wave splitting from core-refracted (SKS) waves indicates the amount and orientation of seismic anisotropy in the upper mantle, and is used to infer past and present mantle dynamics and continental evolution. Previous SKS studies in South America concentrated mainly in the Andes and in SE Brazil. Although effects of frozen anisotropy in the lithospheric mantle were suggested in some parts of SE Brazil, the main contribution to the orientation of the fast polarization directions have been attributed to asthenospheric flow around cratonic keels, especially around the São Francisco craton in eastern Brazil (Assumpção et al., 2006,2011). We added extra SKS splitting measurements in the area of the Pantanal and Paraná-Chaco basins (FAPESP-funded "3-Basins" Project). Results from 47 new stations will be presented, both from the temporary deployments and from the Brazilian permanent net. This data set partly fills the gap in SKS measurements between the Andes and SE Brazil, providing a more complete and robust anisotropy map of the S. American stable platform. On average, over most of the mid-continent, the fast polarization orientation tends to be close to the absolute plate motion given by the hotspot reference frame HS3-NUVEL-1A. Nevertheless, the new and previously published fast polarizations results suggest mantle flow around the Amazon and São Francisco cratons. A comparison with recent modeling of upper mantle flow induced by the Nazca plate subduction (Hu et al., 2017) shows good agreement with the predictions of mantle flow around the Amazon craton. Further south, however, especially in the Pantanal Basin, the observed SKS fast orientations are ENE-WSW, deviating from the general ESE-WNW predicted orientations. We propose that the observed ENE-WSW orientation may be due to flow around a possible cratonic nucleus beneath the northern part of the Paraná Basin ("Paranapanema block"). This cratonic block (inferred from geological observations) is also seen in regional surface-wave tomography. Large delay times at the Pantanal Basin may indicate a stronger asthenospheric channel, a more coherent flow, or a thicker asthenosphere. Similarly, small delay times beneath the northern Paraná Basin may indicate thinner anisotropic asthenosphere in that region, similar to the observations in the Amazon craton.
Destruction of the North China Craton: Lithosphere folding-induced removal of lithospheric mantle?
NASA Astrophysics Data System (ADS)
Zhang, Kai-Jun
2012-01-01
High heat flow, high surface topography, and widespread volcanism indicate that the lithospheric mantle of typical cratonic character of the North China Craton has been seriously destroyed in its eastern half. However, the mechanism of this process remains open to intense debate. Here lithosphere folding-induced lithospheric mantle removal is proposed as a new mechanism for the destruction of the craton. Four main NNE-SSW-striking lithospheric-scale anticlines and synclines are recognized within North China east of the Helan fold-and-thrust belt. The lithosphere folding occurred possibly during the Late Triassic through Jurassic when the Yangzi Craton collided with the North China Craton. It was accompanied or followed by lithospheric dripping, and could have possibly induced the lithosphere foundering of the North China Craton. The lithosphere folding would have modified the lithosphere morphology, creating significant undulation in the lithospheric base and thus causing variations of the patterns of the small-scale convection. It also could have provoked the formation of new shear zones liable to impregnation of magma, producing linear incisions at the cratonic base and resulting in foundering of lithospheric mantle blocks. Furthermore, it generated thickening of the lithosphere or the lower crust and initiated the destabilization and subsequent removal of the lithospheric mantle.
Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics
NASA Astrophysics Data System (ADS)
Becker, T. W.
2017-12-01
Huge numbers of SKS splitting observations and improved surface-wave based models of azimuthal anisotropy have advanced our understanding of how convection is recorded in mantle fabrics in the upper mantle. However, we are still debating the relative importance of frozen to actively forming olivine fabrics, subduction zone anisotropy lacks a clear reference model, and regional marine studies yield conflicting evidence as to what exactly is going on at the base of the plates and below. Here, I review the degree of agreement between regional and global observations of seismic anisotropy and how well those may be matched by first-order mantle convection models. Updated bean counting can help contextualize the spatial scales of alignment, and I discuss several examples of the relative roles of plate shear to mantle density anomalies and frozen-in structure for oceanic and continental plates. Resolution of seismological models is globally uneven, but there are some locales where such exercises may yield information on the relative strength of asthenosphere and mantle. Another long-standing question is how olivine fabrics record flow under different stress and volatile conditions. I illustrate how different petrological assumptions might be used to reconcile observations of azimuthal dependency of wave speeds for both Love and Rayleigh waves, and how this could improve our models of the upper mantle, much in the spirit of Montagner's vectorial tomography. This is but one approach to improve the regional realism of global geodynamic background models to understand where in space and time dissonance arises, and if a harmonious model may yet be constructed given our assumptions about the workings of the mantle.
Quantifying mantle structure and dynamics using plume tracing in seismic tomography
NASA Astrophysics Data System (ADS)
O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.
2017-12-01
Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat temperatures. We are able to constrain the average temperature anomaly of the conduits to be around 150 K. We use these thermal anomalies in conjunction with our measured plume tilts/deflections to further explore the dynamics of plume conduits in the lower mantle and transition zone.
Global geodynamic models constrained by tectonic reconstructions including plate deformation
NASA Astrophysics Data System (ADS)
Gurnis, M.; Flament, N.; Spasojevic, S.; Williams, S.; Seton, M.; Müller, R. D.
2011-12-01
In order to investigate the effect of mantle flow on the Earth's surface, imposing the kinematics predicted by plate reconstructions in global convection models has become common practice. Such models are valuable to investigate the effect of the mantle flow beneath the lithosphere on surface topography. Changes in surface topography due to lithospheric deformation are so far not part of top-down tectonic models in which plates are treated as rigid in traditional tectonic reconstructions. We introduce a new generation of geodynamic models that are based on tectonic reconstructions with deforming plates at both passive and convergent margins. These models allow us to investigate the relationships between lithospheric deformation and mantle flow, and their combined effects on surface topography. In traditional tectonic reconstructions, continents are represented as rigid blocks that either overlap or are separated by gaps in full-fit reconstructions. Reconstructions that include a global network of topological plate polygons avoid continental overlaps and gaps, but velocities are still derived on the basis of the Euler poles for rigid blocks. To resolve these issues, we developed a series of deforming plate models using the open source plate modeling software GPlates. For a given area, our methodology requires the relative motions between major rigid continental blocks, and a definition of the regions in which continental lithosphere deformed between these blocks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions is then used as a time-dependent surface boundary condition in global 3-D geodynamic models. To incorporate the continental lithosphere in our global models, we embed compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using the half-space cooling model. We also use this capacity to define the thickness of the thermal lithosphere for different continental types, with the exception of the deforming areas that are fully dynamic. Finally, we introduce a new slab assimilation method in which the thermal structure of the slab, derived analytically, is progressively assimilated in the upper mantle into the dynamic models. This method not only improves the continuity of slabs in our models, but it also allows us to model flat slab segments that are particularly relevant for dynamic topography. This new generation of models allows us to analyse the contributions of continental deformation and of mantle flow to surface topography. We compare our results to geological and geophysical data, including stratigraphy, paleo-altimetry, paleo-environment and mantle tomography. This allows us to place constraints on key model parameters and to refine our knowledge of plate-mantle interactions during continental deformation.
Mantle Plumes and Geologically Recent Volcanism on Mars
NASA Astrophysics Data System (ADS)
Kiefer, W. S.
2013-12-01
Despite its small size, Mars has remained volcanically active until the geologically recent past. Crater retention ages on the volcanos Arsia Mon, Olympus Mons, and Pavonis Mons indicate significant volcanic activity in the last 100-200 million years. The radiometric ages of many shergottites, a type of igneous martian meteorite, indicate igneous activity at about 180 million years ago. These ages correspond to the most recent 2-4% of the age of the Solar System. The most likely explanation for this young martian volcanism is adiabatic decompression melting in upwelling mantle plumes. Multiple plumes may be active at any time, with each of the major volcanos in the Tharsis region being formed by a separate plume. Like at least some terrestrial mantle plumes, mantle plumes on Mars likely form via an instability of the thermal boundary layer at the base of the mantle. Because Mars operates in the stagnant lid convection regime, the temperature difference between mantle and core is lower than on Earth. This reduces the temperature contrast between mantle and core, resulting in mantle plumes on Mars that are about 100 K hotter than the average mantle. The chemical composition of the martian meteorites indicates that the martian mantle is enriched in both iron and sodium relative to Earth's mantle. This lowers the dry solidus on early Mars by 30-40 K relative to Earth. Migration of sodium to the crust over time decreases this difference in solidus temperature to about 15 K at present, but that is sufficient to increase the current plume magma production rate by a factor of about 2. Hydrous phases in the martian meteorites indicate the presence of a few hundred ppm water in the mantle source region, roughly the same as Earth. Finite element simulations of martian plumes using temperature-dependent viscosity and realistic Rayleigh numbers can reproduce the geologically recent magma production rate that is inferred from geologic mapping and the melt fraction inferred from trace element studies of martian meteorites. These plumes can also reproduce the observed spatial variability in elastic lithosphere thickness between regions of plume upwelling and regions that are far from the plumes. Melting in these models occurs at pressures of 3-5 GPa (250-400 km depth), reflecting the presence of a thick thermal lithosphere on present-day Mars. Meteorite evidence indicates that the martian mantle has about 10 times as much isotopic heterogeneity as Earth, which has sometimes been interpreted as evidence that the martian mantle is not convecting. This conclusion is incorrect, as the observed volcanos require some form of decompression melting and thus a convecting mantle. Few strike slip faults are observed on Mars, which indicates that flow in the mantle is almost entirely poloidal in nature, with little or no toroidal motion. The absence of toroidal flow on Mars makes convective mixing much less efficient than on Earth and permits the preservation of high levels of isotopic heterogeneity within a convecting mantle.
NASA Astrophysics Data System (ADS)
Montagner, Jean-Paul; Marty, Bernard; Stutzmann, Eléonore; Sicilia, Déborah; Cara, Michel; Pik, Raphael; Lévêque, Jean-Jacques; Roult, Geneviève; Beucler, Eric; Debayle, Eric
2007-11-01
The relationship between intraplate volcanism and continental tectonics has been investigated for North and East Africa using a high resolution three-dimensional anisotropic tomographic model derived from seismic data of a French experiment ``Horn of Africa'' and existing broadband data. The joint inversion for seismic velocity and anisotropy of the upper 400 km of the mantle, and geochemical data reveals a complex interaction between mantle upwellings, and lithosphere. Two kinds of mantle upwellings can be distinguished: The first one, the Afar ``plume'' originates from deeper than 400 km and is characterized by enrichment in primordial 3He and 3He/4He ratios higher than those along mid-ocean ridges (MOR). The second one, associated with other Cenozoic volcanic provinces (Darfur, Tibesti, Hoggar, Cameroon), with 3He/4He ratios similar to, or lower than MOR, is a consequence of shallower upwelling. The presumed asthenospheric convective instabilities are oriented in an east-west direction, resulting from interaction between south-north asthenospheric mantle flow, main plume head and topography on the base of lithosphere.
Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle
NASA Astrophysics Data System (ADS)
Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.
2017-12-01
Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).
NASA Astrophysics Data System (ADS)
Lee, C.; Zhou, Y.; King, S. D.
2008-12-01
Analyses of seismic anisotropy caused by spatial alignments of anisotropic minerals (e.g., olivine) have been widely used to infer mantle flow directions in the upper mantle. Deep seismic anisotropy beneath fast spreading mid-ocean ridges (e.g., East Pacific Rise) has been recently observed at depths of 200-300 km and even down to the transition zone, with polarization changes in radial anisotropy from VSH < VSV (shallow) to VSH < VSV (deep). We investigate the origin of the observed deep seismic anisotropy and polarization changes beneath the EPR in 2-D Cartesian numerical models using both kinematically (prescribed velocity) and dynamically (negative buoyancy) driven ridge spreading. Because subduction is thought to be an important controlling factor in the style of ridge spreading and mantle convection, we consider a subduction zone developing at the prescribed weak zone. A whole mantle domain expressed by a one by four box (2890 by 11560 km) is used to minimize the boundary effects on the subducting slab. For the upper mantle rheology, we consider composite viscosity of diffusion and dislocation creep for dry olivine to evaluate the effects of lateral variation of mantle viscosity and the rheological changes from dislocation to diffusion creep under the mid-ocean ridge. For the lower mantle rheology, we use diffusion creep for dry olivine by increasing grain size to match relevant lower mantle viscosity. We also consider the 660 km phase transition with density and viscosity jump as well as Clapeyron slope. Anisotropy is evaluated using finite-strain ellipses based on the assumption that a-axes of olivine crystals are parallel to the major axes of the finite-strain ellipses. Our preliminary results show 1) in general, the development of VSH < VSV anisotropy is confined only in a narrow region under the ridge axis at depths of 200- 300 km; 2) strong VSH > VSV anisotropy can be found in the 'asthenosphere' beneath the entire spreading oceanic lithosphere; and 3) the dominate creep mechanism changes from dislocation creep to diffusion creep at depths of 300-400 km; indicating a more isotropic lower upper mantle. We conclude that our geodynamical modeling in a passive ridge spreading system does not produce the deep seismic anisotropy recently observed beneath the EPR. However, we do not consider partial melting, dynamic recrystallization and anisotropic viscosity which would change seismic interpretation and mantle flow, and thus further study is required.
Gas flow through through a porous mantle: implications of fluidisation
NASA Astrophysics Data System (ADS)
Bentley, Mark; Koemle, Norbert; Kargl, Guenter; Huetter, Mag. Erika Sonja
Understanding the interaction of dust and gas in the upper layers of a cometary mantle is critical for understanding cometary evolution. The state of knowledge of conditions in these layers is currently rather low, and a wide range of flow conditions and phenomena can be imagined. A model is presented here that examines the conditions under which so-called "fluidized beds" might be possible in a cometary mantle. This phenomenon, well studied in industry, occurs when the weight of a bed of particles is equal to the gas drag of a gas or fluid flowing upwards through it. Wherever fluidisation occurs in a cometary mantle, it could change the dominant heat transfer mechanism by removing intimate particle contacts (creating an expanded bed) or allowing particle convection in the now fluid-like mantle. There are also implications for the stability of the Rosetta lander, Philae, if such a state were to occur in the vicinity of the deployed anchor. A two-fluid model is used, with necessarily restricted geometries, to demonstrate the conditions (gravity, pressure, gas velocity, particle size etc.) under which fluidisation could occur, and the scientific results and implications for the Rosetta mission are explored.
An inverted continental Moho and serpentinization of the forearc mantle.
Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M
2002-05-30
Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge.
Simulation of active tectonic processes for a convecting mantle with moving continents
Trubitsyn, V.; Kaban, M.; Mooney, W.; Reigber, C.; Schwintzer, P.
2006-01-01
Numerical models are presented that simulate several active tectonic processes. These models include a continent that is thermally and mechanically coupled with viscous mantle flow. The assumption of rigid continents allows use of solid body equations to describe the continents' motion and to calculate their velocities. The starting point is a quasi-steady state model of mantle convection with temperature/ pressure-dependent viscosity. After placing a continent on top of the mantle, the convection pattern changes. The mantle flow subsequently passes through several stages, eventually resembling the mantle structure under present-day continents: (a) Extension tectonics and marginal basins form on boundary of a continent approaching to subduction zone, roll back of subduction takes place in front of moving continent; (b) The continent reaches the subduction zone, the extension regime at the continental edge is replaced by strong compression. The roll back of the subduction zone still continues after closure of the marginal basin and the continent moves towards the upwelling. As a result the ocean becomes non-symmetric and (c) The continent overrides the upwelling and subduction in its classical form stops. The third stage appears only in the upper mantle model with localized upwellings. ?? 2006 The Authors Journal compilation ?? 2006 RAS.
NASA Astrophysics Data System (ADS)
Schuberth, Bernhard; Zaroli, Christophe; Nolet, Guust
2015-04-01
Of particular interest for the tectonic evolution of the Atlantic region is the influence of lower mantle structure under Africa on flow in the upper mantle beneath the ocean basin. Along with its Pacific counterpart, the large African anomaly in the lowermost mantle with strongly reduced seismic velocities has received considerable attention in seismological and geodynamic studies. Several seismological observations are typically taken as an indication that these two anomalies are being caused by large-scale compositional variations and that they are piles of material with higher density than normal mantle rock. This would imply negative buoyancy in the lowermost mantle under Africa, which has important implications for the flow at shallower depth and inferences on the processes that led to the formation of the Atlantic Ocean basin. However, a large number of recent studies argue for a strong thermal gradient across the core-mantle boundary that might provide an alternative explanation for the lower mantle anomaly through the resulting large lateral temperature variations. Recently, we developed a new joint forward modeling approach to test such geodynamic hypotheses directly against the seismic observations: Seismic heterogeneity is predicted by converting the temperature field of a high-resolution 3-D mantle circulation model into seismic velocities using thermodynamic models of mantle mineralogy. 3-D global wave propagation in the synthetic elastic structures is then simulated using a spectral element method. Being based on forward modelling only, this approach allows us to generate synthetic wavefields and seismograms independently of seismic observations. The statistics of observed long-period body wave traveltime variations show a markedly different behaviour for P- and S-waves: the standard deviation of P-wave delay times stays almost constant with ray turning depth, while that of the S-wave delay times increases strongly throughout the mantle. In an earlier study, we showed that synthetic traveltime variations computed for an isochemical mantle circulation model with strong core heating can reproduce these different trends. This was taken as a strong indication that seismic heterogeneity in the lower mantle is likely dominated by thermal variations on large length-scales (i.e., relevant for long-period body waves). We will discuss the robustness of this earlier conclusion by exploring the uncertainties in the mineralogical models used to convert temperatures to seismic velocities. In particular, we investigate the influence of anelasticity on the standard deviation of our synthetic traveltime variations. Owing to the differences in seismic frequency content between laboratory measurements (MHz to GHz) and the Earth (mHz to Hz), the seismic velocities given in the mineralogical model need to be adjusted; that is, corrected for dispersion due to anelastic effects.
High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.
Lin, Pei-Ying Patty; Gaherty, James B; Jin, Ge; Collins, John A; Lizarralde, Daniel; Evans, Rob L; Hirth, Greg
2016-07-28
Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth's interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wave speed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.
Variation of the subsidence parameters, effective thermal conductivity, and mantle dynamics
NASA Astrophysics Data System (ADS)
Adam, C.; King, S. D.; Vidal, V.; Rabinowicz, M.; Jalobeanu, A.; Yoshida, M.
2015-09-01
The subsidence of young seafloor is generally considered to be a passive phenomenon related to the conductive cooling of the lithosphere after its creation at mid-oceanic ridges. Recent alternative theories suggest that the mantle dynamics plays an important role in the structure and depth of the oceanic lithosphere. However, the link between mantle dynamics and seafloor subsidence has still to be quantitatively assessed. Here we provide a statistical study of the subsidence parameters (subsidence rate and ridge depth) for all the oceans. These parameters are retrieved through two independent methods, the positive outliers method, a classical method used in signal processing, and through the MiFil method. From the subsidence rate, we compute the effective thermal conductivity, keff, which ranges between 1 and 7 W m-1 K-1. We also model the mantle flow pattern from the S40RTS tomography model. The density anomalies derived from S40RTS are used to compute the instantaneous flow in a global 3D spherical geometry. We show that departures from the keff = 3 Wm-1K-1 standard value are systematically related to mantle processes and not to lithospheric structure. Regions characterized by keff > 3 Wm-1K-1 are associated with mantle uplifts (mantle plumes or other local anomalies). Regions characterized by keff < 3 Wm-1K-1 are related to large-scale mantle downwellings such as the Australia-Antarctic Discordance (AAD) or the return flow from the South Pacific Superswell to the East Pacific Rise. This demonstrates that mantle dynamics plays a major role in the shaping of the oceanic seafloor. In particular, the parameters generally considered to quantify the lithosphere structure, such as the thermal conductivity, are not only representative of this structure but also incorporate signals from the mantle convection occurring beneath the lithosphere. The dynamic topography computed from the S40RTS tomography model reproduces the subsidence pattern observed in the bathymetry. Overall we find a good correlation between the subsidence parameters derived from the bathymetry and the dynamic topography. This demonstrates that these parameters are strongly dependent on mantle dynamics.
Core-exsolved SiO2 Dispersal in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Helffrich, G. R.; Ballmer, M.; Hirose, K.
2017-12-01
SiO2 may have been expelled from the core following its formation in the early stages of Earth's accretion and onwards through the present day. On account of SiO2's low density with respect to both the core and the lowermost mantle, we examine the process of SiO2 accumulation at the core-mantle boundary (CMB) and its incorporation into the mantle by buoyant rise. Today, the if SiO2 is 100-10000 times more viscous than lower mantle material, the dimensions of SiO2 diapirs formed by the viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the mantle as inclusions of 100 m - 10 km diameter. Under early Earth conditions of rapid heat loss after core formation, SiO2 diapirs of 5-80 km diameter could have risen independently of mantle flow to their level of neutral buoyancy in the mantle, trapping them there due to a combination of high viscosity and neutral buoyancy. We examine the SiO2 yield by assuming Si+O saturation at the conditions found at the base of a magma ocean and find that for a range of conditions, dispersed bodies could reach as high as 2 volume percent in shallow parts of the lower mantle, with their abundance decreasing with depth. At such low concentrations, their effect on aggregate seismic wavespeeds would be within the uncertainty of the radial Earth model PREM. However, their presence would be revealed by small-scale scattering in the lower mantle due to the bodies' large velocity contrast. We conclude that the shallow lower mantle (700-1500 km depth) could harbor SiO2 released in early Earth times.
NASA Astrophysics Data System (ADS)
Ogawa, Masaki
2018-02-01
To discuss how redistribution of heat producing elements (HPEs) by magmatism affects the lunar mantle evolution depending on the initial condition, I present two-dimensional numerical models of magmatism in convecting mantle internally heated by incompatible HPEs. Mantle convection occurs beneath a stagnant lithosphere that inhibits recycling of the HPE-enriched crustal materials to the mantle. Magmatism is modeled by a permeable flow of magma generated by decompression melting through matrix. Migrating magma transports heat, mass, and HPEs. When the deep mantle is initially hot with the temperature TD around 1800 K at its base, magmatism starts from the beginning of the calculated history to extract HPEs from the mantle. The mantle is monotonously cooled, and magmatism ceases within 2 Gyr, accordingly. When the deep mantle is initially colder with TD around 1100 K, HPEs stay in the deep mantle for a longer time to let the planet be first heated up and then cooled only slightly. If, in addition, there is an HPE-enriched domain in the shallow mantle at the beginning of the calculation, magma continues ascending to the surface through the domain for more than 3 Gyr. The low TD models fit in with the thermal and magmatic history of the Moon inferred from spacecraft observations, although it is not clear if the models are consistent with the current understanding of the origin of the Moon and its magnetic field. Redistribution of HPEs by magmatism is a crucial factor that must be taken into account in future studies of the evolution of the Moon.
Core-Exsolved SiO2 Dispersal in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Helffrich, George; Ballmer, Maxim D.; Hirose, Kei
2018-01-01
SiO2 may have been expelled from the core directly following core formation in the early stages of Earth's accretion and onward through the present day. On account of SiO2's low density with respect to both the core and the lowermost mantle, we examine the process of SiO2 accumulation at the core-mantle boundary (CMB) and its incorporation into the mantle by buoyant rise. Today, if SiO2 is 100-10,000 times more viscous than lower mantle material, the dimensions of SiO2 diapirs formed by the viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the mantle as inclusions of 100 m-10 km diameter. Under early Earth conditions of rapid heat loss after core formation, SiO2 diapirs of ˜1 km diameter could have risen independently of mantle flow to their level of neutral buoyancy in the mantle, trapping them there due to a combination of intrinsically high viscosity and neutral buoyancy. We examine the SiO2 yield by assuming Si + O saturation at the conditions found at the base of a magma ocean and find that for a range of conditions, dispersed bodies could reach as high as 8.5 vol % in parts of the lower mantle. At such low concentration, their effect on aggregate seismic wave speeds is within observational seismology uncertainty. However, their presence can account for small-scale scattering in the lower mantle due to the bodies' large-velocity contrast. We conclude that the shallow lower mantle (700-1,500 km depth) could harbor SiO2 released in early Earth times.
Development of diapiric structures in the upper mantle due to phase transitions
NASA Technical Reports Server (NTRS)
Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.
1991-01-01
Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.
NASA Astrophysics Data System (ADS)
Romanowicz, B. A.; French, S. W.
2014-12-01
Many questions remain on the detailed morphology of mantle convection patterns. While high resolution P wave studies show a variety of subducted slab behaviors, some stagnating in the transition zone, others penetrating into the lower mantle (e.g. Fukao & Obayashi, 2013), low velocity structures - the upwelling part of flow - are more difficult to resolve at the same scale. Indeed, depth extent and morphology of the low velocity roots of hotspot volcanoes is still debated, along with the existence of "mantle plumes". Using spectral element waveform tomography, we previously constructed a global, radially anisotropic, upper mantle Vs model (SEMum2, French et al., 2013) and have now extended it to the whole mantle by adding shorter period waveform data (SEMUCB-WM1, French & Romanowicz, GJI, in revision). This model shows long wavelength structure in good agreement with other recent global Vs models derived under stronger approximations (Ritsema et al. 2011; Kustowski, et al. 2008), but exhibits better focused, finer scale structure throughout the mantle. SEMUCB-WM1 confirms the presence in all major ocean basins of the quasi-periodic, upper mantle low velocity anomalies, previously seen in SEMum2. At the same time, lower mantle low velocity structure is dominated by a small number (~15 globally) of quasi-vertical anomalies forming discrete "column"" rooted at the base of the mantle. Most columns are positioned near major hotspots, as defined by buoyancy flux, and are wider (~800-1000 km diameter) than expected from the thermal plume model - suggestive of thermo-chemical plumes, which may be stable for long times compared to purely thermal ones. Some columns reach the upper mantle, while others deflect horizontally near 1000 km - the same depth where many slabs appear to stagnate. As they reach the transition zone, the wide columnar structure can be lost, as these "plumes" appear to meander through the upper mantle, perhaps entrained by more vigorous, lower viscosity, convection. Most "plumes" in the Pacific LLSVP region appear as isolated columns rising from the CMB, such as beneath Hawaii (rooted near a known ultra low velocity zone, Cottaar & Romanowicz, 2012). Conversely, the African LLSVP region appears more massive up to mid-mantle depths, with isolated "plumes" at its borders, including that beneath Iceland.
NASA Astrophysics Data System (ADS)
Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.
2010-12-01
Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.
Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi
2014-01-01
Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.
Anisotropy in the lowermost mantle: to the limits of ray theory (and beyond)
NASA Astrophysics Data System (ADS)
Nowacki, A.; Walker, A.; Wookey, J. M.; Kendall, J. M.
2013-12-01
It seems that the Earth's mantle flows on the order of centimetres per year, but it has thus far been impossible to directly constrain details of flow direction or magnitude through our primary means of probing the deep interior--seismic waves. Yet the presence of anisotropy in the upper and lowermost mantle presents an intriguing possibility: if this is due to lattice preferred orientation (LPO) of anisotropic minerals in response to flow, one may be able to ';invert' for the recent strain history in these regions. New mineral physics experiments and numerical modelling will help define slip systems for mantle minerals and under which conditions LPO develops, eventually removing two key current unknowns. Homogenisation techniques (e.g., viscoplastic self-consistent method) to model LPO development from strain history exist and are in active development. Models of mantle convection are increasingly complex and will in future include viscosity which depends on strain history and LPO. The key step in retrieving flow from seismic observables, therefore, is to obtain enough information about the type of anisotropy present in order to relate it to the alignment of mineral grains. Here we focus on the seismological ';worst case' of the lowermost mantle--D″--where surface waves are not available, giving the most pessimistic view of progress. The infinite frequency (ray theory) assumption is often made when forward modelling wave propagation because it allows for rapid computation. Any inversion for flow must be computationally tractable, so we must assess the applicability of this assumption. To do so, we compute the wave field making no assumptions about the symmetry of elasticity in the Earth; i.e., we permit all 21 elastic constants to vary. Calculations are performed at the same frequency as observations (0.01-0.2 Hz). We use the spectral element method, which scales well for very large calculations. In particular we use a modified version of SPECFEM3D_GLOBE which does not perform any file I/O, removing a major bottleneck in the simulations at the scale we require. As a starting case, one step more complicated than radial anisotropy, we model anisotropy in D″ where there is a rotational axis of symmetry taking any orientation relative to the wave propagation direction (termed tilted transverse isotropy, TTI). In ray theory, one can retrieve the orientation of the axis of symmetry using two rays which traverse the region in different directions by measuring the shear wave splitting in each. The fast orientation should directly relate to the apparent orientation of the axis in that direction. A finite frequency approach, however, shows that whilst shear wave splitting is produced for an anisotropic layer ~50 km thick or more at the base of the mantle, the fast orientation does not relate directly to that expected-it may be up to 45° different to the ray-theory prediction. The situation becomes more complicated as the symmetry of the anisotropy is reduced further to orthorhombic. Nonetheless, we propose a simple relation between observed splitting parameters and TTI orientation which enables qualitative predictions to be made without the necessity of very large calculations on HPC machines. In the medium term, this may be enough to make a first step towards taking seismic observables and retrieving the flow in the deep mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forte, A M; Quere, S; Moucha, R
Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomographymore » model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.« less
NASA Astrophysics Data System (ADS)
Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh
2017-08-01
This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.
The steady part of the secular variation of the Earth's magnetic field
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy
1992-01-01
The secular variation of the Earth's magnetic field results from the effects of magnetic induction in the fluid outer core and from the effects of magnetic diffusion in the core and the mantle. Adequate observations to map the magnetic field at the core-mantle boundary extend back over three centuries, providing a model of the secular variation at the core-mantle boundary. Here we consider how best to analyze this time-dependent part of the field. To calculate steady core flow over long time periods, we introduce an adaptation of our earlier method of calculating the flow in order to achieve greater numerical stability. We perform this procedure for the periods 1840-1990 and 1690-1840 and find that well over 90 percent of the variance of the time-dependent field can be explained by simple steady core flow. The core flows obtained for the two intervals are broadly similar to each other and to flows determined over much shorter recent intervals.
NASA Astrophysics Data System (ADS)
Chen, Z.; Schellart, W. P.; Duarte, J. C.; Strak, V.
2017-12-01
Topography that forms at the free top surface of the lithosphere contains important information about the dynamics of the tectonic plates and the sub-lithospheric mantle. Investigating topography around subduction zones can provide quantitative and conceptual insights into the interaction between the plates, the slabs, mantle flow, and the associated stresses. To achieve this, geodynamic modelling can be an effective tool. In this study, we used techniques of stereoscopic photogrammetry and Particle Image Velocimetry to monitor simultaneously the topography of the overriding plate and the velocity field of the subduction-induced mantle flow occurring in the mantle wedge. Model results show that the overriding plate topography is characterized by an area of forearc topographic subsidence, with a magnitude scaling to 1.44-3.97 km in nature, and a transient local topographic high located between the forearc depression and the trench. These topographic features rapidly develop during the slab sinking phase and gradually decrease during the slab rollback phase. We propose that these topographic transient features predominantly result from the variation of the vertical component of the trench suction along the subduction zone interface, which is minimum near the trench and maximum near the tip of the mantle wedge and is caused by the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in the formation of the forearc subsidence. Our findings provide a new mechanism for the formation of forearc topographic subsidence, which has been commonly observed at natural subduction zones.
Continental margin subsidence from shallow mantle convection: Example from West Africa
NASA Astrophysics Data System (ADS)
Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair J.; Fishwick, Stewart; Goes, Saskia; Jarvis, Jerry
2018-01-01
Spatial and temporal evolution of the uppermost convecting mantle plays an important role in determining histories of magmatism, uplift, subsidence, erosion and deposition of sedimentary rock. Tomographic studies and mantle flow models suggest that changes in lithospheric thickness can focus convection and destabilize plates. Geologic observations that constrain the processes responsible for onset and evolution of shallow mantle convection are sparse. We integrate seismic, well, gravity, magmatic and tomographic information to determine the history of Neogene-Recent (<23 Ma) upper mantle convection from the Cape Verde swell to West Africa. Residual ocean-age depths of +2 km and oceanic heat flow anomalies of +16 ± 4 mW m-2 are centered on Cape Verde. Residual depths decrease eastward to zero at the fringe of the Mauritania basin. Backstripped wells and mapped seismic data show that 0.4-0.8 km of water-loaded subsidence occurred in a ∼500 × 500 km region centered on the Mauritania basin during the last 23 Ma. Conversion of shear wave velocities into temperature and simple isostatic calculations indicate that asthenospheric temperatures determine bathymetry from Cape Verde to West Africa. Calculated average excess temperatures beneath Cape Verde are > + 100 °C providing ∼103 m of support. Beneath the Mauritania basin average excess temperatures are < - 100 °C drawing down the lithosphere by ∼102 to 103 m. Up- and downwelling mantle has generated a bathymetric gradient of ∼1/300 at a wavelength of ∼103 km during the last ∼23 Ma. Our results suggest that asthenospheric flow away from upwelling mantle can generate downwelling beneath continental margins.
NASA Astrophysics Data System (ADS)
Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.
2017-12-01
We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.
Tectonic predictions with mantle convection models
NASA Astrophysics Data System (ADS)
Coltice, Nicolas; Shephard, Grace E.
2018-04-01
Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth's mantle.
The North American upper mantle: density, composition, and evolution
Mooney, Walter D.; Kaban, Mikhail K.
2010-01-01
The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.
Machine Learning and Inverse Problem in Geodynamics
NASA Astrophysics Data System (ADS)
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R.
2017-12-01
During the past few decades numerical modeling and traditional HPC have been widely deployed in many diverse fields for problem solutions. However, in recent years the rapid emergence of machine learning (ML), a subfield of the artificial intelligence (AI), in many fields of sciences, engineering, and finance seems to mark a turning point in the replacement of traditional modeling procedures with artificial intelligence-based techniques. The study of the circulation in the interior of Earth relies on the study of high pressure mineral physics, geochemistry, and petrology where the number of the mantle parameters is large and the thermoelastic parameters are highly pressure- and temperature-dependent. More complexity arises from the fact that many of these parameters that are incorporated in the numerical models as input parameters are not yet well established. In such complex systems the application of machine learning algorithms can play a valuable role. Our focus in this study is the application of supervised machine learning (SML) algorithms in predicting mantle properties with the emphasis on SML techniques in solving the inverse problem. As a sample problem we focus on the spin transition in ferropericlase and perovskite that may cause slab and plume stagnation at mid-mantle depths. The degree of the stagnation depends on the degree of negative density anomaly at the spin transition zone. The training and testing samples for the machine learning models are produced by the numerical convection models with known magnitudes of density anomaly (as the class labels of the samples). The volume fractions of the stagnated slabs and plumes which can be considered as measures for the degree of stagnation are assigned as sample features. The machine learning models can determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at mid-mantle depths. Employing support vector machine (SVM) algorithms we show that SML techniques can successfully predict the magnitude of the mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex problems in mantle dynamics by employing deep learning algorithms for estimation of mantle properties such as viscosity, elastic parameters, and thermal and chemical anomalies.
Towards driving mantle convection by mineral physics
NASA Astrophysics Data System (ADS)
Piazzoni, A. S.; Bunge, H.; Steinle-Neumann, G.
2005-12-01
Models of mantle convection have become increasingly sophisticated over the past decade, accounting, for example, for 3 D spherical geometry, and changes in mantle rheology due to variations in temperature and stress. In light of such advances it is surprising that growing constraints on mantle structure derived from mineral physics have not yet been fully brought to bear on mantle convection models. In fact, despite much progress in our understanding of mantle mineralogy a partial description of the equation of state is often used to relate density changes to pressure and temperature alone, without taking into account compositional and mineralogical models of the mantle. Similarly, for phase transitions an incomplete description of thermodynamic constraints is often used, resulting in significant uncertainties in model behavior. While a number of thermodynamic models (some with limited scope) have been constructed recently, some lack the rigor in thermodynamics - for example with respect to the treatment of solid solution - that is needed to make predictions about mantle structure. Here we have constructed a new thermodynamic database for the mantle and have coupled the resulting density dynamically with mantle convection models. The database is build on a self-consistent Gibb's free energy minimization of the system MgO-FeO-SiO2-CaO-Al2O3 that is appropriate for standard (dry) chemical models of the Earth's mantle for relevant high pressure and temperature phases. We have interfaced the database with a high-resolution 2-D convection code (2DTERRA), dynamically coupling the thermodynamic model (density) with the conservation equations of mantle flow. The coupled model is run for different parameterizations of viscosity, initial temperature conditions, and varying the internal vs. external heating. We compare the resulting flow and temperature fields to cases with the Boussinesq approximation and other classical descriptions of the equation of state in mantle dynamics to assess the influence of realistic mineralogical density on mantle convection.
3D Integrated geophysical-petrological modelling of the Iranian lithosphere
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier
2016-04-01
The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3D thermochemical model we propose a new scenario to interpret the geodynamical history of area. In this context the present-day central Iran block would be as remain of the older and larger Iranian block present before the onset of Turan platform subduction beneath the Iranian Plateau. Further analysis of sub-lithospheric density anomalies (e.g., subducted slabs) is required to fully understand the geodynamics of the area.
Mantle downwelling and crustal convergence - A model for Ishtar Terra, Venus
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Hager, Bradford H.
1991-01-01
Models of viscous crustal flow driven by gradients in topography are presented in order to explore quantitatively the implications of the hypothesis that Ishtar is a crustal convergence zone overlying a downwelling mantle. Assuming a free-slip surface boundary condition, it is found that, if the crustal convergence hypothesis is correct, then the crustal thickness in the plains surrounding Ishtar can be no more than about 25 km thick. If the geothermal gradient is larger or the rheology is weaker, the crust must be even thinner for net crustal convergence to be possible. This upper bound is in good agreement with the several independent estimates of crustal thickness of 15-30 km in the plains of Venus based on modeling of the spacing of tectonic features and of impact crater relaxation. Although Ishtar is treated as a crustal convergence zone, this crustal flow model shows that under some circumstances, near-surface material may actually flow away from Ishtar, providing a possible explanation for the grabenlike structures in Fortuna Tessera.
NASA Astrophysics Data System (ADS)
Guo, Zhen; Chen, Yongshun John
2017-04-01
We have obtained a high resolution 3-D crustal and uppermost mantle velocity model of the Ordos block and its surrounding areas by joint inversion of ambient noise tomography and receiver functions using seismic recordings from 320 stations. The resulting model shows wide-spread low velocity zone (Vs ≤ 3.4 km/s) in the mid-to-lower crust beneath northeastern Tibet Plateau, which may favor crustal ductile flow within the plateau. However, our model argues against the eastward crustal ductile flow beneath the Qinling belt from the Tibetan Plateau. We find high velocities in the middle part of Qinling belt which separate the low velocities in the mid-to-lower crust of the eastern Qinling belt from the low velocity zone in eastern Tibetan Plateau. More importantly, we observe significant low velocities and thickened lower crust at the Liupanshan thrust belt as the evidence for strong crustal shortening at this boundary between the northeastern Tibetan Plateau and Ordos block. The most important finding of our model is the upper mantle low velocity anomalies surrounding the Ordos block, particularly the one beneath the Trans North China Craton (TNCO) that is penetrating into the southern margin of the Ordos block for ∼100 km horizontally in the depth range of ∼70 km and at least 100 km. We propose an on-going lithospheric mantle reworking at the southernmost boundary of the Ordos block due to complicated mantle flow surrounding the Ordos block, that is, the eastward asthenospheric flow from the Tibet Plateau proposed by recent SKS study and mantle upwelling beneath the TNCO from mantle transition zone induced by the stagnant slabs of the subducted Pacific plate.
Subduction and volatile recycling in Earth's mantle
NASA Technical Reports Server (NTRS)
King, S. D.; Ita, J. J.; Staudigel, H.
1994-01-01
The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.
The importance of grain size to mantle dynamics and seismological observations
NASA Astrophysics Data System (ADS)
Gassmoeller, R.; Dannberg, J.; Eilon, Z.; Faul, U.; Moulik, P.; Myhill, R.
2017-12-01
Grain size plays a key role in controlling the mechanical properties of the Earth's mantle, affecting both long-timescale flow patterns and anelasticity on the timescales of seismic wave propagation. However, dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity, and a limited treatment of changes in mineral assemblage. We study grain size evolution, its interplay with stress and strain rate in the convecting mantle, and its influence on seismic velocities and attenuation. Our geodynamic models include the simultaneous and competing effects of dynamic recrystallization resulting from dislocation creep, grain growth in multiphase assemblages, and recrystallization at phase transitions. They show that grain size evolution drastically affects the dynamics of mantle convection and the rheology of the mantle, leading to lateral viscosity variations of six orders of magnitude due to grain size alone, and controlling the shape of upwellings and downwellings. Using laboratory-derived scaling relationships, we convert model output to seismologically-observable parameters (velocity, attenuation) facilitating comparison to Earth structure. Reproducing the fundamental features of the Earth's attenuation profile requires reduced activation volume and relaxed shear moduli in the lower mantle compared to the upper mantle, in agreement with geodynamic constraints. Faster lower mantle grain growth yields best fit to seismic observations, consistent with our re-examination of high pressure grain growth parameters. We also show that ignoring grain size in interpretations of seismic anomalies may underestimate the Earth's true temperature variations.
Continent-Wide Maps of Lg Coda Q Variation and Rayleigh-wave Attenuation Variation for Eurasia
2007-01-30
lithosphere and crustal strain lead us to infer that fluids, originating by hydrothermal release from subducting lithosphere or other upper mantle heat...relatively low Qo values in the Arabian Peninsula are produced by fluids that have been released in the upper mantle by hydrothermal processes and have...Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution, Geophys. J. Int., 132, 412–434. Talebian, M
Mantle Convection on Modern Supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.
2015-12-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.
NASA Astrophysics Data System (ADS)
Rosas, J. C.; Currie, C. A.; He, J.
2014-12-01
Over the last years several 2D thermo-mechanical models of the Costa Rica - Nicaragua Subduction Zone (CNSZ) have studied the thermal distribution of sections of the fault. Such investigations allow us to understand temperature-related aspects of subduction zones, like volcanism and megathrust earthquake locations. However, certain features of the CNSZ limit the range of applicability of 2D models. In the CNSZ, geochemical trends and seismic anisotropy studies reveal a 3D mantle wedge flow that departs from the 2D corner flow. The origin of this flow are dip variations (20o to 25o between Nicaragua and Costa Rica) and the presence of a slab window in Panama that allows material to flow into the mantle wedge. Also, the Central America trench has abrupt variations in surface heat flux that contrasts with steady changes in plate age and convergence rate. These variations have been attributed to hydrothermal circulation (HC), which effectively removes heat from the oceanic crust.In this project we analyze the thermal structure of the CNSZ. The objective is to study dehydration and metamorphic reactions, as well as the length of the megathrust seismogenic zone. We created 3D finite-element models that employ a dislocation creep rheology for the mantle wedge. Two aspects make our models different from previous studies: an up-to-date 3D slab geometry, and an implementation of HC by introducing a conductive proxy in the subducting aquifer, allowing us to model convective heat transport without the complex, high-Rayleigh number calculations. A 3D oceanic boundary condition that resembles the along-strike changes in surface heat flux is also employed. Results show a maximum mantle wedge flow rate of 4.69 cm/yr in the along-strike direction, representing more than 50% of the slab convergence rate. With respect to 2D models, analysis shows this flow changes temperatures by ~100 C in the mantle wedge near areas of strong slab curvature. Along the subducting interface, there is also a change of 10-40 C, which can have a significant impact on dehydration and metamorphic reactions. Also, 2D models have proven that HC controls temperatures along the subduction thrust, which controls the length of the seismogenic zone. In general, the combined effect of 3D mantle wedge flow and HC is expected to have a significant impact on the thermal structure.
Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements
NASA Astrophysics Data System (ADS)
Lebedev, S.; Meier, T.; van der Hilst, R. D.
2005-12-01
The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be ruled out. As shown for the model of subcontinental asthenospheric flow by Morgan and Morgan (2005), this mantle flow pattern can explain not only the rifting but also the basaltic volcanism observed in the Lake Baikal region.
Geodynamic Modeling of the Subduction Zone around the Japanese Islands
NASA Astrophysics Data System (ADS)
Honda, S.
2017-06-01
In this review, which focuses on our research, we describe the development of the thermomechanical modeling of subduction zones, paying special attention to those around the Japanese Islands. Without a sufficient amount of data and observations, models tended to be conceptual and general. However, the increasing power of computational tools has resulted in simple analytical and numerical models becoming more realistic, by incorporating the mantle flow around the subducting slab. The accumulation of observations and data has made it possible to construct regional models to understand the detail of the subduction processes. Recent advancements in the study of the seismic tomography and geology around the Japanese Islands has enabled new aspects of modeling the mantle processes. A good correlation between the seismic velocity anomalies and the finger-like distribution of volcanoes in northeast Japan has been recognized and small-scale convection (SSC) in the mantle wedge has been proposed to explain such a feature. The spatial and temporal evolution of the distribution of past volcanoes may reflect the characteristics of the flow in the mantle wedge, and points to the possibility of the flip-flopping of the finger-like pattern of the volcano distribution and the migration of volcanic activity from the back-arc side to the trench side. These observations are found to be qualitatively consistent with the results of the SSC model. We have also investigated the expected seismic anisotropy in the presence of SSC. The fast direction of the P-wave anisotropy generally shows the trench-normal direction with a reduced magnitude compared to the case without SSC. An analysis of full 3D seismic anisotropy is necessary to confirm the existence and nature of SSC. The 3D mantle flow around the subduction zone of plate-size scale has been modeled. It was found that the trench-parallel flow in the sub-slab mantle around the northern edge of the Pacific plate at the junction between the Aleutian arc and the Kurile arc is generally weak and we have suggested the possible contribution of a hot anomaly in the sub-slab mantle as the origin of possible trench-parallel flow there. A 3D mantle flow model of the back-arc around the junction between the northeast Japan arc and the Kurile arc shows a trench-normal flow at a shallow depth. As a result, the expected seismic anisotropy shows the fast direction normal to the arc, even in the region of oblique subduction. This result is generally consistent with observations there. The existence of a hot anomaly in the sub-slab mantle under the Pacific plate was proposed from an analysis of the seismic tomography, and we have studied its possible origins. The origin of a hot anomaly adjacent to the cold downgoing flow, typically observed in internally heated convection, is preferable to that of a hot anomaly, such as a plume head, carried far from the subduction zone. The nature of the western edge of the stagnant slab under northeast China has been investigated with modeling studies, which take into account the subduction history and the phase changes in the mantle. It is likely to be a ridge-type plate boundary between the extinct Izanagi plate and the Pacific plate. Thus, we have concluded that the slab gap under northeast China is not a breakage of the stagnant slab. Further studies have suggested that the existence of the rheological weakening of the slab in the transition zone, and the additional effects of a hot anomaly in the sub-slab mantle under the Pacific plate, may explain the differences in slab morphology under the northern Okhotsk arc and the northeast Japan arc.
Effects of selective fusion on the thermal history of the earth's mantle
Lee, W.H.K.
1968-01-01
A comparative study on the thermal history of the earth's mantle was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects of selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. It was found that models with selective fusion gave results more compatible with observations of both present temperature and surface heat-flow. The results therefore suggest continuous differentiation of the earth's mantle throughout geologic time, and support the hypothesis that the earth's atmosphere, oceans, and crust have been accumulated throughout the earth's history by degassing and selective fusion of the mantle. ?? 1968.
Flow, melt and fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, James; Kendall, J.-Michael; Wookey, James; Stuart, Graham; Keir, Derek; Ayele, Atalay
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and use shear-wave splitting tomography to invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due aligned melt due to sharp changes in lithospheric thickness dominate the shear-wave splitting signal in the mantle. Beneath Afar, away from lithospheric topography, melt pockets associated with the crustal magma storage dominate the signal and little anisotropy is seen in the uppermost mantle suggesting melt retains no preferential alignment, possibly due to a lack of mantle lithosphere. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is absent beneath Afar today, rather a broad flow from the southwest dominates in the upper mantle.
Deformation, Fluid Flow and Mantle Serpentinization at Oceanic Transform Faults
NASA Astrophysics Data System (ADS)
Rupke, L.; Hasenclever, J.
2017-12-01
Oceanic transform faults (OTF) and fracture zones have long been hypothesized to be sites of enhanced fluid flow and biogeochemical exchange. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting. The transformation of peridotite to serpentinite not only leads to hydration of oceanic plates and is thereby an important agent of the geological water cycle, it is also a mechanism of abiotic hydrogen and methane formation, which can support archeal and bacterial communities at the seafloor. Inferring the likely amount of mantle undergoing serpentinization reactions therefore allows estimating the amount of biomass that may be autotrophically produced at and around oceanic transform faults and mid-ocean ridges Here we present results of 3-D geodynamic model simulations that explore the interrelations between deformation, fluid flow, and mantle serpentinization at oceanic transform faults. We investigate how slip rate and fault offset affect the predicted patterns of mantle serpentinization around oceanic transform faults. Global rates of mantle serpentinization and associated H2 production are calculated by integrating the modeling results with plate boundary data. The global additional OTF-related production of H2 is found to be between 6.1 and 10.7 x 1011 mol per year, which is comparable to the predicted background mid-ocean ridge rate of 4.1 - 15.0 x 1011 mol H2/yr. This points to oceanic transform faults as potential sites of intense fluid-rock interaction, where chemosynthetic life could be sustained by serpentinization reactions.
Asymmetric sea-floor spreading caused by ridge-plume interactions
NASA Astrophysics Data System (ADS)
Müller, R. Dietmar; Roest, Walter R.; Royer, Jean-Yves
1998-12-01
Crustal accretion at mid-ocean ridges is generally modelled as a symmetric process. Regional analyses, however, often show either small-scale asymmetries, which vary rapidly between individual spreading corridors, or large-scale asymmetries represented by consistent excess accretion on one of the two separating plates over geological time spans. In neither case is the origin of the asymmetry well understood. Here we present a comprehensive analysis of the asymmetry of crustal accretion over the past 83Myr based on a set of self-consistent digital isochrons and models of absolute plate motion,. We find that deficits in crustal accretion occur mainly on ridge flanks overlying one or several hotspots. We therefore propose that asymmetric accretion is caused by ridge propagation towards mantle plumes or minor ridge jumps sustained by asthenospheric flow, between ridges and plumes. Quantifying the asymmetry of crustal accretion provides a complementary approach to that based on geochemical and other geophysical data, in helping to unravel how mantle plumes and mid-ocean ridges are linked through mantle convection processes.
Mantle Sources Beneath the SW Indian Ridge - Remelting the African Superplume
NASA Astrophysics Data System (ADS)
Dick, H. J. B.; Zhou, H.
2012-04-01
The SW Indian Ridge runs some 7700 km from the Bouvet to the Rodgriguez Triple Junction, crossing over or near two postulated mantle plumes. The latter are associated with large oceanic rises where the ridge axis shoals dramatically in the vicinity of the mantle hotspot. The Marion Rise, extends 3100 km from the Andrew Bain FZ to near the Rodriguez TJ, with an along axis rise of 5600-m to it crest north of Marion Island. The rise has thin crust inferred on the basis of abundant exposures of mantle peridotites along its length. We suggest that this is the result of its sub-axial mantle source, which is a depleted residue originally emplaced by the African Superplume into the asthenosphere beneath southern Africa during the Karoo volcanic event ~185 Ma. Based on shallow mantle anisotropy, plate reconstructions, and hotspot traces, it now forms the mantle substrate for the SW Indian Ridge due to the breakup of Gondwanaland. The Marion Rise is associated with Marion Island, the present location of the Marion Hotspot, some 256 km south of the modern ridge. This plume is a vestigial remnant of the African Superplume now imbedded in and centered on asthenospheric mantle derived from the Karoo event. Based on the numerous large offset fracture zones, which would dam sub-axial asthenospheric flow along the ridge, the low postulated flux of the Marion plume, its off-axis position, and the thin crust along the ridge it is clear that the present day plume does not support the Marion Rise. Instead, this must be supported isostatically by the underlying mantle residue of the Karoo event. The Bouvet Rise is much shorter than the Marion Rise, extending ~664 km from the Conrad FZ on the American-Antarctic Ridge to the Shaka FZ on the SW Indian Ridge. It has ~3000-m of axial relief, peaking at Speiss Smt at Speiss Ridge: the last spreading segment of the SW Indian Ridge adjacent to the Bouvet TJ. Unlike the Marion plume, Bouvet is ridge-centered, and much of its rise is likely supported by sub-axial flow of hot mantle from the present-day plume. It is also clear from the isotopic composition of the Bouvet Plume that while it may also be a manifestation of the underlying seismic anomaly situated above D" that gave rise to the Marion Plume, this source must be compositionally heterogeneous at a very large scale. Secondary mantle heterogeneities are evident beyond those associated with the Marion and Bouvet Plumes. These likely explain the frequently extreme local isotopic variability of MORB along the SW Indian Ridge, and are likely due to entrainment of cratonic lithosphere from beneath Africa into the asthenosphere (e.g.: Meyzen et al., Nature, 2003). This is supported by major element anomalies in peridotites from adjacent to the 750-km offset Andrew Bain FZ, and by anomalously thick crust situated at Atlantis Bank, the site of an abrupt MORB isotopic anomaly, that suggest anomalously fertile mantle sources inconsistent with the regional basalt and peridotite major element compositional gradients attributed to the Superplume.
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.
2014-04-01
Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.
NASA Astrophysics Data System (ADS)
Thoraval, C.
2017-12-01
Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.
NASA Astrophysics Data System (ADS)
Neumann, Florian; Vásquez-Serrano, Alberto; Tolson, Gustavo; Negrete-Aranda, Raquel; Contreras, Juan
2016-10-01
We carried out analog laboratory modeling at a scale 1:4,000,000 and computer rendering of the flow patterns in a simulated western Middle American subduction zone. The scaled model consists of a transparent tank filled with corn syrup and housing two conveyor belts made of polyethylene strips. One of the strips dips 60° and moves at a velocity of 30 mm/min simulating the Rivera plate. The other one dips 45°, moves at 90 mm/min simulating the subduction of the Cocos plate. Our scaled subduction zone also includes a gap between the simulated slabs analogous to a tear recently observed in shear wave tomography studies. An acrylic plate 3 mm thick floats on the syrup in grazing contact with the polyethylene strips and simulates the overriding North America plate. Our experiments reveal a deep toroidal flow of asthenospheric mantle through the Cocos-Rivera separation. The flow is driven by a pressure gradient associated with the down-dip differential-motion of the slabs. Similarly, low pressure generated by the fast-moving Cocos plate creates a shallow counter-toroidal flow in the uppermost 100 km of the mantle wedge. The flow draws mantle beneath the western Trans-Mexican Volcanic Belt to the Jalisco block, then plunges into the deep mantle by the descending poloidal cell of the Cocos slab. Moreover, our model suggests a hydraulic jump causes an ~250 km asthenosphere upwelling around the area where intra-arc extensional systems converge in western Mexico. The upwelling eventually merges with the shallow counter-toroidal flow describing a motion in 3D space similar to an Archimedes' screw. Our results indicate the differential motion between subducting slabs drives mixing in the mantle wedge of the Rivera plate and allows the slab to steepen and retreat. Model results are in good agreement with seismic anisotropy studies and the geochemistry of lavas erupted in the Jalisco block. The model can explain the eruption of OIB lavas in the vicinity of the City of Guadalajara in western Mexico, and the south shoulder in the central part of the Tepic-Zacoalco fault system.
NASA Astrophysics Data System (ADS)
Grove, T. L.
2007-05-01
Recent laboratory studies of the melting and crystallization behavior of mantle peridotite and subduction zone lavas have led to new insights into melting processes in island arc settings. Melting of the mantle wedge in the presence of H2O begins at much lower temperatures than previously thought. The solidus of mantle peridotite at 3 GPa is ~ 800 °C, which is 200 °C below previous estimates. At pressures greater than 2.4 GPa chlorite becomes a stable phase on the solidus and it remains stable until ~ 3.5 GPa. Therefore, melting over this pressure range occurs in the presence of chlorite, which contains ~ 12 wt. % H2O. Chlorite stabilized on the peridotite solidus by slab-derived H2O may be the ultimate source of H2O for subduction zone magmatism. Thus, chlorite could transport large amounts of H2O into the descending mantle wedge to depths where it can participate in melting to generate hydrous arc magmas. Our ability to identify primitive mantle melts at subduction zones has led to the following observations. 1) Primitive mantle melts show evidence of final equilibration at shallow depths near the mantle - crust boundary. 2) They contain variable amounts of dissolved H2O (up to 6 wt. %). 3) They record variable extents of melting (up to > 25 wt. %). To produce melts with such variable characteristics requires more than one melting process and requires consideration of a new type of melting called hydrous flux melting. Flux melting occurs when the H2O - rich melt initially produced on the solidus near the base of the mantle wedge ascends and continuously reacts with overlying hotter, shallower mantle. The mantle melts and magmatic H2O content is constantly diluted as the melt ascends and reacts with shallower, hotter mantle. Anhydrous mantle melts are also found in close temporal and spatial proximity to hydrous flux melts. These melts are extracted at similar depths near the top of the mantle wedge when mantle is advected up and into the wedge corner and melted by adiabatic decompression. In light of these new insights into the chemical processes that lead to melt generation in subduction zones, further study of the influence of mantle dynamics and physical processes on melting is crucial. Variations in mantle permeability near the base of the wedge may exercise important controls on the access of fluids and/or melts to the overlying wedge. The presence of chlorite in the wedge may also influence rheological properties and seismicity in the vicinity of the slab - wedge interface. Improved knowledge of rheology and permeability will help us to develop more robust models of mantle flow and temperature distribution in the mantle wedge. These are crucial for refining melting models. By combining evidence from petrology, geochemistry and geophysics the mysteries that attend the generation of melt in the mantle wedge can be resolved.
Impact of lithosphere rheology on the dynamic topography
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras; Koptev, Alexander
2014-05-01
Dynamic topography is a key observable signature of the Earth's and planetary (e.g. Venus) mantle dynamics. In general view, it reflects complex mantle flow patterns, and hence is supposed to correlate at different extent with seismic tomography, SKS fast orientations, geodetic velocity fields and geoid anomalies. However, identification of dynamic topography had no systematic success, specifically in the Earth's continents. Here we argue that lithosphere rheology, in particular, rheological stratification of continents, results in modulation of dynamic topography, converting commonly expected long-wavelength/small amplitude undulations into short-wavelength surface undulations with wide amplitude spectrum, superimposed onto "tectonic" topography. These ideas are explored in 3D using unprecedentedly high resolution numerical experiments (grid step size 2-3 km for 1500x1500x600 km computational area) incorporating realistic rheologically stratified lithosphere. Such high resolution is actually needed to resolve small-scale crustal faulting and inter-layer coupling/uncoupling that shape surface topography. The results reveal strikingly discordant, counterintuitive features of 3D dynamic topography, going far beyond the inferences from previous models. In particular, even weak anisotropic tectonic stress field results both in large-scale small-amplitude dynamic topography and in strongly anisotropic short-wavelength (at least in one direction) dynamic topography with wide amplitude range (from 100 to 2000-3000 m), including basins and ranges and large-scale linear normal and strike-slip faults. Even very slightly pre-stressed strong lithosphere yields and localizes deformation much easier , than un-prestressed one, in response to plume impact and mantle flow. The results shed new light on the importance of lithosphere rheology and active role of lithosphere in mantle-lithosphere interactions as well as on the role of mantle flow and far-field stresses in tectonic-scale deformation. We show, for example, that crustal fault patterns initiated by plume impact are rapidly re-organized in sub-linear rifts and spreading centers, which orientation is largely dictated (e.g., perpendicular to) by the direction of the tectonic far-field stress field, as well as the plume-head material soon starts to flow along the sub-linear rifted shear zones in crustal and mantle lithosphere further amplifying their development. The final surface deformation and mantle flow patterns rapidly loose the initial axisymmetric character and take elongated sub-linear shapes whereas brittle deformation at surface is amplified and stabilized by coherent flow of mantle/plume-head material from below. These "tectonically" looking dynamic topography patterns are quite different from those expected from conventional models as well as from those directly observed, for example, on Venus where plume-lithosphere interactions produce only axisymmetric coronae domal-shaped features with radiating extensional rifts, suggesting that the Venusian lithosphere is rheologically too weak , and its crust is too thin, to produce any significant impact on the dynamic topography.
NASA Astrophysics Data System (ADS)
Martin, A. P.; Cooper, A. F.; Price, R. C.
2014-03-01
The lithospheric, and shallow asthenospheric, mantle in Southern Victoria Land are known to record anomalously high heat flow but the cause remains imperfectly understood. To address this issue plagioclase peridotite xenoliths have been collected from Cenozoic alkalic igneous rocks at three localities along a 150 km transect across the western shoulder of the West Antarctic rift system in Southern Victoria Land, Antarctica. There is a geochemical, thermal and chronological progression across this section of the rift shoulder from relatively hot, young and thick lithosphere in the west to cooler, older and thinner lithosphere in the east. Overprinting this progression are relatively more recent mantle refertilising events. Melt depletion and refertilisation was relatively limited in the lithospheric mantle to the west but has been more extensive in the east. Thermometry obtained from orthopyroxene in these plagioclase peridotites indicates that those samples most recently affected by refertilising melts have attained the highest temperatures, above those predicted from idealised dynamic rift or Northern Victoria Land geotherms and higher than those prevailing in the equivalent East Antarctic mantle. Anomalously high heat flow can thus be attributed to entrapment of syn-rift melts in the lithosphere, probably since regional magmatism commenced at least 24 Myr ago. The chemistry and mineralogy of shallow plagioclase peridotite mantle can be explained by up to 8% melt extraction and a series of refertilisation events. These include: (a) up to 8% refertilisation by a N-MORB melt; (b) metasomatism involving up to 1% addition of a subduction-related component; and (c) addition of ~ 1.5% average calcio-carbonatite. A high MgO group of clinopyroxenes can be modelled by the addition of up to 1% alkalic melt. Melt extraction and refertilisation mainly occurred in the spinel stability field prior to decompression and uplift. In this region mantle plagioclase originates by a combination of subsolidus recrystallisation during decompression within the plagioclase stability field and refertilisation by basaltic melt.
Heat flow, seismic cut-off depth and thermal modeling of the Fennoscandian Shield
NASA Astrophysics Data System (ADS)
Veikkolainen, Toni; Kukkonen, Ilmo T.; Tiira, Timo
2017-12-01
Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000-2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyse the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40-60 mW m-2). The 1-D geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9-15 mW m-2), upper crustal heat production values (3.3-1.1 μWm-3) and the brittle-ductile transition temperature (350 °C) assigned to the cut-off depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 μWm-3 were assigned, respectively. The models suggest a Moho temperature range of 460-500 °C.
Retrodicting the Cenozoic evolution of the mantle: Implications for dynamic surface topography
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro; Rowley, David; Simmons, Nathan; Grand, Stephen
2014-05-01
Seismic tomography is the essential starting ingredient for constructing realistic models of the mantle convective flow and for successfully predicting a wide range of convection-related surface observables. However, the lack of knowledge of the initial thermal state of the mantle in the geological past is still an outstanding problem in mantle convection. The resolution of this problem requires models of 3-D mantle evolution that yield maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. We have carried out mantle dynamic simulations (Glišović & Forte, EPSL 2014) using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spectral geometry that directly incorporate: 1) joint seismic-geodynamic inversions of mantle density structure with constraints provided by mineral physics data (Simmons et al., GJI 2009); and 2) constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) characterised by Earth-like Rayleigh numbers. These time-reversed convection simulations reveal how the buoyancy associated with hot, active upwellings is a major driver of the mantle-wide convective circulation and the changes in dynamic topography at the Earth's surface. These simulations reveal, for example, a stable and long-lived superplume under the East Pacific Rise (centred under the Easter and Pitcairn hotspots) that was previously identified by Rowley et al. (AGU 2011, Nature in review) on the basis of plate kinematic data. We also present 65 Myr reconstructions of the Reunion plume that gave rise to the Deccan Traps.
NASA Astrophysics Data System (ADS)
Yoshida, Masaki; Santosh, M.
2011-03-01
The periodic assembly and dispersal of supercontinents through the history of the Earth had considerable impact on mantle dynamics and surface processes. Here we synthesize some of the conceptual models on supercontinent amalgamation and disruption and combine it with recent information from numerical studies to provide a unified approach in understanding Wilson Cycle and supercontinent cycle. Plate tectonic models predict that superdownwelling along multiple subduction zones might provide an effective mechanism to pull together dispersed continental fragments into a closely packed assembly. The recycled subducted material that accumulates at the mantle transition zone and sinks down into the core-mantle boundary (CMB) provides the potential fuel for the generation of plumes and superplumes which ultimately fragment the supercontinent. Geological evidence related to the disruption of two major supercontinents (Columbia and Gondwana) attest to the involvement of plumes. The re-assembly of dispersed continental fragments after the breakup of a supercontinent occurs through complex processes involving 'introversion', 'extroversion' or a combination of both, with the closure of the intervening ocean occurring through Pacific-type or Atlantic-type processes. The timescales of the assembly and dispersion of supercontinents have varied through the Earth history, and appear to be closely linked with the processes and duration of superplume genesis. The widely held view that the volume of continental crust has increased over time has been challenged in recent works and current models propose that plate tectonics creates and destroys Earth's continental crust with more crust being destroyed than created. The creation-destruction balance changes over a supercontinent cycle, with a higher crustal growth through magmatic influx during supercontinent break-up as compared to the tectonic erosion and sediment-trapped subduction in convergent margins associated with supercontinent assembly which erodes the continental crust. Ongoing subduction erosion also occurs at the leading edges of dispersing plates, which also contributes to crustal destruction, although this is only a temporary process. The previous numerical studies of mantle convection suggested that there is a significant feedback between mantle convection and continental drift. The process of assembly of supercontinents induces a temperature increase beneath the supercontinent due to the thermal insulating effect. Such thermal insulation leads to a planetary-scale reorganization of mantle flow and results in longest-wavelength thermal heterogeneity in the mantle, i.e., degree-one convection in three-dimensional spherical geometry. The formation of degree-one convection seems to be integral to the emergence of periodic supercontinent cycles. The rifting and breakup of supercontinental assemblies may be caused by either tensional stress due to the thermal insulating effect, or large-scale partial melting resulting from the flow reorganization and consequent temperature increase beneath the supercontinent. Supercontinent breakup has also been correlated with the temperature increase due to upwelling plumes originating from the deeper lower mantle or CMB as a return flow of plate subduction occurring at supercontinental margins. The active mantle plumes from the CMB may disrupt the regularity of supercontinent cycles. Two end-member scenarios can be envisaged for the mantle convection cycle. One is that mantle convection with dispersing continental blocks has a short-wavelength structure, or close to degree-two structure as the present Earth, and when a supercontinent forms, mantle convection evolves into degree-one structure. Another is that mantle convection with dispersing continental blocks has a degree-one structure, and when a supercontinent forms, mantle convection evolves into degree-two structure. In the case of the former model, it would take longer time to form a supercontinent, because continental blocks would be trapped by different downwellings thus inhibiting collision. Although most of the numerical studies have assumed the continent/supercontinent to be rigid or nondeformable body mainly because of numerical limitations as well as a simplification of models, a more recent numerical study allows the modeling of mobile, deformable continents, including oceanic plates, and successfully reproduces continental drift similar to the processes and timescales envisaged in Wilson Cycle.
NASA Astrophysics Data System (ADS)
Hidas, Károly; Konc, Zoltán.; Garrido, Carlos J.; Tommasi, Andréa.; Vauchez, Alain; Padrón-Navarta, José Alberto; Marchesi, Claudio; Booth-Rea, Guillermo; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, María. Isabel; Gervilla, Fernando
2016-11-01
Mantle xenoliths in Pliocene alkali basalts of the eastern Betics (SE Iberia, Spain) are spinel ± plagioclase lherzolite, with minor harzburgite and wehrlite, displaying porphyroclastic or equigranular textures. Equigranular peridotites have olivine crystal preferred orientation (CPO) patterns similar to those of porphyroclastic xenoliths but slightly more dispersed. Olivine CPO shows [100]-fiber patterns characterized by strong alignment of [100]-axes subparallel to the stretching lineation and a girdle distribution of [010]-axes normal to it. This pattern is consistent with simple shear or transtensional deformation accommodated by dislocation creep. One xenolith provides evidence for synkinematic reactive percolation of subduction-related Si-rich melts/fluids that resulted in oriented crystallization of orthopyroxene. Despite a seemingly undeformed microstructure, the CPO in orthopyroxenite veins in composite xenoliths is identical to those of pyroxenes in the host peridotite, suggesting late-kinematic crystallization. Based on these observations, we propose that the annealing producing the equigranular microstructures was triggered by melt percolation in the shallow subcontinental lithospheric mantle coeval to the late Neogene formation of veins in composite xenoliths. Calculated seismic properties are characterized by fast propagation of P waves and polarization of fast S waves parallel to olivine [100]-axis (stretching lineation). These data are compatible with present-day seismic anisotropy observations in SE Iberia if the foliations in the lithospheric mantle are steeply dipping and lineations are subhorizontal with ENE strike, implying dominantly horizontal mantle flow in the ENE-WSW direction within vertical planes, that is, subparallel to the paleo-Iberian margin. The measured anisotropy could thus reflect a lithospheric fabric due to strike-slip deformation in the late Miocene in the context of WSW tearing of the subducted south Iberian margin lithosphere.
Deformation in the mantle wedge associated with Laramide flat-slab subduction
NASA Astrophysics Data System (ADS)
Behr, Whitney M.; Smith, Douglas
2016-07-01
Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range ˜550-750°C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 1019-1023 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these rocks are consistent with models that invoke significant basal shear tractions as contributing to Laramide uplift and contraction in the continental interior.
NASA Astrophysics Data System (ADS)
Brown, E.; Lesher, C. E.
2014-12-01
The compositions and volumes of basalts erupted at the earth's surface are a function of mantle temperature, mantle composition, and the rate at which the mantle upwells through the melting zone. Thus, basaltic magmatism has long been used to probe the thermal and physiochemical state of the earth's mantle. Great insight has been gained into the mantle beneath the global spreading ridge system, where the mantle source is assumed to be homogeneous peridotite that upwells passively [1]. However, it is now recognized that many basalt source regions are lithologically heterogeneous (i.e. containing recycled lithospheric material ranging from harzburgite to pyroxenite) and upwell at rates in excess of those governed by plate separation. To account for these complexities, we have developed a forward melting model for lithologically heterogeneous mantle that incorporates thermodynamically and experimentally constrained melting functions for a range of peridotite and pyroxenite lithologies. The model is unique because it quantifies mantle upwelling rates based on the net buoyancy of the source, thus providing a means for linking basalt compositions/volumes to mantle flow while accounting for source heterogeneity. We apply the model to investigate the mantle properties governing magmatism along different rift segments in Iceland, where lithologic heterogeneity and variable upwelling rates have been inferred through geochemical means [2,3]. Using constraints from seismically determined crustal thicknesses and recent estimates of the proportion of pyroxenite-derived melt contributing to Icelandic basalt compositions [4,5], we show that mantle sources beneath Iceland have excess potential temperatures >85 °C, contain <7% pyroxenite, and maximum upwelling rates ~14 times the passive rate. Our modeling highlights the dominant role of elevated mantle temperature and enhanced upwelling for high productivity magmatism in Iceland, and a subordinate role for mantle heterogeneity, which is required to account for much of the observed chemical and isotopic diversity. [1] Langmuir et al, 1992, AGU Geophys. Mono. Ser. 71 [2] Chauvel & Hemond, 2000, G-cubed, v 1 [3] Kokfelt et al, 2003, EPSL, v 214 [4] Sobolev et al, 2007, Science, v 316 [5] Shorttle et al, 2014, EPSL, v 395
Tests of crustal divergence models for Aphrodite Terra, Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1989-01-01
This paper discusses the characteristics of Aphrodite Terra, the highland region of Venus which is considered to be a likely site of mantle upwelling, active volcanism, and extensional tectonics, and examines the relation of these features to three alternative kinematic models for the interaction of mantle convection with the surface. These the 'vertical tectonics' model, in which little horizontal surface displacement results from mantle flow; the 'plate divergence' model, in which shear strain from large horizontal displacements is accommodated only in narrow zones of deformation; and the 'distributed deformation' model, in which strain from large horizontal motions is broadly accommodated. No convincing observational evidence was found to support the rigid-plate divergence, while the evidence of large-scale horizontal motions of Aphrodite argues against purely vertical tectonics. A model is proposed, involving a broad disruption of a thin lithosphere. In such a model, lineaments are considered to be surface manifestations of mantle convective flow.
Geoid, topography, and convection-driven crustal deformation on Venus
NASA Technical Reports Server (NTRS)
Simons, Mark; Hager, Bradford H.; Solomon, Sean C.
1993-01-01
High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between the observed surface topography, crustal deformation, and the gravity field. Therefore, comparison of model results with observational data can help to constrain such parameters as crustal and thermal boundary layer thicknesses as well as the character of mantle flow below different Venusian features. We explore in this paper the effects of this coupling by means of a finite element modelling technique.
NASA Astrophysics Data System (ADS)
Eguchi, T.; Matsubara, K.; Ishida, M.
2001-12-01
To unveil dynamic process associated with three-dimensional unsteady mantle convection, we carried out numerical simulation on passively exerted flows by simplified local hot sources just above the CMB and large-scale cool masses beneath smoothed subduction zones. During the study, we used our individual code developed with the finite difference method. The basic three equations are for the continuity, the motion with the Boussinesq (incompressible) approximation, and the (thermal) energy conservation. The viscosity of our model is sensitive to temperature. To get time integration with high precision, we used the Newton method. In detail, the size and thermal energy of the hot or cool sources are not uniform along the latitude, because we could not select uniform local volumes assigned for the sources within the finite difference grids throughout the mantle. Our results, thus, accompany some latitude dependence. First, we treated the case of the hotspots, neglecting the contribution of the subduction zones. The local hot sources below the currently active hotspots were settled as dynamic driving forces included in the initial condition. Before starting the calculation, we assumed that the mantle was statically layered with zero velocity component. The thermal anomalies inserted instantaneously in the initial condition do excite dynamically passive flows. The type of the initial hot sources was not 'plume' but 'thermal.' The simulation results represent that local upwelling flows which were directly excited over the initial heat sources reached the upper mantle by approximately 30 My during the calculation. Each of the direct upwellings above the hotspots has its own dynamic potential to exert concentric down- and up-welling flows, alternately, at large distances. Simultaneously, the direct upwellings interact mutually within the spherical mantle. As an interesting feature, we numerically observed secondary upwellings somewhere in a wide region covering east Eurasia to the Bering Sea where no hot sources were initially input. It seems that the detailed location of the secondary upwellings depends partly on the numerical parameters such as the radial profile of mantle viscosity especially at the D" layer, etc., because the secondary flows are provoked by dynamic interaction among the distributed direct upwellings just above the CMB. Our results suggest that if we assume not only non-zero time delays during the input of the local hot sources but also parameters related with the difference of their historical surface flux rates, the pattern of the passively excited flows will be different from that obtained with the simultaneously settled hot sources stated above. Second, we simultaneously incorporated simplified thermal anomaly models associated with both the distributed local hotspots and the global subduction zones, as dynamic origins in the initial condition for the static layered mantle. In this case, the simulation result represents that the pattern of secondary radial flows, being different from those in the earlier case, is sensitive to the relative strength between the positive dynamic buoyancy integrated over all of the local hot sources below the hotspots and the total negative buoyancy beneath the subduction zones.
NASA Astrophysics Data System (ADS)
Konc, Zoltán; Hidas, Károly; Garrido, Carlos J.; Tommasi, Andréa; Vauchez, Alain; Padrón Navarta, José Alberto; Marchesi, Claudio; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, Maria Isabel
2016-04-01
Peridotite mantle xenoliths in Plio-Pleistocene alkali basalts of the eastern Betic Cordillera (Cartagena area, Murcia, SE Spain) provide a snapshot of the structure and composition of the lithospheric mantle at the northern limb of the Alpine Betic-Rif arched belt in the westernmost Mediterranean. The xenoliths are spinel and plagioclase lherzolite with minor harzburgite and wehrlite, displaying porphyroclastic to equigranular textures. Regardless of composition and texture, the Crystal Preferred Orientation (CPO) of olivine shows an axial-[100] pattern characterized by a strong alignment of [100]-axes near or parallel to the peridotite lineation and a girdle distribution of [010]-axes with a maximum normal to the peridotite foliation. This CPO pattern is consistent with ductile deformation accommodated by dislocation creep with dominant activation of the high temperature {0kl}[100] olivine slip system, indicative of deformation by simple shear or combinations of simple shear and pure shear with a transtensional component. Calculated seismic properties are characterized by fast propagation of P-waves and polarization of fast S-waves parallel to olivine [100]-axis, indicating the flow direction. SKS and Pn anisotropy in the eastern Betics can be explained by a lithospheric mantle peridotite with similar fabric to the one displayed by the studied mantle xenoliths. Considering the limited thickness of the mantle lithosphere in the Betics (40-80 km), the measured azimuths and delays of SKS waves in the eastern Betics are consistent with a steeply dipping mantle foliation and a subhorizontal lineation with ENE strike. This geometry of the lithospheric fabrics implies active or frozen mantle flow with a dominantly strike-slip component subparallel to the paleo-Iberian margin. Synkinematic overprinting of mineral assemblages from the garnet-spinel to the plagioclase facies demonstrates 36-40 km uplift continuously accommodated by ductile shear thinning of the lithospheric mantle. Coeval deformation of orthopyroxene in veins of composite xenoliths, formed by reactive percolation of subduction-related Si-rich melts/fluids, suggests that this deformation occurred in the late Neogene.
Mantle-driven geodynamo features - accounting for non-thermal lower mantle features
NASA Astrophysics Data System (ADS)
Choblet, G.; Amit, H.
2011-12-01
Lower mantle heterogeneity responsible for spatial variations of the CMB heat flux could control long term geodynamo properties such as deviations from axial symmetry in the magnetic field and the core flow, frequency of geomagnetic reversals and anisotropic growth of the inner core. In this context, a classical interpretation of tomographic mapping of the lowermost mantle is to correlate linearly seismic velocities to heat flux anomalies. This implicitly assumes that temperature alone controls the tomographic anomalies. In addition, the limited spatial resolution of tomographic images precludes modeling sharp CMB heat flux structures.. There has been growing evidence however that non-thermal origins are also be expected for seismic velocity anomalies: the three main additional control parameters are (i) compositional anomalies possibly associated to the existence of a deep denser layer, (ii) the phase transition in magnesium perovskite believed to occur in the lowermost mantle and (iii) the possible presence of partial melts. Numerical models of mantle dynamics have illustrated how the first two parameters could distort the linear relationship between shear wave velocity anomalies and CMB heat flux (Nakagawa and Tackley, 2008). In this presentation we will consider the effect of such alternative interpretations of seismic velocity anomalies in order to prescribe CMB heat flux as an outer boundary for dynamo simulations. We first focus on the influence of post-perovskite. Taking into account this complexity could result in an improved agreement between the long term average properties of simulated dynamos and geophysical observations, including the Atlantic/Pacific hemispherical dichotomy in core flow activity, the single intense paleomagnetic field structure in the southern hemisphere, and possibly degree 1 dominant mode of inner-core seismic heterogeneity. We then account for sharp anomalies that are not resolved by the global tomographic probe. For instance, Ultra Low Velocity Zones (ULVZs) have been identified by dedicated seismic tools that cannot be observed by global tomographic models. These are likely associated to the hottest regions in the lowermost mantle. We thus model anomalies of the CMB heat flux where narrow ridges with low heat flux are juxtaposed to a large scale degree 2 pattern which represents the dominant component of tomographic observations. We find that hot ridges located with a large-scale positive heat flux anomaly to the east produce a time-average narrow elongated upwelling which acts as a flow barrier at the top of the core and results in intensified low-latitudes magnetic flux patches. This is found to have a clear signature on the meridional component of the thermal wind balance. Based on the lower mantle seismic tomography pattern, time average intense geomagnetic flux patches are expected below east Asia and Oceania and below the Americas.
Love-to-Rayleigh Conversions and Seismic Anisotropy in Cascadia
NASA Astrophysics Data System (ADS)
Rieger, Duayne Matthew
Seismic anisotropy is often attributed to the development of lattice-preferred orientation (LPO) of olivine crystals in peridotite, induced by the dislocation creep component of mantle deformation (Karato et al., 2008; Ribe, 1992). Mantle-flow-induced seismic anisotropy is often modeled in the simple form of hexagonal symmetry, where the anisotropic volume is uniaxially fast or slow. This relationship between seismic anisotropy and mantle deformation allows for the mapping of mantle dynamics using measurements of seismic anisotropy. Presently, methods of measuring seismic anisotropy in Earth's mantle include shear-wave splitting and surface-wave tomography. These methods are tuned to seismically fast axes laying in the horizontal or surface-tangent plane and are limited in discerning clipping seismic fast axes. This is a shortcoming. It is reasonable to suspect the presence of dipping seismic fast axes induced by mantle flow in several tectonic regimes such as subduction zones. The slab rollback model of the subduction zone system has been argued to exhibit trench-parallel subslab anisotropy due to the lateral evacuation of the subslab mantle material (Hall et al., 2000; Russo and Silver, 1994). This model has been emboldened by the dominance of trench-parallel shear-wave-splitting measurements in the subslab mantle of global subduction zones. This model has significant geodynamic implications, requiring viscous decoupling between the subslab mantle and the sub-ducting slab. The Cascadian subduction zone is of particular scientific interest. While experiencing slab rollback (Zandt and Humphreys, 2008), trench-perpendicular shear-wave-splitting measurements are observed in the subslab mantle of Cascadia (Currie et al., 2004; Eakin et al., 2010; Long and Silver, 2008; 2009). This suggests either viscous coupling resulting in slab-entrained flow or the presence of an alternate relationship between finite strain in the mantle and seismic anisotropy. The ability to discern a clipping anisotropic axis would help gain insight into the mantle dynamics of regions such as Cascadia. Lateral gradients of seismic anisotropy in Earth's upper mantle induce coupling among Earth's spheroidal and toroidal normal modes. This coupling can manifest as observable surface-wave polarization anomalies resulting from Love to Rayleigh wave conversions. These Love to Rayleigh conversions are known in the literature as Quasi-Love (QL) waves (Park and Yu, 1992) and are sensitive to both the strike and the dip of an anisotropic symmetry axis. In this dissertation I investigate the phenomenology of QL surface-wave scattering, including its sensitivity to the type and orientation of seismic anisotropy. I then apply my findings to observations of QL wave scattering in Cascada in order to further constrain subslab mantle anisotropy in the region. First, I make initial observations and confirm the presence of QL scattering in Cascada and the western U.S. using data recorded on USArray. I then move on to develop an algorithm to model efficiently QL wave scattering in the presence of 3-dimensional anisotropic structure. Using this forward-modeling algorithm, I investigate the dependence of QL wave scattering on the type and orientation of seismic Anisotropy. I find that P and S anisotropies exhibit independent effects on scattering. Scattering due to S anisotropy is stronger than that due to P anisotropy for all orientations and dominates in the observed scattering pattern. Both the phase and amplitude of the QL wave is dependent on the orientation (strike and dip) of the symmetry axis relative to the incident propagation azimuth of the source-receiver great-circle path. Due to this, the orientation of the anisotropic symmetry axis provides a distinct signature which is observable in the variation of QL wave scattering with wave-propagation azimuth. Finally, using data recorded on USArray, I observe the variation in QL wave scattering with propagation azimuth. I then attempt to forward-model the observed behavior using the algorithm developed earlier. The best-fitting model suggests coherent trench-perpendicular mantle anisotropy with an eastward dip in the sublsab mantle of the Cascadian subduction zone. The resulting anisotropic model adds confidence to the entrained subslab mantle-flow model for Cascadia and further refutes the 3-D return-flow model associated with slab rollback.
P wave anisotropic tomography of the Alps
NASA Astrophysics Data System (ADS)
Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian
2017-06-01
The first tomographic images of P wave azimuthal and radial anisotropies in the crust and upper mantle beneath the Alps are determined by joint inversions of arrival time data of local earthquakes and teleseismic events. Our results show the south dipping European plate with a high-velocity (high-V) anomaly beneath the western central Alps and the north dipping Adriatic plate with a high-V anomaly beneath the Eastern Alps, indicating that the subduction polarity changes along the strike of the Alps. The P wave azimuthal anisotropy is characterized by mountain chain-parallel fast-velocity directions (FVDs) in the western central Alps and NE-SW FVDs in the Eastern Alps, which may be caused by mantle flow induced by the slab subductions. Our results reveal a negative radial anisotropy (i.e., Vph < Vpv) within the subducting slabs and a positive radial anisotropy (i.e., Vph > Vpv) in the low-velocity mantle wedge, which may reflect the subvertical plate subduction and its induced mantle flow. The results of anisotropic tomography provide important new information on the complex mantle structure and dynamics of the Alps and adjacent regions.
Magmatism significantly alters the thermal structure of the wedge
NASA Astrophysics Data System (ADS)
Rees Jones, D. W.; Katz, R. F.; Rudge, J. F.; Tian, M.
2016-12-01
The temperature structure of the mantle wedge is typically modelled as a balance between thermal diffusion and advection by the solid mantle [e.g., 1]. The thermal state of the wedge promotes melting and melt transport in the natural system, but the thermal consequences of these processes have been neglected from previous models. We show that advective transport of sensible and latent heat by liquid magma can locally alter the temperature structure from canonical models by up to 200K. Liquids are liberated from the subducting slab by de-volatilization reactions. They trigger melting and become silicic en route to the surface, where they cause arc volcanism. These liquids transport heat advectively, and consume or supply latent heat as they melt or freeze. To analyse these effects, we parameterise melting in the presence of volatile species. We combine this with a one-dimensional "melting-column model," previously used to understand mid-ocean ridge volcanism. Our calculations highlight the thermal and chemical response to melt transport across the mantle wedge. Finally, we solve two-dimensional geodynamic models with a prescribed slab flux [2]. These models allow us to identify the most thermally significant fluxes of melt in the system. Perturbations of 200K are found at the base of the overriding lithosphere. This thermal signature of melt migration should be considered when interpreting heat flow, petrologic and seismic data [e.g., 3]. Such a thermal perturbation is likely to affect the chemistry of arc volcanoes, the solid mantle flow and, perhaps, the location of the volcanos themselves [4]. [1] van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He, J., et al. (2008). A community benchmark for subduction zone modeling. PEPI, doi:10.1016/j.pepi.2008.04.015 [2] Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). Fluid flow in subduction zones: The role of solid rheology and compaction pressure. EPSL, doi:10.1016/j.epsl.2014.05.052 [3] Kelemen, P. B., Rilling, J., Parmentier, E., Mehl, L., & Hacker, B. (2004). Thermal structure due to solid-state flow in the mantle wedge beneath arcs. AGU Geophys. Mon. Ser., 138, 293-311 [4] England, P. C., Katz, R. F. (2010). Melting above the anhydrous solidus controls the location of volcanic arcs. Nature, doi:10.1038/nature09417
NASA Astrophysics Data System (ADS)
Eakin, C. M.
2017-12-01
Plate tectonics is primarily driven by the subduction of cold dense oceanic slabs. It has yet to be fully understood however how variations in slab morphology and buoyancy influence the surrounding mantle dynamics, and what difference if any is seen at the surface. An excellent natural laboratory to answer such questions is found along the Andean margin where the world's largest flat slab is presently subducting beneath much of Peru. Following the deployment of broadband seismic arrays across the region, mantle flow both beneath and above the flat-slab is investigated using targeted shear-wave splitting techniques that detect seismic anisotropy and the pattern of mantle deformation. The along strike change in slab dip angle and buoyancy content is found to exert a strong control over the surrounding mantle flow field. Modeling of the induced mantle flow, and the dynamic topography at the surface that results, predicts a wave of dynamic subsidence that propagates away from the trench as the flat slab develops. This is found to correlate well with the record of widespread sediment deposition across western Amazonia during the Miocene. A combination of uplift, flexure and dynamic topography during slab flattening is proposed to explain the overall landscape evolution of the region and the subsequent configuration of the transcontinental Amazon drainage system we see today.
A mantle plume model for the Equatorial Highlands of Venus
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Hager, Bradford H.
1991-01-01
The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.
Boundary-modulated Thermal Convection Model in the Mantle
NASA Astrophysics Data System (ADS)
Kurita, K.; Kumagai, I.
2008-12-01
Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This is a good example of the consequence of mutual interactions between convective flow and the heterogeneity in boundary. We propose this is a basic framework of the mantle dynamics which can reconcile apparent discrepancy between observed seismic signatures and corresponding convective motion. As a conclusion we would like to emphasize the analog experiments is a useful tool for developing/breeding new ideas.
Water pumping in mantle shear zones
Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony
2017-01-01
Water plays an important role in geological processes. Providing constraints on what may influence the distribution of aqueous fluids is thus crucial to understanding how water impacts Earth's geodynamics. Here we demonstrate that ductile flow exerts a dynamic control on water-rich fluid circulation in mantle shear zones. Based on amphibole distribution and using dislocation slip-systems as a proxy for syn-tectonic water content in olivine, we highlight fluid accumulation around fine-grained layers dominated by grain-size-sensitive creep. This fluid aggregation correlates with dislocation creep-accommodated strain that localizes in water-rich layers. We also give evidence of cracking induced by fluid pressure where the highest amount of water is expected. These results emphasize long-term fluid pumping attributed to creep cavitation and associated phase nucleation during grain size reduction. Considering the ubiquitous process of grain size reduction during strain localization, our findings shed light on multiple fluid reservoirs in the crust and mantle. PMID:28593947
Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models
NASA Astrophysics Data System (ADS)
Li, A.; Dave, R.; Yao, Y.
2017-12-01
Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last effects or too slow to alter the dominant shear deformation in the asthenosphere.
NASA Astrophysics Data System (ADS)
Huang, Q.; Schmerr, N. C.; Waszek, L.; Beghein, C.; Weidner, E. C.
2017-12-01
Mantle transition zone (MTZ) is delineated by the 410 and 660 km discontinuities and plays an important role in mantle convection. Mineral physics experiments predict that wadsleyite and ringwoodite can have 13% and 2% single-crystal anisotropy respectively, indicating that seismic anisotropy is likely to exist in the upper part of the MTZ when MTZ minerals are aligned by mantle flow (e.g. subducting slabs). Here we use the SS precursors to study the topography change and seismic anisotropy in the vicinity of MTZ discontinuities. An up-to-date SS precursor dataset consisting of 45,624 records was collected to investigate MTZ topography and anisotropy. We stacked the whole dataset into 9 geographical caps to obtain the global topography of 410 and 660 km discontinuities. The MTZ is thickened by 15 km beneath subduction zones (e.g. Japan and South America) and also thinned by 15 km beneath mantle plume regions (e.g. Bowie and Iceland hotspots), which is consistent with thermal heterogeneity in the mid-mantle. We identify four locations with sufficient bounce point density and azimuthal coverage of SS precursors to study azimuthal anisotropy in MTZ; the central Pacific, the northwest Pacific, Greenland and the central Atlantic. We stack the data by the azimuth of SS bounce points falling within the range of 2000 km in these four locations. The goal is to detect the azimuthal dependence of travel time and amplitude of SS precursors, thus to constrain azimuthal anisotropy in MTZ. The central Pacific bin has fast direction at 110° for both S410S and S660S azimuthal stacks, which is interpreted as seismic anisotropy in the overlying upper mantle. We also stack data in subduction zones by the relative azimuths of bounce points compared to mantle flow directions to test the hypothesis that subducting slabs can cause azimuthal anisotropy in MTZ. A trench-parallel fast direction is observed for both S410S and S660S travel times and amplitudes, but not for their differential travel times. This indicates that subducting slabs impart azimuthal anisotropy right above 410 discontinuity, but detectable anisotropy does not extend into the MTZ. We will present results from 3D synthetic modeling based on SPECFEM3D software to further interrogate the effects of anisotropic structures on the waveforms of the SS precursors.
Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone
Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J. -Michael
2016-01-01
It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676
Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.
Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael
2016-07-20
It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.
Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns
NASA Astrophysics Data System (ADS)
Conder, J. A.
2005-12-01
It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km closer to the trench and the degree of melting is larger than when only diffusion is allowed. The rate of dehydration depends on the thermal structure which can affect the permeability. The dependence of permeability and diffusion with temperature may explain the variations in volcanic front location as observed at different arcs.
NASA Astrophysics Data System (ADS)
Wilson, Lionel; Head, James W.
2017-02-01
We model the ascent and eruption of lunar mare basalt magmas with new data on crustal thickness and density (GRAIL), magma properties, and surface topography, morphology and structure (Lunar Reconnaissance Orbiter). GRAIL recently measured the broad spatial variation of the bulk density structure of the crust of the Moon. Comparing this with the densities of lunar basaltic and picritic magmas shows that essentially all lunar magmas were negatively buoyant everywhere within the lunar crust. Thus positive excess pressures must have been present in melts at or below the crust-mantle interface to enable them to erupt. The source of such excess pressures is clear: melt in any region experiencing partial melting or containing accumulated melt, behaves as though an excess pressure is present at the top of the melt column if the melt is positively buoyant relative to the host rocks and forms a continuously interconnected network. The latter means that, in partial melt regions, probably at least a few percent melting must have taken place. Petrologic evidence suggests that both mare basalts and picritic glasses may have been derived from polybaric melting of source rocks in regions extending vertically for at least a few tens of km. This is not surprising: the vertical extent of a region containing inter-connected partial melt produced by pressure-release melting is approximately inversely proportional to the acceleration due to gravity. Translating the ∼25 km vertical extent of melting in a rising mantle diapir on Earth to the Moon then implies that melting could have taken place over a vertical extent of up to 150 km. If convection were absent, melting could have occurred throughout any region in which heat from radioisotope decay was accumulating; in the extreme this could have been most of the mantle. The maximum excess pressure that can be reached in a magma body depends on its environment. If melt percolates upward from a partial melt zone and accumulates as a magma reservoir, either at the density trap at the base of the crust or at the rheological trap at the base of the elastic lithosphere, the excess pressure at the top of the magma body will exert an elastic stress on the overlying rocks. This will eventually cause them to fail in tension when the excess pressure has risen to close to twice the tensile strength of the host rocks, perhaps up to ∼10 MPa, allowing a dike to propagate upward from this point. If partial melting occurs in a large region deep in the mantle, however, connections between melt pockets and veins may not occur until a finite amount, probably a few percent, of melting has occurred. When interconnection does occur, the excess pressure at the top of the partial melt zone will rise abruptly to a high value, again initiating a brittle fracture, i.e. a dike. That sudden excess pressure is proportional to the vertical extent of the melt zone, the difference in density between the host rocks and the melt, and the acceleration due to gravity, and could readily be ∼100 MPa, vastly greater than the value needed to initiate a dike. We therefore explored excess pressures in the range ∼10 to ∼100 MPa. If eruptions take place through dikes extending upward from the base of the crust, the mantle magma pressure at the point where the dike is initiated must exceed the pressure due to the weight of the magmatic liquid column. This means that on the nearside the excess pressure must be at least ∼19 ± 9 MPa and on the farside must be ∼29 ± 15 MPa. If the top of the magma body feeding an erupting dike is a little way below the base of the crust, slightly smaller excess pressures are needed because the magma is positively buoyant in the part of the dike within the upper mantle. Even the smallest of these excess pressures is greater than the ∼10 MPa likely maximum value in a magma reservoir at the base of the crust or elastic lithosphere, but the values are easily met by the excess pressures in extensive partial melt zones deeper within the mantle. Thus magma accumulations at the base of the crust would have been able to intrude dikes part-way through the crust, but not able to feed eruptions to the surface; in order to be erupted, magma must have been extracted from deeper mantle sources, consistent with petrologic evidence. Buoyant dikes growing upward from deep mantle sources of partial melt can disconnect from their source regions and travel through the mantle as isolated bodies of melt that encounter and penetrate the crust-mantle density boundary. They adjust their lengths and internal pressure excesses so that the stress intensity at the lower tip is zero. The potential total vertical extent of the resulting melt body depends on the vertical extent of the source region from which it grew. For small source extents, the upper tip of the resulting dike crossing the crust-mantle boundary cannot reach the surface anywhere on the Moon and therefore can only form a dike intrusion; for larger source extents, the dike can reach the surface and erupt on the nearside but still cannot reach the surface on the farside; for even larger source extents, eruptions could occur on both the nearside and the farside. The paucity of farside eruptions therefore implies a restricted range of vertical extents of partial melt source region sizes, between ∼16 and ∼36 km. When eruptions can occur, the available pressure in excess of what is needed to support a static magma column to the surface gives the pressure gradient driving magma flow. The resulting typical turbulent magma rise speeds are ∼10 to a few tens of m s-1, dike widths are of order 100 m, and eruption rates from 1 to 10 km long fissure vents are of order 105 to 106 m3 s-1. Volume fluxes in lunar eruptions derived from lava flow thicknesses and surface slopes or rille lengths and depths are found to be of order 105 to 106 m3 s-1 for volume-limited lava flows and >104 to 105 m3 s-1 for sinuous rilles, with dikes widths of ∼50 m. The lower end of the volume flux range for sinuous rilles corresponds to magma rise speeds approaching the limit set by the fact that excessive cooling would occur during flow up a 30 km long dike kept open by a very low excess pressure. These eruptions were thus probably fed by partial melt zones deep in the mantle. Longer eruption durations, rather than any subtle topographic slope effects, appear to be the key to the ability of these flows to erode sinuous rille channels. We conclude that: (1) essentially all lunar magmas were negatively buoyant everywhere within the crust; (2) positive excess pressures of at least 20-30 MPa must have been present in mantle melts at or below the crust-mantle interface to drive magmas to the surface; (3) such pressures are easily produced in zones of partial melting by pressure-release during mantle convection or simple heat accumulation from radioisotopes; (4) magma volume fluxes available from dikes forming at the tops of partial melt zones are consistent with the 105 to 106 m3 s-1 volume fluxes implied by earlier analyses of surface flows; (5) eruptions producing thermally-eroded sinuous rille channels involved somewhat smaller volume fluxes of magma where the supply rate may be limited by the rate of extraction of melt percolating through partial melt zones.
Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
Wei, S. Shawn; Zha, Yang; Shen, Weisen; Wiens, Douglas A.; Conder, James A.; Webb, Spahr C.
2016-11-01
We investigate the upper mantle seismic structure in the Tonga-Lau-Fiji region by jointly fitting the phase velocities of Rayleigh waves from ambient-noise and two-plane-wave tomography. The results suggest a wide low-velocity zone beneath the Lau Basin, with a minimum SV-velocity of about 3.7 ± 0.1 km/s, indicating upwelling hot asthenosphere with extensive partial melting. The variations of velocity anomalies along the Central and Eastern Lau Spreading Centers suggest varying mantle porosity filled with melt. In the north where the spreading centers are distant from the Tonga slab, the inferred melting commences at about 70 km depth, and forms an inclined zone in the mantle, dipping to the west away from the arc. This pattern suggests a passive decompression melting process supplied by the Australian plate mantle from the west. In the south, as the supply from the Australian mantle is impeded by the Lau Ridge lithosphere, flux melting controlled by water from the nearby slab dominates in the back-arc. This source change results in the rapid transition in geochemistry and axial morphology along the spreading centers. The remnant Lau Ridge and the Fiji Plateau are characterized by a 60-80 km thick lithosphere underlain by a low-velocity asthenosphere. Our results suggest the removal of the lithosphere of the northeastern Fiji Plateau-Lau Ridge beneath the active Taveuni Volcano. Azimuthal anisotropy shows that the mantle flow direction rotates from trench-perpendicular beneath Fiji to spreading-perpendicular beneath the Lau Basin, which provides evidence for the southward flow of the mantle wedge and the Samoan plume.
NASA Astrophysics Data System (ADS)
Hempel, S.; Garcia, R.; Weber, R. C.; Schmerr, N. C.; Panning, M. P.; Lognonne, P. H.; Banerdt, W. B.
2016-12-01
Complementary to investigating ray theoretically predictable parameters to explore the deep interior of Mars (see AGU contribution by R. Weber et al.), this paper presents the waveform approach to illuminate the lowermost mantle and core-mantle boundary of Mars. In preparation to the NASA discovery mission InSight, scheduled for launch in May, 2018, we produce synthetic waveforms considering realistic combinations of sources and a single receiver, as well as noise models. Due to a lack of constraints on the scattering properties of the Martian crust and mantle, we assume Earth-like scattering as a minimum and Moon-like scattering as a maximum possibility. Various seismic attenuation models are also investigated. InSight is set up to deliver event data as well as a continuous data flow. Where ray theoretical approaches will investigate the event data, the continuous data flow may contain signals reflected multiple times off the same reflector, e.g. the underside of the lithosphere, or the core-mantle boundary. It may also contain signals of individual events not detected or interfering wavefields radiated off multiple undetected events creating 'seismic noise'. We will use AxiSEM to simulate a continuous data flow for these cases for various 1D and 2D Mars models, and explore the possibilities of seismic interferometry to use seismic information hidden in the coda to investigate the deep interior of Mars.
Lightcurve of comet Austin(1989c1) and its dust mantle development
NASA Technical Reports Server (NTRS)
Hasegawa, Hitoshi; Watanabe, Jun-Ichi
1992-01-01
Brightness variations of comet Austin(1989c1) were investigated in terms of the variations of water production rate. We translated the visual brightness data into water production rates using Newburn's semi-empirical law. The curve of the water production rates as a function of heliocentric distance was compared with the model calculations that assumed energy balance between the solar incident and vaporization of water. Thermal flow in a dust mantle at a surface of the nucleus is also included in the model. The model calculations including the dust mantle are more favorable for the observed rate than non-dust mantle cases. The extinction after the perihelion passage suggests that the dust mantle developed gradually.
NASA Astrophysics Data System (ADS)
Schuberth, Bernhard S. A.
2017-04-01
One of the major challenges in studies of Earth's deep mantle is to bridge the gap between geophysical hypotheses and observations. The biggest dataset available to investigate the nature of mantle flow are recordings of seismic waveforms. On the other hand, numerical models of mantle convection can be simulated on a routine basis nowadays for earth-like parameters, and modern thermodynamic mineralogical models allow us to translate the predicted temperature field to seismic structures. The great benefit of the mineralogical models is that they provide the full non-linear relation between temperature and seismic velocities and thus ensure a consistent conversion in terms of magnitudes. This opens the possibility for quantitative assessments of the theoretical predictions. The often-adopted comparison between geodynamic and seismic models is unsuitable in this respect owing to the effects of damping, limited resolving power and non-uniqueness inherent to tomographic inversions. The most relevant issue, however, is related to wavefield effects that reduce the magnitude of seismic signals (e.g., traveltimes of waves), a phenomenon called wavefront healing. Over the past couple of years, we have developed an approach that takes the next step towards a quantitative assessment of geodynamic models and that enables us to test the underlying geophysical hypotheses directly against seismic observations. It is based solely on forward modelling and warrants a physically correct treatment of the seismic wave equation without theoretical approximations. Fully synthetic 3-D seismic wavefields are computed using a spectral element method for 3-D seismic structures derived from mantle flow models. This way, synthetic seismograms are generated independent of any seismic observations. Furthermore, through the wavefield simulations, it is possible to relate the magnitude of lateral temperature variations in the dynamic flow simulations directly to body-wave traveltime residuals. The synthetic traveltime data can then be compared - on statistical grounds - to the traveltime variations observed on Earth. Here, we now investigate the influence of uncertainties in the various input parameters that enter our modelling. This is especially important for the material properties at high pressure and high temperature entering the mineralogical models. In particular, this concerns uncertainties that arise from relating measurements in the laboratory to Earth properties on a global scale. As one example, we will address the question on the influence of anelasticity on the variance of global synthetic traveltime residuals. Owing to the differences in seismic frequency content between laboratory measurements (MHz to GHz) and the Earth (mHz to Hz), the seismic velocities given in the mineralogical models need to be adjusted; that is, corrected for dispersion due to anelastic effects. This correction will increase the sensitivity of the seismic velocities to temperature variations. The magnitude of this increase depends on absolute temperature, frequency, the frequency dependence of attenuation and the activation enthalpy of the dissipative process. Especially the latter two are poorly known for mantle minerals and our results indicate that variations in activation enthalpy potentially produce the largest differences in temperature sensitivity with respect to the purely elastic case. We will present new wave propagation simulations and corresponding statistical analyses of traveltime measurements for different synthetic seismic models spanning the possible range of anelastic velocity conversions (while being based on the same mantle circulation model).
NASA Astrophysics Data System (ADS)
Agard, P.; Yamato, P.; Soret, M.; Prigent, C.; Guillot, S.; Plunder, A.; Dubacq, B.; Chauvet, A.; Monié, P.
2016-10-01
Subduction infancy corresponds to the first few million years following subduction initiation, when slabs start their descent into the mantle. It coincides with the transient (yet systematic) transfer of material from the top of the slab to the upper plate, as witnessed by metamorphic soles welded beneath obducted ophiolites. Combining structure-lithology-pressure-temperature-time data from metamorphic soles with flow laws derived from experimental rock mechanics, this study highlights two main successive rheological switches across the subduction interface (mantle wedge vs. basalts, then mantle wedge vs. sediments; at ∼800 °C and ∼600 °C, respectively), during which interplate mechanical coupling is maximized by the existence of transiently similar rheologies across the plate contact. We propose that these rheological switches hinder slab penetration and are responsible for slicing the top of the slab and welding crustal pieces (high- then low-temperature metamorphic soles) to the base of the mantle wedge during subduction infancy. This mechanism has implications for the rheological properties of the crust and mantle (and for transient episodes of accretion/exhumation of HP-LT rocks in mature subduction systems) and highlights the role of fluids in enabling subduction to overcome the early resistance to slab penetration.
Decoding the Margins: What Can the Fractal Geometry of Basaltic Flow Margins Tell Us?
NASA Astrophysics Data System (ADS)
Schaefer, E. I.; Hamilton, C.; Neish, C.; Beard, S. P.; Bramson, A. M.; Sori, M.; Rader, E. L.
2016-12-01
Studying lava flows on other planetary bodies is essential to characterizing eruption styles and constraining the bodies' thermal evolution. Although planetary basaltic flows are common, many key features are not resolvable in orbital imagery. We are thus developing a technique to characterize basaltic flow type, sub-meter roughness, and sediment mantling from these data. We will present the results from upcoming fieldwork at Craters of the Moon National Monument and Preserve with FINESSE (August) and at Hawai'i Volcanoes National Park (September). We build on earlier work that showed that basaltic flow margins are approximately fractal [Bruno et al., 1992; Gaonac'h et al., 1992] and that their fractal dimensions (D) have distinct `a`ā and pāhoehoe ranges under simple conditions [Bruno et al., 1994]. Using a differential GPS rover, we have recently shown that the margin of Iceland's 2014 Holuhraun flow exhibits near-perfect (R2=0.9998) fractality for ≥24 km across dm to km scales [Schaefer et al., 2016]. This finding suggests that a fractal-based technique has significant potential to characterize flows at sub-resolution scales. We are simultaneously seeking to understand how margin fractality can be modified. A preliminary result for an `a'ā flow in Hawaii's Ka'ū Desert suggests that although aeolian mantling obscures the original flow margin, the apparent margin (i.e., sediment-lava interface) remains fractal [Schaefer et al., 2015]. Further, the apparent margin's D is likely significantly modified from that of the original margin. Other factors that we are exploring include erosion, transitional flow types, and topographic confinement. We will also rigorously test the intriguing possibility that margin D correlates with the sub-meter Hurst exponent H of the flow surface, a common metric of roughness scaling [e.g., Shepard et al., 2001]. This hypothesis is based on geometric arguments [Turcotte, 1997] and is qualitatively consistent with all results so far.
Yellowstone Hotspot Geodynamics
NASA Astrophysics Data System (ADS)
Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.
2012-12-01
The Yellowstone hotspot results from the interaction of a mantle plume with the overriding N. America plate producing a ~300-m high topographic swell centered on the Late Quaternary Yellowstone volcanic field. The Yellowstone area is dominated by earthquake swarms including a deadly M7.3 earthquake, extraordinary high heat flow up to ~40,000 mWm-2, and unprecedented episodes of crustal deformation. Seismic tomography and gravity data reveal a crustal magma reservoir, 6 to 15 km deep beneath the Yellowstone caldera but extending laterally ~20 km NE of the caldera and is ~30% larger than previously hypothesized. Kinematically, deformation of Yellowstone is dominated by regional crustal extension at up to ~0.4 cm/yr but with superimposed decadal-scale uplift and subsidence episodes, averaging ~2 cm/yr from 1923. From 2004 to 2009 Yellowstone experienced an accelerated uplift episode of up to 7 cm/yr whose source is modeled as magmatic recharge of a sill at the top of the crustal magma reservoir at 8-10-km depth. New mantle tomography suggest that Yellowstone volcanism is fed by an upper-mantle plume-shaped low velocity body that is composed of melt "blobs", extending from 80 km to 650 km in depth, tilting 60° NW, but then reversing tilt to ~60° SE to a depth of ~1500 km. Moreover, images of upper mantle conductivity from inversion of MT data reveal a high conductivity annulus around the north side of the plume in the upper mantle to resolved depths of ~300 km. On a larger scale, upper mantle flow beneath the western U.S. is characterized by eastward flow beneath Yellowstone at 5 cm/yr that deflects the plume to the west, and is underlain by a deeper zone of westerly return flow in the lower mantle reversing the deflection of the plume body to the SE. Dynamic modeling of the Yellowstone plume including a +15 m geoid anomaly reveals low excess plume temperatures, up to 150°K, consistent with a weak buoyancy flux of ~0.25 Mg/s. Integrated kinematic modeling of GPS, Quaternary fault slip, and seismic data suggest that the gravitational potential of the Yellowstone swell creates a regional extension affecting much of the western U.S. Overall, the Yellowstone hotspot swell is the vertex of tensional stress axes rotation from E-W in the Basin-Range to NE-SW at the Yellowstone Plateau as well as the cause of edge faulting, nucleating the nearby Teton and Centennial faults. We extrapolate the original location of the Yellowstone mantle-source southwestward 800 km to an initial position at 17 million years ago beneath eastern Oregon and Washington suggesting a common origin for the YSRP and Columbia Plateau volcanism. We propose that the original plume head ascended vertically behind the subducting Juan de Fuca plate, but was entrained ~12 Ma ago in a faster mantle flow beneath the continental lithosphere and tilted into its present configuration.
NASA Astrophysics Data System (ADS)
Lu, Kunquan; Hou, Meiying; Jiang, Zehui; Wang, Qiang; Sun, Gang; Liu, Jixing
2018-03-01
We treat the earth crust and mantle as large scale discrete matters based on the principles of granular physics and existing experimental observations. Main outcomes are: A granular model of the structure and movement of the earth crust and mantle is established. The formation mechanism of the tectonic forces, which causes the earthquake, and a model of propagation for precursory information are proposed. Properties of the seismic precursory information and its relevance with the earthquake occurrence are illustrated, and principle of ways to detect the effective seismic precursor is elaborated. The mechanism of deep-focus earthquake is also explained by the jamming-unjamming transition of the granular flow. Some earthquake phenomena which were previously difficult to understand are explained, and the predictability of the earthquake is discussed. Due to the discrete nature of the earth crust and mantle, the continuum theory no longer applies during the quasi-static seismological process. In this paper, based on the principles of granular physics, we study the causes of earthquakes, earthquake precursors and predictions, and a new understanding, different from the traditional seismological viewpoint, is obtained.
Seismic structure of the European crust and upper mantle based on adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, H.; Bozdag, E.; Peter, D.; Tromp, J.
2013-12-01
We present a new crustal and upper mantle model for the European continent and the North Atlantic Ocean, named EU60. It is constructed based on adjoint tomography and involves 3D variations in elastic wavespeeds, anelastic attenuation, and radial/azimuthal anisotropy. Long-wavelength elastic wavespeed structure of EU60 agree with previous body- and surface-wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from smoothed starting model. Subducting slabs, slab detachment, ancient suture zones, continental rifts and back-arc basins are well resolved in EU60. For anelastic structure, we find an anti-correlation between shear wavespeeds and anelastic attenuation at shallow depths. At greater depths, this anti-correlation becomes relatively weak, in agreement with previous attenuation studies at global scales. Consistent with radial anisotropy in 1D reference models, the European continent is dominated by features with radially anisotropic parameter xi>1, indicating the presence of horizontal flow within the upper mantle. In addition, subduction zones, such as the Apennines and Hellenic arcs, are characterized as vertical flow with xi<1 at depths greater than 150~km. For azimuthal anisotropy, we find that the direction of fast anisotropic axis is well correlated with complicated tectonic evolution in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean and counter-clockwise rotation of the Anatolian Plate. The ``point spread function'' is used to assess image quality and analyze tradeoff between different model parameters.
NASA Astrophysics Data System (ADS)
Allison, K. L.; Dunham, E. M.
2017-12-01
We simulate earthquake cycles on a 2D strike-slip fault, modeling both rate-and-state fault friction and an off-fault nonlinear power-law rheology. The power-law rheology involves an effective viscosity that is a function of temperature and stress, and therefore varies both spatially and temporally. All phases of the earthquake cycle are simulated, allowing the model to spontaneously generate earthquakes, and to capture frictional afterslip and postseismic and interseismic viscous flow. We investigate the interaction between fault slip and bulk viscous flow, using experimentally-based flow laws for quartz-diorite in the crust and olivine in the mantle, representative of the Mojave Desert region in Southern California. We first consider a suite of three linear geotherms which are constant in time, with dT/dz = 20, 25, and 30 K/km. Though the simulations produce very different deformation styles in the lower crust, ranging from significant interseismc fault creep to purely bulk viscous flow, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. This indicates that bulk viscous flow and interseismic fault creep load the brittle crust similarly. The simulations also predict unrealistically high stresses in the upper crust, resulting from the fact that the lower crust and upper mantle are relatively weak far from the fault, and from the relatively small role that basal tractions on the base of the crust play in the force balance of the lithosphere. We also find that for the warmest model, the effective viscosity varies by an order of magnitude in the interseismic period, whereas for the cooler models it remains roughly constant. Because the rheology is highly sensitive to changes in temperature, in addition to the simulations with constant temperature we also consider the effect of heat generation. We capture both frictional heat generation and off-fault viscous shear heating, allowing these in turn to alter the effective viscosity. The resulting temperature changes may reduce the width of the shear zone in the lower crust and upper mantle, and reduce the effective viscosity.
Hammond, W.C.; Toomey, D.R.
2003-01-01
We use teleseismic P and S delay times and shear wave splitting measurements to constrain isotropic and anisotropic heterogeneity in the mantle beneath the southern East Pacific Rise (SEPR). The data comprise 462 P and S delay times and 18 shear wave splitting observations recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment. We estimate the mantle melt content (F) and temperature (T) variation from the isotropic velocity variation. Our results indicate that the maximum variation in F beneath our array is between zero and ???1.2%, and maximum variation in T is between zero and ???100 K. We favor an explanation having partial contributions from both T and F. We approximate the seismic anisotropy of the upper mantle with hexagonal symmetry, consistent with the assumption of two dimensionality of mantle flow. Our new tomographic technique uses a nonlinear inversion of P and slow S polarization delay times to simultaneously solve for coupled VP and VS heterogeneity throughout the model and for the magnitude of anisotropy within discrete domains. The domain dimensions and the dip of the anisotropy are fixed for each inversion but are varied in a grid search, obtaining the misfit of the models to the body wave delay data and to split times of vertically propagating S waves. The data misfit and the isotropic heterogeneity are sensitive to domain dimensions and dip of anisotropy. In a region centered beneath the SEPR the best average dip of the hexagonal symmetry axis is horizontal or dipping shallowly (<30??) west. Given the resolution of our data, a subaxial region characterized by vertically aligned symmetry axes may exist but is limited to be <80 km deep. We infer that the mantle flow beneath the SEPR is consistent with shallow asthenospheric return flow from the direction of the South Pacific superswell.
NASA Astrophysics Data System (ADS)
McCormack, K. A.; Wirth, E. A.; Long, M. D.
2011-12-01
The recycling of oceanic plates back into the mantle through subduction is an important process taking place within our planet. However, many fundamental aspects of subduction systems, such as the dynamics of mantle flow, have yet to be completely understood. Subducting slabs transport water down into the mantle, but how and where that water is released, as well as how it affects mantle flow, is still an open question. In this study, we focus on the Ryukyu subduction zone in southwestern Japan and use anisotropic receiver function analysis to characterize the structure of the mantle wedge. We compute radial and transverse P-to-S receiver functions for eight stations of the broadband F-net array using a multitaper receiver function estimator. We observe coherent P-to-SV converted energy in the radial receiver functions at ~6 sec for most of the stations analyzed consistent with conversions originating at the top of the slab. We also observe conversions on the transverse receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. The character of the transverse receiver functions varies significantly along strike, with the northernmost three stations exhibiting markedly different behavior than stations located in the center of the Ryukyu arc. We compute synthetic receiver functions using a forward modeling scheme that can handle dipping interfaces and anisotropic layers to create models for the depths, thicknesses, and strengths of anisotropic layers in the mantle wedge beneath Ryukyu.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Dietmar Müller, R.
2014-02-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Gurnis, Michael; Williams, Simon; Seton, Maria; Skogseid, Jakob; Heine, Christian; Müller, Dietmar
2014-05-01
The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in multiple model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. We find the uplift of southern Africa to be best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle.
NASA Astrophysics Data System (ADS)
Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge
2017-04-01
Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has been identified as a reflector in the wide-angle seismic data. These delamination planes outcrop at the interplate contact creating weak zones that focus the tectonic deformation in the upper plate. An incoming oceanic crust made of serpentinized mantle rocks is consistent with a depressed geothermal gradient in the trench due to water alteration and heat generation at depth due to serpentinite dehydration. This fluid-rich altered and weak oceanic crust likely reduces the seismic activity along this margin segment.
Isotopic constraints on the cooling of the continental lithosphere
NASA Astrophysics Data System (ADS)
Bedini, R.-M.; Blichert-Toft, J.; Boyet, M.; Albarède, F.
2004-06-01
A new model of continuous diffusion of radiogenic isotopes was applied to mineral 147Sm- 143Nd and 176Lu- 176Hf data on low-temperature garnet-peridotite xenoliths from Cretaceous South African kimberlites. The radiometric ages are younger than the Archean whole-rock Re-Os and U-Pb ages and reflect that both the Sm-Nd and Lu-Hf chronometric systems remained open under the thermal conditions of the lithospheric mantle. The radiogenic character of Hf in garnets, however, indicates that even if essentially no pyroxene remained immune to the effects of metasomatic events, the core of many garnets may preserve memory of the long history of this mineral in the subcontinental lithosphere. The cooling rates deduced from the garnet Sm-Nd ages in the South African lithosphere are fairly low (40-105 °C Gy -1), but compare well with values obtained on similar samples from different regions. These unexpectedly low values imply that the heat flow at the base of the subcontinental lithospheric mantle has changed only very slowly through time. They further support the recent suggestion that, as a result of viscous dissipation by plate bending, convection vigor and heat flow are to some extent decoupled, which argues against a thermal feedback on geodynamics. Modern convection may still be mining fossil heat stored in the lower mantle.
NASA Astrophysics Data System (ADS)
Hung, S. H.; Lin, P. Y.; Gaherty, J. B.; Russell, J. B.; Jin, G.; Collins, J. A.; Lizarralde, D.; Evans, R. L.; Hirth, G.
2017-12-01
Surface wave dispersion and magnetotelluric survey from the NoMelt Experiment conducted on 70 Ma central Pacific seafloor revealed an electrically resistive, high shear wave velocity lid of 80 km thick underlain by a non-highly conductive, low-velocity layer [Sarafian et al., 2015; Lin et al., 2016]. The vertical structure of the upper mantle consistent with these observational constraints suggests a plausible convection scenario, where the seismically fast, dehydrated lithosphere preserving very strong fossil spreading fabric moves at a constant plate speed over the hydrated, melt-free athenospheric mantle with the presence of either pressure-driven return flow or thermally-driven small scale circulation. To explore 3-D variations in compressional shear wave velocities related to the lithospheric and asthenospheric mantle dynamics, we employ a multichannel cross correlation method to measure relative traveltime residuals based on the vertical P and traverse S waveforms filtered at 10-33 s from telseismic earthquakes at epicentral distance between 30 and 98 degrees. The obtained P and S residuals show on average peak-to-peak variations of ±0.5 s and ±1 s, respectively, across the NoMelt OBS array. Particularly, the P residuals for most of the events display an asymmetrical pattern with respect to an axis oriented nearly N-S to NE-SW through the array. Preliminary ray-based P tomography results reveal similar asymmetric variations in the uppermost 100 km mantle. To verify the resulting structural features, we will further perform both the P and S traveltime tomography and resolution tests based on a multiscale finite-frequency approach which properly takes into account both the 3D off-path sensitivities of the measured residuals and data-adaptive resolution of the model.
Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust
NASA Astrophysics Data System (ADS)
Hamilton, Warren B.
2013-12-01
This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (< 3.9 Ga) crustal geology integrate well. The shallow mantle was extremely depleted by early removal of thick mafic protocrust, which was the primary source of the tonalite, trondhjemite, and granodiorite (TTG) that dominate preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That reenrichment enabled modern-style plate tectonics after ~ 600 Ma, with a transition regime beginning ~ 850 Ma.
NASA Astrophysics Data System (ADS)
Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija
2015-04-01
We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Si, Shaokun; Tian, Xiaobo; Gao, Rui
2017-05-01
To detect the thinning, modification, and replacement of the basement of the lithosphere is a key step in understanding the destruction mechanism of the North China lithosphere. The difference of the basement of the lithosphere is mainly displayed by the variation of the peridotite composition and its physical state. Vp/Vs ratio (hereafter referred to as velocity ratio) is more sensitive to this change than Vp or Vs alone. By means of the strong dependence of the travel-time of the wave converted at the 410-km discontinuity (P410s) observed in the receiver function (RF) on the velocity ratio in the upper mantle, we developed a new mapping method to constrain the velocity ratio between the Moho and 410-km discontinuity. Using the RFs extracted from 246 broadband stations beneath the North China Craton (NCC), we obtained a high-resolution velocity ratio image of the upper mantle. The abnormal velocity ratio indicates a strong lateral variation of the mineral composition in the upper mantle beneath North China. Two low-velocity-ratio patches are imaged at the top of the upper mantle and the 410 km depth, respectively. The former may be related to the orthopyroxene enrichment in the lithospheric mantle, and the latter may reflect the stagnant Pacific slab in the mantle transition zone (MTZ). A prominent high-velocity-ratio anomaly is also imaged in the upper mantle beneath the Shaanxi-Shanxi rift system in the central NCC, with the highest anomaly reaching 10%. We speculate that the high velocity ratio of upper mantle is related to convective flow due to slab dehydration in the MTZ. The dehydration of the retained slab in the MTZ results in partial melting and upwelling of upper mantle materials. Such convective flow and their melting are closely related to the Cenozoic basalt eruption in the northern section of the Shaanxi-Shanxi rift system.
Interplanetary magnetic field control of mantle precipitation and associated field-aligned currents
NASA Technical Reports Server (NTRS)
Xu, Dingan; Kivelson, Margaret G.; Walker, Ray J.; Newell, Patrick T.; Meng, C.-I.
1995-01-01
Dayside reconnection, which is particularly effective for a southward interplanetary magnetic field (IMF), allows magnetosheath particles to enter the magnetosphere where they form the plasma mantle. The motions of the reconnected flux tube produce convective flows in the ionosphere. It is known that the convection patterns in the polar cap are skewed to the dawnside for a positive IMF B(sub y) (or duskside for a negative IMF B(sub y)) in the northern polar cap. Correspondingly, one would expect to find asymmetric distributions of mantle particle precipitation, but previous results have been unclear. In this paper the correlation between B(sub y) and the distribution of mantle particle precipitation is studied for steady IMF conditions with southward IMF. Ion and electron data from the Defense Meteorological Satellite Program (DMSP) F6 and F7 satellites are used to identify the mantle region and IMP 8 is used as a solar wind monitor to characterize the IMF. We study the local time extension of mantle precipitation in the prenoon and postnoon regions. We find that, in accordance with theoretical expectations for a positive (negative) IMF B(sub y), mantle particle precipitation mainly appears in the prenoon region of the northern (southern) hemisphere. The mantle particle precipitation can extend to as early as 0600 magnetic local time (MLT) in the prenoon region but extends over a smaller local time region in the postnoon sector (we did not find mantle plasma beyond 1600 MLT in our data set although coverage is scant in this area). Magnetometer data from F7 are used to determine whether part of the region 1 current flows on open field lines. We find that at times part of the region 1 sense current extends into the region of mantle particle precipitation, and is therefore on open field lines. In other cases, region 1 currents are absent on open field lines. Most of the observed features can be readily interpreted in terms of the open magnetosphere model.
The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion
NASA Astrophysics Data System (ADS)
Stein, C.; Hansen, U.
2017-12-01
The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.
Modeling the effect of water on mantle rheology
NASA Technical Reports Server (NTRS)
Bounama, CH.; Franck, S.
1994-01-01
To study the thermal history of the Earth we use a parameterized model of mantle convection. This model includes a mathematical description of de- and regassing processes of water from the Earth's mantle. The rates of this processes are considered to be directly proportional to the seafloor spreading rate. The kinematic viscosity of the mantle depends on the temperature/pressure as well as on the volatile content. Dissolved volatiles such as water weaken the minerals by reducing their activation energy for solid state creep. Karato and Toriumi showed a power law dependence between creep rate and water fugacity derived from experimental results. Therefore, we use such flow parameters of diffusion creep in olivine under wet and dry conditions to calculate the mantle viscosity as a function of the water content. Because the creep rate is proportional to the concentration of water-related point deflects we assume that the water fugacity is proportional to the water weight fraction. An equation for the steady-state strain rate under wet conditions is established. To assess the unknown constant K in this equation, we use flow law parameters given by Karato and Wu as well as the results of McGovern and Schubert.
The African and Pacific Superplume Structures Constrained by Assembly and Breakup of Pangea
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; Leng, W.; Li, Z.
2009-12-01
Seismic tomography studies indicate that the Earth’s mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree-2 structure). McNamara and Zhong (2005) have demonstrated that the African and Pacific superplume structures result from dynamic interaction between mantle convection and surface plate motion history in the last 120 Ma. However, their models produce slightly stronger degree 3 structure than degree 2 near the CMB. Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Ma since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Using this proxy model for plate motion history as the time-dependent surface boundary conditions for a 3-dimensional spherical model of thermochemical mantle convection, we calculate the present-day mantle structure and explore the evolution of mantle structures since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes. The power spectra of our calculated present-day temperature field shows that the strongest power occurs at degree 2 in the lower mantle while in the upper mantle the strongest power is at degree 3. The degree correlation between tomography model S20RTS and our calculated temperature field shows a high correlation at the degree 1 and degree 2 in the lower mantle while the upper mantle and the short wavelength structures do not correlate well. The summed degree correlation for the lower mantle shows a relatively good correlation for the bottom 300 km of the mantle but the correlation is significantly reduced at depth 600 km above the CMB. For the evolution of mantle structures, we focus on the evolution of the African superplume. Our results suggest that the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia and the cold Africa hemisphere changes to hot due to the return flows from the circum-Pangea subduction after Pangea formation. Based on our results, we suggest that the African superplume structure may be formed no earlier than ~230 Ma ago (i.e., ~100 Ma after the assembly of Pangea).
Synthesis of regional crust and upper-mantle structure from seismic and gravity data
NASA Technical Reports Server (NTRS)
Alexander, S. S.; Lavin, P. M.
1979-01-01
Available seismic and ground based gravity data are combined to infer the three dimensional crust and upper mantle structure in selected regions. This synthesis and interpretation proceeds from large-scale average models suitable for early comparison with high-altitude satellite potential field data to more detailed delineation of structural boundaries and other variations that may be significant in natural resource assessment. Seismic and ground based gravity data are the primary focal point, but other relevant information (e.g. magnetic field, heat flow, Landsat imagery, geodetic leveling, and natural resources maps) is used to constrain the structure inferred and to assist in defining structural domains and boundaries. The seismic data consists of regional refraction lines, limited reflection coverage, surface wave dispersion, teleseismic P and S wave delay times, anelastic absorption, and regional seismicity patterns. The gravity data base consists of available point gravity determinations for the areas considered.
NASA Astrophysics Data System (ADS)
van Dam, L.; Kincaid, C. R.; Pockalny, R. A.; Sylvia, R. T.; Hall, P. S.
2017-12-01
Lateral migration of mid-ocean ridge spreading centers is a well-documented phenomenon leading to asymmetric melt production and the surficial expressions thereof. This form of plate motion has been difficult to incorporate into both numerical and analogue geodynamical models, and consequently, current estimates of time-dependent flow, material transport, and melting in the mantle beneath ridges are lacking. To address this, we have designed and built an innovative research apparatus that allows for precise and repeatable simulations of mid-ocean ridge spreading and migration. Three pairs of counter-rotating belts with adjustable lateral orientations are scaled to simulate spreading at, and flow beneath, three 600km wide ridge segments with up to 300km transform offsets. This apparatus is attached to a drive system that allows us to test a full range of axis-parallel to axis-normal migration directions, and is suspended above a reservoir of viscous glucose syrup, a scaled analogue for the upper mantle, and neutrally buoyant tracers. We image plate-driven flow in the syrup with high-resolution digital cameras and use particle image velocimetry methods to obtain information about transport pathlines and flow-induced anisotropy. Suites of experiments are run with and without ridge migration to determine the overall significance of migration on spatial and temporal characteristics of shallow mantle flow. Our experiments cover an expansive parameter space by including various spreading rates, migration speeds and directions, degrees of spreading asymmetry, transform-offset lengths, and upper mantle viscosity conditions. Preliminary results highlight the importance of modeling migratory plate forces. Mantle material exhibits a significant degree of lateral transport, particularly between ridge segments and towards the melt triangle. Magma supply to the melting region is highly complex; parcels of material do not necessarily move along fixed streamlines, rather, they can be perturbed upwards and left behind as spreading centers continue to move laterally. These results emphasize that observations of seismic anisotropy should be interpreted in light of intricate flow pathlines, and that melt transport models should consider different paths for melt relative to the solid matrix.
Kinematics and dynamics of Nubia-Somalia divergence along the East African rift
NASA Astrophysics Data System (ADS)
Stamps, Dorothy Sarah
Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.
Coogan, L.A.; Thompson, G.M.; MacLeod, C.J.; Dick, H.J.B.; Edwards, S.J.; Hosford, Scheirer A.; Barry, T.L.
2004-01-01
Little is known about temporal variations in melt generation and extraction at midocean ridges largely due to the paucity of sampling along flow lines. Here we present new whole-rock major and trace element data, and mineral and glass major element data, for 71 basaltic samples (lavas and dykes) and 23 peridotites from the same ridge segment (the Atlantis Bank segment of the Southwest Indian Ridge). These samples span an age range of almost 14 My and, in combination with the large amount of published data from this area, allow temporal variations in melting processes to be investigated. Basalts show systematic changes in incompatible trace element ratios with the older samples (from ???8-14 Ma) having more depleted incompatible trace element ratios than the younger ones. There is, however, no corresponding change in peridotite compositions. Peridotites come from the top of the melting column, where the extent of melting is highest, suggesting that the maximum degree of melting did not change over this interval of time. New and published Nd isotopic ratios of basalts, dykes and gabbros from this segment suggest that the average source composition has been approximately constant over this time interval. These data are most readily explained by a model in which the average source composition and temperature have not changed over the last 14 My, but the dynamics of mantle flow (active-to-passive) or melt extraction (less-to-more efficient extraction from the 'wings' of the melting column) has changed significantly. This hypothesised change in mantle dynamics occurs at roughly the same time as a change from a period of detachment faulting to 'normal' crustal accretion. We speculate that active mantle flow may impart sufficient shear stress on the base of the lithosphere to rotate the regional stress field and promote the formation of low angle normal faults. ?? 2004 Elsevier B.V. All rights reserved.
Uncovering glacier dynamics beneath a debris mantle
NASA Astrophysics Data System (ADS)
Lefeuvre, P.-M.; Ng, F. S. L.
2012-04-01
Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.
NASA Astrophysics Data System (ADS)
LI, S.; Guo, Z.; Chen, Y. J.
2017-12-01
We present a high-resolution upper mantle S velocity model of the northern Ordos block using ambient noise tomography and two-plane-wave tomography between 8 and 143 s. The Ordos block, regarded as the nuclei of the Archean craton of North China Craton, is underlain by high velocity down to 200 km, indicating the preservation of cratonic root at the interior. However, thick lithospheric keel (≥ 200 km) is not observed outside the Ordos, suggesting craton reworking around the Ordos. The most important findings is the prominent low velocity shown beneath the Datong volcano that migrates westward with depth. At 200 km depth, the low velocity locates almost 500 km west to the leading edge of the flat-lying Pacific slab in the mantle transition zone. This observation is in conflict with the previous interpretation that the Datong volcano is fed by the deep upwelling related to the subduction of the Pacific plate. The westward tilted low velocity beneath the Datong volcano, however, is in agreement with the predominant NW-SE trending alignment of fast direction revealed by SKS splitting in this area, suggesting the Datong volcano is likely due to the asthenospheric mantle flow from west. Two possible scenarios could be related to this mantle process. First, the low velocity beneath the Datong volcano may link to the large-scale, deep-rooted mantle upwelling beneath the Mongolia, northwest to the Datong volcano at deeper depth revealed by Zhang et al. (2016). We postulate that when the raising mantle materials reaches the shallow depth, it would be forced bent by the thick lithosphere beneath the Gobi in Mongolia and flow southeastward to Datong volcano. Second, it is also worth noting that the low velocity beneath the Datong volcano connects to the low velocity zone (LVZ) beneath the Ordos block below 200km, which further links the LVZ beneath the northeastern Tibet to the west. Therefore, the Datong volcano could be fed by the mantle flow from northeastern Tibet. The continuous slab-retreating of the western Pacific since the Cenozoic would have created void spaces in eastern Asia which could in turn suck new asthenospheric materials from the Mongolia and northeast Tibet through the northern TNCO. The upward mantle flow along the rapid thinning lithosphere to the northeast of Ordos had generated partial melting to supply the Datong volcano.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo
Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermalmore » conductivity of Fe-bearing bridgmanite to 120 GPa using optical pump-probe spectroscopy. The conductivity of Fe-bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.« less
Reduced Lattice Thermal Conductivity of Fe-bearing Bridgmanite in Earth's Deep Mantle
NASA Astrophysics Data System (ADS)
Hsieh, W. P.; Deschamps, F.; Okuchi, T.; Lin, J. F.
2017-12-01
Complex seismic and thermo-chemical features have been revealed in Earth's lowermost mantle. Particularly, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, which, in turn, may alter the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion in bridgmanite could affect its lattice thermal conductivity, but this effect remains largely unknown. Here we report our measurements of the lattice thermal conductivity of Fe-bearing and (Fe,Al)-bearing bridgmanites to 120 GPa using optical pump-probe spectroscopy. The thermal conductivity of Fe-bearing bridgmanite increases monotonically with pressure, but drops significantly around 45 GPa presumably due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000-km depth. Modeling of our results applied to the LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that, while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.
NASA Technical Reports Server (NTRS)
Sheehan, Anne Francis
1991-01-01
Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.
On the role of mantle depletion and small-scale convection in post rift basin evolution (Invited)
NASA Astrophysics Data System (ADS)
Petersen, K.; Nielsen, S. B.
2013-12-01
Subsidence and heat flow evolution of the oceanic lithosphere appears to be consistent with the conductive cooling of a ~100 km plate overlying asthenospheric mantle of constant entropy. The physical mechanism behind plate-like subsidence has been suggested to be the result of small-scale convective instabilities which transport heat energy to the base of the lithosphere and cause an eventual departure from half space-like cooling by inhibiting subsidence of old ocean floor and causing an asymptotic surface heat flow of ~50 mW/m^2. Here, we conduct a number of numerical thermo-mechanical experiments of oceanic lithosphere cooling for different models of temperature- and pressure-dependent viscosity. We show that uniform (P, T-dependent) mantle viscosity cannot both explain half space-like subsidence for young (<70 Mr) lithosphere as well as a relatively high (>50 mW/m^2) surface heat flow which is observed above old (>100 Myr) lithosphere. The latter requires vigorous sub lithospheric convection which would lead to early (~1Myr) onset of convective instability at shallow depth (<60 km) and therefore insufficient initial subsidence. To resolve this paradox, we employ models which account for the density decrease and viscosity increase due to depletion during mid-ocean ridge melting. We demonstrate that the presence of a mantle restite layer within the lithosphere hinders convection at shallow depth and therefore promotes plate-like cooling. A systematic parameter search among 280 different numerical experiments indicates that models with 60-80 km depletion thickness minimize misfit with subsidence and heat flow data. This is consistent with existing petrological models of mid-ocean ridge melting. Our models further indicate that the post-rift subsidence pattern where little or no melting occurred during extension (e.g. non-volcanic margins and continental rifts) may differ from typical oceanic plate-like subsidence by occurring at a nearly constant rate rather than at an exponentially decaying rate. Model comparison with subsidence histories inferred from backstripping analysis implies that this is indeed often the case. Accordingly, existing thermal models of continental rifting which assume plate-like cooling (and is often calibrated from oceanic data) are likely to yield inaccurate predictions in terms of subsidence and heat flow evolution.
Geodynamic modelling of low-buoyancy thermo-chemical plumes
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Sobolev, Stephan
2015-04-01
The Earth's biggest magmatic events that form Large Igneous Provinces are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models of thermal mantle plumes predict a flattening of the plume head to a disk-like structure, a kilometer-scale surface uplift just before the initiation of LIPs and thin plume tails. However, there are seismic observations and paleo-topography data that are difficult to explain with this classical approach. Here, using numerical models, we show that the issue can be resolved if major mantle plumes are thermo-chemical rather than purely thermal. It has been suggested a long time ago that subducted oceanic crust could be recycled by mantle plumes; and based on geochemical data, they may contain up to 15-20% of this recycled material in the form of dense eclogite, which drastically decreases their buoyancy and makes it depth-dependent. We perform numerical experiments in a 3D spherical shell geometry to investigate the dynamics of the plume ascent, the interaction between plume- and plate-driven flow and the dynamics of melting in a plume head. For this purpose, we use the finite-element code ASPECT, which allows for complex temperature-, pressure- and composition-dependent material properties. Moreover, our models incorporate phase transitions (including melting) with the accompanying rheological and density changes, Clapeyron slopes and latent heat effects for both peridotite and eclogite, mantle compressibility and a strong temperature- and depth-dependent viscosity. We demonstrate that despite their low buoyancy, such plumes can rise through the whole mantle causing only negligible surface uplift. Conditions for this ascent are high plume volume and moderate lower mantle subadiabaticity. While high plume buoyancy results in plumes directly advancing to the base of the lithosphere, plumes with slightly lower buoyancy pond in a depth of 300-400 km and form pools or a second layer of hot material. These structures are caused by phase transitions occurring in different depths in peridotite and eclogite; and they become asymmetric and finger-like channels begin to form when the plume gets entrained by a quickly moving overlying plate. We also show that the bulky tails of large and hot low-buoyancy plumes are stable for several tens of millions of years and that their shapes fit seismic tomography data much better than the narrow tails of thermal plumes.
Generation of waves in the Venus mantle by the ion acoustic beam instability
NASA Technical Reports Server (NTRS)
Huba, J. D.
1993-01-01
The ion acoustic beam instability is suggested as a mechanism to produce wave turbulence observed in the Venus mantle at frequencies 100 Hz and 730 Hz. The plasma is assumed to consist of a stationary cold O(+) ion plasma and a flowing, shocked solar wind plasma. The O(+) ions appear as a beam relative to the flowing ionosheath plasma which provides the free energy to drive the instability. The plasma is driven unstable by inverse electron Landau damping of an ion acoustic wave associated with the cold ionospheric O(+) ions. The instability can directly generate the observed 100 Hz waves in the Venus mantle as well as the observed 730 Hz waves through the Doppler shift of the frequency caused by the satellite motion.
NASA Astrophysics Data System (ADS)
Ballmer, M. D.; Conrad, C. P.; Smith, E. I.; Harmon, N.
2013-12-01
While most oceanic volcanism is associated with the passive rise of hot mantle beneath the spreading axes of mid-ocean ridges (MOR), volcanism occurring off-axis reflects intraplate upper-mantle dynamics and composition, yet is poorly understood. Close to the East Pacific Rise (EPR), active magmatism propagated towards the spreading center to create a series of parallel volcanic ridges on the Pacific Plate ( ~3500 km in length for the Pukapuka, and ~500 km for the Sojourn, and Hotu-Matua ridges). Propagation of this volcanism by ~20 cm/a, as well as asymmetry in a variety of geophysical observables across the EPR, indicates strong lateral eastward pressure-driven flow in the asthenosphere; likely driven by upwelling beneath the South Pacific Superswell [1]. Although this pattern of large-scale mantle flow can account for the propagation of intraplate magmatism towards the EPR, it does not explain decompression melting itself. We hypothesize that shear-driven upwelling sustains off-axis volcanism. Unlike e.g. mantle plumes, shear-driven upwelling is a mechanism for mantle decompression that does not require lateral density heterogeneity to drive upwelling. For example, in the presence of shear across the asthenosphere, vertical flow emerges at the edges of viscosity heterogeneity [2]. These ingredients are present in the SE Pacific, where (1) shear across the asthenosphere is inferred to be greatest worldwide [2], and (2) lateral heterogeneity in mantle viscosity is indicated by geoid lineations that are associated with anomalies in seismic tomography [3]. Eastward pressure-driven flow from the South Pacific Superswell may separate into low-viscosity fingers thus providing viscosity heterogeneity [3]. Our three-dimensional numerical models [4] show that asthenospheric shear can excite upwelling and decompression melting at the tip of low-viscosity fingers that are propelled eastward by vigorous asthenospheric flow. This shear-driven upwelling is able to sustain intraplate volcanism that progresses towards the MOR, spreads laterally close to the axis, and weakly continues on the opposite plate. These predictions can explain the anomalously-fast eastward progression of volcanism, and its spatial distribution near the EPR. Moreover, for a heterogeneous mantle source involving a fertile mantle component embedded in a matrix of peridotite, the systematics of volcanism predicted by the models can account for the geochemical trend observed along the Pukapuka ridge (from C/FOZO [5] in the west toward MOR-basalt in the east), as well as the anomaly of MOR volcanism at the EPR-Pukapuka intersection (documenting C/FOZO influence). Our study highlights the role of horizontal asthenospheric flow and mantle heterogeneity in producing linear chains of intraplate volcanism independent of a (deep-rooted) buoyancy source. [1] Conder, J. A., D. W. Forsyth, E. M. Parmentier (2002): J. Geophys. Res., 107(B12), 2344. [2] Conrad, C. P., T. A. Bianco, E. I. Smith, P. Wessel (2011): Nature Geosci., 4, 317-321. [3] Harmon, N., D. W. Forsyth, D. S. Weeraratne, Y. Yang, S. C. Webb (2011): Earth Planet. Sci. Lett., 311, 306-315. [4] Ballmer, M. D., C. P. Conrad, E. I. Smith, N. Harmon (2013): Geology, 41, 479-482. [5] Zindler, A., Hart, S., 1986. Earth Planet. Sci. Lett., 14, 493-571.
Northeast Atlantic Igneous Province volcanic margin development
NASA Astrophysics Data System (ADS)
Mjelde, R.; Breivik, A. J.; Faleide, J. I.
2009-04-01
Early Eocene continental breakup in the NE Atlantic Volcanic Province (NAIP) was associated with voluminous extrusive and intrusive magmatism, and initial seafloor spreading produced anomalously thick oceanic crust. Recent publications based on crustal-scale wide-angle seismic data show that there is a positive correlation between igneous crustal thickness (H) and average P-wave velocity (Vp) on all investigated margins in the NAIP. Vp can be used as a proxy for crustal composition, which can be related to the mode of mantle melting. A positive H-Vp correlation indicates that excessive mantle melting the first few million years after breakup was driven by an initial increased temperature that cools off as seafloor spreading develops, consistent with a mantle plume model. Variations in mantle composition can explain excess magmatism, but will generate a negative H-Vp correlation. Active mantle convection may increase the flux of mantle rocks through the melting zone above the rate of passive corner flow, which can also produce excessive magmatism. This would produce little H-Vp correlation, and place the curve lower than the passive flow melting curve in the diagram. We have compiled earlier published results with our own analyses of published and unpublished data from different groups to look for systematic variations in the mantle melting mode along the NAIP margins. Earlier studies (Holbrook et al., 2002, White et al, 2008) on the southeast Greenland conjugate system, indicate that the thick igneous crust of the southern NAIP (SE Greenland ? Hatton Bank) was dominated by increased mantle temperature only, while magmatism closer to the southern side of and including the Greenland-Iceland-Færøy Ridge (GIFR) was created by combined temperature increase and active mantle convection. Recent publications (Breivik et al., 2008, White et al, 2008) north of the GIFR for the Norway Basin segment, indicate temperature dominated magmatism between the Jan Mayen Fracture Zone (JMFZ) system and the Færøy archipelago. Our unpublished data on the conjugate margin of the eastern Jan Mayen ridge confirm this. North of the JMFZ, early magmatism appears to be caused by the combined effect of elevated temperature and convection, while there is a rapid transition to predominantly temperature dominated melting ~2 M.y. after breakup. This is similar to the northern conjugate East Greenland profiles we examined (Voss and Jokat, 2007), while the southern of their two profiles indicates that convection is not turned off at that side. Conjugate differences in igneous crustal thickness further indicate asymmetric conjugate magmatic development. For comparison, we applied the same analysis to data from the Vøring Spur located off the Vøring Margin, and the igneous crust beneath the Jan Mayen Island. Both show little H-Vp correlation with generally lowVp, indicating that these igneous features were created through low-degree mantle melting created by some kind of mantle convection without an elevated temperature component.
Mantle flow and deforming continents, insights from the Tethys realm
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Faccenna, Claudio; Becker, Thorsten; Tesauro, Magdala
2017-04-01
Continent deformation is partly a consequence of plate motion along plate boundaries. Whether underlying asthenospheric flow can also deform continents through basal shear or push on topographic irregularities of the base of the lithosphere is an open question. Eurasia has been extending at different scales since 50 Ma, from the Mediterranean back-arc domains to extension of Asia between the India-Asia collision zone and the Pacific subduction zones. While compression at plate margins, in subduction or collision zones can propagate far within continents, the mechanism explaining extension distributed over thousands of kilometres is unclear. We use trajectories of continental plates and continental fragments since 50 Ma in different kinematic frames and compare them with various proxies of asthenospheric flow such as seismic anisotropy at various depths. These trajectories partly fit sub-lithospheric seismic anisotropy with two main circulations, one carrying Africa and Eurasia away from the large low velocity anomaly (LLSVP) underlying South and West Africa and one carrying the Pacific plate away from the LLSVP underlying the southern Pacific. Under eastern Eurasia the flow converges with the Pacific flow and distributed extension affects eastern Asia all the way to Western Pacific back-arc basins. We speculate that the flow carrying India northward and Eurasia eastward has invaded the Pacific domain and caused this widely distributed extension that interferes with the strike-slip faults issued from the Himalaya-Tibet collision zone. This model is in line with earlier propositions based on geochemical proxies. We discuss this model and compare it to other widely distributed extensional deformation episodes such as the Early Cretaceous extension of Africa and lastly propose a scheme of large-scale continental deformation in relation to underlying mantle convection at different scales.
Mantle flow and deforming continents, the Tethys realm
NASA Astrophysics Data System (ADS)
Jolivet, L.; Faccenna, C.; Becker, T. W.
2016-12-01
Continent deformation is partly a consequence of plate motion along plate boundaries. Whether underlying asthenospheric flow can also deform continents through basal shear or push on topographic irregularities of the base of the lithosphere is an open question. Eurasia has been extending at different scales since 50 Ma, from the Mediterranean back-arc domains to extension of Asia between the India-Asia collision zone and the Pacific subduction zones. While compression at plate margins, in subduction or collision zones can propagate far within continents, the mechanism explaining extension distributed over thousands of kilometres is unclear. We use trajectories of continental plates and continental fragments since 50 Myrs in different kinematic frames and compare them with various proxies of asthenospheric flow such as seismic anisotropy at various depths. These trajectories partly fit sub-lithospheric seismic anisotropy with two main circulations, one carrying Africa and Eurasia away from the large low velocity anomaly (LLSVP) underlying South and West Africa and one carrying the Pacific plate away from the LLSVP underlying the southern Pacific. Under eastern Eurasia the flow converges with the Pacific flow and distributed extension affects eastern Asia all the way to Western Pacific back-arc basins. We speculate that the flow carrying India northward and Eurasia eastward has invaded the Pacific domain and caused this widely distributed extension that interferes with the strike-slip faults issued from the Himalaya-Tibet collision zone. This model is in line with earlier propositions based on geochemical proxies. We discuss this model and compare it to other widely distributed extensional deformation episodes such as the Early Cretaceous extension of Africa and finally propose a scheme of large-scale continental deformation in relation to underlying mantle convection at different scales.
Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle
NASA Astrophysics Data System (ADS)
Beghein, C.; Yuan, K.
2011-12-01
The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as well. Azimuthal anisotropy in the transition zone could result from tilted laminated structures, or from the LPO of wadsleyite and hydrous ringwoodite. Anhydrous ringwoodite is mostly isotropic, but it becomes more anisotropic in the presence of water [Kavner, 2003]. The presence of significant seismic anisotropy in the lower transition zone may thus indicate the presence of OH--bearing minerals. This would be consistent with the observed high solubility of water in ringwoodite and wadsleyite, and the hypothesis that the transition zone is a water reservoir. In addition, at most locations the fast azimuth of propagation for Vsv forms approximately a 90° angle in the transition zone with the fast direction found at shallower depths. Assuming that LPO causes the anisotropy and that seismic fast directions are a proxy for flow direction in the transition zone, this angle change combined with mineral physics data could help us infer mantle convective pattern. The robustness of this feature is, however, currently difficult to assess as Love wave overtones are unable to reliably constrain 2Ψ anisotropy at shallow depths. The inclusion of Rayleigh wave fundamental mode data in future work will help resolve that issue.
Large-scale volcanism associated with coronae on Venus
NASA Technical Reports Server (NTRS)
Roberts, K. Magee; Head, James W.
1993-01-01
The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated with them. In particular, we have examined the percentage of coronae associated with volcanic flow fields (i.e., a collection of digitate or sheet-like lava flows extending from the corona interior or annulus); the range in scale of these flow fields; the variations in diameter, structure and stratigraphy of coronae with flow fields; and the global distribution of coronae associated with flow fields.
Uppermost Mantle Deformation and Hydration Beneath the Gorda Plate Inferred from Pn Travel-times
NASA Astrophysics Data System (ADS)
VanderBeek, B. P.; Toomey, D. R.
2017-12-01
Deformation of the uppermost oceanic mantle is thought to occur primarily in response to divergence beneath mid-ocean ridges with little subsequent deformation off-axis. A notable exception to this is the Gorda plate where sinuous magnetic anomalies and numerous intra-plate earthquakes indicate diffuse, plate-wide deformation. Thus, the Gorda region provides a natural laboratory to investigate the non-rigid behavior of tectonic plates. We invert Pn (the seismic head wave refracted below the Moho) arrival times from 770 local earthquakes for epicentral and mantle anisotropic velocity parameters to understand how the surficial pattern of deformation translates into the uppermost 10 km of the mantle. Specifically, we ask does the pattern of seismic anisotropy reflect spreading-induced fabrics or has it been re-worked by extensive deformation of the Gorda plate? If it has been re-worked, does it reflect pervasive faulting of the uppermost mantle or plate-scale ductile deformation? And, are isotropic velocities anomalously slow suggesting significant mantle hydration? Preliminary results show that the average mantle velocity beneath Gorda is 7.55 km/s. Velocities vary azimuthally by 4% and the fast-propagation direction is sub-parallel to Pacific absolute plate motion (APM). In comparison, the uppermost mantle beneath the Juan de Fuca (JdF) plate is characterized by 4.6% anisotropy with a mean velocity of 7.85 km/s [VanderBeek and Toomey, 2017]; the fast propagation direction trends between the paleo-spreading direction and JdF APM. The reduced Gorda velocities may indicate a greater extent of fault-controlled hydration of the shallow mantle compared to the JdF plate. In both regions, the anisotropic structure argues against the notion that shallow mantle deformation ceases away from the ridge. Instead, shearing across Gorda due to differential motion between the Pacific and JdF plates [e.g. Bodmer et al., 2015] may cause broad scale ductile deformation and the realignment of shallow mantle fabrics. Beneath the JdF plate, the anisotropic signal is inferred to track the evolution of mantle flow as it evolves from divergence at the ridge to simple shear that is more closely aligned with APM. We discuss the rheologic implications of these observations and the patterns of mantle flow and deformation in Cascadia.
Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite
NASA Astrophysics Data System (ADS)
Le Roux, V.; Bodinier, J.-L.; Alard, O.; O'Reilly, S. Y.; Griffin, W. L.
2009-03-01
Most peridotite massifs and mantle xenoliths show a wide range of isotopic variations, often involving significant decoupling between Hf, Nd and Sr isotopes. These variations are generally ascribed either to mingling of individual components of contrasted isotopic compositions or to time integration of parent-element enrichment by percolating melts/fluids, superimposed onto previous depletion event(s). However, strong isotopic decoupling may also arise during porous flow as a result of daughter-elements fractionation during solid-liquid interaction. Although porous flow is recognized as an important process in mantle rocks, its effects on mantle isotopic variability have been barely investigated so far. The peridotites of the Lherz massif (French Pyrenees) display a frozen melt percolation front separating highly refractory harzburgites from refertilized lherzolites. Isotopic signatures observed at the melt percolation front show a strong decoupling of Hf from Nd and Sr isotopes that cannot be accounted for by simple mixing involving the harzburgite protolith and the percolating melt. Using one dimensional percolation-diffusion and percolation-reaction modeling, we show that these signatures represent transient isotopic compositions generated by porous flow. These signatures are governed by a few critical parameters such as daughter element concentrations in melt and peridotite, element diffusivity, and efficiency of isotopic homogenization rather than by the chromatographic effect of melt transport and the refertilization reaction. Subtle variations in these parameters may generate significant inter-isotopic decoupling and wide isotopic variations in mantle rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-03-02
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Detection of a dynamic topography signal in last interglacial sea-level records
Austermann, Jacqueline; Mitrovica, Jerry X.; Huybers, Peter; Rovere, Alessio
2017-01-01
Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters. PMID:28695210
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thinning of the Earth's lithosphere by heat advected to its base is a possible mechanism for continental rifting and continental and oceanic mid-plate volcanism. It might also account for continental rifting-like processes and volcanism on Venus and Mars. Earth's continental lithosphere can be thinned to the crust in a few tens of million years by heat advected at a rate of 5 to 10 times the normal basal heat flux. This much heat is easily carried to the lithosphere by mantle plumes. The continent is not required to rest over the mantle hot spot but may move at tens of millimeters per year. Because of the constant level of crustal radioactive heat production, the ratio of the final to the initial surface heat flow increases much less than the ratio of the final to initial basal heat flow. For large increases in asthenospheric heat flow, the lithosphere is almost thinned to the crust before any significant change in surface heat flow occurs. Uplift due to thermal expansion upon thinning is a few kilometers. The oceanic lithosphere can be thinned to the crust in less than 10 million years if the heat advection is at a rate around 5 or more times the basal heat flow into 100 Ma old lithosphere. Uplift upon thinning can compensate the subsidence of spreading and cooling lithosphere.
NASA Astrophysics Data System (ADS)
Arcay, D.
2017-12-01
Oceanic plate subduction implies tight interactions between converging lithospheres and surrounding mantle. Plate-mantle couplings can be modeled using thermo-chemical codes of mantle convection. But how to model correctly with a continuous fluid approach the subduction interface, characterised by strong and localised discontinuities? The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate, simply modeled by a weak crust layer, free to evolve. Pseudo-brittle and non-Newtonian behaviours are modelled. This study shows first that the numerical resolution is critical. If the subducting plate is 100 Myr old, subduction occurs for any crust strength. The stiffer the crust is, the shallower the interplate down-dip extent is and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel leads to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. If the incoming plate is 20 Myr old, subduction occurs only if the crust is either stiff and denser than the mantle, or weak and buoyant. These conditions lead notably to (1) fore-arc lithosphere cooling, and (2) partial or complete hindrance of wet mantle melting. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow: either focussed towards the mantle wedge tip and strongly warming the subduction plate, or, diffuse and favoring global cooling by the lengthening of the subduction plane. The thermal states simulated within the mantle wedge are compared with observations to decipher the best rheological ranges modelling the subduction channel. Two intervals of crustal activation energy are underlined: 345-385 kJ/mol to reproduce the slab surface temperature range inferred from geothermometry, and 415-455 kJ/mol to reproduce the hot mantle wedge core suggested by seismic tomographies. As these two intervals do not overlap, an extra process involved in subduction dynamics is needed. A moderate mantle viscosity reduction, caused by metasomatism in the mantle wedge, is proposed. From these results, it can be inferred that the subduction channel down-dip extent should vary with the subduction setting, consistently with the worldwide variability of sub-arc depths of the subducting plate surface.
NASA Astrophysics Data System (ADS)
Behr, W. M.; Smith, D.
2016-12-01
Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range 550-750 C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 10^19 to 10^23 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these rocks are consistent with models that invoke significant basal shear tractions as contributing to Laramide surface uplift and contraction in the continental interior.
Influence of core flows on the decade variations of the polar motion
NASA Astrophysics Data System (ADS)
Hulot, G.; Le Huy, M.; Le Mouël, J.-L.
We address the possibility for the core flows that generate the geomagnetic field to contribute significantly to the decade variations of the mean pole position (generally called the Markowitz wobble). This assumption is made plausible by the observation that the flow at the surface of the core-estimated from the geomagnetic secular variation models-experiences important changes on this time scale. We discard the viscous and electromagnetic core-mantle couplings and consider only the pressure torque pf resulting from the fluid flow overpressure acting on the non-spherical core-mantle boundary (CMB) at the bottom of the mantle, and the gravity torque gf due to the density heterogeneity driving the core flow. We show that forces within the core balance each other on the time scale considered and, using global integrals over the core, the mantle and the whole Earth, we write Euler's equation for the mantle in terms of two more useful torques Pgeo and . The "geostrophic torque", γ Pgeo incorporates γpf and part of γgf, while γ is another fraction of γgf. We recall how the geostrophic pressure pgeo, and thus γPgeo for a given topography, can be derived from the flow at the CMB and compute the motion of the mean pole from 1900 to 1990, assuming in a first approach that the unknown γ can be neglected. The amplitude of the computed pole motion is three to ten times less than the observed one and out of the phase with it. In order to estimate the possible contribution of γ we then use a second approach and consider the case in which the reference state for the Earth is assumed to be the classical axisymmetric ellipsoidal figure with an almost constant ellipticity within the core. We show that (γPgeo + γ) is then equal to a pseudo-electromagnetic torque γL3, the torque exerted on the core by the component of the Lorentz force along the axis of rotation (this torque exists even though the mantle is assumed insulating). This proves that, at least in this case and probably in the more general case of a bumpy CMB, γ is not negligible compared with γ Pgeo. Eventually, we estimate the order of magnitude of γL3, show that it is likely to be small and conclude with further possibilities for the Markowitz wobble to be excited from within the core.
NASA Astrophysics Data System (ADS)
Dick, H.; Natland, J.
2003-04-01
No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes, and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.
Properties of the Plasma Mantle in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Shodhan-Shah, Sheela
1998-04-01
The plasma mantle is the site where the solar wind enters the Earth's magnetosphere. As yet, the mantle in the magnetotail (downstream part of the magnetosphere) has remained an enigma, for this region is remote and inaccessible. However, new results from the GEOTAIL spacecraft have yielded data on the mantle, making its study possible. The research reported in this dissertation uses the measurements made by the GEOTAIL spacecraft when it was beyond 100 Re (1 Re = Earth radius) in the magnetotail to determine the global geometrical and dynamical properties of the mantle. The model and the data together provide a cross-sectional picture of the mantle, as well as its extent into the tail and along the circumference of the tail. The model assesses the mass and momentum flux flowing through the mantle and merging with the plasma sheet (a relatively dense region that separates the oppositely directed fields of the tail lobes). In this way, the thesis examines the importance of the mantle as a source that replenishes and moves the plasma sheet. Moreover, it addresses the relative importance of the global dynamical modes of the tail. The analysis finds that the tail's 'breathing' mode, of shape change, occurs on a timescale of tens of minutes while a windsock-type motion, responding to changes in the solar wind direction, occurs on a scale of hours. The mantle extends about 140o around the circumference of the tail rather than 90o as previously thought and is about 20 ± 9 Re thick. It is capable of feeding the plasma sheet with sufficient particles to make up for those lost and can drag it away with a force that compares with the Earthward force on it. The rate at which the energy flows through the tail at 100 Re is about 10% of that in the solar wind and is a factor of 10 higher than the energy dissipated.
Density Anomalies in the Mantle and the Gravitational Core-Mantle Interaction
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Liu, Lanbo
2003-01-01
Seismic studies suggest that the bulk of the mantle is heterogeneous, with density variations in depth as well as in horizontal directions (latitude and longitude). This density variation produces a three- dimensional gravity field throughout the Earth. On the other hand, the core density also varies in both time and space, due to convective core flow. Consequently, the fluid outer core and the solid mantle interact gravitationally due to the mass anomalies in both regions. This gravitational core-mantle interaction could play a significant role in exchange of angular momentum between the core and the mantle, and thus the change in Earth's rotation on time scales of decades and longer. Aiming at estimating the significance of the gravitational core-mantle interaction on Earth's rotation variation, we introduce in our MoSST core dynamics model a heterogeneous mantle, with a density distribution derived from seismic results. In this model, the core convection is driven by the buoyancy forces. And the density variation is determined dynamically with the convection. Numerical simulation is carried out with different parameter values, intending to extrapolate numerical results for geophysical implications.
NASA Astrophysics Data System (ADS)
Guo, Z.; Zhou, Y.
2017-12-01
We report global structure of the 410-km and 660-km discontinuities from finite-frequency tomography using frequency-dependent traveltime measurements of SS precursors recorded at the Global Seismological Network (GSN). Finite-frequency sensitivity kernels for discontinuity depth perturbations are calculated in the framework of traveling-wave mode coupling. We parametrize the global discontinuities using a set of spherical triangular grid points and solve the tomographic inverse problem based on singular value decomposition. Our global 410-km and 660-km discontinuity models reveal distinctly different characteristics beneath the oceans and subduction zones. In general, oceanic regions are associated with a thinner mantle transition zone and depth perturbations of the 410-km and 660-km discontinuities are anti-correlated, in agreement with a thermal origin and an overall warm and dry mantle beneath the oceans. The perturbations are not uniform throughout the oceans but show strong small-scale variations, indicating complex processes in the mantle transition zone. In major subduction zones (except for South America where data coverage is sparse), depth perturbations of the 410-km and 660-km discontinuities are correlated, with both the 410-km and the 660-km discontinuities occurring at greater depths. The distributions of the anomalies are consistent with cold stagnant slabs just above the 660-km discontinuity and ascending return flows in a superadiabatic upper mantle.
Modeling the migration of fluids in subduction zones
NASA Astrophysics Data System (ADS)
Spiegelman, M.; Wilson, C. R.; van Keken, P. E.; Hacker, B. R.
2010-12-01
Fluids play a major role in the formation of arc volcanism and the generation of continental crust. Progressive dehydration reactions in the downgoing slab release fluids to the hot overlying mantle wedge, causing flux melting and the migration of melts to the volcanic front. While the qualitative concept is well established the quantitative details of fluid release and especially that of fluid migration and generation of hydrous melting in the wedge is still poorly understood. Here we present new models of the fluid migration through the mantle wedge for subduction zones that span the spectrum of arcs worldwide. We focus on the flow of water and use an existing set of high resolution thermal and metamorphic models (van Keken et al., JGR, in review) to predict the regions of water release from the sediments, upper and lower crust, and upper most mantle. We use this water flux as input for the fluid migration calculation based on new finite element models built on advanced computational libraries (FEniCS/PETSc) for efficient and flexible solution of coupled multi-physics problems. The first generation of these models solves for the evolution of porosity and fluid-pressure/flux throughout the slab and wedge given solid flow, viscosity and thermal fields from the existing thermal models. Fluid flow in the new models depends on both permeability and the rheology of the slab-wedge system as interaction with rheological variability can induce additional pressure gradients that affect the fluid flow pathways. We will explore the sensitivity of fluid flow paths for a range of subduction zones and fluid flow parameters with emphasis on variability of the location of the volcanic arc with respect to flow paths and expected degrees of hydrous melting which can be estimated given a variety of wet-melting parameterizations (e.g. Katz et al, 2003, Kelley et al, 2010). The current models just include dehydration reactions but work continues on the next generation of models which will include both dehydration and hydration reactions as well as parameterized flux melting in a consistent reactive-flow framework. We have also begun work on re-implementing the solid-flow thermal calculations in FEniCS/PETSc which are open-source libraries in preparation for developing a fully coupled fluid-solid dynamics models for exploring subduction zone processes
Numerical Modelling of Subduction Zones: a New Beginning
NASA Astrophysics Data System (ADS)
Ficini, Eleonora; Dal Zilio, Luca; Doglioni, Carlo; Gerya, Taras V.
2016-04-01
Subduction zones are one of the most studied although still controversial geodynamic process. Is it a passive or an active mechanism in the frame of plate tectonics? How subduction initiates? What controls the differences among the slabs and related orogens and accretionary wedges? The geometry and kinematics at plate boundaries point to a "westerly" polarized flow of plates, which implies a relative opposed flow of the underlying Earth's mantle, being the decoupling located at about 100-200 km depth in the low-velocity zone or LVZ (Doglioni and Panza, 2015 and references therein). This flow is the simplest explanation for determining the asymmetric pattern of subduction zones; in fact "westerly" directed slabs are steeper and deeper with respect to the "easterly or northeasterly" directed ones, that are less steep and shallower, and two end members of orogens associated to the downgoing slabs can be distinguished in terms of topography, type of rocks, magmatism, backarc spreading or not, foredeep subsidence rate, etc.. The classic asymmetry comparing the western Pacific slabs and orogens (low topography and backarc spreading in the upper plate) and the eastern Pacific subduction zones (high topography and deep rocks involved in the upper plate) cannot be ascribed to the age of the subducting lithosphere. In fact, the same asymmetry can be recognized all over the world regardless the type and age of the subducting lithosphere, being rather controlled by the geographic polarity of the subduction. All plate boundaries move "west". Present numerical modelling set of subduction zones is based on the idea that a subducting slab is primarily controlled by its negative buoyancy. However, there are several counterarguments against this assumption, which is not able to explain the global asymmetric aforementioned signatures. Moreover, petrological reconstructions of the lithospheric and underlying mantle composition, point for a much smaller negative buoyancy than predicted, if any (e.g., Doglioni et al., 2007; Afonso et al., 2008). Therefore we attempt to generate a different model setup in which are included both a decoupling at the lithosphere base and the "westward" drift of the lithosphere that implies a relative "eastward" mantle flow. The method used for this task is an implementation of I2VIS code, a 2D thermomechanical code incorporating both a characteristics based marker-in-cell method and conservative finite-difference (FD) schemes (Gerya and Yuen, 2003). The implementation involves both the integration of the LVZ and the application of an incoming and outgoing mantle flow through the lateral boundaries of the rectangular box (that represent the basic setup of the models). This new insight in numerical modelling of subduction zones could help to have a more accurate comprehension on what is actually influencing subduction zones dynamics in order to successively explain what are the causes of this fundamental process and what are its implications on plate tectonics dynamics.
NASA Astrophysics Data System (ADS)
Ishise, Motoko; Kawakatsu, Hitoshi; Morishige, Manabu; Shiomi, Katsuhiko
2018-05-01
We investigate slab and mantle structure of the NE Japan subduction zone from P wave azimuthal and radial anisotropy using travel time tomography. Trench normal E-W-trending azimuthal anisotropy (AA) and radial anisotropy (RA) with VPV > VPH are found in the mantle wedge, which supports the existence of small-scale convection in the mantle wedge with flow-induced LPO of mantle minerals. In the subducting Pacific slab, trench parallel N-S-trending AA and RA with VPH > VPV are obtained. Considering the effect of dip of the subducting slab on apparent anisotropy, we suggest that both characteristics can be explained by the presence of laminar structure, in addition to AA frozen-in in the subducting plate prior to subduction.
NASA Astrophysics Data System (ADS)
Čížková, Hana; Čadek, Ondřej; van den Berg, Arie P.; Vlaar, Nicolaas J.
Below subduction zones, high resolution seismic tomographic models resolve fast anomalies that often extend into the deep lower mantle. These anomalies are generally interpreted as slabs penetrating through the 660-km seismic discontinuity, evidence in support of whole-mantle convection. However, thermal coupling between two flow systems separated by an impermeable interface might provide an alternative explanation of the tomographic results. We have tested this hypothesis within the context of an axisymmetric model of mantle convection in which an impermeable boundary is imposed at a depth of 660 km. When an increase in viscosity alone is imposed across the impermeable interface, our results demonstrate the dominant role of mechanical coupling between shells, producing lower mantle upwellings (downwellings) below upper mantle downwellings (upwellings). However, we find that the effect of mechanical coupling can be significantly weakened if a narrow low viscosity zone exists beneath the 660-km discontinuity. In such a case, both thermally induced ‘slabs’ in the lower mantle and thermally activated plumes that rise from the upper/lower mantle boundary are observed even though mass transfer between the shells does not exist.
The Burgers/squirt-flow seismic model of the crust and mantle
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio; Farina, Biancamaria
2018-01-01
Part of the crust shows generally brittle behaviour while areas of high temperature and/or high pore pressure, including the mantle, may present ductile behaviour. For instance, the potential heat source of geothermal fields, overpressured formations and molten rocks. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, and high temperatures may induce a similar behaviour by partial melting. In order to model these effects, we consider a poro-viscoelastic model based on the Burgers mechanical element and the squirt-flow model to represent the properties of the rock frame to describe ductility in which deformation takes place by shear plastic flow, and to model local and global fluid flow effects. The Burgers element allows us to model the effects of the steady-state creep flow on the dry-rock frame. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli by using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water at sub- and supercritical conditions) are modeled by using the equations provided by the NIST website. The squirt-flow model has a single free parameter represented by the aspect ratio of the grain contacts. The theory generalizes a preceding theory based on Gassmann (low-frequency) moduli to the more general case of the presence of local (squirt) flow and global (Biot) flow, which contribute with additional attenuation mechanisms to the wave propagation.
Lithospheric structure and deformation of the North American continent
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Kaban, Mikhail; Cloetingh, Sierd; Mooney, Walter
2013-04-01
We estimate the integrated strength and elastic thickness (Te) of the North American lithosphere based on thermal, density and structural (seismic) models of the crust and upper mantle. The temperature distribution in the lithosphere is estimated considering for the first time the effect of composition as a result of the integrative approach based on a joint analysis of seismic and gravity data. We do this via an iterative adjustment of the model. The upper mantle temperatures are initially estimated from the NA07 tomography model of Bedle and Van der Lee (2009) using mineral physics equations. This thermal model, obtained for a uniform composition, is used to estimate the gravity effect and to remove it from the total mantle gravity anomalies, which are controlled by both temperature and compositional variations. Therefore, we can predict compositional variations from the residual gravity anomalies and use them to correct the initial thermal model. The corrected thermal model is employed again in the gravity calculations. The loop is repeated until convergence is reached. The results demonstrate that the lithospheric mantle is characterized by strong compositional heterogeneity, which is consistent with xenolith data. Seismic data from the USGS database allow to define P-wave velocity and thickness of each crustal layer of the North American geological provinces. The use of these seismic data and of the new compositional and thermal models gives us the chance to estimate lateral variation of rheology of the main lithospheric layers and to evaluate coupling-decoupling conditions at the layers' boundaries. In the North American Cordillera the strength is mainly localized in the crust, which is decoupled from the mantle lithosphere. In the cratons the strength is chiefly controlled by the mantle lithosphere and all the layers are generally coupled. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" models for the lithosphere structure. Intraplate earthquakes (USGS database) occur mainly in the weak regions, such as the Appalachians, and in the transition zones from low to high strength surrounding the craton. The obtained 3D strength model is used to compute Te of the North American lithosphere. This parameter is derived from the thermo-rheological model using new equations that consider variations of the Young's Modulus in the lithosphere. It shows large variability within the cratons, ranging from 70 km to >100km, while it drops to <30 km in the young Phanerozoic regions. The new crustal model is also used to compute the lateral pressure gradient (LPG) that can initiate horizontal ductile flow in the crust. In general, the crustal flow is directed away from the orogens towards adjacent weaker areas. The results show that the effects of the channel flow superimposed with the regional tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension.
Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow
NASA Astrophysics Data System (ADS)
Kincaid, C.; Druken, K. A.; Griffiths, R. W.; Stegman, D. R.
2013-05-01
The causes of volcanism in the northwestern United States over the past 20 million years are strongly contested. Three drivers have been proposed: melting associated with plate subduction; tectonic extension and magmatism resulting from rollback of a subducting slab; or the Yellowstone mantle plume. Observations of the opposing age progression of two neighbouring volcanic chains--the Snake River Plain and High Lava Plains--are often used to argue against a plume origin for the volcanism. Plumes are likely to occur near subduction zones, yet the influence of subduction on the surface expression of mantle plumes is poorly understood. Here we use experiments with a laboratory model to show that the patterns of volcanism in the northwestern United States can be explained by a plume upwelling through mantle that circulates in the wedge beneath a subduction zone. We find that the buoyant plume may be stalled, deformed and partially torn apart by mantle flow induced by the subducting plate. Using plausible model parameters, bifurcation of the plume can reproduce the primary volcanic features observed in the northwestern United States, in particular the opposite progression of two volcanic chains. Our results support the presence of the Yellowstone plume in the northwestern United States, and also highlight the power of plume-subduction interactions to modify surface geology at convergent plate margins.
Shaping mobile belts by small-scale convection.
Faccenna, Claudio; Becker, Thorsten W
2010-06-03
Mobile belts are long-lived deformation zones composed of an ensemble of crustal fragments, distributed over hundreds of kilometres inside continental convergent margins. The Mediterranean represents a remarkable example of this tectonic setting: the region hosts a diffuse boundary between the Nubia and Eurasia plates comprised of a mosaic of microplates that move and deform independently from the overall plate convergence. Surface expressions of Mediterranean tectonics include deep, subsiding backarc basins, intraplate plateaux and uplifting orogenic belts. Although the kinematics of the area are now fairly well defined, the dynamical origins of many of these active features are controversial and usually attributed to crustal and lithospheric interactions. However, the effects of mantle convection, well established for continental interiors, should be particularly relevant in a mobile belt, and modelling may constrain important parameters such as slab coherence and lithospheric strength. Here we compute global mantle flow on the basis of recent, high-resolution seismic tomography to investigate the role of buoyancy-driven and plate-motion-induced mantle circulation for the Mediterranean. We show that mantle flow provides an explanation for much of the observed dynamic topography and microplate motion in the region. More generally, vigorous small-scale convection in the uppermost mantle may also underpin other complex mobile belts such as the North American Cordillera or the Himalayan-Tibetan collision zone.
Multiple subduction imprints in the mantle below Italy detected in a single lava flow
NASA Astrophysics Data System (ADS)
Nikogosian, Igor; Ersoy, Özlem; Whitehouse, Martin; Mason, Paul R. D.; de Hoog, Jan C. M.; Wortel, Rinus; van Bergen, Manfred J.
2016-09-01
Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.
Passive margins getting squeezed in the mantle convection vice
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent; Becker, Thorsten W.; Pedoja, Kevin
2013-12-01
margins often exhibit uplift, exhumation, and tectonic inversion. We speculate that the compression in the lithosphere gradually increased during the Cenozoic, as seen in the number of mountain belts found at active margins during that period. Less clear is how that compression increase affects passive margins. In order to address this issue, we design a 2-D viscous numerical model wherein a lithospheric plate rests above a weaker mantle. It is driven by a mantle conveyor belt, alternatively excited by a lateral downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, representing the cases of free convergence, and collision (or slab anchoring), respectively. This distinction changes the upper mechanical boundary condition for mantle circulation and thus, the stress field. Between these two regimes, the flow pattern transiently evolves from a free-slip convection mode toward a no-slip boundary condition above the upper mantle. In the second case, the lithosphere is highly stressed horizontally and deforms. For a constant total driving force, compression increases drastically at passive margins if upwellings are active. Conversely, if downwellings alone are activated, compression occurs at short distances from the trench and extension prevails elsewhere. These results are supported by Earth-like models that reveal the same pattern, where active upwellings are required to excite passive margins compression. Our results substantiate the idea that compression at passive margins is in response to the underlying mantle flow that is increasingly resisted by the Cenozoic collisions.
NASA Astrophysics Data System (ADS)
Zhang, H.; Schmandt, B.
2017-12-01
The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic or dipping interfaces that may be present at transition zone depths. The locations of sporadic velocity decreases will be compared with mantle flow models to evaluate the possibility of dehydration melting.
Linking TERRA and DRex to relate mantle convection and seismic anisotropy
NASA Astrophysics Data System (ADS)
Walker, Andrew; Davies, Huw; Davies, Rhodri; Wookey, James
2015-04-01
Seismic anisotropy caused by flow induced alignment of the olivine crystals in Earth's upper mantle provides a powerful way to test our ideas of mantle convection. We have been working to directly combine computer simulations of mantle dynamics, using fluid mechanics at the continuum scale, with models of rock deformation to capture fabric evolution at the grain scale. By combining models of deformation at these two scales we hope to be able to rigorously test hypothesis linking mantle flow to seismic anisotropy in regions as diverse as subduction zones, the lithosphere-asthenosphere boundary, and the transition zone. We also intend to permit feedback, for example via geometrical softening, from the model of fabric development into the material properties used in the convection simulation. We are building a flexible framework for this approach which we call Theia. Our initial implementation uses the TERRA convection code (Baumgardner, J. Stat. Phys. 39:501-511, 1985; Davies et al. Geosci. Model Dev. 6:1095-1107, 2013) to drive DRex (Kaminski et al. Geophys. J. Int. 158:744-752, 2004), which is used to predict the evolution of crystallographic preferred orientation in the upper mantle. Here we describe our current implementation which makes use of the ability of TERRA to track markers, or particles, through the evolving flow field. These tracers have previously been used to track attributes such as the bulk chemical composition or trace element ratios. Our modification is to use this technology to track a description of the current state of the texture and microstructure (encompassing an orientation distribution function, grain size parameters and dislocation density) such that we can advance models of polycrystalline deformation for many simultaneous DRex instances alongside and in sync with models of mantle convection. We will also describe initial results from our first use of the Theia framework where we are investigating the effect of asthenospheric viscosity on seismic anisotropy beneath the oceans. Key to this work is the ability of TERRA to incorporate plate motion history which acts to correctly locate the predicted anisotropy such that it can be directly compared with the anisotropy measured for the Earth.
One billion year-old Mid-continent Rift leaves virtually no clues in the mantle
NASA Astrophysics Data System (ADS)
Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.
2017-12-01
We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes along the eastern edge of the Michigan arm of the MR, and 3) beneath Lake Nipigon, north of Lake Superior. Our tomographic image also reveals an intricate distribution of deep high-velocity anomalies, including in the lower mantle, potentially related to Mesozoic subduction of the Kula and/or Farallon Plates.
NASA Astrophysics Data System (ADS)
Sas, M.; DeBari, S. M.; Clynne, M. A.; Rusk, B. G.
2015-12-01
A fundamental question in geology is whether subducting plates get hot enough to generate melt that contributes to magmatic output in volcanic arcs. Because the subducting plate beneath the Cascade arc is relatively young and hot, slab melt generation is considered possible. To better understand the role of slab melt in north Cascades magmas, this study focused on petrogenesis of high-Mg andesites (HMA) and basaltic andesites (HMBA) from Mt. Baker and Glacier Peak, Washington. HMA have unusually high Mg# relative to their SiO2 contents, as well as elevated La/Yb and Dy/Yb ratios that are interpreted to result from separation of melt from a garnet-bearing residuum. Debate centers on the garnet's origin as it could be present in mineral assemblages from the subducting slab, deep mantle, thick lower crust, or basalt fractionated at high pressure. Whole rock analyses were combined with major, minor, and trace element analyses to understand the origin of these HMA. In the Tarn Plateau (Mt. Baker) flow unit (51.8-54.0 wt.% SiO2, Mg# 68-70) Mg#s correlate positively with high La/Yb in clinopyroxene equilibrium liquids, suggesting an origin similar to that of Aleutian adakites, where slab-derived melts interact with the overlying mantle to become Mg-rich and subsequently mix with mantle-derived basalts. The source for high La/Yb in the Glacier Creek (Mt. Baker) flow unit (58.3-58.7 wt.% SiO2, Mg# 63-64) is more ambiguous. High whole rock Sr/P imply origin from a mantle that was hydrated by an enriched slab component (fluid ± melt). In the Lightning Creek (Glacier Peak) flow unit (54.8-57.9 SiO2, Mg# 69-72) Cr and Mg contents in Cr-spinel and olivine pairs suggest a depleted mantle source, and high whole rock Sr/P indicate hydration-induced mantle melting. Hence Lightning Creek is interpreted have originated from a refractory mantle source that interacted with a hydrous slab component (fluid ± melt). Our results indicate that in addition to slab-derived fluids, slab-derived melts also have an important role in the production of HMA in the north Cascade arc.
Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth
NASA Astrophysics Data System (ADS)
Richards, F. D.; Hoggard, M.; White, N. J.
2017-12-01
Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long-wavelength discrepancy that exploit the velocity to density conversion described above combined with radial variation of mantle viscosity.
Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)
NASA Astrophysics Data System (ADS)
Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.
2010-12-01
The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.
Evidence for lateral mantle plume flow feeding the Central Indian Ridge
NASA Astrophysics Data System (ADS)
Murton, B. J.; Tindle, A. G.
2003-04-01
The Central Indian Ridge exhibits morphological and geochemical features indicating lateral flow of shallow plume asthenosphere from the Reunion hot-spot to the ridge axis. South of the Marie Celeste fracture zone, at 18.25°S, the Central Indian Ridge is bound by a southward closing, “V”-shaped region of shallow crust that extends for over 800 km. Over this distance, the ridge axis deepens to the south and is also affected by left-stepping offsets that bring it towards the west. The northern end of the ridge, which is closest to the island of La'Réunion, is shallowest and dominated by an inflated segment with associated sheet flows covering over 50 square kilometres. These morphological features are usually associated with ridge-hot-spot interaction. However, the nearest active hot-spot lies over 1100 km to the west beneath the island of La'Réunion. Geochemical trends for basalts erupted along the Central Indian Ridge demonstrate a gradient of northward decreasing MgO and increasing SiO2, indicating a relationship between shallower crust and increased magmatic fractional crystallisation. Superimposed on this gradient is an excess increase in incompatible element ratios, indicative of mantle enrichment to the north. The enrichment correlates with the spreading-parallel distance between the ridge axis and the edge of the "V"-shaped region of anomalously shallow crust. Locally, the enriched mantle component is found preferentially at third-order ridge offsets and adjacent to the rift walls demonstrating melting of a compositionally stratified, spinel-lherzolite mantle. These features are evidence for shallow, lateral flow of enriched hot-spot asthenosphere at a velocity of ~333 mm yr-1 and with a flux of at least 50 m3 s-1, through a mantle 'worm', towards the ridge axis where it migrates south at a rate of 54 - 67 mm per year. The trend of the geochemical enrichment points to mixing between deeper N-MORB and shallower Reunion hot-spot sources beneath the Central Indian Ridge.
On the origin of the anisotropy observed beneath the westernmost Mediterranean region
NASA Astrophysics Data System (ADS)
Diaz, Jordi
2017-04-01
The Iberian Peninsula and Northern Morocco region provides an excellent opportunity to investigate the origin of subcrustal anisotropy. Following the TopoIberia-Iberarray experiment, anisotropic properties have been explored in a dense network of 60x60 km spaced broad-band stations, resulting in more than 300 sites investigated over an area extending from the Bay of Biscay to the Sahara platform and covering more than 6000.000 km2. The rather uniform N100°E FPD retrieved beneath the Variscan Central Iberian Massif is consistent with global mantle flow models taking into account contributions of surface plate motion, density variations and net lithosphere rotation. The origin of this anisotropy is hence globally related to the lattice preferred orientation of mantle minerals generated by mantle flow at asthenospheric depths, although significant regional variations are observed. The anisotropic parameters retrieved from single events providing high quality data show significant differences for stations located in the Variscan units of NW Iberia, suggesting that the region includes multiple anisotropic layers or complex anisotropy systems have to be considered there. The rotation of the FDE along the Gibraltar arc following the curvature of the Rif-Betic chain has been interpreted as an evidence of mantle flow deflected around the high velocity slab beneath the Gibraltar Arc. Beneath the SW corner of Iberia and the High Atlas zone, small delay times and inconsistent FPD have been detected, suggesting the presence of vertical mantle flow affecting the anisotropic structure of the asthenosphere. Future developments will include a better integration with the anisotropic estimations provided by Pn tomography and, in particular, with those arising from surface wave tomographic inversions using TopoIberia-Ibearray results. Additionally, the contribution of crustal anisotropy could be estimated from the analysis of receiver functions. The detailed knowledge on the anisotropic structure of this area could be used to test the recently developed multiparametric modeling methods inverting jointly observables as surface waves dispersion, receiver functions, surface heat flow, geoid height, elevation and anisotropy. (partially founded by: MISTERIOS project, CGL2013-48601-C2-1-R)
Large-scale trench-perpendicular mantle flow beneath northern Chile
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.; Woelbern, I.
2017-12-01
We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-356, 10 May 2003
This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick mantle of dust covering lava flows north of Pavonis Mons so well that the flows are no longer visible. Flows are known to occur here because of the proximity to the volcano, and such flows normally have a very rugged surface. Fine dust, however, has settled out of the atmosphere over time and obscured the flows from view. The cliff at the top of the image faces north (up), the cliff in the middle of the image faces south (down), and the rugged slope at the bottom of the image faces north (up). The dark streak at the center-left was probably caused by an avalanche of dust sometime in the past few decades. The image is located near 4.1oN, 111.3oW. Sunlight illuminates the scene from the right/lower right.Origin of the lithospheric stress field
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, Carolina; Guynn, Jerome H.
2004-01-01
An understanding of the tectonic stress field is geologically important because it is the agent that preserves in the crust a memory of dynamical processes. In an effort to elucidate the origin of the present state of stress of the lithosphere we use a finite element model of the Earth's lithosphere to calculate stresses induced by mantle flow, crustal heterogeneity, and topography and compare these to observations of intraplate stresses as given by the World Stress Map. We explore two models of lithospheric heterogeneity, one based directly on seismic and other observational constraints (Crust 2.0), and another that assumes isostatic compensation. Mantle tractions are computed from two models of mantle density heterogeneity: a model based on the history of subduction of the last 180 Myr, which has proved successful at accurately reproducing the present-day geoid and Cenozoic plate velocities, and a model inferred from seismic tomography. We explore the effects of varying assumptions for the viscosity structure of the mantle, and the effects of lateral variations in viscosity in the form of weak plate boundaries. We find that a combined model that includes both mantle and lithospheric sources of stress yields the best match to the observed stress field (˜60% variance reduction), although there are many regions where agreement between observed and predicted stresses is poor. The stress field produced by mantle tractions alone shows a greater degree of long-wavelength structure than is apparent in the stress observations but agrees very well with observations in some areas where radial mantle tractions are particularly strong such as in southeast Asia and the western Pacific. The stress field produced by lithospheric heterogeneity alone depends strongly on the assumed crustal model: Whereas the isostatically compensated model yields very poor agreement with observations, the model based on Crust 2.0 matches the observations about as well as mantle tractions alone and matches very well in certain areas where the influence of high topography is very important (e.g., Andes, East Africa). A possible interpretation of our results is that the stress field is significantly influenced by lateral variations in the viscosity of the mantle, which leads to variable amounts of decoupling between lithosphere and mantle, allowing the mantle signature to dominate in some areas and the crustal signature to dominate in others. The poor fit between the isostatically compensated crustal model and observations and the large differences between the two crustal models point toward the importance of dynamic topography and remaining uncertainties in crustal structure and rheology. We also consider the possibility that observations of stress from the shallow crust may not reflect the state of stress of the entire plate; stresses in the upper plate may be at least partially decoupled from broader-scale plate driving forces by lateral and vertical variations in lithospheric rheology.
NASA Astrophysics Data System (ADS)
Crameri, Fabio; Tackley, Paul
2014-05-01
The work presented aims at a better understanding of plate tectonics, a crucial dynamical feature within the global framework of mantle convection. Special focus is given to the interaction of subduction-related mantle flow and surface topography. Thereby, the application of a numerical model with two key functional requirements is essential: an evolution over a long time period to naturally model mantle flow and a physically correct topography calculation. The global mantle convection model presented in Crameri et al. (2012a) satisfies both of these requirements. First, it is efficiently calculated by the finite-volume code Stag-YY (e.g., Tackley 2008) using a multi-grid method on a fully staggered grid. Second, it applies the sticky-air method (Matsumoto and Tomoda 1983; Schmeling et al, 2008) and thus approximates a free surface when the sticky-air parameters are chosen carefully (Crameri et al., 2012b). This leads to dynamically self-consistent mantle convection with realistic, single-sided subduction. New insights are thus gained into the interplay of obliquely sinking plates, toroidal mantle flow and the arcuate shape of slabs and trenches. Numerous two-dimensional experiments provide optimal parameter setups that are applied to three-dimensional models in Cartesian and fully spherical geometries. Features observed and characterised in the latter experiments give important insight into the strongly variable behaviour of subduction zones along their strike. This includes (i) the spontaneous development of arcuate trench geometry, (ii) regional subduction polarity reversals and slab tearing, and the newly discovered features (iii) 'slab tunnelling' and (iv) 'back-slab spiral flow'. Overall, this study demonstrates the strong interaction between surface topography and mantle currents and highlights the variability of subduction zones and their individual segments. REFERENCES Crameri, F., P. J. Tackley, I. Meilick, T. V. Gerya, and B. J. P. Kaus (2012a), A free plate surface and weak oceanic crust produce single-sided subduction on Earth, Geophys. Res. Lett., 39(3), L03,306. Crameri, F., H. Schmeling, G. J. Golabek, T. Duretz, R. Orendt, S. J. H. Buiter, D. A. May, B. J. P. Kaus, T. V. Gerya, and P. J. Tackley (2012b), A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the 'sticky air' method, Geophys. J. Int., 189(1), 38-54. Matsumoto, T., and Y. Tomoda (1983), Numerical simulation of the initiation of subduction at the fracture zone, J. Phys. Earth, 31(3), 183-194. Schmeling, H., A. Babeyko, A. Enns, C. Faccenna, F. Funiciello, T. Gerya, G. Golabek, S. Grigull, B. Kaus, G. Morra, S. Schmalholz, and J. van Hunen (2008), A benchmark comparison of spontaneous subduction models-Towards a free surface, Phys. Earth Planet. Int., 171(1-4), 198-223. Tackley, P. J. (2008), Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Int., 171(1-4), 7-18.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, Karin; Barruol, Guilhem
2013-04-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, K.; Barruol, G.
2012-12-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
NASA Astrophysics Data System (ADS)
Engström, A. V.; Skelton, A. D.
2003-04-01
The well-studied Iberia Abyssal Plain (ODP legs 149 and 173) is a non-volcanic passive margin where continental crust and oceanic crust are separated by a “mantle window” composed of serpentinised peridotites. The exhumation of the mantle at this transitional zone is under debate and several models involving detachment faulting, shear zones or magmatic intrusions have been proposed to explain the formation of the ocean-continent transition (OCT). The mechanical behaviour of serpentinite, with its low density, strength and permeability, and the timing of the serpentinisation process in relation to the exhumation, are crucial parameters in understanding non-volcanic rifting processes. Beneath Iberia Abyssal Plain, sampling is restricted to ocean ridges, the recovery is very poor and in addition, drillcores only give one-dimensional data, implicitly any data is not statistically well represented. However, there are several land analogues of past ocean-continent margins which give excellent opportunities to study the timing and evolution of fluids and serpentinisation in several dimensions. The Tasna OCT is a “mantle window” situated in the Swiss Alps displaying exhumed mantle (serpentinised peridotite) in contact with basement rocks or sediments. For this study several sampling profiles have been conducted across the mantle boundary. Field observations together with ignition experiments and thin section analyses indicate that the degree of serpentinisation is not continously increasing with depth as may be expected. In contrast, high serpentinite contents were recorded at the top of the mantle sequence as well as deeper down. The general pattern of serpentinisation shows “saw tooth” geometry as the content fluctuate from high to low and back to higher values again. This implies that the fluid flow has been channeled. Oxygen isotope studies from the Iberia margin (Skelton and Valley 2000) show deformation channeled fluid flow. Several heavily eroded sections in the Tasna OCT may very well correspond with the postulated shear zones in the Iberia margin localizing the fluid.
The controversy over plumes: Who is actually right?
NASA Astrophysics Data System (ADS)
Puchkov, V. N.
2009-01-01
The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the mantle-core interface.
Subduction disfigured mantle plumes: Plumes that are not plumes?
NASA Astrophysics Data System (ADS)
Druken, K. A.; Stegman, D. R.; Kincaid, C. R.; Griffiths, R. W.
2012-12-01
"Hotspot" volcanism is generally attributed to upwelling of anomalously warm mantle plumes, the intra-plate Hawaiian island chain and its simple age progression serving as an archetypal example. However, interactions of such plumes with plate margins, and in particular with subduction zones, is likely to have been a common occurrence and leads to more complicated geological records. Here we present results from a series of complementary, three-dimensional numerical and laboratory experiments that examine the dynamic interaction between negatively buoyant subducting slabs and positively buoyant mantle plumes. Slab-driven flow is shown to significantly influence the evolution and morphology of nearby plumes, which leads to a range of deformation regimes of the plume head and conduit. The success or failure of an ascending plume head to reach the lithosphere depends on the combination of plume buoyancy and position within the subduction system, where the mantle flow owing to downdip and rollback components of slab motion entrain plume material both vertically and laterally. Plumes rising within the sub-slab region tend to be suppressed by the surrounding flow field, while wedge-side plumes experience a slight enhancement before ultimately being entrained by subduction. Hotspot motion is more complex than that expected at intraplate settings and is primarily controlled by position alone. Regimes include severely deflected conduits as well as retrograde (corkscrew) motion from rollback-driven flow, often with weak and variable age-progression. The interaction styles and surface manifestations of plumes can be predicted from these models, and the results have important implications for potential hotspot evolution near convergent margins.
Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.
2016-01-01
Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.
Anisotropic Signature of the Afar plume in the Upper Mantle.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.; Debayle, E.; Leveque, J.; Cara, M.; Lepine, J.
2002-12-01
Plumes remain enigmatic geological objects and it is still unclear how they are formed and whether they act independently from plate tectonics. The role of plumes in mantle dynamics can be investigated by studying their interaction with lithosphere and crust and their perturbations on flow pattern in the mantle. The flow pattern can be derived from seismic anisotropy. An anisotropic surface wave tomography in the Horn of Africa was performed. The choice of the experiment in the Horn of Africa is motivated by the the presence of the Afar hotspot, one of the biggest continental hotspot. In the framework of the mantle degree 2 pattern, the Afar hotspot is the antipode of the Pacific superswell, but its origin at depth and its geodynamic importance are still debated. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We completed our data base with a French deployment of portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained by using a method based on a least-squares minimization (Beucler et al.,2002). A correction of the data is applied according to the a priori 3SMAC model (Nataf and Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. Down to 250km, low velocities are found beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Afar hotspot. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the isotropic model of Debayle et al. (2002). The anisotropy model beneath Afar displays a complex pattern. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. Deeper in the asthenosphere, a wide stem of positive radial anisotropy (VSH > VSV) comes up, where we might expect the reverse sign. The same observation was made below Iceland (Gaherty, 2001) and Hawaii (Montagner, 2002). Different interpretations of this observation can be proposed, in terms of perturbation of the flow pattern around Afar or of the predominant influence of water-rich plume material where other mechanisms of alignment prevail (Jung and Karato, 2001).
NASA Technical Reports Server (NTRS)
Desmarais, D.
1986-01-01
Paleobiologists now recognize that the Earth's biosphere has been profoundly affected by geologic processes. One very important process is the dissipation of heat which has been generated by radioactivity and/or stored within the earth. Heat flow is responsible for crustal movements and therefore it is the principal architect for constructing the environments (e.g. shallow marine, continental, etc.) wherein life developed and flourished. Heat flow has also influenced the movements of volatile elements (e.g. C, N, H, S, rare gases, etc.) both within the Earth's crust and between the crust and mantle. The inventory of these elements in the Earth's crust is important, not just because some of them constitute the building blocks of organic matter, but also because they influence the biosphere's climate. The purpose of this work is to evaluate how the decline of heat flow over the course of the Earth's history has influenced the carbon inventory in the Earth's crust. Such an evaluation must first consider whether the rate at which carbon is presently being exchanged between the mantle and crust is sufficient to play an important role in controlling the crustal inventory. Secondly, this exchange of carbon must be reevaluated in the context of the Precambrian Earth's environment. One very important consideration is that the upper mantle was perhaps 300 C hotter 3 b.y. ago than it is today.
A Decade of Shear-Wave Splitting Observations in Alaska
NASA Astrophysics Data System (ADS)
Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.
2010-12-01
Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.
NASA Astrophysics Data System (ADS)
Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena
2016-04-01
Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).
Effects of differentiation on the geodynamics of the early Earth
NASA Astrophysics Data System (ADS)
Piccolo, Andrea; Kaus, Boris; White, Richard; Johnson, Tim
2016-04-01
Archean geodynamic processes are not well understood, but there is general agreement that the mantle potential temperature was higher than present, and that as a consequence significant amounts of melt were produced both in the mantle and any overlying crust. This has likely resulted in crustal differentiation. An early attempt to model the geodynamic effects of differentiation was made by Johnson et al. (2014), who used numerical modeling to investigate the crust production and recycling in conjunction with representative phase diagrams (based on the inferred chemical composition of the primary melt in accordance with the Archean temperature field). The results of the simulations show that the base of the over-thickened primary basaltic crust becomes gravitational unstable due to the mineral assemblage changes. This instability leads to the dripping of dense material into the mantle, which causes an asthenospheric return flow, local partial melting and new primary crust generation that is rapidly recycled in to mantle. Whereas they gave important insights, the previous simulations were simplified in a number of aspects: 1) the rheology employed was viscous, and both elasticity and pressure-dependent plasticity were not considered; 2) extracted mantle melts were 100% transformed into volcanic rocks, whereas on the present day Earth only about 20-30% are volcanic and the remainder is plutonic; 3) the effect of a free surface was not studied in a systematic manner. In order to better understand how these simplifications affect the geodynamic models, we here present additional simulations to study the effects of each of these parameters. Johnson, T.E., Brown, M., Kaus, B., and VanTongeren, J.A., 2014, Delamination and recycling of Archaean crust caused by gravitational instabilities: Nature Geoscience, v. 7, no. 1, p. 47-52, doi: 10.1038/NGEO2019.
NASA Astrophysics Data System (ADS)
Anderson, D. L.
2014-12-01
Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these models.
Toward computational models of magma genesis and geochemical transport in subduction zones
NASA Astrophysics Data System (ADS)
Katz, R.; Spiegelman, M.
2003-04-01
The chemistry of material erupted from subduction-related volcanoes records important information about the processes that lead to its formation at depth in the Earth. Self-consistent numerical simulations provide a useful tool for interpreting this data as they can explore the non-linear feedbacks between processes that control the generation and transport of magma. A model capable of addressing such issues should include three critical components: (1) a variable viscosity solid flow solver with smooth and accurate pressure and velocity fields, (2) a parameterization of mass transfer reactions between the solid and fluid phases and (3) a consistent fluid flow and reactive transport code. We report on progress on each of these parts. To handle variable-viscosity solid-flow in the mantle wedge, we are adapting a Patankar-based FAS multigrid scheme developed by Albers (2000, J. Comp. Phys.). The pressure field in this scheme is the solution to an elliptic equation on a staggered grid. Thus we expect computed pressure fields to have smooth gradient fields suitable for porous flow calculations, unlike those of commonly used penalty-method schemes. Use of a temperature and strain-rate dependent mantle rheology has been shown to have important consequences for the pattern of flow and the temperature structure in the wedge. For computing thermal structure we present a novel scheme that is a hybrid of Crank-Nicholson (CN) and Semi-Lagrangian (SL) methods. We have tested the SLCN scheme on advection across a broad range of Peclet numbers and show the results. This scheme is also useful for low-diffusivity chemical transport. We also describe our parameterization of hydrous mantle melting [Katz et. al., G3, 2002 in review]. This parameterization is designed to capture the melting behavior of peridotite--water systems over parameter ranges relevant to subduction. The parameterization incorporates data and intuition gained from laboratory experiments and thermodynamic calculations yet it remains flexible and computationally efficient. Given accurate solid-flow fields, a parameterization of hydrous melting and a method for calculating thermal structure (enforcing energy conservation), the final step is to integrate these components into a consistent framework for reactive-flow and chemical transport in deformable porous media. We present preliminary results for reactive flow in 2-D static and upwelling columns and discuss possible mechanical and chemical consequences of open system reactive melting with application to arcs.
Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy.
Rümpker, Georg; Ryberg, Trond; Bock, Günter
2003-10-02
Lithospheric-scale transform faults play an important role in the dynamics of global plate motion. Near-surface deformation fields for such faults are relatively well documented by satellite geodesy, strain measurements and earthquake source studies, and deeper crustal structure has been imaged by seismic profiling. Relatively little is known, however, about deformation taking place in the subcrustal lithosphere--that is, the width and depth of the region associated with the deformation, the transition between deformed and undeformed lithosphere and the interaction between lithospheric and asthenospheric mantle flow at the plate boundary. Here we present evidence for a narrow, approximately 20-km-wide, subcrustal anisotropic zone of fault-parallel mineral alignment beneath the Dead Sea transform, obtained from an inversion of shear-wave splitting observations along a dense receiver profile. The geometry of this zone and the contrast between distinct anisotropic domains suggest subhorizontal mantle flow within a vertical boundary layer that extends through the entire lithosphere and accommodates the transform motion between the African and Arabian plates within this relatively narrow zone.
NASA Astrophysics Data System (ADS)
Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared
2016-12-01
This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at 3 GPa being more silica-poor than melts at 2 GPa. Thus, variable bulk H2O and pressure of melt generation results in the partial melts from this study varying in composition from phonotephrite to basaltic andesite at 2 GPa and foidite/phonotephrite to basalt at 3 GPa, forming a spectrum of arc magmas. Modeling suggests that the trace element patterns of sediment-melt are unaffected by the process of hybridization within the hotter core of the mantle-wedge. K2O/H2O and H2O/Ce ratios of the sediment-melts are unaffected, within error, by the process of hybridization of the mantle-wedge. This implies that thermometers based on K2O/H2O and H2O/Ce ratios of arc lavas may be used to estimate slab-top temperatures when (a) sediment-melt from the slab reaches the hotter core of the mantle-wedge by focused flow (b) sediment-melt freezes in the overlying mantle at the slab-mantle interface and the hybridized package rises as a mélange diapir and partially melts at the hotter core of the mantle-wedge. Based on the results from this study and previous studies, both channelized and porous flow of sediment-melt/fluid through the sub-arc mantle can explain geochemical signatures of arc lavas under specific geodynamic scenarios of fluid/melt fluxing, hybridization, and subsequent mantle melting.
Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, B.; Popov, A.
2013-12-01
The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and/or indented into Asia. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role the continent subduction and indentation plays on the development of continental tectonics during convergence and we discuss the implications these offer for the Asian tectonics. Acknowledgements: Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on MOGON (ZDV Mainz computing center) and JUQUEEN (Jülich high-performance computing center).
Seismic anisotropy beneath South China Sea: using SKS splitting to constrain mantle flow
NASA Astrophysics Data System (ADS)
Xue, M.; Le, K.; Yang, T.
2011-12-01
The evolution of South China Sea is under debate and several hypotheses have been proposed: (1) The collision of India plate and Eurasia plate; (2) the backward movement of the Pacific subduction plate; (3) mantle upwelling; and (4) combinations of above hypotheses. All these causal mechanisms emphasize the contributions of deep structures to the evolution of South China Sea. In this study we use earthquake data recorded by seismic stations surrounding South China Sea to constrain mantle flow beneath. To fill the vacancy of seismic data in Viet Nam, we deployed 4 seismic stations (VT01-VT04) in a roughly north - south orientation in Viet Nam in Nov. 2009. We combine the VT dataset with the AD and MY datasets from IRIS and select 81 events for SKS splitting analysis. Measurements were made at 11 stations using Wolfe and Silver (1998)'s multi-event stacking procedure. Our observed splitting directions in Vietnam are generally consistent with those of Bai et. al. (2009) . In northern Vietnam, the splitting times are around 1 sec and the fast directions are NWW-SEE, parallel to the absolute plate motion as well as the motion of the Earth surface, implying the crust and the mantle are coupled in this region and is moving as a result of the collision of India and China. While in southern Vietnam and Malaya, the fast directions are NE-SW, almost perpendicular to the absolute plate motion as well as the surface motion of Eurasia plate. However, the observed NE-SW is parallel to the subduction direction of the Australian plate, which might be caused by the mantle flow along NE-SW induced by the subduction.
Kirby, S.H.; Raleigh, C.B.
1973-01-01
The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.
NASA Astrophysics Data System (ADS)
Batiza, Rodey
1991-12-01
We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di=f(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO=10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt% in order to interpret natural MORB liquids. This model allows us to calculate Po, Pf, To, Tf, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR) 8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lamont seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (~100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading Center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lamont seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and a adiabatic temperature gradient in the subaxial mantle away from offsets. The MAR at 26°S exhibits the so-called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow-spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow.
NASA Astrophysics Data System (ADS)
Niu, Yaoling; Batiza, Rodey
1991-12-01
We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di = ƒ(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO = 10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate Po, Pƒ, To, Tƒ, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (-100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and an adiabatic temperature gradient in the sub axial mantle away from offsets. The MAR at 26°S exhibits the so-called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow-spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow.
NASA Astrophysics Data System (ADS)
Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles
2016-04-01
Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.
Thermo-mechanically coupled subduction with a free surface using ASPECT
NASA Astrophysics Data System (ADS)
Fraters, Menno; Glerum, Anne; Thieulot, Cedric; Spakman, Wim
2014-05-01
ASPECT (Kronbichler et al., 2012), short for Advanced Solver for Problems in Earth's ConvecTion, is a new Finite Element code which was originally designed for thermally driven (mantle) convection and is built on state of the art numerical methods (adaptive mesh refinement, linear and nonlinear solver, stabilization of transport dominated processes and a high scalability on multiple processors). Here we present an application of ASPECT to modeling of fully thermo-mechanically coupled subduction. Our subduction model contains three different compositions: a crustal composition on top of both the subducting slab and the overriding plate, a mantle composition and a sticky air composition, which allows for simulating a free surface for modeling topography build-up. We implemented a visco-plastic rheology using frictional plasticity and a composite viscosity defined by diffusion and dislocation creep. The lithospheric mantle has the same composition as the mantle but has a higher viscosity because of a lower temperature. The temperature field is implemented in ASPECT as follows: a linear temperature gradient for the lithosphere and an adiabatic geotherm for the sublithospheric mantle. Initial slab temperature is defined using the analytical solution of McKenzie (1970). The plates can be pushed from the sides of the model, and it is possible to define an additional independent mantle in/out flow through the boundaries. We will show a preliminary set of models, highlighting the codes capabilities, such as the Adaptive Mesh Refinement, topography development and the influence of mantle flow on the subduction evolution. Kronbichler, M., Heister, T., and Bangerth, W. (2012), High accuracy mantle convection simulation through modern numerical methods, Geophysical Journal International,191, 12-29, doi:10.1111/j.1365-246X.2012.05609. McKenzie, D.P. (1970), Temperature and potential temperature beneath island arcs, Teconophysics, 10, 357-366, doi:10.1016/0040-1951(70)90115-0.
NASA Astrophysics Data System (ADS)
Wang, Jian; Li, Chun-Feng
2015-01-01
The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.
The Moho as a magnetic boundary. [Earth crust-mantle boundary
NASA Technical Reports Server (NTRS)
Wasilewski, P. J.; Thomas, H. H.; Mayhew, M. A.
1979-01-01
Magnetism in the crust and the upper mantle and magnetic results indicating that the seismic Moho is a magnetic boundary are considered. Mantle derived rocks - peridotites from St. Pauls rocks, dunite xenoliths from the Kaupulehu flow, and peridotite, dunite, and eclogite xenoliths from Roberts Victor and San Carlos diatremes - are weakly magnetic with saturation magnetization values from 0.013 emu/gm to less than 0.001 emu/gm which is equivalent to 0.01 to 0.001 wt% Fe304. Literature on the minerals in mantle xenoliths shows that metals and primary Fe304 are absent, and that complex Cr, Mg, Al, and Fe spinels are dominant. These spinels are non-magnetic at mantle temperatures, and the crust/mantle boundary can be specified as a magnetic mineralogy discontinuity. The new magnetic results indicate that the seismic Moho is a magnetic boundary, the source of magnetization is in the crust, and the maximum Curie isotherm depends on magnetic mineralogy and is located at depths which vary with the regional geothermal gradient.
A dynamic model of Venus's gravity field
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
NASA Technical Reports Server (NTRS)
Abbott, D.; Hoffman, S.
1985-01-01
The recycling of sediments into the mantle has become an important issue because recent papers have suggested that the geochemical inverse models of the evolution of radiogenic isotope abundances over the history of the Earth have nonunique solutions. Both the recycling of continent-derived sediments into the mantle and mixing in the mantle could produce similar geochemical effects in the mean isotopic ratios of new igneous material emplaced in continents. Recent models of Archaean heat flow and of plate tectonics during early Earth history have demonstrated that higher internal heat production of the early Earth was mainly dissipated through a higher creation rate of oceanic lithosphere. If the seafloor creation rate was higher on the early Earth, then the residence time of any one piece of oceanic lithosphere on the surface would have been shorter. It is possible that a higher rate of recycling of oceanic lithosphere into the mantle could have resulted in some transport of sediment into the mantle.
Lithosphere mantle density of the North China Craton based on gravity data
NASA Astrophysics Data System (ADS)
Xia, B.; Artemieva, I. M.; Thybo, H.
2017-12-01
Based on gravity, seismic and thermal data we constrained the lithospheric mantle density at in-situ and STP condition. The gravity effect of topography, sedimentary cover, Moho and Lithosphere-Asthenosphere Boundary variation were removed from free-air gravity anomaly model. The sedimentary covers with density range from 1.80 g/cm3 with soft sediments to 2.40 g/cm3 with sandstone and limestone sediments. The average crustal density with values of 2.70 - 2.78 g/cm3 which corresponds the thickness and density of the sedimentary cover. Based on the new thermal model, the surface heat flow in original the North China Craton including western block is > 60 mW/m2. Moho temperature ranges from 450 - 600 OC in the eastern block and in the western block is 550 - 650 OC. The thermal lithosphere is 100 -140 km thick where have the surface heat flow of 60 - 70 mW/m2. The gravity effect of surface topography, sedimentary cover, Moho depth are 0 to +150 mGal, - 20 to -120 mGal and +50 to -200 mGal, respectively. By driving the thermal lithosphere, the gravity effect of the lithosphere-asthenosphere boundary ranges from 20 mGal to +200 mGal which shows strong correction with the thickness of the lithosphere. The relationship between the gravity effect of the lithosphere-asthenosphere boundary and the lithosphere thickness also for the seismic lithosphere, and the value of gravity effect is 0 to +220 mGal. The lithospheric mantle residual gravity which caused by lithospheric density variation range from -200 to +50 mGal by using the thermal lithosphere and from -250 to +100 mGal by driving the seismic lithosphere. For thermal lithosphere, the lithospheric mantle density with values of 3.21- 3.26 g/cm3 at in-situ condition and 3.33 - 3.38 g/cm3 at STP condition. Using seismic lithosphere, density of lithosphere ranges from 3.20 - 3.26 g/cm3 at in-situ condition and 3.31 - 3.41 g/cm3 at STP condition. The subcontinental lithosphere of the North China Craton is highly heterogeneous with Archean lithosphere at the southwestern of the Eastern Block, major the Trans-North China Orogen and western part of the Western Block. The lithospheric mantle beneath the northern part of the Eastern Block, central segment of the Trans-North China Craton and the eastern margin of the Western Block have experienced modification and replacement.
Evidence of lower-mantle slab penetration phases in plate motions.
Goes, Saskia; Capitanio, Fabio A; Morra, Gabriele
2008-02-21
It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth's plate tectonic style of mantle convection. But whether and how subducting plates penetrate into the lower mantle is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the mantle. Here we identify lower-mantle slab penetration events by comparing Cenozoic plate motions at the Earth's main subduction zones with motions predicted by fully dynamic models of the upper-mantle phase of subduction, driven solely by downgoing plate density. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower mantle, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-mantle penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower mantle. Thus we identify a direct expression of time-dependent flow between the upper and lower mantle.
3D Deformation and Evolution of Mediterranean Basins: Insights From Crustal and Mantle Anisotropy
NASA Astrophysics Data System (ADS)
Lebedev, S.; Endrun, B.; Meier, T. M.; Adam, J.; Tirel, C.
2010-12-01
The slow convergence of Africa and Eurasia has been accompanied by spectacular tectonic activity within the Mediterranean. The evolution and retreat of multiple subduction zones has brought about pervasive deformation of continental back-arc basins. Continental deformation in the Mediterranean is at rates among the highest globally, and with diverse patterns and boundary conditions. Better understanding of this deformation promises important new insights into the dynamics of continents, and numerous competing models have been put forward. The lack of consensus to date is in large part due to the paucity of observational constraints on the deformation and flow within the deep crust and lithospheric mantle. Observations of seismic anisotropy provide constraints on deformation at depth. Array analysis of surface waves, in particular, can resolve variations in anisotropic fabric both laterally and as a function of depth. Analyses of other data types, including SKS splitting and Pn anisotropy, cross-validate and complement surface-wave constraints on anisotropy. Recent seismic-anisotropy imaging in the North Tyrrhenian and the Aegean indicates widespread diffuse deformation within the lithosphere, some of it with previously unknown patterns. Anisotropy shows the layering of finite strain in the crust and mantle. It reveals complex, depth-dependent flow patterns within the extending lithosphere and underlying asthenosphere. In the northern Aegean, fast shear-wave propagation directions within the mantle lithosphere are N-S, parallel to the direction of current extension. This indicates that the brittle upper crust, undergoing both stretching and bookshelf-like faulting on NE-SW trending faults, is underlain by a viscous mantle lithosphere that is flowing straight in the direction of the N-S extension. In the south-central Aegean, deforming weakly at present, anisotropic fabric in the lower crust trends parallel to the direction of paleo-extension in the Miocene; this fabric is a record of pervasive crustal flow that accompanied the exhumation of metamorphic core complexes at that time. In the North Tyrrhenian, extension over the last 10 m.y. has also caused exhumation of metamorphic rocks, with stretching lineations recording an E-W extension direction. Anisotropic fabric in both the lower crust and mantle lithosphere match this direction, confirming that viscous flow within both layers has accommodated the extension. Previously observed SKS-wave splitting in the northern and central Aegean shows predominantly NE-SW fast-propagation directions and is likely to indicate current and recent flow in the asthenosphere due to the rapid retreat of the Hellenic subduction zone. In the North Tyrrhenian, anisotropy also changes at the lithosphere-asthenosphere boundary. Whereas the lithosphere preserves the E-W trending fabric that is a record of recent extension, the asthenosphere shows NW-SE trending fabric that indicates asthenospheric flow parallel to the Apennines and the trench, probably related to the complex configuration of the subducting slabs beneath the Alps and the Apennines.
Mantle thermal history during supercontinent assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Zhong, S.
2013-12-01
We use mantle convection simulations driven by plate motion boundary conditions to investigate changes in mantle temperature through time. It has been suggested that circum-Pangean subduction prevented convective thermal mixing between sub-continental and sub-oceanic regions. We performed thermo-chemical simulations of mantle convection with velocity boundary conditions based on plate motions for the past 450 Myr using Earth-like Rayleigh number and ~60% internal heating using three different plate motion models for the last 200 Myr [Lithgow-Bertelloni and Richards 1998; Gurnis et al. 2012; Seton et al. 2012; Zhang et al. 2010]. We quantified changes in upper-mantle temperature between 200-1000 km depth beneath continents (defined as the oldest 30% of Earth's surface) and beneath oceans. Sub-continental upper mantle temperature was relatively stable and high between 330 and 220 Ma, coincident with the existence of the supercontinent Pangea. The average sub-continental temperature during this period was, however, only ~10 K greater than during the preceding 100 Myr. In the ~200 Myr since the breakup of Pangea, sub-continental temperatures have decreased only ~15 K in excess of the 0.02 K/Myr secular cooling present in our models. Sub-oceanic upper mantle temperatures did not vary more than 5 K between 400 and 200 Ma and the cooling trend following Pangea breakup is less pronounced. Recent geochemical observations imply rapid upper mantle cooling of O(10^2) K during continental breakup; our models do not produce warming of this magnitude beneath Pangea or cooling of similar magnitude associated with the breakup of Pangea. Our models differ from those that produce strong sub-continental heating in that the circum-Pangean subduction curtain does not completely inhibit mixing between the sub-continental and sub-oceanic regions and we include significant internal heating, which limits the rate of temperature increase. Heat transport in our simulations is controlled to first order by plate motions. Most of the temporal variability in surface heat flow is driven by variations in seafloor spreading rate and the accompanying changes in slab velocities dominate variations in buoyancy flux at all mantle depths. Variations in plume buoyancy flux are small but are correlated with the slab buoyancy flux variations.
Mantle Flow and Melting Processes Beneath Back-Arc Basins
NASA Astrophysics Data System (ADS)
Hall, P. S.
2007-12-01
The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.
Passive margins getting squeezed in the mantle convection vice
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent; Becker, Thorsten W.; Pedoja, Kevin
2014-05-01
Passive margins often exhibit uplift, exhumation and tectonic inversion. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. In the same time, the many mountain belts at active margins that accompany this event seem readily witness this increase. However, how that compression increase affects passive margins remains unclear. In order to address this issue, we design a 2D viscous numerical model wherein a lithospheric plate rests above a weaker mantle. It is driven by a mantle conveyor belt, alternatively excited by a lateral downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, representing the cases of free convergence, and collision or slab anchoring, respectively. This distinction changes the upper boundary condition for mantle circulation and, as a consequence, the stress field. Our results show that between these two regimes, the flow pattern transiently evolves from a free-slip convection mode towards a no-slip boundary condition above the upper mantle. In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins provided that upwellings are active. Conversely, if downwellings alone are activated, compression occurs at short distances from the trench and extension prevails elsewhere. These results are supported by Earth-like 3D spherical models that reveal the same pattern, where active upwellings are required to excite passive margins compression. These results support the idea that compression at passive margins, is the response to the underlying mantle flow, that is increasingly resisted by the Cenozoic collisions.
Abrupt Upper-Plate Tilting Upon Slab-Transition-Zone Collision
NASA Astrophysics Data System (ADS)
Crameri, F.; Lithgow-Bertelloni, C. R.
2017-12-01
During its sinking, the remnant of a surface plate crosses and interacts with multiple boundaries in Earth's interior. The most-prominent dynamic interaction arises at the upper-mantle transition zone where the sinking plate is strongly affected by the higher-viscosity lower mantle. Within our numerical model, we unravel, for the first time, that this very collision of the sinking slab with the transition zone induces a sudden, dramatic downward tilt of the upper plate towards the subduction trench. The slab-transition zone collision sets parts of the higher-viscosity lower mantle in motion. Naturally, this then induces an overall larger return flow cell that, at its onset, tilts the upper plate abruptly by around 0.05 degrees and over around 10 Millions of years. Such a significant and abrupt variation in surface topography should be clearly visible in temporal geologic records of large-scale surface elevation and might explain continental-wide tilting as observed in Australia since the Eocene or North America during the Phanerozoic. Unravelling this crucial mantle-lithosphere interaction was possible thanks to state-of-the-art numerical modelling (powered by StagYY; Tackley 2008, PEPI) and post-processing (powered by StagLab; www.fabiocrameri.ch/software). The new model that is introduced here to study the dynamically self-consistent temporal evolution of subduction features accurate subduction-zone topography, robust single-sided plate sinking, stronger plates close to laboratory values, an upper-mantle phase transition and, crucially, simple continents at a free surface. A novel, fully-automated post-processing includes physical model diagnostics like slab geometry, mantle flow pattern, upper-plate tilt angle and trench location.
Anisotropy in the lowermost mantle beneath the circum-Pacific: observations and modelling
NASA Astrophysics Data System (ADS)
Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.
2014-12-01
The lowermost 300 km of mantle (D'') acts as the lower boundary layer to mantle convection. Numerous observations find that this layer is anisotropic, unlike the bulk of the lower mantle above, which is isotropic. The causal mechanism for this anisotropy remains elusive, though its organisation is likely to be imposed by deformation associated with mantle convection. The subduction of the Tethys ocean (since 180 Ma) is predicted to have deposited slab material in D'' in circum-Pacific regions, making these regions cold, encouraging the phase transformation in the MgSiO3 polymorph bridgmanite to a post-perovskite (ppv) structure. These regions are probably rich in ppv. Here we present new observations of anisotropy from shear wave splitting of ScS phases recorded in the epicentral distance range 50-85 degrees. These observations are corrected for anisotropy in the upper mantle beneath source and receiver. Due to the layout of events and receivers we primarily sample D'' beneath the landward side of the circum-Pacific. A detailed pattern of anisotropy is revealed. Anisotropy predominantly leads to SH fast wave propagation with an inferred average strength of 0.9%. This is consistent with many previous observations. However, we do not limit our observations to the SH/SV system. Many observations show non SH/SV fast polarisation. We interpret these data for tilted transverse isotropy (TTI) style anisotropy. We resolve non-radial anisotropy at unprecedented global scale, in turn placing new constraints on the D'' flow field. We test the ability of the flow model TX2008 (Simmons et al., 2009) to fit our observations. This is achieved by modelling the development of a lattice preferred orientation texture of a ppv layer subject to this flow field using a visco-plastic self consistent theory (Walker et al., 2011). Due to uncertainty in the slip system of ppv three candidate glide planes are trialled: (100)/{110}, (010), and (001). The seismic anisotropy of these models is probed using the full wave field simulation code SPECFEM3D_GLOBE (Tromp et al., 2008). Using these synthetic seismograms we assess the ability of flow model TX2008 (assuming a ppv D'') to explain our observations, and determine which slip system fits the data best.
Mapping seismic azimuthal anisotropy of the Japan subduction zone
NASA Astrophysics Data System (ADS)
Zhao, D.; Liu, X.
2016-12-01
We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi:10.1002/2016JB013116. Zhao, D., S. Yu, X. Liu (2016) Seismic anisotropy tomography: New insight into subduction dynamics. Gondwana Res. 33, 24-43.
New insight into the Upper Mantle Structure Beneath the Pacific Ocean Using PP and SS Precursors
NASA Astrophysics Data System (ADS)
Gurrola, H.; Rogers, K. D.
2013-12-01
The passing of the EarthScope Transportable array has provided a dense data set that enabled beam forming of SS and PP data that resultes in improved frequency content to as much a 1 Hz in the imaging of upper mantle structure. This combined with the application of simultaneous iterative deconvolution has resulted in images to as much as 4 Hz. The processing however results in structure being averaged over regions of 60 to 100 km in radius. This is becomes a powerful new tool to image the upper mantle beneath Oceanic regions where locating stations is expensive and difficult. This presentation will summarize work from a number of regions as to new observations of the upper mantle beneath the Pacific and Arctic Oceans. Images from a region of the Pacific Ocean furthest from hot spots or subduction zones (we will refer to this as the 'reference region'). show considerable layering in the upper mantle. The 410 km discontinuity is always imaged using these tools and appears to be a very sharp boundary. It does usually appear as an isolated positive phase. There appears to be a LAB at ~100 km as expected but there is a strong negative phase at ~ 200 km with a positive phase 15 km deeper. This is best explained as a lens of partial melt as expected for this depth based on the geothermal gradient. If so this should be a low friction point and so we would expect it to accommodate plate motion. Imaging of the Aleutian subduction zone does show the 100 km deep LAB as it descends but this 200 km deep horizon appears as a week descending positive anomaly without the shallower negative pulse. In addition to the 410, 100 and 200 km discontinuities there are a number of paired anomalies, between the 200 and 400 km depths, with a negative pulse 15 to 20 km shallower then the positive pulse. We do not believe these are side lobes or we would see side lobes on the 100 km and 410 km discontinuities. We believe these to be the result of friction induced partial melt along zones of critical failure to accommodate differential mantle flow with depth. The paired layers disappear beneath the Hawaiian Island chain. We believe heat from the hot spot warms the mantle beneath the Hawaiian island chain so flow is more easily accommodated. As a result the lenses of melt disappear in the region near hot spots.
Coupling surface and mantle dynamics: A novel experimental approach
NASA Astrophysics Data System (ADS)
Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea
2015-05-01
Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.
NASA Astrophysics Data System (ADS)
Deng, J.; Lee, K. K. M.
2017-12-01
At nearly 2900 km depth, the core-mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron-alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure and seismic velocities. Here we compute the melting phase relations of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's mantle, at CMB conditions and find that ultralow-velocity zones (ULVZs) could be explained by solid ferropericlase with 35 < Mg# = 100×(Mg/(Mg+Fe) by mol%) < 65. For compositions outside of this range, a solid ferropericlase cannot explain ULVZs. Additionally, solid ferropericlase can also provide a matrix for iron infiltration at the CMB by morphological instability, providing a mechanism for a high electrical conductivity layer of appropriate length scale inferred from core nutations.
Earth's interior. Dehydration melting at the top of the lower mantle.
Schmandt, Brandon; Jacobsen, Steven D; Becker, Thorsten W; Liu, Zhenxian; Dueker, Kenneth G
2014-06-13
The high water storage capacity of minerals in Earth's mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conversions recorded by a dense seismic array in North America. In experiments, the transition of hydrous ringwoodite to perovskite and (Mg,Fe)O produces intergranular melt. Detections of abrupt decreases in seismic velocity where downwelling mantle is inferred are consistent with partial melt below 660 kilometers. These results suggest hydration of a large region of the transition zone and that dehydration melting may act to trap H2O in the transition zone. Copyright © 2014, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Yuen, D. A.; Schubert, G.
1976-01-01
Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.
Sintering mantle mineral aggregates with submicron grains: examples of olivine and clinopyroxene
NASA Astrophysics Data System (ADS)
Tsubokawa, Y.; Ishikawa, M.
2017-12-01
Physical property of the major mantle minerals play an important role in the dynamic behavior of the Earth's mantle. Recently, it has been found that nano- to sub-micron scale frictional processes might control faulting processes and earthquake instability, and ultrafine-grained mineral aggregates thus have attracted the growing interest. Here we investigated a method for preparing polycrystalline clinoyproxene and polycrystalline olivine with grain size of sub-micron scale from natural crystals, two main constituents of the upper mantle. Nano-sized powders of both minerals are sintered under argon flow at temperatures ranging from 1130-1350 °C for 0.5-20 h. After sintering at 1180 °C and 1300 °C, we successfully fabricated polycrystalline clinopyroxene and polycrystalline olivine with grain size of < 500 nm, respectively. Our experiments demonstrate future measurements of ultrafine-grained mineral aggregates on its physical properties of Earth's mantle.
Grier, David D; Al-Quran, Samer Z; Cardona, Diana M; Li, Ying; Braylan, Raul C
2012-01-01
The diagnosis of B-cell lymphoma (BCL) is often dependent on the detection of clonal immunoglobulin (Ig) light chain expression. In some BCLs, the determination of clonality based on Ig light chain restriction may be difficult. The aim of our study was to assess the utility of flow cytometric analysis of surface Ig heavy chain (HC) expression in lymphoid tissues in distinguishing lymphoid hyperplasias from BCLs, and also differentiating various BCL subtypes. HC expression on B-cells varied among different types of hyperplasias. In follicular hyperplasia, IgM and IgD expression was high in mantle cells while germinal center cells showed poor HC expression. In other hyperplasias, B cell compartments were blurred but generally showed high IgD and IgM expression. Compared to hyperplasias, BCLs varied in IgM expression. Small lymphocytic lymphomas had lower IgM expression than mantle cell lymphomas. Of importance, IgD expression was significantly lower in BCLs than in hyperplasias, a finding that can be useful in differentiating lymphoma from reactive processes. PMID:22400070
Transition to hard turbulence in thermal convection at infinite Prandtl number
NASA Technical Reports Server (NTRS)
Hansen, Ulrich; Yuen, David A.; Kroening, Sherri E.
1990-01-01
Direct numerical simulations of two-dimensional high Rayleigh (Ra) number, base-heated thermal convection in large aspect-ratio boxes are presented for infinite Prandtl number fluids, as applied to the earth's mantle. A transition is characaterized in the flow structures in the neighborhood of Ra between 10 to the 7th and 10 to the 8th. These high Ra flows consist of large-scale cells with strong intermittent, boundary-layer instabilities. For Ra exceeding 10 to the 7th it is found that the heat-transfer mechanism changes from one characterized by mushroom-like plumes to one consisting of disconnected ascending instabilities, which do not carry with them all the thermal anomaly from the bottom boundary layer. Plume-plume collisions become much more prominent in high Ra situations and have a tendency of generating a pulse-like behavior in the fixed plume. This type of instability represents a distinct mode of heat transfer in the hard turbulent regime. Predictions of this model can be used to address certain issues concerning the mode of time-dependent convection in the earth's mantle.
Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow
NASA Astrophysics Data System (ADS)
Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar
2014-09-01
We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.
Imprints of Geodynamic Processes on the Paleoclimate Record
NASA Astrophysics Data System (ADS)
Austermann, Jacqueline
In this thesis I investigate how solid Earth deformation associated with glacial isostatic adjustment and mantle convection impacted ice age climate. In particular, I discard approximations that treat the Earth's internal properties as radially symmetric and demonstrate that lateral variations in viscosity and density within the Earth's mantle play an important role in understanding and interpreting surface observations. At the beginning of this thesis, I turn my attention to the Last Glacial Maximum, 21 kyr ago. Estimates of the globally averaged sea level low stand, or equivalently maximum (excess) ice volume, have been a source of contention, ranging from -120 m to -135 m. These bounding values were obtained by correcting local sea level records from Barbados and northern Australia, respectively, for deformation due to glacial isostatic adjustment using 1-D viscoelastic Earth models. I demonstrate that including laterally varying mantle structure, and particularly the presence of a high viscosity slab consistent with seismic imaging and the tectonic history of the Caribbean region, leads to a significant reinterpretation of the Barbados sea level record. The revised analysis places the sea level low stand at close to -130 m, bringing it into accord with the inferred value from northern Australia within their relative uncertainties. In the following three chapters I explore the effects of dynamic topography on sea level records during past warm periods. Dynamic topography is supported by viscous flow and buoyancy variations in the Earth's mantle and lithosphere. I begin by developing a theoretical framework for computing gravitationally self-consistent sea level changes driven by dynamic topography and then combine this framework with models of mantle convective flow to investigate two important time periods in the geologic past. First, I examine the Last Interglacial (LIG) period, approximately 125 kyrs ago, which is considered to be a recent analogue for our warming world. I show that changes in dynamic topography since the LIG are on the order of a few meters, making them a non negligible source of uncertainty in estimates of excess melting during this time period. Second, I turn to the mid-Pliocene warm period (MPWP), ca. 3 Ma ago, which is a more ancient analogue for climate of the near future since temperatures were elevated, on average by 2ºC. Dynamic topography has been shown to significantly deform the elevation of shoreline markers of mid-Pliocene age, particularly along the U.S. Atlantic coastal plain. It has also profoundly altered bedrock topography within the Antarctic over the last 3 Myr. I couple my dynamic topography calculations to an Antarctic Ice Sheet model to explore this previously unrecognized connection and find that changes in topography associated with mantle flow have a significant effect on ice sheet retreat in the marine-based Wilkes basin, suggesting levels of ancient instability that are consistent with offshore geological records from the region. This finding indicates that the degree to which the mid-Pliocene can be regarded as an analogue for future climate is complicated by large-scale dynamic changes in the solid Earth. In the final section of this thesis, I move to the surface record of large igneous provinces (LIPs) - which are often cited as mantle flow induced drivers of critical events in Earth's ancient climate - and examine whether the location of LIPs carries information about the stability of large-scale structures in the deep mantle that have been imaged by seismic tomography. In particular, I investigate the spatial correlation between LIPs, which are the surface expression of deep sourced mantle plumes, and large low shear wave velocity provinces (LLSVPs) at the core mantle boundary. A correlation between LIPs and margins of LLSVPs has been used to argue that LLSVPs are thermochemical piles that have been stationary over time scales exceeding many hundreds of millions of years. My statistical analysis indicates that there is a statistically significant correlation between LIPs and the overall geographic extent of LLSVPs, and this admits the possibility that LLSVPs may be more transient, thermally dominated structures. I conclude that given the limited record of LIPs, one cannot distinguish between the two hypotheses that they are correlated with the edges or the areal extent of the LLSVPs.
NASA Astrophysics Data System (ADS)
Fernandez, M.; Torne, M.; Carballo, A.; Jiménez-Munt, I.; Verges, J.; Villasenor, A.; Garcia-Castellanos, D.; Diaz Cusi, J.
2015-12-01
We present a geophysical and petrological study that aims to define the lithosphere structure and the variations of the chemical composition of the lithospheric mantle along three geo-transects crossing Iberia, the westernmost Mediterranean and North Africa. The modeling is based on an integrated geophysical-petrological methodology that combines elevation, gravity, geoid, surface heat flow, seismic and geochemical data. Unlike previous models, where the density of the lithospheric mantle is only temperature-dependent, the applied methodology allows inferring seismic velocities and density in the mantle down to 400 km depth from its chemical composition through self-consistent thermodynamic calculations. The first geo-transect with a length of 1100 km runs from the NE-Iberian Peninsula to the Tell-Atlas Mountains in Algeria. The second profile crosses the entire Iberian Peninsula, from the Northern Iberian Margin to the Alboran Basin. The third runs from the Iberian Massif to the Sahara Platform crossing the Betic-Rif orogenic system through the Gibraltar Strait and the Atlas Mountains. Results are compared to available tomography models and Pn-velocity data. The obtained lithospheric structure shows large lateral variations in crustal and lithospheric mantle thicknesses and mantle chemical composition. Measured low Pn velocities in the Western Mediterranean basin can be explained either by serpentinization and/or seismic anisotropy and only partly by transient thermal effects. In the Bay of Biscay low Pn velocities are explained only by serpentinization. The negative sub-lithospheric velocity anomalies imaged by tomography models below the Iberian plate and the Atlas Mountains are interpreted in terms of high-temperature/low-density regions being responsible for the high mean topography.
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.
2015-09-01
Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.
Pierce, Kenneth L.; Morgan, Lisa A.
2009-01-01
Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plume may reflect southeast flow of the upper mantle.
The Effects of Core-Mantle Interactions on Earth Rotation, Surface Deformation, and Gravity Changes
NASA Astrophysics Data System (ADS)
Watkins, A.; Gross, R. S.; Fu, Y.
2017-12-01
The length-of-day (LOD) contains a 6-year signal, the cause of which is currently unknown. The signal remains after removing tidal and surface fluid effects, thus the cause is generally believed to be angular momentum exchange between the mantle and core. Previous work has established a theoretical relationship between pressure variations at the core-mantle boundary (CMB) and resulting deformation of the overlying mantle and crust. This study examines globally distributed GPS deformation data in search of this effect, and inverts the discovered global inter-annual component for the CMB pressure variations. The geostrophic assumption is then used to obtain fluid flow solutions at the edge of the core from the CMB pressure variations. Taylor's constraint is applied to obtain the flow deeper within the core, and the equivalent angular momentum and LOD changes are computed and compared to the known 6-year LOD signal. The amplitude of the modeled and measured LOD changes agree, but the degree of period and phase agreement is dependent upon the method of isolating the desired component in the GPS position data. Implications are discussed, and predictions are calculated for surface gravity field changes that would arise from the CMB pressure variations.
Quantifying potential recharge in mantled sinkholes using ERT.
Schwartz, Benjamin F; Schreiber, Madeline E
2009-01-01
Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system.
NASA Astrophysics Data System (ADS)
Hansen, Samantha E.; Nyblade, Andrew A.; Benoit, Margaret H.
2012-02-01
While the Cenozoic Afro-Arabian Rift System (AARS) has been the focus of numerous studies, it has long been questioned if low-velocity anomalies in the upper mantle beneath eastern Africa and western Arabia are connected, forming one large anomaly, and if any parts of the anomalous upper mantle structure extend into the lower mantle. To address these questions, we have developed a new image of P-wave velocity variations in the Afro-Arabian mantle using an adaptively parameterized tomography approach and an expanded dataset containing travel-times from earthquakes recorded on many new temporary and permanent seismic networks. Our model shows a laterally continuous, low-velocity region in the upper mantle beneath all of eastern Africa and western Arabia, extending to depths of ~ 500-700 km, as well as a lower mantle anomaly beneath southern Africa that rises from the core-mantle boundary to at least ~ 1100 km depth and possibly connects to the upper mantle anomaly across the transition zone. Geodynamic models which invoke one or more discrete plumes to explain the origin of the AARS are difficult to reconcile with the lateral and depth extent of the upper mantle low-velocity region, as are non-plume models invoking small-scale convection passively induced by lithospheric extension or by edge-flow around thick cratonic lithosphere. Instead, the low-velocity anomaly beneath the AARS can be explained by the African superplume model, where the anomalous upper mantle structure is a continuation of a large, thermo-chemical upwelling in the lower mantle beneath southern Africa. These findings provide further support for a geodynamic connection between processes in Earth's lower mantle and continental break-up within the AARS.
Large-scale compositional heterogeneity in the Earth's mantle
NASA Astrophysics Data System (ADS)
Ballmer, M.
2017-12-01
Seismic imaging of subducted Farallon and Tethys lithosphere in the lower mantle has been taken as evidence for whole-mantle convection, and efficient mantle mixing. However, cosmochemical constraints point to a lower-mantle composition that has a lower Mg/Si compared to upper-mantle pyrolite. Moreover, geochemical signatures of magmatic rocks indicate the long-term persistence of primordial reservoirs somewhere in the mantle. In this presentation, I establish geodynamic mechanisms for sustaining large-scale (primordial) heterogeneity in the Earth's mantle using numerical models. Mantle flow is controlled by rock density and viscosity. Variations in intrinsic rock density, such as due to heterogeneity in basalt or iron content, can induce layering or partial layering in the mantle. Layering can be sustained in the presence of persistent whole mantle convection due to active "unmixing" of heterogeneity in low-viscosity domains, e.g. in the transition zone or near the core-mantle boundary [1]. On the other hand, lateral variations in intrinsic rock viscosity, such as due to heterogeneity in Mg/Si, can strongly affect the mixing timescales of the mantle. In the extreme case, intrinsically strong rocks may remain unmixed through the age of the Earth, and persist as large-scale domains in the mid-mantle due to focusing of deformation along weak conveyor belts [2]. That large-scale lateral heterogeneity and/or layering can persist in the presence of whole-mantle convection can explain the stagnation of some slabs, as well as the deflection of some plumes, in the mid-mantle. These findings indeed motivate new seismic studies for rigorous testing of model predictions. [1] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015), Science Advances, doi:10.1126/sciadv.1500815. [2] Ballmer, M. D., C. Houser, J. W. Hernlund, R. Wentzcovitch, and K. Hirose (2017), Nature Geoscience, doi:10.1038/ngeo2898.
NASA Astrophysics Data System (ADS)
Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.
2015-12-01
Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle. The absence of wholesale hydration of forearcs globally can be taken as evidence that most forearcs are too young to be substantially hydrated, that most subducted water bypasses the forearc and is released deeper, or that most fluid passing through the mantle nose does not react with the mantle.
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.
2008-12-01
The present-day mantle structure is characterized by the African and Pacific superplumes surrounded by subduction slabs. This structure has been demonstrated to result from dynamic interaction between mantle convection and surface plate motion history in the last 120 Ma. With similar techniques, mantle structure has been constructed back to about 100 Ma ago. However, due to the lack in global plate motion reconstructions further back in time, mantle structure for earlier times is poorly understood, despite of their importance in understanding the continental tectonics and volcanisms. Zhong et al. (2007) suggested that the mantle structures alternate between spherical harmonic degrees-1 and -2 structures, modulated by supercontinent processes. In their model, a supercontinent forms in the hemisphere with cold downwellings, and after supercontinent formation, the cold downwellings are replaced with hot upwellings due to return flows associated with circum-supercontinent subduction. This model implies that the African superplume is younger than 330 Ma when Pangea was formed, which is supported by volcanic activities recorded on continents around Pangea time. By using paleomagnetic-geologically reconstructed continental motions between 500 and 200 Ma in a three-dimensional spherical models of mantle convection, this study, for the first time, investigates the time evolution of mantle structures in the African hemisphere associated with Pangea formation. We show that cold downwellings first develop in the mantle between the colliding Laurentia and Gondwana, and that the downwellings are then replaced by upwellings after the formation of Pangea and as circum-Pangea subduction is initiated, consistent with Zhong et al. (2007) and Li et al. (2008). We find that the return flows in response to the circum-Pangea subduction are responsible for the upwellings below Pangea. We also find that even if the mantle in the African hemisphere is initially occupied by hot upwellings, the cold downwellings associated with convergence between Laurentia and Gondwana would destroy the hot upwellings and cause the hemisphere to be cold. These results are insensitive to model parameters such as convective vigor, internal heating rate, and the plate motions in the oceanic hemisphere. We therefore suggest that the African superplume is younger than 330 Ma when Pangea was formed.
Geoid, topography, and convection-driven crustal deformation on Venus
NASA Technical Reports Server (NTRS)
Simons, Mark; Hager, Bradford H.; Solomon, Sean C.
1992-01-01
High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between surface topography, crustal deformation, and the observed gravity field.
NASA Astrophysics Data System (ADS)
Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.
2017-12-01
Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.
Late Cenozoic Samtskhe-Javakheti Volcanic Highland, Georgia:The Result of Mantle Plumes Activity
NASA Astrophysics Data System (ADS)
Okrostsvaridze, Avtandil
2017-04-01
Late Cenozoic Samtskhe-Javakheti continental volcanic highland (1500-2500 m a.s.l) is located in the SW part of the Lesser Caucasus. In Georgia the highland occupies more than 4500 km2, however its large part spreads towards the South over the territories of Turkey and Armenia. One can point out three stages of magmatic activity in this volcanic highland: 1. Early Pliocene activity (5.2-2.8 Ma; zircons U-Pb age) - when a large part of the highland was built up. It is formed from volcanic lava-breccias of andesite-dacitic composition, pyroclastic rocks and andesite-basalt lava flow. The evidences of this structure are: a large volume of volcanic material (>1500 km3); big thickness (700-1100 m in average), large-scale of lava flows (length 35 km, width 2.5-3.5 km, thickness 30-80 m), big thickness of volcanic ash horizons (300 cm at some places) and big size of volcanic breccias (diameter >1 m). Based on this data we assume that a source of this structure was a supervolcano (Okrostsvaridze et al., 2016); 2. Early Pleistocene activity (2.4 -1.6 Ma; zircons U-Pb age) - when continental flood basalts of 100-300 m thickness were formed. The flow is fully crystalline, coarse-grained, which mainly consist of olivine and basic labradorite. There 143Nd/144Nd parameter varies in the range of +0.41703 - +0.52304, and 87Sr/88Sr - from 0.7034 to 0.7039; 3. Late Pleistocene activity (0.35-0.021 Ma; zircons U-Pb age) - when intraplate Abul-Samsari linear volcanic ridge of andesite composition was formed stretching to the S-N direction for 40 km with the 8-12 km width and contains more than 20 volcanic edifices. To the South of the Abul-Samsari ridge the oldest (0.35-0.30 Ma; zircons U-Pb age) volcano Didi Abuli (3305 m a.s.l.) is located. To the North ages of volcano edifices gradually increase. Farther North the youngest volcano Tavkvetili (0.021-0. 030 Ma) is located (2583 m a.s.l.). One can see from this description that the Abul-Samsari ridge has all signs characterizing intraplate volcanic ridge. Based on our studies, we assume that the Samtskhe-Javakheti volcanic highland is a result of full cycle mantle plume activity and not of by adiabatic decompression melting of the asthenosphere, as it is considered at present (Keskin, 2007). Therefore, we assume that this volcanic highland is a Northern marginal manifestation of the Eastern Africa-Red Sea -Anatolia mantle plume flow. If we accept this idea, then the Pliocene-Pleistocene Samtskhe-Javakheti volcanic highland is the youngest continental mantle plume formation of the Earth. REFERENCES Keskin M., 2007. Eastern Anatolia: a hotspot in a collision zone without a mantle plume. Geological Society of America, Special Paper 430, pp. 693 - 722. Okrostsavridze A., Popkhadze A., Kirkitadze G., 2016. Megavolcano in the Late Cenozoic Samtckhe-Javakheti Volcanic Province? In procceding of 6th workshop on Collapse Caldera, Hokkaido, Japan. p. 42-43.
NASA Astrophysics Data System (ADS)
Gurnis, M.; Ratnaswamy, V.; Stadler, G.; Rudi, J.; Liu, X.; Ghattas, O.
2017-12-01
We are developing high-resolution inverse models for plate motions and mantle flow to recover the degree of mechanical coupling between plates and the non-linear and plastic parameters governing viscous flow within the lithosphere and mantle. We have developed adjoint versions of the Stokes equations with fully non-linear viscosity with a cost function that measures the fit with plate motions and with regional constrains on effective upper mantle viscosity (from post-glacial rebound and post seismic relaxation). In our earlier work, we demonstrate that when the temperature field is known, the strength of plate boundaries, the yield stress and strain rate exponent in the upper mantle are recoverable. As the plate boundary coupling drops below a threshold, the uncertainty of the inferred parameters increases due to insensitivity of plate motion to plate coupling. Comparing the trade-offs between inferred rheological parameters found from a Gaussian approximation of the parameter distribution and from MCMC sampling, we found that the Gaussian approximation—which is significantly cheaper to compute—is often a good approximation. We have extended our earlier method such that we can recover normal and shear stresses within the zones determining the interface between subducting and over-riding plates determined through seismic constraints (using the Slab1.0 model). We find that those subduction zones with low seismic coupling correspond with low inferred values of mechanical coupling. By fitting plate motion data in the optimization scheme, we find that Tonga and the Marianas have the lowest values of mechanical coupling while Chile and Sumatra the highest, among the subduction zones we have studies. Moreover, because of the nature of the high-resolution adjoint models, the subduction zones with the lowest coupling have back-arc extension. Globally we find that the non-linear stress-strain exponent, n, is about 3.0 +/- 0.25 (in the upper mantle and lithosphere) and a pressure-independent yield stress is 150 +/- 25 MPa. The stress in the shear zones is just tens of MPa, and in preliminary models, we find that both the shear and the normal stresses are elevated in the coupled compared to the uncoupled subduction zones.
NASA Astrophysics Data System (ADS)
Arcay, Diane
2017-08-01
The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate. A 2D thermo-mechanical model is used to simulate a subduction channel, made of oceanic crust, free to evolve. Convergence at constant rate is imposed under a 100 km thick upper plate. Pseudo-brittle and non-Newtonian behaviours are modelled. The influence of the subduction channel strength, parameterized by the difference in activation energy between crust and mantle (ΔEa) is investigated to examine in detail the variations in depth of the subduction plane down-dip extent, zcoup . First, simulations show that numerical resolution may be responsible for an artificial and significant shallowing of zcoup if the weak crustal layer is not correctly resolved. Second, if the age of the subducting plate is 100 Myr, subduction occurs for any ΔEa . The stiffer the crust is, that is, the lower ΔEa is, the shallower zcoup is (60 km depth if ΔEa = 20 kJ/mol) and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel (ΔEa > 135 J/mol) leads there to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. Partial kinematic coupling at the fore-arc base occurs if ΔEa = 145 kJ/mol. If the incoming plate is 20 Myr old, subduction can occur under the conditions that the crust is either stiff and denser than the mantle, or weak and buoyant. In the latter condition, cold crust plumes rise from the subduction channel and ascend through the upper lithosphere, triggering (1) partial kinematic coupling under the fore-arc, (2) fore-arc lithosphere cooling, and (3) partial or complete hindrance of wet mantle melting. zcoup then ranges from 50 to more than 250 km depth and is time-dependent if crust plumes form. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow. Two different intervals of ΔEa are underlined: 80-120 kJ/mol to reproduce the range of slab surface temperature inferred from geothermometry, and 10-40 kJ/mol to reproduce the shallow hot mantle wedge core inferred from conditions of last equilibration of near-primary arc magmas and seismic tomographies. Therefore, an extra process controlling mantle wedge dynamics is needed to satisfy simultaneously the aforementioned observations. A mantle viscosity reduction, by a factor 4-20, caused by metasomatism in the mantle wedge is proposed. From these results, I conclude that the subduction channel down-dip extent, zcoup , should depend on the subduction setting, to be consistent with the observed variability of sub-arc depths of the subducting plate surface.
Great Basin Mantle Xenoliths Record Deformation Associated with Active Lithospheric Downwelling
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Bernard, R. E.; Behr, W. M.
2017-12-01
Intensely deformed mylonitic mantle peridotite xenoliths are preserved in Pleistocene flows and cinder cones at Lunar Crater volcanic field in central Nevada. They are spatially and chemically associated with coarse-grained lherzolites and harzburgites with remarkably high two-pyroxene and Ca-in-olivine temperatures (all 1200-1300°C [1]), suggesting they originate from the base of the mantle lithosphere. Here we report results of a chemical and microstructural investigation of 14 previously unstudied mylonitic dunites, wehrlites, and pyroxene-poor harzburgites. Orthopyroxenes exhibit little evidence for plastic deformation and in some samples show brittle deformation. Extremely flattened porphyroclastic grains and substantial dynamic recrystallization in olivine suggests deformation occurred by dislocation creep (Fig. 1). Recrystallized olivine grain sizes are 50-86 µm yielding flow stresses of 43-63 MPa according to the grain size piezometer of [2]. Olivines in the dunites and wehrlites have Mg#s of 87-88.5, lower than in coarse grained harzburgites (Mg#s =87.5-91.3). Relatively low mylonite Mg#s suggests the rocks formed as cumulates or products of melt-rock reaction prior to deformation. Electron microprobe analyses confirm the mylonites have two-pyroxene and Ca-in-olivine temperatures >1200°C, consistent with the coarser harzburgites and lherzolites. Trace elements measured in pyroxenes in coarse-grained and mylonitic samples yield REE-in-two-pyroxene temperatures of 1278-1338°C (n=4), demonstrating that the high-temperature signature predates entrainment and eruption. Using our paleostress magnitudes and assuming a hot (1250°C) dry mantle lithosphere implies deformation occurred at strain rates of 10-10/s, too rapid for steady-state lithospheric deformation. We interpret such localized, transient deformation to be a consequence of delamination of a mantle lithospheric drip, as suggested by cylindrical shear wave splitting and body wave anomalies beneath Lunar Crater [e.g., 3]. Strain may have been localized in pyroxene-poor dunites and wherlites owing to the weaker rheology of olivine-rich rocks at these conditions. [1] Smith (2000), JGR 105, 16769-16781. [2] Van der Wal, et al. (1993), GRL 20, 1479-1482. [3] West et al. (2009), Nat. Geo. 2, 439-444.
NASA Astrophysics Data System (ADS)
Hoeink, T.; Lenardic, A.; Jellinek, M.; Richards, M. A.
2011-12-01
One of the fundamental unresolved problems in Earth and planetary science is the generation of plate tectonics from mantle convection. Important achievements can be made when considering rheological properties in the context of mantle convection dynamics. Among these milestones are (1) a deeper understanding of the balance of forces that drive and resist plate motion and (2) the dynamic generation of narrow plate boundaries (that lead to a piecewise continuous surface velocity distribution). Extending classic plate-tectonic theory we predict a plate driving force due to viscous coupling at the base of the plate from fast flow in the asthenosphere. Flow in the asthenosphere is due to shear-driven contributions from an overriding plate and due to additional pressure-driven contributions. We use scaling analysis to show that the extent to which this additional plate-driving force contributes to plate motions depends on the lateral dimension of plates and on the relative viscosities and thicknesses of lithosphere and asthenosphere. Whereas slab-pull forces always govern the motions of plates with a lateral extent greater than the mantle depth, asthenosphere-drive forces can be relatively more important for smaller (shorter wavelength) plates, large relative asthenosphere viscosities or large asthenosphere thicknesses. Published plate velocities, tomographic images and age-binned mean shear wave velocity anomaly data allow us to estimate the relative contributions of slab-pull and asthenosphere-drive forces driving the motions of the Atlantic and Pacific plates. At the global scale of terrestrial planets, we use 3D spherical shell simulations of mantle convection with temperature-, depth- and stress dependent rheology to demonstrate that a thin low-viscosity layer (asthenosphere) governs convective stresses imparted to the lithosphere. We find, consistent with theoretical predictions, that convective stresses increase for thinner asthenospheres. This result might eliminate the need for special weakening mechanisms to generate plate tectonics from mantle convection. Our results elucidate the role of the asthenosphere for plate tectonics on Earth, and also provide insights into the differences in tectonic styles between Earth and Venus.
Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.
2016-12-01
Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that LAB topography enhances melt production and guides fluid pathways, destabilizing cratonic edges.
NASA Astrophysics Data System (ADS)
Piccardo, Giovanni; Ranalli, Giorgio
2015-04-01
Direct field/laboratory, structural/petrologic investigations of mantle lithosphere from orogenic peridotites in Alpine-Apennine ophiolites provide significant constraints to the rift evolution of the Jurassic Ligurian Tethys ocean (Piccardo et al., 2014, and references therein). These studies have shown that continental extension and passive rifting were characterized by an important syn-rift "hidden" magmatic event, pre-dating continental break-up and sea-floor spreading. Occurrence of km-scale bodies of reactive spinel-harzburgites and impregnated plagioclase-peridotites, formed by melt/peridotite interaction, and the lack of any extrusive counterpart, show that the percolating magmas remained stored inside the mantle lithosphere. Petrologic-geochemical data/modelling and mineral Sm/Nd age constraints evidence that the syn-rift melt infiltration and reactive porous-flow percolation through the lithosphere were induced by MORB-type parental liquids formed by decompression melting of the passively upwelling asthenosphere. Melt thermal advection through, and melt stagnation within the lithosphere, heated the mantle column to temperatures close to the dry peridotite solidus ("asthenospherization" of mantle lithosphere). Experimental results of numerical/analogue modelling of the Ligurian rifting, based on field/laboratory constraints, show that: (1) porous flow percolation of asthenospheric melts resulted in considerable softening of the mantle lithosphere, decreasing total strength TLS from 10 to 1 TN m-1 as orders of magnitude (Ranalli et al. 2007), and (2) the formation of an axial lithospheric mantle column, with softened rheological characteristics (Weakened Lithospheric Mantle - WLM), induced necking instability in the extending lithosphere and subsequent active upwelling of the asthenosphere inside the WLM zone (Corti et al., 2007). Therefore, the syn-rift hidden magmatism (melt thermo-chemical-mechanical erosion, melt thermal advection and melt storage) caused important compositional and rheological modifications in the mantle lithosphere and played a fundamental role in the evolution of rifting, favouring, in particular, faster divergence of future continental margins and active upwelling of deeper/hotter asthenosphere. Active divergent forces probably changed the extension regime from passive to active rifting (as envisaged by Huismans et al., 2001). Accordingly, melt thermal advection and melt storage, and the rheological modifications induced in the mantle lithosphere, had a fundamental role in the evolution of the Ligurian rifting (Piccardo, 2014; Piccardo et al., 2014). Observations from the natural laboratory are pivotal when interpreting modelling results on the formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading. The rheological characteristics of the melt-modified mantle lithosphere can provide natural constraints for the interpretation of variously termed components ("oceanic lithosphere, Huismans & Beaumont, 2014; "oceanic and syn-rift lithospheric mantle", Whitmarsh & Manatschal, 2012), located in some models at non-oceanic, sub-continental settings, either below the extending continental crust or between the sub-continental lithosphere and the upwelling asthenosphere. Corti, G., Piccardo, G.B., Ranalli, G., et al., 2007. J. Geodynamics, 43, 465-483. Huismans, R.S., Beaumont, C., 2014. EPSL, 407, 148-162. Huismans, R.S., Podladchikov, Y.Y., Cloetingh, S., 2001, J. Geophys. Res. 106(11), 271-291. Piccardo, G.B., 2014. Geol. Soc. London, Spec. Publ., online 413, http://dx.doi.org/10.1144/SP413.7. Piccardo, G.B., et al., 2014. Earth-Science Reviews, http://dx.doi.org/10.1016/j.earscirev.2014.07.002. Ranalli, G., Piccardo, G.B., Corona-Chavez, P., 2007. J. Geodynamics, 43, 450-464. Whitmarsh, R.B., Manatschal, G., 2012. Roberts & Bally (eds), http://eprints.soton.ac.uk/id/eprint/358832.
The anisotropic signal of topotaxy during phase transitions in D″
NASA Astrophysics Data System (ADS)
Walker, Andrew M.; Dobson, David P.; Wookey, James; Nowacki, Andy; Forte, Alessandro M.
2018-03-01
While observations and modelling of seismic anisotropy in the lowermost mantle offers the possibility of imaging mantle flow close to the core-mantle boundary, current models do not explain all observations. Here, we seek to explain a long-wavelength pattern of shear wave anisotropy observed in anisotropic tomography where vertically polarised shear waves travel faster than horizontally polarised shear waves in the central Pacific and under Africa but this pattern is reversed elsewhere. In particular, we test an explanation derived from experiments on analogues, which suggest that texture may be inherited during phase transitions between bridgmanite (perovskite structured MgSiO3) and post-perovskite, and that such texture inheritance may yield the long-wavelength pattern of anisotropy. We find that models that include this effect correlate better with tomographic models than those that assume deformation due to a single phase in the lowermost mantle, supporting the idea that texture inheritance is an important factor in understanding lowermost mantle anisotropy. It is possible that anisotropy could be used to map the post-perovskite stability field in the lowermost mantle, and thus place constraints on the temperature structure above the core-mantle boundary.
NASA Astrophysics Data System (ADS)
Ostrihansky, Lubor
2014-05-01
Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ostřihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní Hůrka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating body exposed to strong tidal action of Moon and Sun. Ostrihansky, L.: The structure of the earth's crust and the heat-flow--heat-generation relationship in the Bohemian Massif. Tectonophysics, 68(3-4), 325-337, doi:10.1016/0040-1951(80)90182-1 1980.
NASA Astrophysics Data System (ADS)
Hoke, L.; Poreda, R.; Reay, A.; Weaver, S. D.
2000-07-01
New helium isotope data measured in Cenozoic intraplate basalts and their mantle xenoliths are compared with present-day mantle helium emission on a regional scale from thermal and nonthermal gas discharges on the South Island of New Zealand and the offshore Chatham Islands. Cenozoic intraplate basaltic volcanism in southern New Zealand has ocean island basalt affinities but is restricted to continental areas and absent from adjacent Pacific oceanic crust. Its distribution is diffuse and widespread, it is of intermittent timing and characterised by low magma volumes. Most of the 3He/ 4He ratios measured in fluid inclusions in mantle xenocrysts and basalt phenocrysts such as olivine, garnet, and amphibole fall within the narrow range of 8.5 ± 1.5 Ra (Ra is the atmospheric 3He/ 4He ratio) with a maximum value of 11.5 Ra. This range is characteristic of the relatively homogeneous and degassed upper MORB-mantle helium reservoir. No helium isotope ratios typical of the lower less degassed mantle (>12 Ra), such as exemplified by the modern hot-spot region of Hawaii (with up to 32 Ra) were measured. Helium isotope ratios of less than 8 Ra are interpreted in terms of dilution of upper mantle helium with a radiogenic component, due to either age of crystallisation or small-scale mantle heterogeneities caused by mixing of crustal material into the upper mantle. The crude correlation between age of samples and helium isotopes with generally lower R/Ra values in mantle xenoliths compared with host rock phenocrysts and the in general depleted Nd and Sr isotope ratios and the light rare earth element enrichment of the basalts supports derivation of melts as small melt fractions from a depleted upper mantle, with posteruptive ingrowth of radiogenic helium as a function of lithospheric age. In comparison, the regional helium isotope survey of thermal and nonthermal gas discharges of the South Island of New Zealand shows that mantle 3He anomalies in general do not show an obvious relationship with either age or proximity to the Cenozoic intraplate volcanic centres or with major faults. In general, areas characterised by mantle 3He emission are interpreted to define those regions beneath which mantle melting and basalt magma addition to the crust are recent. The strongest mantle 3He anomaly (equivalent to >80% mantle helium component) is centred over southern Dunedin, measured in magmatic CO 2-rich mineral water springs issuing from crystalline basement rocks which outcrop at the southern extent of Miocene intraplate basaltic volcanism which ceased 9 Ma ago. This mantle helium anomaly overlaps with an area characterised by elevated surface high heat flow, compatible with a long-lived mantle melt/heat input into the crust. In comparison Banks Peninsula, another Miocene intraplate basaltic centre, is characterised by relatively low surface heat flow and a small mantle helium contribution measured in a nitrogen-rich spring. Here the thermal transient induced by the magmatic event has either dissipated or has not reached the surface. In the former case one might be dealing with storage and mixing of magmatic and crustal gases at shallow crustal levels and in the latter with active to recent mantle-melt degassing at depth. Along the most actively deforming part of the plate boundary zone, the transpressional Alpine Fault and Marlborough fault systems, mantle helium is present in gas-rich springs in all those areas underlain by actively subducting oceanic crust (the Australian plate in the south and Pacific plate in the north), whereas the central part of the Alpine transpressional fault is characterised by pure crustal radiogenic helium. Areas where the mantle helium component is negligible are restricted to the centre part of the South Island, extending along its length from Southland to northern Canterbury and Murchison. These areas are interpreted to delineate the extent of thicker and colder lithosphere compared to all other areas where mantle helium release from partial mantle melts at depth is recent to active being added to the lower lithosphere and/or lower crust. Areas characterised by mantle helium anomalies are equated with areas of thermal mantle anomalies, i.e., localised mantle heterogeneities such as upwelling less dense silicate melts in the upper asthenospheric mantle.
NASA Astrophysics Data System (ADS)
Ramirez, C.; Nyblade, A.; Hansen, S. E.; Wiens, D. A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Shore, P.; Wilson, T.
2016-03-01
S-wave receiver functions (SRFs) are used to investigate crustal and upper-mantle structure beneath several ice-covered areas of Antarctica. Moho S-to-P (Sp) arrivals are observed at ˜6-8 s in SRF stacks for stations in the Gamburtsev Mountains (GAM) and Vostok Highlands (VHIG), ˜5-6 s for stations in the Transantarctic Mountains (TAM) and the Wilkes Basin (WILK), and ˜3-4 s for stations in the West Antarctic Rift System (WARS) and the Marie Byrd Land Dome (MBLD). A grid search is used to model the Moho Sp conversion time with Rayleigh wave phase velocities from 18 to 30 s period to estimate crustal thickness and mean crustal shear wave velocity. The Moho depths obtained are between 43 and 58 km for GAM, 36 and 47 km for VHIG, 39 and 46 km for WILK, 39 and 45 km for TAM, 19 and 29 km for WARS and 20 and 35 km for MBLD. SRF stacks for GAM, VHIG, WILK and TAM show little evidence of Sp arrivals coming from upper-mantle depths. SRF stacks for WARS and MBLD show Sp energy arriving from upper-mantle depths but arrival amplitudes do not rise above bootstrapped uncertainty bounds. The age and thickness of the crust is used as a heat flow proxy through comparison with other similar terrains where heat flow has been measured. Crustal structure in GAM, VHIG and WILK is similar to Precambrian terrains in other continents where heat flow ranges from ˜41 to 58 mW m-2, suggesting that heat flow across those areas of East Antarctica is not elevated. For the WARS, we use the Cretaceous Newfoundland-Iberia rifted margins and the Mesozoic-Tertiary North Sea rift as tectonic analogues. The low-to-moderate heat flow reported for the Newfoundland-Iberia margins (40-65 mW m-2) and North Sea rift (60-85 mW m-2) suggest that heat flow across the WARS also may not be elevated. However, the possibility of high heat flow associated with localized Cenozoic extension or Cenozoic-recent magmatic activity in some parts of the WARS cannot be ruled out.
Influence of precipitating light elements on stable stratification below the core/mantle boundary
NASA Astrophysics Data System (ADS)
O'Rourke, J. G.; Stevenson, D. J.
2017-12-01
Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically increases seismic velocity) growing to its present-day size while allowing enough precipitation to drive compositional convection below. Crucially, this modeling offers unique constrains on Earth's accretion and the light element composition of the core compared to degenerate estimates derived from bulk density and seismic measurements.
Temperature distribution in the crust and mantle
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Morris, S.
1986-01-01
In an attempt to understand the temperature distribution in the earth, experimental constraints on the geotherm in the crust and mantle are considered. The basic form of the geotherm is interpreted on the basis of two dominant mechanisms by which heat is transported in the earth: (1) conduction through the rock, and (2) advection by thermal flow. Data reveal that: (1) the temperature distributions through continental lithosphere and through oceanic lithosphere more than 60 million years old are practically indistinguishable, (2) crustal uplift is instrumental in modifying continental geotherms, and (3) the average temperature through the Archean crust and mantle was similar to that at present. It is noted that current limitations in understanding the constitution of the lower mantle can lead to significant uncertainties in the thermal response time of the planetary interior.
Seismic structure of the European upper mantle based on adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, Hejun; Bozdağ, Ebru; Tromp, Jeroen
2015-04-01
We use adjoint tomography to iteratively determine seismic models of the crust and upper mantle beneath the European continent and the North Atlantic Ocean. Three-component seismograms from 190 earthquakes recorded by 745 seismographic stations are employed in the inversion. Crustal model EPcrust combined with mantle model S362ANI comprise the 3-D starting model, EU00. Before the structural inversion, earthquake source parameters, for example, centroid moment tensors and locations, are reinverted based on global 3-D Green's functions and Fréchet derivatives. This study consists of three stages. In stage one, frequency-dependent phase differences between observed and simulated seismograms are used to constrain radially anisotropic wave speed variations. In stage two, frequency-dependent phase and amplitude measurements are combined to simultaneously constrain elastic wave speeds and anelastic attenuation. In these two stages, long-period surface waves and short-period body waves are combined to simultaneously constrain shallow and deep structures. In stage three, frequency-dependent phase and amplitude anomalies of three-component surface waves are used to simultaneously constrain radial and azimuthal anisotropy. After this three-stage inversion, we obtain a new seismic model of the European curst and upper mantle, named EU60. Improvements in misfits and histograms in both phase and amplitude help us to validate this three-stage inversion strategy. Long-wavelength elastic wave speed variations in model EU60 compare favourably with previous body- and surface wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from the smooth starting model. Subducting slabs, slab detachments, ancient suture zones, continental rifts and backarc basins are well resolved in model EU60. We find an anticorrelation between shear wave speed and anelastic attenuation at depths < 100 km. At greater depths, this anticorrelation becomes relatively weak, in agreement with previous global attenuation studies. Furthermore, enhanced attenuation is observed within the mantle transition zone beneath the North Atlantic Ocean. Consistent with typical radial anisotropy in 1-D reference models, the European continent is dominated by features with a radially anisotropic parameter ξ > 1, indicating predominantly horizontal flow within the upper mantle. In addition, subduction zones, such as the Apennines and Hellenic arcs, are characterized by vertical flow with ξ < 1 at depths greater than 150 km. We find that the direction of the fast anisotropic axis is closely tied to the tectonic evolution of the region. Averaged radial peak-to-peak anisotropic strength profiles identify distinct brittle-ductile deformation in lithospheric strength beneath oceans and continents. Finally, we use the `point-spread function' to assess image quality and analyse trade-offs between different model parameters.
NASA Astrophysics Data System (ADS)
Hunt, D. L.; Kellogg, L. H.
2001-04-01
Using a two-dimensional finite element model of mantle convection containing over a million tracer particles, we examine the effects of depth-dependent viscosity on the rates and patterns of mixing. We simulate the processes of recycling crust at subduction zones and the homogenization of recycled material (by dispersion and by melting at mid-ocean ridges). Particles are continually introduced at downwellings and destroyed when they either are so thoroughly dispersed that it would be impossible to measure their presence in the geochemical signature of mid-ocean ridges or oceanic islands, or when they are close to spreading centers, at which point melting would "reset" the geochemical clock. A large number of factors influence the flow pattern and thus the rate at which heterogeneities are dispersed by convection. We examine the effect of increasing the viscosity with depth, and determine how both the residence time of heterogeneities and the extent of lateral mixing and exchange between the upper and lower mantle vary with the viscosity profile of the mantle. We determine the particle distribution resulting from convection models with three viscosity profiles: uniform viscosity, a smooth increase of viscosity with depth, and an abrupt jump in viscosity between the upper and lower mantle. We characterize the resulting distribution of heterogeneities in space and time by examining the age distribution of particles and their locations relative to others introduced into the flow at separate downwellings. Mixing rates in the three models are calculated as a function of the number of particles removed from the flow through time. We found that an increase of viscosity at depth does not induce age stratification in which older particles stagnate in the lover mantle, and it does not produce an upper layer (the source of mid-ocean ridge basalt) that is well-mixed compared to the deeper regions. However, pronounced lateral heterogeneity is evident in the distribution of particles of different ages and starting locations that is not apparent from the particle positions alone.
Anisotropic grain growth and modification of 'frozen texture' in the lithospheric mantle
NASA Astrophysics Data System (ADS)
Boneh, Yuval; Wallis, David; Hansen, Lars; Krawczynski, Mike; Skemer, Philip
2017-04-01
Seismic anisotropy is widely observed in both the lithospheric and asthenospheric upper mantle, and is mainly caused by flow-induced alignment of anisotropic olivine crystals. Crystallographic preferred orientation (CPO) in the asthenosphere is thought to reflect the dynamics of current mantle flow. In contrast, the lithosphere is relatively viscous, and, it is assumed that texture in the lithosphere retains a memory of past flow (e.g., lithospheric mantle in an oceanic basin preserves texture that originated from corner flow at the mid-oceanic-ridge). Although the viscosity of the lithosphere is high in comparison to the asthenosphere, temperatures are high enough that non-deformational, microstructural processes may still be significant for texture evolution. Here we use an experimental approach to simulate a textured mantle annealed under high temperature, high pressure, and hydrostatic conditions, in order to investigate whether microstructural evolution due to static annealing could modify texture in the lithospheric mantle. Starting material for the experiments was a synthetic Fo50 olivine aggregate that was previously deformed in torsion (Hansen et al., 2016) to shear strains up to 10. The sample has a mean grain-size of 15 microns and a narrow, unimodal grain-size distribution, high dislocation-densities, and exhibits a strong A-type CPO. Sub-samples of the deformed specimen were annealed under hydrostatic conditions using a piston cylinder apparatus at T = 1250° C, P = 1 GPa for up to one week. After annealing, the samples were cut into thin sections and the crystal orientations were measured by electron backscatter diffraction (EBSD). The samples show clear evidence for abnormal grain growth due to annealing (with maximum grain sizes of 1 mm). The abnormally large grains grew at the expense of the smaller matrix grains, and grain-size distributions became distinctly bimodal. The small grains not consumed by abnormal grain growth have similar CPO strength, symmetry, and orientation compared with the starting material's CPO. The orientation of the abnormally large grains is typically 10-30 degrees away from the original CPO on the X-Z plane. This observation is consistent with predictions that abnormal grain growth favors grains with low initial Schmid factors. Seismic anisotropy of both deformed and annealed mantle layers were calculated and compared. We conclude that reorientation and weakening of olivine CPO is expected during periods of tectonic quiescence, which will modify the anisotropic signature imposed during the primary deformation event. Hansen, L.N., Warren, J.M., Zimmerman, M.E., Kohlstedt, D.L., 2016. Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy. Earth and Planetary Science Letters 445, 92-103.
Yoshida, Masaki; Hamano, Yozo
2015-02-12
Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr(-1)) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean.
Yoshida, Masaki; Hamano, Yozo
2015-01-01
Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr−1) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean. PMID:25673102
Reconciling Long-Wavelength Dynamic Topography, Geoid Anomalies and Mass Distribution on Earth
NASA Astrophysics Data System (ADS)
Hoggard, M.; Richards, F. D.; Ghelichkhan, S.; Austermann, J.; White, N.
2017-12-01
Since the first satellite observations in the late 1950s, we have known that that the Earth's non-hydrostatic geoid is dominated by spherical harmonic degree 2 (wavelengths of 16,000 km). Peak amplitudes are approximately ± 100 m, with highs centred on the Pacific Ocean and Africa, encircled by lows in the vicinity of the Pacific Ring of Fire and at the poles. Initial seismic tomography models revealed that the shear-wave velocity, and therefore presumably the density structure, of the lower mantle is also dominated by degree 2. Anti-correlation of slow, probably low density regions beneath geoid highs indicates that the mantle is affected by large-scale flow. Thus, buoyant features are rising and exert viscous normal stresses that act to deflect the surface and core-mantle boundary (CMB). Pioneering studies in the 1980s showed that a viscosity jump between the upper and lower mantle is required to reconcile these geoid and tomographically inferred density anomalies. These studies also predict 1-2 km of dynamic topography at the surface, dominated by degree 2. In contrast to this prediction, a global observational database of oceanic residual depth measurements indicates that degree 2 dynamic topography has peak amplitudes of only 500 m. Here, we attempt to reconcile observations of dynamic topography, geoid, gravity anomalies and CMB topography using instantaneous flow kernels. We exploit a density structure constructed from blended seismic tomography models, combining deep mantle imaging with higher resolution upper mantle features. Radial viscosity structure is discretised, and we invert for the best-fitting viscosity profile using a conjugate gradient search algorithm, subject to damping. Our results suggest that, due to strong sensitivity to radial viscosity structure, the Earth's geoid seems to be compatible with only ± 500 m of degree 2 dynamic topography.
The origin of shear wave splitting beneath Iceland
NASA Astrophysics Data System (ADS)
Ito, Garrett; Dunn, Robert; Li, Aibing
2015-06-01
The origin of shear wave splitting (SWS) in the mantle beneath Iceland is examined using numerical models that simulate 3-D mantle flow and the development of seismic anisotropy due to lattice-preferred orientation (LPO). Using the simulated anisotropy structure, we compute synthetic SKS waveforms, invert them for fast polarization directions and split times, and then compare the predictions with the results from three observational studies of Iceland. Models that simulate a mantle plume interacting with the Mid-Atlantic Ridge in which the shallow-most mantle has a high viscosity due to the extraction of water with partial melting, or in which C-type olivine LPO fabric is present due to high water content in the plume, produce the largest chi-squared misfits to the SWS observations and are thus rejected. Models of a low-viscosity mantle plume with A-type olivine fabric everywhere, or with the added effects of E-type fabric in the plume below the solidus produce lower misfits. The lowest misfits are produced by models that include a rapid (˜50 km Myr-1) northward regional flow (NRF) in the mid-upper mantle, either with or without a plume. NRF was previously indicated by a receiver function study and a regional tomography study, and is shown here to be a major cause of the azimuthal anisotropy beneath Iceland. The smallest misfits for the models with both a plume and NRF are produced when LPO forms above depths of 300-400 km, which, by implication, also mark the depths above which dislocation creep dominates over diffusion creep. This depth of transition between dislocation and diffusion creep is greater than expected beneath normal oceanic seafloor, and is attributed to the unusually rapid strain rates associated with an Iceland plume and the NRF.
The role of small-scale convection on the formation of volcanic passive margins
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; Phethean, Jordan
2014-05-01
Volcanic passive margins (VPMs) are areas of continental rifting where the amount of newly formed igneous crust is larger than normal, in some areas up to 30 km. In comparison, magma-poor margins have initial oceanic crustal thicknesses of less than 7 km (Simon et al., 2009; Franke, 2012). The mechanism for the formation of these different types of margins is debated, and proposed mechanisms include: 1) variation in rifting speed (van Wijk et al., 2001), variation in rifting history (Armitage et al., 2010), enhanced melting from mantle plumes (e.g. White and McKenzie, 1989), and enhanced movement of mantle material through the melting zone by sublithospheric small-scale convection (SSC) driven by lithospheric detachments (Simon et al., 2009). Understanding the mechanism is important to constrain the petroleum potential of VPM. In this study, we use a numerical modelling approach to further elaborate the effect of SSC on the rate of crust production during continental rifting. Conceptually, SSC results in patterns of upwelling (and downwelling) mantle material with a typical horizontal wavelength of a 100 to a few 100 km (van Hunen et al., 2005). If occurring shallowly enough, such upwellings lead to decompression melting (Raddick et al., 2002). Subsequent mantle depletion has multiple effects on buoyancy (from both latent heat consumption and compositional changes), which, in turn, can affect mantle dynamics under the MOR, and can potentially enhance SSC and melting further. We use two- and three-dimensional Cartesian flow models to examine the mantle dynamics associated with continental rifting, using a linear viscous rheology (in addition to a semi-brittle stress limiter to localize rifting) in which melting (parameterized using (Katz et al., 2003)) leads to mantle depletion and crust accumulation at the surface. The newly formed crust is advected away with the diverging plates. A parameter sensitivity study of the effects of mantle viscosity, spreading rate, mantle temperature, and a range material parameters have indicated the following results. Decompression melting leads to a colder (from consumption of latent heat of melting) and therefore thermally denser, but compositionally more buoyant residue. The competition between thermal and compositional buoyancy determines the mantle dynamics after rifting initiation. For a mantle viscosity > ~ 1022 Pa s, no SSC occurs, and a uniform 7-8 km-thick oceanic crust forms. For mantle viscosity < ~ 1021 Pa s, SSC might be vigorous and can form passive margins with a crustal thickness > 10-20 km. If thermal density effects dominate, a convection inversion may occur for low mantle viscosities, and mantle downwellings underneath the rift/ridge area can result in a significant upwelling return flow that enhances further decompression melting, and can create VPMs. Such dynamics could also explain the continent-dipping normal faults that are commonly observed at VPMs. After the initial rifting phase, the crustal thickness reduces significantly, but not always to a uniformly thick 7-8 km, as would be appropriate for mature oceanic basins.
Thermal Evolution of Diapirs with Complex Mantle Wedge Flow
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C.
2016-12-01
Subduction of oceanic lithosphere drives heat and mass exchange between Earth's interior and surface. One proposed transport mechanism for thermally and chemically distinct material through the wedge is the diapir model. The dominant driver of flow in the upper mantle is a mode of forced convection responding to motion of a tabular slab. A set of 4D laboratory experiments was conducted exploring the relationship between buoyancy flux and subduction parameters and subsequent effects on diapir transport. Variable subduction styles tested include downdip and rollback motion, slab gaps, slab steepening and backarc extension. The mantle is modeled using viscous glucose syrup with an Arrhenius type temperature dependent viscosity. Diapirs representing homogeneous mechanically mixed melange layer are introduced as buoyant fluid injected at multiple point sources situated along the surface of the sinking slab. Laboratory data is collected using high definition time-lapse photography and quantified using image velocimetry techniques. Here we present results from numerical simulation of the thermal evolution of spherical mantle wedge diapirs using 2D axisymmetric advection-diffusion model with internal diapir flow described by an analytic potential flow solution. A suite of wedge temperature profiles are used as thermal forcing on diapirs traversing the wedge along experimentally observed 4D ascent pathways. Scaling arguments suggest that for systems with Péclet number on the order of 15 advective heat transport is expected to dominate over diffusive heat transport, but the range of observed P-T-t paths and vigorous internal flow complicate this assumption. Interactions between modes of free (diapiric) and forced (wedge) convection lead to complex spatio-temporal variability in slab-to-arc connectivity patterns. Rollback induced toroidal flow, along trench changes in dip, convergence rate and backarc extension all produce a significant ( 500 km) trench-parallel transport component. Combined with diapir-diapir interactions these factors produce a spectrum of transit times and pathlengths, ranging from much shorter to much longer than those from simple 2D model estimates. Results highlight the broad range of expected internal temperature distributions derived from variable transit paths.
NASA Astrophysics Data System (ADS)
Liu, S.; Wang, L.
2006-12-01
The effective elastic thickness (Te) of lithosphere is one parameter describing the responses of the lithosphere to long term forces, and is still controversial in estimation by different methods. Here we present the effective elastic thickness of the lithosphere in continental China from heat flow data by the method proposed by Burov et al, J.G.R., 1995,100(B3):3905-3927. Our results show that Te varies much in different sub-areas in continental China due to different geological evolution and associated thermal regimes. Te is much greater than the crustal thickness in the area where the heat flow is really low and the lithosphere is really thick, indicating much more contribution from the lithospheric mantle and the dominative control of the mantle with olivine on the rheology of the lithosphere, and the major basins (Tarim, Junggar, Ordos and Sichuan basins) in central-western China share this characteristic. For instance, the Te of the Tarim basin is 66km with crustal thickness of 45km. Te is less than the crustal thickness in the region where the heat flow is relatively high, and approximates to the crustal brittle-ductile transition depth, suggesting more contribution from the crust and the dominative control of the felsic crust on the rheology of the lithosphere, and this phenomenon is obvious in the SE coastal China, eastern North China and the orogenic belts. Compared the estimated Te with the seismogenic layer thickness (Ts) available in China, it is also found that the Te is much greater than Ts in the major basins with low heat flow, and is similar to Ts in the active zones with high heat flow, which is inconsistent with that Te is usually smaller than Ts proposed by Maggi et al., Geology,2000,28(6):495-498. Generally, two end elements rheological modes for continental lithosphere of the strong crust-weak mantle and the weak crust-strong mantle are all available in continental China considering different thermal regime, composition and geological evolution.
NASA Astrophysics Data System (ADS)
Dauphas, Nicolas; Teng, Fang-Zhen; Arndt, Nicholas T.
2010-06-01
Komatiites from Alexo, Canada, are well preserved and represent high-degree partial mantle melts (˜50%). They are thus well suited for investigating the Mg and Fe isotopic compositions of the Archean mantle and the conditions of magmatic differentiation in komatiitic lavas. High precision Mg and Fe isotopic analyses of 22 samples taken along a 15-m depth profile in a komatiite flow are reported. The δ 25Mg and δ 26Mg values of the bulk flow are -0.138 ± 0.021‰ and -0.275 ± 0.042‰, respectively. These values are indistinguishable from those measured in mantle peridotites and chondrites, and represent the best estimate of the composition of the silicate Earth from analysis of volcanic rocks. Excluding the samples affected by secondary Fe mobilization, the δ 56Fe and δ 57Fe values of the bulk flow are +0.044 ± 0.030‰, and +0.059 ± 0.044‰, respectively. These values are consistent with a near-chondritic Fe isotopic composition of the silicate Earth and minor fractionation during komatiite magma genesis. In order to explain the early crystallization of pigeonite relative to augite in slowly cooled spinifex lavas, it was suggested that magmas trapped in the crystal mush during spinifex growth differentiated by Soret effect, which should be associated with large and coupled variations in the isotopic compositions of Mg and Fe. The lack of variations in Mg and Fe isotopic ratios either rules out the Soret effect in the komatiite flow or the effect is effaced as the solidification front migrates downward through the flow crust. Olivine separated from a cumulate sample has light δ 56Fe and slightly heavy δ 26Mg values relative to the bulk flow, which modeling shows can be explained by kinetic isotope fractionation associated with Fe-Mg inter-diffusion in olivine. Such variations can be used to identify diffusive processes involved in the formation of zoned minerals.
NASA Astrophysics Data System (ADS)
Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.
2016-12-01
North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow beneath the passive margin.
NASA Astrophysics Data System (ADS)
Kerrich, R.; Jia, Y.; Wyman, D.
2001-12-01
Mantle plume activity was more intense in the Archean and komatiite-basalt volcanic sequences are a major component of many Archean greenstone belts. Tholeiitic basalts compositionally resemble Phanerozoic and Recent ocean plateau basalts, such as those of Ontong Java and Iceland. However, komatiite-basalt sequences are tectonically imbricated with bimodal arc lavas and associated trench turbidites. Interfingering of komatiite flows with boninite series flows, and primitive to evolved arc basalts has recently been identified in the 2.7 Ga Abitibi greenstone belt, demonstrating spatially and temporally associated plume and arc magmatism. These observations are consistent with an intra-oceanic arc migrating and capturing an ocean plateau, where the plateau jams the arc and imbricated plateau-arc crust forms a greenstone belt orogen. Melting of shallowly subducted plateau basalt crust (high Ba, Th, LREE) accounts for the areally extensive and voluminous syntectonic tonalite batholiths. In contrast, the adakite-Mg-andesite-Niobium enriched basalt association found in Archean greenstone belts and Cenozoic arcs are melts of LREE depleted MORB slab. Buoyant residue from anomalously hot mantle plume melting at > 100km rises to couple with the composite plume-arc crust to form the distinctively thick and refractory Archean continental lithospheric mantle. New geochemical data for structurally hosted ultramafic units along the N. American Cordillera, from S. California to the Yukon, show that these are obducted slices of sub-arc lithospheric mantle. Negatively fractionated HREE with high Al2O3/TiO2 ratios signify prior melt extraction, and variably enriched Th and LREE with negative Nb anomalies a subduction component in a convergent margin. A secular decrease of mantle plume activity and temperature results in plume-arc dominated geodynamics in the Archean with shallow subduction and thick CLM, whereas Phanerozoic convergent margins are dominated by arc-continent, arc-terrane, and terrane-terrane collision with steep subduction resulting in narrow belts of granitoids and obduction of lithospheric mantle.
The role of small-scale convection on the formation of volcanic passive margins
NASA Astrophysics Data System (ADS)
Van Hunen, J.; Phethean, J. J. J.
2014-12-01
Several models have been presented in the literature to explain volcanic passive margins (VPMs), including variation in rifting speed or history, enhanced melting from mantle plumes, and enhanced flow through the melting zone by small-scale convection (SSC) driven by lithospheric detachments. Understanding the mechanism is important to constrain the paleo-heat flow and petroleum potential of VPM. Using 2D and 3D numerical models, we investigate the influence of SSC on the rate of crust production during continental rifting. Conceptually, SSC results in up/downwellings with a typical spacing of a few-100 km, and may lead to enhanced decompression melting. Subsequent mantle depletion changes buoyancy (from latent heat consumption and compositional changes), and affects mantle dynamics under the MOR and potentially any further melting. Decompression melting leads to a colder, thermally denser residue (from consumption of latent heat of melting), but also a compositionally more buoyant one. A parameter sensitivity study of the effects of mantle viscosity, spreading rate, mantle temperature, and a range material parameters indicates that competition between thermal and compositional buoyancy determines the mantle dynamics. For mantle viscosities ηm > ~1022 Pa s, no SSC occurs, and a uniform 7-8 km-thick oceanic crust forms. For ηm < ~1021 Pa s, SSC is vigorous and can form VPMs with > 10-20 km crust. If thermal density effects dominate, a vigorous (inverted) convection may drive significant decompression melting, and create VPMs. Such dynamics could also explain the continent-dipping normal faults that are commonly observed at VPMs. After the initial rifting phase, the crustal thickness reduces significantly, but not always to a uniformly thick 7-8 km, as would be appropriate for mature oceanic basins. Transverse convection rolls may result in margin-parallel crustal thickness variation, possibly related to observations such as the East-Coast Magnetic Anomaly.
Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles
NASA Astrophysics Data System (ADS)
Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve
2017-02-01
Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.
Mean electromotive force generated by asymmetric fluid flow near the surface of earth's outer core
NASA Astrophysics Data System (ADS)
Bhattacharyya, Archana
1992-10-01
The phi component of the mean electromotive force, (ETF) generated by asymmetric flow of fluid just beneath the core-mantle boundary (CMB), is obtained using a geomagnetic field model. This analysis is based on the supposition that the axisymmetric part of fluid flow beneath the CMB is tangentially geostrophic and toroidal. For all the epochs studied, the computed phi component is stronger in the Southern Hemisphere than that in the Northern Hemisphere. Assuming a linear relationship between (ETF) and the azimuthally averaged magnetic field (AAMF), the only nonzero off-diagonal components of the pseudotensor relating ETF to AAMF, are estimated as functions of colatitude, and the physical implications of the results are discussed.
NASA Technical Reports Server (NTRS)
Baker, V. R.
1983-01-01
Tentative conclusions about the origins of channels and valleys on Mars based on the consensus of investigators who have studied the problem are presented. The morphology of outflow channels is described in detail, and the morphology, distribution, and genesis of Martian valleys are addressed. Secondary modification of channels and valleys by mass-wasting phenomena, eolian processes, cratering, and mantling by lava flows is discussed. The physics of the flows needed to account for the immense volumes of Martian outflow channels is considered in detail, including the possible influence of debris flows and mudflows, glaciers, and ice sheets. It is concluded that Mars once probably possessed an atmosphere with higher temperatures and pressures than at present which played an essential role in an active hydrological cycle.
The proximity of hotspots to convergent and divergent plate boundaries
NASA Technical Reports Server (NTRS)
Weinstein, Stuart A.; Olson, Peter L.
1989-01-01
An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.
NASA Astrophysics Data System (ADS)
Harris, Robert N.; Garven, Grant; Georgen, Jennifer; McNutt, Marcia K.; Christiansen, Lizet; von Herzen, Richard P.
2000-09-01
We perform numerical simulations of buoyancy-driven, pore fluid flow in the Hawaiian archipelagic apron and underlying oceanic crust in order to determine the extent to which heat redistributed by such flow might cause conductive heat flow measurements to underrepresent the true mantle heat flux. We also seek an understanding of undulations observed in finely spaced heat flow measurements acquired north of Oahu and Maro Reef with wavelengths of 10 to 100 km and amplitudes of 2 to 7 mW m-2. We find that pore fluid flow can impart significant perturbations to seafloor heat flow from the value expected assuming a constant mantle flux. In the simplest scenario, moat-wide circulation driven by bathymetric relief associated with the volcanic edifice recharges a fluid system over the moat and discharges the geothermally heated water through the volcanic edifice. The existing heat flow data are unable to confirm the existence of such a flow regime, in that it produces prominent heat flow anomalies only on the steep flanks of the volcano where heat flow probes cannot penetrate. However, this flow system does not significantly mask the mantle flux for reasonable permeabilities and flow rates. Another numerical simulation in which the upper oceanic basement acts as a aquifer for a flow loop recharged at basement outcrops on the flexural arch and discharged within a permeable volcanic edifice is capable of almost uniformly depressing conductive heat flow across the entire moat by ˜15%. Large heat flow anomalies (>20 mW m-2) are located over the recharge and discharge zones but are beyond the area sampled by our data. Presumably finely spaced heat flow measurements over the flexural arch could test for the existence of the predicted recharge zone. We demonstrate that the prominent, shorter-wave undulations in heat flow across the Oahu and Maro Reef moats are too large to be explained solely by relief in the upper oceanic basement. More likely, shallower large-scale turbidites or debris flows also serve as aquifers within the less permeable moat sediments. With our limited information on the structural geology of the moat, permeability structure of its major geologic units, and their variations in the third dimension, we are not able to exactly match the spatial distribution of heat flow anomalies in our data, but spectral comparisons look promising.
Melting the lithosphere: Metasomes as a source for mantle-derived magmas
NASA Astrophysics Data System (ADS)
Rooney, Tyrone O.; Nelson, Wendy R.; Ayalew, Dereje; Hanan, Barry; Yirgu, Gezahegn; Kappelman, John
2017-03-01
Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with an olivine-dominated source. Although there is mounting evidence for the role of pyroxenite in magma generation within upwelling mantle plumes, a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Here we present major and trace element analyses of 66 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt.% TiO2; 4.0-13.6 wt.% MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical units identified in the later cinder cones and associated lava flows; (B) a clinopyroxene-phyric high Ti group (3.1-6.5 wt.% TiO2; 2.8-9.2 wt.% MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. A characteristic negative K anomaly in primitive-mantle normalized diagrams, and Na2O > K2O, suggests a source rich in amphibole, devoid of olivine, and perhaps containing some carbonate and magnetite. While melt generation during rift development in Ethiopia is strongly correlated with the thermo-chemical anomalies associated with the African Superplume, thermobaric destabilization and melting of mantle metasomes may also contribute to lithospheric thinning. In regions impacted by mantle plumes, such melts may be critical to weakening of the continental lithosphere and the development of rifts.
NASA Astrophysics Data System (ADS)
Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.
2018-03-01
Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite element code ASPECT, which we use to compute the velocity, pressure, and temperature associated with the underlying flow field. We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra =105 with buoyancy numbers B that vary from no stratification at B = 0 to stratified flow at large B .
Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland
Elders, W.A.; Fridleifsson, G.O.; Zierenberg, R.A.; Pope, E.C.; Mortensen, A.K.; Gudmundsson, A.; Lowenstern, J. B.; Marks, N.E.; Owens, L.; Bird, D.K.; Reed, M.; Olsen, N.J.; Schiffman, P.
2011-01-01
Magma flowed into an exploratory geothermal well at 2.1 km depth being drilled in the Krafla central volcano in Iceland, creating a unique opportunity to study rhyolite magma in situ in a basaltic environment. The quenched magma is a partly vesicular, sparsely phyric, glass containing ~1.8% of dissolved volatiles. Based on calculated H2O-CO2 saturation pressures, it degassed at a pressure intermediate between hydrostatic and lithostatic, and geothermometry indicates that the crystals in the melt formed at ~900 ??C. The glass shows no signs of hydrothermal alteration, but its hydrogen and oxygen isotopic ratios are much lower than those of typical mantle-derived magmas, indicating that this rhyolite originated by anhydrous mantle-derived magma assimilating partially melted hydrothermally altered basalts. ?? 2011 Geological Society of America.
NASA Astrophysics Data System (ADS)
Woolsey, E. E.; Person, M. A.; Crossey, L. J.; Phillips, F. M.; Karlstrom, K. E.; Williams, A. J.
2012-12-01
The southern terminus of the Albuquerque Basin along the Rio Grande Rift (RGR) is characterized by high river salinity (200-700 mg/L), temperature (29°C at 155 m depth), and mantle helium (0.26-0.37 RC/A) anomalies, which are clear indications of complex mixing of mantle and crustal fluids. The zone of maximum uplift of the Socorro Magma Body (SMB) is also localized at the southern end of the Albuquerque Basin. Two end member hypotheses have been proposed to account for salt loading in the Rio Grande: 1) basin constriction forcing brines and warm water to the surface and 2) fault-controlled fluid flow from deep mantle/magmatic sources. A better understanding of the hydrologic controls is necessary to assess the degradation of water quality along the Rio Grande. The role of basin constriction and fault-controlled fluid flow in explaining observed fluxes of salinity, enthalpy and primordial helium is examined in this study using mathematical modeling. A basin-scale, cross-sectional hydrologic model was constructed along the RGR in the Albuquerque and Socorro Basins drawn to a depth of 19 km to incorporate deeply derived inputs related to the SMB. The finite element model used is capable of representing heat, brine and noble gas transport. Geologic maps, well bore lithologic logs, as well as gravity and seismic-surveys were used to construct the general N-S cross-section on which the model is based. The model follows the longitudinal profile of the Rio Grande through the Albuquerque Basin and into the Socorro Basin. Multiple versions of the model were created based on two working hypotheses to better understand the structural and hydrologic controls at the basin boundary. One model assumes that the Tertiary dike exposed at the boundary acts as a conduit for deeply sourced fluids and primordial 3He related to the SMB. An alternate version assumes all the units down to the Precambrian basement rock decrease in depth significantly at the basin boundary due to the southward constriction of the Albuquerque Basin at the transition to the Socorro Basin. New and existing groundwater salinity, temperature, 3He/4He, and 14C data provide the ground truth for model calibration and sensitivity analysis. The model results illustrate the importance of deeply penetrating, moderately permeable fault zones (10-12 to 10-15 m2) in advective transport of groundwater, primordial 3He and mantle volatiles through the ductile boundary to shallow crustal levels. The simulated 3He/4He ratios at the surface conduit exposures are within the published values measured at the basin boundary and within the RGR. Thermal expansion of the magma body is being used to estimate the age of emplacement (≤ 30,000 years) based on 3He, temperature, and Rio Grande terrace deflection data. Both regional and local flow systems are evident in the model and likely account for the salinity increase in the Rio Grande at the basin boundary constriction where the upwelling deep sedimentary basin brines mix with the shallow groundwater system.
Melting and Reactive Flow of Carbonated Peridotite Beneath Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.
2015-12-01
The mantle carbon reservoir is four orders of magnitude more massive than that of the atmosphere and ocean combined. The behaviour of carbon in the mantle, especially its transport and extraction, is thus of crucial importance to understanding the coupling between the deep interior and the surface environment of Earth. Laboratory experiments indicate that even small concentrations of carbon dioxide (and other volatiles like H2O) in the upper mantle significantly affect silicate melting [HK96,DH06] by stabilising carbon-rich melt at high pressure. The presence of carbon in the mantle substantially extends the region where partial melt is stable and has important consequences for the dynamics of magma transport and chemical differentiation [H10,DH10]. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+carbonated MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84]. The thermo-chemical formulation of the system is represented by a novel, disequilibrium, multi-component melting model based on thermodynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. First results show that carbon and other volatiles cause a qualitative difference to the style of melt transport, potentially enhancing its extraction efficiency - measured in the carbon mass flux arriving at the mid-ocean ridge axis - by at least an order of magnitude. The process that controls magma transport in our models is a volatile flux-induced reactive infiltration instability, causing carbonated melt to rise from depth in localized channels. These results add to our understanding of melt formation and transport at mid-ocean ridges (the most important magmatic system in the mantle) and may have important implications for subduction zones. REFERENCESHK96 Hirth & Kohlstedt (1996), EPSLDH06 Dasgupta & Hirschmann (2006), NatureH10 Hirschmann (2010), PEPI DH10 Dasgupta & Hirschmann (2010), EPSLMcK84 McKenzie (1984), J PetKW12 Katz & Weatherley (2012), EPSLRBS11 Rudge, Bercovici & Spiegelman (2011), GJI
Dynamical consequences of compositional and thermal density stratification beneath spreading centers
NASA Technical Reports Server (NTRS)
Sotin, C.; Parmentier, E. M.
1989-01-01
Dynamical consequences of compositional buoyancy and the combined effects of compositional and thermal buoyancy on mantle flow and crustal production are explored. The results show that for a low enough mantle viscosity, buoyant upwelling can significantly enhance the crustal thickness relative to that which would be produced by plate spreading alone, while for a mantle viscosity of 10 to the 22nd Pa s, upwelling due to plate spreading is dominant and crustal thickness is predicted to be a function of spreading rate. The results indicate that thermal and compositional density variations result in opposing buoyancy forces that can cause time-dependent upwelling.
Gravitational field models for study of Earth mantle dynamics
NASA Technical Reports Server (NTRS)
1979-01-01
The tectonic forces or stresses due to the small scale mantle flow under the South American plate are detected and determined by utilizing the harmonics of the geopotential field model. The high degree harmonics are assumed to describe the small scale mantle convection patterns. The input data used in the derivation of this model is made up of 840,000 optical, electronic, and laser observations and 1,656 5 deg x 5 deg mean free air anomalies. Although there remain some statistically questionable aspects of the high degree harmonics, it seems appropriate now to explore their implications for the tectonic forces or stress field under the crust.
Relation of major volcanic center concentration on Venus to global tectonic patterns
NASA Technical Reports Server (NTRS)
Crumpler, L. S.; Head, James W.; Aubele, Jayne C.
1993-01-01
Global analysis of Magellan image data indicates that a major concentration of volcanic centers covering about 40 percent of the surface of Venus occurs between the Beta, Atla, and Themis regions. Associated with this enhanced concentration are geological characteristics commonly interpreted as rifting and mantle upwelling. Interconnected low plains in an annulus around this concentration are characterized by crustal shortening and infrequent volcanic centers that may represent sites of mantle return flow and net downwelling. Together, these observations suggest the existence of relatively simple, large-scale patterns of mantle circulation similar to those associated with concentrations of intraplate volcanism on earth.
Origin and evolution of the deep thermochemical structure beneath Eurasia.
Flament, N; Williams, S; Müller, R D; Gurnis, M; Bower, D J
2017-01-18
A unique structure in the Earth's lowermost mantle, the Perm Anomaly, was recently identified beneath Eurasia. It seismologically resembles the large low-shear velocity provinces (LLSVPs) under Africa and the Pacific, but is much smaller. This challenges the current understanding of the evolution of the plate-mantle system in which plumes rise from the edges of the two LLSVPs, spatially fixed in time. New models of mantle flow over the last 230 million years reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. The anomaly formed in isolation within a closed subduction network ∼22,000 km in circumference prior to 150 million years ago before migrating ∼1,500 km westward at an average rate of 1 cm year -1 , indicating a greater mobility of deep mantle structures than previously recognized. We hypothesize that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.
Pure climb creep mechanism drives flow in Earth’s lower mantle
Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Gouriet, Karine; Hirel, Pierre; Kraych, Antoine; Ritterbex, Sebastian
2017-01-01
At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The specificities of pure climb creep well match the seismic anisotropy observed of Earth’s lower mantle. PMID:28345037
Modeling Diverse Pathways to Age Progressive Volcanism in Subduction Zones.
NASA Astrophysics Data System (ADS)
Kincaid, C. R.; Szwaja, S.; Sylvia, R. T.; Druken, K. A.
2015-12-01
One of the best, and most challenging clues to unraveling mantle circulation patterns in subduction zones comes in the form of age progressive volcanic and geochemical trends. Hard fought geological data from many subduction zones, like Tonga-Lau, the Cascades and Costa-Rica/Nicaragua, reveal striking temporal patterns used in defining mantle flow directions and rates. We summarize results from laboratory subduction models showing a range in circulation and thermal-chemical transport processes. These interaction styles are capable of producing such trends, often reflecting apparent instead of actual mantle velocities. Lab experiments use a glucose working fluid to represent Earth's upper mantle and kinematically driven plates to produce a range in slab sinking and related wedge transport patterns. Kinematic forcing assumes most of the super-adiabatic temperature gradient available to drive major downwellings is in the tabular slabs. Moreover, sinking styles for fully dynamic subduction depend on many complicating factors that are only poorly understood and which can vary widely even for repeated parameter combinations. Kinematic models have the benefit of precise, repeatable control of slab motions and wedge flow responses. Results generated with these techniques show the evolution of near-surface thermal-chemical-rheological heterogeneities leads to age progressive surface expressions in a variety of ways. One set of experiments shows that rollback and back-arc extension combine to produce distinct modes of linear, age progressive melt delivery to the surface through a) erosion of the rheological boundary layer beneath the overriding plate, and deformation and redistribution of both b) mantle residuum produced from decompression melting and c) formerly active, buoyant plumes. Additional experiments consider buoyant diapirs rising in a wedge under the influence of rollback, back-arc spreading and slab-gaps. Strongly deflected diapirs, experiencing variable rise rates, also commonly surface as linear, age progressive tracks. Applying these results to systems like the Cascades and Tonga-Lau suggest there are multiple ways to produce timing trends due both to linear flows and waves of heterogeneity obliquely impacting surface plates.
NASA Astrophysics Data System (ADS)
Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.
2018-02-01
The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in <1 km) suggests an intense interaction between peridotites and rapid migrating fluids (∼1-25 m.y-1), erasing the initial high-δ11B subduction fluid signature within a short distance. The increase of peridotite δ11B with increasing deformation furthermore indicates that the flow of subduction fluids was progressively channelized in actively deforming shear zones parallel to the contact. Taken together, these results also suggest that the migration of subduction fluids/melts by porous flow through the subsolidus mantle wedge (i.e., above the plate interface at sub-arc depths) is unlikely to be an effective mechanism to transport slab-derived elements to the locus of partial melting in subduction zones.
The delineation and interpretation of the earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1989-01-01
In an attempt to understand the mechanical interaction of a growing lithosphere containing fracture zones with small and large scale mantle convection, which gives rise to geoid anomalies in oceanic regions, a series of fluid dynamical experiments is in progress to investigate: (1) the influence of lithosphere structure, fluid depth and viscosity field on the onset, scale, and evolution of sublithospheric convection; (2) the role of this convection in determining the rate of growth of lithosphere, especially in light of the flattening of the lithosphere bathymetry and heat flow at late times; and (3) combining the results of both numerical and laboratory experiments to decide the dominate factors in producing geoid anomalies in oceanic regions through the thermo-mechanical interaction of the lithosphere and subjacent mantle. The clear existence of small scale convection associated with a downward propagating solidification front (i.e., the lithosphere) and a larger scale flow associated with a discontinuous upward heat flux (i.e., a fracture zone) has been shown. The flows exist simultaneously and each may have a significant role in deciding the thermal evolution of the lithosphere and in understanding the relation of shallow mantle convection to deep mantle convection. This overall process is reflected in the geoid, gravity, and topographic anomalies in the north-central Pacific. These highly correlated fields of intermediate wavelength (approx. 200 to 2000 km) show isostatic compensation by a thin lithosphere for shorter (less than or equal to approx. 500 km), but not the longer, wavelengths. The ultimate, dynamic origin of this class of anomalies is being investigated.
NASA Astrophysics Data System (ADS)
Rooney, T. O.; Nelson, W. R.; Ayalew, D.; Yirgu, G.; Herzberg, C. T.; Hanan, B. B.
2014-12-01
Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with olivine-dominated source. There is mounting evidence, however, for the role of pyroxenite in magma generation within upwelling mantle plumes; a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Melts derived from metasomes may exhibit extreme enrichment or depletion in major and trace elements. We hypothesize that phenocrysts such as olivine, which are commonly used to probe basalt source lithology, will reflect these unusual geochemical signals. Here we present preliminary major and trace element analyses of 60 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt. % TiO2; 4.0-13.6 wt. % MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical unit identified in the later cinder cones and associated lava flows. (B) a clinopyroxene-phyric high Ti group (1-6.7 wt. % TiO2; 1.0-9.5 wt. % MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. When combined with a diagnostic negative K anomaly in primitive-mantle normalized diagrams and Na2O>K2O, the geochemical data point towards a source which is rich in amphibole, devoid of olivine, and perhaps containing some carbonate. Our preliminary results have identified a large suite of primitive lavas derived from a nominally olivine-free mantle source. Consequently, our future work will examine olivine geochemical characteristics and constrain the compositional space for these unusual mantle lithologies.
Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation
NASA Astrophysics Data System (ADS)
Gerault, M.; Coltice, N.
2017-12-01
Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the presence of continental material, the most substantial variations in amplitude and direction of rotation occur over a few tenth of millions of years. It suggests that, to first order, the net rotation is closely related to the tectonic make-up of the surface, evolving with the nature of plate boundaries and the physical arrangement of the plates.
Impact of lithospheric rheology on surface topography
NASA Astrophysics Data System (ADS)
Liao, K.; Becker, T. W.
2017-12-01
The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.
NASA Astrophysics Data System (ADS)
Deng, Yangfan; Li, Jiangtao; Song, Xiaodong; Zhu, Lupei
2018-05-01
Several geodynamic models have been proposed for the deformation mechanism of Tibetan Plateau (TP), but it remains controversial. Here we applied a method of joint inversion of receiver functions and surface wave dispersions with P wave velocity constraint to a dense linear array in the NE Tibet. The results show that the geological blocks, separated by major faults at the surface, are characterized by distinct features in the crust, the Moho, and the uppermost mantle. The main features include crustal low-velocity zones (LVZs) with variable strengths, anomalous Vp/Vs ratios that are correlated with LVZs, a large Moho jump, and other abrupt changes near major faults, strong mantle lithosphere anomalies, and correlation of crustal and mantle velocities. The results suggest a lithospheric-scale deformation of continuous shortening as well as localized faulting, which is affected by the strength of the lithosphere blocks. The thickened mantle lithosphere can be removed, which facilitates the formation of middle-lower crustal LVZ and flow. However, such flow is likely a consequence of the deformation rather than a driving force for the outward growth of the TP. The proposed model of TP deformation and growth can reconcile the continuous deformation within the blocks and major faults at the surface.
Self-Organized Mantle Layering After the Magma-Ocean Period
NASA Astrophysics Data System (ADS)
Hansen, U.; Dude, S.
2017-12-01
The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.; Huang, H.; Yao, H.
2010-12-01
We summarize results of our seismological studies of the lithosphere beneath Tibet and SW China. Joint analysis of geological, geodetic, and seismological data suggests that the Tibetan plateau formed through interplay between continental collision between India and Asia in the west and ocean floor subduction along the western Pacific island arcs and marginal basins in the east. These dynamic systems combine to facilitate the eastward extrusion of lithospheric material away from central Tibet. Located near the transition of these systems, SE Tibet is a key area for understanding regional seismicity as well as eastward plateau expansion. For a detailed regional study MIT installed an array of 25 three-component, broad band seismometers in Sichuan and Yunnan provinces, SW China. During the same 1-year period Lehigh University operated a 75 station array in east Tibet. Data from these and other nearby arrays have been used in a range of studies of crust and mantle heterogeneity and anisotropy. We focus our presentation on results of two lines of seismological study. First, travel time tomography (Li et al., PEPI 2006, EPSL 2008, JGR 2010) - with hand-picked phase arrivals from recordings at regional arrays, data from over 1,000 stations in China, and the global data base due to Engdahl et al. (BSSA, 1998) - has revealed that structures associated with subduction of the Indian plate beneath the Himalayas vary significantly from west Tibet (where the plate seems to underlie the entire plateau) to east Tibet (where Indian lithosphere seems to have plunged deeper into the mantle). Further east, fast structures appear in the upper mantle transition zone, presumably related to stagnation of slab fragments from westward subduction along Asia’s eastern sea board. Second, surface wave array tomography (Yao et al., GJI 2006, GJI 2008, JGR 2010; Huang et al., GRL 2010), based on ambient noise interferometry and traditional (inter station) dispersion analysis, is used to delineate the 3-D anisotropic structure of the crust and lithospheric mantle at length scales as small as 100 km beneath SE Asia. These inversions revealed (i) the presence of intra-crustal low velocity zones (perhaps bounded by major faults), (ii) a strong correlation between these low velocity zones and radial anisotropy (Vsh faster than Vsv), and (iii) that the pattern of crustal (azimuthal) anisotropy is quite different from that in the deep crust and mantle lithosphere. Furthermore, the spatial relationship with high heat flow, high (electrical) conductivity, and high Poisson’s ratio’s suggests that the crustal zones of low shear velocity are mechanically weak. Collectively, these inferences suggest that deformation is generally not vertically coherent and that (horizontal) ductile flow occurs (at least locally) in the deep crust of SE Tibet. Deformation of the lithosphere in SE Tibet may thus occur through interaction of geological units with and without crustal flow that are separated by major faults.
Quasi-Love phases between Tonga and Hawaii: Observations, simulations, and explanations
NASA Astrophysics Data System (ADS)
Levin, Vadim; Park, Jeffrey
1998-10-01
Seismograms of some shallow Tonga earthquakes observed at Hawaii contain SV-polarized phases in the Love wave time window, most prominently on the vertical component. Given the geometry of the observations (Δ ≈ 40-45°), such phases may be explained either as body waves or as mode-converted surface waves. Detailed synthetic seismogram modeling of representative events reveals several instances where the body wave explanation is inadequate, even when plausible uncertainties in the source mechanism are taken into account. The observed, SV-polarized phase can instead be generated through Love-Rayleigh scattering, which requires laterally varying seismic anisotropy along the Tonga-Hawaii path. Trial-and-error forward modeling with simple structures based on the transversely isotropic mid-Pacific velocity model PA5 of Gaherty et al [1996] obtains velocity structure that yields synthetic seismograms matching the observations. This model, while non unique, suggests first-order constraints on the lateral variation in anisotropic properties, and associated mantle flow, along the Tonga-Hawaii path. By examining trade-offs in model parameters, we conclude that robust features of the model are: (1) a transition from radial to mixed radial and azimuthal anisotropy 3°-5° from Hawaii; (2) the NW-SE alignment of the axis of azimuthal anisotropy; (3) higher degree of P anisotropy relative to S anisotropy; and (4) the presence of azimuthal anisotropy within upper 200-250 km of the mantle. Taken together, these features imply a disruption of mantle fabric by the processes forming Hawaii-Emperor volcanic system. A model with anisotropic gradients in both the lithospheric lid and shallow asthenosphere is the simplest extension of our starting model. However, an equivalent data fit can be obtained if the azimuthal-anisotropy gradients are restricted to line beneath the high-velocity "lid" of model PA5, so that mantle hot spot flow need not penetrate the lithospheric lid.
NASA Technical Reports Server (NTRS)
Hamilton, C. W.; Beggan, C. D.; Lopes, R.; Williams, D. A.; Radenbaugh, J.
2011-01-01
Io, the innermost of Jupiter's Galilean satellites, is the most volcanically active body in the Solar. System. Io's global mean heat flow is approximately 2 W/square m, which is approximately 20 times larger than on Earth. High surface temperatures concentrate within "hotspots" and, to date, 172 Ionian hotspots have been identified by spacecraft and Earth-based telescopes. The Laplace resonance between Io, Europa, and Ganymede maintains these satellites in noncircular orbits and causes displacement of their tidal bulges as the overhead position of Jupiter changes for each moon. Gravitational interactions between Jupiter and Io dominate the orbital evolution of the Laplacian system and generate enormous heat within to as tidal energy is dissipated. If this energy were transferred out of Io at the same rate as it is generated, then the associated surface heat flux would be 2.24 +/- 0.45 W/square m. This estimate is in good agreement with observed global heat flow, but to better constrain tidal dissipation mechanisms and infer how thermal energy is transferred to Io's surface, it is critical to closely examine the spatial distribution of volcanic features. End-member tidal dissipation models either consider that heating occurs completely in the mantle, or completely in the asthenosphere. Mixed models typically favor one-third mantle and two-thirds asthenosphere heating. Recent models also consider the effects of mantle-asthenosphere boundary permeability and asthenospheric instabilities. Deep-mantle heating models predict maximum surface heat flux near the poles, whereas asthenosphere heating models predict maxima near the equator-particularly in the Sub-Jovian and Anti-Jovian hemispheres, with smaller maxima occurring at orbit tangent longitudes. Previous studies have examined the global distribution of Ionian hotspots and patera (i.e., irregular or complex craters with scalloped edges that are generally interpreted to be volcanic calderas), but in this study, we combine a new geospatial analysis technique with an improved hotspot and paterae database .
Olivine water contents in the continental lithosphere and the longevity of cratons.
Peslier, Anne H; Woodland, Alan B; Bell, David R; Lazarov, Marina
2010-09-02
Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle. Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere; however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient. Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years. Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine, the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations. Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet.
NASA Astrophysics Data System (ADS)
Anderson, D. L.
2014-12-01
Earth is an isolated, cooling planet, that obeys the 2nd law of thermodynamics. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy have confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad, passive, cool ridge-feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law of thermodynamics, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes principle, and kinetics. Rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the transition zone where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration. Canonical chemical geodynamic models are the exact opposite of physics- and thermodynamic-based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base. A thin mobile D" layer results, that is an unlikely plume-generation zone. Accounting for the physics that is overlooked or violated (the 2nd law of thermodynamics) in canonical models, plus modern seismology, undermines the assumptions and conclusions of these models.
NASA Astrophysics Data System (ADS)
Confal, Judith M.; Eken, Tuna; Tilmann, Frederik; Yolsal-Çevikbilen, Seda; Çubuk-Sabuncu, Yeşim; Saygin, Erdinc; Taymaz, Tuncay
2016-12-01
The subduction and roll-back of the African plate beneath the Eurasian plate along the arcuate Hellenic trench is the dominant geodynamic process in the Aegean and western Anatolia. Mantle flow and lithospheric kinematics in this region can potentially be understood better by mapping seismic anisotropy. This study uses direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea to reveal seismic anisotropy in the mantle. The technique overcomes possible contamination from source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 81 teleseismic events. Employing direct S-waves enabled more stable and reliable splitting measurements than previously possible, based on sparse SKS data at temporary stations, with one to five events for local SKS studies, compared with an average of 12 events for each station in this study. The fast polarization directions mostly show NNE-SSW orientation with splitting time delays between 1.15 s and 1.62 s. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern, most likely due to the usage of a larger number of individual observations in direct S-wave derived splitting measurements. Splitting analysis on direct shear waves typically resulted in larger split time delays compared to previous studies, possibly because S-waves travel along a longer path in the same anisotropic structure. Considering the S-derived splitting measurements of this study together with earlier SKS and Rayleigh wave anisotropy modelling results we suggest that the very consistent direct S-derived fast shear wave directions can be explained by the lattice-preferred orientation of olivine in the asthenospheric mantle due to mantle flow induced by the roll-back of the slab. It is possible that a small contribution originated in the lower crust beneath the study region where anisotropic fabric might have formed in response to extension in the Miocene.
No Radiative Heat Transport Through Pyrolitic Lower Mantle
NASA Astrophysics Data System (ADS)
Lobanov, S.; Holtgrewe, N.; Badro, J.; Goncharov, A. F.
2017-12-01
Transport properties of the lower mantle, such as its thermal conductivity, are key parameters required to understand the nature and dynamics of the core-mantle boundary (CMB) region. Radiative thermal conductivity (krad) of the mantle is determined by its visible-infrared absorption coefficient (α) at high pressure (P) and temperature (T). The latter is highly uncertain at the CMB conditions as optical measurements at high temperature suffer from intense thermal radiation that diminishes the probe contrast. Room-temperature high-pressure studies of bridgmanite and ferropericlase absorption coefficients suggest a steady increase of mantle radiative conductivity with depth mirroring the temperature increase along the geotherm (Goncharov et al., 2008; Keppler et al., 2008). Here we reconstruct optical properties of the mantle as a function of depth by using fast time-resolved spectroscopic technology combined with laser-heated diamond anvil cells. We found a strong increase in the rock absorption coefficient upon heating to 3000 K at 40-135 GPa. Using the pressure- and temperature-dependent pyrolite absorption coefficient we establish that lower mantle radiative thermal conductivity is decreasing with depth from 0.35 W/m/K at 1000 km to 0.15 W/m/K at the CMB, making it 50 times smaller than the corresponding lattice thermal conductivity at such conditions (Ohta et al., 2017; Okuda et al., 2017). Combining our results with models of lattice thermal conductivity in pyrolitic lower mantle we obtain a CMB heat flow of 8.5 TW. This estimate implies an inner core age of 0.7-1.3 Gy and favors a low-to-moderate core thermal conductivity (< 80 W/m/K). A core with higher thermal conductivity (Ohta et al., 2016; Pozzo et al., 2012) would be thermally stratified, halting a thermally driven dynamo prior to the inner core growth, if no other mechanism is invoked, such as MgO (Badro et al., 2016) or SiO2 (Hirose et al., 2017) exsolution. On the other hand, the low iron thermal conductivity scenario (Konopkova et al., 2016) combined with our model of low thermal conductivity at the base of the mantle, suggests that core convection could have taken place prior to inner core growth whether sources of chemical buoyancy were present or not.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
NASA Technical Reports Server (NTRS)
Bercovici, David
1995-01-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercovici, D.
1995-02-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less
NASA Astrophysics Data System (ADS)
Cao, Q.; van der Hilst, R. D.; Shim, S.; De Hoop, M. V.
2011-12-01
The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. Most tomographic models reveal anomalously low wavespeeds beneath Hawaii, but the depth extent of this structure is not well known. S or P data used in traveltime inversions are associated with steep rays to distant sources, which degrades depth resolution, and surface wave dispersion does not have sufficient sensitivity at the depths of interest. To investigate pertinent thermal anomalies we mapped depth variations of upper mantle discontinuities using precursors of the surface-reflected SS wave. Instead of stacking the data over geographical bins, which leads to averaging of topography and hence loss of spatial resolution, we used a generalized Radon transform (GRT) to detect and map localized elasticity contrasts in the transition zone (Cao et al., PEPI, 2010). We apply the GRT to produce 3D image volumes beneath a large area of the Pacific Ocean, including Hawaii and the Hawaii-Emperor seamount chain (Cao et al., Science, 2011). The 3D image volumes reveal laterally continuous interfaces near 410 and 660 km depths, that is, the traditional boundaries of the transition zone, but also suggest (perhaps intermittent) scatter horizons near 300-350, 520-550, and 800-1000 km depth. The upper mantle appears generally hot beneath Hawaii, but the most conspicuous topographic (and probably thermal) anomalies are found west of Hawaii. The GRT images reveal a 800 km wide uplift of the 660 discontinuity just west of Hawaii, but there is no evidence for a corresponding localized depression of the 410 discontinuity. This expression of the 410 and 660 km topographies is consistent with some existed geodynamical modeling results, in which a deep-rooted mantle plume impinging on the transition zone, creating a broad pond of hot material underneath endothermic phase change at 660 km depth, and with secondary plumes stemming from this hot pool of materials and rising in the upper mantle to create the present-day hotspot at Earth's surface. West of the upwarp that we interpret as the elevated post-spinel the main interface deepens to nearly 700 km depth. Given this position, it is unlikely that this deep structure is due to low temperatures. Instead, it would be consistent with slightly elevated temperatures (compared to transition temperature of post-spinel) and transitions in the garnet phase. This interpretation, if correct, implies that the area of ponded hot material is at least 2,000 km wide. The presence of an 800- to 2,000-kilometer-wide thermal anomaly deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly. This type of flow may be a better explanation of bathymetric features in the Pacific (including other seamount chains) than the canonical deep mantle plumes.
Optimization of Regional Geodynamic Models for Mantle Dynamics
NASA Astrophysics Data System (ADS)
Knepley, M.; Isaac, T.; Jadamec, M. A.
2016-12-01
The SubductionGenerator program is used to construct high resolution, 3D regional thermal structures for mantle convection simulations using a variety of data sources, including sea floor ages and geographically referenced 3D slab locations based on seismic observations. The initial bulk temperature field is constructed using a half-space cooling model or plate cooling model, and related smoothing functions based on a diffusion length-scale analysis. In this work, we seek to improve the 3D thermal model and test different model geometries and dynamically driven flow fields using constraints from observed seismic velocities and plate motions. Through a formal adjoint analysis, we construct the primal-dual version of the multi-objective PDE-constrained optimization problem for the plate motions and seismic misfit. We have efficient, scalable preconditioners for both the forward and adjoint problems based upon a block preconditioning strategy, and a simple gradient update is used to improve the control residual. The full optimal control problem is formulated on a nested hierarchy of grids, allowing a nonlinear multigrid method to accelerate the solution.
Geophysical, petrological and mineral physics constraints on Earth's surface topography
NASA Astrophysics Data System (ADS)
Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.
2015-04-01
Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the modeled topography. We also test several viscosity models, either radially symmetric, the V1 profile from Mitrovica and Forte [2004], or more complex laterally varying structures. All the property fields are expanded in spherical harmonics, until degree 24, and implemented in the code StagYY [Tackley, 2008] to perform mantle instantaneous flow modeling and compute surface topography and gravitational field. Our results show the importance of constraining the crustal and mantle density structure relying on a multidisciplinary approach that involves experimentally robust thermodynamic datasets. Crustal density field has a strong effect on the isostatic component of topography. The models that we test, CRUST 1.0 and those in Guerri and Cammarano [2015], produce strong differences in the computed isostatic topography, in the range ±600 m. For the lithospheric mantle, relying on experimentally robust material properties constraints is necessary to infer a reliable density model that takes into account chemical heterogeneities. This approach is also fundamental to correctly interpret seismic models in temperature, a crucial parameter, necessary to determine the lithosphere-asthenosphere boundary, where static effects on topography leave place to dynamic ones. The comparison between results obtained with different viscosity fields, either radially symmetric or vertically and laterally varying, shows how lateral viscosity variations affect the results, in particular the modeled geoid, at different wavelengths. References: Brocher, T. M. (2005), Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust, Bulletin of the Seismological Society of America, 95(6), 2081-2092. Cammarano, F., P. J. Tackley, and L. Boschi (2011), Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models, Geophys. J. Int. Connolly, J. A. D. (2005), Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation, Earth and Planetary Science Letters (236), 524-541. Guerri, M., and F. Cammarano (2015), On the effects of chemical composition, water and temperature on physical properties of the Earth's continental crust, submitted to Geochemistry, Geophysics, Geosystem. Holland, T. J. B., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. metamorphic Geol., 16(309-343). Laske, G., G. Masters, Z. Ma, and M. E. Pasyanos (2013), CRUST1.0: An updated global model of Earth's crust, in EGU General Assembly 2013, edited, Geophysical Research Abstracts, Vienna. Mitrovica, J. X., and A. M. Forte (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth and Planetary Science Letters, 225, 177-189. Tackley, P. J. (2008), Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Int.
Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Sang-Heon; Grocholski, Brent; Ye, Yu
2017-06-05
Our current understanding of the electronic state of iron in lower-mantle minerals leads to a 8 considerable disagreement in bulk sound speed with seismic measurements if the lower mantle 9 has the same composition as the upper mantle (pyrolite). In the modelling studies, the content 10 and oxidation state of Fe in the minerals have been assumed to be constant throughout the lower 11 mantle. Here, we report high pressure experimental results in which Fe becomes dominantly 1 Fe2+ 12 in bridgmanite synthesized at 40–70GPa and 2,000K, while it is in mixed oxidation state (Fe3+/ P Fe = 60%) inmore » the samples synthesized below and above the pressure range. Little Fe3+ 13 14 in bridgmanite combined with the strong partitioning of Fe2+ into ferropericlase will alter the Fe 15 content for these minerals at 1,100–1,700 km depths. Our calculations show that the change in 16 iron content harmonizes the bulk sound speed of pyrolite with the seismic values in this region. 17 Our experiments support no significant changes in bulk composition for most of the mantle, 18 while possible changes in physical properties and processes (such as viscosity and mantle flow 19 patterns) in the mid mantle.« less
Warming: mechanism and latitude dependence
NASA Astrophysics Data System (ADS)
Barkin, Yury
2010-05-01
Introduction. In the work it is shown, that in present warming of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric core of the Earth and its mantle plays. Relative displacements of the centers of mass of the core and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the core and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the core and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the core in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers of mass of some bodies of solar system and attributes of secular displacements of their centers of mass are universal and testify to relative translational displacements of shells of these bodies (such as the core, the mantle and others). And it means, that there is a highly effective mechanism of an active life of planets and satellites [1, 2]. This mechanism is distinct from the tidal mechanism of gravitational interaction of deformable celestial bodies. Its action is shown, for example, even in case if the core and the mantle are considered as absolutely rigid gravitating bodies, but separated by a is viscous-elastic layer. Classics of celestial mechanics did not consider gravitational interaction and relative translational displacement of the core and the mantle of the Earth. As our studies have shown the specified new mechanism is high energetic and allows to explain many of the phenomena earlier inaccessible to understanding in various geosciences, including climatology [1] - [5]. It has been shown, that secular changes in activity of all planetary processes on the Earth are connected with a secular drift of the core of the Earth, and are controlled by the core and are reflections and displays of the core drift [5]. It is naturally, that slow climatic changes are connected with drift of the core, with induced by this drift inversion changes in an atmosphere, ocean, with thermodynamic variations of state of layer D ', with changes and variations in mantle convection and in plume activity of the Earth. The drift of the core controls a transmission of heat in the top layers of the mantle and on a surface of the Earth, organizes volcanic and seismic activity of the Earth in planetary scale. The mechanism of a warming up of layers of the mantle and cyclic inversion changes of a climate. According to a developed geodynamic model all layers of the mantle at oscillations and motions of the core under action of its gravitational attraction test wide class of inversion deformations [1]. Thus the part of energy of deformations passes in heat by virtue of dissipation properties of the mantle. Than more intensively oscillations of the core, the more amplitudes of these oscillations, the occur the specified thermal transformations more intensively. As relative displacements of the core have cyclic character, because of cyclic influences on the core-mantle system of external celestial bodies also a formation of heat flows and warmed plume materials (substances) will have also cyclic character. In particular orbital perturbations with Milankovitch's periods in 100 kyr, 41 kyr, etc. will be precisely reflected in variations of the specified thermal flows and, accordingly, a planetary climate. In it the essence of occurrence of cycles of congelations on the Earth [3] consists. If during any period of time the core behaves passively, amplitudes of its oscillations are small the thermal flows to a surface of a planet will be decrease. This geodynamic conditions corresponds to the periods of a cold snap. And on the contrary, if the core and mantle interact actively and make significant oscillations the thermal flows to a surface of a planet accrues. This geodynamic state corresponds to the periods of warming. At drift of the core to the north and its oscillations with accrueing amplitude (for example, in present period) submission of heat in the top layers of the mantle will accrue. It is warmly allocated in all layers of the mantle deformed by an attraction of the drifting and oscillating core. But a base layer is the layer D" ("kitchen of plume-tectonics"). As we know the two mechanisms work for warm redistribution into the Earth. First is a mechanism of convection. In our geodynamical model it has forced nature and is organized and controlled by gravitational action of external celestial bodies and as result has cyclical character. Second mechanism is a plume mechanism which organizes the warmed masses redistributions in higher levels of the mantle, on a bottom of ocean and on a surface of the Earth. In accordance with our geodynamical model mentioned redistribution of warmed mass also has forced character. It is organized and controlled by gravitational cyclic action of the external celestial bodies on core-mantle system. N/S inversion of the natural processes. Reliable an attribute of influence of oscillations of the core on a variation of natural processes is their property of inversion when, for example, activity of process accrues in northern hemisphere and decreases in a southern hemisphere. Such contrast secular changes in northern and southern (N/S) hemispheres have been predicted on the base of geodynamic model [1] and revealed according to observations: from gravimetry measurements of a gravity; in determination of a secular trend of a sea level, as global, and in northern and southern hemispheres; in redistribution of air masses; in geodetic measurements of changes of average radiuses of northern and southern hemispheres; in contrast changes of physical fields, for example, streams of heat, currents and circulation at ocean and an atmosphere, etc. [5]. The geodynamic mechanism [1] also unequivocally specifies, that the secular trend in global climatic characteristics of the Earth, and also inversion and asymmetric tendencies of change of a climate, in its northern and southern hemispheres in present period should be observed. The hemispherical asymmetry of global heat flows. In the paper [6] authors have shown that the mean heat flow of the Southern Hemisphere is 99.3 mW/m2, significantly higher than that of the Northern Hemisphere (74.0 mW/m2). The mantle heat loss from the Southern Hemisphere is 22.1 × 1012 W, as twice as that from the Northern Hemisphere (10.8 × 1012 W). The authors believe that this hemispherical asymmetry of global heat loss is originated by the asymmetry of geographic distribution of continents and oceans. In accordance with our geodynamical model discussed assymmetry of heat flows distribution with respect the Earth's hemispheres in first caused by eccentric position of the Earth core with respect to the mantle (displaced in present geological epoch in direction to Brasil). Of course the asymmetric distribution of heat loss is a long-term phenomenon in the geological history. But in present epoch due to drift of the core to the North we must observe some increasing of the heat flow of the Northern hemisphere and decreasing of the heat flow of the Southern hemisphere. In reality mentioned changes of heat flows are contrast (asymmetrical) and can have general tendency of increasing heat flows in both hemispheres (due to activization of relative oscillations of the core and mantle relatively polar axis). Contrast secular warming of Northern and Southern hemispheres of the Earth in present epoch. Dependence of warming from latitude. And warm flows are asymmetrically, more intensively warm is redistributed in northern hemisphere of the Earth and less intensively in a southern hemisphere. From here it follows, that the phenomenon of more intensive warming up of northern hemisphere, rather than southern in present period should be observed. Data of climatic observations (in first temperature trends for various latitude belts). More detailed analysis shows, that the phenomenon of warming in different form is shown in various latitudinal belts of the Earth. This phenomenon is more clearly shown in latitudinal belts further situated on latitude from South Pole, i.e. in high northern latitudes. Really, the trend of increase of temperature in northern hemisphere is characterized by greater rate, than a trend of temperature in a southern hemisphere. And not only trend components of temperatures increase with increasing of latitudes from southern pole to northern pole, but also amplitudes of decade fluctuations of temperature in high northern breadthes are more bigger than in southern hemisphere. Thus again it is necessary to expect a contrast and asymmetry in decade variations of temperatures in northern and southern hemispheres (smaller variations in a southern hemisphere). References [1] Barkin Yu.V. (2002) An explanation of endogenous activity of planets and satellites and its cyclisity. Isvestia sekcii nauk o Zemle Rossiiskoi akademii ectestvennykh nauk. Vyp. 9, M., VINITI, pp. 45-97. In Russian. [2] Barkin Yu.V. (2009) Moons and planets: mechanism of their life. Proceedings of International Conference 'Astronomy and World Heritage: across Time and Continents' (Kazan, 19-24 August 2009). KSU, pp. 142-161. [3] Barkin Yu.V. (2004) Dynamics of the Earth shells and variations of paleoclimate. Proceedings of Milutin Milankovitch Anniversary Symposium 'Paleoclimate and the Earth climate system' (Belgrade, Serbia, 30 August - 2 September, 2004). Belgrade, Serbian Academy of Sciences and Art, pp. 161-164. [4] Barkin Yu.V. (2007) Inversion of periodic and trend variations of climate in opposite hemispheres of the Earth and their mechanism. Proceedings of IUGG XXIV General Assembly, Perugia, Italy 2007: Earth: Our Changing Planet (Perugia, Italy, July 2-13, 2007) (P) - IAPSO, JPS001 'Interannual and Interdecadal Climate Variability', p. 1674. www. iugg2007perugia.it. [5] Barkin Yu.V. (2008) Secular polar drift of the core in present epoch: geodynamical and geophysical consequences and confirmations. General and regional problems of tectonics and geodynamics. Materials of XLI Tectonic Conference. V. 1. -M.:GEOS. p. 55-59. In Russian. [6] Yang Wang, Jiyang Wangand Zongji Ma (1998) On the asymmetric distribution of heat loss from the Earth's interior. Chinese Science Bulletin, Volume 43, Number 18 , p. 1566-1570.
Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes
NASA Astrophysics Data System (ADS)
Levin, V.; Park, J.; Gordeev, E.; Droznin, D.
2002-12-01
A wedge of mantle material above the subducting lithospheric plate at a convergent margin is among the most dynamic environments of the Earth's interior. Deformation and transport of solid and volatile phases within this region control the fundamental process of elemental exchange between the surficial layers and the interior of the planet. A helpful property in the study of material deformation and transport within the upper mantle is seismic anisotropy, which may reflect both microscopic effects of preferentialy aligned crystals of olivine and orthopyroxene and macroscopic effects of systematic cracks, melt lenses, layering etc. Through the mapping of anisotropic properties within the mantle wedge we can establish patterns of deformation. Volatile content affects olivine alignment, so regions of anomalous volatile content may be evident. Indicators of seismic anisotropy commonly employed in upper mantle studies include shear wave birefringence and mode-conversion between compressional and shear body waves. When combined together, these techniques offer complementary constraints on the location and intensity of anisotropic properties. The eastern coast of southern Kamchatka overlies a vigorous convergent margin where the Pacific plate descends at a rate of almost 80 mm/yr towards the northwest. We extracted seismic anisotropy indicators from two data sets sensitive to the anisotropic properties of the uppermost mantle. Firstly, we evaluated teleseismic receiver functions for a number of sites, and found ample evidence for anisotropicaly-influenced P-to-S mode conversion. Secondly, we measured splitting in S waves of earthquakes with sources within the downgoing slab. The first set of observations provides constraints on the depth ranges where strong changes in anisotropic properties take place. The local splitting data provides constraints on the cumulative strength of anisotropic properties along specific pathways through the mantle wedge and possibly parts of the slab. To explain the vertical stratification of anisotropy implied from receiver functions, and the strong lateral dependence of shear-wave splitting observations, we cannot rely on simple models of mantle wedge behaviour e.g., olivine-crystal alignment through subduction-driven corner flow. Diverse mechanisms can contribute to the observed pattern of anisotropic properties, with volatiles likely being a key influence. For instance, we find evidence in favor of a slow-symmetry-axis anisotropy within the uppermost 10-20 km of the mantle wedge, implying either excessive hydration of the mantle or else a presence of systematically aligned volatile-filled cracks or lenses. Also, shear-wave splitting is weak beneath the Avachinsky-Koryaksky volcanic center, suggesting either vertical flow or the influence of volatiles and/or thermally-enhanced diffusion creep.
A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds
NASA Astrophysics Data System (ADS)
Höning, D.; Hansen-Goos, H.; Spohn, T.
2012-12-01
While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in the phase area where the net degassing and continental growth rates are zero. Many of the parameter combinations result in one stable fixed point with a completely dry mantle that lacks continents altogether and a second stable fixed point with a continent coverage and mantle water concentration close to that of the present Earth. In addition, there is an unstable fixed point situated between the two. In general, the abiotic world has a larger zone of attraction for the fixed point with a dry mantle and no continents than the biotic world. Thus a biotic world is found to be more likely to develop continents and a have wet mantle. Furthermore, the biotic model is generally found to have a wetter mantle than an abiotic model with the same continent coverage. Through the effect of water on the mantle rheology, the biotic world would thus tend to be tectonically more active and have a more rapid long-term carbon silicate cycle. References: J. Kim, H. Dong, J. Seabaugh, S. W. Newell, D. D. Eberl, Science 303, 830-832, 2004 N. H. Sleep, D. K. Bird, E. Pope, Annu. Rev. Earth Planet. Sci. 40, 277-300, 2012 M. T. Rosing, D. K. Bird, N. H. Sleep, W. Glassley, F. Albarede, Paleo3 232, 90-113, 2006
NASA Astrophysics Data System (ADS)
Barantsrva, O.
2014-12-01
We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.
Seismic evidence for depth-dependent metasomatism in cratons
NASA Astrophysics Data System (ADS)
Eeken, Thomas; Goes, Saskia; Pedersen, Helle A.; Arndt, Nicholas T.; Bouilhol, Pierre
2018-06-01
The long-term stability of cratons has been attributed to low temperatures and depletion in iron and water, which decrease density and increase viscosity. However, steady-state thermal models based on heat flow and xenolith constraints systematically overpredict the seismic velocity-depth gradients in cratonic lithospheric mantle. Here we invert for the 1-D thermal structure and a depth distribution of metasomatic minerals that fit average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To match the seismic profiles, we need a significant amount of hydrous and/or carbonate minerals in the shallow lithospheric mantle, starting between the Moho and 70 km depth and extending down to at least 100-150 km. The metasomatic component can consist of 0.5-1 wt% water bound in amphibole, antigorite and chlorite, ∼0.2 wt% water plus potassium to form phlogopite, or ∼5 wt% CO2 plus Ca for carbonate, or a combination of these. Lithospheric temperatures that fit the seismic data are consistent with heat flow constraints, but most are lower than those inferred from xenolith geothermobarometry. The dispersion data require differences in Moho heat flux between individual cratons, and sublithospheric mantle temperatures that are 100-200 °C less beneath Yilgarn, Slave and Finland than beneath Kaapvaal. Significant upward-increasing metasomatism by water and CO2-rich fluids is not only a plausible mechanism to explain the average seismic structure of cratonic lithosphere but such metasomatism may also lead to the formation of mid-lithospheric discontinuities and would contribute to the positive chemical buoyancy of cratonic roots.
Present-day heat flow model of Mars
Parro, Laura M.; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier
2017-01-01
Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m−2, with an average value of 19 mW m−2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7–0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic. PMID:28367996
The generation of plate tectonics from mantle convection
NASA Astrophysics Data System (ADS)
Bercovici, David
2003-01-01
In the last decade, significant progress has been made toward understanding how plate tectonics is generated from mantle dynamics. A primary goal of plate-generation studies has been the development of models that allow the top cold thermal boundary layer of mantle convection, i.e. the lithosphere, to develop broad and strong plate-like segments separated by narrow, weak and rapidly deforming boundaries; ideally, such models also permit significant strike-slip (toroidal) motion, passive ridges (i.e. pulled rather than pried apart), and self-consistent initiation of subduction. A major outcome of work so far is that nearly all aspects of plate generation require lithospheric rheologies and shear-localizing feedback mechanisms that are considerably more exotic than rheologies typically used in simple fluid-dynamical models of mantle flow. The search for plate-generating behavior has taken us through investigations of the effects of shear weakening ('stick-slip') and viscoplastic rheologies, of melting at ridges and low-viscosity asthenospheres, and of grain-size dependent rheologies and damage mechanics. Many such mechanisms, either by themselves or in combination, have led to self-consistent fluid-mechanical models of mantle flow that are remarkably plate-like, which is in itself a major accomplishment. However, many other important problems remain unsolved, such as subduction intiation and asymmetry, temporal evolution of plate geometry, rapid changes in plate motion, and the Archaean initiation of the plate-tectonic mode of convection. This paper presents a brief review of progress made in the plate-generation problem over the last decade, and discusses unresolved issues and future directions of research in this important area.
Mantle dynamics in the Mediterranean
NASA Astrophysics Data System (ADS)
Faccenna, Claudio; Becker, Thorsten W.; Auer, Ludwig; Billi, Andrea; Boschi, Lapo; Brun, Jean Pierre; Capitanio, Fabio A.; Funiciello, Francesca; Horvåth, Ferenc; Jolivet, Laurent; Piromallo, Claudia; Royden, Leigh; Rossetti, Federico; Serpelloni, Enrico
2014-09-01
The Mediterranean offers a unique opportunity to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. This paper reviews the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper mantle heterogeneity imaged by structural seismology. We proceed to discuss a conceptual and quantitative framework for the causes of surface deformation. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of mantle convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper mantle convection cells. The downwellings are found in the center of the Mediterranean and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated backward with respect to the Eurasian upper plate, inducing a return flow of the asthenosphere from the back-arc regions toward the subduction zones. This flow can be found at large distance from the subduction zones and is at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, first-order Anatolia, and Adria microplate kinematics and may contribute to the high elevation of scarcely deformed areas such as Anatolia and eastern Iberia. More generally, the Mediterranean is an illustration of how upper mantle, small-scale convection leads to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.
Dynamical Generation of the Transition Zone in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Hansen, U.; Stemmer, K.
2005-12-01
The internal structure of the Earth is made up by a series of layers, though it is unclear how many layers exist and if there are layers invisible to remote sensing techniques. The transition zone is likely to be a boundary layer separating the convective systems in the lower and upper mantle. It seems likely that currently there is some mass exchange across this boundary, rather than the two systems beeing strictly separated.a Double-diffusive convection(d.d.c) is a vital mechanism which can generate layered structure and may thus be an important mmical machinery behind the formation of the transition zone. Double-diffusive convection determines the dynamics of systems whose density is influenced by at least two components with different molecular diffusivities.In the mantle, composition and temperature play the role of those two components. By means of numerical experiments we demonstrate that under mantle relevant conditions d.d.c typically leads to the formation of a transition zone. The calculations encompass two- and three dimensional Cartesian geometries as well as fully 3D spherical domains. We have further included strongly temperature dependent viscosity and find that this leads to even more pronounced layering. In most cases a layered flow pattern emerges, where two layers with a transition zone in between resembles a quasistationary state. Thus, the transition zone can be the result of a self organization process of the convective flow in the mantle. The presence of a phase transition further helps to stabilize the boundary against overturning, even on a time scale on the order of the age of the Earth.
Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.
2014-04-01
The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.
Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available
NASA Astrophysics Data System (ADS)
Artemieva, Irina
2014-05-01
This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the depth to a 600 deg C isotherm in continental upper mantle is presented as a proxy to the elastic thickness of the cratonic lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle. The TC1 model of the lithosphere thickness is used to calculate the growth and preservation rates of the lithosphere since the Archean.
NASA Astrophysics Data System (ADS)
Jahn, S.; Haigis, V.; Salanne, M.
2011-12-01
Thermal conductivity is an important physical parameter that controls the heat flow in the Earth's core and mantle. The heat flow from the core to the mantle influences mantle dynamics and the convective regime of the liquid outer core, which drives the geodynamo. Although thermal conductivities of important mantle minerals at ambient pressure are well-known (Hofmeister, 1999), experimentalists encounter major difficulties to measure thermal conductivities at high pressures and temperatures. Extrapolations of experimental data to high pressures have a large uncertainty and hence the heat transport in minerals at conditions of the deep mantle is not well constrained. Recently, the thermal conductivity of MgO at lower mantle conditions was computed from first-principles simulations (e.g. de Koker (2009), Stackhouse et al. (2010)). Here, we used classical molecular dynamics to calculate thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite structures at different pressures and temperatures. The interactions between atoms were treated by an advanced ionic interaction model which was shown to describe the behavior of materials reliably within a wide pressure and temperature range (Jahn & Madden, 2007). Two alternative techniques were used and compared. In non-equilibrium MD, an energy flow is imposed on the system, and the thermal conductivity is taken to be inversely proportional to the temperature gradient that builds up in response to this flow. The other technique (which is still too expensive for first principles methods) uses standard equilibrium MD and extracts the thermal conductivity from energy current correlation functions, according to the Green-Kubo formula. As a benchmark for the interaction potential, we calculated the thermal conductivity of fcc MgO at 2000K and 149GPa, where data from ab-initio non-equilibrium MD are available (Stackhouse et al., 2010). The results agree within the error bars, which justifies the use of the model for the calculation of thermal conductivities. However, with the non-equilibrium technique, the conductivity depends strongly on the size of the simulation box. Therefore, a scaling to infinite system size has to be applied, which introduces some uncertainty to the final result. The equilibrium MD method, on the other hand, seems to be less sensitive to finite-size effects. We will present computed thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite structures at 138 GPa and temperatures of 300 K and 3000 K, the latter corresponding to conditions in the D'' layer. This allows an assessment of the extrapolations to high pressures and temperatures used in the literature. Jahn S & Madden PA (2007) Phys. Earth Planet. Int. 162, 129 de Koker N (2009) Phys. Rev. Lett. 103, 125902 Hofmeister AM (1999) Science 283, 1699 Stackhouse S et al. (2010) Phys. Rev. Lett. 104, 208501
Orogenic, Ophiolitic, and Abyssal Peridotites
NASA Astrophysics Data System (ADS)
Bodinier, J.-L.; Godard, M.
2003-12-01
"Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting of ophiolites (mid-ocean ridges versus supra-subduction settings - e.g., Nicolas, 1989). In addition, the mantle structures and mineralogical compositions of tectonically emplaced mantle rocks may be obscured by deformation and metamorphic recrystallization during shallow upwelling, exhumation, and tectonic emplacement. Metamorphic processes range from high-temperature recrystallization in the stability field of plagioclase peridotites ( Rampone et al., 1993) to complete serpentinization (e.g., Burkhard and O'Neill, 1988). Some garnet peridotites record even more complex evolutions. They were first buried to, at least, the stability field of garnet peridotites, and, in some cases to greater than 150 km depths ( Dobrzhinetskaya et al., 1996; Green et al., 1997; Liou, 1999). Then, they were exhumed to the surface, dragged by buoyant crustal rocks ( Brueckner and Medaris, 2000).Alternatively, several peridotite massifs are sufficiently well preserved to allow the observation of structural relationships between mantle lithologies that are larger than the sampling scale of mantle xenoliths. It is possible in these massifs to evaluate the scale of mantle heterogeneities and the relative timing of mantle processes such as vein injection, melt-rock reaction, deformation, etc… Detailed studies of orogenic and ophiolitic peridotites on centimeter- to kilometer-scale provide invaluable insights into melt transfer mechanisms, such as melt flow in lithospheric vein conduits and wall-rock reactions (Bodinier et al., 1990), melt extraction from mantle sources via channeled porous flow ( Kelemen et al., 1995) or propagation of kilometer-scale melting fronts associated with thermalerosion of lithospheric mantle ( Lenoir et al., 2001). In contrast, mantle xenoliths may be used to infer either much smaller- or much larger-scale mantle heterogeneities, such as micro-inclusions in minerals ( Schiano and Clocchiatti, 1994) or lateral variations between lithospheric provinces ( O'Reilly et al., 2001).The abyssal peridotites are generally strongly affected by oceanic hydrothermal alteration. Most often, their whole-rock compositions are strongly modified and cannot be used straightforwardly to assess mantle compositions (e.g., Baker and Beckett, 1999). However, even in the worst cases the samples generally contain fresh, relic minerals (mainly clinopyroxene) that represent the only available direct information on the oceanic upper mantle in large ocean basins, away from hot-spot volcanic centers. In situ trace-element data on clinopyroxenes from abyssal peridotites provide constraints on melting processes at mid-ocean ridges (Johnson et al., 1990).In this chapter, we review the main inferences on upper mantle composition and heterogeneity that may be drawn from geochemical analyses of the major elements, lithophile trace elements, and Nd-Sr isotopes in tectonically emplaced and abyssal mantle rocks. In addition we emphasize important insights into the mechanisms of melt/fluid transfer that can be deduced from detailed studies of these mantle materials.
Thermal and chemical convection in planetary mantles
NASA Technical Reports Server (NTRS)
Dupeyrat, L.; Sotin, C.; Parmentier, E. M.
1995-01-01
Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.
NASA Astrophysics Data System (ADS)
Zhang, Guo-Liang; Chen, Li-Hui; Li, Shi-Zhen
2013-12-01
A large-scale mantle compositional discontinuity was identified along the East Pacific Rise (EPR) and the Pacific-Antarctic Ridge (PAR) with an inferred transition located at the EPR 23°S-32°S. Because of the EPR-Easter hotspot interactions in this area, the nature of this geochemical discontinuity remains unclear. IODP Sites U1367 and U1368 drilled into the ocean crust that was accreted at ∼33.5 Ma and ∼13.5 Ma, respectively, between 28°S and 30°S on the EPR. We use lavas from Sites U1367 and U1368 to track this mantle discontinuity away from the EPR. The mantle sources for basalts at Sites U1367 and U1368 represent, respectively, northern and southern Pacific mantle sub-domains in terms of Sr-Nd-Pb-Hf isotopes. The significant isotopic differences between the two IODP sites are consistent with addition of ancient subduction-processed ocean crust to the south Pacific mantle sub-domain. Our modeling result shows that a trace element pattern similar to that of U1368 E-MORB can be formed by melting a subduction-processed typical N-MORB. The trace element and isotope compositions for Site U1368 MORBs can be formed by mixing a HIMU mantle end-member with Site U1367 MORBs. Comparison of our data with those from the EPR-PAR shows a geochemical mantle boundary near the Easter microplate that separates the Pacific upper mantle into northern and southern sub-domains. On the basis of reconstruction of initial locations of the ocean crust at the two sites, we find that the mantle boundary has moved northward to the Easter microplate since before 33.5 Ma. A model, in which along-axis asthenospheric flow to where asthenosphere consumption is strongest, explains the movement of the apparent mantle boundary.
A possible mechanism for earthquakes found in the mantle wedge of the Nazca subduction zone
NASA Astrophysics Data System (ADS)
Warren, L. M.; Chang, Y.; Prieto, G. A.
2017-12-01
Beneath Colombia, the Cauca cluster of intermediate-depth earthquakes extends for 200 km along the trench (3.5°N-5.5°N, 77.0°W-75.3°W) and, with 58 earthquakes per year with local magnitude ML >= 2.5, has a higher rate of seismicity than the subduction zone immediately to the north or south. By precisely locating 433 cluster earthquakes from 1/2010-3/2014 with data from the Colombian National Seismic Network, we found that the earthquakes are located both in a continuous Nazca plate subducting at an angle of 33°-43° and in the overlying mantle wedge. The mantle wedge earthquakes (12% of the earthquakes) form two isolated 40-km-tall columns extending perpendicular to the subducting slab. Using waveform inversion, we computed focal mechanisms for 69 of the larger earthquakes. The focal mechanisms are variable, but the intraslab earthquakes are generally consistent with an in-slab extensional stress axis oriented 25° counterclockwise from the down-dip direction. We suggest that the observed mantle wedge earthquakes are the result of hydrofracture in a relatively cool mantle wedge. This segment of the Nazca Plate is currently subducting at a normal angle, but Wagner et al. (2017) suggested that a flat slab slowly developed in the region between 9-5.9 Ma and persisted until 4 Ma. During flat slab subduction, the overlying mantle wedge typically cools because it is cut off from mantle corner flow. After hydrous minerals in the slab dehydrate, the dehydrated fluid is expelled from the slab and migrates through the mantle wedge. If a cool mantle wedge remains today, fluid dehydrated from the slab may generate earthquakes by hydrofracture, with the mantle wedge earthquakes representing fluid migration pathways. Dahm's (2000) model of water-filled fracture propagation in the mantle wedge shows hydrofractures propagating normal to the subducting slab and extending tens of km into the mantle wedge, as we observe.
NASA Astrophysics Data System (ADS)
Hauri, Erik H.; Kurz, Mark D.
1997-12-01
We have determined the major element, trace element, and Os isotopic compositions of a stratigraphic suite of tholeiitic basalts spanning >30,000 years of the eruptive history of Mauna Loa volcano. Good correlations are observed between Os isotopes and the isotopes of Sr, Nd, Pb and He. In addition, the isotopes correlate with fractionation-corrected major element abundances within this single volcano, and provide a record of increased melting of mafic material with time at Mauna Loa. Chromatographic element fractionation during melt transport is shown to be negligible based on the good correlations of the isotopes of the compatible element Os with the other incompatible element tracers. The temporal variation at Mauna Loa is best described by the translation of the volcano over a Hawaiian plume which is radially zoned in composition. The radial zonation is a predicted consequence of thermal entrainment during flow in a mantle plume conduit.
Internally heated mantle convection and the thermal and degassing history of the earth
NASA Technical Reports Server (NTRS)
Williams, David R.; Pan, Vivian
1992-01-01
An internally heated model of parameterized whole mantle convection with viscosity dependent on temperature and volatile content is examined. The model is run for 4l6 Gyr, and temperature, heat flow, degassing and regassing rates, stress, and viscosity are calculated. A nominal case is established which shows good agreement with accepted mantle values. The effects of changing various parameters are also tested. All cases show rapid cooling early in the planet's history and strong self-regulation of viscosity due to the temperature and volatile-content dependence. The effects of weakly stress-dependent viscosity are examined within the bounds of this model and are found to be small. Mantle water is typically outgassed rapidly to reach an equilibrium concentration on a time scale of less than 200 Myr for almost all models, the main exception being for models which start out with temperatures well below the melting temperature.
Modeling rock weathering in small watersheds
NASA Astrophysics Data System (ADS)
Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.
2014-05-01
Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and Van der Weijden, 2012a, 2014), which integrates topographic, hydrologic, rock structure and chemical data to calculate weathering rates at the watershed scale, validated the conceptual models in the River Sordo basin, a small watershed located in the Marão cordillera (North of Portugal). The coupling of weathering, groundwater flow and landscape evolution analyses, as accomplished in this study, is innovative and represents a remarkable achievement towards regionalization of rock weathering at the watershed scale. The River Sordo basin occupies an area of approximately 51.2 km2 and was shaped on granite and metassediment terrains between the altitudes 185-1300 m. The groundwater flow system is composed of recharge areas located at elevations >700 m, identified on the basis of δ18O data. Discharge cells comprehend terminations of local, intermediate and regional flow systems, identified on the basis of spring density patterns, infiltration depth estimates based on 87Sr/86Sr data, and spatial distributions of groundwater pH and natural mineralization. Intermediate and regional flow systems, defined where infiltration depths >125 m, develop solely along the contact zone between granites and metassediments, because fractures in this region are profound and their density is very large. Weathering is accelerated where rocks are covered by thick soils, being five times faster relative to sectors of the basin where rocks are covered by thin soils. Differential weathering of bare and soil-mantled rock is also revealed by the spatial distribution of calculated aquifer hydraulic diffusivities and groundwater travel times.
Mix or un-mix? Trace element segregation from a heterogeneous mantle, simulated.
NASA Astrophysics Data System (ADS)
Katz, R. F.; Keller, T.; Warren, J. M.; Manley, G.
2016-12-01
Incompatible trace-element concentrations vary in mid-ocean ridge lavas and melt inclusions by an order of magnitude or more, even in samples from the same location. This variability has been attributed to channelised melt flow [Spiegelman & Kelemen, 2003], which brings enriched, low-degree melts to the surface in relative isolation from depleted inter-channel melts. We re-examine this hypothesis using a new melting-column model that incorporates mantle volatiles [Keller & Katz 2016]. Volatiles cause a deeper onset of channelisation: their corrosivity is maximum at the base of the silicate melting regime. We consider how source heterogeneity and melt transport shape trace-element concentrations in basaltic lavas. We use both equilibrium and non-equilibrium formulations [Spiegelman 1996]. In particular, we evaluate the effect of melt transport on probability distributions of trace element concentration, comparing the inflow distribution in the mantle with the outflow distribution in the magma. Which features of melt transport preserve, erase or overprint input correlations between elements? To address this we consider various hypotheses about mantle heterogeneity, allowing for spatial structure in major components, volatiles and trace elements. Of interest are the roles of wavelength, amplitude, and correlation of heterogeneity fields. To investigate how different modes of melt transport affect input distributions, we compare melting models that produce either shallow or deep channelisation, or none at all.References:Keller & Katz (2016). The Role of Volatiles in Reactive Melt Transport in the Asthenosphere. Journal of Petrology, http://doi.org/10.1093/petrology/egw030. Spiegelman (1996). Geochemical consequences of melt transport in 2-D: The sensitivity of trace elements to mantle dynamics. Earth and Planetary Science Letters, 139, 115-132. Spiegelman & Kelemen (2003). Extreme chemical variability as a consequence of channelized melt transport. Geochemistry Geophysics Geosystems, http://doi.org/10.1029/2002GC000336
NASA Astrophysics Data System (ADS)
Yanagisawa, Takatoshi; Kameyama, Masanori; Ogawa, Masaki
2016-09-01
We explore thermal convection of a fluid with a temperature-dependent viscosity in a basally heated 3-D spherical shell using linear stability analyses and numerical experiments, while considering the application of our results to terrestrial planets. The inner to outer radius ratio of the shell f assumed in the linear stability analyses is in the range of 0.11-0.88. The critical Rayleigh number Rc for the onset of thermal convection decreases by two orders of magnitude as f increases from 0.11 to 0.88, when the viscosity depends sensitively on the temperature, as is the case for real mantle materials. Numerical simulations carried out in the range of f = 0.11-0.55 show that a thermal boundary layer (TBL) develops both along the surface and bottom boundaries to induce cold and hot plumes, respectively, when f is 0.33 or larger. However, for smaller f values, a TBL develops only on the bottom boundary. Convection occurs in the stagnant-lid regime where the root mean square velocity on the surface boundary is less than 1 per cent of its maximum at depth, when the ratio of the viscosity at the surface boundary to that at the bottom boundary exceeds a threshold that depends on f. The threshold decreases from 106.5 at f = 0.11 to 104 at f = 0.55. If the viscosity at the base of the convecting mantle is 1020-1021 Pa s, the Rayleigh number exceeds Rc for Mars, Venus and the Earth, but does not for the Moon and Mercury; convection is unlikely to occur in the latter planets unless the mantle viscosity is much lower than 1020 Pa s and/or the mantle contains a strong internal heat source.
NASA Astrophysics Data System (ADS)
Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.
2017-12-01
Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.
Sources, Fluxes, and Effects of Fluids in the Alpine Fault Zone, South Island, New Zealand
NASA Astrophysics Data System (ADS)
Menzies, C. D.; Teagle, D. A. H.; Niedermann, S.; Cox, S.; Craw, D.; Zimmer, M.; Cooper, M. J.; Erzinger, J.
2015-12-01
Historic ruptures on some plate boundary faults occur episodically. Fluids play a key role in modifying the chemical and physical properties of fault zones, which may prime them for repeated rupture by the generation of high pore fluid pressures. Modelling of fluid loss rates from fault zones has led to estimates of fluid fluxes required to maintain overpressure (Faulkner and Rutter, 2001), but fluid sources and fluxes, and permeability evolution in fault zones remain poorly constrained. High mountains in orogenic belts can drive meteoric water to the middle crust, and metamorphic water is generated during rock dehydration. Additionally, fluids from the mantle are transported into the crust when fluid pathways are created by tectonism or volcanism. Here we use geochemical tracers to determine fluid flow budgets for meteoric, metamorphic and mantle fluids at a major compressional tectonic plate boundary. The Alpine Fault marks the transpressional Pacific-Australian plate boundary through South Island of New Zealand, it has historically produced large earthquakes (Mw ~8) and is late in its 329±68 year seismic cycle, having last ruptured in 1717. We present strontium isotope ratios of hot springs and hydrothermal minerals that trace fluid flow paths in and around the Alpine Fault to illustrate that the fluid flow regime is restricted by low cross-fault permeability. Fluid-rock interaction limits cross-fault fluid flow by the precipitating clays and calcite that infill pore spaces and fractures in the Alpine Fault alteration zone. In contrast, helium isotopes ratios measured in hot springs near to the fault (0.15-0.81 RA) indicate the fault acts as a conduit for mantle fluids from below. Mantle fluid fluxes are similar to the San Andreas Fault (<1x10-5 m3m-2/yr) and insufficient to promote fault weakening. The metamorphic fluid flux is of similar magnitude to the mantle flux. The dominant fluid throughout the seismogenic zone is meteoric in origin (secondary mineral δDH2O = -45 to -87 ‰), but fluid channelling into the fault zone is required to maintain high pore fluid pressure that would promote fault weakening. Our results show that meteoric waters are primarily responsible for modifying fault zone permeability and for maintaining high pore fluid pressures that may assist episodic earthquake rupture.
Seismic anisotropy of western Mexico and northeastern Tibet
NASA Astrophysics Data System (ADS)
Leon-Soto, Gerardo
In this dissertation, characteristics of upper mantle anisotropy, using shear wave splitting techniques, for two distinct tectonic provinces are presented. In the first part, in western Mexico, the Rivera and Cocos plates subduct beneath the North America plate constituting a young subduction setting where plate fragmentation and capture is occurring today. We characterize the upper mantle anisotropy from SKS and local S phases from the data collected by the MARS experiment (MApping the Rivera Subduction zone) and by two stations of the Mexican Servicio Sismologico National. SKS shear-wave splitting parameters indicate that the fast directions of the split SKS waves for the stations that lie on the central and southern Jalisco block are approximately trench normal. Fast polarizations of these phases also follow the convergence direction between the Rivera Plate and Jalisco block with respect to the North America plate. S-wave splitting from slab events show a small averaged delay time of about 0.2 sec for the upper 60 km of the crust and mantle. Therefore, the main source of anisotropy must reside on the entrained mantle below the young and thin Rivera Plate. Trench-oblique fast SKS split directions are observed in the western edge of the Rivera Plate and western parts of the Cocos slab. The curved pattern of fast SKS split directions in the western Jalisco block and the Rivera-Cocos gap indicate 3-D toroidal mantle flow, around the northwestern edge of the Rivera slab and Rivera- Cocos gap. This behavior profoundly affects finite strain field in the northwestern edge of the Rivera slab and the mantle wedge. The shear wave splitting results support the idea that the Rivera and Cocos plates not only moved in a down-dip direction but also have recently rolled back towards the trench and the Colima rift is intimately related to the tearing between the Rivera and Cocos plates. In the second study, the tectonic enviroment of the northeastern Tibetan plateau is considered. Shear wave splitting measurements using teleseismic SKS and SKKS phases recorded by the ASCENT (A Seismic Collaborative Experiment in Northeastern Tibet) and INDEPTH-IV (International Deep Profiling of Tibet and the Himalaya, Phase IV) experiments reveal significant anisotropy in north-eastern Tibet with a large delay time of up 2.2 sec, indicating that anisotropy exists in both the lithospheric and asthenospheric mantle. The coherence between fast polarization directions of split core phases and the left-lateral slip on eastern-striking, southeastern-striking and southern-striking faults in eastern Tibet as well as the surface velocity calculated from GPS data support the idea that left-lateral shear strain is the predominant cause of the orientation of the upper mantle petrofabrics. The left-lateral motion can be best understood as a manifestation of north-striking right-lateral simple shear exerted by the eastern edge of the underthrusting Indian plate as it penetrates into Eurasia, as well as the bending of the Eastern Himalayan Syntaxis (EHS) by the foundering Burma-Andaman-Sumatra slab. Two plausible competing models are proposed for the flow of asthenosphere. In the first, the deforming lithosphere gliding over the passive asthenosphere induces flow of the asthenosphere. In the second, the asthenosphere beneath northeastern Tibet is flowing eastward in an asthenosphere channel that lies between the Ordos plateau and Sichuan basin, and around the EHS as it is being compressed between the advancing Indian continental lithosphere and the thick Tarim and Qaidam lithospheres to the north. Delay times from stations in the EHS have a maximum of 1.3 sec suggesting that although most anisotropy is residing in the lithosphere, some may be associated with flow of the asthenosphere. The retreating Burma slab induces flow that is toroidal and located exclusively around the northern edge of the slab. The curved fast directions of split shear waves for stations in the EHS are consistent with the toroidal flow pattern as well as the rotational deformation of the overlying lithosphere. It is suggested that the foundering Burma plate may also play an important role in bending the EHS in the late Cenozoic time.
Piecewise Delamination Drives Uplift in the Atlas Mountains Region of Morocco
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Humphreys, E.; Martin Davila, J.; mimoun, H.; Josep, G.; Palomeras, I.
2013-12-01
The elevation of the intra-continental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco by inverting teleseimic p-wave delay times, complemented with local delays, recorded on a dense array of stations in the Iberian peninsula and Morocco. A surface wave model provides constraint on the shallower layers. We determine the geometry of lithospheric cavities and mantle upwelling beneath the Middle Atlas and central High Atlas, and image delaminated lithosphere at ~400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle, sourced from regional upwellings in northern Africa or the Canary Islands, enabled the mobilization of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, where we image the most recent delamination. The Atlas Mountains of Morocco stand as an example of mantle-generated uplift and large-scale lithospheric loss in a mildly contractional orogen.
NASA Astrophysics Data System (ADS)
Idárraga-García, J.; Kendall, J.-M.; Vargas, C. A.
2016-09-01
To investigate the subduction dynamics in northwestern South America, we measured SKS and slab-related local S splitting at 38 seismic stations. Comparison between the delay times of both phases shows that most of the SKS splitting is due to entrained mantle flow beneath the subducting Nazca and Caribbean slabs. On the other hand, the fast polarizations of local S-waves are consistently aligned with regional faults, which implies the existence of a lithosphere-confined anisotropy in the overriding plate, and that the mantle wedge is not contributing significantly to the splitting. Also, we identified a clear change in SKS fast directions at the trace of the Caldas Tear (˜5°N), which represents a variation in the subduction style. To the north of ˜5°N, fast directions are consistently parallel to the flat subduction of the Caribbean plate-Panama arc beneath South America, while to the south fast polarizations are subparallel to the Nazca-South America subduction direction. A new change in the SKS splitting pattern is detected at ˜2.8°N, which is related to another variation in the subduction geometry marked by the presence of a lithosphere-scale tearing structure, named here as Malpelo Tear; in this region, NE-SW-oriented SKS fast directions are consistent with the general dip direction of the underthrusting of the Carnegie Ridge beneath South America. Further inland, this NE-SW-trending mantle flow continues beneath the Eastern Cordillera of Colombia and Merida Andes of Venezuela. Finally, our results suggest that the subslab mantle flow in northwestern South America is strongly controlled by the presence of lithospheric tearing structures.
NASA Astrophysics Data System (ADS)
De Min, Angelo; Callegaro, Sara; Marzoli, Andrea; Nardy, Antonio J.; Chiaradia, Massimo; Marques, Leila S.; Gabbarrini, Ilaria
2018-04-01
Lava flow sequences were sampled in the central part of the Paraná basin aiming to verify the time-related evolution of the Paraná basaltic magmatism. It is shown that low- and high-Ti basalts were erupted synchronously. In particular, Esmeralda and Pitanga flows are interlayered, with the former prevailing in the upper part of the sequence. Evidence for synchronously active magma plumbing systems is also supported by mineralogical data, showing signs of mixing between the two groups. Geochemical data, including Sr-Nd-Pb isotopic compositions are furthermore used to define the mantle source of various low- (Esmeralda and Gramado) and high-Ti (Pitanga and Urubici) magma types. Involvement of a carbonatitic component is proposed for the genesis of the basalts (particularly for the Urubici ones) as suggested by trace element enrichments unrelated to significant isotopic variations. This carbonatitic signature of the mantle source may be conveyed by CO2-rich metasomatic fluids or melts percolating upwards within the sub-continental lithospheric mantle (SCLM) leading to rapid and selective enrichment of incompatible trace elements. Metasomatism was probably localized at the outskirts of the basin, were Urubici tholeiites and contemporaneous carbonatites were erupted. Geochemical data also suggest the occurrence of significant amounts of crustal contamination in the LTi magmas (mainly in the Gramado and in the late Esmeralda lavas) while crustal assimilation seems negligible in the HTi samples. Globally, a very complex picture arises for the genesis of the Paraná tholeiites, with near-synchronous and geographically coincident flows undergoing significantly different extents of interaction with the crust and tapping different mantle sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilling, J.; Kingsley, R.H.; Devine, J.D.
We report on the petrology and geochemistry of basalts dredged at 40--50 km intervals along the Galapagos Spreading Center, between 83/sup 0/W and 101/sup 0/W (40 stations). Emphasis is on spatial variations of 'whole rock' major elements, rare earths, trace metals of the first transition series, and the nature of phenocryst assemblages and their abundances. These results provide new constraints on the nature and scale of mantle source heterogeneities, melting conditions, thermal field, and dynamics of crustal formation of the region. We suggest that ridge segments outside the high magnetic amplitude zone are at a steady state as a resultmore » of passive seafloor spreading. Basalts from these segments are apparently derived from an asthenosphere relatively uniformally depleted in incompatible elements, which appears of worldwide extent. We reject Vogt and DeBoer's (1976) model invoking damming at fracture zones of subaxial asthenosphere flow of crystal slushes and increasing fractional crystallization down the flow line, because this model would not explain the gradients in REE observed about the Galapagos Platform. Our preferred model combines the mantle-plume binary mixing model of Schilling (1973) with the concept of recurring rift propagation proposed by Hey (1977a). We further propose that pulsating mantle plume flux, perhaps in the form of a chain of blobs, may initiate the development of new rifts and their propagation. The present position of the tips of such new propagating rifts locate the wave fronts of such pulsating mantle plume flow. A two million year period is suggested for the last 4 m.y. from Wilson and Hey's (1979) information Rigorous testing of our preferred model is possible.« less
On the Yield Strength of Oceanic Lithosphere
NASA Astrophysics Data System (ADS)
Jain, Chhavi; Korenaga, Jun; Karato, Shun-ichiro
2017-10-01
The yield strength of oceanic lithosphere determines the mode of mantle convection in a terrestrial planet, and low-temperature plasticity in olivine aggregates is generally believed to govern the plastic rheology of the stiffest part of lithosphere. Because, so far, proposed flow laws for this mechanism exhibit nontrivial discrepancies, we revisit the recent high-pressure deformation data of Mei et al. (2010) with a comprehensive inversion approach based on Markov chain Monte Carlo sampling. Our inversion results indicate that the uncertainty of the relevant flow law parameters is considerably greater than previously thought. Depending on the choice of flow law parameters, the strength of oceanic lithosphere would vary substantially, carrying different implications for the origin of plate tectonics on Earth. To reduce the flow law ambiguity, we suggest that it is important to establish a theoretical basis for estimating macroscopic stress in high-pressure experiments and also to better utilize marine geophysical observations.
Grain size controls on sediment supply from debris-mantled dryland hillslopes
NASA Astrophysics Data System (ADS)
Michaelides, K.
2011-12-01
Debris-mantled hillslopes are common in arid and semiarid environments where low rates of chemical weathering give rise to thin, non-cohesive soils mantled with a layer of coarse rock fragments derived from weathered bedrock that can reach boulder size. The grain size distributions (GSDs) on the surface of these hillslopes interact with different magnitudes and frequencies of runoff-producing rainfall events that selectively transport grain sizes of different classes depending on flow, grain position on the slope, and hillslope attributes. Sediment transport over many runoff events determines sediment delivery to the slope base, which ultimately modifies the GSD of valley floors. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the topographic evolution of drainage basins over >104 y timescales, but the specific responses of sediment flux across the hillslope and the corresponding changes in GSDs to individual storm events are poorly understood. Sheetwash erosion of coarse fragments presents a particular set of conditions for sediment transport that is poorly resolved in current models. A particle-based model for sheetwash sediment transport on debris-mantled hillslopes was developed within a rainfall-runoff model. The rainfall-runoff model produces spatial values of flow depth and velocity which are used to drive a particle-by-particle force-balance model derived from first principles for grain sizes > 1 mm. Particles on the hillslope surface are represented explicitly and can be composed of mixed grain sizes of any distribution or of uniform sizes of any diameter. The model resolves all the forces on each particle at each time and space step based on the flow hydraulics acting on them, so no assumptions are made about incipient motion using Shield's criterion. This research examines how the interplay between hillslope GSD, hillslope attributes (gradient and length) and runoff characteristics, determine sediment transport dynamics and net flux, GSD supplied to the slope base and the changes in GSD on the hillslope. The results show a strong control of initial hillslope GSD on flux characteristics: (1) GSD controls the degree of non-linearity in the relationship between sediment flux and hillslope gradient. (2) Grain size uniformity controls the degree and form of non-linearity in the relationship between sediment flux and gradient. (3) Over multiple runoff events, slopes coarsen - steeper slopes become coarser than shallow slopes. For individual events, changes in GSD on the slope depend on the magnitude and duration of the runoff event and can result in variable coarsening and fining on different parts of the slope. (4) The GSD of sediment delivered to the slope base is dependent on the hillslope GSD and the hillslope attributes and runoff characteristics. For most runoff events, the GSD of fluxed sediment is finer than the hillslope GSD except for extreme runoff events on very steep slopes with intermediate GSD (not extremely coarse). These findings provide insights into hillslope responses to climatic forcing and have theoretical implications for modeling hillslope evolution in drylands.
A climate model with cryodynamics and geodynamics
NASA Technical Reports Server (NTRS)
Ghil, M.; Le Treut, H.
1981-01-01
A simplified, zero-dimensional model of the climatic system is presented which attempts to incorporate mechanisms important on the time scale of glaciation cycles: 10,000 to 100,000 years. The ocean-atmosphere radiation balance, continental ice sheet plastic flow, and upper mantle viscous flow are taken into account, with stress on the interaction between the ice sheets and the upper mantle. The model exhibits free, self-sustained oscillations of an amplitude and period comparable to those found in the paleoclimatic record of glaciations, offering mild support for the idea that unforced oscillations can actually exist in the real climatic system itself. The careful study of the interplay between internal mechanisms and external forcing is held to represent an interesting challenge to the theory of ice ages.
NASA Technical Reports Server (NTRS)
Lin, J.; Parmentier, E. M.
1985-01-01
Finite difference calculations of thermal convection in a fluid layer with a viscosity exponentially decreasing with temperature are performed in the context of examining the topography and gravity anomalies due to mantle convection. The surface topography and gravity anomalies are shown to be positive over regions of ascending flow and negative over regions of descending flow; at large Rayleigh numbers the amplitude of surface topography is inferred to depend on Rayleigh number to the power of 7/9. Compositional stratifications of the mantle is proposed as a mechanism for confining small-scale convection to a thin layer. A comparative analysis of the results with other available models is included.
How plume-ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track
NASA Astrophysics Data System (ADS)
Bredow, Eva; Steinberger, Bernhard; Gassmöller, Rene; Dannberg, Juliane
2017-08-01
The Réunion mantle plume has shaped a large area of the Earth's surface over the past 65 million years: from the Deccan Traps in India along the hotspot track comprising the island chains of the Laccadives, Maldives, and Chagos Bank on the Indian plate and the Mascarene Plateau on the African plate up to the currently active volcanism at La Réunion Island. This study addresses the question how the Réunion plume, especially in interaction with the Central Indian Ridge, created the complex crustal thickness pattern of the hotspot track. For this purpose, the mantle convection code ASPECT was used to design three-dimensional numerical models, which consider the specific location of the plume underneath moving plates and surrounded by large-scale mantle flow. The results show the crustal thickness pattern produced by the plume, which altogether agrees well with topographic maps. Especially two features are consistently reproduced by the models: the distinctive gap in the hotspot track between the Maldives and Chagos is created by the combination of the ridge geometry and plume-ridge interaction; and the Rodrigues Ridge, a narrow crustal structure which connects the hotspot track and the Central Indian Ridge, appears as the surface expression of a long-distance sublithospheric flow channel. This study therefore provides further insight how small-scale surface features are generated by the complex interplay between mantle and lithospheric processes.
NASA Astrophysics Data System (ADS)
Juliá, J.; Tang, Z.; Mai, P. M.; Zahran, H.
2014-12-01
Cenozoic volcanic outcrops in Arabia - locally known as harrats - span more than 2000 km along the western half of the Arabian plate, from eastern Yemen to southern Syria. The magmatism is bimodal in character, with older volcanics (30 to 20 My) being tholeiitic-to-transitional and paralleling the Red Sea margin, and younger volcanics (12 Ma to Recent) being transitional-to-strongly-alkalic and aligning in a more north-south direction. The bimodal character has been attributed to a two-stage rifting process along the Red Sea, where the old volcanics would have produced from shallow sources related to an initial passive rifting stage, and young volcanics would have originated from one or more deep-seated mantle plumes driving present active rifting. Early models suggested the harrats would have resulted from either lateral flow from the Afar plume in Ethiopia, or more locally from a separate mantle plume directly located under the shield. Most recently, tomographic images of the Arabian mantle have suggested the northern harrats could be resulting from flow originating at a deep plume under Jordan. In this work, we investigate the location of deep mantle plumes under the Arabian plate by mapping transition zone thickness with teleseismic receiver functions. The transition zone is bounded by seismic discontinuities, nominally at 410 and 660 km depth, originating from phase transitions in the olivine-normative component of the mantle. The precise depth of the discontinuities is strongly dependent on temperature and, due to the opposing signs of the corresponding Clapeyron slopes, positive temperature anomalies are expected to result in thinning of the transition zone. Our dataset consists of ~5000 low-frequency (fc < 0.25 Hz) receiver function waveforms obtained at ~110 broadband stations belonging to a number of permanent and temporary seismic networks in the region. The receiver functions were migrated to depth and stacked along a ~2000 km long record section displaying P-to-S conversions at seismic discontinuities under Western Arabia. Our results display a normal to thicker-than-average transition zone under the study area, suggesting thermal perturbations of the transition zone due to deep mantle upwellings under the western shield and/or Jordan are unlikely.