NASA Astrophysics Data System (ADS)
Brown, E.; Lesher, C. E.
2015-12-01
Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/isotopically heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB magmatism, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the isotopic compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their isotopic compositions only indirectly represent the isotopic compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB magmatism, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of recycled crust in the modern Iceland plume[3]. These results suggest that this lithospheric material was not recycled into the lower mantle before becoming entrained in the Iceland plume. [1] Rudge et al. (2013). GCA, 114, p112-143; [2] Brown & Lesher (2014). Nat. Geo., 7, p820-824; [3] Thirlwall et al. (2004). GCA, 68, p361-386
NASA Astrophysics Data System (ADS)
Weis, D.; Harrison, L.
2017-12-01
The Hawaiian mantle plume has been active for >80 Ma with the highest magmatic flux, also distinctly increasing with time. The identification of two clear geochemical trends (Loa-Kea) among Hawaiian volcanoes in all isotope systems has implications for the dynamics and internal structure of the plume conduit and source in the deep mantle. A compilation of modern isotopic data on Hawaiian shield volcanoes and from the Northwest Hawaiian Ridge (NWHR), focusing specifically on high-precision Pb isotopes integrated with Sr, Nd and Hf isotopes, indicates the presence of source differences for Loa- and Kea-trend volcanoes that are maintained throughout the 1 Ma activity of each volcano. These differences extend back in time on all the Hawaiian Islands ( 5 Ma), and as far back as 47 Ma on the NWHR. In all isotope systems, the Loa-trend basalts are more heterogeneous by a factor of 1.5 than the Kea-trend basalts. The Hawaiian mantle plume overlies the boundary between ambient Pacific lower mantle on the Kea side and the Pacific LLSVP on the Loa side. Geochemical differences between Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material, with additional contribution of ULVZ material sporadically on the Loa side. Plume movement up the gently sloping edge of the LLSVP resulted in entrainment of greater amounts of LLSVP-enriched material over time, and explains why the Hawaiian mantle plume dramatically strengthens over time, contrary to plume models. Similar indications of preferential sampling at the edges of the African LLSVP are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. The anomalous low-velocity zones at the core-mantle boundary store geochemical heterogeneities that are enriched in recycled material (EM-I type) with different compositions under the Pacific and under Africa, and that are sampled by strong mantle plumes such as Hawaii and Kerguelen.
NASA Astrophysics Data System (ADS)
Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong
2018-05-01
The voluminous Late Mesozoic magmatism was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd isotopic characteristics, but this mechanism faces difficulties when interpreting other isotopic data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and isotopic data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the magmatic zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the magmatic zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O isotopic characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen isotope alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new generation mechanisms of the Late Mesozoic magmas from Central East Asia. Rift settings may have controlled these processes throughout crustal and mantle levels.
Chondritic xenon in the Earth’s mantle
NASA Astrophysics Data System (ADS)
Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G.; Füri, Evelyn; Marty, Bernard
2016-05-01
Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth’s mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth’s mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth’s accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.
Chondritic xenon in the Earth's mantle.
Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard
2016-05-05
Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.
Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks
NASA Astrophysics Data System (ADS)
Gangopadhyay, A.; Walker, R. J.
2006-12-01
The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.
Osmium isotopes and mantle convection.
Hauri, Erik H
2002-11-15
The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities (greater than 10%) of lithologically distinct mafic material which represents ancient oceanic lithosphere cycled through the convecting mantle on a time-scale of 800 million years or more.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2007-12-01
The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source of mantle plumes, as suggested 25 years ago by Hofmann & White [2]. Determination of the depth of origin of mantle plumes would provide a 1st-order constraint on the depth of plate subduction and the volume of the "upper" mantle. Improved seismic techniques and deployment of OBS arrays may soon allow robust imaging of mantle plumes in the deep mantle, although preliminary results are controversial [3]. Detection of a conclusive geochemical signature of core/mantle interaction would also provide strong evidence for a deep origin of mantle plumes, although there is considerable debate as to what such a signature would entail. In summary, determination of the depth of origin of mantle plumes may provide the key to deciphering the fate of subducted slabs and the overall style of mantle convection. Although this problem remains unresolved after several decades of work, recent developments in both geophysics and geochemistry provide hope for a final resolution within the next 10 years. [1] M Bizimis, M Griselin, JC Lassiter, VJM Salters, G Sen, EPSL 257, 259-293, 2007. [2] AW Hofmann, WM White, EPSL 57, 421-436, 1982. [3] R Montelli, G Nolet, F Dahlens, G Masters, E Engdahl, S-H Hung, Science 303, 338-343, 2004.
Source of Volatiles in Earth's Deep Mantle from Neon Isotope Systematics in the South Atlantic
NASA Astrophysics Data System (ADS)
Williams, C. D.; Mukhopadhyay, S.
2016-12-01
The noble gases play an important role in understanding Earth's accretion and subsequent evolution. Neon isotopes in particular have the potential to distinguish between distinct sources of Earth's volatiles e.g., acquisition of nebular gas, solar wind implanted materials or chondritic meteorites and their components. The neon isotopic composition of the deep mantle remains subject to debate with the majority of mantle-derived basalts displaying maximum 20Ne/22Ne ratios less than 12.5, similar to values determined for the convective mantle (20Ne/22Ne = 12.49 +/- 0.04; [1]). These values are also much lower than those of solar wind (20Ne/22Ne = 13.8; [2,3]) and estimates of the nebular gas (20Ne/22Ne = 13.4; [4]) but comparable to solar wind implanted meteoritic materials (20Ne/22Ne = 12.5-12.7; [5]). Here we determine the neon isotopic composition of mantle-derived materials from the south Atlantic. These samples display strong linear correlations in 20Ne/22Ne-21Ne/22Ne space with maximum 20Ne/22Ne ratios that are resolvable from and higher than materials derived from the convecting mantle as well as models of solar wind implantation. These results supplement a growing database of mantle materials characterized by 20Ne/22Ne ratios greater than 12.5, challenging the notion that the entire mantle acquired volatiles from solar wind implanted meteoritic materials. In this presentation we will explore alternative origins for these volatiles and provide testable predictions for each scenario. [1] G. Holland, C.J. Ballentine.. Nature 441 (2006), 186-191. [2] A. Gimberg et al. GCA 72 (2008), 626-645. [3] V.S. Heber et al. GCA 73 (2009), 7414-7432. [4] V. S. Heber et al. ApJ 759 (2012), 121. [5] R. Wieler in: D. Porcelli, C.J. Ballentine, R. Wieler (Eds.), Reviews in Mineralogy and Geochemistry 47 (2002), 21-70.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wu, Y.; WANG, C.; Jin, Z.
2015-12-01
Large-scale oceanic/continental subduction introduces a range of crustal materials into the Earth's mantle. These subducted material will be gravitationally trapped in the deep mantle when they have been transported to a depth of greater than ~250-300 km ("depth of no return"). However, little is known about the fate of these trapped continental material. Here, we conduct experimental study on a natural continental rock which compositionally similar to the average upper continental crust (UCC) over a pressure and temperature range of 9-16 GPa and 1300-1800 oC to constraint the fate of these trapped continental materials. The experimental results demonstrate that subducted UCC produces ~20-30 wt% K-rich melt (>55 wt% SiO2) in the upper mantle (9-13 GPa). The melting residue is mainly composed of coesite/stishovite + clinopyroxene + kyanite. In contrast, partial melting of subducted UCC in the MTZ produces ~10 wt% K-rich melt (<50 wt% SiO2), together with stishovite, clinopyroxene, K-Hollandite, garnet and CAS-phase as the residue phases. The melting residue phases achieve densities greater than the surrounding mantle, which provides a driving force for descending across the 410 km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of MTZ, leaving the descended residues being accumulated above the 660 km seismic discontinuity and may contribute to the stagnated "second continent". On the other hand, the melt is ~0.3-0.7 g/cm3 less dense than the surrounding mantle and provides a buoyancy force for the ascending of melt to shallow depth. The ascending melt preserves a significant portion of the bulk-rock REEs and LILEs. Thus, chemical reaction between the melt and the surrounding mantle would leads to a variably metasomatised mantle. Re-melting of the metasomatised mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, through subduction, stagnation, partial melting and melt segregation of continental crust may create EM-sources and"second continent" at shallow depth and the base of the MTZ respectively, which may contribute to the observed geochemical/geophysical heterogeneity in Earth's interior.
Chlorine isotope evidence for crustal recycling into the Earth's mantle
NASA Astrophysics Data System (ADS)
John, Timm; Layne, Graham D.; Haase, Karsten M.; Barnes, Jaime D.
2010-09-01
Subduction of oceanic lithosphere is a key feature of terrestrial plate tectonics. However, the effect of this recycled crustal material on mantle composition is debated. Ocean island basalts (OIB) provide direct insights into the composition of Earth's mantle. The distinct composition of the HIMU (high 238U/ 204Pb)- and EM (enriched mantle)-type OIB mantle sources may be due to either recycling of oceanic crust and sediment into the mantle or metasomatic processes within the mantle. Chlorine derived from seawater or crustal fluids potentially provides a tracer for recycled material. Previously reported δ 37Cl values for mid-ocean ridge basalts (MORB) range from ca. - 3.0 to near 0‰. In contrast to MORB, we find a larger variation in OIB glasses representing HIMU- and EM-type mantle sources based on replicate SIMS analyses with δ 37Cl values ranging from - 1.6 to + 1.1‰ for HIMU-type and - 0.4 to + 2.9‰ for EM-type lavas. These δ 37Cl values correlate positively with 87Sr/ 86Sr ratios for both the HIMU- and EM-type samples. The negative δ 37Cl values of some HIMU-type lavas overlap with those of altered oceanic lithosphere, which is assumed to be present in the HIMU source. The EM lavas have high 87Sr/ 86Sr and primarily positive δ 37Cl values. We hypothesize that subducting sediments may have developed high δ 37Cl values by expelling 37Cl-depleted pore fluids, thus accounting for the positive δ 37Cl values recorded in the EM-type lavas.
NASA Astrophysics Data System (ADS)
Madrigal Quesada, P.; Gazel, E.
2017-12-01
Monogenetic seamounts related to non-plume intraplate magmatism provide a window into the composition of upper mantle heterogeneities, nevertheless, the origin of these heterogeneities are still not well constrained. Radiogenic isotopes (Sr-Nd-Pb) from present-day ocean island basalts (OIB) produced by this type of magmatism can help establish the source compositions of these chemically and isotopically enriched reservoirs. Here we present evidence that suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle. We explore this hypothesis using data from non-plume related OIB volcanism; focusing on isolated monogenetic seamounts with no apparent age progression and interpreted to be related to either plate flexure, shear driven convection and/or edge convection. The isotopic record compiled, added to new results obtained from accreted petit-spot seamounts from Santa Elena Peninsula in Costa Rica, suggest that a highly radiogenic mantle reservoir originated from recycled seamount materials can be formed in a shorter time scale than ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle "flavor" found in some of these small-scale seamounts. The implications of these results entail that the recycling of already enriched materials in short time scales and in restricted depths within the Upper Mantle may play an important role in the source of OIBs (plume and non-plume related), as well as, the most enriched suites of EMORBs.
Volatiles in the Earth and Moon: Constraints on planetary formation and evolution
NASA Astrophysics Data System (ADS)
Parai, Rita
The volatile inventories of the Earth and Moon reflect unique histories of volatile acquisition and loss in the early Solar System. The terrestrial volatile inventory was established after the giant impact phase of accretion, and the planet subsequently settled into a regime of long-term volatile exchange between the mantle and surface reservoirs in association with plate tectonics. Therefore, volatiles in the Earth and Moon shed light on a diverse array of processes that shaped planetary bodies in the Solar System as they evolved to their present-day states. Here we investigate new constraints on volatile depletion in the early Solar System, early outgassing of the terrestrial mantle, and the long-term evolution of the deep Earth volatile budget. We develop a Monte Carlo model of long-term water exchange between the mantle and surface reservoirs. Previous estimates of the deep Earth return flux of water are up to an order of magnitude too large, and incorporation of recycled slabs on average rehydrates the upper mantle but dehydrates the plume source. We find evidence for heterogeneous recycling of atmospheric argon and xenon into the upper mantle from noble gases in Southwest Indian Ridge basalts. Xenon isotope systematics indicate that xenon budgets of mid-ocean ridge and plume-related mantle sources are dominated by recycled atmospheric xenon, though the two sources have experienced different degrees of degassing. Differences between the mid-ocean ridge and plume sources were initiated within the first 100 million years of Earth history, and the two sources have never subsequently been homogenized. New high-precision xenon isotopic data contribute to an emerging portrait of two mantle reservoirs with distinct histories of outgassing and incorporation of recycled material in association with plate tectonics. Xenon isotopes indicate that the Moon likely formed within ˜70 million years of the start of the Solar System. To further investigate early Solar System chronology, we determined strontium isotopic compositions in a suite of planetary materials. If the Moon is derived from proto-Earth material, then rubidium-strontium systematics in the lunar anorthosite 60025 and Moore County plagioclase indicate that Moon formation occurred within ~62 million years of the start of the Solar System.
Barium isotopic compositions of oceanic basalts from São Miguel, Azores Archipelago
NASA Astrophysics Data System (ADS)
Yu, H.; Nan, X.; Huang, F.
2016-12-01
Oceanic island basalts (OIB) provide important information to decipher the processes of mantle convection and crustal material recycling1. OIBs from São Miguel, Azores Archipelago have extreme radiogenic isotope compositions2-3, representing an enriched component in their mantle source. However, the origins of the enriched mantle are still in debate. Previous studies proposed that the enriched component could be subducted terrigenous sediments2,4, delaminated subcontinental lithosphere5-6, recycled oceanic crust with evolved compositions (such as a subducted seamount)7, or enriched (E-MORB type) under-plated basalts which infiltrated the oceanic mantle lithosphere8. In this study, we use Ba isotopes to constrain the origin of enriched component beneath São Miguel because Ba isotopes can be significantly fractionated at the Earth's surface with low temperature environment than in the mantle with high temperature9-10. We analyzed Ba isotopes of 15 basalts from São Miguel. Although these samples have large variations of 87Sr/86Sr (0.703440-0.705996), 206Pb/204Pb (19.319-20.095) and 187Os/188Os (0.127-0.161), they have limited variation of 137Ba/134Ba (-0.003 to +0.048‰). The average 137Ba/134Ba of São Miguel basalts is 0.019±0.033‰ (n=15, 2SD), which is in the range of mantle (0.026±0.090‰, n=32, 2SD)9, indicating there is no surface material in the mantle source of São Miguel. The enriched source of São Miguel could be evolved material from the mantle. 1. Hofmann, 1997, Nature; 2. Hawkesworth et al., 1979, Nature; 3. White et al., 1979, CMP; 4. Turner et al., 1997, CG; 5. Widom et al., 1997, CG; 6. Moreira et al., 1999, EPSL; 7. Beier et al., 2007, EPSL; 8. Elliott et al., 2007, GCA; 9. Huang et al., 2015, Goldschmidt abs 1331; 10. Nan et al., 2016, Goldschmidt abs 2246.
Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.
1980-01-01
Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.
NASA Astrophysics Data System (ADS)
Brown, E.; Lesher, C. E.
2014-12-01
The compositions and volumes of basalts erupted at the earth's surface are a function of mantle temperature, mantle composition, and the rate at which the mantle upwells through the melting zone. Thus, basaltic magmatism has long been used to probe the thermal and physiochemical state of the earth's mantle. Great insight has been gained into the mantle beneath the global spreading ridge system, where the mantle source is assumed to be homogeneous peridotite that upwells passively [1]. However, it is now recognized that many basalt source regions are lithologically heterogeneous (i.e. containing recycled lithospheric material ranging from harzburgite to pyroxenite) and upwell at rates in excess of those governed by plate separation. To account for these complexities, we have developed a forward melting model for lithologically heterogeneous mantle that incorporates thermodynamically and experimentally constrained melting functions for a range of peridotite and pyroxenite lithologies. The model is unique because it quantifies mantle upwelling rates based on the net buoyancy of the source, thus providing a means for linking basalt compositions/volumes to mantle flow while accounting for source heterogeneity. We apply the model to investigate the mantle properties governing magmatism along different rift segments in Iceland, where lithologic heterogeneity and variable upwelling rates have been inferred through geochemical means [2,3]. Using constraints from seismically determined crustal thicknesses and recent estimates of the proportion of pyroxenite-derived melt contributing to Icelandic basalt compositions [4,5], we show that mantle sources beneath Iceland have excess potential temperatures >85 °C, contain <7% pyroxenite, and maximum upwelling rates ~14 times the passive rate. Our modeling highlights the dominant role of elevated mantle temperature and enhanced upwelling for high productivity magmatism in Iceland, and a subordinate role for mantle heterogeneity, which is required to account for much of the observed chemical and isotopic diversity. [1] Langmuir et al, 1992, AGU Geophys. Mono. Ser. 71 [2] Chauvel & Hemond, 2000, G-cubed, v 1 [3] Kokfelt et al, 2003, EPSL, v 214 [4] Sobolev et al, 2007, Science, v 316 [5] Shorttle et al, 2014, EPSL, v 395
NASA Astrophysics Data System (ADS)
Rojas-Agramonte, Yamirka; Garcia-Casco, Antonio; Kemp, Anthony; Kröner, Alfred; Proenza, Joaquín A.; Lázaro, Concepción; Liu, Dunyi
2016-02-01
Estimates of global growth rates of continental crust critically depend upon knowledge of the rate at which crustal material is delivered back into the mantle at subduction zones and is then returned to the crust as a component of mantle-derived magma. Quantification of crustal recycling by subduction-related magmatism relies on indirect chemical and isotopic tracers and is hindered by the large range of potential melt sources (e.g., subducted oceanic crust and overlying chemical and clastic sediment, sub-arc lithospheric mantle, arc crust), whose composition may not be accurately known. There is also uncertainty about how crustal material is transferred from subducted lithosphere and mixed into the mantle source of arc magmas. We use the resilient mineral zircon to track crustal recycling in mantle-derived rocks of the Caribbean (Greater Antilles) intra-oceanic arc of Cuba, whose inception was triggered after the break-up of Pangea. Despite juvenile Sr and Nd isotope compositions, the supra-subduction zone ophiolitic and volcanic arc rocks of this Cretaceous (∼135-70 Ma) arc contain old zircons (∼200-2525 Ma) attesting to diverse crustal inputs. The Hf-O isotope systematics of these zircons suggest derivation from exposed crustal terranes in northern Central America (e.g. Mexico) and South America. Modeling of the sedimentary component in the most mafic lavas suggests a contribution of no more than 2% for the case of source contamination or less than 4% for sediment assimilation by the magma. We discuss several possibilities for the presence of inherited zircons and conclude that they were transported as detrital grains into the mantle beneath the Caribbean Plate via subduction of oceanic crust. The detrital zircons were subsequently entrained by mafic melts that were rapidly emplaced into the Caribbean volcanic arc crust and supra-subduction mantle. These findings suggest transport of continental detritus, through the mantle wedge above subduction zones, in magmas that otherwise do not show strong evidence for crustal input and imply that crustal recycling rates in some arcs may be higher than hitherto realized.
Plate Tectonic Cycling and Whole Mantle Convection Modulate Earth's 3He/22Ne Ratio
NASA Astrophysics Data System (ADS)
Dygert, N. J.; Jackson, C.; Hesse, M. A.; Tremblay, M. M.; Shuster, D. L.; Gu, J.
2016-12-01
3He and 22Ne are not produced in the mantle or fractionated by partial melting, and neither isotope is recycled back into the mantle by subduction of oceanic basalt or sediment. Thus, it is a surprise that large 3He/22Ne variations exist within the mantle and that the mantle has a net elevated 3He/22Ne ratio compared to volatile-rich planetary precursor materials. Depleted subcontinental lithospheric mantle and mid-ocean ridge basalt (MORB) mantle have distinctly higher 3He/22Ne compared to ocean island basalt (OIB) sources ( 4-12.5 vs. 2.5-4.5, respectively) [1,2]. The low 3He/22Ne of OIBs approaches chondritic ( 1) and solar nebula values ( 1.5). The high 3He/22Ne of the MORB mantle is not similar to solar sources or any known family of meteorites, requiring a mechanism for fractionating He from Ne in the mantle and suggesting isolation of distinct mantle reservoirs throughout geologic time. We model the formation of a MORB source with elevated and variable 3He/22Ne though diffusive exchange between dunite channel-hosted basaltic liquids and harzburgite wallrock beneath mid-ocean ridges. Over timescales relevant to mantle upwelling beneath spreading centers, He may diffuse tens to hundreds of meters into wallrock while Ne is relatively immobile, producing a regassed, depleted mantle lithosphere with elevated 3He/22Ne. Subduction of high 3He/22Ne mantle would generate a MORB source with high 3He/22Ne. Regassed, high 3He/22Ne mantle lithosphere has He concentrations 2-3 orders of magnitude lower than undegassed mantle. To preserve the large volumes of high 3He/22Ne mantle required by the MORB source, mixing between subducted and undegassed mantle reservoirs must have been limited throughout geologic time. Using the new 3He/22Ne constraints, we ran a model similar to [3] to quantify mantle mixing timescales, finding they are on the order of Gyr assuming physically reasonable seafloor spreading rates, and that Earth's convecting mantle has lost >99% of its primordial volatile elements. Most significantly, mantle convection is not and cannot have been layered for most of geologic time. [1] Graham (2002), RiMG 74, 247-317. [2] Jalowitzki et al. (2016), EPSL 450, 263-273. [3] Gonnermann & Mukhopadhyay (2009), Nature, 560-563.
Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas
NASA Astrophysics Data System (ADS)
Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.
Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.
Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas
NASA Technical Reports Server (NTRS)
Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.
1988-01-01
Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Geophysicist, born in New York City, professor of geology at Princeton, led Project Mohole, the first expedition to drill through the Earth's oceanic crust to the mantle beneath, theorized that spreading of mid-ocean ridges was the source of new mantle-derived continental material. Also a lunar geologist....
The role of water in the petrogenesis of Marina trough magmas
NASA Astrophysics Data System (ADS)
Stolper, Edward; Newman, Sally
1994-02-01
Most variations in composition among primitive basalts from the Mariana back-arc trough can be explained by melting mixtures of an N-type mid-ocean ridge basalt (NMORB) mantle source and an H2O rich component, provided the degree of melting is positively and approximately linearly correlated with the proportion of the H2O-rich component in the mixture. We conclude that the degrees of melting by which Mariana trough magmas are generated increase from magmas similar to NMORB, through more H2O-enriched basalts, to 'arc-like' basalts, and that this increase is due to the lowering of the solidus of mantle peridotite that accompanies addition of the H2O-rich component. The H2O-rich component is likely to be ultimately derived from fluid from a subducting slab, but we propose that by the time fluids reach the source regions of Mariana trough basalts, they have interacted with sufficient mantle material that for all but the most incompatible of elements (with respect to fluid-mantle interaction), they are in equilibrium with the mantle. In contrast, fluids added to the source regions of Mariana island-arc magmas have typically interacted with less mantle and thus retain the signature of slab-derived fluids to varying degrees for all but the most compatible elements. Primitive Mariana arc basalts can be generated by melting mixtures of such incompletely exchanged slab-derived fluids and sources similar to NMORB-type mantle sources, but the degrees of melting are typically higher than those of Mariana trough NMORB and the sources have been variably depleted relative to the back-arc sources by previous melt extraction. This depletion may be related to earlier extraction of back-arc basin magmas or may evolve by repeated fluxing of the sources as fluid is continually added to them in the regions of arc magma generation. If fluid with partitioning behavior relative to the solid mantle similar to that deduced for the H2O-rich component involved in the generation of Mariana trough basalts were extracted from primitive mantle, the residual mantle would have many of the minor and trace element characteristics of typical oceanic upper mantle; primitive mantle enriched in such fluid would be a satisfactory source for the continental crust in terms of its trace and minor element chemical composition.
NASA Astrophysics Data System (ADS)
Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo
2016-04-01
Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic melts from carbonated eclogite derived from subducted Pacific slab materials present in the deeper mantle. High degree melting of garnet pyroxenites from a shallower mantle source produced the early (∼23-20 Ma) higher-Si basalts. Mixing of these materials with deeper-sourced melts of carbonated mantle source produced the moderate-Si basalts. A thicker lithosphere after 9 Ma precluded melting of shallower garnet pyroxenites, so melts of the deeper carbonated mantle source are responsible for the low-Si basalts.
Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu
2018-01-09
Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.
Osmium isotope constraints on Earth's late accretionary history
Morgan, J.W.
1985-01-01
Osmium isotope measurements reported by Alle??gre and Luck 1,2 indicate that terrestrial osmiridiums evolved in a mantle source region in which the osmium/rhenium ratio falls strictly within the range found in chondrites. This suggests that the highly siderophile elements in the Earth's mantle were introduced by a late influx of chondritic material and are not a result of endogenous processes. I have now examined the available data in more detail and conclude that the inferred Os/Re ratio of the Earth's mantle matches the E group and C3 chondrites, but that C1 and probably C2 chondrites were not major components of the material accreted in the late stages of mantle formation. ?? 1985 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik
2018-01-01
This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and sediment. The basalts from south-central Vietnam (12°N-14°N) may be dominated by the lowest portion of the residual slab that contains rutile-bearing plagioclase-rich gabbroic eclogite, whereas the uppermost portion of the recycled slab, including sediment and basaltic material with small amounts of gabbro, may be a major constituent of the source for the basalts within the central region of Vietnam (14°N-16°N). Finally, the southern region (10°N-12°N) contains basalts sourced mainly from recycled upper oceanic crust that is basalt-rich and contains little or no sediment.
The temperature of primary melts and mantle sources of komatiites, OIBs, MORBs and LIPs
NASA Astrophysics Data System (ADS)
Sobolev, Alexander
2015-04-01
There is general agreement that the convecting mantle, although mostly peridotitic in composition, is compositionally and thermally heterogeneous on different spatial scales. The amount, sizes, temperatures and compositions of these heterogeneities significantly affect mantle dynamics because they may diverge greatly from dominant peridotites in their density and fusibility. Differences in potential temperature and composition of mantle domains affect magma production and cannot be easily distinguished from each other. This has led to radically different interpretations of the melting anomalies that produce ocean-island basalts, large igneous provinces and komatiites: most scientists believe that they originate as hot, deep-sourced mantle plumes; but a small though influential group (e.g. Anderson 2005, Foulger, 2010) propose that they derive from high proportions of easily fusible recycled or delaminated crust, or in the case of komatiites contain large amount of H2O (e.g. Grove & Parman, 2004). The way to resolve this ambiguity is an independent estimation of temperature and composition of mantle sources of various types of magma. In this paper I report application of newly developed olivine-spinel-melt geothermometers based on partition of Al, Cr, Sc and Y for different primitive lavas from mid-ocean ridges, ocean-island basalts, large igneous provinces and komatiites. The results suggest significant variations of crystallization temperature for the same Fo of high magnesium olivines of different types of mantle-derived magmas: from the lowest (down to 1220 degree C) for MORB to the highest (up to over 1500 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and confirm the relatively low temperature of the mantle source of MORB and higher temperatures in the mantle plumes that produce the OIB of Iceland, Hawaii, Gorgona, Archean komatiites and several LIPs (e.g Siberian and NAMP). The established liquidus temperatures and compositions of primary melts allow estimating potential temperatures and compositions of their mantle sources. The results strongly confirm mantle plume theory and presence of variable amounts of recycled crustal material in the mantle sources. This study has been founded by Russian Science Foundation grant 14-17-00491.
Tracing subducted crustal materials in the mantle by using magnesium isotopes
NASA Astrophysics Data System (ADS)
Teng, F. Z.
2016-12-01
Recent studies show that some continental basalt, mantle-metasomatised peridotite and cratonic eclogite have heterogeneous Mg isotopic compositions. These isotopically distinct Mg isotopic compositions have been explained by the incorporation of subducted materials in their mantle sources though the detailed mechanisms are still not well understood. In particular, how Mg-poor crustal materials can modify Mg isotopic systematics of Mg-rich mantle is unknown. Subduction zones are the most efficient sites for crust and mantle interactions, hence should be where the most prominent Mg isotopic variation occurs. However, to date, little is known on Mg isotope systematics in the subduction factory. Here I first review and report new Mg isotopic data for arc lava, subarc peridotite and the subducted slab (marine sediment, altered basalt and abyssal peridotite), then use them to constrain the origins of mantle Mg isotopic heterogeneity and lay the foundation for using Mg isotopes as new tools for tracing crust-mantle interactions. The main conclusions are 1) fluid-rock interactions can modify Mg isotopic systematics of abyssal peridotites; 2) island arc lavas have non-MORB Mg isotopic compositions, reflecting distinct surbarc mantle Mg isotopic signature; 3) continental arcs have non-MORB Mg isotopic compositions, likely resulting from crustal contamination and 4) the isotopically heterogeneous continental basalts are mainly produced by mixing of isotopically distinct magmas instead of being partial melting products of metasomatised mantle peridotites.
Using the heterogeneity distribution in Earth's mantle to study structure and flow
NASA Astrophysics Data System (ADS)
Rost, S.; Frost, D. A.; Bentham, H. L.
2016-12-01
The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.
Key new pieces of the HIMU puzzle from olivines and diamond inclusions.
Weiss, Yaakov; Class, Cornelia; Goldstein, Steven L; Hanyu, Takeshi
2016-09-29
Mantle melting, which leads to the formation of oceanic and continental crust, together with crust recycling through plate tectonics, are the primary processes that drive the chemical differentiation of the silicate Earth. The present-day mantle, as sampled by oceanic basalts, shows large chemical and isotopic variability bounded by a few end-member compositions. Among these, the HIMU end-member (having a high U/Pb ratio, μ) has been generally considered to represent subducted/recycled basaltic oceanic crust. However, this concept has been challenged by recent studies of the mantle source of HIMU magmas. For example, analyses of olivine phenocrysts in HIMU lavas indicate derivation from the partial melting of peridotite, rather than from the pyroxenitic remnants of recycled oceanic basalt. Here we report data that elucidate the source of these lavas: high-precision trace-element analyses of olivine phenocrysts point to peridotite that has been metasomatized by carbonatite fluids. Moreover, similarities in the trace-element patterns of carbonatitic melt inclusions in diamonds and HIMU lavas indicate that the metasomatism occurred in the subcontinental lithospheric mantle, fused to the base of the continental crust and isolated from mantle convection. Taking into account evidence from sulfur isotope data for Archean to early Proterozoic surface material in the deep HIMU mantle source, a multi-stage evolution is revealed for the HIMU end-member, spanning more than half of Earth's history. Before entrainment in the convecting mantle, storage in a boundary layer, upwelling as a mantle plume and partial melting to become ocean island basalt, the HIMU source formed as Archean-early Proterozoic subduction-related carbonatite-metasomatized subcontinental lithospheric mantle.
Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Hauff, Folkmar; Gurenko, Andrey; Garbe-Schönberg, Dieter; Werner, Reinhard; Turner, Simon
2017-01-01
The Ontong Java and Manihiki oceanic plateaus are believed to have formed through high-degree melting of a mantle plume head. Boninite-like, low-Ti basement rocks at Manihiki, however, imply a more complex magma genesis compared with Ontong Java basement lavas that can be generated by ∼30% melting of a primitive mantle source. Here we show that the trace element and isotope compositions of low-Ti Manihiki rocks can best be explained by re-melting of an ultra-depleted source (possibly a common mantle component in the Ontong Java and Manihiki plume sources) re-enriched by ≤1% of an ocean-island-basalt-like melt component. Unlike boninites formed via hydrous flux melting of refractory mantle at subduction zones, these boninite-like intraplate rocks formed through adiabatic decompression melting of refractory plume material that has been metasomatized by ocean-island-basalt-like melts. Our results suggest that caution is required before assuming all Archaean boninites were formed in association with subduction processes. PMID:28181497
NASA Astrophysics Data System (ADS)
Krienitz, M.-S.; Haase, K. M.; Mezger, K.; van den Bogaard, P.; Thiemann, V.; Shaikh-Mashail, M. A.
2009-04-01
New 40Ar/39Ar ages combined with chemical and Sr, Nd, and Pb isotope data for volcanic rocks from Syria along with published data of Syrian and Arabian lavas constrain the spatiotemporal evolution of volcanism, melting regime, and magmatic sources contributing to the volcanic activity in northern Arabia. Several volcanic phases occurred in different parts of Syria in the last 20 Ma that partly correlate with different tectonic events like displacements along the Dead Sea Fault system or slab break-off beneath the Bitlis suture zone, although the large volume of magmas and their composition suggest that hot mantle material caused volcanism. Low Ce/Pb (<20), Nb/Th (<10), and Sr, Nd, and Pb isotope variations of Syrian lavas indicate the role of crustal contamination in magma genesis, and contamination of magmas with up to 30% of continental crustal material can explain their 87Sr/86Sr. Fractionation-corrected major element compositions and REE ratios of uncontaminated lavas suggest a pressure-controlled melting regime in western Arabia that varies from shallow and high-degree melt formation in the south to increasingly deeper regions and lower extents of the beginning melting process northward. Temperature estimates of calculated primary, crustally uncontaminated Arabian lavas indicate their formation at elevated mantle temperatures (Texcess ˜ 100-200°C) being characteristic for their generation in a plume mantle region. The Sr, Nd, and Pb isotope systematic of crustally uncontaminated Syrian lavas reveal a sublithospheric and a mantle plume source involvement in their formation, whereas a (hydrous) lithospheric origin of lavas can be excluded on the basis of negative correlations between Ba/La and K/La. The characteristically high 206Pb/204Pb (˜19.5) of the mantle plume source can be explained by material entrainment associated with the Afar mantle plume. The Syrian volcanic rocks are generally younger than lavas from the southern Afro-Arabian region, indicating a northward progression of the commencing volcanism since the arrival of the Afar mantle plume beneath Ethiopia/Djibouti some 30 Ma ago. The distribution of crustally uncontaminated high 206Pb/204Pb lavas in Arabia indicates a spatial influence of the Afar plume of ˜2600 km in northward direction with an estimated flow velocity of plume material on the order of 22 cm/a.
NASA Astrophysics Data System (ADS)
Tappe, Sebastian; Graham Pearson, D.; Kjarsgaard, Bruce A.; Nowell, Geoff; Dowall, David
2013-06-01
Late Cretaceous-Eocene kimberlites from the Lac de Gras area, central Slave craton, show the most extreme Nd-Hf isotope decoupling observed for kimberlites worldwide. They are characterized by a narrow range of moderately enriched Nd isotope compositions (ɛNd(i)=-0.4 to -3.5) that contrasts strongly with their moderately depleted to highly enriched ɛHf(i) values (+3.9 to -9.9). Although digestion of cratonic mantle material in proto-kimberlite melt can theoretically produce steep arrays in Nd-Hf isotope space, the amount of contaminant required to explain the Lac de Gras data is unrealistic. Instead, it is more plausible that mixing of compositionally discrete melt components within an isotopically variable source region is responsible for the steep Nd-Hf isotope array. As development of strongly negative ΔɛHf requires isotopic aging of a precursor material with Sm/Nd≫Lu/Hf for billion-year timescales, a number of models have been proposed where ancient MORB crust trapped in the mantle transition zone is the ultimate source of the extreme Hf isotope signature. However, we provide a conceptual modification and demonstrate that OIB-type domains within ancient subducted oceanic lithosphere can produce much stronger negative ΔɛHf during long-term isolation. Provided that these OIB-type domains have lower melting points compared with associated MORB crust, they are among the first material to melt within the transition zone during thermal perturbations. The resulting hydrous alkali silicate melts react strongly with depleted peridotite at the top of the transition zone and transfer negative ΔɛHf signatures to less dense materials, which can be more easily entrained within upward flowing mantle. Once these entrained refertilized domains rise above 300 km depth, they may become involved in CO2- and H2O-fluxed redox melting of upper mantle peridotite beneath a thick cratonic lid. We argue that incorporation of ancient transition zone material, which includes ultradeep diamonds, into the convecting upper mantle source region of Lac de Gras kimberlites was due to vigorous mantle return flow. This occurred in direct response to fast and complex subduction along the western margin of North America during the Late Cretaceous.
NASA Astrophysics Data System (ADS)
Dale, C.; Kruijer, T.; Burton, K. W.; Kleine, T.; Moorbath, S.
2015-12-01
Highly siderophile elements (HSE) were strongly sequestered into metallic planetary cores, leaving silicate mantles almost devoid of HSE. Late accretion partially replenished HSE in planetary mantles soon after core formation had ceased [1], which for Earth probably postdated the giant Moon-forming impact. Ancient isolated domains in Earth's mantle - such as the source of 3.8 Ga Isua basalts - might represent mantle isolated from late accreted material, as suggested based on their small 182W excesses compared to Earth's present-day mantle [2]. However, such 182W excesses may also represent signatures of early differentiation in Earth's mantle, which have been preserved through the giant impact [3]. To assess the origin of 182W anomalies and the 182W composition of the pre-late veneer mantle, we determined HSE abundances and 182W compositions of a suite of mafic to ultramafic rocks from Isua. Our data show that the Isua source mantle had HSE abundances at ~60% of the present-day mantle, inconsistent with isolation from the late veneer. For the same samples we obtained a 13±4 ppm 182W excess over the modern terrestrial mantle, in excellent agreement with previous data [2]. Using a range of possible late veneer compositions and taking into account the recently revised 182W value for the Moon [4], we calculate that the Isua mantle source, containing 60% late veneer, would have a 182W value of 9±4 ppm, in very good agreement with the measured value for Isua. The combined HSE-W data, therefore, are consistent with only partial addition of the late veneer to the Isua mantle source, and with the interpretation that the 27±4 ppm 182W excess of the Moon represents the 182W composition of the pre-late veneer Earth's mantle [4]. [1] Dale et al. (2012) Science 336, 72. [2] Willbold et al. (2011) Nature 477, 195. [3] Touboul et al. (2012) Science 335, 1065-1069. [4] Kruijer et al. (2015) Nature 7548, 534
Primordial domains in the depleted upper mantle identified by noble gases in MORBs
NASA Astrophysics Data System (ADS)
Tucker, J.; Mukhopadhyay, S.; Langmuir, C. H.; Hamelin, C.; Fuentes, J.
2017-12-01
The distribution of noble gas isotopic compositions in the mantle provides important constraints on the large-scale mantle evolution, as noble gases can trace the interaction between degassed, or processed, mantle domains and undegassed, or primitive, mantle domains. Data from the radiogenic He, Ne, Ar and Xe isotopic systems have shown that plume-related lavas sample relatively undegassed mantle domains, and the recent identification of isotopic anomalies in the short-lived I-Xe and Hf-W isotopic systems in plume-related lavas further suggests that these domains may be ancient, dating back to Earth's accretion. However, little is known about the potential variability of the heavy noble gas systems and the distribution of undegassed domains in the ambient upper mantle not influenced by plumes. Here, we present new high-precision He, Ne, Ar, and Xe isotopic data for a series of MORBs from a depleted section of the subtropical north Mid-Atlantic Ridge, distant from any known plume influence. Some samples have extremely low (unradiogenic) 4He/3He, 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe ratios, including some of the lowest values ever determined for MORBs. Such unradiogenic compositions are reminiscent of OIBs and plume-influenced E-MORBs, suggesting the presence of a relatively undegassed or primitive reservoir in the source of these depleted MORBs. The He, Ne, and Ar isotopic systems are sensitive to the long-term degassing history, suggesting that this domain in the MORB source is ancient. The 129Xe/130Xe ratio is sensitive to degassing only during the first 100 Ma of Earth history, suggesting that some of the isotopic character of these samples has been preserved since Earth's accretion. Together, these observations suggest that primordial or undegassed material is not only sampled in plumes-related lavas, but also normal, depleted MORBs. Along with data from E-MORBs in the southern EPR (Kurz et al., 2005), southern MAR (Sarda et al., 2000), and equatorial MAR (Tucker et al., 2012), our new data suggest that primordial material may be present throughout the MORB source. Such material could either have been stored for a long term in the upper mantle, or recently mixed into the upper mantle from a deeper reservoir.
Specific features of basalts from the western part of Andrew Bain Fault, Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Peyve, A. A.; Skolotnev, S. G.
2017-12-01
This paper reports original data on the composition of volcanic rocks in the western part of the Andrew Bain Fault of the South-West Indian Ridge obtained in the 23rd voyage of R/V Akademik Nikolai Strakhov. In accordance with high La/Th and low Nb/U ratios, the basalt compositions of stations S2317, S2318, and S2330 could result from melting of the DM-type source with HIMU traces. Meanwhile, the enriched samples of station S2326 correspond to a mantle source with a considerable contribution of recycled sediments (EM). Sample S2326/35, which is composed of a melt almost completely depleted in EM material, corresponds to the volcanic rocks of the Marion and Prince Edward islands. The obtained and available data on the SWIR segment from Bouvet Island to Andrew Bain Fault are indicative of small mantle heterogeneities in this region. Two possible variants of their origin are considered: either preservation of the enriched material fragments in the depleted mantle during the split of Gondwana or "contamination" of the mantle with plume material with the formation of vein irregularities before opening of the ocean in this region. In the latter case, the plume material could cover a huge area not constrained by the young plume magmatism regions on Bouvet, Marion, and Prince Edward islands.
NASA Astrophysics Data System (ADS)
Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.
2015-11-01
The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with the common hot mantle field of Central Asia.
NASA Astrophysics Data System (ADS)
Zhang, Yanfei; Wu, Yao; Wang, Chao; Zhu, Lüyun; Jin, Zhenmin
2016-08-01
The subducted continental crust material will be gravitationally trapped in the deep mantle after having been transported to depths of greater than ∼250-300 km (the "depth of no return"). However, little is known about the status of this trapped continental material as well as its contribution to the mantle heterogeneity after achieving thermal equilibrium with the surrounding mantle. Here, we conduct an experimental study over pressure and temperature ranges of 9-16 GPa and 1300-1800 °C to constrain the fate of these trapped upper continental crust (UCC). The experimental results show that partial melting will occur in the subducted UCC along normal mantle geotherm to produce K-rich melt. The residual phases composed of coesite/stishovite + clinopyroxene + kyanite in the upper mantle, and stishovite + clinopyroxene + K-hollandite + garnet + CAS-phase in the mantle transition zone (MTZ), respectively. The residual phases achieve densities greater than the surrounding mantle, which provides a driving force for descent across the 410-km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of the MTZ, leaving the descended residues to be accumulated above the 660-km seismic discontinuity and may contribute to the "second continent". The melt is ∼0.6-0.7 g/cm3 less dense than the surrounding mantle, which provides a buoyancy force for ascent of melt to shallow depths. The ascending melt, which preserves a significant portion of the bulk-rock rare earth elements (REEs), large ion lithophile elements (LILEs), and high-filed strength elements (HFSEs), may react with the surrounding mantle. Re-melting of the metasomatized mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, the deep subducted continental crust may create geochemical/geophysical heterogeneity in Earth's interior through subduction, stagnation, partial melting and melt segregation.
Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites
Parkinson; Hawkesworth; Cohen
1998-09-25
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.
Recycling Seamounts: Implications for Mantle Source Heterogeneities
NASA Astrophysics Data System (ADS)
Madrigal, P.; Gazel, E.
2016-12-01
Isolated seamounts formed away from plate boundaries and/or known hotspot tracks are widely distributed in the Earth's oceanic plates. Despite their pervasiveness, the origin and composition of the magmatic sources that create these seamounts are still unknown. Moreover, as the seamount provinces travel along with the oceanic plate towards subduction trenches these volcanic edifices become subducted materials that are later recycled into the mantle. Using radiogenic isotopes (Sr-Nd-Pb) from present-day non-plume ocean island basalts (OIB) sampled by drilling and dredging as well as by normal processes of accretion to subduction margins, we modeled the isotopic evolution of these enriched reservoirs to assess their role as discrete components contributing to upper mantle heterogeneity. Our evidence suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle in a shorter time period ( 200 Ma-500 Ma) than other highly enriched components like ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle reservoir endmember. Enriched signatures from intraplate volcanism can be described by mixing of a depleted component like DMM and an enriched reservoir like non-plume related seamounts. Our data suggests that the isotopic evolution in time of a seamount-province type of reservoir can acquire sufficiently enriched compositions to resemble some of the most enriched magmas on Earth. This "fast-forming" (between 200 and 500 Ma) enriched reservoir could also explain some of the enriched signatures commonly present in intraplate and EMORB magmas unrelated to deep mantle plume upwellings.
NASA Astrophysics Data System (ADS)
Castillo, Paterno; Hilton, David; Halldórsson, Sæmundur
2014-09-01
The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP) in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS) has a deep mantle contribution (Hilton et al., 2011). New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean) lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean) lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014).
Composition, structure and chemistry of interstellar dust
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.; Allamandola, Louis J.
1986-01-01
The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.
Mantle sources for Central Atlantic Magmatic Province basalts from Hf isotopes
NASA Astrophysics Data System (ADS)
Elkins, L. J.; Marzoli, A.; Bizimis, M.; Meyzen, C. M.; Callegaro, S.; Sorsen, N.; Lassiter, J. C.; Ernesto, M.
2017-12-01
The Central Atlantic Magmatic Province (CAMP) was one of the most voluminous LIP events in Earth history and likely triggered the end-Triassic mass extinction. The tectonic and mantle processes that produced such significant magmatic emplacement are thus of great interest. To further explore the origins of CAMP, we present new 176Hf/177Hf isotope data for a broad geographic sampling of CAMP dikes, sills, and basalt flows. We find that basaltic intrusions from the Carolinas in Eastern North America trend along a shallower slope than the terrestrial array on a diagram of 176Hf/177Hf vs. 143Nd/144Nd. This trend may reflect the presence of variable quantities of sediment-derived material in the mantle source region. This is consistent with previous suggestions that the asthenosphere beneath CAMP has been partially metasomatised by fluids derived from subducted sediments, as well as with isotopic trends observed in other LIP, such as Karoo [Jourdan et al., 2007, Jour. Petrology, doi:10.1093/petrology/egm010]. Distinct from the Carolina trend, we further observe that high-TiO2 basalts from Amazonia exhibit unusually radiogenic 176Hf/177Hf for a given 208Pb/206Pb ratio. The high-TiO2 basalts, which trend towards EM1-type compositions, may be asthenospheric melts that have experienced the addition of melts from local subcontinental lithospheric mantle (SCLM). Similarly high-TiO2 CAMP rocks from Sierra Leone may likewise have incorporated enriched lithospheric melts of lamproite-like composition in the source region [Callegaro et al., JPet, accepted; GSA Abstract #302853, 2017]. Low-TiO2 basalts from the same region in Brazil and of similar age to the high-TiO2 basalts lack the observed radiogenic 176Hf/177Hf ratios. This suggests that the melt source region beneath Brazil was heterogeneous, containing variable material with relatively radiogenic 176Hf/177Hf ratios, perhaps due to the greater age of subcontinental lithosphere and the presence of garnet. It remains unclear, however, whether the hypothesized SCLM source represents lithospheric domains which are still intact, or if this material reentered the convecting mantle by delamination prior to melting.
Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1994-01-01
It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.
Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core
NASA Astrophysics Data System (ADS)
Scherstén, Anders; Elliott, Tim; Hawkesworth, Chris; Norman, Marc
2004-01-01
Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets 187Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled 186Os-187Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile (`iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also `incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted 186Os-187Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.
Ruthenium isotopic evidence for an inner Solar System origin of the late veneer
NASA Astrophysics Data System (ADS)
Fischer-Gödde, Mario; Kleine, Thorsten
2017-01-01
The excess of highly siderophile elements in the Earth’s mantle is thought to reflect the addition of primitive meteoritic material after core formation ceased. This ‘late veneer’ either comprises material remaining in the terrestrial planet region after the main stages of the Earth’s accretion, or derives from more distant asteroidal or cometary sources. Distinguishing between these disparate origins is important because a late veneer consisting of carbonaceous chondrite-like asteroids or comets could be the principal source of the Earth’s volatiles and water. Until now, however, a ‘genetic’ link between the late veneer and such volatile-rich materials has not been established or ruled out. Such genetic links can be determined using ruthenium (Ru) isotopes, because the Ru in the Earth’s mantle predominantly derives from the late veneer, and because meteorites exhibit Ru isotope variations arising from the heterogeneous distribution of stellar-derived dust. Although Ru isotopic data and the correlation of Ru and molybdenum (Mo) isotope anomalies in meteorites were previously used to argue that the late veneer derives from the same type of inner Solar System material as do Earth’s main building blocks, the Ru isotopic composition of carbonaceous chondrites has not been determined sufficiently well to rule them out as a source of the late veneer. Here we show that all chondrites, including carbonaceous chondrites, have Ru isotopic compositions distinct from that of the Earth’s mantle. The Ru isotope anomalies increase from enstatite to ordinary to carbonaceous chondrites, demonstrating that material formed at greater heliocentric distance contains larger Ru isotope anomalies. Therefore, these data refute an outer Solar System origin for the late veneer and imply that the late veneer was not the primary source of volatiles and water on the Earth.
Europium and strontium anomalies in the MORB source mantle
NASA Astrophysics Data System (ADS)
Tang, Ming; McDonough, William F.; Ash, Richard D.
2017-01-01
Lower crustal recycling depletes the continental crust of Eu and Sr and returns Eu and Sr enriched materials into the mantle (e.g., Tang et al., 2015, Geology). To test the hypothesis that the MORB source mantle balances the Eu and Sr deficits in the continental crust, we carried out high precision Eu/Eu∗ and Sr/Sr∗ measurement for 72 MORB glasses with MgO >8.5% from the Pacific, Indian, and Atlantic mid-ocean ridges. MORB glasses with MgO ⩾ 9 wt.% have a mean Eu/Eu∗ of 1.025 ± 0.025 (2 σm, n = 46) and Sr/Sr∗ of 1.242 ± 0.093 (2 σm, n = 41) and these ratios are positively correlated. These samples show both positive and negative Eu and Sr anomalies, with no correlations between Eu/Eu∗ vs. MgO or Sr/Sr∗ vs. MgO, suggesting that the anomalies are not produced by plagioclase fractionation at MgO >9 wt.% and, thus, other processes must be responsible for generating the anomalies. We term these MORB samples primitive MORBs, as they record the melt Eu/Eu∗ and Sr/Sr∗ before plagioclase fractionation. Consequently, the mean oceanic crust, including cumulates, has a bulk Eu/Eu∗ of ∼1 and 20% Sr excess. Considering that divalent Sr and Eu(II) diffuse faster than trivalent Pr, Nd, Sm, and Gd, we evaluated this kinetic effect on Sm-Eu-Gd and Pr-Sr-Nd fractionations during spinel peridotite partial melting in the MORB source mantle. Our modeling shows that the correlated Eu and Sr anomalies seen in primitive MORBs may result from disequilibrium mantle melting. Melt fractions produced during early- and late-stage melting may carry positive and negative Eu and Sr anomalies, respectively, that overlap with the ranges documented in primitive MORBs. Because the net effect of disequilibrium melting is to produce partial melts with bulk positive Eu and Sr anomalies, the MORB source mantle must have Eu/Eu∗ < 1.025 ± 0.025 (2 σm) and Sr/Sr∗ < 1.242 ± 0.093 (2 σm). Although we cannot rule out the possibility that recycled lower continental crustal materials, which have positive Eu and Sr anomalies, are partially mixed into the upper mantle (i.e., MORB source region), a significant amount of this crustal component must have been sequestered into the deep mantle, as supported by the negative 206Pb/204Pb-Eu/Eu∗ and 206Pb/204Pb-Sr/Sr∗ correlations in ocean island basalts.
Could the Mantle Under Island Arcs Contribute to Long Wavelength Magnetic Anomalies?
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Ferre, E. C.; Martin-Hernandez, F.; Feinberg, J. M.; Conder, J. A.
2016-12-01
Some island arcs show significant long-wavelength positive magnetic anomalies with potential sources in the mantle wedge while others do not. Here we compare the magnetic properties of mantle xenoliths form metasomatized mantle wedges with counterparts from pristine unaltered mantle and we discuss the role mantle processes may play in producing these anomalies. Samples for this study originate from four localities displaying different degrees of metasomatism, as evidenced by the presence of phlogophite, pargasite, and secondary minerals (olv, cpx, opx): a) Five samples from Ichinomegata crater, Megata volcano, in NE Japan are characteristically lherzolitic with metasomatic pargasite present; b) Six samples from Kurose, SW Japan are mainly harzburgites that contain rare, late stage metasomatic sulfides; c) Ten samples from the Iraya volcano, Batan Island, in the Philippines are lherzolites, harzburgites, and dunites that contain metasomatic olivine, orthopyroxene, clinopyroxene and pargasite; and d) Ten samples from Avacha and Shiveluch volcanoes in Kamchatka, consists of unaltered harzburgites supported by an LOI <1%. Sample localities come from subduction zones of the western Pacific Ocean, where the angle of subduction varies (from 10° in SW Japan to 55° in the Kamchatka and Taiwan-Luzon arcs). When present, ferromagnetic minerals include stoichiometric magnetite with occasional pyrrhotite only in metasomatized samples. Ultimately, metasomatized mantle material has a Koenigsberger ratio less than 1.0 indicating it would not primarily contribute to satellite-altitude magnetic anomalies. While unaltered mantle material may produce a Koenigsberger ratio greater than 1.0, and would thus, contribute to long wavelength magnetic anomalies. The presence of both metasomatized and unaltered mantle material beneath island arcs would be supportive of the positive magnetic anomaly found in some subduction zones.
A global geochemical model for the evolution of the mantle
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1979-01-01
It is proposed that the upper mantle transition region, 220 to 670 km, is composed of eclogite which has been derived from primitive mantle by about 20 percent partial melting and that this is the source and sink of oceanic crust. The remainder of the upper mantle is garnet peridotite which is the source of continental basalts and hotspot magmas. This region is enriched in incompatible elements by hydrous and CO2 rich metasomatic fluids which have depleted the underlying layers in the L.I.L. elements and L.R.E.E. The volatiles make this a low-velocity, high attenuation, low viscosity region. The eclogite layer is internally heated and its controls the convection pattern in the upper mantle. Plate tectonics is intermittent. The continental thermal anomaly at a depth of 150-220 km triggers kimberlite and carbonatite activity, alkali and flood basalt volcanism, vertical tectonics and continental breakup. Hot spots remain active after the continents leave and build the oceanic islands. Mantle plumes rise from a depth of about 220 km. Midocean ridge basalts rise from the depleted layer below this depth. Material from this layer can also be displaced upwards by subducted oceanic lithosphere to form back-arc basins.
NASA Astrophysics Data System (ADS)
Ying, Jifeng; Zhou, Xinhua; Zhang, Hongfu
2004-08-01
Major and trace element and Nd-Sr isotope data of the Mesozoic Laiwu-Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu-Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/ 86Sr (0.7095-0.7106) and very low ɛNd (-18.2 to -14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd-Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.
Chemical composition of rocks and soils at Taurus-Littrow
NASA Technical Reports Server (NTRS)
Rose, H. J., Jr.; Cuttitta, F.; Berman, S.; Brown, F. W.; Carron, M. K.; Christian, R. P.; Dwornik, E. J.; Greenland, L. P.
1974-01-01
Seventeen soils and seven rock samples were analyzed for major elements, minor elements, and trace elements. Unlike the soils at previous Apollo sites, which showed little difference in composition at each collection area, the soils at Taurus-Littrow vary widely. Three soil types are evident, representative of (1) the light mantle at the South Massif, (2) the dark mantle in the valley, and (3) the surface material at the North Massif. The dark-mantle soils are chemically similar to those at Tranquillitatis. Basalt samples from the dark mantle are chemically similar although they range from fine to coarse grained. It is suggested that they originated from the same source but crystallized at varying depths from the surface.
NASA Technical Reports Server (NTRS)
Martin, Audrey M.; Righter, Kevin
2010-01-01
Carbon is present in various forms in the Earth s upper mantle (carbonate- or diamond-bearing mantle xenoliths, carbonatite magmas, CO2 emissions from volcanoes...). Moreover, there is enough carbon in chondritic material to stabilize carbonates into the mantles of Mars or Venus as well as in the Earth. However, the interactions with iron have to be constrained, because Fe is commonly thought to buffer oxygen fugacity into planetary mantles. [1] and [2] show evidences of the stability of clinopyroxene Ca(Mg,Fe)Si2O6 + magnesite (Mg,Fe)CO3 in the Earth s mantle around 6GPa (about 180km). The stability of oxidized forms of carbon (like magnesite) depends on the oxygen fugacity of the system. In the Earth s mantle, the maximum carbon content is 10000 ppm [3]. The fO2 parameter varies vertically as a function of pressure, but also laterally because of geodynamic processes like subduction. Thus, carbonates, graphite, diamond, C-rich gases and melts are all stable forms of carbon in the Earth s mantle. [4] show that the fO2 variations observed in SNC meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. [5] inferred from thermodynamic calculations that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond). After [6], a metasomatizing agent like a CO2-rich melt may infiltrate the mantle source of nakhlites. However, according to [7] and [8], the FeO wt% value in the Martian bulk mantle is more than twice that of the Earth s mantle (KLB-1 composition by [9]). As iron and carbon are two elements with various oxidation states, Fe/C interaction mechanisms must be considered.
187Os-186Os and He Isotope Systematics of Iceland Picrites
NASA Astrophysics Data System (ADS)
Brandon, A. D.; Brandon, A. D.; Graham, D.; Gautason, B.
2001-12-01
Iceland is one of the longest-lived modern plumes, and seismic imaging supports a model where the roots of this plume are at the base of the lower mantle. Hence, Os isotopic data for lavas from this plume are ideal for further testing the role of core-mantle chemical exchange at the site of plume generation in the lower mantle, and for addressing the origin of Os-He isotopic variation in plumes. Recent work has shown that lavas from some plume systems (Hawaii, Noril'sk-Siberia, Gorgona) show coupled enrichments in 186Os/188Os and 187Os/188Os, not observed in upper mantle materials including abyssal peridotites. Picrites from Hawaii display a positive correlation between 186Os/188Os and He isotopes (R/Ra), where range in 186Os/188Os of 0.119834+/-28 to 0.1198475+/-29 and corresponding R/Ra from +7 to +25. These systematics are consistent with a lower mantle source for the radiogenic 186Os signal in the Hawaiian plume. The coupled Os enrichments in these plumes has been attributed to core-mantle chemical exchange, consistent with generation of the Hawaiian plume at the base of the lower mantle in D". Other potentially viable models await additional scrutiny. New He isotope and high precision 186Os/188Os and 187Os/188Os measurements for Iceland picrites show unique systematics compared to Hawaii. These picrites have 187Os/188Os ranging from 0.1297 to 0.1381 and R/Ra of +9 to +18, with generally higher R/Ra correlating with higher 187Os/188Os. Unlike the Hawaiian picrites from Hualalai and Loihi, which have coupled enrichments in 186Os/188Os and 187Os/188Os, the Iceland picrites show no enrichment 186Os/188Os - 0.1198363+/-28 (2s, n=14). Such Os-He isotopic variations require one end-member source that has high R/Ra, coupled with a long term elevated Re/Os and Pt/Os similar to that of the upper mantle. These systematics are inconsistent with either known upper mantle materials or those purported for ancient recycled slabs and may be a previously unidentified component in the lower mantle.
Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas
NASA Astrophysics Data System (ADS)
Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.
2017-02-01
Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid compositions extracted from these hybrid sources are higher in normative quartz and hypersthene (i.e., they have a more silica-saturated character) in comparison with basalts derived from prior melt-depleted asthenospheric mantle beneath ridges. These primary arc melts range from silica-rich picrite to boninite and high-Mg basaltic andesite along a residual spinel harzburgite cotectic. Silica enrichment in the mantle sources of arc-related, subalkaline picrite-boninite-andesite suites coupled with the amount of water and depth of melting, are important for the formation of medium-Fe ('calc-alkaline') andesite-dacite-rhyolite suites, key lithologies forming the continental crust.
Three-dimensional crust and mantle structure of Kilauea Volcano, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellsworth, W.L.; Koyanagi, R.Y.
1977-11-10
Teleseismic P wave arrival times recorded by a dense network of seismograph stations located on Kilauea volcano, Hawaii, are inverted to determine lateral variation in crust and upper mantle structure to a depth of 70 km. The crustal structure is dominated by relatively high velocities within the central summit complex and along the two radial rift zones compared with the nonrift flank of the volcano. Both the mean crustal velocity contrast between summit and nonrift flank and the distribution of velocities agree well with results from crustal refraction studies. Comparison of the velocity structure with Bouguer gravity anomalies over themore » volcano through a simple physical model also gives excellent agreement. Mantle structure appears to be more homogeneous than crustal structure. The root mean square velocity variation for the mantle averages only 1.5%, whereas variation within the crust exceeds 4%. The summit of Kilauea is underlain by normal velocity (8.1 km/s) material within the uppermost mantle (12--25 km), suggesting that large magma storage reservoirs are not present at this level and that the passageways from deeper sources must be quite narrow. No evidence is found for substantial volumes of partially molten rock (5%) within the mantle to depths of at least 40 km. Below about 30 km, low-velocity zones (1--2%) underlie the summits of Kilauea and nearby Mauna Loa and extend south of Kilauea into a broad offshore zone. Correlation of volcanic tremor source locations and persistent zones of mantle earthquakes with low-velocity mantle between 27.5- and 42.5-km depth suggests that a laterally extensive conduit system feeds magma to the volcanic summits from sources either at comparable depth or deeper within the mantle. The center of contemporary magmatic production and/or upwelling from deeper in the mantle appears to extend well to the south of the active volcanic summits, suggesting that the Hawaiian Island chain is actively extending to the southeast.« less
Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C. R.
2015-12-01
Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based upon 2-D, steady-state thermal and flow regimes. We reiterate the importance of 4-D time evolution in subduction models. Analogue experiments allow added feedbacks and complexity improving intuition and providing insight for further investigation.
Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China
NASA Astrophysics Data System (ADS)
Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin
2017-04-01
Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water transport out of the mantle transition zone associated with dynamic interactions between the subducted slab and surrounding mantle. References Karato, S. (2011), Water distribution across the mantle transition zone and its implications for global material circulation, EARTH PLANET SC LETT, 301(3), 413-423. Kronbichler, M., et al. (2012), High accuracy mantle convection simulation through modern numerical methods, GEOPHYS J INT, 191(1), 12-29. Tang, Y., et al. (2014), Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling, NAT GEOSCI, 7(6), 470-475.
Jicha, B.R.; Hart, G.L.; Johnson, C.M.; Hildreth, Wes; Beard, B.L.; Shirey, S.B.; Valley, J.W.
2009-01-01
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P)n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. ??18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust. ?? Springer-Verlag 2008.
Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.
NASA Astrophysics Data System (ADS)
Stuart, Finlay M.
2013-04-01
The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt at Earth surface.
Evidence from Xenon isotopes for limited mixing between MORB sources and plume sources since 4.45 Ga
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.
2011-12-01
Xenon isotopes provide unique insights into the sources of volatile material for planet Earth, the degassing of the mantle, and the chemical evolution of the mantle [1-4]. 129Xe is produced from 129I, which has a half-life of 16 Myrs, and 131-136Xe are produced from 244Pu, which has a half-life of 80 Myrs. To a smaller extent, 131-136Xe are also produced from 238U fission. Thus, ratios of Pu-derived to U-derived fission xenon and 129I-derived to Pu-derived fission xenon constrain the rate and degree of outgassing of a mantle reservoir. Here, I report on the Pu-derived to U-derived fission xenon and Pu/I ratio of the Iceland plume. I then compare the plume observations with the gas rich popping rock from the North Mid Atlantic Ridge that samples the upper mantle [4]. Through step crushing of multiple aliquots of a basalt glass from Iceland, 51 high-precision He, Ne, Ar, and Xe isotopic compositions were generated. Combined He, Ne, and Xe measurements provide unequivocal evidence that the Iceland plume has a lower 129Xe/130Xe ratio than MORBs because it evolved with a I/Xe ratio distinct from the MORB source and not because of recycled atmosphere (which has low 129Xe/130Xe) in the plume source. Since 129I became extinct 80 Myrs after solar system formation, limited mixing between plume and MORB source is a stringent requirement since 4.45 Ga. Of the 51 different isotopic analyses, 42 data points were distinct from the atmospheric 129Xe/130Xe composition at two standard deviations. These 42 data points were utilized to calculate the ratio of Pu- to U-derived fission xenon. The starting composition of terrestrial Xe is a matter of debate. However, for reasonable starting compositions of air, non-radiogenic atmosphere, solar wind, and U-Xe [5-7], the Iceland plume ,on average, has approximately a factor of two higher Pu-derived xenon than the MORB source. These data thus, provide unequivocal evidence that the Iceland plume is less degassed than the MORB source and that the differences must have existed early on because Pu becomes extinct after ~ 400 Myrs. Thus, the Xe isotopic data suggests that differences between plume and MORB sources are the result of different mantle processing rates and not related to the preferential recycling of atmospheric gases into the plume source. Furthermore, if the plumes are derived from the large low shear wave velocity (LLSVPs) provinces at the base of the lower mantle [8], then our results require that LLSVPs are not made of solely recycled material. Rather, primitive material must constitute some fraction of the LLSVPs, and LLSVPs are ancient, having persisted through most of Earth's history. [1] Holland and Ballentine, Nature, 2006. [2] Yokochi and Marty, EPSL, 2004. [3] Coltice et al., Chem Geol., 2009. [4] Moriera et al., Science, 1998. [5] Caffee et al., Science, 1998. [6] Kunz et al., Science 1998. [7] Pepin and Porcelli, EPSL, 2006. [8] Torsvik et al., Nature, 2010.
Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle
NASA Astrophysics Data System (ADS)
Herzberg, C.; Cabral, R. A.; Jackson, M. G.; Vidito, C.; Day, J. M. D.; Hauri, E. H.
2014-06-01
Lavas from Mangaia in the Cook-Austral island chain, Polynesia, define an HIMU (or high μ, where μ=U238/Pb204) global isotopic end-member among ocean island basalts (OIB) with the highest 206,207,208Pb/204Pb. This geochemical signature is interpreted to reflect a recycled oceanic crust component in the mantle source. Mass independently fractionated (MIF) sulfur isotopes indicate that Mangaia lavas sampled recycled Archean material that was once at the Earth's surface, likely hydrothermally-modified oceanic crust. Recent models have proposed that crust that is subducted and then returned to the surface in a mantle plume is expected to transform to pyroxenite/eclogite during transit through the mantle. Here we examine this hypothesis for Mangaia using high-precision electron microprobe analysis on olivine phenocrysts. Contrary to expectations of a crustal component and, hence pyroxenite, results show a mixed peridotite and pyroxenite source, with peridotite dominating. If the isotopic compositions were inherited from subduction of recycled oceanic crust, our work shows that this source has phantom-like properties in that it can have its lithological identity destroyed while its isotope ratios are preserved. This may occur by partial melting of the pyroxenite and injection of its silicic melts into the surrounding mantle peridotite, yielding a refertilized peridotite. Evidence from one sample reveals that not all pyroxenite in the melting region was destroyed. Identification of source lithology using olivine phenocryst chemistry can be further compromised by magma chamber fractional crystallization, recharge, and mixing. We conclude that the commonly used terms mantle “heterogeneities” and “streaks” are ambiguous, and distinction should be made of its lithological and isotopic properties.
NASA Astrophysics Data System (ADS)
Hartmann, Jens; Li, Gaojun; West, A. Joshua
2017-04-01
Enhanced partial melting of mantle material probably started when the subduction motor started around 3.2 Ga ago as evidenced by the formation history of the continental crust. Carbon is degassing due partial melting as it is an incompatible element. Therefore, mantle carbon degassing rates would change with time proportionally to the reservoir mantle concentration evolution and the ocean crust production rate, causing a distinct CO2-degassing rate change with time. The evolution of the mantle degassing rate has some implications for the reconstruction of the carbon cycle and therefore climate and Earth surface processes rates, as CO2-degassing rates are used to constrain or to balance the atmosphere-ocean-crust carbon cycle system. It will be shown that compilations of CO2-degassing from relevant geological sources are probably exceeding the established CO2-sink terrestrial weathering, which is often used to constrain long-term mantle degassing rates to close the carbon cycle on geological time scales. In addition, the scenarios for the degassing dynamics from the mantle sources suggest that the mantle is depleting its carbon content since 3 Ga. This has further implications for the long-term CO2-sink weathering. Results will be compared with geochemical proxies for weathering and weathering intensity dynamics, and will be set in context with snow ball Earth events and long-term emplacement dynamics of mafic areas as Large Igneous Provinces. Decreasing mantle degassing rates since about 2 Ga suggest a constraint for the evolution of the carbon cycle and recycling potential of the amount of subducted carbon. If the given scenarios hold further investigation, the contribution of mantle degassing to climate forcing (directly and via recycling) will decrease further.
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and (3)He observations in ocean-island basalts.
Conception of eroded protocore and magnetic field evolution in the terrestrial planets
NASA Astrophysics Data System (ADS)
Pushkarev, Y. D.; Starchenko, S. V.
2011-10-01
Identification of the superheated and lightweight material streams in the Earth interiors named as plumes, has put up the problem of the energy source for such overheating. Plume origin at core-mantle boundary suggests that such source is the core, which, apparently, is overheated in comparison with bottom of the low mantle. Magmatic derivatives of the mantle material sometimes contain primary noble gases and in particular the isotope 129J (the decay product of the short-lived 129J). It demonstrates that somewhere in the Earth there is a material which became geochemically closed with regard to noble gases before 129J complete decay, i.e. not later than through 150 million years after the beginning of accretion and which subsequently was never mixed with the mantle material. Properly speaking, such material is the material of the core, to be exact of its solid internal part. At the same time Hf-W and U-Pb isotope systems show that the formation of a liquid core has taken place during first 100-120 million years after accretion [2]. Along with it there are evidences of existence of an ancient geomagnetic field [3, 6, etc.] up to the early Archean [11], which intensity is identical to the modern one. This information contradicts the generally accepted ideas according to which the geodynamo, generating the modern magnetic field of the Earth, is produced by the compositional convection caused due to crystallization of a liquid core [1, 8, 10]. The most probable time of excitation of compositional convection is estimated about 1 Ga, but not earlier than 2 Ga [7, 10]. It follows that before this time the geomagnetic intensity should have had the lower value because it was generated only by inefficient thermal convection. Thus, if the compositional convection is required to generate the Archean geomagnetic field, intensity of which is close to the modern one, this convection should have any other nature.
NASA Technical Reports Server (NTRS)
Bridges, N. T.; Lackner, C. N.
2005-01-01
The finding of abundant, apparently young, Martian gullies with morphologies indicative of formation by flowing fluid was surprising in that volumes of near-surface liquid water in sufficient quantities to modify the surface geology were not thought possible under current conditions. Original hypotheses on origin of gullies were mostly centered on groundwater seepage and surface runoff and melting of near-surface ground ice. More recently, melting of snow deposited in periods of higher obliquity has been proposed as a possible origin of the gullies. Tied to this hypothesis is the supposition that the "pasted-on" mantling unit observed in association with many gullies is composed of remnant snowpack. The mantling unit has distinct rounded edge on its upper boundary and exhibits features suggestive of flow noted that the uppermost part of the mantle marks where gullies begin, suggesting that the source of water for the gullies was within the mantle. The mantle is found preferentially on cold, pole-facing slopes and, where mantled and non-mantled slopes are found together, gullies are observed incised into the latter. In other cases, the mantling material lacks gullies.
Geochemistry of the Seamounts at the Southeast Chatham Rise, New Zealand
NASA Astrophysics Data System (ADS)
Jolis, E. M.; Hoernle, K.; Hauff, F.; Garbe-Schönberg, D.; Werner, R.; Gohl, K.
2017-12-01
The submarine Chatham Rise, east Zealandia, is a key location of the early continental breakup of the eastern Gondwana (< 100 Ma; [1]). It has been suggested that a mantle plume beneath Zealandia and West Antarctica existed and that a slab window formed as a consequence of the collision of the Hikurangi oceanic plateau with the Chatham Rise, allowing deeper mantle material to upwell and hence cause the rifting. However, the exact processes that have led to this rifting and the sequence of reorganization in the upper mantle in course of and after the breakup of Zealandia from West Antarctica are still unclear. We present new major and trace element and Sr-Nd and high-precision Pb isotope data from submarine samples recovered during the R/V Sonne research expedition SO246 at the southeast Chatham Rise, covering the Chatham Rise Terrace and adjacent areas of the margin and the abyssal plain. The samples include alkali and tholeiitic basalts and minor basanite and trachybasalt, all of which have a composition between ocean island basalt (OIB) and mid-ocean-ridge basalt (MORB). Trace element ratios (e.g., Th/Yb, Nb/Yb) indicate that all but one seamount were derived from enriched sources at a low degree of melting, while one of the seamounts close to the abyssal plain was derived from a depleted mantle source at a high degree of melting. Sr-Nd-Pb isotope variations further support contribution of at least three distinct mantle source components, including a HIMU (high time-integrated U/Pb)-type sources, an enriched mantle (EM)-type sources, and a depleted mantle (N-MORB)-type source. These observations appear to be consistent with previous published data and models proposed by [2] and [3]. These sources will be placed in a chronological framework by incorporating further geochemical data and 40Ar-39Ar ages, providing us better insights into the sequence of events and magmatic processes that occurred at this region. References:[1] Davy et al. (2008), Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history, G3, 9, Q07004. [2] Hoernle et al. (2006), Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal, EPSL, 248, 350-367. [3] Timm et al. (2010), Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia, Earth-Sci. Rev., 98, 38-64.
Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars
NASA Astrophysics Data System (ADS)
Hyodo, Ryuki; Genda, Hidenori
2018-04-01
Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.
NASA Astrophysics Data System (ADS)
Civiero, C.; Custodio, S.; Silveira, G. M.; Rawlinson, N.; Arroucau, P.
2017-12-01
The processes responsible for the geodynamical evolution of the Ibero-Maghrebian domain are still enigmatic. Several geophysical studies have improved our understanding of the region, but no single model has been accepted yet. This study takes advantage of the dense station networks deployed from France in the north to Canary Islands and Morocco in the south to provide a new high-resolution P-wave velocity model of the structure of the upper-mantle and top of the lower mantle. These images show subvertical small-scale upwellings below Atlas Range, Canary Islands and Central Iberia that seem to cross the transition zone. The results, together with geochemical evidence and a comparison with previous global tomographic models, reveal the ponding or flow of deep-plume material beneath the transition zone, which seems to feed upper-mantle "secondary" pulses. In the upper mantle the plumes, in conjunction with the subduction-related upwellings, allow the hot mantle to rise in the surrounding zones. During its rising, the mantle interacts with horizontal SW slab-driven flow which skirts the Alboran slab and connects with the mantle upwelling below Massif Central through the Valencia Trough rift.
Nickel and helium evidence for melt above the core-mantle boundary.
Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis
2013-01-17
High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.
NASA Astrophysics Data System (ADS)
Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne; Bi, Yao
2017-02-01
The subduction of oceanic slabs is widely accepted to be a main reason for chemical heterogeneities in the mantle. However, determining the contributions of slabs in areas that have experienced multiple subduction events is often difficult due to possible overlapping imprints. Understanding the temporal and spatial variations of source components for widespread intraplate small volume basalts in eastern China may be a basis for investigating the influence of the subducted Pacific slab, which has long been postulated but never confirmed. For this purpose, we investigated the Chaihe-aershan volcanic field (including more than 35 small-volume Quaternary basaltic volcanoes) in NE China and measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts using secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and the basaltic melt. The δ18O of cpx phenocrysts (4.28‰ to 8.57‰) and H2O content of magmas (0.19 wt.%-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values and H2O content within individual samples also display considerable variation, suggesting the mixing of magmas and that the magma mixing occurred shortly before the eruption. The relation between the δ18O values of cpx phenocrysts and the H2O/Ce ratio, Ba/Th ratio and Eu anomaly of whole rocks demonstrates the contributions of three components to the mantle source (hydrothermally altered upper oceanic crust and marine sediments, altered lower gabbroic oceanic crust, and ambient mantle). The proportions of these three components have varied widely over time (∼1.37 Ma to ∼0.25 Ma). The Pacific slab is constantly subducted under eastern Asia and continuously transports recycled materials to the deep mantle. The temporal heterogeneity of the source components may be caused by ongoing Pacific slab subduction. Combined with other basalt localities in eastern China (Shuangliao basalts, Taihang basalts and Shangdong basalts), the contributions of recycled oceanic components in their mantle source are heterogeneous. This spatial heterogeneity of mantle sources may be induced by variable alterations and dehydration during the recycling process of the Pacific slab. Our results show that the source components of Cenozoic intraplate small-volume basalts in eastern China are temporally and spatially heterogeneous, which is likely induced by the ongoing subduction of the Pacific slab. This demonstrates that integrating the temporal variations in geochemical characteristics and tectonic history of a study region can identify the subducted oceanic plate that induced enriched components in the mantle source of intraplate basalts.
NASA Astrophysics Data System (ADS)
Kerr, A. C.; Pearson, G.; Nowell, G.
2008-12-01
Ocean Drilling Project Leg 165 sampled 38m of the basaltic basement of the Caribbean plate at Site 1001 on the Hess Escarpment. The recovered section consists of 12 basaltic flow units which yield a weighted mean Ar-Ar age of 80.9±0.9 Ma (Sinton et al., 2000). The basalts (6.4-8.5 wt.% MgO) are remarkably homogeneous in composition and are more depleted in incompatible trace elements than N-MORB. Markedly, depleted initial radiogenic isotope ratios reveal a long-term history of depletion. Although the Site 1001 basalts are superficially similar to N-MORB, radiogenic isotopes in conjunction with incompatible trace element ratios show that the basalts have more similarity to the depleted basalts and komatiites of Gorgona Island. This chemical composition strongly implies that the Site 1001 basalts are derived from a depleted mantle plume component and not from depleted ambient upper mantle. Therefore the Site 1001 basalts are, both compositionally and tectonically, a constituent part of the Caribbean oceanic plateau. Mantle melt modelling suggests that the Site 1001 lavas have a composition which is consistent with second-stage melting of compositionally heterogeneous mantle plume source material which had already been melted, most likely to form the 90Ma basalts of the plateau. The prolonged residence (>10m.y.) of residual mantle plume source material below the region, confirms computational model predictions and places significant constraints on tectonic models of Caribbean evolution in the late Cretaceous, and the consequent environmental impact of oceanic plateau volcanism. Reference Sinton, C.W., et al., 2000. Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. Proceedings of the Ocean Drilling Program, Scientific Results. Leg 165. pp. 233-236.
Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex
NASA Technical Reports Server (NTRS)
Mccallum, I. S.
1988-01-01
The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.
NASA Astrophysics Data System (ADS)
Serri, G.; Innocenti, F.; Manetti, P.
1993-07-01
Serri, G., Innocenti, F. and Manetti, P., 1993. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near The Earth's Surface. Tectonophysics, 223: 117-147. The Neogene-Quaternary magmatism of the northern Apenninic arc took place in four phases separated in space and time which become progressively younger from west to east: Phase I, 14 Ma; Phase II, 7.3-6.0 Ma; Phase III, 5.1-2.2 Ma; Phase IV, 1.3-0.1 Ma. This magmatism is the result of the activation of three physically separate sources: (1) the Adriatic continental crust, extracted from the mantle in the late Proterozoic; (2) a strongly refractory, recently K-enriched harzburgitic mantle located in the mechanical boundary layer (MBL) of the lithosphere; and (3) a recently metasomatized, cpx-rich mantle, compositionally variable from Iherzolite to wehrlite-clinopyroxenite, interpreted as an ephemerally K-enriched asthenosphere. The Adriatic continental crust is the dominant source of the acid plutonic and volcanic rocks of the Tuscan region. The acid magmatism is mostly found inside an ellipsoidal area (about 150 × 300 km) centred on Giglio Island, here defined as the Tuscan Crustal Dome. Within this area, mantle-derived magmas unaffected by important crustal contamination processes and mixing with crustal anatectic melts have so far not been found. Pure crustal magmas are rare but are represented, for example by some of the San Vincenzo and Roccastrada rhyolites. Virtually all the Tuscan acid centres show evidence of mixing with potassic mantle-derived magmas. Major and trace elements, as well as {87Sr }/{86Sr } and {143Nd }/{144Nd } data, on primitive rocks (Mg# > 65) reveal two groups of mantle-derived magmas. These define two distinct mantle enrichment trends, both essentially due to the additions of K-rich components which metasomatized separate, compositionally diverse, upper mantle sectors. In both cases the most remarkable mineralogical effect of these enrichment processes is the production of variable amount of phlogopite through reaction between fluids and/or melts with the mantle. The rocks of group I (ol-hy and Q-normative, lamproites, ultrapotassic high-Mg latites, ultrapotassic shoshonites and shoshonites: saturated trend) are considered to be derived by partial melting at low pressure (< 50 km) of strongly (lamproites) to moderately depleted phlogopite harzburgitic sources produced by reaction of residual peridotites with a K-Si-rich, Ca-Sr-poor melt with high ratios of {87Sr }/{86Sr (> 0.717) }, Ce/Sr (> 0.3) and {K 2O }/{Na 2O (> 6-7) }, and low ratios of {143Nd }/{144Nd ( 0.5121-0.5120) } and Ba/La (< 20) ratios; it is proposed that this component was formed by partial melting of subducted carbonate-free material of the upper crustal reservoir (e.g., non-restitic felsic granulites). This material is very common in the central Mediterranean region either as granitoid plutons/terrigenous sediments or as metasedimentary, non-restitic lower crust. The primitive rocks of group II are critically undersaturated, mostly leucitites, tephritic leucitites, leucite basanites, melilitites (undersaturated trend). Experimental petrology suggests that these rocks were formed by partial melting of a variably enriched phlogopite, clinopyroxene-rich mantle at higher pressure than group I primitive magmas. Trace-element modelling indicates that three components were involved in the genesis of group II mantle source: (a) a typical MORB-OIB-like mantle; (b) a component with very high Sr, Ca and Sr/Ce values and very low silica and sodium content, probably carried by a carbonatite melt somehow related to subducted marine carbonates; and (c) a recently added K-rich, Ca-Sr-poor crustal component, relatively well constrained to high {87Sr }/{86Sr (> 0.712) } and {K 2O }/{Na 2O (> 8-9) } values, and low {143Nd }/{144Nd (< 0.51205) }, Ba/La (< 20) and Ce/Sr (> 0.10) ratios. These constraints do not allow to exclude a complete identity between the K-rich components which metasomatized the mantle sources of the saturated and undersaturated trend magmas. The geochemical and isotopic features of the components that metasomatized the mantle sources of the northern Apenninic arc magmatism can be explained by a geodynamic process which causes a large amount of crustal materials to be incorporated within the upper mantle. We propose that the delamination and subduction of the Adriatic continental lithosphere related to the still ongoing northern Apennine continental collision provide a viable mechanism to explain the genesis and eastward discontinuous migration of the magmatism in central Italy. The subduction of delaminated lithospheric mantle with lower crustal slivers would have exposed uppermost mantle (Adriatic MBL) and crustal units previously imbricated in the Apennine chain to the heating advected by the upwelling of a recently and ephemerally K-enriched asthenospheric mantle wedge and by the underplating of magmas derived from it. We consider that the diapiric uprising of a hot, crustally contaminated asthenosphere occurs in the wake left above the sinking of the Adriatic delaminated/subducting continental lithosphere. The delamination/subduction process of the Adriatic lithosphere has probably started in the Early-Middle Miocene, but earlier than 15-14 Ma ago, as indicated by the age and petrologic characteristics of the first magmatic episode (Sisco lamproite) of the northern Apennine orogenesis.
NASA Astrophysics Data System (ADS)
Magna, T.; Wiechert, U.; Stuart, F. M.; Halliday, A. N.; Harrison, D.
2011-02-01
Lithium (Li) isotopes are thought to provide a powerful proxy for the recycling of crustal material, affected by low temperature alteration, through the mantle. We present Li isotope compositions for basaltic volcanic rocks from Hengill, Iceland, and Jan Mayen in order to examine possible links between ocean island volcanism and recycled oceanic crust and to address recent suggestions that mantle 3He/ 4He is also related to recycling of ancient slabs. Basaltic glasses spanning a range of chemical enrichment from the Hengill fissure system define an inverse correlation between δ 7Li (3.8-6.9‰) and 3He/ 4He (12-20 RA). The high- 3He/ 4He basalts have low δ 18O as well as excess Eu and high Nb/U, but carry no Li isotope evidence of being the product of recycling of altered slab or wedge material. In fact, there is no clear correlation between Li or He isotopes on the one hand and any of the other fingerprints of recycled slab components. The low- 3He/ 4He samples do have elevated Nb/U, Sr/Nd, positive Eu anomalies and high δ 7Li (˜6.9‰), providing evidence of a cumulate-enriched source that could be part of an ancient altered ocean floor slab. Basalts from Jan Mayen are characterized by large degrees of enrichment in incompatible trace elements typical of EM-like basalts but have homogeneous δ 7Li typical of depleted mantle (3.9-4.7‰) providing evidence for a third mantle source in the North Atlantic. It appears that oceanic basalts can display a wide range in isotope and trace element compositions associated with recycled components whilst exhibiting no sign of modern surface-altered slab or wedge material from the Li isotope composition.
Noble gas models of mantle structure and reservoir mass transfer
NASA Astrophysics Data System (ADS)
Harrison, Darrell; Ballentine, Chris J.
Noble gas observations from different mantle samples have provided some of the key observational data used to develop and support the geochemical "layered" mantle model. This model has dominated our conceptual understanding of mantle structure and evolution for the last quarter of a century. Refinement in seismic tomography and numerical models of mantle convection have clearly shown that geochemical layering, at least at the 670 km phase change in the mantle, is no longer tenable. Recent adaptations of the mantle-layering model that more successfully reconcile whole-mantle convection with the simplest data have two common features: (i) the requirement for the noble gases in the convecting mantle to be sourced, or "fluxed", by a deep long-lived volatile-rich mantle reservoir; and (ii) the requirement for the deep mantle reservoirs to be seismically invisible. The fluxing requirement is derived from the low mid-ocean ridge basalt (MORB)-source mantle 3He concentration, in turn calculated from the present day 3He flux from mid-ocean ridges into the oceans (T½ ˜ 1,000 yr) and the ocean crust generation rate (T½ ˜ 108 yr). Because of these very different residence times we consider the 3He concentration constraint to be weak. Furthermore, data show 3He/22Ne ratios derived from different mantle reservoirs to be distinct and require additional complexities to be added to any model advocating fluxing of the convecting mantle from a volatile-rich mantle reservoir. Recent work also shows that the convecting mantle 20Ne/22Ne isotopic composition is derived from an implanted meteoritic source and is distinct from at least one plume source system. If Ne isotope heterogeneity between convecting mantle and plume source mantle is confirmed, this result then excludes all mantle fluxing models. While isotopic heterogeneity requires further quantification, it has been shown that higher 3He concentrations in the convecting mantle, by a factor of 3.5, remove the need for the noble gases in the convecting mantle to be sourced from such a deep hidden reservoir. This "zero paradox" concentration [Ballentine et al., 2002] is then consistent with the different mantle source 3He/22Ne and 20Ne/22Ne heterogeneities. Higher convecting mantle noble gas concentrations also eliminate the requirement for a hidden mantle 40Ar rich-reservoir and enables the heat/4He imbalance to be explained by temporal variance in the different mechanisms of heat vs. He removal from the mantle system—two other key arguments for mantle layering. Confirmation of higher average convecting mantle noble gas concentrations remains the key test of such a concept.
Constraining Mantle Differentiation Processes with La-Ce and Sm-Nd Isotope Systematics
NASA Astrophysics Data System (ADS)
Willig, M.; Stracke, A.
2016-12-01
Cerium (Ce) and Neodymium (Nd) isotopic ratios in oceanic basalts reflect the time integrated La-Ce and Sm-Nd ratios, and hence the extent of light rare earth element element (LREE) depletion or enrichment of their mantle sources. New high precision Ce-Nd isotope data from several ocean islands define a tight array in ԑCe-ԑNd space with ԑNd = -8.2±0.4 ԑCe + 1.3±0.9 (S.D.), in good agreement with previous data [1, 2]. The slope of the ԑCe-ԑNd array and the overall isotopic range are sensitive indicators of the processes that govern the evolution of the mantle's LREE composition. A Monte Carlo approach is employed to simulate continuous mantle-crust differentiation by partial melting and recycling of crustal materials. Partial melting of mantle peridotites produces variably depleted mantle and oceanic crust, which evolve for different time periods, before the oceanic crust is recycled back into the mantle including small amounts of continental crust (GLOSS [3]). Subsequently, depleted mantle and recycled materials of variable age and composition melt, and the respective melts mix in different proportions. Mixing lines strongly curve towards depleted mantle, and tend to be offset from the data for increasingly older and more depleted mantle. Observed ԑCe-ԑNd in ridge [1] and ocean island basalts and the slope of the ԑCe-ԑNd array therefore define upper limits for the extent and age of LREE depletion preserved in mantle peridotites. Very old average mantle depletion ages (> ca. 1-2 Ga) for the bulk of the mantle are difficult to reconcile with the existing ԑCe-ԑNd data, consistent with the range of Nd-Hf-Os model ages in abyssal peridotites [4-6]. Moreover, unless small amounts of continental crust are included in the recycled material, it is difficult to reproduce the relatively shallow slope of the ԑCe-ԑNd array, consistent with constraints from the ԑNd - ԑHf mantle array [7]. [1] Makishima and Masuda, 1994 Chem. Geol. 118, 1-8. [2] Doucelance et al., 2014 EPSL 407, 175-186. [3] Plank, 2014 ToG, 607-629. [4] Stracke et al., 2011 EPSL 308, 359-368. [5] Mallick et al., 2014 G-cubed 15, 2438-2453. [6] Harvey et al., 2006 EPSL 244, 606-621. [7] Chauvel et al. 2008. Nat. Geosci. 1, 64 - 67.
The Chlorine Isotope Composition of Earth’s Mantle
NASA Astrophysics Data System (ADS)
Bonifacie, M.; Jendrzejewski, N.; Agrinier, P.; Humler, E.; Coleman, M.; Javoy, M.
2008-03-01
Chlorine stable isotope compositions (δ37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-δ37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-δ37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has δ37Cl ≤ 1.6 per mil (‰), which is significantly lower than that of surface reservoirs (~ 0‰). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation (associated with removal of Cl from the mantle and its return by subduction over Earth history) and/or the addition (to external reservoirs) of a late volatile supply that is 37Cl-enriched.
NASA Astrophysics Data System (ADS)
Kamber, B. S.; Whitehouse, M. J.; Moorbath, S.; Collerson, K. D.
2001-12-01
Feldspar lead-isotope data for 22 early Archaean (3.80-3.82 Ga) tonalitic gneisses from an area south of the Isua greenstone belt (IGB),West Greenland, define a steep linear trend in common Pb-isotope space with an apparent age of 4480+/-77 Ma. Feldspars from interleaved amphibolites yield a similar array corresponding to a date of 4455+/-540 Ma. These regression lines are palaeo-isochrons that formed during feldspar-whole rock Pb-isotope homogenisation a long time (1.8 Ga) after rock formation but confirm the extreme antiquity (3.81 Ga) of the gneissic protoliths [1; this study]. Unlike their whole-rock counterparts, feldspar palaeo-isochrons are immune to rotational effects caused by the vagaries of U/Pb fractionation. Hence, comparison of their intercept with mantle Pb-isotope evolution models yields meaningful information regarding the source history of the magmatic precursors. The locus of intersection between the palaeo-isochrons and terrestrial mantle Pb-isotope evolution lines shows that the gneissic precursors of these 3.81 Ga gneisses were derived from a source with a substantially higher time-integrated U/Pb ratio than the mantle. Similar requirements for a high U/Pb source have been found for IGB BIF [2], IGB carbonate [3], and particularly IGB galenas [4]. Significantly, a single high U/Pb source that separated from the MORB-source mantle at ca. 4.3 Ga with a 238U/204Pb of ca. 10.5 provides a good fit to all these observations. In contrast to many previous models based on Nd and Hf-isotope evidence we propose that this reservoir was not a mantle source but the Hadean basaltic crust which, in the absence of an operating subduction process, encased the early Earth. Differentiation of the early high U/Pb basaltic crust could have occurred in response to gravitational sinking of cold mantle material or meteorite impact, and produced zircon-bearing magmatic rocks. The subchondritic Hf-isotope ratios of ca. 3.8 Ga zircons support this model [5] provided that the redetermined 176Lu decay constant of Scherer et al. [6] is correct. Our model of a stable basaltic Hadean shell for the pre-plate tectonic era explicitly refutes operation of processes such as sediment recycling or melting of hydrated material in subduction zones as far back as 4.4 Ga (as recently suggested by [7]; and [8]). Instead, we propose that initiation of terrestrial subduction occurred at ca. 3.75 Ga, at which stage most of the Hadean basaltic shell (and its differentiation products) was recycled into the mantle, because of the lack of a stabilising mantle lithosphere. We further argue that >3.75 Ga terrestrial rocks and minerals were not preserved by chance, but because of creation of a lithospheric mantle keel concommitant with intrusion of voluminous granitoids immediately after establishment of global subduction. In other words, the only portions of >3.75 Ga crust (basaltic and otherwise) that survived were those that were involved in voluminous arc magmatism along the earliest subduction zones. [1] Nutman A.P. et al. (1999). Contr. Min. Pet. 137, 364. [2] Moorbath S. et al. (1973). Nature 245, 138. [3] Kamber B. S. et al.. (2001). Geol. Soc. London, Spec. Publ. 190, 177. [4] Frei R. & Rosing M. T. (in press). Chem. Geol. [5] Amelin Y. et al. (2000). GCA 64, 4205. [6] Scherer E. et al (2001) Science 293, 683. [7] Wilde S. A. et al.(2001). Nature 409, 175. [8] Mojzsis S. J. (2001). Nature 409, 178.
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Tompkins, S.; Head, J. W.; Hess, P. C.
1997-01-01
Mineralogy of South Pole-Aitken Basin (SPA) (the largest confirmed impact basin on the Moon) is evaluated using five-color images from Clementine. Although olivine-rich material as well as basalts rich in clinopyroxene are readily identified elsewhere on the farside, the dominant rock type observed across the interior of SPA is of a very noritic composition. This mineralogy suggests that lower crust rather than the mantle is the dominant source of the mafic component at SPA. The lack of variation in observed noritic composition is probably due to basin formation processes, during which extensive melting and mixing of target materials are likely to occur.
Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth's mantle
NASA Astrophysics Data System (ADS)
van Thienen, P.; van Summeren, J.; van der Hilst, R. D.; van den Berg, A. P.; Vlaar, N. J.
Seismic tomography is providing mounting evidence for large scale compositional heterogeneity deep in Earth's mantle; also, the diverse geochemical and isotopic signatures observed in oceanic basalts suggest that the mantle is not chemically homogeneous. Isotopic studies on Archean rocks indicate that mantle inhomogeneity may have existed for most of the Earth's history. One important component may be recycled oceanic crust, residing at the base of the mantle. We investigate, by numerical modeling, if such reservoirs may have been formed in the early Earth, before plate tectonics (and subduction) were possible, and how they have survived—and evolved—since then. During Earth's early evolution, thick basaltic crust may have sunk episodically into the mantle in short but vigorous diapiric resurfacing events. These sections of crust may have resided at the base of the mantle for very long times. Entrainment of material from the enriched reservoirs thus produced may account for enriched mantle and high-μ signatures in oceanic basalts, whereas deep subduction events may have shaped and replenished deep mantle reservoirs. Our modeling shows that (1) convective instabilities and resurfacing may have produced deep enriched mantle reservoirs before the era of plate tectonics; (2) such formation is qualitatively consistent with the geochemical record, which shows multiple distinct ocean island basalt sources; and (3) reservoirs thus produced may be stable for billions of years.
Sound velocity measurements of CaSiO3 perovskite under lower mantle pressures
NASA Astrophysics Data System (ADS)
Kudo, Y.; Hirose, K.
2010-12-01
The chemical composition of the lower mantle and the distribution of subducted crustal materials in the lower mantle can be constrained by the comparison of seismological observations with laboratory measurements of sound velocities of expected constituent minerals in lower mantle conditions. To date, sound velocities of two major constituent minerals of the lower mantle, namely magnesium silicate perovskite and ferropericlase have been well studied although the data are mostly limited to low temperature (300 K). On the other hand, another major mineral, CaSiO3-perovskite appears in both peridtite (~7 wt.%) and subducted basaltic crusts (~23 wt.%) at the lower mantle pressure-temperature conditions. In spite of its abundance in those rocks, little is known about acoustic velocity, mostly because it cannot be quenched to the ambient pressure. Synthesis and measurement should be made under pressure, which has been a challenging project for the current experimental techniques. We have conducted sound velocity measurements of polycrystalline CaSiO3 perovskite by a combination of a diamond anvil cell (DAC) and Brillouin scattering spectroscopy. High-pressure was generated by the DAC with a pair of 300-micron culet diamond anvils. Calcium silicate perovskite was synthesized from gel by laser annealing in the DAC with the CO2 laser. A tetragonal perovskite structure was confirmed by the X-ray diffraction at the station BL10XU, SPring-8. Brillouin scattering measurements were made at 300 K under pressures corresponding to the middle lower mantle conditions. Results demonstrate that the S-wave velocity is significantly lower than previous theoretical results. We will discuss the possible source for this discrepancy and resulting implications for the lower mantle materials.
NASA Astrophysics Data System (ADS)
Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.
2004-12-01
Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.
Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts
NASA Astrophysics Data System (ADS)
Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Jackson, Matthew G.; Moreira, Manuel; Day, James M. D.
2016-09-01
The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (-0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (-0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.
The effect of a realistic thermal diffusivity on numerical model of a subducting slab
NASA Astrophysics Data System (ADS)
Maierova, P.; Steinle-Neumann, G.; Cadek, O.
2010-12-01
A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the realistic description of thermal properties in models of subducted slabs is discussed.
Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle
NASA Astrophysics Data System (ADS)
Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.
2017-12-01
Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).
How to build stable geochemical reservoirs on Mars?
NASA Astrophysics Data System (ADS)
Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris
2014-05-01
To explain the complex thermo-chemical processes needed for the formation of distinct and stable geochemical reservoirs early in the thermo-chemical evolution of Mars, most geochemical studies argue that fractional crystallization of a global magma ocean may reproduce the isotopic characteristic of the SNCs [1, 2]. However, geodynamical models show that such scenario is difficult to reconcile with other observations like late volcanic activity and crustal density values as obtained from gravity and topography modelling [3, 4]. The stable density gradient, which establishes after the mantle overturn has completed, inhibits thermal convection. Albeit capable to provide stable reservoirs, this scenario suggests a conductive mantle after the overturn which on the one hand fails to sample deep regions of the mantle and on the other hand is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. Therefore, in this work an alternative scenario for the formation of early stable geochemical reservoirs is presented similar to the model of [5]. We investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The entire convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution [6]. Some of these reservoirs can be sustained during the entire evolution whereas others change with time - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites. References: [1] Elkins-Tanton et al., 2005, EPSL; [2] Debaille et al., 2009, Nature; [3] Tosi et al., 2013, JGR; [4] Plesa et al., submitted to EPSL; [5] Ogawa and Yanagisawa 2011, JGR; [6] Plesa and Breuer, 2013, PSS.
NASA Astrophysics Data System (ADS)
Okamura, S.; Inaba, M.; Igarashi, S.; Aizawa, M.; Shinjo, R.
2017-12-01
Isotopic and trace element data imply a temporal change in magma sources and thermal conditions beneath the northern Fossa Magna, NE Japan arc from the Oligocene to the Pleistocene. Less radiogenic 176Hf/177Hf and 143Nd/144Nd, and high Zr/Hf characterize the Oligocene - Early Miocene volcanism in the northern Fossa Magna region. The mantle wedge in the Oligocene - Early Miocene consisted of enriched mantle source. We propose that during the onset of subduction, influx of hot asthenospheric mantle provided sufficient heat to partially melt newly subducting sediment. Geochemical modeling results suggest breakdown of zircon in the slab surface sediments for the Oligocene - Early Miocene lavas in the northern Fossa Magna region. In the Middle Miocene, the injection of hot and depleted asthenospheric material replaced the mantle beneath the northern Fossa Magna region of NE Japan. The Middle Miocene lavas characterized by most radiogenic Hf and Nd isotope ratios, have high Zr/Hf. An appropriate working petrogenetic model is that the Middle Miocene lavas were derived from asthenospheric depleted mantle, slightly (<1%) contaminated by slab melt accompanied by full dissolution of zircon. All the Late Miocene - Pleistocene samples are characterized by distinctly more radiogenic 176Hf/177Hf and 143Nd/144Nd, and are displaced toward lower Zr/Hf, which requires mixing between depleted mantle and a partial melt of subducted metasediment saturated with trace quantity of zircon. The Oligocene - Early Miocene volcanism in the northern Fossa Magna region may represent the early stage of continental margin magmatism associated with a back-arc rift. Here volcanism is dominated by sediment melts. Perhaps asthenospheric injection, triggering Japan Sea opening, allowed higher temperatures and more melting at the slab-mantle interface. The mantle wedge was gradually cooled during the Middle Miocene to the Pleistocene with back-arc opening ending in the Late Miocene. Slab surface temperatures were still high enough for sediments to melt but not too high (< 780 °C) to lose zircon as a residual phase.
An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion
NASA Technical Reports Server (NTRS)
Liu, Mian; Chase, Clement G.
1990-01-01
An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.
NASA Astrophysics Data System (ADS)
Link, Klemens; Tommasini, Simone; Braschi, Eleonora; Conticelli, Sandro; Barifaijo, Erasmus; Tiberindwa, John V.; Foley, Stephen F.
2010-05-01
The genesis of pyroxenite nodules in Ugandan kamafugites and their possible genetic relationships is a matter of debate. In earlier studies the pyroxenites were considered either as xenoliths from pervasively metasomatized peridotite mantle (Lloyd, 1981) or as distinct paragenesises occurring as veins within the peridotitic mantle (Harte et al., 1993). In both cases the xenoliths would represent mantle material that was at least partly involved as source material for the kamafugite melts. A third alternative could be that they represent cumulates of the lavas. In any case, the nodules provide important information for understanding the generation of ultrapotassic lavas and for characterizing the rift-related lithosphere mantle as part of the initial continental rift process. Originally the ultrapotassic kamafugites were considered to be single stage partial melts of pervasively metasomatized mantle but new geochemical studies indicate a multistage development (Rosenthal et al., 2009). Nd, Hf and Os isotopes point to mixing between components derived from metasomatically influenced peridotite and mica-pyroxenite. In-situ investigation of the Sr-isotope and trace element compositions of individual minerals in a number of xenoliths allows us to constrain their genesis and relation to the host lavas. The nodules appear to originate by near-liquidus crystallization of melts derived from enriched peridotite within the cratonic lithosphere mantle. They later partially remelted to form one source of the potassium-rich kamafugites. Sr-isotopes from different domains within single mineral grains in the nodules and host lavas are used to trace the nodules' role as a potential source to lavas, and trace element measurements are used to support the conclusions. Rb/Sr- measurements from the biotites to constrain the time between nodule crystallization and eruption of the Quaternary lavas to about 3.3 Ma. This also suggests a significant increase of the geothermal gradient beneath the preceding rift within that time. Structures on microscopic scale indicate at least two different generations of mineral growth clearly related to multiphase magmatic events forming the nodules. Rare composite samples allow a correlation between the older and younger parageneses, demonstrating reaction between the older matrix pyroxenite and the younger, high-Ti melt. The relatively low (~0,13wt%) Cr2O3-contents together with the high LREE concentrations measured in the oldest observed clinopyroxenes (La~12,4 x PRIMA with La/Lu~21) as well as the lack of any other characteristic mineral relicts argue against a pervasively overprinted peridotite mantle. Comparable 87Sr/86Sr- values close to bulk earth values as well as similar 143Nd/144Nd- ratios in the nodules (0,512480-0,5122573) and the lavas (average: 0,512551) support a genetic link between the kamafugites and the nodules as suggested by experiments (Lloyd et al. 1985). Low radiogenic 87Sr/86Sr ratios in Rb-free clinopyroxene and perovskite (0,704459-0,704487) constrain initial values for the source whereas slightly more radiogenic values from cogenetic Rb-bearing biotites (0,704754- 0,704762) are the result of radioactive decay after mineral growth. The majority of the kamafugite 87Sr/86Sr values lie between the two end-members (0,704624- 0,704717). Additionally considering microscale structures showing melting processes we conclude that the nodules represent one source and that the intermediate 87Sr/86Sr values of the lavas reflect the melting of differing proportions of biotite and clinopyroxene in the source region.
Evidence for a Heterogeneous Distribution of Water in the Martian Interior
NASA Technical Reports Server (NTRS)
McCubbin, Francis; Boyce, Jeremy W.; Srinvasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.
2016-01-01
The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has approximately 1400 ppm H2O, which is likely distributed toward the martian surface. This crustal water abundance would equate to a global equivalent layer (GEL) of water at a depth of-229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.
NASA Astrophysics Data System (ADS)
Jean, M. M.; Falloon, T.; Gillis, K. M.
2014-12-01
We have acquired high-precision Pb-isotopic signatures of primitive lithologies (basalts/gabbros) recovered from IODP Expedition 345.The Hess Deep Rift, located in the vicinity of the Galapagos triple junction (Cocos, Nazca, and Pacific), is viewed as one the best-studied tectonic windows into fast-spreading crust because a relatively young (<1.5 Ma) cross section of oceanic crust. This allows for (1) characterization of the mantle source(s) at Hess Deep, (2) insight into the extent of isotopic homogeneity or heterogeneity in the area, and (3) constrain the relative contributions from the intruding Cocos-Nazca spreading center. The observed Pb-isotopic variation at Hess Deep covers almost the entire range of EPR MORB (10°N to -5°S). Hess Deep samples range from 208Pb (37.3-38.25), 207Pb (15.47-15.58), 206Pb (17.69-18.91). These compositions suggest that this part of Hess Deep mantle is no more isotopically homogeneous than EPR mantle. Two distinct arrays are also observed: 208Pb-enriched (r2=0.985; n=30) and 208Pb-depleted (r2=0.988; n=6). The 208Pb/204Pb isotopes indicates that the Pb-source for some of the samples at Hess Deep had very low Th/U ratios, whereas other areas around the Galapagos microplate seem to have more "normal" ratios. These trends are less apparent when viewed with 207Pb-isotopes. Instead, the majority of basalts and gabbros follow the NHRL, however, at the depleted-end of this array a negative excursion to more enriched compositions is observed. This negative but linear trend could signify an alteration trend or mixing with an EMI-type mantle source, yet this mixing is not observed with 208Pb. This trend is also observed at Pito Deep, which has similar origins to Hess Deep (Barker et al., 2008; Pollack et al., 2009). The Galapagos region has been considered a testing ground for mixing of HIMU, Enriched Mantle, and Depleted Mantle reservoirs (e.g., Schilling et al., 2002). According to our data, however, an EPR-component must also be considered. We model Hess Deep Pb-isotopes as a 4-component system. EPR-DM-EM comprise a 'local' reservoir, but the majority of samples contain a mixture of modified-HIMU-EM-EPR, a product of incoming plume material entrained within the Galapagos Spreading Center.
Os isotope systematics in ocean island basalts
NASA Astrophysics Data System (ADS)
Reisberg, Laurie; Zindler, Alan; Marcantonio, Franco; White, William; Wyman, Derek; Weaver, Barry
1993-12-01
New Re-Os isotopic results for Os-poor basalts from St. Helena, the Comores, Samoa, Pitcairn and Kerguelen dramatically expand the known range of initial Os-186/Os-187 ratios in Ocean Island Basalts (OIBs) to values as high as 1.7. In contrast to the Os isotopic uniformity of Os-rich basalts from the HIMU islands of Tubuai and Mangaia found by Hauri and Hart, our values for St. Helena span most of the known range of Os isotopic variability in oceanic basalts (initial O-187/Os-186 ranges from 1.2 to 1.7). Generation of such radiogenic Os in the mantle requires melting of source materials that contain large proportions of recycled oceanic crust. The very low Os concentrations of most of the basalts analyzed here, however, leave them susceptible to modification via interaction with materials containing radiogenic Os in the near-surface environment. Thus the high Os-186/Os-187 ratios may result from assimilation of radiogenic Os-rich marine sediments, such as Mn oxides, within the volcanic piles traversed by these magmas en route to the surface. Furthermore, the Os isotopic signatures of Os-rich, olivine-laden OIBs may reflect the accumulation of lithospheric olivine, rather than simply their mantle source characteristics. The extent to which these processes alter the view of the mantle obtained via study of Re-Os systematics in oceanic basalts is uncertain. These effects must be quantified before Re-Os systematics in OIBs can be used with confidence to investigate the nature of mantle heterogeneity and its causes.
NASA Astrophysics Data System (ADS)
Hallis, L. J.; Huss, G. R.; Nagashima, K.; Taylor, J.; Hilton, D. R.; Mottl, M. J.; Meech, K. J.; Halldorsson, S. A.
2016-12-01
Experimentally based chemical models suggest Jeans escape could have caused an increase in Earth's atmospheric D/H ratio of between a factor of 2 and 9 since the planets formation1. Plate tectonic mixing ensures this change has been incorporated into the mantle. In addition, collisions with hydrogen bearing planetesimals or cometary material after Earth's accretion could have altered the D/H ratio of the planet's surface and upper mantle2. Therefore, to determine Earth's original D/H ratio, a reservoir that has been completely unaffected by these surface and upper mantle changes is required. Most studies suggest that high 3He/4He ratios in some OIBs indicate the existence of relatively undegassed regions in the deep mantle compared to the upper mantle, which retain a greater proportion of their primordial He3-4. Early Tertiary (60-million-year-old) picrites from Baffin Island and west Greenland, which represent volcanic rocks from the proto/early Iceland mantle plume, contain the highest recorded terrestrial 3He/4He ratios3-4. These picrites also have Pb and Nd isotopic ratios consistent with primordial mantle ages (4.45 to 4.55 Ga)5, indicating the persistence of an ancient, isolated reservoir in the mantle. The undegassed and primitive nature6of this reservoir suggests that it could preserve Earth's initial D/H ratio. We measured the D/H ratios of olivine-hosted glassy melt inclusions in Baffin Island and Icelandic picrites to establish whether their deep mantle source region exhibits a different D/H ratio to known upper mantle and surface reservoirs. Baffin Island D/H ratios were found to extend lower than any previously measured mantle values (δD -97 to -218 ‰), suggesting that areas of the deep mantle do preserve a more primitive hydrogen reservoir, hence are unaffected by plate tectonic mixing. Comparing our measured low D/H ratios to those of known extra-terrestrial materials can help determine where Earths water came from. References: [1] Genda and Ikoma, 2008 Icarus 194, 42-52. [2] Abramov, and Mojzsis, (2009) Nature 459, 419-422. [3] Stuart et al. (2003) Nature 424, 57-59. [4] Starkey et al. (2009) Earth Planet. Sci. Lett. 277, 91-100. [5] Jackson et al. (2010) Nature 466, 853-856. [6] Robillard et al. (1992) Contrib. Mineral. Petrol. 112, 230-241.
Siderophile element constraints on the origin of the Moon
Walker, Richard J.
2014-01-01
Discovery of small enrichments in 182W/184W in some Archaean rocks, relative to modern mantle, suggests both exogeneous and endogenous modifications to highly siderophile element (HSE) and moderately siderophile element abundances in the terrestrial mantle. Collectively, these isotopic enrichments suggest the formation of chemically fractionated reservoirs in the terrestrial mantle that survived the putative Moon-forming giant impact, and also provide support for the late accretion hypothesis. The lunar mantle sources of volcanic glasses and basalts were depleted in HSEs relative to the terrestrial mantle by at least a factor of 20. The most likely explanations for the disparity between the Earth and Moon are either that the Moon received a disproportionately lower share of late accreted materials than the Earth, such as may have resulted from stochastic late accretion, or the major phase of late accretion occurred prior to the Moon-forming event, and the putative giant impact led to little drawdown of HSEs to the Earth's core. High precision determination of the 182W isotopic composition of the Moon can help to resolve this issue. PMID:25114313
NASA Astrophysics Data System (ADS)
Shu, Yunchao; Nielsen, Sune G.; Zeng, Zhigang; Shinjo, Ryuichi; Blusztajn, Jerzy; Wang, Xiaoyuan; Chen, Shuai
2017-11-01
Sediments are actively subducted in virtually every arc worldwide. However, quantifying their contributions to arc lavas and thereby establishing budgets of how sediments participate in slab-mantle interaction is challenging. In this contribution we use thallium (Tl) abundances and isotopic compositions of lavas from the Ryukyu arc (including south Kyushu) and its back-arc basin, Okinawa Trough, to investigate the influence of sediments from arc to back-arc. We also present extensive geochemical data for sediments and altered oceanic crust (AOC) outboard of the northern (DSDP Sites 296, 442B, 443 and 444) and central (DSDP Sites 294 and 295) part of the Ryukyu arc. The Tl isotopic compositions of sediments change systematically from lighter outboard of northern Ryukyu arc to heavier outboard of central Ryukyu arc. The feature reflects the dominance of terrigenous material and pelagic sedimentation outboard of the northern and central Ryukyu arc, respectively. Central and northern sections of Ryukyu arc and Okinawa Trough display larger range of Tl isotopic variation than southern section, which is consistent with more pelagic provenance for sediments outboard of central and northern Ryukyu arcs than that of expected sediments outboard of southern Ryukyu arc. Identical Tl, Sr, Nd and Pb isotope variations are found when comparing arc and back arc lavas, which indicates that sediments fluxes also account for the Tl isotopic variations in the Okinawa Trough lavas. Two-end-member mixing models of Tl with Pb, Sr and Nd isotopes require sediment inputs of< 1%, 0.1-1% and 0.3-2% by weight to the depleted mantle source to account for all these isotopic compositions of lavas from northern, central and southern portion of the Ryukyu arc and Okinawa Trough. Bulk mixing between mantle and sediment end members predict very similar sediment fluxes when using Tl, Sr, Nd and Pb isotopes, which indicates that fractionation of these elements must have happened after mixing between mantle and sediments. This conclusion is corroborated by model calculations of mixing between sediment melts with fractionated Sr/Nd ratios and mantle wedge, which show that no arc lava plot on such mixing lines. Thus bulk sediment mixing, rather than sediment melt, is required for the generation of the lavas from the Ryukyu arc and Okinawa Trough. The requirement of bulk sediment mixing occurring before trace element fractionation in the sub-arc mantle is consistent with models where mélange layers form at the top of the slab and are the principle source material for arc lavas. In addition, the fact that sediment components observed in the Ryukyu arc and Okinawa Trough lavas are similar, suggests that transport of mélange material to the source regions of the arc and back arc is equally efficient. This feature is most readily explained if mélange material is transported from the slab as diapirs.
Mantle Noble Gas Contents Controlled by Serpentinite Subduction
NASA Astrophysics Data System (ADS)
Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.; Cooper, R. F.
2017-12-01
Noble gases serve as powerful tracers of the mantle's chemical and physical evolution. Analyses of material from subduction zones1, mid-ocean ridge basalts, and ocean island basalts2 indicate that heavy noble gases are being recycled from the surface of the earth into the mantle. The exact mechanism by which these uncharged atoms can be bound to a mineral and the subsequent path of recycling remains unclear, but experimental work suggests that ring structures in silicate minerals are ideal sites for noble gases3. Serpentine contains such ring structures and is abundant in subducting slabs. Developing an understanding of how noble gases are transported sheds light on the large-scale mantle dynamics associated with volatile transport, subduction, convection, and mantle heterogeneity. The solubilities of He, Ne, Ar, Kr, and Xe have been experimentally determined in natural samples of antigorite, the high-pressure polymorph of serpentine. The measured solubilities for all noble gases are high relative to mantle silicates (olivine and pyroxenes)4,5. Mixing lines between the noble gas contents of seawater and serpentinite may explain the noble gas composition of mid-ocean ridge basalts and constrain the source material of EM1, EM2 and HIMU ocean island basalts. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Parai, R. and Mukhopadhyay, S., GGG, 16, 719-735, 2015 3. Jackson, C.R.M. et al., GCA, 159, 1-15, 2015 4. Heber, V.S. et al., GCA, 71, 1041-1061, 2007 5. Jackson, C.R.M. et al., EPSL, 384, 178-187, 2013
Between a rock and a hot place: the core-mantle boundary.
Wookey, James; Dobson, David P
2008-12-28
The boundary between the rocky mantle and iron core, almost 2900 km below the surface, is physically the most significant in the Earth's interior. It may be the terminus for subducted surface material, the source of mantle plumes and a control on the Earth's magnetic field. Its properties also have profound significance for the thermochemical and dynamic evolution of the solid Earth. Evidence from seismology shows that D'' (the lowermost few hundred kilometres of the mantle) has a variety of anomalous features. Understanding the origin of these observations requires an understanding of the elastic and deformation properties of the deep Earth minerals. Core-mantle boundary pressures and temperatures are achievable in the laboratory using diamond anvil cell (DAC) apparatus. Such experiments have led to the recent discovery of a new phase, 'post-perovskite', which may explain many hitherto poorly understood properties of D''. Experimental work is also done using analogue minerals at lower pressures and temperatures; these circumvent some of the limits imposed by the small sample size allowed by the DAC. A considerable contribution also comes from theoretical methods that provide a wealth of otherwise unavailable information, as well as verification and refinement of experimental results. The future of the study of the lowermost mantle will involve the linking of the ever-improving seismic observations with predictions of material properties from theoretical and experimental mineral physics in a quantitative fashion, including simulations of the dynamics of the deep Earth. This has the potential to dispel much of the mystery that still surrounds this remote but important region.
NASA Astrophysics Data System (ADS)
Hopp, Jens; Viladkar, Shrinivas G.
2018-06-01
Within a stepwise crushing study we determined the noble gas composition of several calcite separates, one aegirine and one pyrochlore-aegirine separate of the carbonatite ring dyke complex of Amba Dongar and carbonatite sill complex of Siriwasan, India. Both carbonatites are related to the waning stages of volcanic activity of the Deccan Igneous Province ca. 65 Ma ago. Major observations are a clear radiogenic 4He* and nucleogenic 21Ne* imprint related to in situ production from U and Th in mineral impurities, most likely minute apatite grains, or late incorporation of crustal fluids. However, in first crushing steps of most calcites from Amba Dongar a well-resolvable mantle neon signal is observed, with lowest air-corrected mantle 21Ne/22Ne-compositions equivalent to the Réunion hotspot mantle source. In case of the aegirine separate from Siriwasan we found a neon composition similar to the Loihi hotspot mantle source. This transition from a mantle plume signal in first crushing step to a more nucleogenic signature with progressive crushing indicates the presence of an external (crustal) or in situ nucleogenic component unrelated and superposed to the initial mantle neon component whose composition is best approximated by results of first crushing step(s). This contradicts previous models of a lithospheric mantle source of the carbonatitic magmas from Amba Dongar containing recycled crustal components which base on nucleogenic neon compositions. Instead, the mantle source of both investigated carbonatite complexes is related to a primitive mantle plume source that we tentatively ascribe to the postulated Deccan mantle plume. If, as is commonly suggested, the present location of the Deccan mantle plume source is below Réunion Island, the currently observed more nucleogenic neon isotopic composition of the Réunion hotspot might be obliterated by significant upper mantle contributions. In addition, compared with other carbonatite complexes worldwide a rather significant contribution of atmospheric noble gases is observed. This is documented in cut-off 20Ne/22Ne-ratios of ca. 10.2 (Amba Dongar) and 10.45 (Siriwasan) and cut-off 40Ar/36Ar-ratios of about 1500. This atmospheric component had been added at shallow levels during the emplacement process or later during hydrothermal alteration. However, understanding the late-stage interaction between atmospheric gases and magmatic mantle fluids still requires further investigation.
NASA Astrophysics Data System (ADS)
Beier, Christoph; Stracke, Andreas; Haase, Karsten M.
2007-07-01
The island of São Miguel, Azores consists of four large volcanic systems that exhibit a large systematic intra-island Sr-Nd-Pb-Hf isotope and trace element variability. The westernmost Sete Cidades volcano has moderately enriched Sr-Nd-Pb-Hf isotope ratios. In contrast, lavas from the easternmost Nordeste volcano have unusually high Sr and Pb and low Nd and Hf isotope ratios suggesting a long-term evolution with high Rb/Sr, U/Pb, Th/Pb, Th/U and low Sm/Nd and Lu/Hf parent-daughter ratios. They have trace element concentrations similar to those of the HIMU islands, with the exception of notably higher alkali element (Cs, Rb, K, Ba) and Th concentrations. The time-integrated parent-daughter element evolution of both the Sete Cidades and Nordeste source matches the incompatibility sequence commonly observed during mantle melting and consequently suggests that the mantle source enrichment is caused by a basaltic melt, either as a metasomatic agent or as recycled oceanic crust. Our calculations show that a metasomatic model involving a small degree basaltic melt is able to explain the isotopic enrichment but, invariably, produces far too enriched trace element signatures. We therefore favour a simple recycling model. The trace element and isotopic signatures of the Sete Cidades lavas are consistent with the presence of ancient recycled oceanic crust that has experienced some Pb loss during sub-arc alteration. The coherent correlation of the parent-daughter ratios (e.g. Rb/Sr, Th/U, U/Pb) and incompatible element ratios (e.g. Nb/Zr, Ba/Rb, La/Nb) with the isotope ratios in lavas from the entire island suggest that the Sete Cidades and Nordeste source share a similar genetic origin. The more enriched trace element and isotopic variations of Nordeste can be reproduced by recycled oceanic crust in the Nordeste source that contains small amounts of evolved lavas (˜ 1-2%), possibly from a subducted seamount. The rare occurrence of enriched source signatures comparable to Nordeste may be taken as circumstantial evidence that stirring processes in the Earth's mantle are not able to homogenise material within the size of seamounts over timescales of mantle recycling.
The planet beyond the plume hypothesis
NASA Astrophysics Data System (ADS)
Smith, Alan D.; Lewis, Charles
1999-12-01
Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for intraplate volcanism evolve from the source residues of arc volcanism located along sutures in the continental mantle. Continental rifting and the lateral distribution of intraplate sources in the asthenosphere are controlled by Earth rotation. Shear induced on the base of the asthenosphere from the mesosphere as the Earth rotates is transmitted to the lithosphere as basal drag. Attenuation of the drag due to the low viscosity of the asthenosphere, in conjunction with plate motions from boundary forces, results in a rotation differential of up to 5 cm yr -1 between the lithosphere and mesosphere manifest as westward plate lag/eastward mantle flow. Continental rifting results from basal drag supplemented by local convection induced by lithospheric architecture. Large continental igneous provinces are generated by convective melting, with passive margin volcanic sequences following the axis of rifting and flood basalts overlying the intersection of sutures in the continental mantle. As rifting progresses, the convection cells expand, cycling continental mantle from sutures perpendicular to the rift axis to generate intraplate tracks in the ocean basin. Continental mantle not melted on rifting, or delaminated on continental collision, becomes displaced to the east of the continent by differential rotation, which also sets up a means for tapping the material to give fixed melting anomalies. When plates move counter to the Earth's rotation, as in the example of the Pacific plate, asthenospheric flow is characterised by a counterflow regime with a zero velocity layer at depths within the stability field for volatile-bearing minerals. Intraplate volcanism results when melts are tapped from this stationary layer along lithospheric stress trajectories induced by stressing of the plate from variations in the subduction geometry around the margins of the plate. Plate boundary forces acting in the same direction as Earth rotation, as for the Nazca plate, produce fast plate velocities but not counterflow, though convergent margin geometry may still induce propagating fractures which set up melting anomalies. Lateral migration of asthenospheric domains allows the sources of Pacific intraplate volcanism to be traced back to continental mantle eroded during the breakup of Gondwana and the amalgamation of Asia in the Paleozoic. Intraplate volcanism in the South Pacific therefore has a common Gondwanan origin to intraplate volcanism in the South Atlantic and Indian Oceans, hence the DUPAL anomaly is entirely of shallow origin. Such domains constitute a second order geochemical heterogeneity superimposed on a streaky/marble-cake structure arising from remixing of subducted crust with the convecting mantle. During the Proterozoic and Phanerozoic, remixing of slabs has buffered the evolution of the depleted mantle to a rate of 2.2 ɛNd units Ga -1, with fractionation of Lu from Hf in the sediment component imparting the large range in 176Hf/ 177Hf relative to 143Nd/ 144Nd observed in MORB. Only the high ɛNd values of some Archean komatiites are compatible with derivation from unbuffered mantle. The existence of a very depleted reservoir is attributed to stabilisation of a large early continental crust through either obduction tectonics or slab melting regimes which reduced the efficiency of crustal recycling back into the mantle. Generation of komatiite is therefore a consequence of mantle composition, and is permitted in ocean ridge environments and/or under hydrous melting conditions. Correspondingly, as intraplate volcanism depends on survival of volatile-bearing sources, its appearance in the Middle Proterozoic corresponds to the time in the Earth's thermal evolution at which minerals such as phlogopite and amphibole could survive in off-ridge environments in the shallow asthenosphere. The geodynamic evolution of the Earth was thus determined at convergent margins, not by plumes and hotspots, with the decline in thermal regime causing both a reduction in size of crust and continental mantle roots, the latter becoming a source for intraplate volcanism while the crust was incorporated into the convecting mantle.
P-wave Velocity Structure Across the Mariana Trench and Implications for Hydration
NASA Astrophysics Data System (ADS)
Eimer, M. O.; Wiens, D.; Lizarralde, D.; Cai, C.
2017-12-01
Estimates of the water flux at subduction zones remain uncertain, particularly the amount of water brought into the trench by the subducting plate. Normal faulting related to the bending of the incoming plate has been proposed to provide pathways for water to hydrate the crust and upper mantle. A passive and active source seismic experiment spanning both the incoming plate and forearc was conducted in 2012 in central Mariana to examine the role of hydration at subduction zones. The active-source component of the survey used the R/V M.G. Langsethairgun array and 68 short period sensors, including suspended hydrophones, deployed on 4 transects. This study at the Mariana trench offers a comparison to related studies of incoming plate hydration in Middle America, where differing thermal structures related to plate age predict different stability fields for hydrous minerals. The forearc structure is also of interest, since Mariana is characterized by large serpentine seamounts and may have a serpentinized mantle wedge. The velocity structure will also be important for the relocation of earthquakes in the incoming plate, since the seismicity can offer a constraint for the depth extent of these bending faults. We examine the P-wave velocity structure along a 400-km long wide-angle refraction transect perpendicular to the trench and spanning both the forearc and incoming plate. Preliminary results indicate a velocity reduction in the crust and uppermost mantle at the bending region of the incoming plate, relative to the plate's structure away from the trench. This reduction suggests that outer-rise faults extend into the upper mantle and may have promoted serpentinization of that material. Mantle Pn refraction phases are not observed in the forearc, consistent with the ambient noise tomography results that show upper-mantle velocities similar to that of the lower crust. The lack of contrast between the upper mantle and crustal velocities from the ambient noise has been interpreted to indicate extensive serpentinization of the shallow mantle wedge.
Understanding the nature of mantle upwelling beneath East-Africa
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham
2014-05-01
The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow depths. Moreover, our preliminary models show that the low-velocity feature in the transition zone and uppermost lower mantle beneath Afar trends to the northeast beneath the Red Sea and Saudi Arabia as opposed to being linked to the African Superplume towards the southwest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumi, Yoshiyuki; Kimura, Nobukazu; Itaya, Tetsumaru
K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of themore » Gregory Rift.« less
Mantle and crustal contributions to continental flood volcanism
Arndt, N.T.; Czamanske, G.K.; Wooden, J.L.; Fedorenko, V.A.
1993-01-01
Arndt, N.T., Czamanske, G.K., Wooden, J.L. and Fedorenko, V.A., 1993. Mantle and crustal contributions to continental flood volcanism. In: M.J.R. Wortel, U. Hansen and R. Sabadini (Editors), Relationships between Mantle Processes and Geological Processes at or near the Earth's Surface. Tectonophysics, 223: 39-52. Most continental flood basalts are enriched in incompatible elements and have high initial 87Sr/86Sr ratios and low ??{lunate}Nd values. Many are depleted in Nb and Ta. The commonly-held view that these characteristics are inherited directly from a source in metasomatized lithospheric mantle is inconsistent with the following arguments: (1) thermomechanical modelling demonstrates that flood basalt magmas come mainly from an asthenospheric or plume source, with minimal direct melting of the continental lithospheric mantle. The low water contents of most flood basalts argue against proposals that hydrous lithosphere was the source. (2) Lithospheric mantle normally has low concentrations of incompatible elements, and chondrite-normalized Nb and Ta contents similar to those of other incompatible elements. Such material cannot be the unmodified source of Nb-Ta-depleted basalts such as those from the Karoo, Ferrar, or Columbia River provinces. We suggest there are two main controls on the compositions of continental flood basalts. The first is lithospheric thickness, which strongly influences the depth and degree of mantle melting of a plume or asthenospheric source, and thus has an important influence on the composition of primary magmas. All liquids formed by partial melting of peridotite at sub-lithosphere depths are highly magnesian (20-25 wt.% MgO) but have variable trace-element contents. Where the lithosphere is thick, the source melts at high pressure, garnet is present, the degree of melting is low, and trace-element concentrations are high. This type of magma evolves to produce the high-Ti type of continental flood basalt. Where the lithosphere is thinner, the source ascends to shallower levels, the degree of melting is greater, garnet may be exhausted, and the magmas have lower trace-element contents; these magmas yield low-Ti basalts. The second control is processing of magmas in chambers that were periodically replenished and tapped, while continuously fractionating and assimilating their wall rocks. The uniform compositions of basalts that evolve in such chambers are far removed from those of their picritic parental magmas. Major elements in continental flood basalts reflect control by olivine, pyroxene, and plagioclase crystallization, and this assemblage places the magma chambers at crustal depth. We believe that trace-element and isotopic compositions are also buffered, and that the erupted basalts represent steady-state liquids tapped from these magma chambers. These processes impose a crustal signature on the magmas, as expressed most strongly in the concentrations of incompatible elements (e.g., Nb-Ta anomalies) and their isotopic characteristics. ?? 1993.
Self-Organized Mantle Layering After the Magma-Ocean Period
NASA Astrophysics Data System (ADS)
Hansen, U.; Dude, S.
2017-12-01
The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.
NASA Astrophysics Data System (ADS)
Valer, Marina; Schiano, Pierre; Bachèlery, Patrick
2017-09-01
Major and trace element compositions were obtained for bulk rocks and melt inclusions hosted in olivine crystals (Fo > 85) from the adventive cones of the Piton de La Fournaise volcano (La Réunion Island). Ratios of highly incompatible trace elements for these magmas are used to identify the nature of the La Réunion mantle plume source. Although adventive cone lavas display unusual major element compositions compared to the historical lavas of the volcano (e.g., lower CaO/Al2O3), trace element data suggest that the magmas emitted by the adventive cones originate from a common chemical source. This source may correspond to either a homogeneous mixed source of different mantle components or a near-primitive less-differentiated mantle source. The melt inclusions display ratios of highly incompatible elements (e.g., Th/La, Nb/La) which are similar to primitive mantle values, and lower Nb/U ratios compared to most oceanic basalts. These results and previous isotopic and trace element data suggest that La Réunion plume samples a source which is intermediate between a primitive-like mantle domain and a slightly depleted one almost unaffected by the recycling processes. This source could have originated from early depletion of the primitive mantle. Assuming a depletion 4.45 Gyr ago, 10% melting of this slightly depleted source could explain the enriched trace element concentrations of the melt inclusions.
NASA Astrophysics Data System (ADS)
Brandon, Alan D.; Walker, Richard J.; Puchtel, Igor S.; Becker, Harry; Humayun, Munir; Revillon, Sidonie
2003-02-01
The presence of coupled enrichments in 186Os/ 188Os and 187Os/ 188Os in some mantle-derived materials reflects long-term elevation of Pt/Os and Re/Os relative to the primitive upper mantle. New Os data for the 89 Ma Gorgona Island, Colombia komatiites indicate that these lavas are also variably enriched in 186Os and 187Os, with 186Os/ 188Os ranging between 0.1198397±22 and 0.1198470±38, and with γOs correspondingly ranging from +0.15 to +4.4. These data define a linear trend that converges with the previously reported linear trend generated from data for modern Hawaiian picritic lavas and a sample from the ca. 251 Ma Siberian plume, to a common component with a 186Os/ 188Os of approximately 0.119870 and γOs of +17.5. The convergence of these data to this Os isotopic composition may imply a single ubiquitous source in the Earth's interior that mixes with a variety of different mantle compositions distinguished by variations in γOs. The 187Os- and 186Os-enriched component may have been generated via early crystallization of the solid inner core and consequent increases in Pt/Os and Re/Os in the liquid outer core, with time leading to suprachondritic 186Os/ 188Os and γOs in the outer core. The presence of Os from the outer core in certain portions of the mantle would require a mechanism that could transfer Os from the outer core to the lower mantle, and thence to the surface. If this is the process that generated the isotopic enrichments in the mantle sources of these plume-derived systems, then the current understanding of solid metal-liquid metal partitioning of Pt, Re and Os requires that crystallization of the inner core began prior to 3.5 Ga. Thus, the Os isotopic data reported here provide a new source of data to better constrain the timing of inner core formation, complementing magnetic field paleo-intensity measurements as data sources that constrain models based on secular cooling of the Earth.
Magma source transition of lunar mare volcanism at 2.3 Ga
NASA Astrophysics Data System (ADS)
Kato, Shinsuke; Morota, Tomokatsu; Yamaguchi, Yasushi; Watanabe, Sei-Ichiro; Otake, Hisashi; Ohtake, Makiko
2017-09-01
Mare basalts provide insights into the composition and thermal history of the lunar mantle. The ages of mare basalts suggest a first peak of magma activity at 3.2-3.8 Ga and a second peak at 2 Ga. In this study, we reassess the correlation between the titanium contents and the eruption ages of mare basalt units using the compositional and chronological data updated by SELENE (Kaguya). Using morphological and geological criteria, we calculated the titanium content of 261 mare units across a representative area of each mare unit. In the Procellarum KREEP Terrane, where the latest eruptions are located, an increase in the mean titanium content is observed during the Eratosthenian period, as reported by previous studies. We found that the increase in the mean titanium content occurred within a relatively short period near approximately 2.3 Ga, suggesting that the magma source of the mare basalts changed at this particular age. Moreover, the high-titanium basaltic eruptions are correlated with a second peak in volcanic activity near 2 Ga. The high-titanium basaltic eruptions occurring during the last volcanic activity period can be explained by the three possible scenarios (1) the ilmenite-bearing cumulate rich layer in the core-mantle boundary formed after the mantle overturn, (2) the basaltic material layers beneath the lunar crust formed through upwelling magmas, and (3) ilmenite-bearing cumulate blocks remained in the upper mantle after the mantle overturn.
NASA Astrophysics Data System (ADS)
Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Thorkelson, Derek J.; Friedman, Eyal
2018-07-01
Mantle xenoliths hosted by the Quaternary Tasse alkaline basalts in the Canadian Cordillera, southeastern British Columbia, are mostly spinel lherzolite originating from subcontinental lithospheric mantle. The xenoliths contain abundant feldspar veins, melt pockets and spongy clinopyroxene, recording extensive alkaline metasomatism and partial melting. Feldspar occurs as veins and interstitial crystal in melt pockets. Melt pockets occur mainly at triple junctions, along grain boundaries, and consist mainly of olivine, cpx, opx and spinel surrounded by interstitial feldspar. The Nd, Sr and Pb isotopic compositions of the xenoliths indicate that their sources are characterized by variable mixtures of depleted MORB mantle and EM1 and EM2 mantle components. Large variations in εNd values (-8.2 to +9.6) and Nd depleted mantle model ages (TDM = 66 to 3380 Ma) are consistent with multiple sources and melt extraction events, and long-term (>3300 Ma) isolation of some source regions from the convecting mantle. Samples with Archean and Paleoproterozoic Nd model ages are interpreted as either have been derived from relict Laurentian mantle pieces beneath the Cordillera or have been eroded from the root of the Laurentian craton to the east and transported to the base of the Cordilleran lithosphere by edge-driven convection currents. The oxygen isotope compositions of the xenoliths (average δ18O = +5.1 ± 0.5‰) are similar to those of depleted mantle. The average δ18O values of olivine (+5.0 ± 0.2‰), opx (+5.9 ± 0.6‰), cpx (+6.0 ± 0.6‰) and spinel (+4.5 ± 0.2‰) are similar to mantle values. Large fractionations for olivine-opx, olivine-cpx and opx-cpx pairs, however, reflect disequilibrium stemming from metasomatism and partial melting. Whole-rock trace element, Nd, Sr, Pb and O isotope compositions of the xenoliths and host alkaline basalts indicate different mantle sources for these two suites of rocks. The xenoliths were derived from shallow lithospheric sources, whereas the alkaline basalts originated from a deeper asthenospheric mantle source.
The Central Atlantic Magmatic Province (CAMP)
NASA Astrophysics Data System (ADS)
Marzoli, A.; Callegaro, S.; Davies, J.; Chiaradia, M.; Reisberg, L. C.; Merle, R.; Jourdan, F.; Bertrand, H.; Youbi, N.
2017-12-01
Basaltic lava flows, dykes, sills, and layered intrusion of the CAMP (Central Atlantic magmatic province) crop out in Europe, Africa, North and South America over > 10 million square km, making this one of Earth's largest igneous provinces. CAMP is characterized by 100-400 m thick preserved lava piles and by huge shallow intrusions (e.g., > 1.5 million cubic km sills). Magmatism occurred mainly between 201.6 and 201.1 Ma (according to U-Pb and Ar/Ar ages) during the end-Triassic extinction event and a few Ma before break-up of Pangea. Pulsed emplacement seems consistent with high-precision geochronology, but needs further confirmation. All over the province, basalts with quite similar composition reflect a common mantle source. These basalts have low Ti contents (TiO2 ca. 1.0-1.3 wt.%), moderately enriched Sr-Nd-Pb isotopic compositions close to the EM-II mantle end-member, and 187Os/188Os close to 0.130. We attribute these characteristics to a dominant shallow asthenospheric mantle source that was enriched by subduction-related components. Assimilation of crustal rocks generally played a minor role and rarely exceed 5-10%. Instead, assimilation of the sub-continental lithospheric mantle (SCLM) was instead recognized in the high-Ti basalts (TiO2> 2.0 wt.%) that were emplaced in a restricted area around the Man and Amazonian cratons (Sierra Leone, Liberia, Brazil, Guyana). The SCLM-like signature of these basalts suggests assimilation of metasomatically enriched parts of the SCLM. Also early basalts emplaced north of the West African craton (Morocco, Mali) are contaminated by enriched SCLM components even if to a lesser degree, while later basalts from the same African regions have low 187Os/188Os (ca. 0.120) and probably tapped a more depleted cratonic SCLM. Calculated mantle potential temperatures are low (ca. 1450 °C) and geochemical data do not support a significant contribution from mantle-plume material. The only available He isotopic data are just slightly higher than those of MORB. This argues against a substantial contribution from mantle-plume material. The only basalts trending to isotopic compositions similar to those of present-day Atlantic island basalts are quite limited in volume and restricted to a small area of Morocco.
Deep Mantle Origin for the DUPAL Anomaly?
NASA Astrophysics Data System (ADS)
Ingle, S.; Weis, D.
2002-12-01
Twenty years after the discovery of the Dupal Anomaly, its origin remains a geochemical and geophysical enigma. This anomaly is associated with the Southern Hemisphere oceanic mantle and is recognized by basalts with geochemical characteristics such as low 206Pb/204Pb and high 87Sr/86Sr. Both mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) are affected, despite originating from melting at different depths and of different mantle sources. We compile geochemical data for both MORB and OIB from the three major oceans to help constrain the physical distribution and chemical composition of the Dupal Anomaly. There is a clear decrease in 206Pb/204Pb and an increase in 87Sr/86Sr with more southerly latitude for Indian MORB and OIB; these correlations are less obvious in the Atlantic and non-existent in the Pacific. The average* 143Nd/144Nd for Pacific and Atlantic OIB is 0.5129, but is lower for Indian OIB (0.5128). Interestingly, Pacific, Atlantic and Indian OIB all have 176Hf/177Hf averages of 0.2830. Indian MORB also record this phenomenon of low Nd with normal Hf isotopic compositions (Chauvel and Blichert-Toft, EPSL, 2001). Hf isotopes appear, therefore, to be a valid isotopic proxy for measuring the presence and magnitude of the Dupal Anomaly at specific locations. Wen (EPSL, 2001) reported a low-velocity layer at the D'' boundary beneath the Indian Ocean from which the Dupal Anomaly may originate. This hypothesis may be consistent with our compilations demonstrating that the long-lived Dupal Anomaly does not appear to be either mixing efficiently into the upper mantle or spreading to other ocean basins through time. We suggest that the Dupal source could be continually tapped by upwelling Indian Ocean mantle plumes. Plumes would then emplace pockets of Dupal material into the upper mantle and other ascending plumes might further disperse this material into the shallow asthenosphere. This could explain both the presence of the Dupal signature in MORB and OIB and the geochemical similarities between some Indian Ocean mantle plumes, such as Kerguelen, and the Dupal signature. * To avoid sampling biases, data for each ocean island (or group) are averaged and these values are used to calculate the average for each ocean.
Stable Chlorine Isotope Study: Application to Early Solar System Materials
NASA Technical Reports Server (NTRS)
Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.
2010-01-01
A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC.
NASA Astrophysics Data System (ADS)
Qi, Yue; Gou, Guo-Ning; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Li, Qiu-Li; Zhang, Le
2018-03-01
The question of whether continental subduction processes in collisional orogenic belts can trigger wide-spread mantle metesomatism and crustal material recycling remains unresolved. Miocene (25-8 Ma) ultrapotassic rocks in southern Tibet are the only mantle-derived magmatic rocks emplaced after the collision between India and Asia and they have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached near-maximum elevation. However, their petrogenesis remains highly controversial, particularly the issue of whether their extremely enriched Sr-Nd isotopic characteristics were related to metasomatism derived from subducted Indian continental materials during the Cenozoic. Here we report on a Paleocene silicate-unsaturated, pseudoleucite phonolitic dike, in the Rongniduo area of central Lhasa terrane. In-situ SIMS (secondary ion mass spectrometry) apatite U-Pb age indicates the dike was generated at 64.1 ± 4.2 Ma, which slightly predates the age of initial India and Asia collision (about 55-50 Ma). This is the oldest age yet reported for ultrapotassic rocks in southern Tibet. Samples from this dike have distinctly more depleted Sr-Nd (whole rock: (87Sr/86Sr)i = 0.7064 to 0.7062, εNd(t) = - 1.5 to 0.4; in situ apitite: (87Sr/86Sr)i = 0.7059 to 0.7060, εNd(t) = - 2.0 to 0.4) isotopic compositions, than those of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa terrane ((87Sr/86Sr)i = 0.7106 to 0.7399, εNd(t) = - 10.6 to - 18.5). Our new data provides important constraints on pre-collisional mantle characteristics beneath the Lhasa terrane. We suggest that these 64 Ma pseudoleucite phonolitic rocks were derived from the enriched lithospheric mantle metasomatized by subducted Tethyan oceanic materials in response to Neo-Tethyan slab roll-back. As a consequence, the younger Miocene ultrapotassic rocks, which display different geochemical compositions from the pre-collisional ultrapotassic rocks, were most probably derived from a mantle source metasomatized by subducted Indian continental materials after 64 Ma. Our results indicate that the addition of subducted continental components plays an important role in changing mantle constituents beneath collisional orogenic belts.
Deep mantle: Enriched carbon source detected
NASA Astrophysics Data System (ADS)
Barry, Peter H.
2017-09-01
Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.
Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.
1997-01-01
The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.
Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe
NASA Astrophysics Data System (ADS)
Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard
2016-04-01
Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our data support the notion that the fraction of plutonium-derived Xe in plume sources (oceanic as well as continental) is higher than in the MORB source reservoir. Hence, the MORB - type reservoirs appear to be well distinguished and more degassed than the plume sources (oceanic as well as continental) supporting the heterogeneity of Earth's mantle. Finally this study highlights that xenon isotopes in the Eifel gas have preserved a chemical signature that is characteristic of other mantle plume sources. This is very intriguing because the presence of a mantle plume in this sector of Central Europe was already inferred from geophysical and geochemical studies(Buikin et al., 2005; Goes et al., 1999). Notably, tomographic images show a low-velocity structure down to 2000 km depth, representing deep mantle upwelling under central Europe, that may feed smaller upper-mantle plumes (Eifel volcanic district-Germany). References Buikin A., Trieloff M., HoppJ., Althaus T., Korochantseva E., Schwarz W.H. &Altherr R., (2005), Noble gas isotopessuggestdeepmantleplume source of late Cenozoicmaficalkalinevolcanism in Europe, Earth Planet. Sci. Lett. 230, 143-162. Goes S., Spakman W. &BijwaardH., (1999), A lowermantle source for centraleuropeanvolcanism, Science, 286, 1928-1931.G. Holland, M. Cassidy, C.J. Ballentine, Meteorite Kr in the Earth's mantle suggests a late accretionary source for the atmosphere, Science, 326, 1522-1525, (2009). Marty, B. Neon and xenon isotopes in MORB: implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45-56 (1989). Mukhopadhyay S., Early differentiation and volatile accretion recorded in deep-mantle neon and xenon Nature, 486, 101-106, (2013).
Noble gas isotopes and halogens in volatile-rich inclusions in diamonds
NASA Technical Reports Server (NTRS)
Burgess, Raymond; Turner, Grenville
1994-01-01
Application of the (40)Ar-(39)Ar method and noble gas studies to diamonds has increased our understanding of their age relationships to the host kimberlite or lamproite, and of the source and composition of volatile-rich fluids in the upper mantle. The properties of diamond (inert, high mechanical strength and low gas diffusivities) means they are especially useful samples for studying gases trapped deep within the earth (less than 150 km) as they are unlikely to have undergone loss or exchange of entrapped material since formation. Volatile-rich fluids (H2O-CO2) are important agents for metasomatic processes in the upper mantle, and the noble gases and halogens preferentially partition into this phase leading to a strong geochemical coherence between these groups of elements. The abundances of the halogens in the major reservoirs of the Earth shows a marked progression from chlorine, concentrated in the oceans, through to iodine which, through its affinity to organic material, is concentrated mainly in sediments. Abundances in the upper mantle are low. This is particularly true for iodine which is of special interest in view of its potential significance as an indicator of sediment recycling and by way of its link to (129)Xe amomalies in the mantle through the low extinct isotope (129)I. Extensions of the (40)Ar-(39)Ar technique enable measurements of halogens and other elements (K, Ca, Ba, U) by production of noble gas isotopes from these species during neutron irradiation. Samples analyzed in this way include 15 coated stones from an unknown source in Zaire, 3 boarts from the Jwaneng and 1 boart from the Orapa kimberlites, both in Botswana.
NASA Astrophysics Data System (ADS)
Herbrich, Antje; Hauff, Folkmar; Hoernle, Kaj; Werner, Reinhard; Garbe-Schönberg, Dieter; White, Scott
2016-07-01
Shallow (elevated) portions of mid-ocean ridges with enriched geochemical compositions near hotspots document the interaction of hot, geochemically-enriched plume mantle with shallow depleted upper mantle. Whereas the spatial variations in geochemical composition of ocean crust along the ridge axis in areas where plume-ridge interaction is taking place have been studied globally, only restricted information exists concerning temporal variations in geochemistry of ocean crust formed through plume-ridge interaction. Here we present a detailed geochemical study of 0-1.5 Ma ocean crust sampled from the Western Galápagos Spreading Center (WGSC) axis to 50 km north of the axis, an area that is presently experiencing a high influx of mantle material from the Galápagos hotspot. The tholeiitic to basaltic andesitic fresh glass and few bulk rock samples have incompatible element abundances and Sr-Nd-Pb isotopic compositions intermediate between depleted normal mid-ocean-ridge basalt (N-MORB) from >95.5°W along the WGSC and enriched lavas from the Galápagos Archipelago, displaying enriched (E-)MORB type compositions. Only limited and no systematic geochemical variations are observed with distance from the ridge axis for <1.0 Ma old WGSC crust, whereas 1.0-1.5 Ma old crust trends to more enriched isotopic compositions in 87Sr/86Sr, 143Nd/144Nd, 207Pb/204Pb and 208Pb/204Pb isotope ratios. On isotope correlation diagrams, the data set displays correlations between depleted MORB and two enriched components. Neither the geographically referenced geochemical domains of the Galápagos Archipelago nor the end members used for principal component analysis can successfully describe the observed mixing relations. Notably an off-axis volcanic cone at site DR63 has the appropriate composition to serve as the enriched component for the younger WGSC and could represent a portion of the northern part of the Galápagos plume not sampled south of the WGSC. Similar compositions to samples from volcanic cone DR63 have been found in the northern part of the 11-14 Ma Galápagos hotspot track offshore Costa Rica, indicating that this composition is derived from the northern portion of the Galápagos plume. The older WGSC requires involvement of an enriched mantle two (EMII) type source, not recognized thus far in the Galápagos system, and is interpreted to reflect entrained material either from small-scale heterogeneities within the upper mantle or from the mantle transition zone. Overall the source material for the 0-1.5 Ma WGSC ocean crust appears to represent mixing of depleted upper mantle with Northern Galápagos Plume material of relatively uniform composition in relatively constant proportions.
Subduction and volatile recycling in Earth's mantle
NASA Technical Reports Server (NTRS)
King, S. D.; Ita, J. J.; Staudigel, H.
1994-01-01
The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.
Neogene volcanism associated with back-arc basin tectonics at the northern Fossa Magna, NE Japan
NASA Astrophysics Data System (ADS)
Okamura, S.; Inaba, M.; Shinjo, R.; Adachi, Y.
2016-12-01
New isotopic and trace element data presented here imply a temporal change in magma sources and thermal conditions beneath the northern Fossa Magna of NE Japan from the Miocene to the Pliocene. Rocks from more sediment melt-rich Early Miocene volcanoes have less radiogenic 176Hf/177Hf and 143Nd/144Nd, high Zr/Hf, and little or no Hf anomaly (Hf/Hf*; ˜1.0). The mantle wedge in the Early Miocene consisted of enriched mantle source. We propose that during the onset of subduction, influx of hot asthenospheric mantle provided sufficient heat to partially melt newly subducting sediment. Geochemical modeling results suggest breakdown of zircon in the slab surface sediments for the Early Miocene lavas in the northern Fossa Magna region. In the Middle Miocene, the injection of hot and depleted asthenospheric material replaced the mantle beneath the northern Fossa Magna region of NE Japan. This caused the isotopic signature of the rocks to change from enriched to depleted. The Middle Miocene lavas characterized by most radiogenic Hf and Nd isotope ratios, have high Zr/Hf, low Lu/Hf, and little or no Hf anomaly. An appropriate working petrogenetic model is that the Middle Miocene lavas were derived from asthenospheric depleted mantle, slightly ( < 1%) contaminated by slab melt accompanied by full dissolution of zircon. All the Late Miocene and Pliocene samples are characterized by distinctly more radiogenic 176Hf/177Hf and 143Nd/144Nd, and more negative Hf anomalies (greater Hf/Hf* variability; ˜0.3). The Pliocene samples are displaced toward lower Hf/Hf* and Zr/Hf, and higher Lu/Hf relative to the Middle Miocene samples, which requires mixing between depleted mantle and a partial melt of subducted metasediment saturated with trace quantity of zircon.
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.
2015-09-01
Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Babechuk, Michael G.; Kamber, Balz S.; Greig, Alan; Canil, Dante; Kodolányi, János
2010-02-01
Tungsten is a moderately siderophile high-field-strength element that is hydrophile and widely regarded as highly incompatible during mantle melting. In an effort to extend empirical knowledge regarding the behaviour of W during the latter process, we report new high-precision trace element data (W, Th, U, Ba, La, Sm) that represent both terrestrial and planetary reservoirs: MORB (11), abyssal peridotites (8), eucrite basalts (3), and carbonaceous chondrites (8). A full trace element suite is also reported for Cordilleran Permian ophiolite peridotites (12) to better constrain the behaviour of W in the upper mantle. In addition, we report our long-term averages for a number of USGS (BIR-1, BHVO-1, BHVO-2, PCC-1, DTS-1) and GSJ (JA-3, JP-1) standard reference materials, some of which we conclude to be heterogeneous and contaminated with respect to W. The most significant finding of this study is that many of the highly depleted upper mantle peridotites contain far higher W concentrations than expected. In the absence of convincing indications for alteration, re-enrichment or contamination, we propose that the W excess was caused by retention in an Os-Ir alloy phase, whose stability is dependent on fO 2 of the mantle source region. This explanation could help to account for the particularly low W content of N-MORB and implies that the lithophile behaviour of W in basaltic rocks is not an accurate representation of the behaviour in the melt source. These findings then become relevant to the interpretation of W-isotopic data for achondrites, where the fractionation of Hf from W during melting is used to infer the Hf/W of the parent body mantle. This is exemplified by the differentiation chronology of the eucrite parent body (EPB), which has been modeled with a melt source with high Hf/W. By contrast, we explore the alternative scenario with a low mantle Hf/W on the EPB. Using available eucrite literature data, a maximum core segregation age of 1.2 ± 1.2 Myr after the closure of CAIs is calculated with a more prolonged time between core formation and mantle fractionation of ca. 2 Myr. This timeline is consistent with most recent published chronologies of the EPB differentiation based on the 53Mn- 53Cr and 26Al- 26Mg systems.
182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle
NASA Astrophysics Data System (ADS)
Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Walker, Richard J.
2018-05-01
While the isotopically heterogeneous nature of the terrestrial mantle has long been established, the origin, scale, and longevity of the heterogeneities for different elements and isotopic systems are still debated. Here, we report Nd, Hf, W, and Os isotopic and highly siderophile element (HSE) abundance data for the Boston Creek komatiitic basalt lava flow (BCF) in the 2.7 Ga Abitibi greenstone belt, Canada. This lava flow is characterized by strong depletions in Al and heavy rare earth elements (REE), enrichments in light REE, and initial ε143Nd = +2.5 ± 0.2 and intial ε176Hf = +4.2 ± 0.9 indicative of derivation from a deep mantle source with time-integrated suprachondritic Sm/Nd and Lu/Hf ratios. The data plot on the terrestrial Nd-Hf array suggesting minimal involvement of early magma ocean processes in the fractionation of lithophile trace elements in the mantle source. This conclusion is supported by a mean μ142Nd = -3.8 ± 2.8 that is unresolvable from terrestrial standards. By contrast, the BCF exhibits a positive 182W anomaly (μ182W = +11.7 ± 4.5), yet is characterized by chondritic initial γ187Os = +0.1 ± 0.3 and low inferred source HSE abundances (35 ± 5% of those estimated for the present-day Bulk Silicate Earth, BSE). Collectively, these characteristics are unique among Archean komatiite systems studied so far. The deficit in the HSE, coupled with the chondritic Os isotopic composition, but a positive 182W anomaly, are best explained by derivation of the parental BCF magma from a mantle domain characterized by a predominance of HSE-deficient, differentiated late accreted material. According to the model presented here, the mantle domain that gave rise to the BCF received only ∼35% of the present-day HSE complement in the BSE before becoming isolated from the rest of the convecting mantle until the time of komatiite emplacement at 2.72 Ga. These new data provide strong evidence for a highly heterogeneous Archean mantle in terms of absolute HSE abundances and W isotopic composition, and also indicate slow mixing, on a timescale of at least 1.8 billion years. Additionally, the data are consistent with a stagnant-lid plate tectonic regime in the Hadean and Archean, prior to the onset of modern-style plate tectonics.
Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism
NASA Astrophysics Data System (ADS)
Condamine, Pierre; Médard, Etienne
2014-07-01
We have experimentally investigated the fluid-absent melting of a phlogopite peridotite at 1.0 GPa (1000-1300 °C) to understand the source of K2O- and SiO2-rich magmas that occur in continental, post-collisional and island arc settings. Using a new extraction technique specially developed for hydrous conditions combined with iterative sandwich experiments, we have determined the composition of low- to high-degree melts (Φ=1.4 to 24.2 wt.%) of metasomatized lherzolite and harzburgite sources. Due to small amounts of adsorbed water in the starting material, amphibole crystallized at the lowest investigated temperatures. Amphibole breaks down at 1050-1075 °C, while phlogopite-breakdown occurs at 1150-1200 °C. This last temperature is higher than the previously determined in a mantle assemblage, due to the presence of stabilizing F and Ti. Phlogopite-lherzolite melts incongruently according to the continuous reaction: 0.49 phlogopite + 0.56 orthopyroxene + 0.47 clinopyroxene + 0.05 spinel = 0.58 olivine + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.70 phlogopite + 1.24 orthopyroxene + 0.05 spinel = 0.99 olivine + 1.00 melt. The K2O content of water-undersaturated melts in equilibrium with residual phlogopite is buffered, depending on the source fertility: from ∼3.9 wt.% in lherzolite to ∼6.7 wt.% in harzburgite. Primary melts are silica-saturated and evolve from trachyte to basaltic andesite (63.5-52.1 wt.% SiO2) with increasing temperature. Calculations indicate that such silica-rich melts can readily be extracted from their mantle source, due to their low viscosity. Our results confirm that potassic, silica-rich magmas described worldwide in post-collisional settings are generated by melting of a metasomatized phlogopite-bearing mantle in the spinel stability field.
Numerical Mantle Convection Models of Crustal Formation in an Oceanic Environment in the Early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2001-12-01
The generation of basaltic crust in the early Earth by partial melting of mantle rocks, subject to investigation in this study, is thought to be a first step in the creation of proto-continents (consisting largely of felsic material), since partial melting of basaltic material was probably an important source for these more evolved rocks. In the early Archean the earth's upper mantle may have been hotter than today by as much as several hundred degrees centigrade. As a consequence, partial melting in shallow convective upwellings would have produced a layering of basaltic crust and underlying depleted (lherzolitic-harzburgitic) mantle peridotite which is much thicker than found under modern day oceanic ridges. When a basaltic crustal layer becomes sufficiently thick, a phase transition to eclogite may occur in the lower parts, which would cause delamination of this dense crustal layer and recycling of dense eclogite into the upper mantle. This recycling mechanism may have contributed significantly to the early cooling of the earth during the Archean (Vlaar et al., 1994). The delamination mechanism which limits the build-up of a thick basaltic crustal layer is switched off after sufficient cooling of the upper mantle has taken place. We present results of numerical modelling experiments of mantle convection including pressure release partial melting. The model includes a simple approximate melt segregation mechanism and basalt to eclogite phase transition, to account for the dynamic accumulation and recycling of the crust in an upper mantle subject to secular cooling. Finite element methods are used to solve for the viscous flow field and the temperature field, and lagrangian particle tracers are used to represent the evolving composition due to partial melting and accumulation of the basaltic crust. We find that this mechanism creates a basaltic crust of several tens of kilometers thickness in several hundreds of million years. This is accompanied by a cooling of some hundred degrees centigrade. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18
The interaction of plume heads with compositional discontinuities in the Earth's mantle
NASA Technical Reports Server (NTRS)
Manga, Michael; Stone, Howard A.; O'Connell, Richard J.
1993-01-01
The effects of compositional discontinuities of density and viscosity in the Earth's mantle on the ascent of mantle plume heads is studied using a boundary integral numerical technique. Three specific problems are considered: (1) a plume head rising away from a deformable interface, (2) a plume head passing through an interface, and (3) a plume head approaching the surface of the Earth. For the case of a plume attached to a free-surface, the calculated time-dependent plume shapesare compared with experimental results. Two principle modes of plume head deformation are observed: plume head elingation or the formation of a cavity inside the plume head. The inferred structure of mantle plumes, namely, a large plume head with a long tail, is characteristic of plumes attached to their source region, and also of buoyant material moving away from an interface and of buoyant material moving through an interface from a high- to low-viscosity region. As a rising plume head approaches the upper mantle, most of the lower mantle will quickly drain from the gap between the plume head and the upper mantle if the plume head enters the upper mantle. If the plume head moves from a high- to low-viscosity region, the plume head becomes significantly elongated and, for the viscosity contrasts thought to exist in the Earth, could extend from the 670 km discontinuity to the surface. Plume heads that are extended owing to a viscosity decrease in the upper mantle have a cylindrical geometry. The dynamic surface topography induced by plume heads is bell-shaped when the top of the plume head is at depths greater than about 0.1 plume head radii. As the plume head approaches the surface and spreads, the dynamic topography becomes plateau-shaped. The largest stresses are produced in the early stages of plume spreading when the plume head is still nearly spherical, and the surface expression of these stresses is likely to be dominated by radial extension. As the plume spreads, compressional stresses on the surface are produced beyond the edges of the plume; consequently, extensional features will be produced above the plume head and may be surrounded by a ring of compressional features.
The source location of mantle plumes from 3D spherical models of mantle convection
NASA Astrophysics Data System (ADS)
Li, Mingming; Zhong, Shijie
2017-11-01
Mantle plumes are thought to originate from thermal boundary layers such as Earth's core-mantle boundary (CMB), and may cause intraplate volcanism such as large igneous provinces (LIPs) on the Earth's surface. Previous studies showed that the original eruption sites of deep-sourced LIPs for the last 200 Myrs occur mostly above the margins of the seismically-observed large low shear velocity provinces (LLSVPs) in the lowermost mantle. However, the mechanism that leads to the distribution of the LIPs is not clear. The location of the LIPs is largely determined by the source location of mantle plumes, but the question is under what conditions mantle plumes form outside, at the edges, or above the middle of LLSVPs. Here, we perform 3D geodynamic calculations and theoretical analyses to study the plume source location in the lowermost mantle. We find that a factor of five decrease of thermal expansivity and a factor of two increase of thermal diffusivity from the surface to the CMB, which are consistent with mineral physics studies, significantly reduce the number of mantle plumes forming far outside of thermochemical piles (i.e., LLSVPs). An increase of mantle viscosity in the lowermost mantle also reduces number of plumes far outside of piles. In addition, we find that strong plumes preferentially form at/near the edges of piles and are generally hotter than that forming on top of piles, which may explain the observations that most LIPs occur above LLSVP margins. However, some plumes originated at pile edges can later appear above the middle of piles due to lateral movement of the plumes and piles and morphologic changes of the piles. ∼65-70% strong plumes are found within 10 degrees from pile edges in our models. Although plate motion exerts significant controls over the large-scale mantle convection in the lower mantle, mantle plume formation at the CMB remains largely controlled by thermal boundary layer instability which makes it difficult to predict geographic locations of most mantle plumes. However, all our models show consistently strong plumes originating from the lowermost mantle beneath Iceland, supporting a deep mantle plume origin of the Iceland volcanism.
NASA Astrophysics Data System (ADS)
Beccaluva, L.; Bianchini, G.; Coltorti, M.; Siena, F.; Verde, M.
In this contribution new REE and Sr-Nd isotopic data carried out on Cainozoic subduction-related volcanic rocks from the western-central Mediterranean are dis- cussed within a general review of the Cainozoic orogenic magmatism of the area. These volcanic events are related to subduction processes which occurred along the Paleo-European margin at least since Eocene and migrated (trough passive sinking and slab roll-back) southeastward up to the present in the peri-Tyrrhenian margin of Italy. Orogenic rocks from Provence (34-20 Ma) are characterised by 87Sr/86Sr be- tween 0.70453 and 0.70579, and 143Nd/144Nd between 0.51292 and 0.51265, which are consistent with mantle sources modified by subduction fluids released by altered oceanic crust. Sr-Nd isotopic composition of orogenic rocks from Sardinia (32-13 Ma), show a more complex picture: some compositions with relatively low 87Sr/86Sr (<0.706) and high 143Nd/144Nd (>0.5125), are compatible with the subduction of pure oceanic crust, while compositions with very high 87Sr/86Sr (up to 0.7113) and low 143Nd/144Nd (down to 0.51219) require additional components of continental crust affinity in the mantle wedge (partial fusion of subducted terrigenous sediments?). As concerns the Aeolian volcanics (< 1.3 Ma), compositions are compatible with man- tle sources solely enriched by fluid components from subducted oceanic crust. How- ever, it is interesting to note that shoshonites from the younger series of Stromboli display distinctly higher 87Sr/86Sr (up to 0.7075) and lower 143Nd/144Nd composi- tion (down to 0.51242), thus requiring once again recycle of continental crust materials in their mantle sources. The influence of such continental crust-derived components appear to be even more important in the mantle sources of the Campania volcanics, where extreme Sr-Nd isotopic compositions are recorded (87Sr/86Sr up to 0.7097; 143Nd/144Nd down to 0.5122).
NASA Astrophysics Data System (ADS)
Zirakparvar, N. A.; Mathez, E. A.; Rajesh, H.; Vervoort, J. D.; Choe, S.
2016-12-01
The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton at 2.06 Ga. In this talk we use zircon and bulk-rock Lu-Hf isotope data to show that the B-LIP formed in response to the arrival of a plume(s) from the deep mantle. New zircon Hf isotope compositions for four B-LIP bodies yield intrusion-specific average ɛHf (2.06 Ga) values that range from -20.7 ± 2.8 to -2.7 ± 2.8, largely consistent with literature zircon data for other B-LIP intrusions. Bulk-rock solution ɛHf (2.06 Ga) values for a variety of B-LIP intrusions range from -2.1 ± 0.2 to -10.6 ± 0.2. Because the most radiogenic Hf isotope compositions across the entire B-LIP are nearly primordial with an ɛHf (2.06 Ga) close to 0, it is likely that the heat source of the B-LIP was a plume(s) from deep mantle. The Hf isotope data further suggests that individual intrusions in the B-LIP can be grouped into four categories based on their ultimate sources: 1) melts generated in subduction and plume modified continental lithospheric mantle; 2) melts generated by melting of a mafic-ultramafic reservoir composed of older ( 2.7 Ga) plume-related material trapped in the Kaapvaal lithosphere; 3) melts generated in the mid- to upper crust; and 4) melts generated from the 2.06 Ga mantle plume itself. The presence of 2.7 Ga mafic-ultramafic material in the Kaapvaal lithosphere may have acted to strengthen the lithosphere so that it was able to resist being dispered by the arrival of the B-LIP plume at 2.06 Ga. Because the B-LIP extends into a 2.7 Ga aged suture zone between the Kaapvaal and Zimbabwe cratons, it is also possible to understand the role of the lithospheric mantle in producing the Lu-Hf signatures observed in the various B-LIP intrusions as a function of two different types of the continental lithosphere: The very old lithosphere comprising the Kaapvaal Craton and the somewhat younger lithosphere comprising the suture zone. A basic observation is that the Hf isotope signature of the plume source is only directly expressed in B-LIP bodies that intruded the suture zone, providing further evidence that the craton was already underlain by thick lithospheric mantle at the time of B-LIP magmatism.
Digging Deep: Is Lunar Mantle Excavated Around the Imbrium Basin?
NASA Astrophysics Data System (ADS)
Klima, R. L.; Bretzfelder, J.; Buczkowski, D.; Ernst, C. M.; Greenhagen, B. T.; Petro, N. E.; Shusterman, M. L.
2017-12-01
The Moon has experienced over a dozen impacts resulting in basins large enough to have excavated mantle material. With many of those basins concentrated on the lunar near side, and extensive regolith mixing since the lunar magma ocean crystallized, one might expect that some mantle material would have been found among the lunar samples on Earth. However, so far, no mantle clasts have been definitively identified in lunar samples [1]. From orbit, a number of olivine-bearing localities, potentially sourced from the mantle, have been identified around impact basins [2]. Based on analysis of near-infrared (NIR) and imaging data, [3] suggest that roughly 60% of these sites represent olivine from the mantle. If this is the case and the blocks are coherent and not extensively mixed into the regolith, these deposits should be ultramafic, containing olivine and/or pyroxenes and little to no plagioclase. In the mid-infrared, they would thus exhibit Christiansen features at wavelengths in excess of 8.5 μm, which has not been observed in global studies using the Diviner Lunar Radiometer [4]. We present an integrated study of the massifs surrounding the Imbrium basin, which, at over 1000 km wide, is large enough to have penetrated through the lunar crust and into the mantle. These massifs are clearly associated with the Imbrium basin-forming impact, but existing geological maps do not distinguish between whether they are likely ejecta or rather uplifted from beneath the surface during crustal rebound [5]. We examine these massifs using vis, NIR and Mid IR data to determine the relationships between and the bulk mineralogy of local lithologies. NIR data suggest that the massifs contain exposures of four dominant minerals: olivine, Mg-rich orthopyroxene, a second low-Ca pyroxene, and anorthite. Mid IR results suggest that though many of these massifs are plagioclase-rich, portions of some may be significantly more mafic. We will present our growing mineralogical map of the Imbrium basin perimeter, and discuss implications for the sub-basin stratigraphy and potential excavation of mantle material. [1] Shearer et al. (2015) MAPS 50, 1449. [2] Yamamoto et al. (2012) GRL 39, L13201. [3] Ohtake et al. (2017) New Views of the Moon 2 - Europe, Abstract #6016 [4] Greenhagen et al. (2010) Science 329, 1507. [5] Wilhelms D. E. et al. (1987), USGS Lunar map.
NASA Astrophysics Data System (ADS)
Ohtani, E.; Sakai, T.; Kondo, T.; Miyahara, M.; Terasaki, H.
2006-12-01
Recent progress of laser heating diamond anvil cell (LHDAC) techniques made it possible to achieve the conditions of pressures and temperatures exceeding the core-mantle boundary conditions, i.e., 130 GPa and 3000-3500 K, and we can now be possible to study the recovered samples from the condition of the core- mantle boundary. We used the focused ion beam (FIB) method for preparation of the recovered samples and the analytical transmission electron microscope (ATEM) for their characterization, which are the ideal tools for studying the recovered samples from mega-bar conditions. In order to clarify the structure of the bottom of the CMB region, we have conducted high pressure and temperature experiments on the reaction between metallic iron and post-perovskite which can simulate the chemical reactions at CMB. We have conducted reaction experiments between molten iron and post-perovskite at the conditions equivalent to the CMB, 139 GPa and 3000 K. Significant amounts of oxygen up to 6.3 wt. percent and silicon up to 4.0 wt. percent are dissolved in metallic iron, and the solubility of silicon and oxygen in metallic iron can readily account for 7-10 wt. percent of the core density deficit. The dissolution of silicon into molten iron in the primordial magma ocean with the depth of the deep lower mantle can account for the Mg/Si ratio of the mantle higher than that of C1-chondrite. The dihedral angle between post-perovskite and molten iron is around 67 degrees, which is larger than that of perovskite and molten iron, 51 degrees (Takafuji et al., 2004). A core signature has been reported as Re and Os isotope anomalies in the plume magmas originating from the core-mantle boundary region, and such isotopic anomalies can be easily generated by contamination of 0.5-1 wt. percent of the trapped core metal at CMB (e.g., Brandon et al., 2005). A significant disturbance is expected at CMB to form a mixing region of the mantle and core materials as was suggested by Kellogg et al. (1999), Brandon et al. (1998) and Lay et al. (1998). The mixed core materials tend to percolate back to the core in the perovskite region with the dihedral angle less than 60 degrees, whereas the dihedral angle around 67 degrees between post-perovskite and molten iron implies that a small amount of metallic iron up to 2 vol. percent (1 wt. percent) can be trapped after separation of the core materials (von Bargen and Waff, 1986) in the post-perovskite region at CMB. The core metal trapped in the post-perovskite region can produce effectively the core signature of the plume source at the base of the lower mantle.
Multi-stage mixing in subduction zone: Application to Merapi volcano, Indonesia
NASA Astrophysics Data System (ADS)
Debaille, V.; Doucelance, R.; Weis, D.; Schiano, P.
2003-04-01
Basalts sampling subduction zone volcanism (IAB) often show binary mixing relationship in classical Sr-Nd, Pb-Pb, Sr-Pb isotopic diagrams, generally interpreted as reflecting the involvement of two components in their source. However, several authors have highlighted the presence of minimum three components in such a geodynamical context: mantle wedge, subducted and altered oceanic crust and subducted sediments. The overlying continental crust can also contribute by contamination and assimilation in magma chambers and/or during magma ascent. Here we present a multi-stage model to obtain a two end-member mixing from three components (mantle wedge, altered oceanic crust and sediments). The first stage of the model considers the metasomatism of the mantle wedge by fluids and/or melts released by subducted materials (altered oceanic crust and associated sediments), considering mobility and partition coefficient of trace elements in hydrated fluids and silicate melts. This results in the generation of two distinct end-members, reducing the number of components (mantle wedge, oceanic crust, sediments) from three to two. The second stage of the model concerns the binary mixing of the two end-members thus defined: mantle wedge metasomatized by slab-derived fluids and mantle wedge metasomatized by sediment-derived fluids. This model has been applied on a new isotopic data set (Sr, Nd and Pb, analyzed by TIMS and MC-ICP-MS) of Merapi volcano (Java island, Indonesia). Previous studies have suggested three distinct components in the source of indonesian lavas: mantle wedge, subducted sediments and altered oceanic crust. Moreover, it has been shown that crustal contamination does not significantly affect isotopic ratios of lavas. The multi-stage model proposed here is able to reproduce the binary mixing observed in lavas of Merapi, and a set of numerical values of bulk partition coefficient is given that accounts for the genesis of lavas.
NASA Astrophysics Data System (ADS)
Farmer, G. Lang; Bailley, Treasure; Elkins-Tanton, Linda T.
2008-04-01
Voluminous intermediate to silicic composition volcanic rocks were generated throughout the southern Rocky Mountains, western U.S., during the mid-Tertiary "ignimbrite flare-up", principally at the San Juan and Mogollon-Datil volcanic fields. At both volcanic centers, radiogenic isotope data have been interpreted as evidence that 50% or more of the volcanic rocks (by mass) were derived from mantle-derived, mafic parental magmas, but no consensus exists as to whether melting was largely of lithospheric or sub-lithospheric mantle. Recent xenolith studies, however, have revealed that thick (> 100 km), fertile, and hydrated continental lithosphere was present beneath at least portions of the southern Rocky Mountains during the mid-Tertiary. The presence of such thick mantle lithosphere, combined with an apparent lack of syn-magmatic extension, leaves conductive heating of lithospheric mantle as a plausible method of generating the mafic magmas that fueled the ignimbrite flare-up in this inland region. To further assess this possibility, we estimated the minimum volume of mantle needed to generate the mafic magmas parental to the preserved mid-Tertiary igneous rocks. Conservative estimates of the mantle source volumes that supplied the Mogollon-Datil and San Juan volcanic fields are ˜ 2 M km 3 and ˜ 7 M km 3, respectively. These volumes could have comprised only lithospheric mantle if at least the lower ˜ 20 km of the mantle lithosphere beneath the entire southern Rocky Mountains region underwent partial melting during the mid-Tertiary and if the resulting mafic magmas were drawn laterally for distances of up to ˜ 300 km into each center. Such widespread melting of lithospheric mantle requires that the lithospheric mantle have been uniformly fertile and primed for melting in the mid-Tertiary, a possibility if the lithospheric mantle had experienced widespread hydration and refrigeration during early Tertiary low angle subduction. Exposure of the mantle lithosphere to hot, upwelling sub-lithospheric mantle during mid-Tertiary slab roll back could have then triggered the mantle melting. While a plausible source for mid-Tertiary basaltic magmas in the southern Rocky Mountains, lithospheric mantle could not have been the sole source for mafic magmas generated to the south in that portion of the ignimbrite flare-up now preserved in the Sierra Madre Occidental of northern Mexico. The large mantle source volumes (> 45 M km 3) required to fuel the voluminous silicic ignimbrites deposited in this region (> 400 K km 3) are too large to have been accommodated within the lithospheric mantle alone, implying that melting in sub-lithospheric mantle must have played a significant role in generating this mid-Tertiary magmatic event.
Facilitating atmosphere oxidation through mantle convection
NASA Astrophysics Data System (ADS)
Lee, K. K. M.; Gu, T.; Creasy, N.; Li, M.; McCammon, C. A.; Girard, J.
2017-12-01
Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements, recycling of refractory isotopes, and the oxidation state of the atmosphere through volcanic outgassing. While the rise of oxygen in the atmosphere, i.e., the Great Oxidation Event (GOE) occurred 2.4 billion years ago (Ga), multiple lines of evidence point to oxygen production in the atmosphere well before 2.4 Ga. In contrast to the fluctuations of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for 3.5 Ga. Indeed, the connection between the redox state of the deep Earth and the atmosphere is enigmatic as is the effect of redox state on mantle dynamics. Here we show a redox-induced density contrast affects mantle convection and may potentially cause the oxidation of the upper mantle. We compressed two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) to lower mantle pressures and temperatures and find Al2O3 forms its own phase separate from the dominant bridgmanite phase in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is 1-1.5% denser than the oxidized material. Subsequent experiments on other plausible mantle compositions, which differ only in redox state of the starting glass materials, show similar results: distinct mineral assemblages and density contrasts up to 4%. Our geodynamic simulations suggest that such a density contrast causes a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. The resulting heterogeneous redox conditions in Earth's interior may have contributed to the large low-shear velocity provinces in the lower mantle and the rise of oxygen in Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Tolstikhin, I. N.; Kamensky, I. L.; Marty, B.; Nivin, V. A.; Vetrin, V. R.; Balaganskaya, E. G.; Ikorsky, S. V.; Gannibal, M. A.; Weiss, D.; Verhulst, A.; Demaiffe, D.
2002-03-01
During the Devonian magmatism (370 Ma ago) ∼20 ultrabasic-alkaline-carbonatite complexes (UACC) were formed in the Kola Peninsula (north-east of the Baltic Shield). In order to understand mantle and crust sources and processes having set these complexes, rare gases were studied in ∼300 rocks and mineral separates from 9 UACC, and concentrations of parent Li, K, U, and Th were measured in ∼70 samples. 4He/3He ratios in He released by fusion vary from pure radiogenic values ∼108 down to 6 × 104. The cosmogenic and extraterrestrial sources as well as the radiogenic production are unable to account for the extremely high abundances of 3He, up to 4 × 10-9 cc/g, indicating a mantle-derived fluid in the Kola rocks. In some samples helium extracted by crushing shows quite low 4He/3He = 3 × 104, well below the mean ratio in mid ocean ridge basalts (MORB), (8.9 ± 1.0) × 104, indicating the contribution of 3He-rich plume component. Magnetites are principal carriers of this component. Trapped 3He is extracted from these minerals at high temperatures 1100°C to 1600°C which may correspond to decrepitation or annealing primary fluid inclusions, whereas radiogenic 4He is manly released at a temperature range of 500°C to 1200°C, probably corresponding to activation of 4He sites degraded by U, Th decay. Similar 4He/3He ratios were observed in Oligocene flood basalts from the Ethiopian plume. According to a paleo-plate-tectonic reconstruction, 450 Ma ago the Baltica (including the Kola Peninsula) continent drifted not far from the present-day site of that plume. It appears that both magmatic provinces could relate to one and the same deep-seated mantle source. The neon isotopic compositions confirm the occurrence of a plume component since, within a conventional 20Ne/22Ne versus 21Ne/22Ne diagram, the regression line for Kola samples is indistinguishable from those typical of plumes, such as Loihi (Hawaii). 20Ne/22Ne ratios (up to 12.1) correlate well with 40Ar/36Ar ones, allowing to infer a source 40Ar/36Ar ratio of about 4000 for the mantle end-member, which is 10 times lower than that of the MORB source end-member. In (3He/22Ne)PRIM versus (4He/21Ne)RAD plot the Kola samples are within array established for plume and MORB samples; almost constant production ratio of (4He/21Ne)RAD ≅ 2 × 107 is translated via this array into (3He/22Ne)PRIM ∼ 10. The latter value approaches the solar ratio implying the non-fractionated solar-like rare gas pattern in a plume source. The Kola UACC show systematic variations in the respective contributions of in situ-produced radiogenic isotopes and mantle-derived isotopes. Since these complexes were essentially plutonic, we propose that the depth of emplacement exerted a primary control on the retention of both trapped and radiogenic species, which is consistent with geological observations. The available data allow to infer the following sequence of processes for the emplacement and evolution of Kola Devonian UACC: 1) Ascent of the plume from the lower mantle to the subcontinental lithosphere; the plume triggered mantle metasomatism not later than ∼700 to 400 Ma ago. 2) Metasomatism of the lithosphere (beneath the central part of the Kola Peninsula), including enrichment in volatile (e.g., He, Ne) and in incompatible (e.g., U, Th) elements. 3) Multistage intrusions of parental melts, their degassing, and crystallisation differentiation ∼370 Ma ago. 4) Postcrystallisation migration of fluids, including loss of radiogenic and of trapped helium. Based on model compositions of the principle terrestrial reservoirs we estimate the contributions (by mass) of the plume material, the upper mantle material, and the atmosphere (air-saturated groundwater), into the source of parent melt at ∼2%, 97.95%, and ∼0.05%, respectively.
Mikhalsky, E.V.; Henjes-Kunst, F.; Roland, N.W.
2007-01-01
Mafic and ultramafic rocks occurring as lenses, boudins, and tectonic slabs within metamorphic units in the southern Mawson Escarpment display mantle characteristics of either a highly enriched, or highly depleted nature. Fractionation of these mantle rocks from their sources may be as old as Eoarchaean (ca 3850 Ma) while their tectonic emplacement probably occurred prior to 2550 Ma (U-Pb SHRIMP data). These results provide for the first time evidence for Archaean suturing within East Antarctica. Similar upper mantle sources are likely present in the northern Mawson Escarpment. A younger age limit of these rocks is 2200 Ma, as indicated by presumably metamorphic zircon ages while their magmatic age may be constrained by single zircon dates at 2450-2250 Ma. The area of the northern Mawson Escarpment is most likely of ensimatic origin and includes mafic rocks which were derived from distinct mantle source(s) during Palaeoproterozoic time.
The Upper Mantle Flow Field around South-Africa as Reflected by Isotopic Provinciality
NASA Astrophysics Data System (ADS)
Meyzen, C.; Blichert-Toft, J.; Ludden, J.; Humler, E.; Mevel, C.; Albarede, F.
2006-12-01
Isotopic studies of MORB have established the existence of broad isotopic provinces within the underlying asthenosphere, such as in the Indian Ocean (DUPAL). How these features relate to mantle circulation is, however, still unknown. The steepness of the transition between such isotopic provinces will define the geometry of the velocity field in the upper mantle. In this respect, the transition between the Indian and South Atlantic provinces, two domains that are isotopically contrasted, should be readily identifiable over this long ridge segment. Here, we present Hf isotope data for 60 samples dredged along the SWIR between 35° and 69°E. The new Hf isotope data show that the Indian asthenosphere does not spill directly into the South Atlantic upper mantle: the general decreasing southward gradient observed for ^{176}Hf/^{177}Hf down the mid- Atlantic Ridge, and also for Sr isotopes and model Th/U ratios (derived from Pb isotopes), is overprinted by material with radiogenic Sr, unradiogenic Hf and high Th/U. The Indian domain grades into the South Atlantic around Bouvet, while the South Atlantic collides with the Atlantic province around Tristan. We interpret these features to represent fronts between three adjacent isotopic provinces similar to what has been suggested for the Australian-Antarctic Discordance. The common DUPAL signature of MORB and OIB from the Indian province and the geochemistry of Gulf of Aden MORB and the Afar plume suggest that the source of this distinctive mantle component is deep and lies to the north of the province. This is also what the three-dimensional flow field computed by Behn et al. (2004) from shear-wave splitting shows with a major lower mantle upwelling radiating at the base of the asthenosphere under the Afar plume. Lower mantle gushing out from this source flows southward unimpeded along the Indian ridges, whereas it only reaches the South Atlantic ridge after first having been deflected under the deep roots of the South African Archean cratons. Erosion of these roots by the asthenospheric drift confers a distinct continental signature on the source of South Atlantic MORB. This pattern is also consistent with the observation that the lowest He isotope values occur, on average, along the South Atlantic ridge. To some extent, the dynamics of the North Atlantic upper mantle mirrors the Indian situation: the flow field of Behn et al. (2004) shows that the North Atlantic asthenosphere also fills up through deep mantle upwellings, which is consistent with the Dupal-like isotopic signature of the Arctic ridges. M.D. Behn, C.P. Conrad and P.G. Silver (2004), Detection of upper mantle flow associated with the African Superplume, Earth. Planet. Sci. Lett., 224, 259-274.
A colossal impact enriched Mars' mantle with noble metals
NASA Astrophysics Data System (ADS)
Brasser, R.; Mojzsis, S. J.
2017-06-01
Once the terrestrial planets had mostly completed their assembly, bombardment continued by planetesimals left over from accretion. Highly siderophile element (HSE) abundances in Mars' mantle imply that its late accretion supplement was 0.8 wt %; Earth and the Moon obtained an additional 0.7 wt % and 0.02 wt %, respectively. The disproportionately high Earth/Moon accretion ratio is explicable by stochastic addition of a few remaining Ceres-sized bodies that preferentially targeted Earth. Here we show that Mars' late accretion budget also requires a colossal impact, a plausible visible remnant of which is the emispheric dichotomy. The addition of sufficient HSEs to the Martian mantle entails an impactor of at least 1200 km in diameter to have struck Mars before 4430 Ma, by which time crust formation was well underway. Thus, the dichotomy could be one of the oldest geophysical features of the Martian crust. Ejected debris could be the source material for its satellites.
NASA Astrophysics Data System (ADS)
Ishikawa, Akira; Suzuki, Katsuhiko; Collerson, Kenneth D.; Liu, Jingao; Pearson, D. Graham; Komiya, Tsuyoshi
2017-11-01
We determined highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) concentrations and 187Os/188Os ratios for ultramafic rocks distributed over the Eoarchean gneiss complex of the Saglek-Hebron area in northern Labrador, Canada in order to constrain to what extent variations in HSE abundances are recorded in Early Archean mantle that have well-resolved 182W isotope anomalies relative to the present-day mantle (∼+11 ppm: Liu et al., 2016). The samples analysed here have been previously classified into two suites: mantle-derived peridotites occurring as tectonically-emplaced slivers of lithospheric mantle, and metakomatiites comprising mostly pyroxenitic layers in supracrustal units dominated by amphibolites. Although previous Sm-Nd and Pb-Pb isotope studies provided whole-rock isochrons indicative of ∼3.8 Ga protolith formation for both suites, our whole-rock Re-Os isotope data on a similar set of samples yield considerably younger errorchrons with ages of 3612 ± 130 Ma (MSWD = 40) and 3096 ± 170 Ma (MSWD = 10.2) for the metakomatiite and lithospheric mantle suites, respectively. The respective initial 187Os/188Os = 0.10200 ± 18 for metakomatiites and 0.1041 ± 18 for lithospheric mantle rocks are within the range of chondrites. Re-depletion Os model ages for unradiogenic samples from the two suites are consistent with the respective Re-Os errorchrons (metakomatiite TRD = 3.4-3.6 Ga; lithospheric mantle TRD = 2.8-3.3 Ga). These observations suggest that the two ultramafic suites are not coeval. However, the estimated mantle sources for the two ultramafics suites are similar in terms of their broadly chondritic evolution of 187Os/188Os and their relative HSE patterns. In detail, both mantle sources show a small excess of Ru/Ir similar to that in modern primitive mantle, but a ∼20% deficit in absolute HSE abundances relative to that in modern primitive mantle (metakomatiite 74 ± 18% of PUM; lithospheric mantle 82 ± 10% of PUM), consistent with the ∼3.8 Ga Isua mantle source and Neoarchean komatiite sources around the world (∼70-86% of PUM). This demonstrates that the lower HSE abundances are not unique to the sources of komatiites, but rather might be a ubiquitous feature of Archean convecting mantle. This tentatively suggests that chondritic late accretion components boosted the convecting mantle HSE inventory after core separation in the Hadean, and that the Eoarchean to Neoarchean convecting mantle was depleted in its HSE content relative to that of today. Further investigation of Archean mantle-derived rocks is required to explore this hypothesis.
NASA Astrophysics Data System (ADS)
Ballmer, Maxim; Lekic, Vedran; Schumacher, Lina; Ito, Garrett; Thomas, Christine
2016-04-01
Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primordial mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has accumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateral gradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth), or hereinafter referred to as "deep distinct domains" (DDD). Seismic sensitivity calculations suggest that DDDs are more likely to be composed of primordial mantle material than of basaltic material. On the other hand, the seismic signature of LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primordial bottom domain (or DDD) and a basaltic shallow domain. We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primordial and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within these piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB, as well as out-of-plane reflections on LLSVP sides over a range of depths. Predicted geometry of thermochemical piles is compared to LLSVP and DDD shapes as constrained by seismic cluster analysis. Geodynamic models predict short-lived "secondary" plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived "primary" plumes rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial mantle material. These predictions address the geochemical and geochronological record of intraplate hotspot volcanism on the Pacific plate. In general, the parameter range spanned by models that are able to reconcile observations provides a constraint for the intrinsic density anomaly (or composition) of DDDs. We use this constraint to evaluate a possible origin of DDDs from (basal) magma ocean cumulates. The study of LLSVP compositional layering has indeed important implications for our understanding of heat and material fluxes through mantle reservoirs, as well as bulk Earth chemistry and evolution.
A model for osmium isotopic evolution of metallic solids at the core-mantle boundary
NASA Astrophysics Data System (ADS)
Humayun, Munir
2011-03-01
Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of both Os isotope correlations, Os-W isotope systematics, and Fe/Mn evidence for core-mantle interaction over the entire Hawaiian source.
NASA Astrophysics Data System (ADS)
Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda
2016-09-01
Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We suggest that this MORB-like metasomatism was capable of overprinting the noble gas composition of Gobernador Gregores due to recent metasomatism of the SCLM because of asthenospheric mantle upwelling in response to opening of the Patagonian slab window. The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 380 up to 6560, with mantle source 40Ar/36Ar between 8100-700+1400 and 17700-3100+4400. The lower 40Ar/36Ar ratio of the Gobernador Gregores mantle source, compared with that of Pali-Aike, attests that the Patagonia SCLM was affected significantly by atmospheric contamination associated with the recycled oceanic lithosphere.
Magnesium Isotopic Compositions of Continental Basalts From Various Tectonic Settings
NASA Astrophysics Data System (ADS)
Yang, W.; Li, S.; Tian, H.; Ke, S.
2016-12-01
Recycled sedimentary carbonate through subduction is the main light Mg isotopic reservoir in Earth's deep interior, thus Mg isotopic variation of mantle-derived melts provides a fresh perspective on investigating deep carbon cycling. Here we investigate Mg isotopic compositions of continental basalts from various tectonic settings: (1) The Cenozoic basalts from eastern China, coinciding with the stagnant Pacific slab in the mantle transition zone revealed by seismic tomography; (2) The Cenozoic basalts from Tengchong area, southwestern China, which comprises a crucial part of the collision zone between the Indian and Eurasian plates; (3) The Permian basalts from Emeishan large igneous province, related to a mantle plume. The Cenozoic basalts from both eastern China and Tengchong area exhibit light Mg isotopic compositions (δ26Mg = -0.60 to -0.30‰ and -0.51 to -0.33‰), suggesting recycled sedimentary carbonates in their mantle sources. This is supported by their low Fe/Mn, high CaO/Al2O3, low Hf/Hf* and low Ti/Ti* ratios, which are typical features of carbonated peridotite-derived melt. The Tengchong basalts also show high 87Sr/86Sr, high radiogenic Pb and upper crustal-like trace element pattern, indicating contribution of recycled continental crustal materials. By contrast, all Emeishan basalts display a mantle-like Mg isotopic composition, with δ26Mg ranging from -0.35 to -0.19‰. Since the Emeishan basalts derived from a mantle plume, their mantle-like Mg isotopic composition may indicate limited sedimentary carbonated recycled into the lower mantle. This is consistent with a recent experimental study which concluded that direct recycling of carbon into the lower mantle may have been highly restricted throughout most of the Earth's history.
NASA Astrophysics Data System (ADS)
Dale, Christopher W.; Kruijer, Thomas S.; Burton, Kevin W.
2017-01-01
The higher-than-expected concentrations of highly siderophile elements (HSE) in Earth's mantle most likely indicate that Earth received a small amount of late accreted mass after core formation had ceased, known as the 'late veneer'. Small 182W excesses in the Moon and in some Archaean rocks - such as the source of 3.8 billion-year-old Isua magmatics - also appear consistent with the late veneer hypothesis, with a lower proportion received. However, 182W anomalies can also relate to other processes, including early mantle differentiation. To better assess the origin of these W isotope anomalies - and specifically whether they relate to the late veneer - we have determined the HSE abundances and 182W compositions of a suite of mafic to ultramafic rocks from Isua, from which we estimate HSE abundances in the source mantle and ultimately constrain the 182W composition of the pre-late veneer mantle. Our data suggest that the Isua source mantle had HSE abundances at around 50-65% of the present-day mantle, consistent with partial, but not complete, isolation from the late veneer. These data also indicate that at least part of the late veneer had been added and mixed into the mantle at the time the Isua source formed, prior to 3.8 Ga. For the same Isua samples we obtained a 13 ± 4 ppm182W excess, compared to the modern terrestrial mantle, in excellent agreement with previous data. Using combined 182W and HSE data we show that the Moon, Isua, and the present-day bulk silicate Earth (BSE) produce a well-defined co-variation between 182W composition and the mass fraction of late-accreted mass, as inferred from HSE abundances. This co-variation is consistent with the calculated effects of various late accretion compositions on the HSE and 182W signatures of Earth's mantle. The empirical relationship, therefore, implies that the Moon, Isua source and BSE received increasing proportions of late-accreted mass, supporting the idea of disproportional late accretion to the Earth and Moon, and consistent with the interpretation that the lunar 182W value of 27 ± 4 ppm represents the composition of Earth's mantle before the late veneer was added. In this case, the Isua source can represent ambient mantle after the giant moon-forming impact, into which only a part of Earth's full late veneer was mixed, rather than an isotopically distinct mantle domain produced by early differentiation, which would probably require survival through the giant Moon-forming impact.
Multiple subduction imprints in the mantle below Italy detected in a single lava flow
NASA Astrophysics Data System (ADS)
Nikogosian, Igor; Ersoy, Özlem; Whitehouse, Martin; Mason, Paul R. D.; de Hoog, Jan C. M.; Wortel, Rinus; van Bergen, Manfred J.
2016-09-01
Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.
Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.
Mukhopadhyay, Sujoy
2012-06-06
The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.
A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow.
Hassan, Rakib; Müller, R Dietmar; Gurnis, Michael; Williams, Simon E; Flament, Nicolas
2016-05-12
Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin--probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.
NASA Astrophysics Data System (ADS)
Sharkov, Evgenii
2015-04-01
It is consensus now that within-plate magmatism is considered with ascending of mantle plumes and adiabatic melting of their head. At the same time composition of the plumes' matter and conditions of its adiabatic melting are unclear yet. The major source of objective information about it can be mantle xenoliths in alkali basalts and basanites which represent fragments of material of the plume heads above magma-generation zone. They are not represent material in melting zone, however, carry important information about material of modern mantle plumes, its phase composition and components, involved in melting. Populations of mantle xenoliths in basalts are characterized by surprising sameness in the world and represented by two major types: (1) dominated rocks of ``green'' series, and (2) more rare rocks of ``black'' series, which formed veins in the ``green'' series matrix. It can evidence about common composition of plume material in global scale. In other words, the both series of xenoliths represent two types of material of thermochemical mantle plumes, ascended from core-mantle boundary (Maruyama, 1994; Dobretsov et al., 2001). The same types of xenoliths are found in basalts and basanites of Western Syria (Sharkov et al., 1996). Rocks of ``green'' series are represented by Sp peridotites with cataclastic and protogranular structures and vary in composition from dominated spinel lherzolites to spinel harzburgites and rare spinel pyroxenites (websterites). It is probably evidence about incomplete homogenizing of the plume head matter, where material, underwent by partial melting, adjoins with more fertile material. Such heterogeneity was survived due to quick cooling of upper rim of the plume head in contact with relatively cold lithosphere. Essential role among xenoliths of the ``black'' series play Al-Ti-augite and water-bearing phases like hornblende (kaersutute) and Ti-phlogopite. Rocks of this series are represented by wehrlite, clinopyroxenite, amphibole clinopyroxenite, hornbledite, etc. as well as megacrysts of Al-Ti-augite, kaersutite, ilmenite, sanidine, etc. Numerous vesicles often occurred in megacrysts, especially in kaersurtite. Sp peridotites of the matrix are sharply different on their geochemical features from the ``black series'' rocks (in this case, megacrysts of kaersutite) which are the most close to composition of xenoliths-bearing alkali basalts. From this follows that geochemistry of plume-related basalts was determined by mantle fluids which occurred in magma-generation zone. Very likely, that these fluids, enriched in Fe, Ti, LREE, alkalis, and incompatible elements, initially were parts of intergranular material of original mantle plume material and were released due to its decompression. Because their high mobility, the fluids percolated upwards and accumulated in the upper part of the mantle plume head, where promoted its melting by lowering of solidus of the matter. Excess of the fluids gathered beneath the cooled upper rim and penetrated in its rocks which led to appearance of centers of secondary melting (melt-pockets). Very likely, that these secondary melts formed rocks of the ``black series'' (Ismail et al., 2008;Ryabchkov et al., 2011; Ma et al., 2014). According to geobarometric estimations, Sp peridotite xenoliths from Syria derived from depths 24-42 km (0.8-1.4 GPa) under temperatures 896-980oC; formation of melt-pockets, enriched in volatiles, occurred at the depths 21-27 km (0.7-0.9 GPa) under 826-981oC (Sharkov et al., 1996; Ismail et al., 2008; Ma et al., 2014). From this follows that plumeheads reached depths approximately 21-30 km which is in agree with practically absence of lower-crustal xenoliths in the populations. One of the problems of plume-related magmatism is coexisting of alkali and tholeiitic basalts, which origin often considered with different PT conditions. However, these basalt not rarely interlayered, especially at low and middle levels of LIPs or in single volcanoes (Hawaii, Etna, etc.) which is not in a good agreement with such idea. We suggest that the situation can be more likely explained by nonuniform impregnation of peridotite matrix with fluid components which composition and/or quantity can play essential role in composition of smeltings. It is especially important because even small differences in their ñomposition near to plane of SiO2 saturation in ``basalt tetrahedron'' (Yoder and Tilley, 1962) lead to appearance of Ne-normative or Ne-free melts at practically similar PT conditions. Thus, judging on composition of the mantle xenoliths in basalts of all occurrences in the world, quite possible that Sp peridotites (mainly lherzolites) together with intergranular geochemical-enriched fluid components represent the matter of the modern thermochemical mantle plumes. Origin of two major types of the plume-related magmas, probably, considered with fluid regime in the plume head.
Magnesium isotope systematics in Martian meteorites
NASA Astrophysics Data System (ADS)
Magna, Tomáš; Hu, Yan; Teng, Fang-Zhen; Mezger, Klaus
2017-09-01
Magnesium isotope compositions are reported for a suite of Martian meteorites that span the range of petrological and geochemical types recognized to date for Mars, including crustal breccia Northwest Africa (NWA) 7034. The δ26Mg values (per mil units relative to DSM-3 reference material) range from -0.32 to -0.11‰; basaltic shergottites and nakhlites lie to the heavier end of the Mg isotope range whereas olivine-phyric, olivine-orthopyroxene-phyric and lherzolitic shergottites, and chassignites have slightly lighter Mg isotope compositions, attesting to modest correlation of Mg isotopes and petrology of the samples. Slightly heavier Mg isotope compositions found for surface-related materials (NWA 7034, black glass fraction of the Tissint shergottite fall; δ26Mg > -0.17‰) indicate measurable Mg isotope difference between the Martian mantle and crust but the true extent of Mg isotope fractionation for Martian surface materials remains unconstrained. The range of δ26Mg values from -0.19 to -0.11‰ in nakhlites is most likely due to accumulation of clinopyroxene during petrogenesis rather than garnet fractionation in the source or assimilation of surface material modified at low temperatures. The rather restricted range in Mg isotope compositions between spatially and temporally distinct mantle-derived samples supports the idea of inefficient/absent major tectonic cycles on Mars, which would include plate tectonics and large-scale recycling of isotopically fractionated surface materials back into the Martian mantle. The cumulative δ26Mg value of Martian samples, which are not influenced by late-stage alteration processes and/or crust-mantle interactions, is - 0.271 ± 0.040 ‰ (2SD) and is considered to reflect δ26Mg value of the Bulk Silicate Mars. This value is robust taking into account the range of lithologies involved in this estimate. It also attests to the lack of the Mg isotope variability reported for the inner Solar System bodies at current analytical precision, also noted for several other major elements.
Native iron in the Earth and space
NASA Astrophysics Data System (ADS)
Pechersky, D. M.; Kuzina, D. M.; Markov, G. P.; Tsel'movich, V. A.
2017-09-01
Thermomagnetic and microprobe studies of native iron in the terrestrial upper-mantle hyperbasites (xenoliths in basalts), Siberian traps, and oceanic basalts are carried out. The results are compared to the previous data on native iron in sediments and meteorites. It is established that in terms of the composition and grain size and shape, the particles of native iron in the terrestrial rocks are close to each other and to the extraterrestrial iron particles from sediments and meteorites. This suggests that the sources of the origin of these particles were similar; i.e., the formation conditions in the Earth were close to the conditions in the meteorites' parent bodies. This similarity is likely to be due to the homogeneity of the gas and dust cloud at the early stage of the solar system. The predominance of pure native iron in the sediments can probably be accounted for by the fact that interstellar dust is mostly contributed by the upper-mantle material of the planets, whereas the lower-mantle and core material falls on the Earth mainly in the form of meteorites. A model describing the structure of the planets in the solar system from the standpoint of the distribution of native iron and FeNi alloys is proposed.
Birch Lecture : The Deep Roots of Continents
NASA Astrophysics Data System (ADS)
Jaupart, C.
2006-12-01
The roots of Archean continents are made of depleted and buoyant mantle and may extend to depths larger than 250 km. Such distinctive characteristics have key dynamical and geological consequences that we are only beginning to address. Thick roots provide large volume repositories for chemical elements that do not mix with Earth's convecting interior. Their large diffusive relaxation time implies long-term thermal disequilibrium with their radioactive heat sources and with the cooling of the mantle. Their negative thermal buoyancy may drive convective instabilities with implications for intracontinental deformation and magmatism as well as for continental growth. The dynamical behaviour of continental roots depends on the buoyancy ratio B, the ratio of the intrinsic (chemical) buoyancy of depleted lithospheric mantle and the density difference due to thermal expansion. The lithosphere can be mechanically stable and in thermal equilibrium with heat supplied by small-scale convection at the top of the asthenosphere. Sufficient cooling may result in an oscillatory convective instability whereby perturbations to the base of the lithosphere rise and fall periodically. The lithosphere seems to have developed in a state near that of instability with different thicknesses depending on its intrinsic buoyancy. It may have grown not only by chemical differentiation during melting, but also by oscillatory convection entraining chemically denser material from the asthenosphere. Mantle plumes have different effects on lithospheres of different thicknesses and compositions. For B values larger than about 0.6, plume material does not really penetrate into the lithosphere and spreads beneath it. In this case, the buoyancy force that is applied to the base of the lithosphere drives moderate thinning and extension over large horizontal distances. It takes values of B less than 0.6 to achieve true plume penetration with a significant vertical velocity component. In this case, thinning and extension get localized above the rising plume. In both cases, heated lithosphere material becomes convectively unstable after some time and entrains asthenospheric material as it rises. Temperatures in thick continental lithosphere do not adjust rapidly to secular changes of mantle temperature. Analysis of (P,T) data from xenolith studies indicates that the Earth's mantle has cooled at a rate of 80 K Ga-1 or less. Thick continental roots preserve a record of Archean processes and of Earth's evolution through geological ages. Deciphering this record may well be our next challenge.
The ratios of carbon and non-radiogenic helium and argon isotopes in the mantle and crustal rocks
NASA Technical Reports Server (NTRS)
Lokhov, K.; Levsky, L.
1994-01-01
The studies of the relations of carbon and primary isotopes of noble gases were carried out on the natural gases and on the mantle rocks from the mantle M-type sources, which represent the degassed mantle reservoir (MORB's). These works has the aim of estimation of the values of the C/3He ratios in the deep mantle fluids to determine the flux of the mantle CO2 on the basis of known flux of primary mantle 3He. It was found, that in the natural gases the values of the C/3He ratios fall into the range from 1 times E plus 6 to 1 times E plus 15, and in the fluids of MORB's are constant near 2 times E plus 9. We have studied the mantle rocks from the relatively undergassed mantle P minus type sources: continental; Baikal Rift (Siberia), Mongolia, Catalonia (Spain), Pannonia Depression (central Europe) and ocean; Spietzbergen isl., Hawaii isl., Canarian isl. It ws found, that in mantle xenolites and the host alkaline basalts from the continental rifts and ocean islands, the values of the C/3He ratios fall into the range from E plus 11 to E plus 15 (and this result needed to be explained; the higher carbon to helium ratios is relatively undergassed mantle reservoir compared with the degassed one, requires whether hilly compatibility of helium compared with carbon, whether additional flux of 3He to the degassed mantle reservoir). From the other hand it was found that in the mantle rocks from the sources of P minus and M minus types, continental carbonatites, the values of the C/36Ar ratios are constant in the range from E plus 9 to E plus 10, the close values have the MORB's also.
The ruthenium isotopic composition of the oceanic mantle
NASA Astrophysics Data System (ADS)
Bermingham, K. R.; Walker, R. J.
2017-09-01
The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.
NASA Astrophysics Data System (ADS)
Cao, Q.; van der Hilst, R. D.; Shim, S.; De Hoop, M. V.
2011-12-01
The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. Most tomographic models reveal anomalously low wavespeeds beneath Hawaii, but the depth extent of this structure is not well known. S or P data used in traveltime inversions are associated with steep rays to distant sources, which degrades depth resolution, and surface wave dispersion does not have sufficient sensitivity at the depths of interest. To investigate pertinent thermal anomalies we mapped depth variations of upper mantle discontinuities using precursors of the surface-reflected SS wave. Instead of stacking the data over geographical bins, which leads to averaging of topography and hence loss of spatial resolution, we used a generalized Radon transform (GRT) to detect and map localized elasticity contrasts in the transition zone (Cao et al., PEPI, 2010). We apply the GRT to produce 3D image volumes beneath a large area of the Pacific Ocean, including Hawaii and the Hawaii-Emperor seamount chain (Cao et al., Science, 2011). The 3D image volumes reveal laterally continuous interfaces near 410 and 660 km depths, that is, the traditional boundaries of the transition zone, but also suggest (perhaps intermittent) scatter horizons near 300-350, 520-550, and 800-1000 km depth. The upper mantle appears generally hot beneath Hawaii, but the most conspicuous topographic (and probably thermal) anomalies are found west of Hawaii. The GRT images reveal a 800 km wide uplift of the 660 discontinuity just west of Hawaii, but there is no evidence for a corresponding localized depression of the 410 discontinuity. This expression of the 410 and 660 km topographies is consistent with some existed geodynamical modeling results, in which a deep-rooted mantle plume impinging on the transition zone, creating a broad pond of hot material underneath endothermic phase change at 660 km depth, and with secondary plumes stemming from this hot pool of materials and rising in the upper mantle to create the present-day hotspot at Earth's surface. West of the upwarp that we interpret as the elevated post-spinel the main interface deepens to nearly 700 km depth. Given this position, it is unlikely that this deep structure is due to low temperatures. Instead, it would be consistent with slightly elevated temperatures (compared to transition temperature of post-spinel) and transitions in the garnet phase. This interpretation, if correct, implies that the area of ponded hot material is at least 2,000 km wide. The presence of an 800- to 2,000-kilometer-wide thermal anomaly deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly. This type of flow may be a better explanation of bathymetric features in the Pacific (including other seamount chains) than the canonical deep mantle plumes.
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Kurz, Mark D.
2015-09-01
The massive outpourings of Karoo and Ferrar continental flood basalts (CFBs) ∼180 Ma ago mark the initial Jurassic rifting stages of the Gondwana supercontinent. The origin and sources of these eruptions have been debated for decades, largely due to difficulties in defining their parental melt and mantle source characteristics. Recent findings of Fe- and Mg-rich dikes (depleted ferropicrite suite) from Vestfjella, western Dronning Maud Land, Antarctica, have shed light on the composition of the deep sub-Gondwanan mantle: these magmas have been connected to upper mantle sources presently sampled by the Southwest Indian Ocean mid-ocean ridge basalts (SWIR MORBs) or to high 3He/4He plume-entrained non-chondritic primitive mantle sources formed early in Earth's history. In an attempt to determine their He isotopic composition and relative contributions from magmatic, cosmogenic, and radiogenic He sources, we performed in-vacuo stepwise crushing and melting analyses of olivine mineral separates, some of which were abraded to remove the outer layer of the grains. The best estimate for the mantle isotopic composition is given by a sample with the highest amount of He released (>50%) during the first crushing step of an abraded coarse fraction. It has a 3He/4He of 7.03 ± 0.23 (2σ) times the atmospheric ratio (Ra), which is indistinguishable from those measured from SWIR MORBs (6.3-7.3 Ra; source 3He/4He ∼6.4-7.6 Ra at 180 Ma) and notably lower than in the most primitive lavas from the North Atlantic Igneous Province (up to 50 Ra), considered to represent the epitome magmas from non-chondritic primitive mantle sources. Previously published trace element and isotopic (Sr, Nd, and Pb) compositions do not suggest a direct genetic link to any modern hotspot of Indian or southern Atlantic Oceans. Although influence of a mantle plume cannot be ruled out, the high magma temperatures and SWIR MORB-like geochemistry of the suite are best explained by supercontinent insulation of a precursory Indian Ocean upper mantle source. Such a model is also supported by the majority of the recent studies on the structure, geochronology, and petrology of the Karoo CFBs.
Clague, D.A.; Frey, F.A.
1982-01-01
These volcanic rocks are the products of small-volume, late-stage vents along rifts cutting the older massive Koolan tholeiitic shield on Oahu. Most of the lavas and tuffs have the geochemical features expected of near-primary magmas derived from a peridotite source with olivine Fo87-89, e.g. 100 Mg/(Mg + Fe2+) > 65, Ni > 250 p.p.m. and the presence of ultramafic mantle xenoliths at 18 of the 37 vents. Thus the geochemistry of the alkali olivine basalt, basanite, nephelinite and nepheline melilitite lavas and tuffs of these Honolulu volcanic rocks has been used to deduce the composition of their mantle source and the conditions under which they were generated by partial melting in the mantle. New major- and trace-element analyses for 31 samples are tabulated and indicate derivation by partial melting of a garnet (<10%) lherzolite source which was isotopically homogeneous and compositionally uniform for most major and trace elements, though apparently heterogeneous in TiO2, Zr, Hf, Nb and Ta (due perhaps to the low inferred degrees of melting which failed to exhaust the source in minor residual phases). In comparison with estimates of a primordial mantle composition and the mantle source of MORB, the garnet peridotite source of these Honolulu volcanics was increasingly enriched in the sequence heavy REE, Y, Tb, Ti, Sm, Zr and Hf, for which a multi-stage history is required. This composition differs from the source of the previously erupted tholeiitic shield, nor is it represented in the upper-mantle xenoliths in the lavas and tuff of the unit.-R.A.H.
NASA Astrophysics Data System (ADS)
Abu El-Rus, M. A.; Chazot, G.; Vannucci, R.; Paquette, J.-L.
2018-02-01
A large late Cretaceous ( 90 Ma) volcanic field (the Natash volcanic province) crops out in southeast Egypt at the northwestern boundary of the Arabian-Nubian shield. The lavas are mainly of alkaline affinity and exhibit a continuous compositional range from alkali olivine basalt (AOB) to trachyte and rhyolite. All basaltic lavas in the province record various extents of fractional crystallization of olivine, clinopyroxene, plagioclase and spinel. The basaltic lavas show variations in Sr-Nd-Pb-Hf isotopic ratios [(87Sr/86Sr)i = 0.7030-0.70286; (143Nd/144Nd)i = 0.512653-0.512761; (206Pb/204Pb)i = 19.28-19.94; (177Hf-176Hf)i = 0.28274-0.28285], that correlate markedly with the major and trace element ratios and abundances. Assimilation of crustal material cannot explain these correlations, and we invoke instead melting of a multicomponent mantle source. We infer the existence of High-μ (HIMU), Enriched mantle type-I (EM-I) and Depleted mantle (DM) domains in the melting source, with a predominant contribution from the HIMU-type. We suggests further that the basaltic lavas originate from low degrees of partial melting (F < 5%) at moderate potential temperatures (TP) 1391-1425 °C and pressures of 2.0-2.6 GPa. The melting pressure estimations imply that melting entirely occurred within lithospheric mantle, most likely in the presence of residual amphibole as presence negative K-anomalies in the primitive mantle-normalized patterns of the fractionation-corrected melts. The presence of amphibole within the lithosphere is a strong evidence that the lithospheric mantle underwent metasomatic enrichment prior to melting in Late Cretaceous. This metasomatic event affected on the Pb isotopic compositions of the Natash volcanics by adding Th and U to the melting source. Time-integrated calculations to remove the decoupling between 206Pb and 207Pb isotopes that most probably resulted from the metasomatic event indicate a tentative link between the metasomatism occurring in the Pan-African lithospheric mantle and the formation of juvenile crust during the Pan-African Orogeny. A two stage evolution model is therefore proposed for volcanism in the Natash area: fluxing of the lithosphere by hydrous fluids during Pan-African Orogeny forming a hybrid lithospheric mantle that in Late Cretaceous underwent thermal erosion and melting in response to upwelling asthenosphere, possibly at the onset of the extensional fracturing preceded the doming of the Afro-Arabian Shield.
Mantle source heterogeneity of the Early Jurassic basalt of eastern North America
NASA Astrophysics Data System (ADS)
Gregory Shellnutt, J.; Dostal, Jaroslav; Yeh, Meng-Wan
2018-04-01
One of the defining characteristics of the basaltic rocks from the Early Jurassic Eastern North America (ENA) sub-province of the Central Atlantic Magmatic Province (CAMP) is the systematic compositional variation from South to North. Moreover, the tectono-thermal regime of the CAMP is debated as it demonstrates geological and structural characteristics (size, radial dyke pattern) that are commonly associated with mantle plume-derived mafic continental large igneous provinces but is considered to be unrelated to a plume. Mantle potential temperature ( T P) estimates of the northern-most CAMP flood basalts (North Mountain basalt, Fundy Basin) indicate that they were likely produced under a thermal regime ( T P ≈ 1450 °C) that is closer to ambient mantle ( T P ≈ 1400 °C) conditions and are indistinguishable from other regions of the ENA sub-province ( T Psouth = 1320-1490 °C, T Pnorth = 1390-1480 °C). The regional mantle potential temperatures are consistent along the 3000-km-long ENA sub-province suggesting that the CAMP was unlikely to be generated by a mantle plume. Furthermore, the mantle potential temperature calculation using the rocks from the Northern Appalachians favors an Fe-rich mantle (FeOt = 8.6 wt %) source, whereas the rocks from the South Appalachians favor a less Fe-rich (FeOt = 8.3 wt %) source. The results indicate that the spatial-compositional variation of the ENA basaltic rocks is likely related to differing amounts of melting of mantle sources that reflect the uniqueness of their regional accreted terranes (Carolinia and West Avalonia) and their post-accretion, pre-rift structural histories.
Investigating the Indian Ocean Geoid Low
NASA Astrophysics Data System (ADS)
Ghosh, A.; Gollapalli, T.; Steinberger, B. M.
2016-12-01
The lowest geoid anomaly on Earth lies in the Indian Ocean just south of the Indian peninsula.Several theories have been proposed to explain this geoid low, most of which invoke past subduction. Some recent studies have alsoargued that high velocity anomalies in the lower mantle coupled with low velocity anomalies in the upper mantle are responsible for these negative geoidanomalies. However, there is no general consensus regarding the source of the Indian Ocean negative geoid. We investigate the source of this geoid low by using forward models of density driven mantle convection using CitcomS. We test various tomography models in our flow calculations with different radial and lateral viscosity variations. Many tomography modelsproduce a fairly high correlation to the global geoid, however none could match the precise location of the geoid low in the Indian Ocean. Amerged P-wave model of LLNL-G3DV3 in the Indian Ocean region and S40rts elsewhere yields a good fit to the geoid anomaly, both in pattern and magnitude.The source of this geoid low seems to stem from a low velocity anomaly stretching from a depth of 300 km up to 700 km in the northern Indian Ocean region.This velocity anomaly could potentially arise from material rising along the edge of the African LLSVP and moving towards the northeast, facilitated by the movementof the Indian plate in the same direction.
NASA Astrophysics Data System (ADS)
Lessing, Stephan; Thomas, Christine; Rost, Sebastian; Cobden, Laura; Dobson, David P.
2014-04-01
We investigate the seismic structure of the upper-mantle and mantle transition zone beneath India and Western China using PP and SS underside reflections off seismic discontinuities, which arrive as precursors to the PP and SS arrival. We use high-resolution array seismic techniques to identify precursory energy and to map lateral variations of discontinuity depths. We find deep reflections off the 410 km discontinuity (P410P and S410S) beneath Tibet, Western China and India at depths of 410-440 km and elevated underside reflections of the 410 km discontinuity at 370-390 km depth beneath the Tien Shan region and Eastern Himalayas. These reflections likely correspond to the olivine to wadsleyite phase transition. The 410 km discontinuity appears to deepen in Central and Northern Tibet. We also find reflections off the 660 km discontinuity beneath Northern China at depths between 660 and 700 km (P660P and S660S) which could be attributed to the mineral transformation of ringwoodite to magnesiowuestite and perovskite. These observations could be consistent with the presence of cold material in the middle and lower part of the mantle transition zone in this region. We also find a deeper reflector between 700 and 740 km depth beneath Tibet which cannot be explained by a depressed 660 km discontinuity. This structure could, however, be explained by the segregation of oceanic crust and the formation of a neutrally buoyant garnet-rich layer beneath the mantle transition zone, due to subduction of oceanic crust of the Tethys Ocean. For several combinations of sources and receivers we do not detect arrivals of P660P and S660S although similar combinations of sources and receivers give well-developed P660P and S660S arrivals. Our thermodynamic modelling of seismic structure for a range of compositions and mantle geotherms shows that non-observations of P660P and S660S arrivals could be caused by the dependence of underside reflection coefficients on the incidence angle of the incoming seismic waves. Apart from reflections off the 410 and 660 km discontinuities, we observe intermittent reflectors at 300 and 520 km depth. The discontinuity structure of the study region likely reflects lateral thermal and chemical variations in the upper-mantle and mantle transition zone connected to past and present subduction and mantle convection processes.
Giant impactors - Plausible sizes and populations
NASA Technical Reports Server (NTRS)
Hartmann, William K.; Vail, S. M.
1986-01-01
The largest sizes of planetesimals required to explain spin properties of planets are investigated in the context of the impact-trigger hypothesis of lunar origin. Solar system models with different large impactor sources are constructed and stochastic variations in obliquities and rotation periods resulting from each source are studied. The present study finds it highly plausible that earth was struck by a body of about 0.03-0.12 earth masses with enough energy and angular momentum to dislodge mantle material and form the present earth-moon system.
Geochemical signals of progressive continental rupture in the Main Ethiopian Rift
NASA Astrophysics Data System (ADS)
Furman, T.; Bryce, J.; Yirgu, G.; Ayalew, D.; Cooper, L.
2003-04-01
Mafic volcanics of the Main Ethiopian Rift record the development of magmatic rift segments during continental extension. The Ethiopian Rift is one arm of a triple junction that formed above a Paleogene mantle plume, concurrent with eruption of flood basalts ca. 30 Ma across northern Ethiopian and Yemen. The geochemistry of Ethiopian Rift lavas thus provides insight into processes associated with the shift from mechanical (lithospheric) to magmatic (asthenospheric) segmentation in the transitional phase of continental rifting. Quaternary basalts from five volcanic centers representing three magmatic segments display along-axis geochemical variations that likely reflect the degree of rifting and magma supply, which increase abruptly with proximity to the highly-extended Afar region. To first order, the geochemical data indicate a decreasing degree of shallow-level fractionation and greater involvement of depleted or plume-like mantle source materials in basalts sampled closer to the Afar. These spatially controlled geochemical signatures observed in contemporaneous basalts are similar to temporal variations documented in southern Ethiopia, where Quaternary lavas indicate a greater degree of crustal extension than those erupted at the onset of plume activity. Primitive Ethiopian Rift basalts have geochemical signatures (e.g., Ce/Pb, La/Nb, Ba/Nb, Ba/Rb, U/Th) that overlap ocean island basalt compositions, suggesting involvement of sub-lithospheric source materials. The estimated depth of melting (65-75 km) is shallower than values obtained for young primitive mafic lavas from the Western Rift and southern Kenya as well as Oligocene Ethiopian flood basalts from the onset of plume-driven activity. Basalts from the Turkana region (N. Kenya) and Erta 'Ale (Danakil depression) reflect melting at shallower levels, corresponding to the greater degree of crustal extension in these provinces. Preliminary Sr and Nd isotopic data trend towards primitive earth values, consistent with values observed previously in central Ethiopia that are associated with moderately high 3He/4He values (<19 RA; Marty et al. 1996) and interpreted as reflecting involvement of a mantle plume. Taken together, these data support a model in which upwelling plume material sampled in central Ethiopia incorporates depleted mantle during ascent beneath the more highly extended portions of the African Rift.
NASA Astrophysics Data System (ADS)
Harrison, L.; Weis, D.
2017-12-01
Oceanic island basalts provide the opportunity for the geochemist to study the deep mantle source removed from continental sources of contamination and, for long-lived systems, the evolution of mantle sources with time. In the case of the Hawaiian-Emperor (HE) chain, formation by a long-lived (>81 Myr), deeply-sourced mantle plume allows for insight into plume dynamics and deep mantle geochemistry. The geochemical record of the entire chain is now complete with analysis of Pb-Hf-Nd-Sr isotopes and elemental compositions of the Northwest Hawaiian Ridge (NWHR), which consists of 51 volcanoes spanning 42 Ma between the bend in the chain and the Hawaiian Islands. This segment of the chain previously represented a significant data gap where Hawaiian plume geochemistry changed markedly, along with magmatic flux: only Kea compositions have been observed on Emperor seamounts (>50 Ma), whereas the Hawaiian Islands (<6 Ma) present both Kea and Loa compositions. A database of 700 Hawaiian Island shield basalts Pb-Hf-Nd-Sr isotopic compositions were compiled to construct a logistical regression model of Loa or Kea affinity that sorts data into a dichotomous category and provides insight into the relationship between independent variables. We use this model to predict whether newly analyzed NWHR samples are Loa or Kea composition based on their Pb-Sr-Nd-Hf isotopic compositions. The logistical regression model is significantly better at prediciting Loa or Kea affinity than the constant only model (χ2=263.3, df=4, p<0.0001), with Pb and Sr isotopes providing the most predicitive power. Daikakuji, West Nihoa, Nihoa, and Mokumanamana erupt Loa-type lavas, suggesting that the Loa source is sampled ephemerally during the NWHR and increases in presence and volume towards the younger section of the NWHR (younger than Midway 20-25 Ma). These results complete the picture of Hawaiian mantle plume geochemistry and geodynamics for 81 Myr, and show that the Hawaiian mantle plume has transitioned from a dominately Kea source during the Emperor seamounts and older NWHR to an increasingly enriched Loa source from the mid NWHR to Hawaiian Islands. We propose this is due to Hawaiian mantle plume drift through different lower mantle geohemical domains.
NASA Technical Reports Server (NTRS)
Martin, A.; Righter, K.
2009-01-01
Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the fO2 variations observed in martian meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO2 for the martian atmosphere. Considering the high content of iron in the Martian mantle (approx.18.0 wt% FeO; [6]), compared to Earth s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.
Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens
Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.
2016-01-01
Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams. PMID:27802263
Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes
NASA Astrophysics Data System (ADS)
Hulett, Samuel R. W.; Simonetti, Antonio; Rasbury, E. Troy; Hemming, N. Gary
2016-12-01
The global boron geochemical cycle is closely linked to recycling of geologic material via subduction processes that have occurred over billions of years of Earth’s history. The origin of carbonatites, unique melts derived from carbon-rich and carbonate-rich regions of the upper mantle, has been linked to a variety of mantle-related processes, including subduction and plume-lithosphere interaction. Here we present boron isotope (δ11B) compositions for carbonatites from locations worldwide that span a wide range of emplacement ages (between ~40 and ~2,600 Ma). Hence, they provide insight into the temporal evolution of their mantle sources for ~2.6 billion years of Earth’s history. Boron isotope values are highly variable and range between -8.6‰ and +5.5‰, with all of the young (<300 Ma) carbonatites characterized by more positive δ11B values (>-4.0‰), whereas most of the older carbonatite samples record lower B isotope values. Given the δ11B value for asthenospheric mantle of -7 +/- 1‰, the B isotope compositions for young carbonatites require the involvement of an enriched (crustal) component. Recycled crustal components may be sampled by carbonatite melts associated with mantle plume activity coincident with major tectonic events, and linked to past episodes of significant subduction associated with supercontinent formation.
Bulk composition of the Moon in the context of models for condensation in the solar nebula
NASA Technical Reports Server (NTRS)
Goettel, K. A.
1984-01-01
The FeO content of the Moon is substantially higher than the present FeO content of the Earth's mantle. If the Moon formed by fission from the Earth's mantle, then the conclusion that the Earth's mantle must have been much richer in FeO at the time of fission appears firm. If the Moon formed independently in geocentric orbit, then the FeO contents of the two bodies should be similar, because both would be accreting from the same source of silicate material. Therefore, Earth's mantle at the time of lunar formation probably had an FeO content quite similar to the present FeO content of the Moon. This conclusion, if valid, has profound implications in two areas: (1) the differentiation history of the Earth's mantle and core; and (2) the processes responsible for governing the bulk compositions of the terrestrial planets. If Earth had more FeO than previously thought, then the composition differences between Earth and Mars are less than previously believed. This suggests that condensation temperature and heliocentric distance may have been less important in governing planetary compositions and other mechanisms, including iron/silicate fractionation may have been more important. The implication of this model for the compositions of the Moon and the other terrestrial planets are discussed.
Non-chondritic iron isotope ratios in planetary mantles as a result of core formation
NASA Astrophysics Data System (ADS)
Elardo, Stephen M.; Shahar, Anat
2017-02-01
Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Jun; Chen, Li-Hui; Hofmann, Albrecht W.; Mao, Fu-Gen; Liu, Jian-Qiang; Zhong, Yuan; Xie, Lie-Wen; Yang, Yue-Heng
2017-05-01
The isotopic characteristics of the sub-oceanic mantle are well established, but in continental regions these properties are usually obscured, and therefore controversial, because of the potential effects of crustal contamination together with lithospheric mantle metasomatism and melting. The so-called EM1 (Enriched Mantle-1) signature, characterized by low 206Pb/204Pb and 143Nd/144Nd ratios, is particularly problematic in this respect because EM1-type OIB sources are commonly attributed to recycled crust and/or lithospheric mantle. In this paper we show that a suite of Cenozoic potassic basalts from NE China displays many previously unrecognized correlations between chemical and isotopic parameters, which tightly constrain the isotopic characteristics of an extreme EM1-type mantle source located in the asthenosphere. Its radiogenic isotopes are similar to, but even more extreme than, those of the oceanic endmember composition represented by the Pitcairn hotspot, namely 206Pb/204Pb ≤ 16.5, 143Nd/144Nd ≤ 0.5123 (or εNd ≤ - 6.4), 176Hf/177Hf ≤ 0.2825 (or εHf ≤ - 10.1). These characteristics require a source of recycled crustal material of Precambrian age (∼2.2 Ga). An important new constraint is the Mg isotopic composition of δ26 Mg (≤ - 0.6 ‰), which is lower than normal mantle (δ26 Mg = - 0.25 ± 0.07 ‰) and lower crustal values (δ26 Mg = - 0.29 ± 0.15 ‰), but consistent with sedimentary carbonate (δ26 Mg = - 5.57 ‰ to - 0.38 ‰). The endmember EM1 source produced high-SiO2 melts with low MgO, CaO/Al2O3 and δ26 Mg values, exceptionally high K/U ≅ 50,000, Ba/Th ≅ 400, low U/Pb ≅ 0.06, and positive Zr and Hf anomalies. The chemical and isotopic parameters of this potassic basalt suite form binary mixing arrays, one end point of which is the inferred asthenospheric EM1 reservoir, whereas the other is a more ordinary, depleted mantle component, which is also sampled by local lithospheric mantle xenoliths. These binary arrays include well-developed correlations between Sr, Nd, Hf, Pb and Mg isotopes, negative correlations of 206Pb/204Pb with K2 O, K/U, Hf/Hf*, positive correlations of δ26 Mg with MgO, and 143Nd/144Nd with Fe2OT3 and U/Pb. We propose that the EM1 reservoir contains recycled ancient carbonate-bearing sediments, subducted into the mantle transition zone, where K, Rb, Ba and Pb are sequestered by K-hollandite as suggested by Murphy et al. (2002) for the Gaussberg lamproites. Loss of small amounts of carbonate melt extracted Th, U and some of the LREE, while retaining K, Rb, Ba, Pb, Zr and Hf in the residue, thereby generating the observed trace element anomalies. In Cenozoic time, this deep EM1 reservoir ascended into the shallow asthenosphere and underwent low-degree partial melting, at pressures below the stability field of K-hollandite, thereby releasing K, Rb and Ba into the melt. The partial melts ascended through subcontinental lithosphere and were progressively modified by interaction with the lithospheric mantle, thus accounting for the linear chemical and isotopic trends noted above. This interaction imposed a progressively more depleted character on the erupted melt, both in terms of isotopic composition and trace element enrichment.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, Karin; Barruol, Guilhem
2013-04-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
RHUM-RUM investigates La Réunion mantle plume from crust to core
NASA Astrophysics Data System (ADS)
Sigloch, K.; Barruol, G.
2012-12-01
RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the neighboring ridges of the Indian Ocean. There is in particular a long-standing hypothesis, not yet examined seismically, that channelized plume flow beneath the aseismic Rodrigues Ridge could feed the Central Indian Ridge at 1000 km distance. The RHUM-RUM group (www.rhum-rum.net): * IPG Paris & Géosciences Réunion: G. Barruol, J.P. Montagner, E. Stutzmann, F.R. Fontaine, C. Deplus, M. Cannat, G. Roult, J. Dyment, S. Singh, W. Crawford, C. Farnetani, N. Villeneuve, L. Michon. V. Ferrazzini, Y. Capdeville. * Univ. Munich (LMU): K. Sigloch, H. Igel. AWI Bremerhaven: V. Schlindwein. Univ. Frankfurt: G. Rümpker. Univ. Münster: C. Thomas. Univ. Bonn: S. Miller. * Géosciences Montpellier: C. Tiberi, A. Tommasi, D. Arcay, C. Thoraval. * Mauritius Oceanography Institute: D. Bissessur. Univ. Antananarivo: G. Rambolamanana. SEYPEC Seychelles Petroleum: P. Samson, P. Joseph. * Other institutes: A. Davaille, M. Jegen, M. Maia, G. Nolet, D. Sauter, B. Steinberger.
NASA Astrophysics Data System (ADS)
Marcantonio, Franco; Zindler, Alan; Elliott, Tim; Staudigel, Hubert
1995-07-01
Sub-aerial lavas from the single ocean island of La Palma, Canary Islands show as large a variation in 187Os/186Os isotope ratios (1.13-1.59) as found across all of French Polynesia [1]. The La Palma lavas, however, display a restricted range of chemical composition and have all been erupted within the last 3.5 Ma. The highest Os isotopic compositions are observed in lavas with low Os concentrations. An uplifted sequence of lavas, that represent the early phase of submarine growth of the island, show extremely heterogeneous 187Os/186Os isotope ratios, from 1.21 to 3.53, with the most radiogenic values found in pillow rinds. Assimilation of these pillow rinds by ascending magma can readily account for highly radiogenic ratios ( 187Os/186Os > 1.3 ) found in lavas with Os concentrations below 30 ppt. Samples with Os concentrations too high to be significantly affected by assimilation still display a range in Os isotope ratios from 1.13 to 1.25. We argue that these radiogenic values reflect a HIMU mantle source that contains ancient recycled oceanic crust. Characteristic incompatible trace element ratios suggest further similarities between the mantle beneath La Palma and other HIMU islands. When potentially contaminated low-Os OIBs are screened from literature data, HIMU islands are found to display the highest Os isotope ratios (up to 1.25). PbOs systematics for uncontaminated OIBs do not define a simple two-component mixing relationship between ambient mantle and recycled oceanic crust of a single composition. We suggest that this is due to variable alteration and subduction-induced perturbation of the U/Pb ratio in the recycled material that forms a component of the HIMU source.
Osmium Isotope Compositions of Komatiite Sources Through Time
NASA Astrophysics Data System (ADS)
Walker, R. J.
2001-12-01
Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os value of only +1.2 and a 186Os/188Os enrichment relative to the contemporary upper mantle of only +13 ppm. Greater isotopic enrichments could have been achieved by 2.7 Ga if either the inner core comprised >2.8% of the mass of the core by 2.7 Ga, or if Re and Os solid metal-liquid metal D's for core crystallization were greater that those applied in the initial calculation.
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.
2016-01-01
Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal growth events rather than just recycling of old lithospheric materials.
NASA Astrophysics Data System (ADS)
Brandt, Frederik Ejvang; Holm, Paul Martin; Søager, Nina
2017-01-01
New high-precision minor element analysis of the most magnesian olivine cores (Fo85-88) in fifteen high-MgO (Mg#66-74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite-pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios ( 1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.
NASA Astrophysics Data System (ADS)
Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.
2014-09-01
Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source region and together with 87Sr/86Srinitial ranging from 0.705656 to 0.706980 suggest two stage contamination of parent magma which is much similar to that of Poladpur, Toranmal, Mhow, Chikaldara flows. Ba/Y versus 87Sr/86Sr and Nb/Y versus Rb/Y variations show an Ambenali-Poladpur contamination trend for the Linga basalts thereby suggesting the role of upper continental granitic crust as the contaminant of these flows through magma-crust interaction during melt migration. The lava flows of Linga are geochemically correlatable with the Poladpur flows of southwestern and Toranmal flows of northern Deccan and show genetic coherence with the basalts of Jabalpur, Seoni, Chakhla-Delakhari of eastern Deccan.
NASA Astrophysics Data System (ADS)
Kim, Jonguk; Pak, Sang-Joon; Moon, Jai-Woon; Lee, Sang-Mook; Oh, Jihye; Stuart, Finlay M.
2017-04-01
The northern Central Indian Ridge (CIR) between 8°S and 17°S is composed of seven segments whose spreading rates increase southward from ˜35 to ˜40 mm/yr. During expeditions of R/V Onnuri to study hydrothermal activity on the northern CIR in 2009-2011, high-resolution multibeam mapping was conducted and ridge axis basalts were dredged. The major and trace element and Sr-Nd-Pb-He isotopic compositions of basaltic glasses dredged from the spreading axis require three mantle sources: depleted mantle and two distinct enriched mantle sources. The southern segments have Sr, Nd, and Pb that are a mix of depleted mantle and an enriched component as recorded in southern CIR MORB. This enrichment is indistinguishable from Rèunion plume mantle, except for He isotopes. This suggests that the southern segments have incorporated a contribution of the fossil Rèunion plume mantle, as the CIR migrated over hot-spot-modified mantle. The low 3He/4He (7.5-9.2 RA) of this enriched component may result from radiogenic 4He ingrowth in the fossil Rèunion mantle component. Basalts from the northern segments have high 206Pb/204Pb (18.53-19.15) and low 87Sr/86Sr (0.70286-0.70296) that are distinct from the Rèunion plume but consistent with derivation from mantle with FOZO signature, albeit with 3He/4He (9.2-11.8 RA) that are higher than typical. The FOZO-like enriched mantle cannot be attributed to the track of a nearby mantle plume. Instead, this enrichment may have resulted from recycling oceanic crust, possibly accompanied by small plume activity.
NASA Astrophysics Data System (ADS)
Peterson, M. E.; Kelley, K. A.; Cottrell, E.; Saal, A. E.; Kurz, M. D.
2015-12-01
The oxidation state of the mantle plays an intrinsic role in the magmatic evolution of the Earth. Here we present new μ-XANES measurements of Fe3+/ΣFe ratios (a proxy for ƒO2) in a suite of submarine glasses from the Galapagos Archipelago. Using previously presented major, trace, and volatile elements and isotopic data for 4 groups of glass that come from distinct mantle sources (depleted upper mantle, 2 recycled, and a primitive mantle source) we show that Fe3+/ΣFe ratios vary both with the influence of shallow level processes and with variations in mantle source. Fe3+/ΣFe ratios increase with differentiation (i.e. decreasing MgO), but show a large variation at a given MgO. Progressive degassing of sulfur accompanies decreasing Fe3+/ΣFe ratios, while assimilation of hydrothermally altered crust (as indicated by increasing Sr/Sr*) is shown to increase Fe3+/ΣFe ratios. After taking these processes into account, there is still variability in the Fe3+/ΣFe ratios of the isotopically distinct sample suites studied, yielding a magmatic ƒO2 that ranges from ΔQFM = +0.16 to +0.74 (error < 0.5 log units) and showing that oxidation state varies as a function of mantle source composition in the Galapagos hotspot system. After correcting back to a common MgO content = 8.0 wt%, the trace element depleted group similar to MORB (ITD), and the group similar to Pinta (WD = high Th/La, Δ7/4, Δ8/4 ratios) show Fe3+/ΣFe ratios within the range of MORB (average ITD = 0.162 ± 0.003 and WD = 0.164 ± 0.006). Another trace element enriched group similar to Sierra Negra and Cerro Azul (ITE = enriched Sr and Pb isotopes) shows evidence of mixing between oxidized and reduced sources (ITE oxidized end-member = 0.177). This suggests that mantle sources in the Galapagos that are thought to contain recycled components (i.e., WD and ITE groups) have distinct oxidation states. The high 3He/4He Fernandina samples (HHe group) are shown to be the most oxidized (ave. 0.175 ± 0.006). With C/3He ratios an order of magnitude greater than MORB this suggests that the primitive mantle is a more carbonated and oxidized source than the depleted upper mantle.
From Purgatory to Paradise: The Volatile Life of Hawaiian Magma
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2014-12-01
Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Dixon et al. 2002, Nature 420:385-89 [2] Workman et al. 2006, EPSL 241:932-51
NASA Technical Reports Server (NTRS)
Shirey, Steven B.; Hanson, Gilbert N.
1986-01-01
Crustal evolution in the Rainy Lake area, Ontario is studied in terms of geochemical characteristics. The Nd isotope data are examined for heterogeneity of the Archean mantle, and the Sm/Nd depletion of the mantle is analyzed. The Nd isotope systematics of individual rock suites is investigated in order to understand the difference between crust and mantle sources; the precursors and petrogenetic processes are discussed. The correlation between SiO2 content and Nd values is considered. Rapid recycling of crustal components, which were previously derived from depleted mantle sources, is suggested based on the similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks.
NASA Astrophysics Data System (ADS)
Frei, Robert; Polat, Ali; Meibom, Anders
2004-04-01
Here we present Sm-Nd, Re-Os, and Pb isotopic data of carefully screened, least altered samples of boninite-like metabasalts from the Isua Supracrustal Belt (ISB, W Greenland)that characterize their mantle source at the time of their formation. The principal observations of this study are that by 3.7-3.8 Ga melt source regions existed in the upper mantle with complicated enrichment/depletion histories. Sm-Nd isotopic data define a correlation line with a slope corresponding to an age of 3.69 ± 0.18 Gy and an initial εNd value of +2.0 ± 4.7. This Sm-Nd age is consistent with indirect (but more precise) U-Pb geochronological estimates for their formation between 3.69-3.71 Ga. Relying on the maximum formation age of 3.71 Gy defined by the external age constraints, we calculate an average εNd [T = 3.71 Ga] value of +2.2 ± 0.9 (n = 18, 1σ) for these samples, which is indicative of a strongly depleted mantle source. This is consistent with the high Os concentrations, falling in the range between 1.9-3.4 ppb, which is similar to the estimated Os concentration for the primitive upper mantle. Re-Os isotopic data (excluding three outliers) yield an isochron defining an age of 3.76 ± 0.09 Gy (with an initial γOs value of 3.9 ± 1.2), within error consistent with the Sm-Nd age and the indirect U-Pb age estimates. An average initial γOs [T = 3.71 Ga] value of + 4.4 ± 1.2 (n = 8; 2σ) is indicative of enrichment of their source region during, or prior to, its melting. Thus, this study provides the first observation of an early Archean upper mantle domain with a distinctly radiogenic Os isotopic signature. This requires a mixing component characterized by time-integrated suprachondritic Re/Os evolution and a Os concentration high enough to strongly affect the Os budget of the mantle source; modern sediments, recycled basaltic crust, or the outer core do not constitute suitable candidates. At this point, the nature of the mantle or crustal component responsible for the radiogenic Os isotopic signature is not known. Compared with the Sm-Nd and Re-Os isotope systems, the Pb isotope systematics show evidence for substantial perturbation by postformational hydrothermal-metasomatic alteration processes accompanying an early Archean metamorphic event at 3510 ± 65 Ma and indicate that the U-Th-Pb system was partially opened to Pb-loss on a whole rock scale. Single stage mantle evolution models fail to provide a solution to the Pb isotopic data, which requires that a high-μ component was mixed with the depleted mantle component before or during the extrusion of the basalts. Relatively high 207Pb/204Pb ratios (compared to contemporaneous mantle), support the hypothesis that erosion products of the ancient terrestrial protocrust existed for several hundred My before recycling into the mantle before ∼3.7 Ga. Our results are broadly consistent with models favoring a time-integrated Hadean history of mantle depletion and with the existence of an early Hadean protocrust, the complement to the Hadean depleted mantle, which after establishment of subduction-like processes was, at least locally, recycled into the upper mantle before 3.7 Ga. Thus, already in the Hadean, the upper mantle seems to be characterized by geochemical heterogeneity on a range of length scales; one property that is shared with the modern upper mantle. However, a simple two component mixing scenario between depleted mantle and an enriched-, crustal component with a modern analogue can not account for the complicated and contradictory geochemical properties of this particular Hadean upper mantle source.
NASA Astrophysics Data System (ADS)
Burnham, A. D.; Bulanova, G. P.; Smith, C. B.; Whitehead, S. C.; Kohn, S. C.; Gobbo, L.; Walter, M. J.
2016-11-01
Diamonds from the Machado River alluvial deposit have been characterised on the basis of external morphology, internal textures, carbon isotopic composition, nitrogen concentration and aggregation state and mineral inclusion chemistry. Variations in morphology and features of abrasion suggest some diamonds have been derived directly from local kimberlites, whereas others have been through extensive sedimentary recycling. On the basis of mineral inclusion compositions, both lithospheric and sublithospheric diamonds are present at the deposit. The lithospheric diamonds have clear layer-by-layer octahedral and/or cuboid internal growth zonation, contain measurable nitrogen and indicate a heterogeneous lithospheric mantle beneath the region. The sublithospheric diamonds show a lack of regular sharp zonation, do not contain detectable nitrogen, are isotopically heavy (δ13CPDB predominantly - 0.7 to - 5.5) and contain inclusions of ferropericlase, former bridgmanite, majoritic garnet and former CaSiO3-perovskite. This suggests source lithologies that are Mg- and Ca-rich, probably including carbonates and serpentinites, subducted to lower mantle depths. The studied suite of sublithospheric diamonds has many similarities to the alluvial diamonds from Kankan, Guinea, but has more extreme variations in mineral inclusion chemistry. Of all superdeep diamond suites yet discovered, Machado River represents an end-member in terms of either the compositional range of materials being subducted to Transition Zone and lower mantle or the process by which materials are transferred from the subducted slab to the diamond-forming region.
Mantle mixing and thermal evolution during Pangaea assembly and breakup
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Li, M.; Zhong, S.; Manga, M.
2016-12-01
Continents insulate the underlying mantle, and it has been suggested that the arrangement of the continents can have a significant effect on sub-continental mantle temperatures. Additionally, the dispersal or agglomeration of continents may affect the efficacy of continental insulation, with some studies suggesting warming of 100K beneath supercontinents. During the most recent supercontinent cycle, Pangaea was encircled by subduction, potentially creating a `curtain' of subducted material that may have prevented mixing of the sub-Pangaea mantle with the sub-Panthalassa mantle. Using 3D spherical shell geometry mantle convection simulations, we quantify the effect of insulation by continents and supercontinents. We explore the differences in model predictions for purely thermal vs. thermochemical convection, and we use tracers to quantify the exchange of material between the sub-oceanic to the sub-continental mantle.
Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle
NASA Astrophysics Data System (ADS)
Kimura, Jun-Ichi; Gill, James B.; van Keken, Peter E.; Kawabata, Hiroshi; Skora, Susanne
2017-02-01
We explore the element redistribution at mid-ocean ridges (MOR) using a numerical model to evaluate the role of decompression melting of the mantle in Earth's geochemical cycle, with focus on the formation of the depleted mantle component. Our model uses a trace element mass balance based on an internally consistent thermodynamic-petrologic computation to explain the composition of MOR basalt (MORB) and residual peridotite. Model results for MORB-like basalts from 3.5 to 0 Ga indicate a high mantle potential temperature (Tp) of 1650-1500°C during 3.5-1.5 Ga before decreasing gradually to ˜1300°C today. The source mantle composition changed from primitive (PM) to depleted as Tp decreased, but this source mantle is variable with an early depleted reservoir (EDR) mantle periodically present. We examine a two-stage Sr-Nd-Hf-Pb isotopic evolution of mantle residues from melting of PM or EDR at MORs. At high-Tp (3.5-1.5 Ga), the MOR process formed extremely depleted DMM. This coincided with formation of the majority of the continental crust, the subcontinental lithospheric mantle, and the enriched mantle components formed at subduction zones and now found in OIB. During cooler mantle conditions (1.5-0 Ga), the MOR process formed most of the modern ocean basin DMM. Changes in the mode of mantle convection from vigorous deep mantle recharge before ˜1.5 Ga to less vigorous afterward is suggested to explain the thermochemical mantle evolution.
NASA Astrophysics Data System (ADS)
Gasperini, D.; Maffei, K.; Bosch, D.; Braga, R.; Macera, P.; Morten, L.
2003-04-01
We present petrographic, geochemical, and isotopic (Sr, Nd, and Pb) data of a representative suite of spl-peridotite xenoliths (mg# >88) hosted in alkali basalts from numerous outcrops in the Tertiary Veneto Volcanic Province (VVP; SE Alps, Italy), compared to various world-wide mafic inclusions (French Massif, Australia, China, Philippines, Russia, Kerguelen). The VVP spl-harzburgites and -lherzolites carry textures ranging from protogranular, porphyroclastic, granuloblastic to pyrometamorfic. These samples are characterized by a continuous depletion trend from the cpx-rich lherzolites to harzburgites, with CaO, Al_2O_3, TiO_2, and Na_2O contents decreasing with mg# increasing (Morten, 1987; Beccaluva et al., 2001). Then, the VVP xenoliths spinels show a strong Cr/(Cr+Al) ratio increase at a slight Mg/(Mg+Fe2+) ratio decrease, thus reflecting a variably depleted mantle source. The VVP xenoliths display a large range of enrichment in LREE, K, Rb, Sr and P, suggesting post depletion metasomatic episodes (Morten et al., 2002). Whereas most of the VVP xenoliths' multi-element spectra, incompatible element and isotope ratios are similar to the VVP host basalts, thus with a strong HIMU signature (Macera et al. submitted), some depleted samples show geochemical features typical of crust derived material. These characteristics cannot be related to significant interaction with the local lower continental crust, as represented by several analyzed gabbroic xenoliths. Nevertheless negative Nb and Ta anomalies in analogous peridotitic samples have been previously ascribed to metasomatism inferred by plume rising material in the upper mantle (Bedini et al., 1997). Comparing the VVP peridotites with several mafic xenoliths from various geodynamical environments, we suggest that this crust affinity could be alternatively explained by the presence of a not perfectly homogenized upper crustal component in the source region, probably induced by subduction related episode(s). In this contest, the isotopic composition of the VVP mafic xenoliths is a crucial tool to understand the geochemical history of the Alpine subcontinental mantle.
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.
2015-01-01
Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean
NASA Astrophysics Data System (ADS)
Renna, Maria Rosaria; Tribuzio, Riccardo; Sanfilippo, Alessio; Thirlwall, Matthew
2018-04-01
This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco-Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt-rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco-Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4-0.3 vs. 0.2) and ZrN/YN (0.9-0.6 vs. 0.4-0.3) than that from the Bracco-Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial ɛ Nd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint ( ɛ Nd at the time of basalt formation = - 5.5 and - 5.2, respectively). We propose that the Bracco-Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.
NASA Astrophysics Data System (ADS)
Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles
2016-04-01
Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.
Geochemical Diversity of the Mantle: 50 Years of Acronyms
NASA Astrophysics Data System (ADS)
Hart, S. R.
2014-12-01
50 years ago, Gast, Tilton and Hedge demonstrated that the oceanic mantle is isotopically heterogeneous. 28 years ago, Zindler and Hart formalized the concept of geochemical mantle components, with an attendant, to some, odious, acronym soup. Work on a marriage of mantle geochemistry and dynamics continues unabated. We know unequivocally that the mantle is chemically heterogeneous; we do not know the scale lengths of these heterogeneities. We know unequivocally that these heterogeneities have persisted for eons (Gy); we do not know where they were formed or where they are stored. Through the kind auspices of the Plume Model, we plausibly have access to the whole mantle. The most accessible and well understood mantle reservoir is the upper depleted MORB mantle (DMM). Classically, this mantle was depleted by extraction of oceanic and continental crust from a "chondritic" bulk silicate Earth. In this post-Boyet and Carlson world, the complementary enriched reservoir may instead be hidden in the deepest mantle. In this case, DMM will become an endangered acronym. Hofmann and White (1982) argued that radiogenic Pb mantle (HIMU) is re-cycled ocean crust, and this is a comfortably viable model. It does require some ad hoc chemical manipulations during subduction. Given 2 Gy of aggregate mantle strains, the mafic component in HIMU may be of small length scale (< 50 m), possibly subsumed into the dominant peridotitic lithology. This mantle species is globally widespread. Enriched mantles (EM1 and EM2) almost certainly reflect recycling of enriched continental material. This was splendidly verified by Jackson et al (2007), with 87Sr/86Sr in Samoan EM2 lavas up to 0.721. The lithology and length scale of EM1 and EM2 is unconstrained. EM1 is globally present; EM2 is confined to the SW Pacific hotspots. FOZO is a work in progress; many would like to see it become extinct! The trace element signatures of HIMU and FOZO mantles have been constrained using melting models; in both cases the spidergrams are "enriched" with peaks at Nb-Ta of 2x and 4x bulk silicate earth, respectively, but with quite different shapes. As is typical with OIB, the derived source compositions are incompatible with the isotopic signatures, requiring a fairly recent "enrichment" event (possibly auto-metasomatism).
Three-dimensional instabilities of mantle convection with multiple phase transitions
NASA Technical Reports Server (NTRS)
Honda, S.; Yuen, D. A.; Balachandar, S.; Reuteler, D.
1993-01-01
The effects of multiple phase transitions on mantle convection are investigated by numerical simulations that are based on three-dimensional models. These simulations show that cold sheets of mantle material collide at junctions, merge, and form a strong downflow that is stopped temporarily by the transition zone. The accumulated cold material gives rise to a strong gravitational instability that causes the cold mass to sink rapidly into the lower mantle. This process promotes a massive exchange between the lower and upper mantles and triggers a global instability in the adjacent plume system. This mechanism may be cyclic in nature and may be linked to the generation of superplumes.
NASA Astrophysics Data System (ADS)
Liu, Ming-Qi; Li, Zhong-Hai; Yang, Shao-Hua
2017-09-01
Subduction channel processes are crucial for understanding the material and energy exchange between the Earth's crust and mantle. Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. In addition, the crustal rocks generally undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channels; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. The thick overriding continental plate and the low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, the thin overriding lithosphere and the steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may correspond to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate convergence rate can also affect the material ascent mode, e.g., diapiric extrusion versus along-channel exhumation, by changing the amount of supracrustal rocks carried into the subduction channels, which further regulate the fluid/melt activity and thermo-rheological properties.
Diamond and moissanite in ophiolitic mantle rocks and podiform chromitites: A deep carbon source?
NASA Astrophysics Data System (ADS)
Yang, J.; Xu, X.; Wiedenbeck, M.; Trumbull, R. B.; Robinson, P. T.
2010-12-01
Diamonds are known from a variety of occurreces, mainly from mantle-derived kimberlites, meteorite impact craters, and continental deep subduction and collision zones. Recently, an unusual mineral group was discovered in the Luobusa ophiolitic chromitites from the Yarlung Zangbu suture, Tibet, which probably originated from a depth of over 300 km in the mantle. Minerals of deep origin include coesite apparently pseudomorphing stishovite, and diamond as individual grains or inclusions in OsIr alloy. To determine if such UHP and unusual minerals occur elsewhere, we collected about 1.5 t of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites. So far diamond and/or moissanite have been discovered from many different ophiolitic ultramafic rocks, including in-situ grains in polished chromitite fragments. These discoveries demonstrate that the Luobusa ophiolite is not a unique diamond-bearing massif. Secondary ion mass spectrometric (SIMS) analysis shows that the ophiolite-hosted diamond has a distinctive 13C-depleted isotopic composition (δ13C from -18 to -28‰, n=70), compatible to the ophiolite-hosted moissanite (δ13C from -18 to -35‰, n=36), both are much lighter than the main carbon reservoir in the upper mantle (δ13C near -5‰). The compiled data from moissanite from kimberlites and other mantle settings share the characteristic of strongly 13C-depleted isotopic composition. This suggests that diamond and moissanite originates from a separate carbon reservoir in the mantle or that its formation involved strong isotopic fractionation. Subduction of biogenic carbonaceous material could potentially satisfy both the unusual isotopic and redox constraints on diamond and moissanite formation, but this material would need to stay chemically isolated from the upper mantle until it reached the high-T stability field of diamond and moissanite. The origin of diamond and moissanite in the mantle is still unsolved, but all evidence from the upper mantle indicates that they cannot have formed there, except under special and local redox conditions. We suggest, alternatively, that diamond and moissanite may have formed in the lower mantle, where the existence of 13C-depleted carbon is strongly suspected.
Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes
NASA Astrophysics Data System (ADS)
Levin, V.; Park, J.; Gordeev, E.; Droznin, D.
2002-12-01
A wedge of mantle material above the subducting lithospheric plate at a convergent margin is among the most dynamic environments of the Earth's interior. Deformation and transport of solid and volatile phases within this region control the fundamental process of elemental exchange between the surficial layers and the interior of the planet. A helpful property in the study of material deformation and transport within the upper mantle is seismic anisotropy, which may reflect both microscopic effects of preferentialy aligned crystals of olivine and orthopyroxene and macroscopic effects of systematic cracks, melt lenses, layering etc. Through the mapping of anisotropic properties within the mantle wedge we can establish patterns of deformation. Volatile content affects olivine alignment, so regions of anomalous volatile content may be evident. Indicators of seismic anisotropy commonly employed in upper mantle studies include shear wave birefringence and mode-conversion between compressional and shear body waves. When combined together, these techniques offer complementary constraints on the location and intensity of anisotropic properties. The eastern coast of southern Kamchatka overlies a vigorous convergent margin where the Pacific plate descends at a rate of almost 80 mm/yr towards the northwest. We extracted seismic anisotropy indicators from two data sets sensitive to the anisotropic properties of the uppermost mantle. Firstly, we evaluated teleseismic receiver functions for a number of sites, and found ample evidence for anisotropicaly-influenced P-to-S mode conversion. Secondly, we measured splitting in S waves of earthquakes with sources within the downgoing slab. The first set of observations provides constraints on the depth ranges where strong changes in anisotropic properties take place. The local splitting data provides constraints on the cumulative strength of anisotropic properties along specific pathways through the mantle wedge and possibly parts of the slab. To explain the vertical stratification of anisotropy implied from receiver functions, and the strong lateral dependence of shear-wave splitting observations, we cannot rely on simple models of mantle wedge behaviour e.g., olivine-crystal alignment through subduction-driven corner flow. Diverse mechanisms can contribute to the observed pattern of anisotropic properties, with volatiles likely being a key influence. For instance, we find evidence in favor of a slow-symmetry-axis anisotropy within the uppermost 10-20 km of the mantle wedge, implying either excessive hydration of the mantle or else a presence of systematically aligned volatile-filled cracks or lenses. Also, shear-wave splitting is weak beneath the Avachinsky-Koryaksky volcanic center, suggesting either vertical flow or the influence of volatiles and/or thermally-enhanced diffusion creep.
Isotopes as tracers of the sources of the lunar material and processes of lunar origin.
Pahlevan, Kaveh
2014-09-13
Ever since the Apollo programme, isotopic abundances have been used as tracers to study lunar formation, in particular to study the sources of the lunar material. In the past decade, increasingly precise isotopic data have been reported that give strong indications that the Moon and the Earth's mantle have a common heritage. To reconcile these observations with the origin of the Moon via the collision of two distinct planetary bodies, it has been proposed (i) that the Earth-Moon system underwent convective mixing into a single isotopic reservoir during the approximately 10(3) year molten disc epoch after the giant impact but before lunar accretion, or (ii) that a high angular momentum impact injected a silicate disc into orbit sourced directly from the mantle of the proto-Earth and the impacting planet in the right proportions to match the isotopic observations. Recently, it has also become recognized that liquid-vapour fractionation in the energetic aftermath of the giant impact is capable of generating measurable mass-dependent isotopic offsets between the silicate Earth and Moon, rendering isotopic measurements sensitive not only to the sources of the lunar material, but also to the processes accompanying lunar origin. Here, we review the isotopic evidence that the silicate-Earth-Moon system represents a single planetary reservoir. We then discuss the development of new isotopic tracers sensitive to processes in the melt-vapour lunar disc and how theoretical calculations of their behaviour and sample observations can constrain scenarios of post-impact evolution in the earliest history of the Earth-Moon system. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors
NASA Astrophysics Data System (ADS)
Bentham, H. L. M.; Rost, S.; Thorne, M. S.
2017-08-01
Subduction zones are likely a major source of compositional heterogeneities in the mantle, which may preserve a record of the subduction history and mantle convection processes. The fine-scale structure associated with mantle heterogeneities can be studied using the scattered seismic wavefield that arrives as coda to or as energy preceding many body wave arrivals. In this study we analyse precursors to PP by creating stacks recorded at globally distributed stations. We create stacks aligned on the PP arrival in 5° distance bins (with range 70-120°) from 600 earthquakes recorded at 193 stations stacking a total of 7320 seismic records. As the energy trailing the direct P arrival, the P coda, interferes with the PP precursors, we suppress the P coda by subtracting a best fitting exponential curve to this energy. The resultant stacks show that PP precursors related to scattering from heterogeneities in the mantle are present for all distances. Lateral variations are explored by producing two regional stacks across the Atlantic and Pacific hemispheres, but we find only negligible differences in the precursory signature between these two regions. The similarity of these two regions suggests that well mixed subducted material can survive at upper and mid-mantle depth. To describe the scattered wavefield in the mantle, we compare the global stacks to synthetic seismograms generated using a Monte Carlo phonon scattering technique. We propose a best-fitting layered heterogeneity model, BRT2017, characterised by a three layer mantle with a background heterogeneity strength (ɛ = 0.8%) and a depth-interval of increased heterogeneity strength (ɛ = 1%) between 1000 km and 1800 km. The scalelength of heterogeneity is found to be 8 km throughout the mantle. Since mantle heterogeneity of 8 km scale may be linked to subducted oceanic crust, the detection of increased heterogeneity at mid-mantle depths could be associated with stalled slabs due to increases in viscosity, supporting recent observations of mantle viscosity increases due to the iron spin transition at depths of ∼1000 km.
Mantle dynamics following supercontinent formation
NASA Astrophysics Data System (ADS)
Heron, Philip J.
This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are explored in over 600 2D and over 20 3D numerical simulations to better understand how modelling method affects conclusions on mantle convection studies. The results from this thesis show that the failure to model tectonic plates, a high vigour of convection, and a (pseudo) temperature-dependent viscosity would distort the role of mantle plumes, continent insulation, and subduction in the thermal evolution of mantle dynamics.
Primordial helium entrained by the hottest mantle plumes
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Konter, J. G.; Becker, T. W.
2017-02-01
Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.
NASA Astrophysics Data System (ADS)
Gao, Changgui; Dick, Henry J. B.; Liu, Yang; Zhou, Huaiyang
2016-03-01
This paper works on the trace and major element compositions of spatially associated basalts and peridotites from the Dragon Bone amagmatic ridge segment at the eastern flank of the Marion Platform on the ultraslow spreading Southwest Indian Ridge. The rare earth element compositions of basalts do not match the pre-alteration Dragon Bone peridotite compositions, but can be modeled by about 5 to 10% non-modal batch equilibrium melting from a DMM source. The Dragon Bone peridotites are clinopyroxene-poor harzburgite with average spinel Cr# 27.7. The spinel Cr# indicates a moderate degree of melting. However, CaO and Al2O3 of the peridotites are lower than other abyssal peridotites at the same Mg# and extent of melting. This requires a pyroxene-poor initial mantle source composition compared to either hypothetical primitive upper mantle or depleted MORB mantle sources. We suggest a hydrous melting of the initial Dragon Bone mantle source, as wet melting depletes pyroxene faster than dry. According to the rare earth element patterns, the Dragon Bone peridotites are divided into two groups. Heavy REE in Group 1 are extremely fractionated from middle REE, which can be modeled by 7% fractional melting in the garnet stability field and another 12.5 to 13.5% in the spinel stability field from depleted and primitive upper mantle sources, respectively. Heavy REE in Group 2 are slightly fractionated from middle REE, which can be modeled by 15 to 20% fractional melting in the spinel stability field from a depleted mantle source. Both groups show similar melting degree to other abyssal peridotites. If all the melt extraction occurred at the middle oceanic ridge where the peridotites were dredged, a normal 6 km thick oceanic crust is expected at the Dragon Bone segment. However, the Dragon Bone peridotites are exposed in an amagmatic ridge segment where only scattered pillow basalts lie on a partially serpentinized mantle pavement. Thus their depletion requires an earlier melting occurred at other place. Considering the hydrous melting of the initial Dragon Bone mantle source, we suggest the earlier melting event occurred in an arc terrain, prior to or during the closure of the Mozambique Ocean in the Neproterozoic, and the subsequent assembly of Gondwana. Then, the Al2O3 depleted and thus buoyant peridotites became the MORB source for Southwest Indian Ridge and formed the Marion Rise during the Gondwana breakup.
Wooden, J.L.; Mueller, P.A.
1988-01-01
A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.
Constraining LLSVP Buoyancy With Tidal Tomography
NASA Astrophysics Data System (ADS)
Lau, H. C. P.; Mitrovica, J. X.; Davis, J. L.; Tromp, J.; Yang, H. Y.; Al-Attar, D.
2017-12-01
Using a global GPS data set of high precision measurements of the Earth's body tide, we perform a tomographic inversion to constrain the integrated buoyancy of the Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle. As a consequence of the long-wavelength and low frequency nature of the Earth's body tide, these observations are particularly sensitivity to LLSVP buoyancy, a property of Earth's mantle that remains a source of ongoing debate. Using a probabilistic approach we find that the data are best fit when the bottom two thirds ( 700 km) of the LLSVPs have an integrated excess density of 0.60%. The detailed distribution of this buoyancy, for example whether it primarily resides in a thin layer at the base of the mantle, will require further testing and the augmentation of the inversions to include independent data sets (e.g., seismic observations). In any case, our inference of excess density requires the preservation of chemical heterogeneity associated with the enrichment of high-density chemical components, possibly linked to subducted oceanic plates and/or primordial material, in the deep mantle. This conclusion has important implications for the stability of these structures and, in turn, the history and ongoing evolution of the Earth system.
Molecular and mass spectroscopic analysis of isotopically labeled organic residues
NASA Technical Reports Server (NTRS)
Mendoza-Gomez, Celia X.; Greenberg, J. Mayo; Mccain, P.; Ferris, J. P.; Briggs, R.; Degroot, M. S.; Schutte, Willem A.
1989-01-01
Experimental studies aimed at understanding the evolution of complex organic molecules on interstellar grains were performed. The photolysis of frozen gas mixtures of various compositions containing H2O, CO, NH3, and CH4 was studied. These species were chosen because of their astrophysical importance as deducted from observational as well as theoretical studies of ice mantles on interstellar grains. These ultraviolet photolyzed ices were warmed up in order to produce refractory organic molecules like the ones formed in molecular clouds when the icy mantles are being irradiated and warmed up either by a nearby stellar source or impulsive heating. The laboratory studies give estimates of the efficiency of production of such organic material under interstellar conditions. It is shown that the gradual carbonization of organic mantles in the diffuse cloud phase leads to higher and higher visual absorptivity - yellow residues become brown in the laboratory. The obtained results can be applied to explaining the organic components of comets and their relevance to the origin of life.
Cooling of the Earth in the Archaean: Consequences of pressure-release melting in a hotter mantle
NASA Astrophysics Data System (ADS)
Vlaar, N. J.; van Keken, P. E.; van den Berg, A. P.
1994-01-01
A model is presented to describe the cooling of the Earth in the Archaean. At the higher Archaean mantle temperatures pressure-release melting starts deeper and generates a thicker basaltic or komatiitic crust and depleted harzburgite layer compared with the present-day situation. Intrinsic compositional stability and lack of mechanical coherency renders the mechanism of plate tectonics ineffective. It is proposed that the Archaean continents stabilised early on top of a compositionally stratified root. In the Archaean oceanic lithosphere, hydrated upper crust can founder and recycle through its high-pressure phase eclogite. Eclogite remelting and new pressure-release melting generates new crustal material. Migration of magma and latent heat release by solidification at the surface provides an efficient mechanism to cool the mantle by several hundreds of degrees during the Archaean. This can satisfactorily explain the occurrence of high extrusion temperature komatiites and lower extrusion temperature basalts in greenstone belts as being derived from the same source by different mechanisms.
Mineralogy of the Hydrous Lower Mantle
NASA Astrophysics Data System (ADS)
Shim, S. H.; Chen, H.; Leinenweber, K. D.; Kunz, M.; Prakapenka, V.; Bechtel, H.; Liu, Z.
2017-12-01
The hydrous ringwoodite inclusions found in diamonds suggest water storage in the mantle transition zone. However, water storage in the lower mantle remains unclear. Bridgmanite and magnesiowustite appear to have very little storage capacity for water. Here, we report experimental results indicating significant changes in the lower-mantle mineralogy under the presence of water. We have synthesized Mg2SiO4 ringwoodite with 2 wt% water in multi-anvil press at 20 GPa and 1573 K at ASU. The hydrous ringwoodite sample was then loaded to diamond anvil cells with Ar or Ne as a pressure medium. We heated the pure hydrous ringwoodite samples at lower-mantle pressure using a CO2 laser heating system at ASU. We measured X-ray diffraction patterns at the GSECARS sector of the Advanced Photon Source (APS) and 12.2.2 sector of the Advanced Light Source (ALS). For the separate Pt-mixed samples, we have conducted in situ heating at the beamlines using near IR laser heating systems. We measured the infrared spectra of the heated samples at high pressure and after pressure quench at 1.4.4 sector of ALS. In the in situ experiments with hydrous ringwoodite + Pt mixture as a starting material, we found formation of stishovite together with bridgmanite and periclase during heating with a near IR laser beams at 1300-2500 K and 35-66 GPa. However, some hydrous ringwoodite still remains even after a total of 45 min of heating. In contrast, the hydrous ringwoodite samples heated without Pt by CO2 laser beams are transformed completely to bridgmanite, periclase and stishovite at 31-55 GPa and 1600-1900 K. We have detected IR active OH mode of stishovite from the samples heated at lower-mantle pressures. The unit-cell volume of stishovite measured after pressure quench is greater than that of dry stishovite by 0.3-0.6%, supporting 0.5-1 wt% of H2O in stishovite in these samples. Stishovite is a thermodynamically forbidden phase in the dry lower mantle because of the existence of periclase and bridgmanite. However, our results indicate that stishovite can exist together with periclase and bridgmanite when water is present, because water is stored in stishovite. Therefore, water-rich parts of the lower mantle, such as regions with subducting slabs, would have distinct mineralogy from their dry counterparts, containing stishovite as a water storage mineral.
Hydrogen Isotopic Systematics of Nominally Anhydrous Phases in Martian Meteorites
NASA Astrophysics Data System (ADS)
Tucker, Kera
Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H 2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS). This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used to infer the H2O contents of the mantle source reservoirs of the depleted shergottites (200-700 ppm) and the nakhlites (10-100 ppm). This suggests that mantle source of the nakhlites is systematically drier than that of the depleted shergottites, and the upper mantle of Mars may have preserved significant heterogeneity in its H2O content. Additionally, this range of H2O contents is not dissimilar to the range observed for the Earth's upper mantle.
Source Distributions of Substorm Ions Observed in the Near-Earth Magnetotail
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.
1999-01-01
This study employs Geotail plasma observations and numerical modeling to determine sources of the ions observed in the near-Earth magnetotail near midnight during a substorm. The growth phase has the low-latitude boundary layer as its most important source of ions at Geotail, but during the expansion phase the plasma mantle is dominant. The mantle distribution shows evidence of two distinct entry mechanisms: entry through a high latitude reconnection region resulting in an accelerated component, and entry through open field lines traditionally identified with the mantle source. The two entry mechanisms are separated in time, with the high-latitude reconnection region disappearing prior to substorm onset.
NASA Astrophysics Data System (ADS)
Gazel, E.; Madrigal, P.; Flores, K. E.; Bizimis, M.; Jicha, B. R.
2016-12-01
Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins of the large low shear velocity provinces (LLSVPs). In these locations the ascent of material from the core-mantle boundary connects the deep Earth with surface processes through mantle plume activity, forming large igneous provinces (LIPs) and some of the modern hotspot volcanoes. Petrological and geodynamic evidence suggest a link between the formation of oceanic plateaus and the interactions of mantle plumes and mid-ocean ridges (MOR). Therefore, it is possible to trace the potential interactions between MORs and deep mantle plume upwellings by referencing the tectonic and magmatic evolution of the Pacific Plate in time to the current location of the LLSVP, considering the long-lived ( 500 Ma) existence of these thermochemical anomalies. We identified episodic upwellings of the Pacific LLSVP during the Mesozoic separated by 10 to 20 Ma, by reconstructing the kinematic evolution of the Pacific Plate in the last 170 Ma. The fact that the bulk emplacement of LIPs ( 120-80 Ma) in the Pacific coincides with the timing of the Cretaceous Normal Superchron, that can be related to fluctuations of mantle-core heat fluxes further supports the hypothesis of deep mantle origin for LIPs. The potential cyclicity of LIP emplacement could be tied to core heat fluctuations interacting with the lower mantle, the rheology contrast of material crossing the transition zone (either upwelling hot material or downgoing dense slabs as mantle avalanches), the rate of entrainment of recycled materials, or a combination of the processes mentioned. Recognizing patterns and possible cycles is crucial to the link between deep processes and life as these pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.
10 CFR 110.22 - General license for the export of source material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... country not listed in § 110.28: (1) Uranium or thorium, other than U-230, U-232, Th-227, and Th-228, in any substance in concentrations of less than 0.05 percent by weight. (2) Thorium, other than Th-227 and Th-228, in incandescent gas mantles or in alloys in concentrations of 5 percent or less. (3) Th...
NASA Astrophysics Data System (ADS)
Bondarenko, N. V.; Head, J. W.
2009-03-01
In order to assess the nature of crater-associated radar-dark diffuse features (DDFs) on Venus and to understand their formation and evolution, we analyzed Magellan radar roughness, emissivity, and reflectivity data in the vicinity of craters accompanied by these features. Following others, we assumed that DDFs are deposits (mantles) of ejected material emplaced during formation of the impact crater. The majority of radar-dark parabolas (the youngest DDFs) are characterized by a smooth mantle-atmosphere interface having low root-mean-square (rms) slopes on scales of 1-100 m, as derived from Magellan altimeter data. Older DDFs also often have areas with low rms slopes, suggesting that the mantle rms slopes can be preserved for geologically long periods of time. Some parabolas and older DDFs have asymmetric small-scale (decimeter-scale) relief that is interpreted to be dunes that formed as a result of eolian processes. This implies that the mantle material is mobile and can saltate under the influence of wind action. On average, aging of these features is accompanied by a decrease of mantle material dielectric permittivity. The most efficient mechanism for parabola degradation seems to be the removal of mantle material from the site of initial deposition by subsequent winds. We found a few examples of features that could be interpreted to be the result of in situ modification of the primary mantle.
NASA Astrophysics Data System (ADS)
Reiss, Anne-Sophie; Thomas, Christine
2015-04-01
As part of the RHUM-RUM project we investigate the upwelling plume beneath the island La Réunion, located in the Indian Ocean 200 km east of Madagascar. This plume belongs to one of the most active hotspot regions in the world and is still active today. Understanding the depth origin and dimensions of such a plume helps to better understand mantle processes and the heat flux of the Earth. If the plume originates at the core-mantle boundary the Earth is cooled down differently compared with an indirect cooling of plumes originating in the upper mantle. Here we use underside reflections of PP and SS waves off the seismic discontinuities at 410 km and 660 km depth that arrive as precursors to the main phase in order to investigate the topography of these discontinuities that mark the top and bottom of the mantle transition zone. If hotter or colder material intersects the mantle transition zone, the discontinuities at 410 km and 660 km depth are deflected, hence the topography of the mantle transition zone can be an indicator for an upwelling plume. The 410 km discontinuity, which exists due to the phase change of olivine to spinel, should be depressed significantly in the presence of hot upwelling material. Because of the opposite Clapeyron slope of the phase change of spinel to magnesiowuestite and perovskite at 660 km depth, the topography of this discontinuity should be elevated. For this study we analyse over 200 events with Mw ≥ 5.8 and bounce points distributed over the entire Indian Ocean. Array seismology methods, such as vespagrams and slowness-backazimuth analysis, are used to enhance the signal-to-noise-ratio and detect and identify precursors. Using different source-receiver combinations enables us to get a dense coverage of bounce points of PP and SS waves in the Indian Ocean and especially around La Réunion, also with crossing ray paths. The differential travel times of PP and SS arrivals and their precursors of robust stacks are converted into depth values of the seismic discontinuities. In our data, we can detect clear underside reflections off the 410 km discontinuity and also some off the 660 km discontinuity. The preliminary topography of the two discontinuities indicates a thinned mantle transition zone, which we interpret as a large upwelling beneath La Réunion.
Geologic Mapping of Ejecta Deposits in Oppia Quadrangle, Asteroid (4) Vesta
NASA Technical Reports Server (NTRS)
Garry, W. Brent; Williams, David A.; Yingst, R. Aileen; Mest, Scott C.; Buczkowski, Debra L.; Tosi, Federico; Schafer, Michael; LeCorre, Lucille; Reddy, Vishnu; Jaumann, Ralf;
2014-01-01
Oppia Quadrangle Av-10 (288-360 deg E, +/- 22 deg) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (approximately 45 km diameter) and Oppia (approximately 40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' colorratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced greater than 5 crater radii away) in a microgravity environment.
Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine
2015-12-01
The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.
Chemical provinces and dynamic melting of the NE Atlantic mantle
NASA Astrophysics Data System (ADS)
Tronnes, R. G.
2009-12-01
Low-degree melting of fertile parts of the NE Atlantic mantle yields primitive alkaline basalts in the Icelandic off-rift zones and at Jan Mayen. Olivine tholeiites in the Icelandic rift zones and oceanic spreading ridges are formed by protracted decompressional melting. The V-shaped ridges SW and NE of Iceland indicate that rising, hot material is supplied by a pulsating plume and deflected laterally for distances of about 1000 km from Iceland (Jones et al. GGG 2002; Breivik et al. JGR 2006). Plume material deflected along the rift zones and spreading ridges undergoes mixing with the ambient asthenosphere and extensive melting at shallow level, whereas material deflected in other directions may flow laterally at deeper levels and remain largely unmelted and fertile. A recent investigation of a suite of primitive off-rift basalts from Iceland and Jan Mayen (Debaille et al., 2009, GCA) demonstrated an important source contribution from subcontinental lithospheric mantle (SCLM). Available data on the primitive off-rift basalts and tholeiitic basalts from Iceland and the NE Atlantic ridges indicates the existence of three main composite mantle components, characterized by the following relative isotope ratios (H: high, I: intermediate and L: low ratio) for 87/86Sr, 143/144Nd, 206/204Pb, 187/188Os and 3/4He, respectively: 1. Iceland plume with depleted lower mantle mixed with recycled oceanic crust: I, I, H, H, H 2. Strongly depleted and later re-enriched SCLM: H, L, I, L, L 3. Depleted asthenosphere: L, H, L, I, L The two first composite components contain enriched and depleted subcomponents with distinct isotope signatures. The isotope ratio variations between the fertile components are larger than between the refractory components. The 3/4He ratio, however, is much higher in the depleted plume component than in the depleted SCLM and asthenospheric components. The old SCLM material could in principle be recycled and embedded in the lower mantle and supplied to the melting zone by the Iceland plume. However, a regional isotopic variation pattern indicates that this material originated from the nearby continents and became partially delaminated and embedded in the upper mantle during the recent continental rifting and separation of Greenland the Jan Mayen Ridge and of Greenland and Spitsbergen. The influence of SCLM is most clearly recognized north of central Iceland, in the Northern Rift Zone, along the Kolbeinsey, Mohns, Knipovich and Gakkel Ridges, and especially at Jan Mayen and along the westernmost Gakkel Ridge close to the Yermak Plateau (Goldstein et al. 2008, Nature). The SCLM-signal is weaker for Snæfellsnes, the Mid-Icelandic Belt and the Western and Eastern Rift Zones, and weakest for Vestmannaeyjar, the Southern Volcanic Flank Zone, the Reykjanes Peninsula and the Reykjanes Ridge. The regional geochemical patterns have interesting implications for the probable interaction between lateral plume flow, ridge-focussed asthenospheric flow and delaminated patches of SCLM.
La Isla de Gorgona, Colombia: A petrological enigma?
NASA Astrophysics Data System (ADS)
Kerr, Andrew C.
2005-09-01
A wide range of intrusive (wehrlite, dunite, gabbro and olivine gabbro) and extrusive (komatiites picrites and basalts) igneous rocks are found on the small pacific island of Gorgona. The island is best known for its ˜90 Ma spinifex-textured komatiites: the only true Phanerozoic komatiites yet discovered. Early work led to suggestions that the rocks of the island formed at a mid-ocean ridge, however more recent research supports an origin as part of a hot mantle plume-derived oceanic plateau. One of the main lines of evidence for this origin stems from the inferred high mantle source temperatures required to form the high-MgO (> 15 wt.%) komatiites and picrites. Another remarkable feature of the island, considering its small size (8 × 2.5 km), is the degree of chemical and radiogenic isotopic heterogeneity shown by the rocks. This heterogeneity requires a mantle source region with at least three isotopically distinctive source regions (two depleted and one enriched). Although these mantle source regions appear to be derived in significant part from recycled oceanic crust and lithosphere, enrichments in 187Os, 186Os and 3He in Gorgona lavas and intrusive rocks, suggest some degree of transfer of material from the outer core to the plume source region at D″. Modelling reveals that the komatiites probably formed by dynamic melting at an average pressure of 3-4 GPa leaving residual harzburgite. Trace element depletion in Gorgona ultramafic rocks appears to be the result of earlier, deeper melting which produced high-MgO trace element-enriched magmas. The discovery of a trace-element enriched picrite on the island has confirmed this model. Gorgona accreted onto the palaeocontinental margin of northwestern South America in the Eocene and palaeomagnetic work reveals that it was formed at ˜26 °S. It has been proposed that Gorgona is a part of the Caribbean-Colombian Oceanic Plateau (CCOP), however, the CCOP accreted in the Late Cretaceous and was derived from a more equatorial palaeolatitude. This evidence, and differing geochemical signatures, strongly suggests that Gorgona and probably other coastal oceanic plateau sequences in Colombia and Ecuador, belong to a completely different oceanic plateau to the CCOP.
Magnesium stable isotope composition of Earth's upper mantle
NASA Astrophysics Data System (ADS)
Handler, Monica R.; Baker, Joel A.; Schiller, Martin; Bennett, Vickie C.; Yaxley, Gregory M.
2009-05-01
The mantle is Earth's largest reservoir of Mg containing > 99% of Earth's Mg inventory. However, no consensus exists on the stable Mg isotope composition of the Earth's mantle or how variable it is and, in particular, whether the mantle has the same stable Mg isotope composition as chondrite meteorites. We have determined the Mg isotope composition of olivine from 22 mantle peridotites from eastern Australia, west Antarctica, Jordan, Yemen and southwest Greenland by pseudo-high-resolution MC-ICP-MS on Mg purified to > 99%. The samples include fertile lherzolites, depleted harzburgites and dunites, cryptically metasomatised ('dry') peridotites and modally metasomatised apatite ± amphibole-bearing harzburgites and wehrlites. Olivine from these samples of early Archaean through to Permian lithospheric mantle have δ25Mg DSM-3 = - 0.22 to - 0.08‰. These data indicate the bulk upper mantle as represented by peridotite olivine is homogeneous within current analytical uncertainties (external reproducibility ≤ ± 0.07‰ [2 sd]). We find no systematic δ25Mg variations with location, lithospheric age, peridotite fertility, or degree or nature of mantle metasomatism. Although pyroxene may have slightly heavier δ25Mg than coexisting olivine, any fractionation between mantle pyroxene and olivine is also within current analytical uncertainties with a mean Δ25Mg pyr-ol = +0.06 ± 0.10‰ (2 sd; n = 5). Our average mantle olivine δ25Mg DSM-3 = - 0.14 ± 0.07‰ and δ26Mg DSM-3 = - 0.27 ± 0.14‰ (2 sd) are indistinguishable from the average of data previously reported for terrestrial basalts, confirming that basalts have stable Mg isotope compositions representative of the mantle. Olivine from five pallasite meteorites have δ25Mg DSM-3 = - 0.16 to - 0.11‰ that are identical to terrestrial olivine and indistinguishable from the average δ25Mg previously reported for chondrites. These data provide no evidence for measurable heterogeneity in the stable Mg isotope composition of the source material in the proto-planetary disc from which Earth and chondrite and pallasite parent bodies accreted.
Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan
2018-03-01
We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.
NASA Astrophysics Data System (ADS)
Liu, M. Q.; Li, Z. H.
2017-12-01
Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. The crustal rocks undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channel; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. Thick overriding continental plate and low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, thin overriding lithosphere and steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may corresponds to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate convergence rate can also affect the material ascent mode, e.g., diapiric extrusion versus along-channel exhumation, by changing the amount of supracrustal rocks carried into the subduction channels, which further regulate the fluid/melt activity and thermo-rheological properties.
NASA Astrophysics Data System (ADS)
Ehlen, Judy
2005-04-01
Weathered mantle comprises the materials above bedrock and below the soil. It can vary in thickness from millimeters to hundreds of meters, depending primarily on climate and parent material. Study of the weathered mantle comes within the realms of four disciplines: geology, geomorphology, soil science, and civil engineering, each of which uses a different approach to describe and classify the material. The approaches of engineers, geomorphologists, and geologists are contrasted and compared using example papers from the published literature. Soil scientists rarely study the weathering profile as such, and instead concentrate upon soil-forming processes and spatial distribution primarily in the solum. Engineers, including engineering geologists, study the stability and durability of the weathered mantle and the strength of the materials using sophisticated procedures to classify weathered materials, but their approach tends to be one-dimensional. Furthermore, they believe that the study of mineralogy and chemistry is not useful. Geomorphologists deal with weathering in terms of process—how the weathered mantle is formed—and with respect to landform evolution using a spatial approach. Geologists tend to ignore the weathered mantle because it is not bedrock, or to study its mineralogy and/or chemistry in the laboratory. I recommend that the approaches of the various disciplines be integrated—geomorphologists and geologists should consider using engineering weathering classifications, and geologists should adopt a spatial perspective to weathering, as should engineers and engineering geologists.
Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?
NASA Astrophysics Data System (ADS)
Plesa, A.-C.; Tosi, N.; Breuer, D.
2014-10-01
The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus. Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong overheating of the lowermost mantle, whose temperature increases to values that exceed the liquidus. The iron-rich melt would most likely remain trapped in the lower part of the mantle. The upper mantle in that scenario cools rapidly and only shows partial melting during the first billion year of evolution. Therefore a fractionated global and deep magma ocean is difficult to reconcile with observations. Different scenarios assuming, for instance, a hemispherical or shallow magma ocean, or a crystallization sequence resulting in a lower density gradient than that implied by pure fractional crystallization will have to be considered.
NASA Astrophysics Data System (ADS)
Collinet, Max; Médard, Etienne; Charlier, Bernard; Vander Auwera, Jacqueline; Grove, Timothy L.
2015-10-01
We have performed piston-cylinder experiments on a primitive martian mantle composition between 0.5 and 2.2 GPa and 1160 to 1550 °C. The composition of melts and residual minerals constrain the possible melting processes on Mars at 50 to 200 km depth under nominally anhydrous conditions. Silicate melts produced by low degrees of melting (<10 wt.%) were analyzed in layers of vitreous carbon spheres or in micro-cracks inside the graphite capsule. The total range of melt fractions investigated extends from 5 to 50 wt.%, and the liquids produced display variable SiO2 (43.7-59.0 wt.%), MgO (5.3-18.6 wt.%) and Na2O + K2O (1.0-6.5 wt.%) contents. We provide a new equation to estimate the solidus temperature of the martian mantle: T (°C) = 1033 + 168.1 P (GPa) - 14.22P2 (GPa), which places the solidus 50 °C below that of fertile terrestrial peridotites. Low- and high-degree melts are compared to martian alkaline rocks and basalts, respectively. We suggest that the parental melt of Adirondack-class basalts was produced by ∼25 wt.% melting of the primitive martian mantle at 1.5 GPa (∼135 km) and ∼1400 °C. Despite its brecciated nature, NWA 7034/7533 might be composed of material that initially crystallized from a primary melt produced by ∼10-30 wt.% melting at the same pressure. Other igneous rocks from Mars require mantle reservoirs with different CaO/Al2O3 and FeO/MgO ratios or the action of fractional crystallization. Alkaline rocks can be derived from mantle sources with alkali contents (∼0.5 wt.%) similar to the primitive mantle.
Waite, Gregory P.; Smith, Robert B.; Allen, Richard M.
2006-01-01
The movement of the lithosphere over a stationary mantle magmatic source, often thought to be a mantle plume, explains key features of the 16 Ma Yellowstone–Snake River Plain volcanic system. However, the seismic signature of a Yellowstone plume has remained elusive because of the lack of adequate data. We employ new teleseismic P and S wave traveltime data to develop tomographic images of the Yellowstone hot spot upper mantle. The teleseismic data were recorded with two temporary seismograph arrays deployed in a 500 km by 600 km area centered on Yellowstone. Additional data from nearby regional seismic networks were incorporated into the data set. The VP and VS models reveal a strong low-velocity anomaly from ∼50 to 200 km directly beneath the Yellowstone caldera and eastern Snake River Plain, as has been imaged in previous studies. Peak anomalies are −2.3% for VP and −5.5% for VS. A weaker, anomaly with a velocity perturbation of up to −1.0% VP and −2.5% VS continues to at least 400 km depth. This anomaly dips 30° from vertical, west-northwest to a location beneath the northern Rocky Mountains. We interpret the low-velocity body as a plume of upwelling hot, and possibly wet rock, from the mantle transition zone that promotes small-scale convection in the upper ∼200 km of the mantle and long-lived volcanism. A high-velocity anomaly, 1.2%VP and 1.9% VS, is located at ∼100 to 250 km depth southeast of Yellowstone and may represent a downwelling of colder, denser mantle material.
Sources of volatiles in basalts from the Galapagos Archipelago: deep and shallow evidence
NASA Astrophysics Data System (ADS)
Peterson, M. E.; Saal, A. E.; Hauri, E. H.; Werner, R.; Hauff, S. F.; Kurz, M. D.; Geist, D.; Harpp, K. S.
2010-12-01
The study of volatiles (H2O, CO2, F, S, and Cl) is important because volatiles assert a strong influence on mantle melting and magma crystallization, as well as on the viscosity and rheology of the mantle. Despite this importance, there have been a minimal number of volatile studies done on magmas from the four main mantle sources that define the end member compositions of the Galapagos lavas. For this reason, we here present new volatile concentrations of 89 submarine glass chips from dredges collected across the archipelago during the SONNE SO158, PLUM02, AHA-NEMO, and DRIFT04 cruises. All samples, with the exception of six, were collected at depths greater than 1000m. Major elements (E-probe), and volatile and trace elements (SIMS), are analyzed on the same glass chip, using 4 chips per sample, to better represent natural and analytical variation. Trace element contents reveal three main compositional groups: an enriched group typical of OIB, a group with intermediate compositions, and a group with a depleted trace element composition similar to MORB. The absolute ranges of volatile contents for all three compositional groups are .098-1.15wt% for H2O, 10.7-193.7 ppm for CO2, 61.4-806.5 ppm for F, 715.8-1599.2 ppm for S and 3.8-493.3 for Cl. The effect of degassing, sulfide saturation and assimilation of hydrothermally altered material must be understood before using the volatile content of submarine glasses to establish the primary volatile concentration of basalts and their mantle sources. CO2 has a low solubility in basaltic melts causing it to extensively degas. Based on the CO2/Nb ratio, we estimate the extent of degassing for the Galapagos lavas to range from approximately undegassed to 90% degassed. We demonstrate that 98% of the samples are sulfur undersaturated. Therefore, sulfur will behave as a moderately incompatible element during magmatic processes. Finally, we evaluate the effect of assimilation of hydrothermally altered material on the volatile content of the lavas. This process is evident when volatile/refractory element ratios are compared to the trace elements indicative of interaction between melt and the oceanic lithosphere such as a positive Sr anomaly (Sr*) in a primitive mantle normalized diagram. This is indicative of the interaction of basaltic melts with plagioclase cumulates. For the Galapagos depleted submarine glasses, we find a positive correlation between Sr* and all volatile/refractory element ratios suggesting significant volatile input from melt-lithosphere interaction. These samples, due to their low trace element concentrations, readily show the alteration signature, thus making the establishment of their primitive volatile content difficult. As a result, we will present the primary volatile concentrations for the trace element intermediate and enriched groups after careful consideration for degassing, sulfide saturation, and assimilation of hydrothermally altered material.
Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.
1994-01-01
Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also have relatively uniform ??{lunate}Nd values that range only from -0.8 to + 1.1. This limited variation in neodymium isotopic composition may reflect the characteristics of the mantle sources of the rocks, or it may indicate that somehow similar proportions of crust contaminated the parental melts. The osmium, lead, and neodymium isotopic data for these rocks most closely resemble the mantle sources of certain ocean island basalts (OIB), such as some Hawaiian basalts. Hence, these data are consistent with derivation of primary melts from a mantle source similar to that of some types of hotspot activity. The long-term Re/Os enrichment of this and similar mantle sources, relative to chondritic upper mantle, may reflect 1. (1) incorporation of recycled oceanic crust into the source more than 1 Ga ago, 2. (2) derivation from a mantle plume that originated at the outer core-lower mantle interface, or 3. (3) persistence of primordial stratification of rhenium and osmium in the mantle. ?? 1994.
NASA Astrophysics Data System (ADS)
Tian, H.; Yang, W.; Li, S. G.; Ke, S.; Chu, Z. Y.
2016-12-01
Many studies have focused on the interactions between recycled materials and depleted mantle to explain the origins of EM and HIMU components (e.g., Cohen and O'Nions, 1982; White and Hofmann, 1982). However, little is known about the interactions between recycled materials and enriched mantle and the associated consequences, e.g., late recycled crustal material overprints mantle previously enriched by earlier recycling events of the crust. Recently, light Mg isotopic composition of the basalts from North China Craton (NCC) and South China Block (SCB) has been attributed to recycled carbonate metasomatism from subducted Pacific slab (Yang et al., 2012; Huang et al., 2015). If this explanation is correct, the Cenozoic basalts from Northeast (NE) China should also contain light Mg isotopic compositions. The basalts from NE China have EMI Sr-Nd-Pb isotopic features that are distinct from the NCC and SCB basalts, indicating the contribution of an enriched mantle source (Choi et al., 2006; Chu et al., 2013). Therefore, Mg isotopic compositions of the Cenozoic basalts from NE China will help to determine the interaction between recycled sedimentary carbonates and an enriched mantle. Consistent with the hypothesis, our results show that the Cenozoic basalts from Wudalianchi and Erkeshan, NE China, have homogeneous and light Mg isotopic compositions (δ26Mg =-0.57 to -0.46‰). Based on the similarity to the basalts from NCC and SCB, their light Mg isotopic feature should also be derived from carbonate metasomatism (i.e. carbonated asthenosphere). In addition to that, a question arise that why the interaction between carbonated asthenosphere and the EM-I SLCM significantly modify the trace element and Sr-Nd-Pb isotopic composition of the mantle-derived melt, but have little effect on the Mg isotopes? The possible mechanism is the interaction between low SiO2 melt and peridotite, which converts pyroxene to olivine, as reported in previous studies (e.g., Kelemen et al., 1992; Edwards and Malpas, 1996; Zhou et al., 1996, 2014). During the interaction, the trace elements of the EM-I SCLM largely entered the melt, and all Mg was transferred from Opx and Cpx into the newly formed olivine. Consequently, the Wudalianchi and Erkeshan basalts preserve low δ26Mg and obtain EM-I Sr-Nd-Pb isotopic compositions (Fig. 1).
The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.
Tackley, Paul J; Xie, Shunxing
2002-11-15
Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.
Constraints on Thermochemical Convection of the Mantle from Plume-related Observations
NASA Astrophysics Data System (ADS)
Zhong, S.
2005-05-01
Although geochemical observations have long suggested a layered mantle with more enriched mantle material in the bottom layer to provide a significant amount of heat to the top layer, the nature of such a layering remains unclear. An important observation that has been used to argue against the conventional layered mantle model (i.e., the layering at the 670 km depth) was the plume heat flux [Davies, 1999]. Plume heat flux is estimated as ~ 3.5 TW, or 10% of the surface heat flux [Davies, 1988; Sleep, 1990]. In this study, we demonstrate with 3-D spherical models of mantle convection with depth- and temperature-dependent viscosity that observed plume heat flux, plume excess temperature (<350°C), and upper mantle temperature (~ 1300°C) can pose important constraints on the layered mantle convection. We show that for a purely thermal convection model (i.e., a whole mantle convection), the observations of plume heat flux, plume excess temperature, and upper mantle temperature can be simultaneously explained only when internal heating rate is about 65%. For smaller internal heating rate, plume heat flux and plume excess temperature would be too large, and upper mantle temperature would be too small, compared with the observed. This suggests that for a whole mantle convection the CMB heat flux needs to be > 10 TW. For a core with no significant heat producing elements, such large CMB heat flux may lead to too rapid cooling of the core or a too young inner core. A layered mantle convection may help reduce the CMB heat flux. For layered convection models, we found that the top layer needs to be ~70% internally heated to explain the upper mantle temperature and plume-related observations, and this required internal heating ratio is insensitive to the layer thickness for the bottom layer (we used ~600 km and 1100 km thicknesses). This result suggests that heat generation rate for the bottom layer cannot be significantly larger (< a factor of 2) than that for the top layer. thus challenging the conventional geochemical inference for an significantly enriched bottom layer. However, this is more consistent with recent estimate of the MORB source composition that increases heat producing element concentration by a factor of three compared with the previously proposed.
Integrating Existing Data to Understand the Nature of the Lunar Mantle
NASA Astrophysics Data System (ADS)
Klima, R. L.; Bretzfelder, J. M.; Greenhagen, B. T.; Buczkowski, D. L.; Ernst, C. M.; Petro, N. E.
2018-04-01
We examine the mafic massifs surrounding the Imbrium basin in Near and Mid-IR to search for potential mantle material. The southwestern rim may be most promising for excavation of ultramafic material.
Returning from the deep: Archean atmospheric fingerprints in modern hotspot lavas (Invited)
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Cabral, R. A.; Rose-Koga, E. F.; Koga, K. T.; Whitehouse, M. J.; Antonelli, M. A.; Farquhar, J.; Day, J. M.; Hauri, E. H.
2013-12-01
Ocean plates transport surface materials, including oceanic crust and sediment, into the mantle at subduction zones. However, the fate of the subducted package--oceanic crust and sediment--in the mantle is poorly understood. A long-standing hypothesis maintains that subducted materials reside in the mantle for an extended, but unknown, period of time and are then recycled back to the Earth's surface in regions of buoyantly upwelling mantle and melted beneath hotspots. Sulfur isotopes provide an important new tool to evaluate the presence of ancient recycled materials in hotspot lavas. Widespread terrestrial mass independently fractionated sulfur (MIF-S) isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 Ga. In fact, the only significant reservoirs of MIF-S containing rocks documented so far are sediments and hydrothermal rocks older than ~2.45 Ga. Armed with this insight, we examined sulfur isotopes in olivine phenocrysts and olivine-hosted sulfides in lavas from the island of Mangaia, Cook Islands. Lavas from this location host unusually radiogenic Pb-isotopic compositions--referred to as a HIMU (high U/Pb) component--and this has been attributed to ancient recycled oceanic crust in the mantle source. In Cabral et al. (2013), we report MIF-S in olivine phenocrysts and olivine-hosted sulfides. The discovery of MIF-S isotopic signatures in young hotspot lavas appears to provide a "timestamp" and "signature" for preservation of subducted Archean surface materials in the mantle sourcing Mangaia lavas. We report new sulfur isotope data on olivine-hosted sulfides from the Mangaia lavas that reinforce our discovery of MIF-S anomalies reported in Cabral et al. (2013). We also report new sulfur isotopic data on Mangaia whole rock powders, and we find no evidence of MIF-S signatures. It is not yet clear why the individual Mangaia sulfides and the olivine separates have more extreme MIF-S than the whole rocks. We consider it likely that the MIF-S anomaly measured in the olivine separates was diminished relative to the olivine-hosted sulfides by incorporation of modern sulfur into the olivine separates by low-temperature processes operating on the rocks during the 20 Ma since eruption: The absence of a MIF-S anomaly in the whole rock that has olivine-hosted sulfides with MIF-S anomalies may be a result of near-complete replacement of the magmatic sulfur (with a MIF-S anomaly) with modern sulfur (with no MIF-S anomaly) during surficial weathering over 20 Ma. The sulfur in the olivine-hosted sulfides with the largest MIF-S anomalies represents a very small proportion of the sulfur in a bulk basaltic rock and therefore do not impart a clear MIF-S anomaly on the bulk rock analysis. Very few data are available to evaluate this hypothesis. Therefore, pairing sulfur isotope measurements with whole rocks, mineral separates and olivine-hosted sulfides with careful petrographic and electron probe analyses of the samples will be critical for evaluating the origin of the sulfides--primary magmatic or secondary--and the origin and distribution of the sulfur-isotopic signatures in OIB.
NASA Astrophysics Data System (ADS)
Lechmann, Anna; Burg, Jean-Pierre; Ulmer, Peter; Guillong, Marcel; Faridi, Mohammad
2018-04-01
Middle Miocene to Quaternary volcanic rocks cover large areas of the Azerbaijan Province in NW Iran. This study reports two separate age clusters out of 23 new LA-ICP-MS U-Pb zircon ages: (1) Middle Miocene (16.2-10.6 Ma) and (2) Latest Miocene-Late Pleistocene (5.5-0.4 Ma). Major and trace element bulk rock geochemistry and initial Sr, Nd, Pb radiogenic isotope data on the dated rocks provide new constraints on the Mid-Miocene to Quaternary volcanism in this region. The analyses are distributed over a large compositional range from low-K to high-K calc-alkaline andesites and dacites/rhyolites to more alkaline trachybasalts and dacites with shoshonitic affinities. Chondrite-normalized REE patterns are steep with significant enrichment in LREE and low abundances of HREE indicating a garnet control. Plots of primitive mantle-normalized trace elements show negative Ti and Nb-Ta anomalies indicative of an arc signature. The wide compositional range and the ubiquitous presence of an arc signature reveal that the source mantle is heterogeneous and metasomatically altered. Sr, Nd and Pb radiogenic isotope data further point towards an enriched mantle source and/or crustal contamination. Crustal contamination is best recognized by inherited zircon cores, which yield Late Neoproterozoic to Early Cambrian ages typical for the Iranian basement. The occurrence of adakite-like compositions with elevated magnesium numbers, Cr and Ni concentrations argue against a fractionation-driven process but point to a subcrustal origin. Overall, the analyzed lavas show no spatial and temporal relation to a potential subduction zone, confirming the dated volcanics to be post-collisional and not related to singular processes such as slab retreat or delamination of a continuous lower crustal sliver. We propose three hypotheses to explain the reported disparity in distribution, age and composition and favour small-scale sublithospheric convection or incorporation of crustal material into the metasomatized mantle. The discovery of the late Miocene time gap is in line with previously advocated exhumation pulses and coincides with a major tectonic reorganization in the Arabian-Eurasian realm at this time.
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.
2015-01-01
Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.
NASA Astrophysics Data System (ADS)
Brown, Eric; Petersen, Kenni; Lesher, Charles
2017-04-01
Basalts are formed by adiabatic decompression melting of the asthenosphere, and thus provide records of the thermal, chemical and dynamical state of the upper mantle. However, uniquely constraining the importance of these factors through the lens of melting is challenging given the inevitability that primary basalts are the product of variable mixing of melts derived from distinct lithologies having different melting behaviors (e.g. peridotite vs. pyroxenite). Forward mantle melting models, such as REEBOX PRO [1], are useful tools in this regard, because they can account for differences in melting behavior and melt pooling processes, and provide estimates of bulk crust composition and volume that can be compared with geochemical and geophysical constraints, respectively. Nevertheless, these models require critical assumptions regarding mantle temperature, and lithologic abundance(s)/composition(s), all of which are poorly constrained. To provide better constraints on these parameters and their uncertainties, we have coupled a Markov Chain Monte Carlo (MCMC) sampling technique with the REEBOX PRO melting model. The MCMC method systematically samples distributions of key REEBOX PRO input parameters (mantle potential temperature, and initial abundances and compositions of the source lithologies) based on a likelihood function that describes the 'fit' of the model outputs (bulk crust composition and volume and end-member peridotite and pyroxenite melts) relative to geochemical and geophysical constraints and their associated uncertainties. As a case study, we have tested and applied the model to magmatism along Reykjanes Peninsula in Iceland, where pyroxenite has been inferred to be present in the mantle source. This locale is ideal because there exist sufficient geochemical and geophysical data to estimate bulk crust compositions and volumes, as well as the range of near-parental melts derived from the mantle. We find that for the case of passive upwelling, the models that best fit the geochemical and geophysical observables require elevated mantle potential temperatures ( 120 °C above ambient mantle), and 5% pyroxenite. The modeled peridotite source has a trace element composition similar to depleted MORB mantle, whereas the trace element composition of the pyroxenite is similar to enriched mid-ocean ridge basalt. These results highlight the promise of this method for efficiently exploring the range of mantle temperatures, lithologic abundances, and mantle source compositions that are most consistent with available observational constraints in individual volcanic systems. 1 Brown and Lesher (2016), G-cubed, 17, 3929-3968
Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase
NASA Technical Reports Server (NTRS)
Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.
2015-01-01
The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.
NASA Astrophysics Data System (ADS)
Rooney, T. O.; Nelson, W. R.; Ayalew, D.; Yirgu, G.; Herzberg, C. T.; Hanan, B. B.
2014-12-01
Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with olivine-dominated source. There is mounting evidence, however, for the role of pyroxenite in magma generation within upwelling mantle plumes; a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Melts derived from metasomes may exhibit extreme enrichment or depletion in major and trace elements. We hypothesize that phenocrysts such as olivine, which are commonly used to probe basalt source lithology, will reflect these unusual geochemical signals. Here we present preliminary major and trace element analyses of 60 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt. % TiO2; 4.0-13.6 wt. % MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical unit identified in the later cinder cones and associated lava flows. (B) a clinopyroxene-phyric high Ti group (1-6.7 wt. % TiO2; 1.0-9.5 wt. % MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. When combined with a diagnostic negative K anomaly in primitive-mantle normalized diagrams and Na2O>K2O, the geochemical data point towards a source which is rich in amphibole, devoid of olivine, and perhaps containing some carbonate. Our preliminary results have identified a large suite of primitive lavas derived from a nominally olivine-free mantle source. Consequently, our future work will examine olivine geochemical characteristics and constrain the compositional space for these unusual mantle lithologies.
Volatile element content of the heterogeneous upper mantle
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.
2014-12-01
The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper mantle. Lavas from intra-transform faults and off-axis seamounts share a common mantle source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper mantle. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La<0.035) to enriched (EMORB: Th/La>0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived mantle heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) mantle melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper mantle is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual mantle source, but the product of magma mixing between D- and E-MORB. Finally we use the volatile to trace element ratios of our samples to estimate the volatile element budget of the end-member components of the upper mantle. [1] Niu, Y. et al. (2002) EPSL, 199, 327-345. [2] Kamenetsky, V. S. et al. (2000) J. Petrology, 41, 411-430.
High Resolution Global Electrical Conductivity Variations in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Kelbert, A.; Sun, J.; Egbert, G. D.
2013-12-01
Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic observatory data, and use additional constraints to interpret these results in terms of mantle processes and compositional variations.
Possible Role of Hydrogen in the Earth Core
NASA Astrophysics Data System (ADS)
Takahashi, E.; Imai, T.
2011-12-01
Possible role of hydrogen in the Earth core has been discussed by Stevenson (1977) and demonstrated experimentally by Fukai (1984), Okuchi (1997) and others. Planetary theory proposes a possibility of hydrogen incorporation in Earth's magma ocean from ambient solar nebula gas (Ikoma & Genda 2005, Genda & Ikoma 2008). More recently, migration of snow line during planet formation was examined (Min et al., 2010; Oka et al, 2011) and it was proposed that the Earth building material originally contained abundant water as ice and hydrous minerals. Therefore, it is very important to investigate the fate of water in the planet building process and clarify the role of hydrogen in the planetary core. Using SPring-8 synchrotron (NaCl capsule, LiAlH4 as hydrogen source), we determined the melting curve of FeH up to 20 GPa under hydrogen saturated conditions (Sakamaki, Takahashi et al, 2009). Observed melting point is below 1300C and has a very small dT/dP slope. By extrapolating the melting curve using Lindeman's law, we proposed that hydrogen could lower the melting temperature of the Earth core by more than 1500K than current estimate. Here we report our new experiments using SPring-8 synchrotron (single crystal diamond capsule, water as hydrogen source). Hydrogen concentration and melting temperature of FeHx that coexists with hydrous mantle minerals were determined at 15-20GPa and 1000-1600C. We show that 1) hydrogen concentration in FeHx at 1000C, coexisting with hydrous-B and ringwoodite is approximately X=0.6. 2) Upon heating, hydrous-B decomposes and hydrogen strongly partitions into FeHx (X=0.8~1.0) than ringwoodite. 3) FeHx that coexists with ringwoodite melts between ~1300C (solidus) and ~1600C (liquidus). Combined our new experiments with those by Sakamaki et al (2009) and Shibazaki et al (2009), partitioning of hydrogen between proto-core and primitive mantle is discussed. We propose that >90% of water in the source material may have entered the Earth core. Given large hydrogen concentration in the Earth core, temperature of the outermost core could be as low as that of lower mantle adiabat. Presence of the light element-rich layer at the top 300km layer of the outer core (Helffrich & Kaneshima, 2010) may be easily understood if there is no temperature gap between the core and the lower mantle.
Contrasting geochemical trends in the fertile and refractory parts of the NE Atlantic mantle source
NASA Astrophysics Data System (ADS)
Tronnes, R. G.; Debaille, V.; Brandon, A. D.; Waight, T. E.; Graham, D. W.; Williams, A.; Lee, C. A.
2008-12-01
Primitive alkaline basalts from the Icelandic off-rift volcanic zones and Jan Mayen represent low-degree melts from the fertile parts of the NE Atlantic mantle. Olivine tholeiites and picrites from the Icelandic rift zones and nearby oceanic spreading ridges are formed by protracted decompressional melting. The V-shaped ridges along the Reykjanes, Kolbeinsey and Aegir ridges indicate that ascending source material is supplied by a pulsating plume and deflected laterally for distances of about 1000 km from Iceland (Jones et al. GGG 2002; Breivik et al. JGR 2006). Plume material deflected in the direction of the rift zones and spreading ridges undergoes extensive melting at shallow level, whereas material deflected in other directions flows laterally at deeper levels and remains largely unmelted and more fertile. The comparison of a sample suite of primitive off-rift basalts from Iceland and Jan Mayen (Debaille et al., in prep.) with olivine tholeiites and picrites from the Icelandic rift zones (mainly Brandon et al. GCA 2007) demonstrate opposing geochemical trends. The degree of source enrichment, expressed by the La/Sm-ratio, is positively and negatively correlated with 87/86Sr and 143/144Nd throughout the entire range of depleted rift zone tholeiites and enriched off-rift basalts. In the rift zone tholeiites the La/Sm-ratio has negative correlations with Mg# and Mg-content and positive correlations with 187/188Os and 3/4He. These four trends have opposite equivalents for the off-rift basalts. The most enriched and alkaline basalts from Jan Mayen and Snæfellsnes have the lowest 3/4He of 6-9*Ra and 187/188Os of 0.12-0.13. The trends seem to require a source component with ancient melt depletion and subsequent enrichment. A subcontinental lithospheric mantle keel (SCLM) is the most likely origin for the enriched component with high LILE, La/Sm and 87/86Sr and low 143/144Nd, 3/4He and 187/188Os. The most enriched alkaline basalts have notably higher Mg# and Mg and lower Fe and Na (but higher Ti, K and P) than the least enriched off-rift basalts. The first order geochemical variation in the off-rift basalts can be modelled by progressive partial melting of a pseudo-binary source mixture of the SCLM- component and a composite component with high 143/144Nd and 3/4He and low 87/86Sr. Depleted MORB- like asthenosphere is required to model the further progressive melting of the rift-related tholeiitic basalts.
Eight good reasons why the uppermost mantle could be magnetic
NASA Astrophysics Data System (ADS)
Ferre, E. C.; Friedman, S. A.; Martin Hernandez, F.; Till, J. L.; Ionov, D. A.; Conder, J. A.
2012-12-01
The launch of Magsat in 1979 prompted a broad magnetic investigation of mantle xenoliths (Wasilewski et al., 1979). The study concluded that no magnetic remanence existed in the uppermost mantle and that even if present, such sources would be at temperatures too high to contribute to long wavelength magnetic anomalies (LWMA). However, new collections of unaltered mantle xenoliths from four different tectonic settings, along with updated views on the sources of LWMA and modern petrologic constraints on fO2 in the mantle indicate that the uppermost mantle could, in certain cases, contain ferromagnetic minerals. 1. The analysis of some LWMA over areas such as, for example, Bangui in the Central African Craton, the Cascadia subduction zone and serpentinized oceanic lithosphere suggest magnetic sources in the uppermost mantle. 2. The most common ferromagnetic phase in the uppermost mantle is pure magnetite, which has a pressure-corrected Curie temperature at 10 kbars of 600C instead of the generally used value of 580C. Assuming 30 km-thick continental crust, and crustal and mantle geotherms of 15C/km and 5C/km, respectively, the 600C Curie temperature implies the existence of a 30 km-thick layer of mantle rocks, whose remanent and induced magnetizations could contribute to LWMA. The thickness of this layer decreases to about 15 km for a 35 km-thick crust. 3. The uppermost mantle is cooler than 600C in some tectonic settings, including Archean and Proterozoic shields (>350C), subduction zones (>300C) and old oceanic basins (>250C). 4. Recently investigated sets of unaltered mantle xenoliths contain pure SD and PSD magnetite inclusions exsolved in olivine and pyroxene. The fact that these magnetite grains are not associated with any alteration phases, such as serpentine, and exhibit a subhedral shape, demonstrates that they formed in equilibrium with the host silicate. 5. The ascent of mantle xenoliths in volcanic conduits through cratons and subduction zones occurs in less than a day. Numerical models of Fe diffusion in silicates suggest that it is unlikely for exsolved magnetite grains to reach greater than superparamagnetic sizes within this time frame. 6. Demagnetization of natural remanent magnetization (NRM) of unaltered mantle xenoliths unambiguously indicates only a single component. The demagnetization of NRM spectra resembles that of laboratory-imparted anhysteretic remanent magnetizations, suggesting that the NRM is of thermal origin, and most likely acquired upon cooling at the Earth's surface. Yet mantle peridotites had to be magnetized before extraction from the mantle source. 7. Modern experimental data suggest that the wüstite-magnetite oxygen buffer and the fayalite-magnetite-quartz oxygen buffer extend several tens of km at depth within the uppermost mantle. Modern petrologic models also indicate that fO2 in the uppermost mantle varies significantly with tectonic setting. 8. The magnetic properties of mantle xenoliths vary consistently across island arc, craton, hot spot and mantle plume regions. The intensity of their NRMs appear to be influenced by their tectonic setting, in accordance with petrologic models. In conclusion, the model of a uniformaly non-magnetic mantle no longer agrees with multiple lines of evidence and should be revisited, especially because the most strongly magnetic xenoliths originate from cold geotherm settings.
Mantle flow through a tear in the Nazca slab inferred from shear wave splitting
NASA Astrophysics Data System (ADS)
Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh
2017-07-01
A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.
Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves
NASA Astrophysics Data System (ADS)
Nelson, Peter L.; Grand, Stephen P.
2018-04-01
The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.
Seismic anisotropy and mantle flow below subducting slabs
NASA Astrophysics Data System (ADS)
Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy
2017-05-01
Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.
Search for a Differentiated Asteroid Family
NASA Astrophysics Data System (ADS)
Thomas, Cristina A.; Lim, Lucy F.; Trilling, David E.; Moskovitz, Nicholas
2014-08-01
Dynamical asteroid families resulting from catastrophic disruptions represent the interiors of their former parent bodies. Differentiation of a large initially chondritic parent body is expected to produce an ``onion shell" object with a metal core, a thick olivine-rich mantle, and a thin basaltic crust. However, instead of the mineralogical diversity expected from the disruption of a differentiated parent body, most asteroid families tend to show similar spectra among the members. Moreover, spectra of metal-like materials and olivine-dominated assemblages have not been detected in asteroid families in the Main Belt and the expected mantle material is missing from the meteorite record. The deficit of olivine-rich mantle material in the meteorite record and in asteroid observations is known as the ``Missing Mantle" problem. For years the best explanation for the lack of mantle material has been the ``battered to bits" hypothesis that states that all differentiated parent bodies (aside from Vesta) were disrupted very early in the solar system and the resulting olivine-rich material was collisionally broken down until the object diameters fell below our observational limits. However, in a new, competing, hypothesis, Elkins-Tanton et al. (2013) has suggested that previous work has overestimated the amount of olivine produced by the differentiation of a chondritic parent body. We propose to obtain visible spectra of asteroids within the Massalia, Merxia, and Agnia S-type families to search for compositional variations that are indicators of differentiation and to quantitatively constrain the two competing ``Missing Mantle" hypotheses.
Preliminary Report on U-Th-Pb Isotope Systematics of the Olivine-Phyric Shergottite Tissint
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.
2014-01-01
Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions, and trace element abundances.. These correlations have been interpreted as indicating the presence of a reduced, incompatible-element- depleted reservoir and an oxidized, incompatible-element-rich reservoir. The former is clearly a depleted mantle source, but there has been a long debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former clearly requires the ancient martian crust to be the enriched source (crustal assimilation), whereas the latter requires a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and U-Th-Pb concentration analyses of the olivine-phyric shergottite Tissint because U-Th-Pb isotope systematics have been intensively used as a powerful radiogenic tracer to characterize old crust/sediment components in mantle- derived, terrestrial oceanic island basalts. The U-Th-Pb analyses are applied to sequential acid leaching fractions obtained from Tissint whole-rock powder in order to search for Pb isotopic source components in Tissint magma. Here we report preliminary results of the U-Th-Pb analyses of acid leachates and a residue, and propose the possibility that Tissint would have experienced minor assimilation of old martian crust.
NASA Astrophysics Data System (ADS)
Joachim, Bastian; Ruzié, Lorraine; Burgess, Ray; Pawley, Alison; Clay, Patricia L.; Ballentine, Christopher J.
2016-04-01
Halogens play a key role in our understanding of volatile transport processes in the Earth's mantle. Their moderate (fluorine) to highly (iodine) incompatible and volatile behavior implies that their distribution is influenced by partial melting, fractionation and degassing processes as well as fluid mobilities. The heavy halogens, particularly bromine and iodine, are far more depleted in the Earth's mantle than expected from their condensation temperature (Palme and O'Neill 2014), so that their very low abundances in basalts and peridotites (ppb-range) make it analytically challenging to investigate their concentrations in Earth's mantle reservoirs and their behavior during transport processes (Pyle and Mather, 2009). We used a new experimental technique, which combines the irradiation technique (Johnson et al. 2000), laser ablation and conventional mass spectrometry. This enables us to present the first experimentally derived bromine partition coefficient between olivine and melt. Partitioning experiments were performed at 1500° C and 2.3 GPa, a P-T condition that is representative for partial melting processes in the OIB source region (Davis et al. 2011). The bromine partition coefficient between olivine and silicate melt at this condition has been determined to DBrol/melt = 4.37•10-4± 1.96•10-4. Results show that bromine is significantly more incompatible than chlorine (˜1.5 orders of magnitude) and fluorine (˜2 orders of magnitude) due to its larger ionic radius. We have used our bromine partitioning data to estimate minimum bromine abundances in EM1 and EM2 source regions. We used minimum bromine bulk rock concentrations determined in an EM1 (Pitcairn: 1066 ppb) and EM2 (Society: 2063 ppb) basalt (Kendrick et al. 2012), together with an estimated minimum melt fraction of 0.01 in OIB source regions (Dasgupta et al. 2007). The almost perfect bromine incompatibility results in minimum bromine abundances in EM1 and EM2 OIB source regions of 11 ppb and 20 ppb, respectively. The effect on the partitioning behaviour of other minerals such as pyroxene, mantle inhomogeneity, incongruent melting, a potential effect of iron, temperature, pressure or the presence of fluids, would be to shift the estimated bromine mantle source concentration to higher but not to lower values. Comparing our minimum bromine OIB source region estimate with the estimated primitive mantle bromine abundance (3.6 ppb; Lyubetskaya and Korenaga, 2007) implies that the OIB source mantle is enriched in bromine relative to the primitive mantle by at least a factor of 3 in EM1 source regions and a factor of 5.5 in EM2 source regions. One explanation is that bromine may be efficiently recycled into the OIB source mantle region through recycling of subducted oceanic crust. Dasgupta R, Hirschmann MM, Humayun, ND (2007) J. Petrol. 48, pp. 2093-2124. Davis FA, Hirschmann MM, Humayun M (2011) Earth Planet. Sci. Lett. 308, pp. 380-390. Johnson L, Burgess R, Turner G, Milledge JH, Harris JW (2000) Geochim. Cosmochim. Acta 64, pp. 717-732. Kendrick MA, Woodhead JD, Kamenetsky VS (2012) Geol. 32, pp. 441-444. Lyubetskaya T, Korenaga J (2007) J. Geophys. Res.-Sol. Earth 112, B03211. Palme H, O'Neill HStC (2014). Cosmochemical Estimates of Mantle Composition. Treat. Geochem. 2nd edition, 3, pp. 1-39. Pyle DM, Mather TA (2009) Chem. Geol. 263, pp. 110-121.
NASA Astrophysics Data System (ADS)
Woodard, Jeremy; Huhma, Hannu
2015-11-01
The isotope geochemistry of carbonatite from Naantali, southwest Finland as well as lamprophyres from North Savo, eastern Finland and the NW Ladoga region, northwest Russia has been investigated. These Paleoproterozoic dykes represent melting of an enriched mantle source spread over a 96,000 km2 area within the Fennoscandian Shield and intruded during post-collisional extension. The carbonatites have εNd(T) ranging from -0.8 to + 0.4, while lamprophyres have εNd(T) between -0.8 and + 0.3. 87Sr/86Sr ratios from the primary carbonatite samples from Naantali form a tight cluster between 0.70283 and 0.70303. For the lamprophyres, 87Sr/86Sr ratios range from 0.70327-0.70339 from NW Ladoga and 0.70316-0.70327 from North Savo. These characteristics are consistent with derivation from an enriched mantle showing an EMII trend, formed when sediments of mixed Archean and Proterozoic provenance were recycled back into the mantle via subduction during the preceding Svecofennian orogeny. Linear mixing of these subducted sediments and depleted mantle shows that a multistage process of enrichment is required to produce the observed isotope compositions. Batch melting of the subducted sediment first generated hydrous alkaline silicate melt, which crystallised as mica- and amphibole-rich veins in the mantle wedge. Continued melting of the subducted material under higher P-T conditions produced carbonatite melt, which infiltrated preferentially into this vein network. Assuming the silicate melt exerts greater influence on 87Sr/86Sr ratios while the carbonatite more greatly affects 143Nd/144Nd ratios, the model predicts significant regional variation in the silicate metasomatism with more consistent carbonatite metasomatism throughout the Fennoscandian subcontinental lithospheric mantle. The subducted sediments were likely also rich in organic matter, resulting in highly negative δ13C in mantle carbonates. The model predicts a higher content of organic carbon in the sediments in close proximity to the Archean continent, decreasing with distance.
NASA Astrophysics Data System (ADS)
Tomlinson, K. Y.; Hughes, D. J.; Thurston, P. C.; Hall, R. P.
1999-01-01
The greenstone belts of the western Superior Province are predominantly 2.78 to 2.69 Ga and provide evidence of oceanic and arc volcanism during the accretionary phase of development of the Superior Province. There is also scattered evidence of Meso-Archean crust (predominantly 2.9 to 3.0 Ga) within the western Superior Province. The Meso-Archean greenstone belts commonly contain platformal sediments and unconformably overlie granitoid basement. The platformal sediments occur associated with komatiitic and tholeiitic volcanic rocks that suggest a history of magmatism associated with rifting during the Meso-Archean. The central Wabigoon Subprovince is a key area of Meso-Archean crust and in its southern portion comprises the Steep Rock, Finlayson and Lumby Lake greenstone belts. The Steep Rock greenstone belt unconformably overlies 3 Ga continental basement and contains platformal sediments succeeded by komatiitic and tholeiitic volcanic rocks. The Lumby Lake greenstone belt contains thick sequences of mafic volcanics, a number of komatiite horizons, and thin platformal sedimentary units. The two belts are joined by the predominantly mafic volcanic Finlayson greenstone belt. The volcanics throughout these three greenstone belts may be correlated to some extent and a range of basaltic and komatiite types is present. Al-undepleted komatiites present in the Lumby Lake greenstone belt have an Al 2O 3/TiO 2 ratio ranging from 14 to 27 and (Gd/Yb) N from 0.7 to 1.3. These are divided into basaltic komatiites with generally unfractionated mantle-normalised multi-element profiles, and spinifex-textured high-Mg basalts with slightly light REE enriched multi-element profiles and small negative Nb and Ta anomalies. The unfractionated basaltic komatiites represent high degree partial melts of the upper mantle whereas the spinifex-textured high-Mg basalts represent evolutionary products of the komatiite liquids following olivine and chromite fractionation and crustal contamination. Al-depleted komatiites are present in both the Lumby Lake and Steep Rock belts and have Al 2O 3/TiO 2 ratio ranges from 2.5 to 5. These display strong enrichment in the light REE and Nb and strong depletion in the heavy REE and Y ((Gd/Yb) N=2-4). They represent a deep mantle plume source generated from a high degree of partial melting in the majorite garnet stability field. The basaltic flows in all three greenstone belts are predominantly slightly light REE depleted and represent a slightly depleted upper mantle source. Basalts spatially associated with the unfractionated basaltic komatiites and the slightly light REE enriched spinifex-textured high-Mg basalts are also slightly enriched in light REE and have negative Nb and Ta anomalies. These basalts represent evolved products of the primitive basaltic komatiites and enriched spinifex-textured high-Mg basalts after further crustal contamination and olivine and clinopyroxene fractionation. The geochemical stratigraphy in the Lumby Lake belt is consistent with an ascending mantle plume model. The light REE depleted basalts were derived from upper mantle melted by an ascending mantle plume. These are overlain by the unfractionated basaltic komatiites and their evolutionary products which represent hotter plume head material derived from a mixture of plume mantle and entrained depleted upper mantle. In turn, these are overlain by strongly light REE and HFSE enriched komatiites that represent a deep plume source that has not been mixed with depleted mantle and are, therefore, likely to have been derived from a plume core or tail. Volcanism was protracted in these three greenstone belts lasting ca. 70 Ma and combined stratigraphic evidence from the Lumby Lake and Steep Rock belts suggests that more than one plume may have ascended and tapped the same mantle sources, over time, within the area. Plume magmatism and rifting of continental platforms thus appears to have been an important feature of crustal development in the Meso-Archean.
Geochemical Constraints on Core-Mantle Interaction from Fe/Mn Ratios
NASA Astrophysics Data System (ADS)
Humayun, M.; Qin, L.
2003-12-01
The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the mantle. There are no a priori reasons, however, why the Earth's mantle should be chemically isolated from the core. Osmium isotopic variations in mantle plumes have been interpreted in terms of interaction between outer core and the source regions of deep mantle plumes. If chemical transport occurs across the core-mantle boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the mantle, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of mantle differentiation by partial melting. Two processes may perturb the ambient mantle Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern mantle plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This high-resolution study of the Fe/Mn of mantle-derived samples offers a new set of chemical constraints on the rates of inner core differentiation and the viability of Os isotope interpretations.
Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction
NASA Astrophysics Data System (ADS)
Gibson, S. A.; Geist, D. J.; Richards, M. A.
2015-05-01
Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.
Genetic relations of oceanic basalts as indicated by lead isotopes
Tatsumoto, M.
1966-01-01
The isotopic compositions of lead and the concentrations of lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206 : lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206 : lead-204 ratios between 19.3 and 20.4. It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from an original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.
On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific
NASA Technical Reports Server (NTRS)
Marsh, B. D.; Marsh, J. G.; Williamson, R. G. (Principal Investigator)
1984-01-01
A composite map produced by combining 90 passes of SST data show good agreement with conventional GEM models. The SEASAT altimeter data were deduced and found to agree with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Comparison with regional bathymetric data shows a remarkedly close correlation with plate age. Most anomalies in the east half of the Pacific could be partly caused by regional differences in plate age. The amplitude of these geoid or gravity anomalies caused by age differences should decrease with absolute plate age, and large anomalies (approximately 3 m) over old, smooth sea floor may indicate a further deeper source within or perhaps below the lithosphere. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration was considered. A plume emanating from a buoyant layer 100 km thick and 10,000 times less viscous than the surrounding mantle should have a diameter of about 400 km and must ascend at about 10 cm/yr to arrive still anomalously hot in the uppermost mantle.
Iron spin transitions in the lower mantle
NASA Astrophysics Data System (ADS)
McCammon, C.; Dubrovinsky, L.; Potapkin, V.; Glazyrin, K.; Kantor, A.; Kupenko, I.; Prescher, C.; Sinmyo, R.; Smirnov, G.; Chumakov, A.; Rüffer, R.
2012-04-01
Iron has the ability to adopt different electronic configurations (spin states), which can significantly influence mantle properties and dynamics. It is now generally accepted as a result of studies over the past decade that ferrous iron in (Mg,Fe)O undergoes a high-spin to low-spin transition in the mid-part of the lower mantle; however results on (Mg,Fe)(Si,Al)O3 perovskite, the dominant phase of the lower mantle, remain controversial. Identifying spin transitions in (Mg,Fe)(Si,Al)O3 perovskite presents a significant challenge. X-ray emission spectroscopy provides information on the bulk spin number, but cannot separate individual contributions. Nuclear forward scattering measures hyperfine interactions, but is not well suited to complex materials due to the non-uniqueness of fitting models. Energy-domain Mössbauer spectroscopy generally enables an unambiguous resolution of all hyperfine parameters which can be used to infer spin states; however high pressure measurements using conventional radioactive point sources require extremely long counting times. To solve this problem, we have developed an energy-domain synchrotron Mössbauer source that enables rapid measurement of spectra under extreme conditions (both high pressure and high temperature) with a quality generally sufficient to unambiguously deconvolute even highly complex spectra. We have used the newly developed method to measure high quality Mössbauer spectra of different compositions of (Mg,Fe)O and (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 122 GPa and temperatures up to 2400 K. Experiments were carried out at the European Synchrotron Radiation Facility on the nuclear resonance beamline ID18 equipped with a portable laser heating system for diamond anvil cells. Our results confirm previous observations for (Mg,Fe)O that show a broad spin crossover region at high pressures and high temperatures, and show unambiguously that ferric iron in (Mg,Fe)(Si,Al)O3 perovskite remains in the high-spin state at conditions throughout the lower mantle. Electrical conductivity data of (Mg,Fe)(Si,Al)O3 perovskite are known to show a drop in conductivity above 50 GPa, which combined with our new results suggests that the currently controversial high-pressure transition of ferrous iron is indeed due to a high-spin to intermediate-spin transition at conditions near the top of the lower mantle. Our current picture of iron in the lower mantle is therefore of a relatively homogeneous spin state in (Mg,Fe)(Si,Al)O3 perovskite throughout most of the lower mantle: intermediate-spin ferrous iron and high-spin ferric iron. Different spin states are expected in ferrous iron in (Mg,Fe)(Si,Al)O3 perovskite only at the very top of the lower mantle (high spin) and at the very bottom (low spin). There is a broad transition from high-spin to low-spin ferrous iron in (Mg,Fe)O in the mid part of the lower mantle. Implications of these results for mantle properties and dynamics will be presented.
Simultaneous generation of Superpiles and Superplumes in the lower mantle
NASA Astrophysics Data System (ADS)
Ballmer, M. D.; Lekic, V.; Ito, G.
2014-12-01
Seismic tomography reveals two antipodal large low shear-wave velocity provinces (LLSVP) at the base of the mantle, rising up to ~1900 km above the core-mantle boundary (CMB). A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as steep lateral gradients in Vs along the edges of the LLSVPs. These seismic observations however are mainly restricted to the bottom ~600 km of the mantle. Mineral-physics constraints on elastic properties of high-pressure rocks suggest that the seismic signature of these deep distinct domains (DDD) is unlikely to be caused by the presence of subducted basalt, but rather by that of primitive mantle. They further suggest that the LLSVP's top domains (that reach from heights of ~600 km to 1900 km above the CMB) are either composed of hot basaltic or warm average-mantle material. From a geodynamical point of view, however, the former explanation appears to be more consistent with the top domain's large widths. Here, we present a series of 2D numerical models of mantle convection with three distinct materials (representative of pyrolite, primitive and basaltic material), exploring the effects of their distinct densities and compressibilities. We find (1) that the dense primitive materials accumulate as Superpiles at the CMB, similar to the DDDs, and (2) that the moderately dense basaltic materials evolve into Superplumes sitting on top of the Superpiles, similar to the top LLSVP domains. We here refer to Superplumes as thermochemical domes that are buoyant at depth but negatively buoyant in the mid-mantle (due to excess heat and relatively low compressibility), where they stagnate. Small plumelets intermittently rise from the roofs of the Superplumes to entrain basalt that has evolved in the lower mantle and form hotspots at the surface. This prediction addresses the geochemical and geochronological record of intraplate Pacific volcanism. The predicted sub-horizontal compositional boundary between the basal Superpiles and the overlying Superplumes further provides an explanation for steep vertical gradients in Vs observed at 400-700 km height above the CMB. Such a LLSVP subdivision holds implications for the early and ongoing differentiation and thermal evolution of our planet.
NASA Astrophysics Data System (ADS)
Macera, P.; Gasperini, D.; Blichert-Toft; Bosch, D.; del Moro, A.; Dini, G.; Martin, S.; Piromallo, C.
DuringTertiary times extensive mafic volcanism took place in the South-Eastern Alps, along a half-graben structure bounded by the Schio-Vicenza main fault. This mag- matism gave rise to four main volcanic centers: Lessini, Berici, Euganei, and Maros- tica. The dominating rock types are alkali basalts, basanites and transitional basalts, with hawaiites, trachybasalts, tephrites, basaltic andesites, and differentiated rocks be- ing less common. Major and trace element and Sr-Nd-Hf-Pb isotopic data for the most primitive lavas from each volcanic center show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sr48Ma = 0.70314-0.70321; eNd48Ma = +6.4 to +6.5; eHf48Ma = +6.4 to +8.1, 206Pb/204Pb48Ma = 18.786-19.574). Since the HIMU component is consid- ered to be of deep mantle origin, its presence in a tectonic environment dominated by subduction (the Alpine subduction of the European plate below the Adria plate) has significant geodynamic implications. Slab detachment and ensuing rise of deep man- tle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting. Interaction between deep-seated plume ma- terial and shallow depleted asthenospheric mantle may account for the geochemical features of the Veneto volcanics, as well as those of the so-called enriched astheno- spheric reservoir (EAR) component. Ascending counterflow of deep mantle material through the lithospheric gap to the top of the subducting slab further may induce heat- ing of the overriding plate and trigger it to partially melt. Upwelling of the resulting mafic magmas and their subsequent underplating at the mantle-lower crust bound- ary would favor partial melting of the lower crust, thereby giving rise to the bimodal mafic-felsic magmatism that characterizes the whole Periadriatic province. According to this model, the HIMU-like magmatism of the Alpine foreland is therefore closely related to the calc-alkaline magmatism of the Periadriatic Lineament, and caused by the same mechanism of Tertiary Alpine convergence tectonics.
Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas
NASA Astrophysics Data System (ADS)
Black, Benjamin A.; Hauri, Erik H.; Elkins-Tanton, Linda T.; Brown, Stephanie M.
2014-05-01
The Siberian Traps flood basalts transferred a large mass of volatiles from the Earth's mantle and crust to the atmosphere. The eruption of the large igneous province temporally overlapped with the end-Permian mass extinction. Constraints on the sources of Siberian Traps volatiles are critical for determining the overall volatile budget, the role of crustal assimilation, the genesis of Noril'sk ore deposits, and the environmental effects of magmatism. We measure sulfur isotopic ratios ranging from -10.8‰ to +25.3‰ Vienna Cañon Diablo Troilite (V-CDT) in melt inclusions from Siberian Traps basaltic rocks. Our measurements, which offer a snapshot of sulfur cycling far from mid-ocean ridge and arc settings, suggest the δ34S of the Siberian Traps mantle melt source was close to that of mid-ocean ridge basalts. In conjunction with previously published whole rock measurements from Noril'sk, our sulfur isotopic data indicate that crustal contamination was widespread and heterogeneous—though not universal—during the emplacement of the Siberian Traps. Incorporation of crustal materials likely increased the total volatile budget of the large igneous province, thereby contributing to Permian-Triassic environmental deterioration.
Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source
NASA Astrophysics Data System (ADS)
Peto, M. K.; Mukhopadhyay, S.
2012-12-01
Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature 2012; [2] Tucker et al., EPSL (in review); [3] Moreira et al., Nature 1998 [4] Touboul et al., Science 2012.
Numerical models for continental break-up: Implications for the South Atlantic
NASA Astrophysics Data System (ADS)
Beniest, A.; Koptev, A.; Burov, E.
2017-03-01
We propose a mechanism that explains in one unified framework the presence of continental break-up features such as failed rift arms and high-velocity and high-density bodies that occur along the South Atlantic rifted continental margins. We used 2D and 3D numerical models to investigate the impact of thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting and break-up processes. 2D experiments show that break-up can be 1) "central", mantle plume-induced and directly located above the centre of the mantle anomaly, 2) "shifted", mantle plume-induced and 50 to 200 km shifted from the initial plume location or 3) "distant", self-induced due to convection and/or slab-subduction/delamination and 300 to 800 km off-set from the original plume location. With a 3D, perfectly symmetrical and laterally homogeneous setup, the location of continental break-up can be shifted hundreds of kilometres from the initial position of the mantle anomaly. We demonstrate that in case of shifted or distant continental break-up with respect to the original plume location, multiple features can be explained. Its deep-seated source can remain below the continent at one or both sides of the newly-formed ocean. This mantle material, glued underneath the margins at lower crustal levels, resembles the geometry and location of high velocity/high density bodies observed along the South Atlantic conjugate margins. Impingement of vertically up-welled plume material on the base of the lithosphere results in pre-break-up topography variations that are located just above this initial anomaly impingement. This can be interpreted as aborted rift features that are also observed along the rifted margins. When extension continues after continental break-up, high strain rates can relocalize. This relocation has been so far attributed to rift jumps. Most importantly, this study shows that there is not one, single rift mode for plume-induced crustal break-up.
Long wavelength magnetic anomalies over continental rifts in cratonic region
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Persaud, P.; Ferre, E. C.; Martín-Hernández, F.; Feinberg, J. M.
2017-12-01
New collections of unaltered mantle xenoliths shed light on potential upper mantle contributions to long wavelength magnetic anomalies (LWMA) in continental rifts in cratonic / shield areas. The new material originates from the East African Rift (Tanzania), the Rio Grande Rift (U.S.A.), the Rhine Rift (Germany), and the West Antarctic Rift (Antarctica). The xenoliths sample the uppermost (<80 km depth) lithospheric mantle in these regions in the spinel-peridotite and plagioclase-peridotite stability fields. The most common lithology by far (95% of samples) is a spinel-lherzolite indicating relatively low oxygen fugacities (FMQ -1). Chrome spinel in these peridotites is non-magnetic (Al + Mg > 0.2 or Fe < 0.3) and primary magnetite (Fe3O4) occurs only in trace amounts, typically yielding low natural remanent magnetizations (NRM < 10-2 A/m). The low Koenigsberger ratios (Qn < 1) of these materials, combined with high geotherms (>60ºC/km) that are characteristic of rifted regions preclude any contribution to LWMA at depths >10 km. Hence, only upper basalts and hypovolcanic mafic sills would constitute potential magnetic sources. In contrast, the margins of these rifted regions consist of refractory cratonic domains, often characterized by oxidized sublithospheric mantle that host significant concentrations of primary magnetite. The higher NRMs of these peridotites (up to 15 A/m, Qn > 2.5) combined with much lower geotherms (as low as 15ºC/km) allows for a 5 to 10 km layer of uppermost mantle to potentially contribute to LWMA. Assuming that Qn values in rift margins are also <1, the new data presented here suggests that relatively young rifts would display a central negative magnetic anomaly surrounded by two broad positive anomalies. The latitude of the rift is predicted to exert a primary control on the magnitude of such anomalies, while the steepness of the magnetic gradient across the rift would primarily reflect thermal equilibration over time.
Deng, Yangfan; Levandowski, William Brower; Kusky, Tim
2017-01-01
Intraplate strain generally focuses in discrete zones, but despite the profound impact of this partitioning on global tectonics, geodynamics, and seismic hazard, the processes by which deformation becomes localized are not well understood. Such heterogeneous intraplate strain is exemplified in central Asia, where the Indo-Eurasian collision has caused widespread deformation while the Tarim block has experienced minimal Cenozoic shortening. The apparent stability of Tarim may arise either because strain is dominantly accommodated by pre-existing faults in the continental suture zones that bound it—essentially discretizing Eurasia into microplates—or because the lithospheric-scale strength (i.e., viscosity) of the Tarim block is greater than its surroundings. Here, we jointly analyze seismic velocity, gravity, topography, and temperature to develop a 3-D density model of the crust and upper mantle in this region. The Tarim crust is characterized by high density, vs, vp, and vp/vs, consistent with a dominantly mafic composition and with the presence of an oceanic plateau beneath Tarim. Low-density but high-velocity mantle lithosphere beneath southern (southwestern) Tarim underlies a suite of Permian plume-related mafic intrusions and A-type granites sourced in previously depleted mantle lithosphere; we posit that this region was further depleted, dehydrated, and strengthened by Permian plume magmatism. The actively deforming western and southern margins of Tarim—the Tien Shan, Kunlun Shan, and Altyn Tagh fault—are underlain by buoyant upper mantle with low velocity; we hypothesize that this material has been hydrated by mantle-derived fluids that have preferentially migrated along Paleozoic continental sutures. Such hydrous material should be weak, and herein strain focuses there because of lithospheric-scale variations in rheology rather than the pre-existence of faults in the brittle crust. Thus this world-class example of strain partitioning arises not simply from the pre-existence of brittle faults but from the thermo-chemical and therefore rheological variations inherited from prior tectonism.
K-Rich Basaltic Sources beneath Ultraslow Spreading Central Lena Trough in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Ling, X.; Snow, J. E.; Li, Y.
2016-12-01
Magma sources fundamentally influence accretion processes at ultraslow spreading ridges. Potassium enriched Mid-Ocean Ridge Basalt (K-MORB) was dredged from the central Lena Trough (CLT) in the Arctic Ocean (Nauret et al., 2011). Its geochemical signatures indicate a heterogeneous mantle source with probable garnet present under low pressure. To explore the basaltic mantle sources beneath the study area, multiple models are carried out predicting melting sources and melting P-T conditions in this study. P-T conditions are estimated by the experimental derived thermobarometer from Hoang and Flower (1998). Batch melting model and major element model (AlphaMELTs) are used to calculate the heterogeneous mantle sources. The modeling suggests phlogopite is the dominant H2O-K bearing mineral in the magma source. 5% partial melting of phlogopite and amphibole mixing with depleted mantle (DM) melt is consistent with the incompatible element pattern of CLT basalt. P-T estimation shows 1198-1212oC/4-7kbar as the possible melting condition for CLT basalt. Whereas the chemical composition of north Lena Trough (NLT) basalt is similar to N-MORB, and the P-T estimation corresponds to 1300oC normal mantle adiabat. The CLT basalt bulk composition is of mixture of 40% of the K-MORB endmember and an N-MORB-like endmember similar to NLT basalt. Therefore the binary mixing of the two endmembers exists in the CLT region. This kind of mixing infers to the tectonic evolution of the region, which is simultaneous to the Arctic Ocean opening.
NASA Astrophysics Data System (ADS)
Puchtel, Igor S.; Brügmann, Gerhard E.; Hofmann, Albrecht W.
2001-04-01
The Re-Os data on Archean komatiites from the Kostomuksha greenstone belt in the Baltic Shield are presented. This greenstone belt has been previously interpreted to represent a former oceanic plateau formed by the emplacement of an ancient plume head [Puchtel et al., Earth Planet. Sci. Lett. 155 (1998) 57-74]. Samples of flowtop breccia, spinifex-textured and cumulate komatiites and a chromite separate, all collected from the core of a 300 m deep diamond drill hole, yielded a Re-Os isochron with an age of 2795±40 Ma and an initial 187Os/188Os of 0.1117±0.0011 (γ187Os=+3.6±1.0). The high positive γ187Os(T) implies that the komatiites were derived from a mantle source with a time-integrated suprachondritic Re/Os ratio. Recycling of oceanic lithosphere to produce the enriched 187Os isotope signature is considered unlikely, as 15-25% crustal component is required to be incorporated into the plume source as early as 3.5-4.3 Ga. Such a substantial proportion of mafic material in the source would likely destroy the major and trace element characteristics of the komatiites. Our tentative interpretation is that the 187Os-enrichment in the Kostomuksha plume represents an outer core signature. If confirmed by the ongoing Pt-Os isotope studies, the results would provide evidence for the existence of whole-mantle convection in the late Archean, and might place constraints on the timing of core differentiation in the early Earth.
NASA Astrophysics Data System (ADS)
Heydolph, Ken; Murphy, David T.; Geldmacher, Jörg; Romanova, Irina V.; Greene, Andrew; Hoernle, Kaj; Weis, Dominique; Mahoney, John
2014-07-01
Shatsky Rise, an early Cretaceous igneous oceanic plateau in the NW Pacific, comprises characteristics that could be attributed to either formation by shallow, plate tectonic-controlled processes or to an origin by a mantle plume (head). The plateau was drilled during Integrated Ocean Drilling Program (IODP) Expedition 324. Complementary to a recent trace element study (Sano et al., 2012) this work presents Nd, Pb and Hf isotope data of recovered lava samples cored from the three major volcanic edifices of the Shatsky Rise. Whereas lavas from the oldest edifice yield fairly uniform compositions, a wider isotopic spread is found for lavas erupted on the younger parts of the plateau, suggesting that the Shatsky magma source became more heterogeneous with time. At least three isotopically distinct components can be identified in the magma source: 1) a volumetrically and spatially most common, moderately depleted component of similar composition to modern East Pacific Ridge basalt but with low 3He/4He, 2) an isotopically very depleted component which could represent local, early Cretaceous (entrained) depleted upper mantle, and 3) an isotopically enriched component, indicating the presence of (recycled) continental material in the magma source. The majority of analyzed Shatsky lavas, however, possess Nd-Hf-Pb isotope compositions consistent with a derivation from an early depleted, non-chondritic reservoir. By comparing these results with petrological and trace element data of mafic volcanic rock samples from all three massifs (Tamu, Ori, Shirshov), we discuss the origin of Shatsky Rise magmatism and evaluate the possible involvement of a mantle plume (head).
Pollitz, F.F.
2005-01-01
The M7.9 2002 Denali earthquake, Alaska, is one of the largest strike-slip earthquakes ever recorded. The postseismic GPS velocity field around the 300-km-long rupture is characterized by very rapid horizontal velocity up to ???300 mm/yr for the first 0.1 years and slower but still elevated horizontal velocity up to ???100 mm/yr for the succeeding 1.5 years. I find that the spatial and temporal pattern of the displacement field may be explained by a transient mantle rheology. Representing the regional upper mantle as a Burghers body, I infer steady state and transient viscosities of ??1 = 2.8 ?? 1018 Pa s and ??2 = 1.0 ?? 1017 Pa s, respectively, corresponding to material relaxation times of 1.3 and 0.05 years. The lower crustal viscosity is poorly constrained by the considered horizontal velocity field, and the quoted mantle viscosities assume a steady state lower crust viscosity that is 7??1. Systematic bias in predicted versus observed velocity vectors with respect to a fixed North America during the first 3-6 months following the earthquake is reduced when all velocity vectors are referred to a fixed site. This suggests that the post-Denali GPS time series for the first 1.63 years are shaped by a combination of a common mode noise source during the first 3-6 months plus viscoelastic relaxation controlled by a transient mantle rheology.
NASA Astrophysics Data System (ADS)
Tang, Gong-Jian; Cawood, Peter A.; Wyman, Derek A.; Wang, Qiang; Zhao, Zhen-Hua
2017-11-01
Magmatism postdating the initiation of continental collision provides insight into the late stage evolution of orogenic belts including the composition of the contemporaneous underlying subcontinental mantle. The Awulale Mountains, in the heart of the Tianshan Orogen, display three types of postcollisional mafic magmatic rocks. (1) A medium to high K calc-alkaline mafic volcanic suite (˜280 Ma), which display low La/Yb ratios (2.2-11.8) and a wide range of ɛNd(t) values from +1.9 to +7.4. This suite of rocks was derived from melting of depleted metasomatized asthenospheric mantle followed by upper crustal contamination. (2) Mafic shoshonitic basalts (˜272 Ma), characterized by high La/Yb ratios (14.4-20.5) and more enriched isotope compositions (ɛNd(t) = +0.2 - +0.8). These rocks are considered to have been generated by melting of lithospheric mantle enriched by melts from the Tarim continental crust that was subducted beneath the Tianshan during final collisional suturing. (3) Mafic dikes (˜240 Ma), with geochemical and isotope compositions similiar to the ˜280 Ma basaltic rocks. This succession of postcollision mafic rock types suggests there were two stages of magma generation involving the sampling of different mantle sources. The first stage, which occurred in the early Permian, involved a shift from depleted asthenospheric sources to enriched lithospheric mantle. It was most likely triggered by the subduction of Tarim continental crust and thickening of the Tianshan lithospheric mantle. During the second stage, in the middle Triassic, there was a reversion to more asthenospheric sources, related to postcollision lithospheric thinning.
NASA Astrophysics Data System (ADS)
Griffin, William L.; Huang, Jin-Xiang; Thomassot, Emilie; Gain, Sarah E. M.; Toledo, Vered; O'Reilly, Suzanne Y.
2018-05-01
Oxygen fugacity (ƒO2) is a key parameter of Earth's mantle, because it controls the speciation of the fluids migrating at depth; a major question is whether the sublithospheric mantle is metal-saturated, keeping ƒO2 near the Iron-Wustite (IW) buffer reaction. Cretaceous basaltic pyroclastic rocks on Mt. Carmel, Israel erupted in an intraplate environment with a thin, hot lithosphere. They contain abundant aggregates of hopper-shaped crystals of Ti-rich corundum, which have trapped melts with phenocryst assemblages (Ti2O3, SiC, TiC, silicides, native V) requiring extremely low ƒO2. These assemblages are interpreted to reflect interaction between basaltic melts and mantle-derived fluids dominated by CH4 + H2. Similar highly reduced assemblages are found associated with volcanism in a range of tectonic situations including subduction zones, major continental collisions, intraplate settings, craton margins and the cratons sampled by kimberlites. This distribution, and the worldwide similarity of δ13C in mantle-derived SiC and associated diamonds, suggest a widespread process, involving similar sources and independent of tectonic setting. We suggest that the common factor is the ascent of abiotic (CH4 + H2) fluids from the sublithospheric mantle; this would imply that much of the mantle is metal-saturated, consistent with observations of metallic inclusions in sublithospheric diamonds (e.g. Smith et al. 2016). Such fluids, perhaps carried in rapidly ascending deep-seated magmas, could penetrate high up into a depleted cratonic root, establishing the observed trend of decreasing ƒO2 with depth (e.g. Yaxley et al. in Lithos 140:142-151, 2012). However, repeated metasomatism (associated with the intrusion of silicate melts) will raise the FeO content near the base of the craton over time, developing a carapace of oxidizing material that would prevent the rise of CH4-rich fluids into higher levels of the subcontinental lithospheric mantle (SCLM). Oxidation of these fluids would release CO2 and H2O to drive metasomatism and low-degree melting both in the carapace and higher in the SCLM. This model can explain the genesis of cratonic diamonds from both reduced and oxidized fluids, the existence of SiC as inclusions in diamonds, and the abundance of SiC in some kimberlites. It should encourage further study of the fine fractions of heavy-mineral concentrates from all types of explosive volcanism.
NASA Technical Reports Server (NTRS)
Brandon, Alan D.; Graham, David W.; Waight, Tod; Gautason, Bjarni
2007-01-01
Picrites from the neovolcanic zones in Iceland display a range in Os-187/Os-188O from 0.1297 to 0.1381 ((gamma)Os = 0.0 to 6.5) and uniform Os-186/Os-188 of 0.1198375+/-32 (2 (sigma)). The value for Os-186/Os-188 is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398+/-16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in Os-186/Os-188 and Os-187/Os-188 from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high He-3/He-4, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not. A positive correlation between Os-187/Os-188 and He-3/He-4 from 9.6 to 19 RA in Iceland picrites is best modeled as mixtures of 500 Ma or older ancient recycled crust mixed with primitive mantle, creating a hybrid source region that subsequently mixes with the convecting MORB mantle during ascent and melting. This multistage mechanism to explain these isotope systematics is consistent with ancient recycled crust juxtaposed with more primitive, relatively He-rich mantle, in convective isolation from the upper mantle, most likely in the lowermost mantle. This is inconsistent with models that propose random mixing between heterogeneities in the convecting upper mantle as a mechanism to explain the observed isotopic variation in oceanic lavas or models that produce a high He-3/He-4 signature in melt depleted and strongly outgassed, He-poor mantle. Instead these systematics require a deep mantle source to explain the 3He/4He signature in Iceland lavas. The He-3/He-4 of lavas derived from the Iceland plume changed over time, from a maximum of 50 RA at 60 Ma, to approximately 25-27 RA at present. The changes are coupled with distinct compositional gaps between the different aged lavas when H-3/He-4 is plotted versus various geochemical parameters such as Nd-143/Nd-144 and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.
NASA Astrophysics Data System (ADS)
Liu, Min; Zhang, Da; Xiong, Guangqiang; Zhao, Hongtao; Di, Yongjun; Wang, Zhong; Zhou, Zhiguang
2016-04-01
Late Paleozoic was a critical period for the tectonic evolution of the northern margin of the Alxa-North China craton, but the evolutionary history is not well constrained. The Carboniferous intrusions in the Langshan area in the western part of the northern margin of the Alxa-North China craton are mainly composed of tonalite, quartz diorite, olivine gabbro and pyroxene peridotite. Zircon LA-ICP-MS U-Pb dating indicates that the Langshan Carboniferous intrusions were emplaced at ca. 338-324 Ma. The quartz diorites are characterized by high amounts of compatible trace elements (Cr, Ni and V) and high Mg# values, which may suggest a significant mantle source. The positive Pb and negative Nb-Ta-Ti anomalies, the variable εHf(t) (-6.9 to 2.0) values and the old Hf model ages (1218-1783 Ma) imply some involvement of ancient continental materials in its petrogenesis. The tonalite has relatively high Sr/Y ratios, low Mg#, Yb and Y contents, features of adakite-like rocks, negative εHf(t) values (-9.8 to -0.1) and older Hf model ages (1344-1953 Ma), which suggest significant involvement of ancient crust materials and mantle-derived basaltic component in its petrogenesis. The high Mg# values, high Cr and Ni contents, and low Zr and Hf contents of the mafic-ultramafic rocks show evidence of a mantle source, and the relatively low zircon εHf(t) values (-5.9 to 3.2) might point to an enriched mantle. The trace element characteristics indicate the influence of subducted sediments and slab-derived fluids. In the tectonic discrimination diagrams, all the rocks plot in subduction-related environment, such as volcanic arc and continental arc. Considering the regional geology, we suggest that the Carboniferous intrusions in the Langshan area were likely emplaced during the late stage of the southward subduction of the Paleo-Asian Ocean plate, which formed a continental arc along the northern margin of the Alxa-North China craton.
Deep Sources: New constraints on the tectonic origin of the Klyuchevskoy Group upper mantle anomaly
NASA Astrophysics Data System (ADS)
Bourke, J. R.; Nikulin, A.; Levin, V. L.
2017-12-01
Volcanoes of the Klyuchevskoy Group (KG) form one of the most active volcanic clusters on the planet, yet its position relative to the subducting Pacific Plate seems to be in violation of the understood principles of the flux-induced arc volcanism. Positioned at 170km above the accepted subduction contact, the KG is seemingly outside the maximum fluid flux release zone of 100km, as observed across global subduction zone environments. Past geophysical studies indicate presence of a planar seismic anomaly 110km below the KG, and it has been noted that the KG lavas exhibit anomalous geochemical signatures, possibly associated with two separate melt generation regions. This interpretation was largely based on receiver function analysis of seismic data recorded by 3 stations of the Partnership in International Research and Education (PIRE) network, done prior to this data becoming publically available. We present results of receiver function and a teleseismic, regional, and local source shear wave splitting study, focused on datasets obtained by the full PIRE network of 12 stations, as well as a hybrid summation of all stations. We present our findings in the form of depth migrated receiver function images convolved with a three-dimensional model of the subduction zone and shear-wave splitting measurements. Our results vastly increase the resolution of the previously identified upper mantle anomaly, further constraining its geometry both vertically and laterally. We complement our observations with a forward modeling effort aimed at assessing the geological nature of the anomaly. Specifically, we test three scenarios that were previously invoked to explain the presence of the low-velocity anomaly in the upper mantle below the KG: a 3D flow of mantle material around the corner of the subducting Pacific Plate, a sinking paleoslab left behind as a result of subduction rollback, and a plume of sediments from the subducting plate. We show that presence of remnant paleoslab material remains a likely geodynamic scenario that explains both the observed geophysical anomaly and its impact on volcanic activity of the KG.
Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes
Jonathan, Patchett P.; Kouvo, O.; Hedge, C.E.; Tatsumoto, M.
1982-01-01
We present initial 176Hf/177 Hf ratios for many samples of continental crust 3.7-0.3 Gy old. Results are based chiefly on zircons (1% Hf) and whole rocks: zircons are shown to be reliable carriers of essentially the initial Hf itself when properly chosen on the basis of U-Pb studies. Pre-3.0 Gy gneisses were apparently derived from an unfractionated mantle, but both depleted and undepleted mantle are evident as magma sources from 2.9 Gy to present. This mantle was sampled mainly from major crustal growth episodes 2.8, 1.8 and 0.7 Gy ago, all of which show gross heterogeneity of 176Hf/177Hf in magma sources from ??Hf=0 to +14, or about 60% of the variability of the present mantle. The approximate ??Hf=2??Nd relationship in ancient and modern igneous rocks shows that 176Lu/177Hf fractionates in general twice as much as 147Sm/144Nd in mantle melting processes. This allows an estimation of the relative value of the unknown bulk solid/liquid distribution coefficient for Hf. DLu/DHf=??? 2.3 holds for most mantle source regions. For garnet to be an important residual mantle phase, it must hold Hf strongly in order to preserve Hf-Nd isotopic relationships. The ancient Hf initials are consistent with only a small proportion of recycled older cratons in new continental crust, and with quasi-continuous, episodic growth of the continental crust with time. However, recycling of crust less than 150 My old cannot realistically be detected using Hf initials. The mantle shows clearly the general positive ??Hf resulting from a residual geochemical state at least back to 2.9 Gy ago, and seems to have repeatedly possessed a similar degree of heterogeneity, rather than a continuously-developing depletion. This is consistent with a complex dynamic disequilibrium model for the creation, maintenance and destruction of heterogeneity in the mantle. ?? 1981 Springer-Verlag.
Stability of Carbonated Eclogite in the Upper Mantle: Experimental Solidus from 2 to 9 GPa
NASA Astrophysics Data System (ADS)
Dasgupta, R.; Withers, A. C.; Hirschmann, M. M.
2003-12-01
Carbonates are pervasive alteration products of the oceanic crust and likely survive subduction-related dehydration and/or melting. Thus, significant quantities of carbonated refractory eclogite are probably delivered to the deeper mantle. The melting behavior of such recycled carbonate influences the fate of recycled carbon, determines the possible sources and depths of carbonated metasomatic melts in the mantle, and delimits the conditions under which carbonated eclogite may act as a source of carbonatite and other types of magmatic CO2. We present partial melting experiments of carbonated eclogite that constrain the solidus and near solidus phase relations from 2 to 9 GPa. To simulate the near-isochemical nature of ocean floor carbonation, the starting material was prepared by adding 5 wt.% CO2 in the form of a mixture of Fe-Mg-Ca-Na-K carbonates to a bimineralic eclogite from Salt Lake crater, Oahu, Hawaii. The starting composition is a reasonable approximation of carbonated oceanic crust from which siliceous hydrous fluid has been extracted by subduction. We find that melt-present versus melt-absent conditions can be distinguished based on textural criteria. Garnet and cpx appear in all the experiments. Between 2 and 3 GPa, the subsolidus assemblage also includes calcite-dolomitess + ilmenite, whereas above the solidus (950-975 ° C at 2 GPa and 1050-1075 ° C at 3 GPa) calcio-dolomitic liquid appears. From 3 to 4.5 GPa, dolomitess becomes stable at the solidus and the near solidus melt becomes increasingly dolomitic. Appearance of dolomite above 3 GPa is accompanied by a negative Clapeyron slope of the solidus, with the cusp located between 995 and 1025 ° C at ca. 4 GPa. Above 4-4.5 GPa, the solidus again rises with increasing pressure to ca. 1245 ° C at 9 GPa and magnesite becomes the subsolidus carbonate. Dolomitic melt coexists with magnesite + garnet + cpx + rutile between 5 and 9 GPa. If extrapolated to higher pressures, the carbonated eclogite solidus intersects the oceanic geotherm deeper than 400 km. Thus, eclogite cannot host carbonates in the asthenosphere. Carbonated eclogite bodies entering the convecting upper mantle would release carbonate melt in the mantle transition zone. Upon release, this small volume, highly reactive melt could be an effective agent of deep mantle metasomatism. Comparison of our eclogite-CO2 solidus with that of peridotite-CO2 shows a shallower solidus-geotherm intersection for the latter. This implies that carbonated peridotite is a more likely proximal source of magmatic carbon in oceanic provinces. However, carbonated eclogite is a potential source of continental carbonatites, as its solidus crosses the continental shield geotherm at ca. 4 GPa.
Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment
NASA Astrophysics Data System (ADS)
Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan
2013-04-01
One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.
Redox Evolution in Magma Oceans Due to Ferric/Ferrous Iron Partitioning
NASA Astrophysics Data System (ADS)
Schaefer, L.; Elkins-Tanton, L. T.; Pahlevan, K.
2017-12-01
A long-standing puzzle in the evolution of the Earth is that while the present day upper mantle has an oxygen fugacity close to the QFM buffer, core formation during accretion would have occurred at much lower oxygen fugacities close to IW. We present a new model based on experimental evidence that normal solidification and differentiation processes in the terrestrial magma ocean may explain both core formation and the current oxygen fugacity of the mantle without resorting to a change in source material or process. A commonly made assumption is that ferric iron (Fe3+) is negligible at such low oxygen fugacities [1]. However, recent work on Fe3+/Fe2+ ratios in molten silicates [2-4] suggests that the Fe3+ content should increase at high pressure for a given oxygen fugacity. While disproportionation was not observed in these experiments, it may nonetheless be occurring in the melt at high pressure [5]. Therefore, there may be non-negligible amounts of Fe3+ formed through metal-silicate equilibration at high pressures within the magma ocean. Homogenization of the mantle and further partitioning of Fe2+/Fe3+ as the magma ocean crystallizes may explain the oxygen fugacity of the Earth's mantle without requiring additional oxidation mechanisms. We present here models using different parameterizations for the Fe2+/Fe3+ thermodynamic relationships in silicate melts to constrain the evolution of the redox state of the magma ocean as it crystallizes. The model begins with metal-silicate partitioning at high pressure to form the core and set the initial Fe3+ abundance. Combined with previous work on oxygen absorption by magma oceans due to escape of H from H2O [6], we show that the upper layers of solidifying magma oceans should be more oxidized than the lower mantle. This model also suggests that large terrestrial planets should have more oxidized mantles than small planets. From a redox perspective, no change in the composition of the Earth's accreting material needs to be invoked to explain mantle oxygen fugacity, although implications for trace elements in the Earth's core and mantle are still being explored. [1] Ringwood, AE (1979) [2] Armstrong, K et al (2016) LPSC, 2580 [3] Armstrong, K et al (2017) ACCRETE workshop [4] Zhang, HL et al (2017) GCA, 204, 83 [5] Frost, DJ et al (2004) Nature, 428, 409 [6] Schaefer, L et al (2016) ApJ, 829, 63
Silicon and Zinc Isotopes in Ocean Island Basalts
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.
2013-12-01
Analyses of Ocean Island Basalts (OIB) have shown that the Earth's mantle contains isotopically distinct components, but current debate about the degree and scale of compositional variability persists. Isotopic heterogeneities in OIB for both radiogenic (e.g. Sr, Nd, Pb) and stable (e.g. Li, O, Ca) isotope systems have been attributed to the presence of recycled materials in different mantle reservoirs [1]. The study of both silicon and zinc isotopes in OIB form a complimentary approach to investigate potential heterogeneities in the mantle. Both isotope systems show limited fractionation during igneous process [2,3]. However, both Si and Zn exhibit larger (>1‰) variability in low-temperature environments (e.g. as a result of chemical weathering and biological utilization). Therefore, Si and Zn isotopes may be useful as tracers for the presence of crustal material (derived from low-T surface processes) in OIB source regions. Furthermore, characterizing the isotopic composition of the mantle is of central importance to the use of these isotopic systems as a basis for interplanetary comparisons. Here we present high-precision Si and Zn isotopic data obtained by MC-ICPMS for a diverse suite of OIB representing the EM-1, EM-2, and HIMU mantle components. Samples represent locations in the Pacific, Atlantic, and Indian Oceans. Data are reported as the permil deviation (×2 sd) from NBS28 for Si (δ30Si) and JMC-Lyon for Zn (δ66Zn). Average δ30Si values for OIB from EM-1 (-0.32×0.09‰), EM-2 (-0.30×0.03‰), and HIMU (-0.34×0.12‰) are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (BSE) [4]. Similarly, the δ66Zn average values for OIB from the EM-1, EM-2, and HIMU components (0.31×0.06‰, 0.31×0.04‰, 0.31×0.05‰, respectively) agree well with previously published data for the δ66Zn value of BSE [3]. At the current levels of precision, both Si and Zn isotopes exhibit little variation in OIB, confirming the large-scale homogeneity of the mantle for these isotopic systems. Furthermore, when averaged according to surface location, neither Si nor Zn shows any variation in isotopic composition according to oceanic basin. However, some small variations in the data may be present; many HIMU samples (Mangaia, Cape Verde) are enriched in the lighter isotopes of Si (δ30Si tending toward chondritic values), which might reflect preservation of isotopic heterogeneity within the mantle, an incorporation of an isotopically light component in the source of these lavas, or isotopic fractionation during magmatic differentiation. References: [1] Hofmann, RiMG 2007 [2] Savage et al., GCA 2011 [3] Chen et al., EPSL 2013 [4] Savage et al., EPSL 2010
NASA Astrophysics Data System (ADS)
da Fonseca, Gabriela Magalhães; Jordt-Evangelista, Hanna; Queiroga, Gláucia Nascimento
2018-03-01
In the worldwide known Quadrilátero Ferrífero and the adjacent terrains, southeastern Brazil, many serpentinite and soapstone quarries, and some rare bodies of metaultramafic rocks that partially preserve minerals or textures from the original igneous protolith can be found. It is not known if the protoliths and the ages of the metaultramafic rocks found in the Quadrilátero Ferrífero (and its oriental basement) and Mineiro Belt regions are the same or if they represent distinct magmatic episodes. The petrogenetic investigation, specially concerning the REE contents, aimed to gather informations about the type of magmatism and the mantle source in order to compare the metaultramafic rocks of both regions. The interpretation of the data concerning petrography, mineral chemistry and geochemistry shows that the metaultramafic rocks are similar to komatiitic peridotites, with MgO contents > 22 wt % and TiO2 < 0.9 wt %. The plot of the REE for the lithotypes found in the Quadrilátero Ferrífero shows decrease in LREE possibly reflecting the depletion of the mantle source. On the other hand the samples from the Mineiro Belt are enriched in LREE suggesting a mantle source enriched in these elements. This enrichment may have been caused by mantle metassomatism that occurred during accretion of the Paleoproterozoic magmatic arc that generated the Mineiro belt. In this paper, we therefore suggest two periods of ultramafic magmatism. The first one found in the Archean basement of the Quadrilátero Ferrífero, with a depleted mantle source. The second occurred in the Paleoproterozoic basement of the Mineiro belt, having a metassomatized mantle as source.
NASA Technical Reports Server (NTRS)
Peslier, Anne H.; Bizimis, Michael
2013-01-01
Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of Mid-Ocean Ridge Basalt (MORB) and Oceanic Island Basalt (OIB). but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. Here, we analyzed by FTIR water in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than cpx/opx equilibrium from experimental data. The pyroxenite cpx and opx H2O concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between H2O in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between H2O concentrations and or the presence of phlogopite. These data imply that cpx and opx may be at water saturation, far lower than experimental data suggest. Reconstructed bulk rock pyroxenite H2O ranges from 200-460 ppm (average 331 +/- 75 ppm), 2 to 8 times higher than H2O estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas. The average bulk rock pyroxenite H2O/Ce is 69 +/-35, lower than estimates of the MORB source (approx 150) or FOZO, C (200-250) mantle component, but consistent with "dry" EM sources (<100). These data suggest that a metasomatized, refertilized oceanic lithosphere that contains pyroxenitic veins (e.g. the lower part of an oceanic plate, where ascending melts can become trapped and crystallize), will have both higher water concentrations and low H2O/Ce, and may contribute to EM-type OIB sources, like that of Samoa basalts. Therefore, a low H2O/Ce mantle source may not necessarily be "dry".
NASA Astrophysics Data System (ADS)
Stuart, Finlay; Rogers, Nick; Davies, Marc
2016-04-01
The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a common depletion history and that they do not mix with shallower mantle reservoirs to the same extent.
NASA Astrophysics Data System (ADS)
Nelson, W. R.; Furman, T.; Elkins-Tanton, L. T.
2015-12-01
The East African Rift System (EARS) is the archetypal active continental rift. The rift branches cut through the elevated Ethiopian and Kenyan domes and are accompanied by a >40 Myr volcanic record. This record is often used to understand changing mantle dynamics, but this approach is complicated by the diversity of spatio-temporally constrained, geochemically unique volcanic provinces. Various sources have been invoked to explain the geochemical variability across the EARS (e.g. mantle plume(s), both enriched and depleted mantle, metasomatized or pyroxenitic lithosphere, continental crust). Mantle contributions are often assessed assuming adiabatic melting of mostly peridotitic material due to extension or an upwelling thermal plume. However, metasomatized lithospheric mantle does not behave like fertile or depleted peridotite mantle, so this model must be modified. Metasomatic lithologies (e.g. pyroxenite) are unstable compared to neighboring peridotite and can founder into the underlying asthenosphere via ductile dripping. As such a drip descends, the easily fusible metasomatized lithospheric mantle heats conductively and melts at increasing T and P; the subsequent volcanic products in turn record this drip magmatism. We re-evaluated existing data of major mafic volcanic episodes throughout the EARS to investigate potential evidence for lithospheric drip foundering that may be an essential part of the rifting process. The data demonstrate clearly that lithospheric drip melting played an important role in pre-flood basalt volcanism in Turkana (>35 Ma), high-Ti "mantle plume-derived" flood basalts and picrites (HT2) from NW Ethiopia (~30 Ma), Miocene shield volcanism on the E Ethiopian Plateau and in Turkana (22-26 Ma), and Quaternary volcanism in Virunga (Western Rift) and Chyulu Hills (Eastern Rift). In contrast, there is no evidence for drip melting in "lithosphere-derived" flood basalts (LT) from NW Ethiopia, Miocene volcanism in S Ethiopia, or Quaternary within-rift lavas in Ethiopia, Turkana or Kivu. The evidence for widespread lithospheric removal across eastern Africa coincides with the timing of dome uplift (e.g. Gani et al., 2007; Wichura et al., 2015) and further demonstrates the controls of lithospheric mantle on volcano-tectonic processes throughout the evolving EARS.
NASA Astrophysics Data System (ADS)
Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai
2012-04-01
Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous rocks in the Tarim Basin constitute a Permian LIP formed by a mantle plume in a similar fashion to the plume-related Emeishan LIP in southwest China.
Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034
NASA Technical Reports Server (NTRS)
Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.
2016-01-01
The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.
NASA Astrophysics Data System (ADS)
Campbell, Ian H.
2002-05-01
The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core-mantle boundary. When the two components reach thermal equilibrium with their surroundings, the lighter depleted component separates from the denser basaltic component. Both are eventually returned to the upper mantle, but the lighter depleted component has a shorter residence time in the lower mantle than the denser basaltic component. If the difference in the recycling times for the basaltic and depleted components is ˜1.0 to 1.5 Ga, a basaltic reservoir is created in the lower mantle, equivalent to the amount of basalt that is subducted in 1.0 to 1.5 Ga, and that reservoir is isolated from the upper mantle. It is this reservoir that is responsible for the Sm/Nd ratio of the upper mantle lying above the trend predicted by extraction of continental crust on the plot of Sm/Nd against Nb/U.
Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc
NASA Astrophysics Data System (ADS)
Freymuth, Heye; Vils, Flurin; Willbold, Matthias; Taylor, Rex N.; Elliott, Tim
2015-12-01
The fate of crustal material recycled into the convecting mantle by plate tectonics is important for understanding the chemical and physical evolution of the planet. Marked isotopic variability of Mo at the Earth's surface offers the promise of providing distinctive signatures of such recycled material. However, characterisation of the behaviour of Mo during subduction is needed to assess the potential of Mo isotope ratios as tracers for global geochemical cycles. Here we present Mo isotope data for input and output components of the archetypical Mariana arc: Mariana arc lavas, sediments from ODP Sites 800, 801 and 802 near the Mariana trench and the altered mafic, oceanic crust (AOC), from ODP Site 801, together with samples of the deeper oceanic crust from ODP Site 1256. We also report new high precision Pb isotope data for the Mariana arc lavas and a dataset of Pb isotope ratios from sediments from ODP Sites 800, 801 and 802. The Mariana arc lavas are enriched in Mo compared to elements of similar incompatibility during upper mantle melting, and have distinct, isotopically heavy Mo (high 98Mo/95Mo) relative to the upper mantle, by up to 0.3 parts per thousand. In contrast, the various subducting sediment lithologies dominantly host isotopically light Mo. Coupled Pb and Mo enrichment in the Mariana arc lavas suggests a common source for these elements and we further use Pb isotopes to identify the origin of the isotopically heavy Mo. We infer that an aqueous fluid component with elevated [Mo], [Pb], high 98Mo/95Mo and unradiogenic Pb is derived from the subducting, mafic oceanic crust. Although the top few hundred metres of the subducting, mafic crust have a high 98Mo/95Mo, as a result of seawater alteration, tightly defined Pb isotope arrays of the Mariana arc lavas extrapolate to a fluid component akin to fresh Pacific mid-ocean ridge basalts. This argues against a flux dominantly derived from the highly altered, uppermost mafic crust or indeed from an Indian-like mantle wedge. Thus we infer that the Pb and Mo budgets of the fluid component are dominated by contributions from the deeper, less altered (cooler) portion of the subducting Pacific crust. The high 98Mo/95Mo of this flux is likely caused by isotopic fractionation during dehydration and fluid flow in the slab. As a result, the residual mafic crust becomes isotopically lighter than the upper mantle from which it was derived. Our results suggest that the continental crust produced by arc magmatism should have an isotopically heavy Mo composition compared to the mantle, whilst a contribution of deep recycled oceanic crust to the sources of some ocean island basalts might be evident from an isotopically light Mo signature.
NASA Technical Reports Server (NTRS)
Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.
1981-01-01
An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.
NASA Astrophysics Data System (ADS)
Yu, X.; Dick, H. J. B.; Chu, F.; Li, X.; Tang, L.
2017-12-01
The Southwest Indian Ridge with obvious mantle heterogeneity is often attributed to the influence of nearby hotspots. The Dragon Flag Supersegment between 46°E and 52°E on Marion Rise has thicker crust, shallower axial depth, and lower mantle Bouguer anomaly, which indicates ridge-hotspot interaction. However, the great distance between Crozet hotspot and the supersegment (about 1,000km) and the controversial geochemical data are both against the prospective ridge-hotspot interaction. Here we compiled major element, trace element, Sr-Nd-Pb and He isotopic data of new samples from the supersegment. The mantle source, partial melting process as well as the crystallization history of these basalts are further constrained based on the synthetic analysis of the dataset. Most basalts from the supersegment require 0 to 30% olivine and plagioclase fractionation to account for their present composition, whereas the crystallization of clinopyroxene appears to be rather limited. The parental magmas of the supersegment are distinctive from east to west. Most samples from the Eastern Group can be modeled as the product of 10% partial melting of a DMM-like source, while some extremely depleted samples from the central valley may require two stages of partial melting, i.e. ancient melting of DMM-like source, followed by recent remelting of the residues. The Western Group may be resulted from lower degree of partial melting (5-10%), or a previously less depleted mantle source. The Eastern Group is favor of the involvement of Crozet hotspot in terms of Pb isotope and helium isotope signatures, but the trace element and Sr-Nd isotopes are not supportive for this interaction. The especially high 206Pb/204Pb for some of the samples from the Eastern Group, similar to the Crozet hotspot, requires the sporadical entrainment of blobs of relatively enriched source material, like the Crozet component. The Crozet hotspot is distinctive in its Sr-Nd-Pb-He isotopes among different islands, thus it is more complicate to address the issue of ridge-hotspot interaction. We suggest that the prospective Crozet-SWIR interaction is possible and can explain most of the geological and geochemical signatures.
NASA Astrophysics Data System (ADS)
Das, S.; Basu, A. R.
2017-12-01
Our recently discovered transition zone ( 410 - 660 Km) -derived peridotites in the Indus Ophiolite, Ladakh Himalaya [1] provide a unique opportunity to study changes in oxygen fugacity from shallow mantle beneath ocean ridges to mantle transition zone. We found in situ diamond, graphite pseudomorphs after diamond crystals, hydrocarbon (C - H) and hydrogen (H2) fluid inclusions in ultra-high pressure (UHP) peridotites that occur in the mantle - section of the Indus ophiolite and sourced from the mantle transition zone [2]. Diamond occurs as octahedral inclusion in orthoenstatite of one of these peridotites. The graphite pseudomorphs after diamond crystals and primary hydrocarbon (C-H), and hydrogen (H2) fluids are included in olivine of this rock. Hydrocarbon fluids are also present as inclusions in high pressure clinoenstatite (> 8 GPa). The association of primary hydrocarbon and hydrogen fluid inclusions in the UHP peridotites suggest that their source-environment was highly reduced at the base of the upper mantle. We suggest that during mantle upwelling beneath Neo Tethyan spreading center, the hydrocarbon fluid was oxidized and precipitated diamond. The smaller diamonds converted to graphite at shallower depth due to size, high temperature and elevated oxygen fugacity. This process explains how deep mantle upwelling can oxidize reduced fluid carried from the transition zone to produce H2O - CO2. The H2O - CO2 fluids induce deep melting in the source of the mid oceanic ridge basalts (MORB) that create the oceanic crust. References: [1] Das S, Mukherjee B K, Basu A R, Sen K, Geol Soc London, Sp 412, 271 - 286; 2015. [2] Das S, Basu A R, Mukherjee B K, Geology 45 (8), 755 - 758; 2017.
NASA Technical Reports Server (NTRS)
Gibler, Robert; Peslier, Anne H.; Schaffer, Lillian Aurora; Brandon, Alan D.
2014-01-01
Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by < 5% melting of a spinel peridotite source. Clinopyroxenes contain from 272 to 313 ppm weight H2O similar to the lower limit of KH peridotite clinopyroxenes (250-530 ppm H2O). This is unexpected as crystallized melts like pyroxenites should concentrate water more than residual mantle-like peridotites, given that H is incompatible. PUM normalized bulk REE of the DH pyroxenites are characterized by flat to LREE depleted REE profiles consistent with > 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and <1ppm in clinopyroxene. The DH pyroxenites may thus come from a dry mantle source, potentially unaffected by the subduction of the Farallon plate. These water-poor melts either originated from shallow oceanic lithosphere overlaying the Farallon slab or from continental mantle formed > 2 Ga. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau.
The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle
NASA Astrophysics Data System (ADS)
Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.
2017-06-01
A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic fractionation of Li isotopes during magma extraction, transport and storage may generate δ7 Li excursions in MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on smaller data sets. Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as δ11 B = - 9.1 ± 2.4 ‰ . Mass balance allows the existence of recycled B reservoirs in the deep mantle, but these are not required. However, mass balance among the crust, sediments and seawater shows enrichment of 6 Li in the surface reservoirs, which requires the existence of 7 Li -enriched material in the mantle. This may have formed by the subduction of altered oceanic crust since the Archaean.
NASA Astrophysics Data System (ADS)
Wilson, M.; Houlie, N.; Khan, A.; Lithgow-Bertelloni, C. R.
2012-12-01
The Azores Plateau and Archipelago in the Central Atlantic Ocean has traditionally been considered as the surface expression of a deep mantle plume or hotspot that has interacted with a mid-ocean ridge. It is geodynamically associated with the triple junction between the North American, African and Eurasian plates. (Yang et al., 2006) used finite frequency seismic tomography to demonstrate the presence of a zone of low P-wave velocities (peak magnitude -1.5%) in the uppermost 200km of the mantle beneath the plateau. The tomographic model is consistent with SW deflection of a mantle plume by regional upper mantle shear flow driven by absolute plate motions. The volcanic island of Sao Miguel is located within the Terceira Rift, believed to represent the boundary between the African and Eurasian plates; magmatic activity has been characterised by abundant basaltic eruptions in the past 30,000 years. The basalts are distinctive within the spectrum of global ocean island basalts for their wide range in isotopic composition, particularly in 87Sr/86Sr. Their Sr-Nd-Pb isotopic compositions show systematic variations from west to east across the island which can be interpreted in terms of melting of a two-component mantle source. The low melting point (enriched) component in the source has been attributed to recycled ancient (~3 Ga) oceanic crust(Elliott et al., 2007). Using the thermo-barometry approach of (Lee et al., 2009) we demonstrate that the pressure and temperature of magma generation below Sao Miguel increase from west (2 GPa, 1425 °C) to east (3.8 GPa, 1575 °C), consistent with partial melting along a mantle geotherm with a potential temperature of ~ 1500 °C. This is consistent with the magnitude of the thermal anomaly beneath the Azores Plateau (ΔT ~ 150-200 °C) inferred on the basis of the seismic tomography study. The site of primary magma generation extends from the base of the local lithosphere (~ 50 km) to ~ 125 km depth. To understand the geodynamic setting of the Sao Miguel magmatism we combine GPS data and mantle convection models with our interpretation of the geochemistry of the basalts. We demonstrate strong south-westerly and downward flow in the asthenospheric mantle above the Transition Zone (410 km seismic discontinuity), consistent with a zone of upper mantle shearing below the base of the lithosphere. The maximum flow velocity is broadly consistent with the depth of magma generation. The advection of the mantle with respect to the oceanic plate "moves" an isotopically distinct mantle source component beneath the active volcanoes of Sao Miguel and carries its previous melting residues to the south-west. We discuss the nature of this mantle source and its contribution to the mantle velocity anomalies determined by seismic tomography. This study opens-up new perspectives for seismic tomography and potentially new connections between the fields of geophysics and geochemistry in oceanic domains.
NASA Astrophysics Data System (ADS)
Mekkaoui, Abderrahmane; Remaci-Bénaouda, Nacéra; Graïne-Tazerout, Khadidja
2017-09-01
New petrological, geochemical and Sr-Nd isotopic data of the Late Triassic and Early Jurassic Kahel Tabelbala (KT) mafic dikes (south-western Algeria) offer a unique opportunity to examine the nature of their mantle sources and their geodynamic significance. An alkaline potassic Group 1 of basaltic dikes displaying relatively high MgO, TiO2, Cr and Ni, La/YbN ∼ 15, coupled with low 87Sr/86Sri ∼ 0.7037 and relatively high ɛNd(t) ∼ +3, indicates minor olivine and clinopyroxene fractionation and the existence of a depleted mantle OIB source. Their parental magma was generated from partial melting in the garnet-lherzolite stability field. A tholeiitic Group 2 of doleritic dikes displaying low MgO, Cr and Ni contents, La/YbN ∼ 5, positive Ba, Sr and Pb anomalies, the absence of a negative Nb anomaly coupled with moderate 87Sr/86Sri ∼ 0.7044 and low ɛNd(t) ∼ 0 (BSE-like), indicates a contamination of a mantle-derived magma that experienced crystal fractionation of plagioclase and clinopyroxene. This second group, similar to the low-Ti tholeiitic basalts of the Central Atlantic Magmatic Province (CAMP), was derived from partial melting in the peridotite source within the spinel stability field. Lower Mesozoic continental rifting could have been initiated by a heterogeneous mantle plume that supplied source components beneath Daoura, in the Ougarta Range.
Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa
NASA Astrophysics Data System (ADS)
James, D. E.; Boyd, F. R.; Schutt, D.; Bell, D. R.; Carlson, R. W.
2004-01-01
We impose geologic constraints on seismic three-dimensional (3-D) images of the upper mantle beneath southern Africa by calculating seismic velocities and rock densities from approximately 120 geothermobarometrically calibrated mantle xenoliths from the Archean Kaapvaal craton and adjacent Proterozoic mobile belts. Velocity and density estimates are based on the elastic and thermal moduli of constituent minerals under equilibrium P-T conditions at the mantle source. The largest sources of error in the velocity estimates derive from inaccurate thermo-barometry and, to a lesser extent, from uncertainties in the elastic constants of the constituent minerals. Results are consistent with tomographic evidence that cratonic mantle is higher in velocity by 0.5-1.5% and lower in density by about 1% relative to off-craton Proterozoic samples at comparable depths. Seismic velocity variations between cratonic and noncratonic xenoliths are controlled dominantly by differences in calculated temperatures, with compositional effects secondary. Different temperature profiles between cratonic and noncratonic regions have a relatively minor influence on density, where composition remains the dominant control. Low-T cratonic xenoliths exhibit a positive velocity-depth curve, rising from about 8.13 km/s at uppermost mantle depths to about 8.25 km/s at 180-km depth. S velocities decrease slightly over the same depth interval, from about 4.7 km/s in the uppermost mantle to 4.65 km/s at 180-km depth. P and S velocities for high-T lherzolites are highly scattered, ranging from highs close to those of the low-T xenoliths to lows of 8.05 km/s and 4.5 km/s at depths in excess of 200 km. These low velocities, while not asthenospheric, are inconsistent with seismic tomographic images that indicate high velocity root material extending to depths of at least 250 km. One plausible explanation is that high temperatures determined for the high-T xenoliths are a nonequilibrium consequence of relatively recent thermal perturbation and compositional modification associated with emplacement of kimberlitic fluids into the deep tectospheric root. Seismic velocities and densities for cratonic xenoliths differ significantly from those predicted for both primitive mantle peridotite and mantle eclogite. A model primitive mantle under cratonic P-T conditions exhibits velocities about 1% lower for P and about 1.5% lower for S, a consequence of a more fertile composition and different modal composition. Primitive mantle is also about 2% more dense at 150-km depth than low-T garnet lherzolite at cratonic P-T conditions. Similar calculations based on an oceanic geotherm are consistent with the isopycnic hypothesis of comparable density columns beneath oceanic and cratonic regions. Calculations for a hypothetical "cratonic" eclogite (50:50 garnet/omphacite) with an assumed cratonic geotherm produce extremely high VP and VS (8.68 km/s and 4.84 km/s, respectively, at 150 km depth) as well as high density (˜3.54 gm/cc). The very high velocity of eclogite should render it seismically conspicuous in the cratonic mantle if present as large volume blocks or slabs. We discuss how the seismic velocity data we have compiled in this paper from both xenoliths and generic petrologic models of the upper mantle differ from commonly used standard earth models IASPEI and PREM.
NASA Astrophysics Data System (ADS)
Putirka, K. D.
2006-05-01
The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and overlap within 1 sigma estimates from phase transitions at the 410 km (Jeanloz and Thompson, 1983) and 670 km (Hirose, 2002) seismic discontinuities. Variations in MORB FeOliq can be used to calculate the variance of TpMORB. FeOliq variations in global MORB show that 95% of the sub-MORB mantle has a T range of 165°C; 68% of MORB fall within temperature variations of ±30°C. In comparison, Te at Hawaii and Iceland are 1706°C and 1646°C respectively, and hence Te> is 248°C at Hawaii and 188°C at Iceland. Tp estimates at Hawaii and Iceland also exceed maximum Tp estimates at MORs (at 95% level) by 171 and 111°C respectively. These Te are in agreement with estimates derived from excess topography and dynamic models of mantle flow and melt generation (e.g., Sleep, 1990, Schilling, 1991, Ito et al., 1999). A clear result is that Hawaii and Iceland are hot relative to MORB. Rayleigh number calculations further show that for these Te, critical depths (i.e., the depths at which Ra > 1000) are < 130 km. Hawaii and Iceland are thus almost assuredly the result of thermally driven, active upwellings, or mantle plumes.
Seismic evidence for water transport out of the mantle transition zone beneath the European Alps
NASA Astrophysics Data System (ADS)
Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro
2018-01-01
The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.
Archean crust-mantle geochemical differentiation
NASA Astrophysics Data System (ADS)
Tilton, G. R.
Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.
Archean crust-mantle geochemical differentiation
NASA Technical Reports Server (NTRS)
Tilton, G. R.
1983-01-01
Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.
Nicholson, S.W.; Shirey, S.B.
1990-01-01
Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors
Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle
NASA Astrophysics Data System (ADS)
Hamilton, W. B.
2001-12-01
Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also. Plate motions are driven by subduction, the passive falling away of oceanic lithosphere which is negatively buoyant because of top-down cooling. Slabs have top and bottom rolling hinges and sink subvertically (inclinations of slabs mark their positions, not trajectories) into the transition zone, where they are laid down on, and depress, the 660-km discontinuity. Rollback of upper hinges into subducting plates is required by plate behavior at all scales. That fronts of overriding plates advance at rollback velocity is required by common preservation atop their thin leading edges of little-deformed fore-arc basins. Convergence velocity also commonly equals rollback but is faster in some arcs. Steeply-sinking inclined slabs push sublithospheric upper mantle forward into the shrinking ocean from which they came, forcing seafloor spreading therein, and pull overriding plates behind them. Continental plates pass over sunken slabs like tanks above their basal treads, and material from, and displaced rearward by, sunken slabs is cycled into pull-apart oceans opening behind the continents, thus transferring mantle from shrinking to enlarging oceans. Hot mantle displaced above slabs enables backarc spreading. Spreading ridges, in both shrinking and enlarging oceans, are passive byproducts of subduction, and migrate because it is more energy efficient to process new asthenosphere than to get partial melt from increasingly distant sources. A plate-motion framework wherein hinges roll back, ridges migrate, Antarctica is approximately fixed, and intraplate deformation is integrated may approximate an absolute reference to sluggish lower mantle, whereas the hotspot frame is invalid, and the no-net-rotation frame minimizes trench and ridge motions.
NASA Astrophysics Data System (ADS)
McLean, K. A.; Jadamec, M.; Durance-Sie, P. M.; Moresi, L. N.
2011-12-01
The Vanuatu area of the south-west Pacific is a dynamic region of high heat-flow and strain-rate, dominated by ongoing plate boundary processes. At the southern termination of the Vanuatu arc the curved geometry of the New Hebrides trench juxtaposes the slab edge perpendicular to its back-arc spreading center. While existing 3D subduction models have demonstrated the importance of mantle flow around a slab edge, the nature of interaction between back-arc upwelling and circum-slab edge mantle flow is not well understood. We use 3D instantaneous numerical models of a Newtonian mantle rheology to test the effect of the slab edge and back-arc upwelling on the mantle flow vector field beneath southern Vanuatu. These high-resolution models simulate temperature-dependent buoyancy-driven deformation of the lithosphere and mantle for a realistic slab geometry. Model results show a small but significant component of vertical mantle flow velocity associated with the slab edge and back-arc spreading center. We also see strain-rate and dynamic topography commensurate with surface observations. Mantle flow by toroidal-type motion brings hotter mantle material from behind the slab into the mantle wedge, elevating geothermal gradients in the slab edge vicinity. The implications of moderate vertical displacement of this hot mantle material at the slab edge are wide-ranging, and such a tectonic framework might aid interpretation of a number of surface observations. For example, induced decompression partial-melting in the mantle wedge and/or slab, and thermal erosion of the slab may contribute to the diverse magma compositions from this region.
NASA Astrophysics Data System (ADS)
Mahan, B. M.; Siebert, J.; Blanchard, I.; Badro, J.; Sossi, P.; Moynier, F.
2017-12-01
Volatile and moderately volatile elements display different volatilities and siderophilities, as well as varying sensitivity to thermodynamic controls (X, P, T, fO2) during metal-silicate differentiation. The experimental determination of the metal-silicate partitioning of these elements permits us to evaluate processes controlling the distribution of these elements in Earth. In this work, we have combined metal-silicate partitioning data and results for S, Sn, Zn and Cu, and input these characterizations into Earth formation models. Model parameters such as source material, timing of volatile delivery, fO2 path, and degree of impactor equilibration were varied to encompass an array of possible formation scenarios. These models were then assessed to discern plausible sets of conditions that can produce current observed element-to-element ratios (e.g. S/Zn) in the Earth's present-day mantle, while also satisfying current estimates on the S content of the core, at no more than 2 wt%. The results of our models indicate two modes of accretion that can maintain chondritic element-to-element ratios for the bulk Earth and can arrive at present-day mantle abundances of these elements. The first mode requires the late addition of Earth's entire inventory of these elements (assuming a CI-chondritic composition) and late-stage accretion that is marked by partial equilibration of large impactors. The second, possibly more intuitive mode, requires that Earth accreted - at least initially - from volatile poor material preferentially depleted in S relative to Sn, Zn, and Cu. From a chemical standpoint, this source material is most similar to type I chondrule rich (and S poor) materials (Hewins and Herzberg, 1996; Mahan et al., 2017; Amsellem et al., 2017), such as the metal-bearing carbonaceous chondrites.
Discrete stages of core formation survive the Moon-forming impact
NASA Astrophysics Data System (ADS)
Jackson, C.; Bennett, N.; Du, Z.; Fei, Y.
2016-12-01
There is mounting evidence that Earth contains isotopic variations produced by short-lived systems, namely Hf-W and I-Xe. The lifetimes of these systems are 50 Ma and 80 Ma, respectively, requiring that chemical heterogeneities that were formed extremely early in solar system history and have survived within Earth's mantle to the modern day. The isotopic heterogeneity observed within Earth's mantle contrasts the isotopic similarity of bulk silicate Earth and bulk silicate Moon. This suggests the process(es) responsible for the isotopic variations within Earth predate the Moon-forming impact. Here, we focus on the potential role of core-formation in generating coupled isotopic variations associated with the Hf-W and I-Xe systems. We present metal-silicate partitioning data for W and I from experiments employing laser-heated diamond anvil cells. Experiments were conducted up to the pressure and temperature conditions directly relevant to core formation at GSECARS, APS. Samples were prepared using focused ion beam milling and analyzed by field emission electron microbeam techniques (EDS & WDS). These analyses demonstrate that W and I preferentially partition into the core under a wide range of conditions. In combination with literature data, this suggests that core formation left the residual mantle with an increased Hf/W ratio and a decreased I/Xe ratio. These parent-daughter fractionations lead to radiogenic W and unradiogenic Xe isotopic signatures compared to mantle that experienced the extraction of core material at a later date, on average. Relatively radiogenic W and unradiogenic Xe isotopic signatures are associated with plume rocks, potentially linking the plume source to mantle reservoirs that experienced early core extraction relative to the bulk mantle. Compositional variables, pressure, and temperature also affect the magnitude of Hf/W and I/Xe fractionation associated with core formation. The interplay of these variables will be evaluated alongside the timing of core formation in the context of generating short-lived isotopic variations associated with plume mantle.
An inverted continental Moho and serpentinization of the forearc mantle.
Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M
2002-05-30
Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge.
NASA Astrophysics Data System (ADS)
Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.
2015-12-01
Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle. The absence of wholesale hydration of forearcs globally can be taken as evidence that most forearcs are too young to be substantially hydrated, that most subducted water bypasses the forearc and is released deeper, or that most fluid passing through the mantle nose does not react with the mantle.
The Mantle Isotopic Array: A Tale of Two FOZOs
NASA Astrophysics Data System (ADS)
Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.
2017-12-01
Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with primitive He in OIBs along with differences in mixing timescales and mantle processing rates for MORBs and OIBs. The two distinct FOZO compositions must also indicate limited direct mixing between the two over Earth's 4.5 Gyr history. References: [1] Hart et al., Science 1992; [2] Farley et al., EPSL 1992; [3] Hanan and Graham, Science 1996.
Asteroidal impacts and the origin of terrestrial and lunar volatiles
NASA Astrophysics Data System (ADS)
Albarede, Francis; Ballhaus, Chris; Blichert-Toft, Janne; Lee, Cin-Ty; Marty, Bernard; Moynier, Frédéric; Yin, Qing-Zhu
2013-01-01
Asteroids impacting the Earth partly volatilize, partly melt (O'Keefe, J.D., Ahrens, T.J. [1977]. Proc. Lunar Sci. Conf. 8, 3357-3374). While metal rapidly segregates out of the melt and sinks into the core, the vaporized material orbits the Earth and eventually rains back onto its surface. The content of the mantle in siderophile elements and their chondritic relative abundances hence is accounted for, not by the impactors themselves, as in the original late-veneer model (Chou, C.L. [1978]. Proc. Lunar Sci. Conf. 9, 219-230; Morgan, J.W. et al. [1981]. Tectonophysics 75, 47-67), but by the vapor resulting from impacts. The impactor's non-siderophile volatiles, notably hydrogen, are added to the mantle and hydrosphere. The addition of late veneer may have lasted for 130 Ma after isolation of the Solar System and probably longer, i.e., well beyond the giant lunar impact. Constraints from the stable isotopes of oxygen and other elements suggest that, contrary to evidence from highly siderophile elements, ˜4% of CI chondrites accreted to the Earth. The amount of water added in this way during the waning stages of accretion, and now dissolved in the deep mantle or used to oxidize Fe in the mantle and the core, may correspond to 10-25 times the mass of the present-day ocean. The Moon is at least 100 times more depleted than the Earth in volatile elements with the exception of some isolated domains, such as the mantle source of 74220 pyroclastic glasses, which appear to contain significantly higher concentrations of water and other volatiles.
NASA Astrophysics Data System (ADS)
Harris, Chris; le Roux, Petrus; Cochrane, Ryan; Martin, Laure; Duncan, Andrew R.; Marsh, Julian S.; le Roex, Anton P.; Class, Cornelia
2015-07-01
Oxygen isotope compositions of Karoo and Etendeka large igneous province (LIP) picrites and picrite basalts are presented to constrain the effects of crustal contamination versus mantle source variation. Olivine and orthopyroxene phenocrysts from lavas and dykes (Mg# 64-80) from the Tuli and Mwenezi (Nuanetsi) regions of the ca 180 Ma Karoo LIP have δ18O values that range from 6.0 to 6.7 ‰. They appear to have crystallized from magmas having δ18O values about 1-1.5 ‰ higher than expected in an entirely mantle-derived magma. Olivines from picrite and picrite basalt dykes from the ca 135 Ma Etendeka LIP of Namibia and Karoo-age picrite dykes from Dronning Maud Land, Antarctica, do not have such elevated δ18O values. A range of δ18O values from 4.9 to 6.0 ‰, and good correlations between δ18O value and Sr, Nd and Pb isotope ratios for the Etendeka picrites are consistent with previously proposed models of crustal contamination. Explanations for the high δ18O values in Tuli/Mwenezi picrites are limited to (1) alteration, (2) crustal contamination, and (3) derivation from mantle with an abnormally high δ18O. Previously, a variety of models that range from crustal contamination to derivation from the `enriched' mantle lithosphere have been suggested to explain high concentrations of incompatible elements such as K, and average ɛNd and ɛSr values of -8 and +16 in Mwenezi (Nuanetsi) picrites. However, the primitive character of the magmas (Mg# 73), combined with the lack of correlation between δ18O values and radiogenic isotopic compositions, MgO content, or Mg# is inconsistent with crustal contamination. Thus, an 18O-enriched mantle source having high incompatible trace element concentration and enriched radiogenic isotope composition is indicated. High δ18O values are accompanied by negative Nb and Ta anomalies, consistent with the involvement of the mantle lithosphere, whereas the high δ18O themselves are consistent with an eclogitic source. Magma δ18O values about 1 ‰ higher than expected for mantle-derived magma are also a feature of the Bushveld mafic and ultramafic magmas, and the possibility exists that a long-lived 18O-enriched mantle source has existed beneath southern Africa. A mixed eclogite peridotite source could have developed by emplacement of oceanic lithosphere into the cratonic keel during Archaean subduction.
NASA Astrophysics Data System (ADS)
Eguchi, T.; Matsubara, K.; Ishida, M.
2001-12-01
To unveil dynamic process associated with three-dimensional unsteady mantle convection, we carried out numerical simulation on passively exerted flows by simplified local hot sources just above the CMB and large-scale cool masses beneath smoothed subduction zones. During the study, we used our individual code developed with the finite difference method. The basic three equations are for the continuity, the motion with the Boussinesq (incompressible) approximation, and the (thermal) energy conservation. The viscosity of our model is sensitive to temperature. To get time integration with high precision, we used the Newton method. In detail, the size and thermal energy of the hot or cool sources are not uniform along the latitude, because we could not select uniform local volumes assigned for the sources within the finite difference grids throughout the mantle. Our results, thus, accompany some latitude dependence. First, we treated the case of the hotspots, neglecting the contribution of the subduction zones. The local hot sources below the currently active hotspots were settled as dynamic driving forces included in the initial condition. Before starting the calculation, we assumed that the mantle was statically layered with zero velocity component. The thermal anomalies inserted instantaneously in the initial condition do excite dynamically passive flows. The type of the initial hot sources was not 'plume' but 'thermal.' The simulation results represent that local upwelling flows which were directly excited over the initial heat sources reached the upper mantle by approximately 30 My during the calculation. Each of the direct upwellings above the hotspots has its own dynamic potential to exert concentric down- and up-welling flows, alternately, at large distances. Simultaneously, the direct upwellings interact mutually within the spherical mantle. As an interesting feature, we numerically observed secondary upwellings somewhere in a wide region covering east Eurasia to the Bering Sea where no hot sources were initially input. It seems that the detailed location of the secondary upwellings depends partly on the numerical parameters such as the radial profile of mantle viscosity especially at the D" layer, etc., because the secondary flows are provoked by dynamic interaction among the distributed direct upwellings just above the CMB. Our results suggest that if we assume not only non-zero time delays during the input of the local hot sources but also parameters related with the difference of their historical surface flux rates, the pattern of the passively excited flows will be different from that obtained with the simultaneously settled hot sources stated above. Second, we simultaneously incorporated simplified thermal anomaly models associated with both the distributed local hotspots and the global subduction zones, as dynamic origins in the initial condition for the static layered mantle. In this case, the simulation result represents that the pattern of secondary radial flows, being different from those in the earlier case, is sensitive to the relative strength between the positive dynamic buoyancy integrated over all of the local hot sources below the hotspots and the total negative buoyancy beneath the subduction zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brounce, Maryjo; Stolper, Edward; Eiler, John
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The leastmore » degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.« less
Brounce, Maryjo; Stolper, Edward; Eiler, John
2017-08-22
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity ( f O 2 ). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle f O 2 may influence the f O 2 at Earth's surface. However, degassing can impact magmatic f O 2 before or during eruption, potentially obscuring relationships between the f O 2 of the solid Earth and of emitted gases and their impact on surface f O 2 We show that low-pressure degassing resulted in reduction of the f O 2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher f O 2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower f O 2 than modern magmas. Estimates of f O 2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.
Stolper, Edward; Eiler, John
2017-01-01
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere. PMID:28784788
NASA Astrophysics Data System (ADS)
Brounce, Maryjo; Stolper, Edward; Eiler, John
2017-08-01
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.
Osmium isotope constraints on ore metal recycling in subduction zones
McInnes; McBride; Evans; Lambert; Andrew
1999-10-15
Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.
NASA Astrophysics Data System (ADS)
Bizimis, M.; Peslier, A. H.
2013-12-01
Water dissolved as trace amounts in anhydrous minerals has a large influence on the melting behavior and physical properties of the mantle. The water concentration of the oceanic mantle is inferred from the analyses of MORB and OIB [1], but there is little data from actual mantle samples. Moreover, enriched mineralogies (pyroxenites, eclogites) are thought as important sources of heterogeneity in the mantle, but their water concentrations and their effect on the water budget and cycling in the mantle are virtually unknown. We analyzed by FTIR water concentrations in garnet clinopyroxenite xenoliths from Salt Lake Crater, Oahu, Hawaii. These pyroxenites are high-pressure (>20kb) crystal fractionates from alkalic melts. The clinopyroxenes (cpx) have 260 to 576 ppm wt. H2O, with the least differentiated samples (Mg#>0.8) in the 400-500 ppm range. Orthopyroxene (opx) contain 117-265 ppm H2O, about half of that of cpx, consistent with other natural sample studies, but lower than experimental cpx/opx equilibrium data. These pyroxenite cpx and opx water concentrations are at the high-end of on-and off-craton peridotite xenolith concentrations and megacrysts from kimberites [2] and those of Hawaiian spinel peridotites. In contrast, garnet has extremely low water contents (<5ppm H2O). There is no correlation between water in cpx and lithophile element concentrations. Phlogopite is present in some samples, and its modal abundance shows a positive correlation in Mg# with cpx, implying equilibrium. However, there is no correlation between water concentrations and the presence of phlogopite. These data imply that cpx and opx water concentrations may be buffered by phlogopite crystallization. Reconstructed bulk rock pyroxenite water concentrations (not including phlogopite, i.e. minimum) range from 200-460 ppm (average 331× 75 ppm), significantly higher than water estimates for the MORB source (50-200 ppm), but in the range of E-MORB, OIB and the source of rejuvenated Hawaiian magmas [1,3]. The average bulk rock pyroxenite H2O/Ce is 69 × 35, lower than estimates of the MORB source (~150) or FOZO, C (200-250) mantle component, but consistent with 'dry' EM sources (<100) [1]. These data suggest that a metasomatized, refertilized oceanic lithosphere that contains a pyroxenite component (e.g. in the lower part of an oceanic plate, where ascending melts can become trapped and crystallize), will have both higher water concentrations and low H2O/Ce, and may contribute to EM-type OIB sources, like that of Samoan basalts [5]. Therefore, a low H2O/Ce mantle source may not necessarily be 'dry'. [1] Dixon et al., 2002, Nature 420, 385-389. [2] Peslier, 2010 JVGR 197, 239-258. [3] Dixon et al., 1997 JP 38, 911-939. [4] O'Leary et al. 2010 EPSL 297, 111-120. [5] Workman et al., 2006 EPSL 241, 932 - 951.
Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)
NASA Astrophysics Data System (ADS)
Gazel, E.; Herzberg, C. T.
2009-12-01
Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle plume model of the CLIP. The exact form of the secular cooling curve depends on whether the Gorgona komatiites were produced by the Galapagos or another plume. Iceland also exhibits secular cooling, in agreement with previous studies. In general, mantle plumes for LIPS with Paleocene-Permian ages were hotter and melted more extensively than plumes of more modern oceanic islands. This is interpreted to reflect episodic flow from lower mantle domains that are lithologically and geochemically heterogeneous. The majority of lavas from the present-day Galapagos plume formed in a column where melting ended at pressures less than 2 GPa, and this pressure is highly variable. Melting ended at much lower pressures for lavas from the Cocos and Carnegie Ridges, consistent with the channeling of the Galapagos plume to locations of thinner lithosphere. Low pressures of final melting are also inferred for older CLIP lavas, which suggest that the plume head impacted a mid-ocean ridge system.
NASA Astrophysics Data System (ADS)
Cannat, M.; Brunelli, D.; Paquet, M.; Sforna, M. C.; Seyler, M.
2015-12-01
Ultraslow spreading ridges are key regions to unravel mantle processes. Low potential temperatures and reduced melting allow decrypting early melting processes and shad lights on the source short-scale heterogeneities and their interactions with transient melts. Mantle-derived peridotites from the Smoothseafloor region of the eastern Southwest Indian Ridge reveal countertrending Na-Ti relationships. Na apparently behaves as a compatible element during partial melting similarly to light REEs. Heavy REEs, however, follow a normal relationship with the other melting indicators (e.g. Cr#), a behaviour that results in pattern rotation around a pivot element when looking to REE systematic. These relationships can be explained by percolation of relatively enriched, grt-field derived, melts in the spinel-field melting mantle 1. A feature that also explains the inverse Na-Cr# correlation, frequently observed in abyssal mantle rocks. Experimental relationships constraint the grt-field derived melts to be produced by low-melting paragenesis that experience a garnet to spinel phase transition shallower than mantle peridotites for a given temperature. Based on potential mantle temperatures estimated by Cannat et al., 19992, the grt-sp transition can be set at ca. 2.0 and 1.5 GPa for mantle peridotites and Mg pyroxenites respectively with the onset of mantle melting at 1.2 GPa. Mass balance calculations based on the amount of produced melt constrains the pyroxenitic fraction < 10% by mass of the mantle source. The contemporaneous presence of lithologies too depleted with respect to the described process suggests that some portions of the mantle source are inherited from more sustained ancient depletion events not related to present-day processes beneath this ridge portion. PNRA funding : PdR 2013/B1.02 1. Brunelli, D., et al., 2104. Percolation of enriched melts during incremental open-system melting in the spinel field : A REE approach to abyssal peridotites from the Southwest Indian Ridge. Geochim. Cosmochim. Acta 127,190-203. 2. Cannat, M., et al., 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J. Geophys. Res. 104, 22825-22843.
Within-plate Cenozoic Volcanism and Mantle Sources Within The Western-central Mediterranean Area
NASA Astrophysics Data System (ADS)
Beccaluva, L.; Bianchini, G.; Bonadiman, C.; Coltorti, M.; Siena, F.
An integrated study of anorogenic basic magmas and entrained mantle xenoliths rep- resents a promising approach for a comprehension of the magmatogenic events occur- ring within the lithospheric mantle in the western-central Mediterranean area. In this contribution we review the geochemical characteristics of mafic lavas and associated peridotite xenoliths from three anorogenic volcanic districts: Pliocene-Quaternary vol- canism of Sardinia; Pliocene-Quaternary volcanism of the Iblean area (eastern Sicily); Paleocene-Oligocene Veneto Volcanic Province. Investigations have been focused on 1) petrological features of parental magmas, which may contribute to infer the com- positional characteristics of mantle sources and to constrain the modes of partial melt- ing; 2) modelling the depletion events and metasomatic enrichments in mantle xeno- liths of the three volcanic districts, as well as the nature of their causative agents. Petrological features and Sr-Nd-Pb isotopic data, both of lava and xenoliths, indicate that DM+HIMU components distinguish the lithospheric mantle sections of Iblean and Veneto Volcanic Provinces. On the other hand, lavas and xenoliths from Sardinia display a significant different isotopic signature characterised by DM+EM1. Similar geochemical fingerprints, i.e. the significant presence of EM components are gener- ally recorded by mafic lavas and mantle xenoliths from the European Plate, whereas they are not observed in the stable African lithospheric domain.
Insights into asthenospheric anisotropy and deformation in Mainland China
NASA Astrophysics Data System (ADS)
Zhu, Tao
2018-03-01
Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.
NASA Astrophysics Data System (ADS)
Gangopadhyay, A.; Sproule, R. A.; Walker, R. J.; Lesher, C.
2004-12-01
Re-Os concentrations and isotopic compositions have been examined in one komatiite unit and one komatiitic basalt unit at Dundonald Beach, which is part of the spatially-extensive 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re was lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after the lava emplacement. Second, the Re-Os isotope systematics of the rocks with 187Re/188Os ratios >1 were reset at ˜2.5 Ga, most likely due to a regional metamorphic event. Finally, there is evidence for relatively recent gain and loss of Re. The variations in Os concentrations in the Dundonald komatiites yield a relative bulk distribution coefficient for Os (DOs solid/liquid) of 2-4, consistent with those obtained for stratigraphically-equivalent komatiites in the nearby Alexo area and in Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magma parental to the Kidd-Munro komatiitic rocks. Furthermore, whole-rock samples and chromite separates with low 187Re/188Os ratios (<1) yield a precise chondritic average initial 187Os/188Os ratio of 0.1083 ± 0.0006 (\\gammaOs = 0.0 ± 0.6). The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township. Our Os isotope results for the Dundonald komatiitic rocks, combined with those in the Alexo and Pyke Hill areas suggest that the mantle source region for the Kidd- Munro volcanic assemblage had evolved along a long-term chondritic Os isotopic trajectory until their eruption at ˜2.7 Ga. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the ˜2.7 Ga mantle source for the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for komatiites from the Gorgona Island, present-day ocean island basalts or arc-related lavas. This suggests a significantly more homogeneous mantle source in the Archean compared to the presentday mantle.
Mantle convection and the state of the Earth's interior
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1987-01-01
During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.
Resolving the potential mantle reservoirs that influence volcanism in the West Antarctic Rift System
NASA Astrophysics Data System (ADS)
Maletic, E. L.; Darrah, T.
2017-12-01
Lithospheric extension and magmatism are key characteristics of active continental rift zones and are often associated with long-lasting alkaline magmatic provinces. In these settings, a relationship between lithospheric extension and mantle plumes is often assumed for the forces leading to rift evolution and the existence of a plume is commonly inferred, but typically only extension is supported by geological evidence. A prime example of long-lasting magmatism associated with an extensive area of continental rifting is the West Antarctic Rift System (WARS), a 2000 km long zone of ongoing extension within the Antarctic plate. The WARS consists of high alkaline silica-undersaturated igneous rocks with enrichments in light rare earth elements (LREEs). The majority of previous geochemical work on WARS volcanism has focused on bulk classification, modal mineralogy, major element composition, trace element chemistry, and radiogenic isotopes (e.g., Sr, Nd, and Pb isotopes), but very few studies have evaluated volatile composition of volcanics from this region. Previous explanations for WARS volcanism have hypothesized a plume beneath Marie Byrd Land, decompression melting of a fossilized plume head, decompression melting of a stratified mantle source, and mixing of recycled oceanic crust with one or more enriched mantle sources from the deep mantle, though researchers are yet to reach a consensus. Unlike trace elements and radiogenic isotopes which can be recycled between the crust and mantle and which are commonly controlled by degrees of partial melting and prior melt differentiation, noble gases are present in low concentrations and chemically inert, allowing them to serve as reliable tracers of volatile sources and subsurface processes. Here, we present preliminary noble gas isotope (e.g., 3He/4He, CO2/3He, CH4/3He, 40Ar/36Ar, 40Ar*/4He) data for a suite of lava samples from across the WARS. By coupling major and trace element chemistry with noble gas elemental and isotopic composition and other volatiles from a suite of volcanic rocks in the WARS, we can better constrain a magmatic source and provide geological evidence that could support or oppose the existence of a mantle plume, HIMU plume, or deconvolve mantle-lithosphere interactions.
Melting the lithosphere: Metasomes as a source for mantle-derived magmas
NASA Astrophysics Data System (ADS)
Rooney, Tyrone O.; Nelson, Wendy R.; Ayalew, Dereje; Hanan, Barry; Yirgu, Gezahegn; Kappelman, John
2017-03-01
Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with an olivine-dominated source. Although there is mounting evidence for the role of pyroxenite in magma generation within upwelling mantle plumes, a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Here we present major and trace element analyses of 66 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt.% TiO2; 4.0-13.6 wt.% MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical units identified in the later cinder cones and associated lava flows; (B) a clinopyroxene-phyric high Ti group (3.1-6.5 wt.% TiO2; 2.8-9.2 wt.% MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. A characteristic negative K anomaly in primitive-mantle normalized diagrams, and Na2O > K2O, suggests a source rich in amphibole, devoid of olivine, and perhaps containing some carbonate and magnetite. While melt generation during rift development in Ethiopia is strongly correlated with the thermo-chemical anomalies associated with the African Superplume, thermobaric destabilization and melting of mantle metasomes may also contribute to lithospheric thinning. In regions impacted by mantle plumes, such melts may be critical to weakening of the continental lithosphere and the development of rifts.
Tomography & Geochemistry: Precision, Repeatability, Accuracy and Joint Interpretations
NASA Astrophysics Data System (ADS)
Foulger, G. R.; Panza, G. F.; Artemieva, I. M.; Bastow, I. D.; Cammarano, F.; Doglioni, C.; Evans, J. R.; Hamilton, W. B.; Julian, B. R.; Lustrino, M.; Thybo, H.; Yanovskaya, T. B.
2015-12-01
Seismic tomography can reveal the spatial seismic structure of the mantle, but has little ability to constrain composition, phase or temperature. In contrast, petrology and geochemistry can give insights into mantle composition, but have severely limited spatial control on magma sources. For these reasons, results from these three disciplines are often interpreted jointly. Nevertheless, the limitations of each method are often underestimated, and underlying assumptions de-emphasized. Examples of the limitations of seismic tomography include its ability to image in detail the three-dimensional structure of the mantle or to determine with certainty the strengths of anomalies. Despite this, published seismic anomaly strengths are often unjustifiably translated directly into physical parameters. Tomography yields seismological parameters such as wave speed and attenuation, not geological or thermal parameters. Much of the mantle is poorly sampled by seismic waves, and resolution- and error-assessment methods do not express the true uncertainties. These and other problems have become highlighted in recent years as a result of multiple tomography experiments performed by different research groups, in areas of particular interest e.g., Yellowstone. The repeatability of the results is often poorer than the calculated resolutions. The ability of geochemistry and petrology to identify magma sources and locations is typically overestimated. These methods have little ability to determine source depths. Models that assign geochemical signatures to specific layers in the mantle, including the transition zone, the lower mantle, and the core-mantle boundary, are based on speculative models that cannot be verified and for which viable, less-astonishing alternatives are available. Our knowledge is poor of the size, distribution and location of protoliths, and of metasomatism of magma sources, the nature of the partial-melting and melt-extraction process, the mixing of disparate melts, and the re-assimilation of crust and mantle lithosphere by rising melt. Interpretations of seismic tomography, petrologic and geochemical observations, and all three together, are ambiguous, and this needs to be emphasized more in presenting interpretations so that the viability of the models can be assessed more reliably.
Rare gases in Samoan xenoliths
NASA Astrophysics Data System (ADS)
Poreda, R. J.; Farley, K. A.
1992-09-01
The rare gas isotopic compositions of residual harzburgite xenoliths from Savai'i (SAV locality) and an unnamed seamount south of the Samoan chain (PPT locality) provide important constraints on the rare gas evolution of the mantle and atmosphere. Despite heterogeneous trace element compositions, the rare gas characteristics of the xenoliths from each of the two localities are strikingly similar. SAV and PPT xenoliths have 3He/ 4He ratios of11.1 ± 0.5 R A and21.6 ± 1 R A, respectively; this range is comparable to the 3He/ 4He ratios in Samoan lavas and clearly demonstrates that they have trapped gases from a relatively undegassed reservoir. The neon results are not consistent with mixing between MORB and a plume source with an atmospheric signature. Rather, the neon isotopes reflect either a variably degassed mantle (with a relative order of degassing of Loihi < PPT < Reunion < SAV < MORB), or mixing between the Loihi source and MORB. The data supports the conclusions of Honda et al. that the 20Ne/ 22Ne ratio in the mantle more closely resembles the solar ratio than the atmospheric one. 40Ar/ 36Ar ratios in the least contaminated samples range from 4,000 to 12,000 with the highest values in the 22 RA PPT xenoliths. There is no evidence for atmospheric 40Ar/ 36Ar ratios in the mantle source of these samples, which indicates that the lower mantle may have 40Ar/ 36Ar ratios in excess of 5,000. Xenon isotopic anomalies in 129Xe and 136Xe are as high as 6%, or about half of the maximum MORB excess and are consistent with the less degassed nature of the Samoan mantle source. These results contradict previous suggestions that the high 3He/ 4He mantle has a near-atmospheric heavy rare gas isotopic composition.
NASA Astrophysics Data System (ADS)
Ritter, X.; Sanchez-Valle, C.; Laumonier, M.; King, A.; Guignot, N.; Gaillard, F.; Sifre, D.; Perrillat, J. P.
2017-12-01
The occurrence of carbonate-rich mantle rocks and diamonds in kimberlite rocks provide evidence for the presence of CO2 in the mantle. Carbon is recycled into the mantle via subduction and released through volcanic outgassing. An important fraction is retained at depth where partial melting of subducted lithologies produce alkali-rich carbonates along the CaCO3-MgCO3-K2CO3 join that infiltrate the mantle wedge [1]. Although volumetrically minor, these melts act as effective metasomatic agents that are related to source regions for diamond-bearing kimberlites [2]. The mobility of carbon at depth is controlled by the physical properties of carbonate liquids that remain largely unknown [3,4]. Here we report in-situ density measurements of alkaline carbonates at crustal and upper mantle conditions using synchrotron X-ray absorption in a Paris-Edinburgh press at beamline Psiché (Synchrotron Soleil). Experiments were conducted in several compositions along the CaCO3-K2CO3 and MgCO3-K2CO3 join up to 1400 K and 3 GPa. The starting materials included a mixture of synthetic K2CO3 and natural calcite and K2Mg(CO3)2 glasses synthesized at 0.15 GPa and 1098 K in an internally heated pressure vessel. The samples were cold pressurized and heated until the molten stage was confirmed by X-ray diffraction. The results were fitted to derive the first robust model for the density of alkali carbonates that mimic liquids from the incipient melting of subducted lithologies at crustal and upper mantle conditions. We combine the results of the present study with available data on the viscosity of carbonate liquids and molecular dynamic predictions to discuss the mobility and migration rates of carbonate liquids in the upper mantle.[1] Litasov et al. 2012 Geology 41, 79-82. [2] Grassi and Schmidt 2011, Contrib Min Petr 162, 169-191. [3] Dobson et al. 1996, EPSL 143, 207-215. [4] Kono et al. 2014 Nature Communications 5:5091.
Oxygen isotope variation in stony-iron meteorites.
Greenwood, R C; Franchi, I A; Jambon, A; Barrat, J A; Burbine, T H
2006-09-22
Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.
Osmium Isotope and Highly Siderophile Element Compositions of Lunar Orange and Green Glasses
NASA Technical Reports Server (NTRS)
Walker, R. J.; Horan, M. F.; Shearer, C. K.; Papike, J. J.
2003-01-01
The absolute and relative abundances of the highly siderophile elements (HSE) present in planetary mantles are primarily controlled by: 1) silicate-metal partitioning during core-mantle differentiation, 2) the subsequent addition of HSE to mantles via continued planetary accretion. Consequently, constraints on the absolute and relative abundances of the HSE in the lunar mantle will provide unique insights to the formation and late accretionary history of not only the Moon, but also Earth. Determining the HSE content of the lunar mantle, however, has proven difficult, because no bona fide mantle rocks have been collected from the moon. The only materials presently available for constraining mantle abundances are lunar volcanic rocks. Lunar basalts typically have very low concentrations of HSE and highly fractionated HSE patterns. Because of our extremely limited understanding of mantle melt partitioning of the HSE, even for terrestrial systems, extrapolations to mantle compositions from basaltic compositions are difficult, except possibly for the less compatible HSE Pt and Pd. Primitive, presumably less fractionated materials, such as picritic glasses are potentially more diagnostic of the lunar interior. Here we report Os isotopic composition data and Re, Os, Ir, Ru, Pt and Pd concentration data for green glass (15426,164) and orange glass (74001,1217). As with previous studies utilizing neutron activation analysis, we are examining different size fractions of the spherules to assess the role of surface condensation in the generation of the HSE abundances.
Modeling crust-mantle evolution using radiogenic Sr, Nd, and Pb isotope systematics
NASA Astrophysics Data System (ADS)
Kumari, Seema; Paul, Debajyoti
2015-04-01
The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with a D" layer -source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, compiled from published data. Different crustal growth scenarios (exponential, episodic, early and late growth), proposed in earlier studies, and its effect on the evolution of isotope systematics of terrestrial reservoirs is studied. Model simulations strongly favor a layered mantle structure satisfying majority of the isotopic constraints. In the successful model, which is similar to that proposed by Kellogg et al. (1999), the present-day UM comprises of 60% of mantle mass and extends to a depth 1600 km, whereas the LM becomes non-primitive and more enriched than the bulk silicate Earth, mainly due to addition of recycled crustal material. Modeling suggest that isotopic evolution of reservoirs is affected by the mode of crustal growth. Only two scenarios satisfied majority of the Rb-Sr and Sm-Nd isotopic constraints but failed to reproduce the present-day Pb-isotope systematics; exponential growth of crust (mean age, tc=2.3 Ga) and delayed and episodic growth (no growth for initial 900 Ma, tc=2.05 Ga) proposed by Patchett and Arndt (1986). However, assuming a slightly young Earth (4.45 Ga) better satisfies the Pb-isotope systematics. Although, the delayed crustal growth model satisfied Sr-Nd isotopic constraints, presence of early Hadean crust (4.03 and 4.4 Ga detrital zircon in Acasta gneiss and Yilgarn block, respectively), argues against it. One notable feature of successful models is an early depletion of incompatible elements (as well as Th/U ratio in the UM) by the initial 500 Ma, as a result of early formation of continental crust. Our results strongly favor exponential crustal growth and layered mantle structure. Patchett, P.J., Arndt, N.T. (1986), Earth and Planetary Science Letters, 78, 329-338. Kellogg, L.H., Hager, B.H., van der Hilst, R.D (1999), Science, 283, 1881-1884.
Barium isotope geochemistry of subduction-zone magmas
NASA Astrophysics Data System (ADS)
Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.
2017-12-01
Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore Geol. Rev.; 4. Pearce, J., & Peate, D., 1995 Annu. Rev. Earth Planet. Sci.; 5. Pilet, S., et al., 2011 J. Petrol.; 6. Sun S. & McDonough, W., 1989; 7. Rudnick, R. & Gao, S., 2003 Treatise on geochem.; 8. Plank, T. & Langmuir, C., 1998, CG; 9. Hawkesworth, C. & Norry, M., 1983 Shiva Pub.; 10. Murphy, D., et al., 2002 J. Petrol.; 11. Kuritani, T., et al., 2011 Nat. Geosci.
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.
2015-12-01
The study of Silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to elucidate between possible heterogeneities in the mantle. Relatively large (~several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1]. In contrast, only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed in high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material (derived from low-temperature surface processes) in OIB source regions in a manner similar to more conventional stable isotope systems, such as O. Here we present the first comprehensive set of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIBs, including new data for the Canary Islands. Samples represent the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. Average δ30Si values for OIBs representing the EM-1 (-0.32 ± 0.06‰, 2 sd), EM-2 (-0.30 ± 0.01‰, 2 sd), and HIMU (-0.34 ± 0.09‰, 2 sd) mantle components are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth [3]. However, small systematic variations are present; HIMU (Mangaia, Cape Verde, La Palma) and Iceland OIBs are enriched in the lighter isotopes of Si (δ30Si values lower than MORB). Further, the difference in Si isotope composition between La Palma and El Heirro (Canary Islands) has previously been observed for O isotopes [4], suggesting a relationship between the Si and O isotope mantle systematics. The Si isotope variations among OIBs may be explained by the sampling of a primitive mantle reservoir enriched in the light isotopes of Si, as suggested by [5], but most likely reflects the incorporation of recycled altered oceanic crust and lithosphere in the plume source. References: [1] Ziegler et al., GCA 2005 [2] Savage et al., GCA 2011 [3] Savage et al., EPSL 2010 [4] Day et al., Geology 2009 [5] Huang et al., GCA 2014
Clague, D.A.; Frey, F.A.; Thompson, G.; Rindge, S.
1981-01-01
A wide range of rock types (abyssal tholeiite, Fe-Ti-rich basalt, andesite, and rhyodacite) were dredged from near 95oW and 85oW on the Galapagos spreading center. Computer modeling of major element compositions has shown that these rocks could be derived from common parental magmas by successive degrees of fractional crystallization. However, the P2O5/K2O ratio implies distinct mantle source compositions for the two areas. These source regions also have different rare earth element (REE) abundance patterns. The sequence of fractionated lavas differs for the two areas and indicates earlier fractionation of apatite and titanomagnetite in the lavas from 95oW. The mantle source regions for these two areas are interpreted to be depleted in incompatible (and volatile?) elements, although the source region beneath 95oW is less severely depleted in La and K. -Authors
NASA Astrophysics Data System (ADS)
Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei
2018-03-01
Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the Paleotethyan subduction channel plays the key role in transferring the geochemical signatures from the subducted Paleotethyan oceanic crust to the alkali basalts in the fossil convergent plate margin.
Desorption from interstellar grains
NASA Technical Reports Server (NTRS)
Leger, A.; Jura, M.; Omont, A.
1985-01-01
Different desorption mechanisms from interstellar grains are considered to resolve the conflict between the observed presence of gaseous species in molecular clouds and their expected depletion onto grains. The physics of desorption is discussed with particular reference to the process of grain heating and the specific heat of the dust material. Impulsive heating by X-rays and cosmic rays is addressed. Spot heating of the grains by cosmic rays and how this can lead to desorption of mantles from very large grains is considered. It is concluded that CO depletion on grains will be small in regions with A(V) less than five from the cloud surface and n(H) less than 10,000, in agreement with observations and in contrast to expectations from pure thermal equilibrium. Even in very dense and obscured regions and in the absence of internal ultraviolet sources, the classical evaporation of CO or N2 and O2-rich mantles by cosmic rays is important.
The survival of geochemical mantle heterogeneities
NASA Astrophysics Data System (ADS)
Albarede, F.
2004-12-01
The last decade witnessed major changes in our perception of the geochemical dynamics of the mantle. Data bases such as PETDB and GEOROC now provide highly constrained estimates of the geochemical properties of dominant rock types and of their statistics, while the new generation of ICP mass spectrometers triggered a quantum leap in the production of high-precision isotopic and elemental data. Such new advances offer a fresh view of mantle heterogeneities and their survival through convective mixing. A vivid example is provided by the new high-density coverage of the Mid-Atlantic ridge by nearly 500 Pb, Nd, and Hf isotopic data. This new data set demonstrates a rich harmonic structure which illustrates the continuing stretching and refolding of subducted plates by mantle convection. Just as for oceanic chemical variability, the survival of mantle geochemical heterogeneities though mantle circulation can be seen as a competition between stirring and renewal. The modern residence (renewal) times of the incompatible lithophile elements in the mantle calculated using data bases vary within a rather narrow range (4-9 Gy). The mantle is therefore not currently at geochemical steady-state and the effect of its primordial layering on modern mantle geochemistry is still strong. Up to 50 percent of incompatible lithophile elements may never have been extracted into the oceanic crust, which generalizes a conclusion reached previously for 40Ar. A balance between the buoyancy flux and viscous dissipation provides frame-independent estimates of the rates of mixing by mantle convection: primordial geochemical anomalies with initial length scales comparable to mantle depths of plate lengths are only marginally visible at the scale of mantle melting underneath mid-ocean ridges (≈~50~km). They may show up, however, in hot spot basalts and even more in melt inclusions. Up to 50 percent primordial material may be present in the mantle, but scattered throughout as small (<~10~km) domains, strongly sheared and refolded, and interlayered with younger recycled material. The exploration of the fine-scale geochemical structure of the mantle and the quest for preserved remnants of very old mantle arise as the strongest priorities of deep Earth geochemistry.
NASA Astrophysics Data System (ADS)
Révillon, S.; Chauvel, C.; Arndt, N. T.; Pik, R.; Martineau, F.; Fourcade, S.; Marty, B.
2002-12-01
The composition of the mantle plumes that created large oceanic plateaus such as Ontong Java or the Caribbean is still poorly known. Geochemical and isotopic studies on accreted portions of the Caribbean plateau have shown that the plume source was heterogeneous and contained isotopically depleted and relatively enriched portions. A distinctive feature of samples from the Caribbean plateau is their unusual Sr isotopic compositions, which, at a given Nd isotopic ratio, are far higher than in samples from other oceanic plateaus. Sr, O and He isotopic compositions of whole rocks and magmatic minerals (clinopyroxene or olivine) separated from komatiites, gabbros and peridotites from Gorgona Island in Colombia were determined to investigate the origin of these anomalously radiogenic compositions. Sequentially leached clinopyroxenes have Sr isotopic compositions in the range 87Sr/ 86Sr=0.70271-0.70352, systematically lower than those of leached and unleached whole rocks. Oxygen isotopic ratios of clinopyroxene vary within the range δ 18O=5.18-5.35‰, similar to that recorded in oceanic island basalts. He isotopic ratios are high ( R/ Ra=8-19). The lower 87Sr/ 86Sr ratios of most of the clinopyroxenes shift the field of the Caribbean plateau in Nd-Sr isotope diagrams toward more 'normal' values, i.e. a position closer to the field defined by mid-ocean ridge basalts and oceanic-island basalts. Three clinopyroxenes have slightly higher 87Sr/ 86Sr ratios that cannot be explained by an assimilation model. The high 87Sr/ 86Sr and variations of 143Nd/ 144Nd are interpreted as a source characteristic. Trace-element ratios, however, are controlled mainly by fractionation during partial melting. We combine these isotopic data in a heterogeneous plume source model that accounts for the diversity of isotopic signatures recorded on Gorgona Island and throughout the Caribbean plateau. The heterogeneities are related to old recycled oceanic lithosphere in the plume source; the high 3He/ 4He ratios may indicate that the source material once resided in the lower mantle.
NASA Astrophysics Data System (ADS)
Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.
2017-12-01
Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.
Sas, May; DeBari, Susan; Clynne, Michael A.; Rusk, Brian G.
2017-01-01
To better understand the role of slab melt in the petrogenesis of North Cascades magmas, this study focuses on petrogenesis of high-Mg lavas from the two northernmost active volcanoes in Washington. High-Mg andesites (HMA) and basaltic andesites (HMBA) in the Cascade Arc have high Mg# [molar Mg/(Mg+Fe2+)] relative to their SiO2 contents, elevated Nd/Yb, and are Ni- and Cr-enriched. The rock units examined here include the Tarn Plateau HMBA (51.8–54.0 wt% SiO2, Mg# 68–70) and Glacier Creek HMA (58.3–58.7 wt% SiO2, Mg# 63–64) from the Mount Baker Volcanic Field, and the Lightning Creek HMBA (54.8–54.6 SiO2, Mg# 69–73) from Glacier Peak. This study combines major and trace element compositions of minerals and whole rocks to test several petrogenetic hypotheses and to determine which, if any, are applicable to North Cascades HMA and HMBA. In the Tarn Plateau HMBA, rare earth element (REE) equilibrium liquids calculated from clinopyroxene compositions have high Nd/Yb that positively correlates with Mg#. This correlation suggests an origin similar to that proposed for Aleutian adakites, where intermediate, high Nd/Yb slab-derived melts interact with the overlying mantle to become Mg-rich, and subsequently mix with low Nd/Yb, mantle-derived mafic magmas with lower Mg#. In the Glacier Creek HMA, elevated whole-rock MgO and SiO2 contents resulted from accumulation of xenocrystic olivine and differentiation processes, respectively, but the cause of high Nd/Yb is less clear. However, high whole-rock Sr/P (fluid mobile/fluid immobile) values indicate a mantle source that was fluxed by an enriched, hydrous slab component, likely producing the observed high Nd/Yb REE signature. The Lightning Creek HMBA is a hybridized rock unit with at least three identifiable magmatic components, but only one of which has HMA characteristics. Cr and Mg contents in Cr-spinel and olivine pairs in this HMA component suggest that its source is a strongly depleted mantle, and high whole-rock Sr/P values indicate mantle melting that was induced through hydration, likely adding the component responsible for the observed high Nd/Yb REE pattern. The elevated SiO2 contents (54.6 wt%) of the HMA component resulted from differentiation or high degrees of partial melting of ultramafic material through the addition of H2O. Therefore the Lightning Creek HMBA is interpreted to have originated from a refractory mantle source that underwent melting through interaction with an enriched slab component. Our results indicate that in addition to slab-derived fluids, slab-derived melts also have an important role in the production of HMA and HMBA in the north Cascade Arc.
Underwood, Sandra J.; Clynne, Michael A.
2017-01-01
Previously reported whole-rock δ18O values (5.6–7.8‰) for primitive quaternary mafic lavas from the southernmost Cascades (SMC) are often elevated (up to 1‰) relative to δ18O values expected for mafic magmas in equilibrium with mantle peridotite. Olivine, clinopyroxene, and plagioclase crystals were separated from 29 geochemically well-characterized mafic lavas for δ18O measurements by laser fluorination to assess modification of the mantle sources by ancient and modern subducted components. Oxygen isotope values of olivine phenocrysts in calc-alkaline lavas and contemporaneous high alumina olivine tholeiitic (HAOT) lavas generally exceed depleted mantle olivine values (~4.9–5.3‰). Modern addition of up to 6 wt% slab-derived fluid from Gorda serpentinized peridotite dehydration (~15‰) or chlorite dehydration (~10‰) within the serpentinized peridotite can provide the 18O enrichment detected in olivine phenocrysts (δ18Oolivine = 5.3–6.3‰) in calc-alkaline mafic lavas, and elevate 18O in overlying mantle lithosphere, as well. Specifically, although HAOT δ18Oolivine values (5.5–5.7‰) may reflect partial melting in heterogeneous 18O enriched mantle source domains that developed during multiple subduction events associated with terrane accretion (e.g., <1 wt% of ~15‰ materials), an additional 18O enrichment of up to 2 wt% of 10–15‰ slab-derived hydrous fluids might be accommodated. The calc-alkaline primitive magmas appear to have experienced a continuous range of open system processes, which operate in the mantle and during rapid magma ascent to eruption, and occasionally post quench. Textural relationships and geochemistry of these lava samples are consistent with blends of mafic phenocrysts and degassed melts in varying states of 18O disequilibrium. In lenses of accumulated melt within peridotite near the base of the crust, coexisting olivine and clinopyroxene δ18O values probably are not at isotopic equilibrium because fluids introduced into the system perturbed the δ18Omelt values. A “sudden” melt extraction event interrupts 18O equilibration in phenocrysts and poorly mixed melt(s). Rapid ascent of volatile oversaturated primitive mafic magma through the crust appears to be accompanied by devolatilization and crystallization of anorthite-rich plagioclase with elevated δ18Oplag values. The (Sr/P)N values for the whole rock geochemistry are consistent with a 87Sr/86Sr ~0.7027 slab-derived fluid addition into the infertile peridotite source of magmas, and melt devolatilization is recorded in the mixture of disequilibrium δ18O values for the constituent phases of lavas. Morbidity of the Gorda Plate as it undergoes intense deformation from the spreading ridge to the trench is likely a key factor to developing the carrying capacity of hydrous fluids and mineral phases in the slab subducting into the SMC mantle.
NASA Astrophysics Data System (ADS)
Kargin, Alexey; Golubeva, Yulia; Demonterova, Elena
2017-04-01
The southeastern margin of the Anabar shield (the Siberian Craton) in Mesozoic was characterized by intense alkaline-ultramafic (include diamondiferous kimberlite) magmatism. This zone is located within the Archean-Proterozoic Hapchan terrane and includes several fields of alkaline-ultramafic rocks that formed during three main episodes (Zaytsev and Smelov, 2010; Sun et al., 2014): Late Triassic (235-205 Ma), Middle-Late Jurassic (171-149 Ma), Cretaceous (105 Ma). Following the revised classification scheme of Tappe et al. (2005), the alkaline-ultramafic rocks of the Anabar region were identified, correspondingly, as 1) Late Triassic aillikites, damtjernites, and orangeites; 2) Middle-Late Jurassic silicocarbonatites and 3) Cretaceous carbonatites. According to mineralogical, geochemical and isotopic (Sm-Nd, Rb-Sr) data on the alkaline-ultramafic rocks of the Anabar region, the following scheme of the mantle source evolution is suggested: 1). Ascent of the asthenospheric (or plume) material to the base of the lithospheric mantle containing numerous carbonate- and phlogopite-rich veins in Late Triassic led to the generation of orangeite and aillikite magmas; 2). Evolution of aillikite magmas during their ascent and interaction with the surrounding lithospheric mantle (e.g. mantle-rock assimilation and/or melt differentiation) resulted in the accumulation of Mg-Si components in alkaline-ultramafic magmas and was accompanied by a change in liquidus minerals (from apatite-carbonate to olivine and Ca-silicate). Exsolution of carbonate-rich fluid at this stage was responsible for the formation of damtjernite magmas. 3). The tectonothermal activation within the Anabar region in Jurassic was marked by the generation of silicocarbonatitic magmas. Their geochemical composition suggests decreasing abundance of phlogopite-rich veins in the lithospheric mantle source. 4). In Cretaceous, the alkaline-ultramafic magmatism shifted into the central part of the Hapchan terrane where produced several carbonatite pipes and dykes. Their geochemical composition indicates the predominance of the carbonate component in the source region and a decrease of the thickness of the lithospheric mantle. This study was supported by Russian Science Foundation №16-17-10068. Tappe S., Foley S.F., Jenner G.A. et al. 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton // J. Petrology. V. 47 (7). P. 1261-1315. Sun J., Liu C.Z., Tappe S. et al. 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis // Earth Planet. Sci. Lett. V. 404. P. 283-295. Zaytsev A.I., Smelov A.P., 2010. Isotope Geochronology of Kimberlite Formation Rocks from Yakutian Province // Publication of the Institute of Diamonds Geology, Siberian branch of the Russian Academy of Sciences, Yakutsk (107 pp. (in Russian)).
NASA Technical Reports Server (NTRS)
Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.
2007-01-01
The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.
Driving forces: Slab subduction and mantle convection
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1988-01-01
Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.
40K-(40)Ar constraints on recycling continental crust into the mantle
Coltice; Albarede; Gillet
2000-05-05
Extraction of potassium into magmas and outgassing of argon during melting constrain the relative amounts of potassium in the crust with respect to those of argon in the atmosphere. No more than 30% of the modern mass of the continents was subducted back into the mantle during Earth's history. It is estimated that 50 to 70% of the subducted sediments are reincorporated into the deep continental crust. A consequence of the limited exchange between the continental crust and the upper mantle is that the chemistry of the upper mantle is driven by exchange of material with the deep mantle.
Crustal growth in subduction zones
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Castro, Antonio; Gerya, Taras
2015-04-01
There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other crustal units may collide with continental margins to form collisional orogens and accreted terranes in places where oceanic lithosphere is recycled back into the mantle. We use thermomechanical-petrological models of an oceanic-continental subduction zone to analyse the dynamics of terrane accretion and its implications to arc magmatisim. It is shown that terrane accretion may result in the rapid growth of continental crust, which is in accordance with geological data on some major segments of the continental crust. Direct consequences of terrane accretion may include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes and partial melting (Vogt and Gerya., 2014), forming complex suture zones of accreted and partially molten units. Castro, A., Vogt, K., Gerya, T., 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 23, 1554-1566. Vogt, K., Castro, A., Gerya, T., 2013. Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 14, 470-487. Vogt, K., Gerya, T., 2014. From oceanic plateaus to allochthonous terranes: Numerical Modelling. Gondwana Research, 25, 494-508
NASA Astrophysics Data System (ADS)
Davies, G. F.
2009-12-01
Dynamical and chemical interpretations of the mantle have hitherto remained incompatible, despite substantial progress over recent years. It is argued that both the refractory incompatible elements and the noble gases can be reconciled with the dynamical mantle when mantle heterogeneity is more fully accounted for. It is argued that the incompatible-element content of the MORB source is about double recent estimates (U~10 ng/g) because enriched components have been systematically overlooked, for three main reasons. (1) in a heterogeneous MORB source, melts from enriched pods are not expected to equilibrate fully with the peridotite matrix, but recent estimates of MORB-source composition have been tied to residual (relatively infertile) peridotite composition. (2) about 25% of the MORB source comes from plumes, but plume-like components have tended to be excluded. (3) a focus on the most common “normal” MORBs, allegedly representing a “depleted” MORB source, has overlooked the less-common but significant enriched components of MORBs, of various possible origins. Geophysical constraints (seismological and topographic) exclude mantle layering except for the thin D” layer and the “superpiles” under Africa and the Pacific. Numerical models then indicate the MORB source comprises the rest of the mantle. Refractory-element mass balances can then be accommodated by a MORB source depleted by only a factor of 2 from chondritic abundances, rather than a factor of 4-7. A source for the hitherto-enigmatic unradiogenic helium in OIBs also emerges from this picture. Melt from subducted oceanic crust melting under MORs will react with surrounding peridotite to form intemediate compositions here termed hybrid pyroxenite. Only about half of the hybrid pyroxenite will be remelted, extracted and degassed at MORs, and the rest will recirculate within the mantle. Over successive generations starting early in Earth history, volatiles will come to reside mainly in the hybrid pyroxenite. This will be denser than average mantle and will tend to accumulate in D”, like subducted oceanic crust. Because residence times in D” are longer, it will degas more slowly. Thus plumes will tap a mixture of older, less-degassed hybrid pyroxenite, containing less-radiogenic noble gases, and degassed former oceanic crust. Calculations of degassing history confirm that this picture can quantitatively account for He, Ne and Ar in MORBs and OIBs. Geophysically-based dynamical models have been shown over recent years to account quantitatively for the isotopes of refractory incompatible elements. This can now be extended to noble gas isotopes. The remaining significant issue is that thermal evolution calculations require more radiogenic heating than implied by cosmochemical estimates of radioactive heat sources. This may imply that tectonic and thermal evolution have been more episodic in the Phanerozoic than has been generally recognised.
NASA Astrophysics Data System (ADS)
Dupuy, C.; Marsh, J.; Dostal, J.; Michard, A.; Testa, S.
1988-01-01
Combined elemental, and Sr and Nd isotopic data are presented for Mesozoic dolerite dikes of Liberia (Africa) which are related to the initial stage of opening of the Atlantic Ocean. The large scatter of both trace element and isotopic data allows the identification of five groups of dolerites which cannot be related to each other by simple processes of mineral fractionation from a common source. On the contrary, the observed chemical and isotopic variation within some dolerites (Groups I and II) may result either from variable degrees of melting of an isotopically heterogeneous source or mixing between enriched and depleted oceanic type mantle. For the other dolerites (Groups III-V) mixing with a third mantle source with more radiogenic Sr and with element ratios characteristic of subduction environments is suggested. This third source is probably the subcontinental lithospheric mantle. Finally, no significant modification by interaction with continental crust is apparent in most of the analyzed samples.
Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin
Brocher, T.M.; Parsons, T.; Trehu, A.M.; Snelson, C.M.; Fisher, M.A.
2003-01-01
Petrologic models suggest that dehydration and metamorphism of subducting slabs release water that serpentinizes the overlying forearc mantle. To test these models, we use the results of controlled-source seismic surveys and earthquake tomography to map the upper mantle along the Cascadia margin forearc. We find anomalously low upper-mantle velocities and/or weak wide-angle reflections from the top of the upper mantle in a narrow region along the margin, compatible with recent teleseismic studies and indicative of a serpentinized upper mantle. The existence of a hydrated forearc upper-mantle wedge in Cascadia has important geological and geophysical implications. For example, shearing within the upper mantle, inferred from seismic reflectivity and consistent with its serpentinite rheology, may occur during aseismic slow slip events on the megathrust. In addition, progressive dehydration of the hydrated mantle wedge south of the Mendocino triple junction may enhance the effects of a slap gap during the evolution of the California margin.
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Parmentier, E. Marc
1990-01-01
The crust and mantle of Venus can be represented by a model of a layered structure stratified in both density and viscosity. This structure consists of a brittle-elastic upper crustal layer; a ductile weaker crustal layer; a strong upper mantle layer, about 10 percent denser than the crust; and a weaker substrate, representing the portion of the mantle in which convective flow occurs which is a primary source of large-scale topographic and tectonic features. This paper examines the interactions between these four layers and the mantle flow driven by thermal or compositional variations. Solutions are found for a flow driven by a buoyancy-force distribution within the mantle and by relief at the surface and crust-mantle boundary. It is shown that changes in crustal thickness are driven by vertical normal stresses due to mantle flow and by shear coupling of horizontal mantle flow into the crust.
NASA Astrophysics Data System (ADS)
Walker, R. J.; Echeverria, L. M.; Shirey, S. B.; Horan, M. F.
1991-04-01
The Re — Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155±43 Ma. Subsequent episodes of volcanism produced basalts at 88.1±3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (ɛNd+9±1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (γOs) ranged from 0 to +22, and model-initial μ values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re — Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions.
Walker, R.J.; Echeverria, L.M.; Shirey, S.B.; Horan, M.F.
1991-01-01
The Re - Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155??43 Ma. Subsequent episodes of volcanism produced basalts at 88.1??3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (??Nd+9??1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (??Os) ranged from 0 to +22, and model-initial ?? values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re - Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions. ?? 1991 Springer-Verlag.
Volatile elements - water, carbon, nitrogen, noble gases - on Earth
NASA Astrophysics Data System (ADS)
Marty, B.
2017-12-01
Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the inner solar system.
Distribution of lithium in the Cordilleran Mantle wedge
NASA Astrophysics Data System (ADS)
Shervais, J. W.; Jean, M. M.; Seitz, H. M.
2015-12-01
Enriched fluid-mobile element (i.e., B, Li, Be) concentrations in peridotites from the Coast Range ophiolite are compelling evidence that this ophiolite originated in a subduction environment. A new method presented in Shervais and Jean (2012) for modeling the fluid enrichment process, represents the total addition of material to the mantle wedge source region and can be applied to any refractory mantle peridotite that has been modified by melt extraction and/or metasomatism. Although the end-result is attributed to an added flux of aqueous fluid or fluid-rich melt phase derived from the subducting slab, in the range of tens of parts per million - the nature and composition of this fluid could not be constrained. To address fluid(s) origins, we have analyzed Li isotopes in bulk rock peridotite and eclogite, and garnet separates, to identify possible sources, and fluid flow mechanisms and pathways. Bulk rock Li abundances of CRO peridotites (δ7Li = -14.3 to 5.5‰; 1.9-7.5 ppm) are indicative of Li addition and δ7Li-values are lighter than normal upper mantle values. However, Li abundances of clino- and orthopyroxene appear to record different processes operating during the CRO-mantle evolution. Low Li abundances in orthopyroxene (<1 ppm) suggest depletion via partial melting, whereas high concentrations in clinopyroxenes (>2 ppm) record subsequent interaction with Li-enriched fluids (or melts). The preferential partitioning of lithium in clinopyroxene could be indicative of a particular metasomatic agent, e.g., fluids from a dehydrating slab. Future in-situ peridotite isotope studies via laser ablation will further elucidate the fractionation of lithium between orthopyroxene, clinopyroxene, and serpentine. To obtain a more complete picture of the slab to arc transfer processes, we also measured eclogites and garnet separates to δ7Li= -18 to 3.5‰ (11.5-32.5 ppm) and δ7Li= 1.9 to 11.7‰ (0.7-3.9 ppm), respectively. In connection with previous studies focused on high-grade metamorphic assemblages within the Franciscan complex, an overall framework exists to reconstruct the Li architecture of the Middle Jurassic-Cordilleran subduction zone.
How did the Lunar Magma Ocean crystallize?
NASA Astrophysics Data System (ADS)
Davenport, J.; Neal, C. R.
2012-12-01
It is generally accepted that the lunar crust and at least the uppermost (500 km) mantle was formed by crystallization of a magma ocean. How the magma ocean cooled and crystallized is still under debate. Parameters such as bulk composition, lunar magma ocean (LMO) crystallization method (fractional vs. equilibrium), depth of the LMO, and time for LMO solidification (effects of tidal heating mechanisms, insulating crustal lid, etc.) are still under debate. Neal (2001, JGR 106, 27865-27885) argues for the presence of garnet in the deep lunar mantle via compositional differences between low- and high-Ti mare basalts and volcanic glasses. Neal (2001) suggests that these compositional differences are due to the presence of garnet in the source regions of certain volcanic glass bead groups. As Neal (2001, JGR 106, 27865-27885) points out, determining if there is garnet in the lunar mantle is important in determining if the LMO was a "whole-Moon" event or if it was limited to certain areas. In the latter case, garnet would have been preserved in the lunar mantle and would have been used in the source material for some of the volcanic glasses. High-pressure experimental work concludes that with the right T-P conditions (2.5-4.5 GPa and 1675-1800° C) there could be a garnet-bearing pyroxene rich protolith at ~500 km depth. This also has significant implications for the bulk Al2O3 composition of the initial bulk Moon. If the LMO was not global, the volcanic glass beads that show evidence of garnet in their sources were formed from the deep, primitive lunar mantle, it begs the questions how was the non-LMO regions of the Moon formed and what was it's bulk composition? To try to answer these questions, it is necessary to thoroughly model the evolution of the LMO and then use that work to model the sources and formation of mare basalts, the volcanic glass beads, and other regions in question. To begin to answer these questions, we developed a scenario we have termed reverse LMO modeling. Geochemical compositions such as KREEP, ur-KREEP and FAN will be run backwards through various LMO models that have been proposed in the literature. The concentration of the initial bulk Moon, according to the concentrations of the particular type of rock being used, can be modeled by taking this from 0 percent liquid (PCL; a completely solidified Moon) to 100 PCL. Using the KREEP composition reported by Warren and Wasson (1979, Rev. of Geophysics and Space Physics 17, 73-88), Warren (1988, Proc. 18th LPSC, 233-241) and Warren (1989, LPI Tech. Report 89, 149-153), the Mg numbers (Mg#) for the bulk initial Moon were calculated yielding 0.87, 0.76, and 0.86 respectively. The major element compositions of calculated bulk Moon compositions have elevated Al2O3, FeO, and TiO2, consistent with the presence of garnet in the lunar mantle as well as generating high-Ti basalts. Using these data we can model the petrogenesis of the low- and high-Ti mare basalt and volcanic glass source regions. Furthermore, using remote sensing and the calculated source data we can compare the modeled concentrations of these rocks to where these ranges of concentrations fall on the Moon's surfaces, so that we can constrain the areas where the presence of a magma ocean on the Moon was possible.
Water circulation and global mantle dynamics: Insight from numerical modeling
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru
2015-05-01
We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.
Ore deposits in Africa and their relation to the underlying mantle
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1981-01-01
African magmatism is largely related to the tensional stress regimes of the crust which are induced by the hotter upwelling mantle rocks. These mantle rocks may provide emanating forces and thermal energy for the upward movements of primary ore bodies with fluid inclusions in the tensional stress regimes of the crust. In this paper, the Goddard Earth Gravity Model is used to calculate a detailed subcrustal stress system exerted by mantle convection under Africa. The resulting system is found to be correlated with the African metallogenic provinces. Recognition of the full spectrum of ore deposits in Africa that may be associated with the hotter upwelling mantle rocks has provided an independent evidence to support the hypothesis of mantle-derived heat source for ore deposits.
NASA Astrophysics Data System (ADS)
Beaudry, P.; Longpre, M. A.; Wing, B. A.; Bui, T. H.; Stix, J.
2017-12-01
The Earth's mantle contains distinct sulfur reservoirs, which can be probed by sulfur isotope analyses of volcanic rocks and gases. We analyzed the isotopic composition of reduced and oxidized sulfur in a diverse range of volcanically derived materials spanning historical volcanism in the Canary Islands. Our sample set consists of subaerial volcanic tephras from three different islands, mantle and sedimentary xenoliths, as well as lava balloon samples from the 2011-2012 submarine El Hierro eruption and associated crystal separates. This large sample set allows us to differentiate between the various processes responsible for sulfur isotope heterogeneity in the Canary archipelago. Our results define an array in triple S isotope space between the compositions of the MORB and seawater sulfate reservoirs. Specifically, the sulfide values are remarkably homogeneous around d34S = -1 ‰ and D33S = -0.01 ‰, while sulfate values peak at d34S = +4 ‰ and D33S = +0.01 ‰. Lava balloons from the El Hierro eruption have highly enriched sulfate d34S values up to +19.3 ‰, reflecting direct interaction between seawater sulfate and the erupting magma. Several sulfate data points from the island of Lanzarote also trend towards more positive d34S up to +13.8 ‰, suggesting interaction with seawater sulfate-enriched lithologies or infiltration of seawater within the magmatic system. On the other hand, the modal values and relative abundances of S2- and S6+ in crystal separates suggest that the Canary Island mantle source has a d34S around +3 ‰, similar to the S-isotopic composition of a peridotite xenolith from Lanzarote. We infer that the S2- and S6+ modes reflect isotopic equilibrium between those species in the magmatic source, which requires 80 % of the sulfide to become oxidized after melting, consistent with measured S speciation. This 34S enrichment of the source could be due to the recycling of hydrothermally-altered oceanic crust, which has been previously suggested for the Canary Island hotspot on the basis of radiogenic isotope characteristics.
NASA Astrophysics Data System (ADS)
Zhong, S.; Leng, W.; Zhang, N.; McNamara, A. K.
2008-12-01
The long-wavelength structure for the present-day Earth's mantle is characterized by circum-Pacific subduction and the antipodal African and Pacific superplumes. The African and Pacific superplumes are anchored on two major thermochemical piles that extend from the core-mantle boundary (CMB) to possibly >500 km above CMB. These two superplumes are where most of large igneous provinces (LIPs) and plume-related volcanism are originated in the last 250 Ma. The thermochemical piles may provide distinct geochemical signatures observed in oceanic island basalts, although it remains controversial whether the piles consist of primordial mantle materials or recycled crust and lithosphere. Geodynamic modeling has demonstrated that the main structural features of the mantle including the circum-Pacific subduction, African and Pacific superplumes, and the thermochemical piles, are closely related to mantle convection associated with plate motion history for the last 120 Ma. However, outstanding questions remain. When did the African and Pacific superplumes and thermochemical piles start to take the current forms? How stable and stationary have they been in the mantle? How are they related to the observations of tectonics and volcanism priori to 120 Ma ago? Our recent studies on long-wavelength mantle convection and supercontinent cycles suggest that the African and Pacific superplumes and thermochemical piles are dynamic features and that they may move laterally in response to mantle flow associated with surface plate motion, such as past subduction and convergence between Laurentia and Gondwana. In particular, our studies suggest that the African superplume and pile did not form until Laurentia and Gondwana collided to form Pangea, while the Pacific anomaly may have been there for a longer time. Our results also suggest that, after lengthy convergence between Laurentia and Gondwana that pushed away the pile materials away from the African hemisphere, later subduction surrounding Pangea may not bring enough chemically dense mantle materials to form the African pile, if the pile consists of the primordial mantle, thus suggesting an origin of the recycled crust and lithosphere for the pile. While focusing on the African anomaly, we will also discuss potential ways to constrain the evolution of the Pacific superplume and pile.
NASA Astrophysics Data System (ADS)
Taylor, R. D.; Reid, M. R.; Blichert-Toft, J.
2009-12-01
Bimodal volcanism associated with the eastern Snake River Plain (ESRP)-Yellowstone Plateau province has persisted since approximately 16 Ma. A time-transgressive track of rhyolitic eruptions which young progressively to the east and parallel the motion of the North American plate are overlain by younger basalts with no age progression. Interpretations for the origin of these basalts range from a thermo-chemical mantle plume to incipient melting of the shallow upper mantle, and remain controversial. The enigmatic ESRP basalts are characterized by high 3He/4He, diagnostic of a plume source, but also by lithophile radiogenic isotope signatures that are more enriched than expected for plume-derived OIBs. These features could possibly be caused by isotopic decoupling associated with shallow melting of a hybridized upper mantle, or derivation from an atypical mantle plume, or both by way of mixing. New Hf isotope and trace element data further constrain potential sources for the ESRP basalts. Their Hf isotopic signatures (ɛHf = +0.1 to -5.8) are moderately enriched and consistently fall above or in the upper part of the field of OIBs, with similar Nd isotope signatures (ɛNd = -2.0 to -5.8), indicating a source with high time-integrated Lu/Hf compared with Sm/Nd. The isotopic compositions of the basalts lie between those of Archean SCML and a more depleted end-member source, suggestive of contributions from at least two sources. The grouping of isotopic characteristics is compact compared to other regional volcanism, implying that the hybridization process is highly reproducible within the ESRP. Minor localized differences in isotopic composition may signify local variations in the relative proportions of the end-members. Trace element patterns also support genesis of the ESRP basalts from an enriched source. Our data detect evidence of deeper contributions derived from the garnet-stability field, and a greater affinity of the trace element signatures to plume sources than to sources in the mantle lithosphere. The Hf isotope and trace element characteristics of the ESRP basalts thus support a model of derivation from a deep mantle plume with additional melt contributions and isotopic overprinting from SCML.
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Seta, A.; Matsuda, J.; Chen, Y.; Arai, S.
2001-12-01
In order to provide constraints on 3He/4He ratios in the Archaean mantle source, we have analysed helium isotopic compositions in 2.7Ga old Archaean komatiites from the Abitibi green stone belt, Ontario, Canada. Two spinifex-textured komatiites yielded significantly high 3He/4He ratios of about 30Ra (where Ra denotes the atmospheric 3He/4He ratio) in fractions released by sequential crushing. These results are the first confirmation of the occurrence of high 3He/4He component in Archaean komatiites after the intriguing finding by [Richard et al., Science 273 (1996) 93-95] in komatiites from a nearby locality, Alexo. We also found that the crystal structure of the komatiites was significantly enriched in a radiogenic component (4He) and that the radiogenic 4He in the crystal structure was actually degassed by a crushing gas extraction, indicating that the nominal 3He/4He ratios measured by crushing are lower limits for the 3He/4He ratio of an intrinsic component. By constraining the release behaviour of radiogenic 4He by crushing, we have estimated the initial 3He/4He ratio of an inclusion-trapped component to be 73 (+7.8/-5.5) Ra. A mantle source with such a high 3He/4He ratio at 2.7Ga would, if evolved in a closed-system, have present-day 3He/4He ratio of 46-60Ra, indicating that the komatiites from Munro had been trapped their helium from a mantle reservoir with very high 3He/4He ratio in the context of the present-day value. However, whether or not such a source can be considered as the one that is equivalent to the primitive mantle source (such that sampled at hotspots) is highly model-dependent. If a closed-system evolution model were assumed, helium in the Munro komatiites is not likely to be derived from the MORB-source-like reservoir. However, the notion that the komatiites may be derived from a depleted reservoir in terms of trace elemental and isotopic geochemistry might requires an alternative view for the evolution of 3He/4He ratio in ancient mantle reservoirs, as has been demonstrated by a recent model calculation by [Seta et al., Earth Planet. Sci. Lett. 188 (2001) 211-219] in which the 3He/4He ratios in the MORB mantle source could have been as high as those in the primitive (less-degassed) mantle source in Archaean.
NASA Astrophysics Data System (ADS)
Matsumoto, Takuya; Seta, Akihiro; Matsuda, Jun-ichi; Takebe, Masamichi; Chen, Yuelong; Arai, Shoji
2002-03-01
In order to provide constraints on 3He/ 4He ratios in the Archean mantle source, we have analyzed helium isotopic compositions in 2.7 Ga old Archean komatiites from the Abitibi green stone belt, Ontario, Canada. Two spinifex-textured komatiites yielded significantly high 3He/ 4He ratios of about 30 Ra (where Ra denotes the atmospheric 3He/ 4He ratio) in fractions released by sequential crushing. These results are the first confirmation of the occurrence of high 3He/ 4He ratios in Archean komatiites after the intriguing finding by Richard et al. [Science 273 (1996) 93-95] in komatiites from a nearby locality, Alexo. We also found that the crystal structure of the komatiites was significantly enriched in a radiogenic component ( 4He) and that this 4He was actually degassed by crushing gas extraction, indicating that the nominal 3He/ 4He ratios measured by crushing are lower limits for the 3He/ 4He ratio of the intrinsic component. By constraining the release behavior of radiogenic 4He by crushing, we have estimated the initial 3He/ 4He ratio of the inclusion-trapped component to be 73.0 +7.8-5.5 Ra. A mantle source with such a high 3He/ 4He ratio at 2.7 Ga, if evolved in a closed system, would have a present-day 3He/ 4He ratio of 46-60 Ra, indicating that the komatiites from Munro have trapped their helium from a mantle reservoir with a very high 3He/ 4He ratio in the context of the present-day value. However, whether or not such a source can be considered as equivalent to the primitive mantle source (such that sampled at hotspots) is highly model-dependent. If a closed system evolution model is assumed, helium in the Munro komatiites is not likely to be derived from the mid-ocean ridge basalt (MORB) source-like reservoir. However, the notion that the komatiites may be derived from a depleted reservoir in terms of trace elemental and isotopic geochemistry might require an alternative view for the 3He/ 4He evolution in ancient mantle reservoirs, as has been demonstrated by a recent model calculation by Seta et al. [Earth Planet. Sci. Lett. 188 (2001) 211-219] in which the 3He/ 4He ratios in the MORB mantle source could have been as high as those in the primitive (less degassed) mantle source in the Archean.
NASA Astrophysics Data System (ADS)
Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne
2016-04-01
In recent few years, the recycled oceanic slab has been increasingly suggested to be the enriched component in the mantle source of widespread intra-plate small-volume basaltic magmatism in eastern China. The recycled oceanic slab is a mixture of sediment, upper oceanic crust and lower gabbro oceanic crust, and will undergo alteration and dehydration during the recycling progress. The influence of these different components on the mantle source needs to be further constrained. The Chaihe-aershan volcanic field in Northeast China is located close to the surface position of the front edge of the subducted Pacific slab and includes more than 35 small-volume Quaternary basaltic volcanoes, which provides an opportunity to study the evolution of mantle source in detail and the small-scale geochemical heterogeneity of the mantle source. We measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectrometry (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and basaltic melt. The measured δ18O of cpx phenocrysts (4.27 to 8.57) and the calculated H2O content of magmas (0.23-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values within individual samples also display a considerable variation, from 1.28 to 2.31‰ suggesting mixing of magmas or the sustained injection of magmas with different δ18O values during the crystallization. The relationship between the averaged δ18O values of cpx phenocrysts and the H2O/Ce, Ba/Th, Nb/La ratios and Eu anomaly of whole-rocks demonstrates the contribution to three components in the mantle source (hydrothermally altered upper oceanic crust or marine sediments, altered lower gabbroic oceanic crust, ambient mantle). The proportions of these three components varied strongly within a limited period (˜1.27 Ma to ˜0.25 Ma). As only the Pacific slab is constantly subducted to the eastern Asia during that time, we suggested that its ongoing subduction is the only reasonable candidate to result in the compositional heterogeneity and rapid variation of enriched components in such a limited and recent time. Combines with previous studies on other basalt localities of eastern China, these new results confirm that the Pacific slab subduction play a key role in the triggering of the wide spread Cenozoic basaltic volcanism in eastern China.
NASA Astrophysics Data System (ADS)
Ashwal, L. D.
2017-12-01
The Archean Kaapvaal Craton of southern Africa hosts at least four spatially overlapping Large Igneous Provinces (LIPs), each of which generated substantial volumes ( 1-3 x 106 km3) of mafic magmatic rocks, over short time intervals (5 m.y. or less), between 2.7 and 0.18 Ga: the Ventersdorp Supergroup (2714 Ma, 0.7 x 106 km3), the Bushveld layered intrusion (2056 Ma, 1.5 x 106 km3), the Umkondo Igneous Province (1105 Ma, 2 x 106 km3) and the Karoo LIP (182 Ma, 3 x 106 km3). Therefore, over a time interval of >2500 m.y., a minimum collective volume of 7.2 x 106 km3 of mantle-derived, mafic lavas, sills, dikes and derivative cumulate rocks, was periodically emplaced through, into and/or onto the same cratonic region of Archean lithosphere. This long-term spatial superposition of Kaapvaal LIPs can be used as input to the vigorous debate on the nature of LIP mantle sources, and the possible role of crustal contamination in their petrogenesis. Continental LIP magmas, including all four of the Kaapvaal examples, have commonly been interpreted as products of direct partial melting of sub-continental lithospheric mantle (SCLM) sources, with little or no contribution from upwelling, plume-related, asthenospheric materials that provided the heat for melting. The Kaapvaal SCLM was stabilized at 3 Ga by prior melt extraction events that rendered it chemically depleted, and hence buoyant; it seems unlikely that it might have been capable of generating 1-3 x 106 km3 of basaltic magmas four times during its history. This would require repeated, substantial refertilization to counteract the extensive chemical depletion caused by recurrent extraction of LIP magmas. Chemical enrichment events sufficient to yield such extensive volumes of basaltic magma would necessarily increase bulk SCLM density, compromising its long-term buoyancy and stability. It seems far more likely, therefore, that the Kaapvaal LIPs were generated from sub-lithospheric sources, and that their diverse geochemical and isotopic signatures represent variable assimilation of Archean (dominantly 3.0-3.6 Ga) granitoid crustal contaminants, as many have suggested. These arguments challenge the plausibility of SCLM melting as a viable general process for the origin of other continental LIPs.
NASA Astrophysics Data System (ADS)
Zhong, Yun; Liu, Wei-Liang; Xia, Bin; Liu, Jing-Nan; Guan, Yao; Yin, Zhen-Xing; Huang, Qiang-Tai
2017-11-01
The Lanong ophiolitic mélange is a typical ophiolitic mélange in the middle section of the Bangong-Nujiang suture zone in northern Tibet. It mainly consists of ultramafic and mafic rocks, and its tectonic setting and formation age remain poorly constrained. In this paper, new geochemical and LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometer) zircon U-Pb age data obtained from gabbro, gabbro-dolerite, dolerite and basalt of the Lanong ophiolitic mélange are provided. The pillow basalts exhibit N-MORB (normal mid-ocean ridge basalt)-like geochemical features with a zircon U-Pb age of 147.6 ± 2.3 Ma. They were generated by 20-30% partial melting of a depleted mantle source composed of spinel lherzolite. The gabbro, massive basalt and gabbro-dolerite samples are characterised by more depleted and "V"-shaped REE (rare earth element) patterns, and they exhibit variable degrees of boninite-like geochemical characteristics, with a zircon U-Pb age of 149.1 ± 1.2 Ma (gabbro-dolerite). They were derived from the remelting of a significantly refractory mantle source following one or more episodes of previous basaltic melt extraction. Geochemical data of these mafic rocks indicate that they were developed in a continental fore-arc setting, and magmas were derived from depleted mantle sources modified by subducted slab-derived fluids and melts with minor crustal contamination. On the other hand, the dolerites show distinct OIB (oceanic island basalt)-like geochemical features, with a zircon U-Pb age of 244.1 ± 3.0 Ma. They were formed in a rift setting on a continental shelf-slope and originated from a low degree of partial melting of a depleted asthenospheric magma source mixed with some ancient sub-continental lithospheric mantle materials. The signatures presented here, combined with the results of previous studies, suggest that the Lanong ophiolitic mélange probably developed in a convergent plate margin under the southward subduction of the Bangong-Nujiang Tethys Ocean beneath the Lhasa terrane during the Middle Triassic-Early Cretaceous. Namely, the OIB-like dolerites likely reflect an extensional rift setting featuring thin continental crust in the Middle Triassic, and the gabbros, gabbro-dolerites and basalts represent a later stage of a fore-arc basin during the Late Jurassic-Early Cretaceous.
Jicha, B.R.; Johnson, C.M.; Hildreth, W.; Beard, B.L.; Hart, G.L.; Shirey, S.B.; Singer, B.S.
2009-01-01
A suite of 23 basaltic to dacitic lavas erupted over the last 350??kyr from the Mount Adams volcanic field has been analyzed for U-Th isotope compositions to evaluate the roles of mantle versus crustal components during magma genesis. All of the lavas have (230Th/238U) > 1 and span a large range in (230Th/232Th) ratios, and most basalts have higher (230Th/232Th) ratios than andesites and dacites. Several of the lavas contain antecrysts (crystals of pre-existing material), yet internal U-Th mineral isochrons from six of seven lavas are indistinguishable from their eruption ages. This indicates a relatively brief period of time between crystal growth and eruption for most of the phenocrysts (olivine, clinopyroxene, plagioclase, magnetite) prior to eruption. One isochron gave a crystallization age that is ~ 20-25??ka older than its corresponding eruptive age, and is interpreted to reflect mixing of older and juvenile crystals or a protracted period of magma storage in the crust. Much of the eruptive volume since 350??ka consists of lavas that have small to moderate 230Th excesses (2-16%), which are likely inherited from melting of a garnet-bearing intraplate ("OIB-like") mantle source. Following melt generation and subsequent migration through the upper mantle, most Mt. Adams magmas interacted with young, mafic lower crust, as indicated by 187Os/188Os ratios that are substantially more radiogenic than the mantle or those expected via mixing of subducted material and the mantle wedge. Moreover, Os-Th isotope variations suggest that unusually large 230Th excesses (25-48%) and high 187Os/188Os ratios in some peripheral lavas reflect assimilation of small degree partial melts of pre-Quaternary basement that had residual garnet or Al-rich clinopyroxene. Despite the isotopic evidence for lower crustal assimilation, these processes are not generally recorded in the erupted phenocrysts, indicating that the crystal record of the deep-level 'cryptic' processes has been decoupled from shallow-level crystallization. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kargin, Alexei; Sazonova, Lyudmila; Nosova, Anna; Kovalchuk, Elena; Minevrina, Elena
2015-04-01
The Arkhangelsk province is located in the northern East European Craton and includes more than 80 bodies of kimberlite, alkaline picrite and other ultramafic and mafic rocks. They erupted through the Archean-Early Proterozoic basement into the Riphean-Paleozoic sedimentary cover. The Grib kimberlite pipe is located in the central part of the Arkhangelsk province in the Verkhotina (Chernoozerskoe) kimberlite field. The age of the Grib kimberlite is 376+-3 Ma (Rb-Sr by phlogopite). The Grib kimberlite pipe is the moderate-Ti kimberlites (TiO2 1-2 wt %) with strongly fractionated REE pattern , (La/Yb)n = 38-87. The Nd isotopic composition of the Grib pipe ranges epsilon Nd from -0.4 to + 1.0 and 87Sr/86Sr(t) from 0.7042 to 0.7069 (Kononova et al., 2006). Geochemical (Jeol JXA-8200 electron microprobe; SIMS; LA-ICP-MS) composition of clinopyroxene and garnet from mantle-derived xenoliths of the Grib kimberlite pipe was studied to provide new insights into metasomatic processes in the mantle beneath the Arkhangelsk province. Based on both major and trace element data, five geochemical groups of peridotitic garnet were distinguished. The partial melting of metasomatic peridotite with crystallization of a garnet-clinopyroxene association, and orthopyroxene assimilation by protokimberlitic melts was simulated and a model of garnet and clinopyroxene metasomatic origin was proposed. The model includes three stages: 1. Mantle peridotite was fertilized by subduction-derived sediment partial melts/fluids at the lithosphere-asthenosphere boundary to yield a CO2-bearing mantle peridotite (source I). 2. The partial melting of the carbonate-bearing mantle source 1 produced carbonatite-like melts (a degree of partial melting was 1,5 %), which could form the carbonatite-kimberlite rocks of the Mela River (Arkhangelsk province, 50 km North-West of Grib kimberlite) and also produce the metasomatic reworking of (carbonate-bearing) mantle peridotite (mantle source II) and form type-1 garnets. 3. The melting of the reworked carbonate-bearing mantle peridotite (mantle source II, degree of partial melting was 1 %) resulted in the generation of proto-kimberlite melts and type-2 garnet. These proto-kimberlite melts interacted with lithospheric mantle orthopyroxene to produce megacryst garnets and melts that formed the Grib kimberlite. This stage was responsible for the formation of the metasomatic equilibrium clinopyroxene -- garnet assemblage (type-3) in lithospheric peridotite and metasomatic transformation of deformed peridotite (type 4 and 5 garnet). This model suggests that peridotitic garnet originated at the first stage in the presence of subduction-generated melts or fluids. Kononova V.A., Nosova A.A., Pervov V.A., Kondrashov I.A. (2006). Compositional variations in kimberlites of the east European platform as a manifestation of sublithospheric geodynamic processes // Doklady Earth Sciences. V. 409. Is. 2. Pp. 952-957.
NASA Astrophysics Data System (ADS)
Gibler, R.; Peslier, A. H.; Schaffer, L. A.; Brandon, A. D.
2014-12-01
Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America [1]. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by < 5% melting of a spinel peridotite source [2]. Clinopyroxenes contain from 272 to 313 ppm weight H2O similar to the lower limit of KH peridotite clinopyroxenes (250-530 ppm H2O, [3]). This is unexpected as crystallized melts like pyroxenites should concentrate water more than residual mantle-like peridotites, given that H is incompatible. PUM normalized bulk REE of the DH pyroxenites are characterized by flat to LREE depleted REE profiles consistent with > 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and <1ppm in clinopyroxene. The DH pyroxenites may thus come from a dry mantle source, potentially unaffected by the subduction of the Farallon plate. These water-poor melts either originated from shallow oceanic lithosphere overlaying the Farallon slab [4] or from continental mantle formed > 2 Ga [5]. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau [6]. [1] Atwater, 1970 Tectonophysics 31, 145-165. [2] Shaw, 2000 CM 38, 1041-1064. [3] Schaffer et al, 2013 AGU Fall Meeting. [4] Luffi et al, 2009 JGR 114, 1-36. [5] Armytage et al, 2013 GCA 137, 113-133. [6] Li et al, 2008 JGR 113, 1-22.
NASA Astrophysics Data System (ADS)
MacPherson, C. G.; Hilton, D. R.
2005-12-01
New data for basaltic glasses from Kolbeinsey Ridge demonstrate that for 600km north of Iceland the Mid-Atlantic Ridge samples mantle with 3He/4He of ~11 Ra (Macpherson et al., 2005). Further from Iceland, north of the Jan Mayen Fracture Zone, 3He/4He values are more typical of N-MORB. A mantle component with 11 Ra has previously been proposed to exist at around 58°N at the southern end of the Reykjanes Ridge (Hilton et al., 2000). Comparison with previous work suggests that mantle with 11 Ra may extend a further 400km south of 58°N to the Charlie Gibbs Fracture Zone, south of which 3He/4He values resemble N-MORB. The similarity in 3He/4He is mirrored in radiogenic isotope ratios suggesting that Kolbeinsey Ridge and the Charlie Gibbs to 58°N segment represent a distinct mantle domain at the margins of the North Atlantic Igneous Province. Both helium and radiogenic isotope ratios are consistent with contamination of depleted mantle by a small proportion of helium-rich material possessing high 3He/4He. There are substantial 3He/4He variations between 58°N and Iceland suggesting that any outflow of mantle from beneath Iceland has been highly asymmetric. Furthermore, if mantle outflow is responsible for high 3He/4He values on the Mid-Atlantic Ridge around Iceland then the northward flux has been negligible for a considerable period. The 11 Ra mantle domain may have been emplaced when the Kolbeinsey Ridge was initiated during the early Miocene. Alternatively, it may date from the Paleocene when magmatism became widespread throughout the North Atlantic Igneous Province. Hilton, D.R., Thirlwall, M.F., Taylor, R.N., Murton, B.J. and Nichols, A.J. (2000) Controls on magmatic degassing along the Reykjanes Ridge with implications for the helium paradox. Earth Planet. Sci. Lett. 183, 43-50. Macpherson, C.G., Hilton, D.R., Mertz, D.F., and Dunai, TJ (2005) Sources, degassing and contamination of CO2, H2O, He, Ne and Ar in basaltic glasses from Kolbeinsey Ridge, North Atlantic. Geochim Cosmochim. Acta, in press.
Thermo-chemical evolution of a one-plate planet: application to Mars
NASA Astrophysics Data System (ADS)
Plesa, A.-C.; Breuer, D.
2012-04-01
Little attention has been devoted so far to find a modelling framework able to explain the geophysical implications of the Martian meteorites, the so-called SNC meteorites. Geochemical analysis of the SNC meteorites implies the rapid formation, i.e. before ~4.5 Ga, of three to four isotopically distinct reservoirs that did not remix since then [3]. In [4] the authors argue that a fast overturn of an early fractionated magma ocean may have given origin to a stably stratified mantle with a large density gradient capable to keep the mantle heterogeneous and to prevent mixing due to thermal convection. This model, albeit capable to provide a plausible explanation to the SNC meteorites, suggests a conductive mantle after the overturn which is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. In this work, we present an alternative scenario assuming a homogeneous mantle and accounting for compositional changes and melting temperature variations due to mantle depletion, dehydration stiffening of the mantle material due to water partitioning from the minerals into the melt, redistribution of radioactive heat sources between mantle and crust and thermal conductivity decrease in crustal regions. We use the 2D cylindrical - 3D spherical convection code Gaia [1, 2] and to model the above mentioned effects of partial melting we use a Lagrangian, particle based method. Simulation results show that chemical reservoirs, which can be formed due to partial melting when accounting for compositional changes and dehydration stiffening, remain stable over the entire thermal evolution of Mars. However, an initially depleted (i.e. buoyant harzburgite) layer of about 200 km is needed. This depleted layer in an otherwise homogeneous mantle may be the consequence of equilibrium fractionation of a freezing magma ocean where only the residual melt rises to the surface. If the heat released by accretion never allowed for a magma ocean to build, a large amount of partial melting of about 20% in the earliest stage is required to form such a buoyant layer. These models show an active convective interior and long lived partial melt production, which agrees with the volcanic history of Mars [5].
Early and long-term mantle processing rates derived from xenon isotopes
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Parai, R.; Tucker, J.; Middleton, J. L.; Langmuir, C. H.
2015-12-01
Noble gases, particularly xenon (Xe), in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. The combination of extinct and extant radioactive species in the I-Pu-U-Xe systems shed light on the degassing history of the early Earth throughout accretion, as well as the long-term degassing of the Earth's interior in association with plate tectonics. The ubiquitous presence of shallow-level air contamination, however, frequently obscures the mantle Xe signal. In a majority of the samples, shallow air contamination dominates the Xe budget. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Thus, the extent of variability in mantle source Xe composition is not well-constrained. Here, we present new MORB Xe data and explore constraints placed on mantle processing rates by the Xe data. Ten step-crushes were obtained on a depleted popping glass that was sealed in ultrapure N2 after dredge retrieval from between the Kane-Atlantis Fracture Zone of the Mid Atlantic Ridge in May 2012. 9 steps yielded 129Xe/130Xe of 7.50-7.67 and one yielded 7.3. The bulk 129Xe/130Xe of the sample is 7.6, nearly identical to the estimated mantle source value of 7.7 for the sample. Hence, the sample is virtually free of shallow-level air contamination. Because sealing the sample in N2upon dredge retrieval largely eliminated air contamination, for many samples, contamination must be added after sample retrieval from the ocean bottom. Our new high-precision Xe isotopic measurements in upper mantle-derived samples provide improved constraints on the Xe isotopic composition of the mantle source. We developed a forward model of mantle volatile evolution to identify solutions that satisfy our Xe isotopic data. We find that accretion timescales of ~10±5 Myr are consistent with I-Pu-Xe constraints, and the last giant impact occurred 45-70 Myr after the start of the solar system. After the giant impact stage, the Pu-U-Xe system indicates that degassing of the planet via solid-state mantle convection and plate tectonics continued to liberate volatiles to the atmosphere and has led to between ~5-8 mantle turnovers over the age of the Earth.
Tomography and Dynamics of Western-Pacific Subduction Zones
NASA Astrophysics Data System (ADS)
Zhao, D.
2012-01-01
We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.
NASA Astrophysics Data System (ADS)
Ishiwatari, A.; Ichiyama, Y.; Yamazaki, R.; Katsuragi, T.; Tsuchihashi, H.
2008-12-01
Melting of mafic (eclogitic) rocks in the peridotite mantle diapir may be important to generate a large quantity of magma in a short period of time as required for the LIP basaltic magmatism (e.g. Takahashi et al. 1998; EPSL, 162, 63-). Ferropicritic rocks also occur in some LIPs, and Ichiyama et al. (2006; Lithos, 89, 47-) propose a non-peridotitic, Ti- and Fe-rich eclogitic source (recycled oceanic ferrogabbro?) entrained in the peridotitic LIP mantle plume for the origin of ferropicritic rocks, that occur with olivine-spinifex basalt (Ichiyama et al., 2007; Island Arc, 16, 493-) in a Permian LIP fragment that was captured in the Jurassic Tamba accretionary complex in central Japan. Although Ti-poor ferrokomatiitic magma might form through high- degree melting of a primitive chondritic mantle (25wt% MgO and 25wt% Fe+FeO), Ti- and HFSE-rich ferropicritic and meimechitic magmas can not form in this way. On the other hand, Miocene volcanic rocks distributed along the Japan Sea coast of central Japan also represent a product of large-scale arc magmatism that happened coeval to the spreading of the Japan Sea floor. The chemical and isotopic signatures of the magmas are consistent with the secular change of tectonic setting from continental arc (22- 20 Ma) to island arc (15-11 Ma) (Shuto et al. 2006; Lithos, 86, 1-). Some adakites have already been found from these Miocene volcanic rocks by Shuto"fs group, and mafic rock melting in either subducting slab or lower arc crust has been proposed. We have recently found a wide distribution of low-Ni basalt from Fukui City. The low-Ni basalt contains olivine phenocrysts which are one order of magnitude poorer in Ni (less than 0.02 wt% NiO at Fo87) than those in normal basalt (more than 0.2 wt% NiO at Fo87). The rock is also poor in bulk-rock Ni, rich in K and Ti, and may have formed from an olivine-free pyroxenitic source. Close association of adakite and low-Ni basalt with normal tholeiitic basalt, calc-alkaline andesite-dacite-rhyolite, high-Mg andesite and rare picritic basalt suggests melting of a heterogeneous mantle wedge that was abundantly endorsed with eclogitic and pyroxenitic rocks. Melting pressure greatly differs between the ferropicrite case (5 GPa or more) and the low-Ni basalt-adakite case (2 GPa or less), causing large chemical differences. However, common occurrences of non-peridotite-origin magmas in the LIP and island arc suggest pervasive and voluminous distribution of the mafic materials in the peridotitic mantle and their important role in magma genesis at various tectonic settings.
Mercury's Thermal Evolution, Dynamical Topography and Geoid
NASA Astrophysics Data System (ADS)
Ziethe, Ruth; Benkhoff, Johannes
Among the terrestrial planets Mercury is not only the smallest, but also the densest (after correction for self-compression). To explain Mercury's high density it is considered likely that the planet's mantle was removed during a giant impact event, when proto-Mercury was already differentiated into an iron core and a silicate mantle. Beside the damage to the planet's mantle the vaporization would cause a significant loss of volatile elements, leaving the remaining planet molten and dominated by extremely refractory material.Since the arrival of a spacecraft at the enigmatic planet is not to be expected before 2011 (Messenger) or 2019 (BepiColombo) we might already prepare ourselves for the upcoming results and perform tests that allow some anticipation of the measured data. The hermean mantle is modelled as an internally and bottom heated, isochemical fluid in a spherical shell. The principle of this convection model is widely accepted and is used for various models of thermal evolution of terrestrial planets, e.g., the Earth, Mars or the Moon. We are solving the hydrodynamical equations, derived from the conservation of mass, momentum and energy. A program originally written by S. Zhang is used to solve the temperature field which employs a combination of a spectral and a finite difference method. Beside the large core as a heat source 'from below' the decay of radioactive isotopes provides internal heating of the hermean mantle. The viscosity of the mantel material depends exponentially on the inverse temperature. The model results show the typical behaviour of a one-plate-planet, meaning the surface is not broken into several tectonic plates but the outside is a single rigid shell. The thermal evolution is generally charaterized by the growth of a massive lithosphere on top of the convecting mantle. The lower mantle and core cool comparatively little and stay at temperatures between 1900K and 2000K until about 2.0Ga after the simulation was started. The stagnant lid comprises roughly half the mantle after only 0.5Ga. Since the rigid lithosphere does not take part in the convection anymore, the heat coming from the interior (due to the cooling of the large core) can only be transported through the lithosphere by thermal conduction. This is a significantly less effective mechanism of heat transport than convection and hence the lithosphere forms an insulating layer. As a result, the interior is kept relatively warm.Because the mantle is relatively shallow compared to the planet's radius, and additionally the thick stagnant lid is formed relatively rapid, the convection is confined to a layer of only about 200km to 300km. Convection structures are therefore relatively small structured. The flow patterns in the early evolution show that mantle convection is characterized by numerous upwelling plumes, which are fed by the heat flow from the cooling core. These upwellings are relatively stable regarding their spatial position. As the core cools down the temperature anomalies become colder and less pronounced but not less numerous. In our calculations, a region of partial melt in the mantle forms immediately after the start of the model at a depths of roughly 220km. While in the entire lower mantle the temperature exceeds the solidus, the highest melt degrees can be found in the upwelling plumes. The partial molten region persists a significant time (up to 2.5Ga). How long the partial molten zone actually survives depends strongly on the initial conditions of the model. For instance, an outer layer with a reduced thermal conductivity would keep the lower mantle significantly warmer and a molten layer survives longer. The hot upwellings cause a surface deformation (dynamical topography) which itself causes a gravity anomaly. Due to the weak constraints of important parameters (e.g. sulfur content of the core, mantle rheology, amount and distribution of radiogenic heat sources, planetary contraction, thermal conductivity, etc) numerous models are required to understand the importance and influence of the mentioned variables. The models variety is huge and more investigations of the results on initial parameters are yet to be performed. The special interior structure of Mercury compared to the other terrestrial planets makes his thermal history very unique. Future work will cope with the thorough investigation of several parameters and their influence on the model outcome. Eventually observables like topography can be measured with spacecrafts in orbit (e.g. BepiColombo) and then allow conclusions on the interior dynamics of Mercury.
Origin and Evolution of the Moon: Apollo 2000 Model
NASA Astrophysics Data System (ADS)
Schmitt, H. H.
1999-01-01
A descriptive formulation of the stages of lunar evolution as an augmentation of the traditional time-stratigraphic approach [21 enables broadened multidisciplinary discussions of issues related to the Moon and planets. An update of this descriptive formulation [3], integrating Apollo and subsequently acquired data, provides additional perspectives on many of the outstanding issues in lunar science. (Stage 1): Beginning (Pre-Nectarian) - 4.57 Ga; (Stage 2): Magma Ocean (Pre-Nectarian) - 4.57-4.2(?) Ga; (Stage 3:) Cratered Highlands (Pre-Nectarian) - 4.4(?) 4.2(?) Ga (Stage 4:) Large Basins - (Pre-Nectarian - Upper Imbrium) 4.3(?)-3.8 Ga; (Stage 4A:) Old Large Basins and Crustal Strengthening (Pre Nectarian) - 4.3(?)-3.92 Ga; (Stage 4B): Young Large Basins (Nectarian - Lower Imbrium) 3.92-3.80 Ga; (Stage 5): Basaltic Maria (Upper Imbrium) - 4.3(?)- 1.0(?) Ga; (Stage 6): Mature Surface (Copernican and Eratosthenian) - 3.80 Ga to Present. Increasingly strong indications of a largely undifferentiated lower lunar mantle and increasingly constrained initial conditions for models of an Earth-impact origin for the Moon suggest that lunar origin by capture of an independently evolved planet should be investigated more vigorously. Capture appears to better explain the geochemical and geophysical details related to the lower mantle of the Moon and to the distribution of elements and their isotopes. For example, the source of the volatile components of the Apollo 17 orange glass apparently would have lain below the degassed and differentiated magma ocean (3) in a relatively undifferentiated primordial lower mantle. Also, a density reversal from 3.7 gm/cubic cm to approximately 3.3 gm/cubic cm is required at the base of the upper mantle to be consistent with the overall density of the Moon. Finally, Hf/W systematics allow only a very narrow window, if any at all for a giant impact to form the Moon. Continued accretionary impact activity during the crystallization of the magma ocean would result in the "splash intrusion" of residual liquids into the lower crust of the Moon as soon as the crust was coherent enough to resist re-incorporation into the magma ocean. For Mg-suite rocks with crystallization ages greater than about 4.4 Ga, impact-dominated dynamics of crustal formation resulted in the injection of liquids from the magma ocean into the crust. Such a process probably helps to account for the apparent increasingly mafic character of the crust with depth. Creation of a mega-regolith during the cratered highland stage constituted a necessary prerequisite for the later remelting of magma ocean cumulates to produce mare basalt magmas. The increasingly insulating character of the pulverized upper crust would slow the cooling of the residual magma ocean. It also would have allowed the gradual accumulation of radiogenic heat necessary to eventually partially remelt the source regions in the upper mantle that produced the mare basalts and related pyroclastic volcanic eruptions. The reverse wave of heating would proceed downward into the upper mantle from the still molten and significantly radio-isotopic urKREEP residual liquid zone at the base of the crust. The potential effects of a giant, Procellarum basin-forming event ca. 4.3 Ga and of a geographically coincident Imbrium event ca. 3.87 Ga can explain the surface concentration of KREEP-related materials in the Procellarum region of the Moon. Lunar Prospector gamma ray spectrometer data indicate that the Procellarum event excavated only relatively small amounts of material related to KREEP. This strongly suggests that urKREEP magmas had yet to move into the Moon's lower crust. The extensive movement of such liquids across and possibly along the crust-mantle boundary region to beneath Procellarum, however, may well have occurred in response to the regional reduction in lithostactic pressure. The coincidental formation of another large basin, the 1160-km diameter Imbrium basin, near the center of Procellarum resulted in the redistribution of KREEP-related materials roughly radial to the younger basin. This scenario may make unnecessary recent proposals of a chemically asymmetric Moon to account for the surface concentration of KREEP-related material around Imbrium. The timing of the giant, South Pole Aitken Basin-forming event at the end of the cratered highland stage (about 4.2 Ga.) can account for the lack of both extensive KREEP-related material and basaltic maria associated with South Pole Aitken. The absence of an Imbrium-size event in South Pole Aitken would have kept hidden any KREEP-rich crustal province. As would be expected with the removal of most of the insulating upper crust, relatively little mare basalt has erupted in South Pole Aitken, except possibly in its northern portions. After the cratered highlands stage and before the basaltic maria stage, objects from a discrete source region formed about 50 large basins on the Moon over -400 m.y. Four possibilities for sources of the impactors of the large basin stage appear plausible at this time. Of these possibilities, the initial breakup of the original Main Belt planetesimal would appear to be the best present choice as a discrete impactor source. The striking differences between young, mascon basins (about 3.92-3.80 Ga) and old, nonmascon basins (about 4.2-3.92 Ga) indicate that the older, isostaticly compensated basins triggered the regional intrusion, extrusion, and solidification of mobile urKREEP-related magmas prior to the formation of the younger, uncompensated basins. This suggests that the fracturing of the lunar crust by the older basin-forming events permitted urKREEP liquids to migrate into the crust, removing the potential for rapid, post-basin isostatic adjustment by urKREEP magma movement at the crust-mantle boundary. Additional information contained in original.
NASA Astrophysics Data System (ADS)
Abdel-Karim, Abdel-Aal M.; Ali, Shehata; El-Shafei, Shaimaa A.
2018-03-01
This study is focused on ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert of Egypt. The rocks include serpentinized peridotites, serpentinites together with talc- and quartz-carbonates. The primary spinel relict is Al-chromite [Cr# > 60], which is replaced by Cr-magnetite during metamorphism. The high Cr# of Al-chromites resembles supra-subduction zone (SSZ) peridotites and suggests derivation from the deeper portion of the mantle section with boninitic affinity. These mantle rocks equilibrated with boninitic melt have been generated by high melting degrees. The estimated melting degrees ( 19-24%) lie within the range of SSZ peridotites. The high Cr# of spinel and Fo content of olivine together with the narrow compositional range suggest a mantle residual origin. Serpentinized peridotite and serpentinites have low Al2O3/SiO2 ratios (mostly < 0.03) like fore-arc mantle wedge serpentinites and further indicate that their mantle protolith had experienced partial melting before serpentinization process. Moreover, they have very low Nb, Ta, Zr and Hf concentrations along with sub-chondritic Nb/Ta (0.3-16) and Zr/Hf (mostly 1-20) ratios further confirming that their mantle source was depleted by earlier melting extraction event. The high chondrite normalized (La/Sm)N ratios (average 10) reflect input of subduction-related slab melts/fluids into their mantle source.
Cordilleran Longevity, Elevation and Heat Driven by Lithospheric Mantle Removal
NASA Astrophysics Data System (ADS)
Mackay-Hill, A.; Currie, C. A.; Audet, P.; Schaeffer, A. J.
2017-12-01
Cordilleran evolution is controlled by subduction zone back-arc processes that generate and maintain high topography due to elevated uppermost mantle temperatures. In the northern Canadian Cordillera (NCC), the persisting high mean elevation long after subduction has stopped (>50 Ma) requires a sustained source of heat either from small-scale mantle convection or lithospheric mantle removal; however direct structural constraints of these processes are sparse. We image the crust and uppermost mantle beneath the NCC using scattered teleseismic waves recorded on an array of broadband seismograph stations. We resolve two sharp and flat seismic discontinuities: a downward velocity increase at 35 km that we interpret as the Moho; and a deeper discontinuity with opposite velocity contrast at 50 km depth. Based on petrologic estimates, we interpret the deeper interface as the lithosphere-asthenosphere boundary (LAB), which implies an extremely thin ( 15 km) lithospheric mantle. We calculate the temperature at the Moho and the LAB in the range 800-900C and 1200-1300C, respectively. Below the LAB, we find west-dipping features far below the LAB beneath the eastern NCC that we associate with laminar downwelling of Cordilleran lithosphere. Whether these structures are fossilized or active, they suggest that lithospheric mantle removal near the Cordillera-Craton boundary may have provided the source of heat and elevation and therefore played a role in the longevity and stability of the Cordillera.
Compositional layering within the large low shear-wave velocity provinces in the lower mantle
NASA Astrophysics Data System (ADS)
Ballmer, Maxim D.; Schumacher, Lina; Lekic, Vedran; Thomas, Christine; Ito, Garrett
2016-12-01
The large low shear-wave velocity provinces (LLSVP) are thermochemical anomalies in the deep Earth's mantle, thousands of km wide and ˜1800 km high. This study explores the hypothesis that the LLSVPs are compositionally subdivided into two domains: a primordial bottom domain near the core-mantle boundary and a basaltic shallow domain that extends from 1100 to 2300 km depth. This hypothesis reconciles published observations in that it predicts that the two domains have different physical properties (bulk-sound versus shear-wave speed versus density anomalies), the transition in seismic velocities separating them is abrupt, and both domains remain seismically distinct from the ambient mantle. We here report underside reflections from the top of the LLSVP shallow domain, supporting a compositional origin. By exploring a suite of two-dimensional geodynamic models, we constrain the conditions under which well-separated "double-layered" piles with realistic geometry can persist for billions of years. Results show that long-term separation requires density differences of ˜100 kg/m3 between LLSVP materials, providing a constraint for origin and composition. The models further predict short-lived "secondary" plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived, vigorous "primary" plumes instead rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial material. These predictions are consistent with the locations of hot spots relative to LLSVPs, and address the geochemical and geochronological record of (oceanic) hot spot volcanism. The study of large-scale heterogeneity within LLSVPs has important implications for our understanding of the evolution and composition of the mantle.
Borgeaud, Anselme F E; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J
2017-11-01
D″ (Dee double prime), the lowermost layer of the Earth's mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth's liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth's evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004-2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth's surface might control the modality of convection in the lower mantle.
NASA Technical Reports Server (NTRS)
Walker, R. J.; Horan, M. F.; Shearer, C. K.; Papike, J. J.
2004-01-01
The highly siderophile elements (HSE: including Re, Au, Ir, Os, Ru, Pt, Pd, Rh) are strongly partitioned into metal relative to silicates. In the terrestrial planets these elements are concentrated in metallic cores. Earth s mantle has sufficiently high abundances of the HSE (0.008 times CI abundances) that it has been hypothesized approximately 0.1-0.5% of the mass of the Earth was added following the last major interaction between the core and mantle [e.g. 1]. The additional material added to the Earth and Moon has been termed a late veneer , and the process has often been termed late accretion [2]. The timing of the dominant late accretionary period of the Earth and Moon is still poorly known. The abundances of HSE in the lunar mantle could provide important constraints on when the late veneer was added. The material that ultimately became the silicate portion of the Moon was likely stripped of most of its HSE prior to and during coalescence of the Moon. Consequently the initial lunar mantle likely had very low concentrations of the HSE. Unlike Earth, the generation of permanent lunar crust by 4.4 Ga prevented subsequent additions of HSE to the lunar mantle via continued accretion. Thus, if a substantial portion of the late veneer was added after 4.4 Ga, the lunar mantle should have retained very low HSE concentrations. Conversely, if the late veneer was mostly added prior to 4.4 Ga, HSE abundances in the lunar mantle may be roughly similar to abundances in the terrestrial mantle.
Ridge suction drives plume-ridge interactions
NASA Astrophysics Data System (ADS)
Niu, Y.; Hékinian, R.
2003-04-01
Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: 1. The decreasing La/Sm and increasing MgO and CaO/Al_2O_3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. 2. The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. 3. The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and geochemical anomalies extend < 400 km along the slower (20 to 13 mm/yr northward) spreading South Kolbeinsey Ridge, but > 1500 km along the faster (20 to 25 mm/yr southward) spreading Reykjanes Ridge. 4. The spreading-rate dependent ridge suction force also explains the first-order differences between the fast-spreading East Pacific Rise (EPR) and the slow-spreading Mid-Atlantic Ridge (MAR). Identified mantle plumes/hotspots are abundant near the MAR (e.g., Iceland, Azores, Ascension, Tristan, Gough, Shona and Bouvet), but rare along the entire EPR (notably, the Easter hotspot at ˜27^oS on the Nazca plate). Such apparent unequal hotspot distribution would allow a prediction of more enriched MORB at the MAR than at the EPR. However, the mean compositions between MAR-MORB and EPR-MORB are the same in terms of incompatible element abundances, and are identical in terms of Sr-Nd-Pb isotopic ratios. This suggests similar extents of mantle plume contributions to EPR and MAR MORB. We consider that the apparent rarity of near-EPR plumes/hotspots results from fast spreading. The fast spreading creates large ridge suction forces that do not allow the development of surface expressions of mantle plumes as such, but draw plume materials to a broad zone of sub-ridge upwelling, giving rise to random distribution of abundant enriched MORB and elevated and smooth axial topography along the EPR (vs. MAR). One of the important implications is that the asthenospheric flow is necessarily decoupled from its overlaying oceanic lithospheric plate. This decoupling increases with increasing spreading rate.
Geochemical Overview of the East African Rift System
NASA Astrophysics Data System (ADS)
Furman, T.
2003-12-01
Mafic volcanics of the East African Rift System (EARS) record a protracted history of continental extension that is linked to mantle plume activity. The modern EARS traverses two post-Miocene topographic domes separated by a region of polyphase extension in northern Kenya and southern Ethiopia. Basaltic magmatism commenced ˜45 Ma in this highly extended region, while the onset of plume-related activity took place ˜30 Ma with eruption of flood basalts in central Ethiopia. A spatial and temporal synthesis of EARS volcanic geochemistry shows progressive lithospheric removal (by erosion and melting) as the degree of rifting increases, with basalts in the most highly extended areas recording melting of depleted asthenosphere. Plume contributions are indicated locally in the northern half of the EARS, but are absent from the southern half. The geochemical signatures are compatible with a physical model in which the entire EARS is fed by a discontinuous plume emanating from the core-mantle boundary as the South African Superswell. Quaternary basaltic lavas erupted in the Afar triangle, Red Sea and Gulf of Aden define the geochemical signature attributed to the Afar plume (87Sr/86Sr 0.7034-0.7037, 143Nd/144Nd 0.5129-0.5130; La/Nb 0.6-0.9; Nb/U 40-50). These suites commonly record mixing with ambient upper mantle having less radiogenic isotopes but generally overlapping incompatible trace element abundances. Within the Ethiopian dome both lithospheric and sub-lithoshperic contributions can be documented clearly; lithospheric contributions are manifest in more radiogenic isotope values (87Sr/86Sr up to 0.7050) and distinctive trace element abundances (e.g., La/Nb <2.0, Nb/U > 10). The degree of lithospheric contribution is lowest within the active Main Ethiopian Rift and increases towards the southern margin of the dome. The estimated depth of melting (65-75 km) is consistent with geophysical observations of lithospheric thickness. In regions of prolonged volcanism the lithospheric contributions and estimated melting depths decrease through time, corresponding to a higher degree of rifting. In the Kenyan dome, including the western rift, the degree of extension is low and lithospheric melting is the dominant source for basaltic magmatism. Mafic lavas from these regions have generally lower MgO but higher contents of alkalis, P2O5 and many incompatible trace elements than are observed in the Ethiopian Rift. High values of 87Sr/86Sr, 207Pb/204Pb and Zr/Hf relative to other parts of the EARS indicate melting of metasomatized lithosphere. Melting in this area occurs at depths up to 100+ km, consistent with the thick crustal section observed seismically. Between the topographic domes, basalts from the Turkana region record melting at shallow levels ( ˜35 km) consistent with seismic evidence for nearly complete rifting of the crustal section. The geochemistry of these lavas is dominated by asthenospheric source materials, with only minor lithospheric involvement. Temporal evolution of EARS geochemistry reflects progressive rifting of the thick craton. This change is manifest within lavas that are interpreted as plume-derived, as Tb/Yb values decrease from 30 Ma through the present. The modern thermal anomaly associated with Afar volcanism does not appear to extend below the shallow mantle, but may reflect a large blob of deep mantle material that became stuck to Africa 30 Ma and has contributed to regional volcanism ever since. Relative contributions from this deep mantle source, shallow asthenosphere and lithosphere are controlled by the extent of rifting and cannot be predicted solely on the basis of surface topography.
Constraining the Material that Formed the Moon: The Origin of Lunar V, CR, and MN Depletions
NASA Technical Reports Server (NTRS)
Chabot, N. L.; Agee, C. B.
2002-01-01
The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to chondritic values. Core formation deep within the Earth was suggested by as the origin of the depletions. Following Earth's core formation, the Moon was proposed to have inherited its mantle from the depleted mantle of the Earth by a giant impact event. This theory implied the Moon was primarily composed of material from the Earth's mantle. Recent systematic metal-silicate experiments of V, Cr, and Mn evaluated the behavior of these elements during different core formation scenarios. The study found that the V, Cr, and Mn depletions in the Earth could indeed be explained by core formation. The conditions of core formation necessary to deplete V, Cr, and Mn in the Earth's mantle were consistent with the deep magma ocean proposed to account for the Earth's mantle abundances of Ni and Co. Using the parameterizations of for the metal-silicate partition coefficients (D) of V, Cr, and Mn, we investigate here the conditions needed to match the depletions in the silicate Moon and determine if such conditions could have been present on the giant impactor.
Ishii; Tromp
1999-08-20
With the use of a large collection of free-oscillation data and additional constraints imposed by the free-air gravity anomaly, lateral variations in shear velocity, compressional velocity, and density within the mantle; dynamic topography on the free surface; and topography on the 660-km discontinuity and the core-mantle boundary were determined. The velocity models are consistent with existing models based on travel-time and waveform inversions. In the lowermost mantle, near the core-mantle boundary, denser than average material is found beneath regions of upwellings centered on the Pacific Ocean and Africa that are characterized by slow shear velocities. These anomalies suggest the existence of compositional heterogeneity near the core-mantle boundary.
NASA Astrophysics Data System (ADS)
Kelley, Katherine A.; Kingsley, Richard; Schilling, Jean-Guy
2013-01-01
The global mid-ocean ridge system is peppered with localities where mantle plumes impinge on oceanic spreading centers. Here, we present new, high resolution and high precision data for 40 trace elements in 573 samples of variably plume-influenced mid-ocean ridge basalts from the Mid-Atlantic ridge, the Easter Microplate and Salas y Gomez seamounts, the Galápagos spreading center, and the Gulf of Aden, in addition to previously unpublished major element and isotopic data for these regions. Included in the data set are the unconventional trace elements Mo, Cd, Sn, Sb, W, and Tl, which are not commonly reported by most geochemical studies. We show variations in the ratios Mo/Ce, Cd/Dy, Sn/Sm, Sb/Ce, W/U, and Rb/Tl, which are expected not to fractionate significantly during melting or crystallization, as a function of proximity to plume-related features on these ridges. The Cd/Dy and Sn/Sm ratios show little variation with plume proximity, although higher Cd/Dy may signal increases in the role of garnet in the mantle source beneath some plumes. Globally, the Rb/Tl ratio closely approximates the La/SmN ratio, and thus provides a sensitive tracer of enriched mantle domains. The W/U ratio is not elevated at plume centers, but we find significant enrichments in W/U, and to a lesser extent the Mo/Ce and Sb/Ce ratios, at mid-ocean ridges proximal to plumes. Such enrichments may provide evidence of far-field entrainment of lower mantle material that has interacted with the core by deeply-rooted, upwelling mantle plumes.
Neon isotopes show that Earth was accreted from irradiated material
NASA Astrophysics Data System (ADS)
Moreira, M. A.
2015-12-01
Since the 1980s, the notion that the Earth's mantle has a "solar" isotopic signature for neon has been favoured. Indeed, the 20Ne/22Ne ratio is above 12.5 in the mantle sources of OIB and MORB, close to the solar composition (13.4 for the Sun or 13.8 for the solar wind) and different from both atmospheric and chondritic compositions (Phase Q, Neon A). The most well accepted process invoked to explain this observed solar composition in the mantle is dissolution into a magma ocean of solar gases captured by gravity around the proto-Earth. However, Earth was accreted after gas from the proto-planetary disk had evaporated, suggesting that Earth itself could not have captured such a solar primordial atmosphere. Only planetary embryos were formed when the gas was still present in the disk. However, these planetary embryos with the mass of Mars are not massive enough to capture a solar dense atmosphere able to incorporate enough neon into the mantle. New estimates of the neon isotopic compositions of both the Earth's mantle and of the implanted solar wind into grains suggest that the origin of the neon on Earth is related to solar wind irradiation on μm grains before planetary accretion started and not dissolution. Although incorporation of solar ions by this process is only significant for very volatiles (depleted) elements, the irradiation by x-rays has important consequences for the bulk chemistry of irradiated grains as it has been demonstrated that it produces depletion in Mg and Si, relatively to O (e.g Bradley et al., 1994), a pattern also observed for the Bulk silicate Earth. References Bradley, J. (1994). "Chemically Anomalous, Preaccretionally irradiated Grains in Interplanetary fust from Comets." Science 265: 925-929.
NASA Astrophysics Data System (ADS)
Yanagisawa, Takatoshi; Kameyama, Masanori; Ogawa, Masaki
2016-09-01
We explore thermal convection of a fluid with a temperature-dependent viscosity in a basally heated 3-D spherical shell using linear stability analyses and numerical experiments, while considering the application of our results to terrestrial planets. The inner to outer radius ratio of the shell f assumed in the linear stability analyses is in the range of 0.11-0.88. The critical Rayleigh number Rc for the onset of thermal convection decreases by two orders of magnitude as f increases from 0.11 to 0.88, when the viscosity depends sensitively on the temperature, as is the case for real mantle materials. Numerical simulations carried out in the range of f = 0.11-0.55 show that a thermal boundary layer (TBL) develops both along the surface and bottom boundaries to induce cold and hot plumes, respectively, when f is 0.33 or larger. However, for smaller f values, a TBL develops only on the bottom boundary. Convection occurs in the stagnant-lid regime where the root mean square velocity on the surface boundary is less than 1 per cent of its maximum at depth, when the ratio of the viscosity at the surface boundary to that at the bottom boundary exceeds a threshold that depends on f. The threshold decreases from 106.5 at f = 0.11 to 104 at f = 0.55. If the viscosity at the base of the convecting mantle is 1020-1021 Pa s, the Rayleigh number exceeds Rc for Mars, Venus and the Earth, but does not for the Moon and Mercury; convection is unlikely to occur in the latter planets unless the mantle viscosity is much lower than 1020 Pa s and/or the mantle contains a strong internal heat source.
Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data
NASA Astrophysics Data System (ADS)
Yang, Yu-shan; Li, Yuan-yuan
2018-01-01
In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.
Basu, A.R.; Tatsumoto, M.
1980-01-01
The Sm-Nd systematics in a variety of mantle-derived samples including kimberlites, alnoite, carbonatite, pyroxene and amphibole inclusions in alkali basalts and xenolithic eclogites, granulites and a pyroxene megacryst in kimberlites are reported. The additional data on kimberlites strengthen our earlier conclusion that kimberlites are derived from a relatively undifferentiated chondritic mantle source. This conclusion is based on the observation that the e{open}Nd values of most of the kimberlites are near zero. In contrast with the kimberlites, their garnet lherzolite inclusions show both time-averaged Nd enrichment and depletion with respect to Sm. Separated clinopyroxenes in eclogite xenoliths from the Roberts Victor kimberlite pipe show both positive and negative e{open}Nd values suggesting different genetic history. A whole rock lower crustal scapolite granulite xenolith from the Matsoku kimberlite pipe shows a negative e{open}Nd value of -4.2, possibly representative of the base of the crust in Lesotho. It appears that all inclusions, mafic and ultramafic, in kimberlites are unrelated to their kimberlite host. The above data and additional Sm-Nd data on xenoliths in alkali basalts, alpine peridotite and alnoite-carbonatites are used to construct a model for the upper 200 km of the earth's mantle - both oceanic and continental. The essential feature of this model is the increasing degree of fertility of the mantle with depth. The kimberlite's source at depths below 200 km in the subcontinental mantle is the most primitive in this model, and this primitive layer is also extended to the suboceanic mantle. However, it is clear from the Nd-isotopic data in the xenoliths of the continental kimberlites that above 200 km the continental mantle is distinctly different from their suboceanic counterpart. ?? 1980 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Basu Sarbadhikari, A.; Babu, E. V. S. S. K.; Vijaya Kumar, T.
2017-02-01
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine-hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine-phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76-70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66-55). REE-plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole-rock. Model calculations indicate two-stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in 10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole-rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE-rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.
Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars.
Franz, Heather B; Kim, Sang-Tae; Farquhar, James; Day, James M D; Economos, Rita C; McKeegan, Kevin D; Schmitt, Axel K; Irving, Anthony J; Hoek, Joost; Dottin, James
2014-04-17
The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.
Structure and dynamics of Earth's lower mantle.
Garnero, Edward J; McNamara, Allen K
2008-05-02
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.
Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field
NASA Technical Reports Server (NTRS)
Jones, G. M.
1977-01-01
The effects of temperature changes at the earth's core-mantle boundary on the velocity field of the core are analyzed. It is assumed that the geomagnetic field is maintained by thermal convection in the outer core. A model for the thermal interaction of the core and the mantle is presented which is consistent with current views on the presence of heat sources in the core and the properties of the lower mantle. Significant long-term variations in the frequency of geomagnetic reversals may be the result of fluctuating temperatures at the core-mantle boundary, caused by intermittent convection in the lower mantle. The thermal structure of the lower mantle region D double prime, extending from 2700 to 2900 km in depth, constitutes an important test of this hypothesis and offers a means of deciding whether the geomagnetic dynamo is thermally driven.
Osmium isotopes suggest fast and efficient mixing in the oceanic upper mantle.
NASA Astrophysics Data System (ADS)
Bizimis, Michael; Salters, Vincent
2010-05-01
The depleted upper mantle (DUM; the source of MORB) is thought to represent the complementary reservoir of continental crust extraction. Previous studies have calculated the "average" DUM composition based on the geochemistry of MORB. However the Nd isotope compositions of abyssal peridotites have been shown to extend to more depleted compositions than associated MORB. While this argues for the presence of both relatively depleted and enriched material within the upper mantle, the extent of compositional variability, length scales of heterogeneity and timescales of mixing in the upper mantle are not well constrained. Model calculations show that 2Ga is a reasonable mean age of depletion for DUM while Hf - Nd isotopes show the persistence of a depleted terrestrial reservoir by the early Archean (3.5-3.8Ga). U/Pb zircon ages of crustal rocks show three distinct peaks at 1.2, 1.9, and 2.7Ga and these are thought to represent the ages of three major crustal growth events. A fundamental question therefore is whether the present day upper mantle retains a memory of multiple ancient depletion events, or has been effectively homogenized. This has important implications for the nature of convection and time scales of survival of heterogeneities in the upper mantle. Here we compare published Os isotope data from abyssal peridotites and ophiolitic Os-Ir alloys with new data from Hawaiian spinel peridotite xenoliths. The Re-Os isotope system has been shown to yield useful depletion age information in peridotites, so we use it here to investigate the distribution of Re-depletion ages (TRD) in these mantle samples as a proxy for the variability of DUM. The probability density functions (PDF) of TRD from osmiridiums, abyssal and Hawaiian peridotites are all remarkably similar and show a distinct peak at 1.2-1.3 Ga (errors for TRD are set at 0.2Ga to suppress statistically spurious age peaks). The Hawaiian peridotites further show a distinct peak at 1.9-2Ga, but no oceanic mantle samples with TRD older than 2Ga have been reported. The TRD age peaks overlap with two major crustal building events recorded in the U/Pb crustal zircon ages. Therefore, peridotites from the convecting upper mantle can retain some memory of ancient depletion events, and these depletions are perhaps linked to major crustal building or large-scale mantle melting events. In the case of the Hawaiian peridotites, an ancient depletion event is further supported by some extremely radiogenic Hf isotope compositions. However, the vast majority of oceanic mantle samples show a narrow rage of Os isotope compositions (187Os/188Os = 0.123-0.126) with TRDs at 300-600 Ma. If the upper mantle has been produced continuously (or episodically) since at least the early Archean, it is then surprising that almost all oceanic mantle samples record such young depletion ages. We suggest that convective mixing in the mantle is rigorous enough that effectively re-homogenizes and resets the Os isotope composition of previously depleted peridotites within short time scales (<500Ma). Similarly recent ages have been derived from modeling the Sr, Nd, Hf, Pb isotopic composition of MORBs. This resetting and homogenization can be due to re-equilibration of depleted mantle with enriched components, e.g. recycled basaltic crust or more fertile mantle. Ancient depletion events are only effectively preserved in the sublithospheric mantle samples (e.g. Kaapval, Slave, Wyoming cratons) because they remain isolated from the convective mantle.
NASA Astrophysics Data System (ADS)
Guo, Kun; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Zhang, Xia; Wang, Xiaoyuan
2018-04-01
The Okinawa Trough is an infant back-arc basin developed along the Ryukyu arc. This paper provides new major and trace element and Sr-Nd-Pb-Li isotope data of volcanic rocks in the Okinawa Trough and combines the published geochemical data to discuss the composition of magma source, the influence of subduction component, and the contamination of crustal materials, and calculate the contribution between subduction sediment and altered oceanic crust in the subduction component. The results showed that there are 97% DM and 3% EMI component in the mantle source in middle trough (MS), which have been influenced by subduction sediment. The Li-Nd isotopes indicate that the contribution of subduction sediment and altered oceanic crust in subduction component are 4 and 96%, respectively. The intermediate-acidic rocks suffer from contamination of continental crust material in shallow magma chamber during fractional crystallization. The acidic rocks in south trough have experienced more contamination of crustal material than those from the middle and north trough segments.
The controversy over plumes: Who is actually right?
NASA Astrophysics Data System (ADS)
Puchkov, V. N.
2009-01-01
The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the mantle-core interface.
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Piper, David J. W.; Papoutsa, Angeliki
2018-01-01
Major intra-continental shear zones developed during the later stages of continental collision in a back-arc setting are sites of prolonged magmatism. Mantle metasomatism results from both melting of subducted sediments and oceanic crust. In the Cobequid Fault Zone of the northern Appalachians, back-arc A-type granites and gabbros dated ca. 360 Ma are locally intruded by lamprophyric dykes dated ca. 335 Ma. All the lamprophyres are kersantites with biotite and albite, lesser ilmenite, titanite and fluorapatite, and minor magmatic calcite, allanite, pyrite, magnetite, quartz and K-feldspar in some samples. The lamprophyres show enrichment in Rb, Ba, K, Th and REE and classify as calc-alkaline lamprophyre on the basis of biotite and whole rock chemistry. Pb isotopes lie on a mixing line between normal mantle-derived gabbro and OIB magma. Nd isotopes range from 1.3-3.5 εNdt, a little lower than in local gabbro. Most lamprophyres have δ18O = 3.8-4.4‰. Country rock is cut by pyrite-(Mg)-chlorite veins with euhedral allanite crystals that resemble the lamprophyres mineralogically, with the Mg-chlorite representing chloritized glass. Early Carboniferous unenriched mafic dykes and minor volcanic rocks are widespread along the major active strike-slip fault zones. The lamprophyres are geographically restricted to within 10 km of a small granitoid pluton with some sodic amphibole and widespread albitization. This was displaced by early Carboniferous strike-slip faulting from its original position close to the large Wentworth Pluton, the site of mantle-derived sodic amphibole granite, a major late gabbro pluton, and a volcanic carapace several kilometres thick, previously demonstrated to be the site of mantle upwelling and metasomatism. The age of the lamprophyres implies that enriched source material in upper lithospheric mantle or lower crust was displaced 50 km by crustal scale strike-slip faulting after enrichment by the mantle upwelling before lamprophyre emplacement. This indicates a multi-stage process to emplace lamprophyric magma.
Calcium Isotopic Compositions of Normal Mid-Ocean Ridge Basalts From the Southern Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Zhu, Hongli; Liu, Fang; Li, Xin; Wang, Guiqin; Zhang, Zhaofeng; Sun, Weidong
2018-02-01
Mantle peridotites show that Ca is isotopically heterogeneous in Earth's mantle, but the mechanism for such heterogeneity remains obscure. To investigate the effect of partial melting on Ca isotopic fractionation and the mechanism for Ca isotopic heterogeneity in the mantle, we report high-precision Ca isotopic compositions of the normal Mid-Ocean Ridge Basalts (N-MORB) from the southern Juan de Fuca Ridge. δ44/40Ca of these N-MORB samples display a small variation ranging from 0.75 ± 0.05 to 0.86 ± 0.03‰ (relative to NIST SRM 915a, a standard reference material produced by the National Institute of Standards and Technology), which are slightly lower than the estimated Upper Mantle value of 1.05 ± 0.04‰ and the Bulk Silicate Earth (BSE) value of 0.94 ± 0.05‰. This phenomenon cannot be explained by fractional crystallization, because olivine and orthopyroxene fractional crystallization has limited influence on δ44/40Ca of N-MORB due to their low CaO contents, while plagioclase fractional crystallization cannot lead to light Ca isotopic compositions of the residue magma. Instead, the lower δ44/40Ca of N-MORB samples compared to their mantle source is most likely caused by partial melting. The offset in δ44/40Ca between N-MORB and BSE indicates that at least 0.1-0.2‰ fractionation would occur during partial melting and light Ca isotopes are preferred to be enriched in magma melt, which is in accordance with the fact that δ44/40Ca of melt-depleted peridotites are higher than fertile peridotites in literature. Therefore, partial melting is an important process that can decrease δ44/40Ca in basalts and induce Ca isotopic heterogeneity in Earth's mantle.
What is the iron isotope composition of the Moon?
NASA Astrophysics Data System (ADS)
Poitrasson, F.; Zambardi, T.; Magna, T.; Neal, C. R.
2016-12-01
It is difficult to estimate the bulk chemical and isotopic composition of the Moon because of severe limitations in our sampling. As a result, there is currently a debate on the bulk Fe isotope composition of the Moon despite the constraints on the lunar accretion modes or differentiation processes it may provide. For this, a proper mass balance estimation of essential planetary reservoirs is required. For instance, the dichotomy in δ57Fe between low- and high-Ti mare basalt varieties as a consequence of differences in degree of fractional crystallization of their respective lunar mantle sources should be rigorously tested. To investigate this, we performed new iron isotope measurements of 33 bulk lunar mare basalts and highland rocks, including KREEP-related materials. The new data show significant Fe isotope differences between high-Ti and low-Ti mare basalts, yielding mean δ57FeIRMM-014=0.277±0.020‰ and δ57FeIRMM-014=0.127±0.020‰, respectively. Assuming that lunar basalts mirror the iron isotope composition of their respective mantle protoliths, the estimated relative proportion of the low-Ti and high-Ti mantle source suggests that the lunar upper mantle should be close to δ57Fe=0.14±0.03‰. At present, it is unclear whether the bulk lunar Fe isotope composition is indistinguishable from that of the Earth (δ57FeIRMM-014=0.10±0.03‰), when estimated solely from mare basalts data, or if it is twice as heavy relative to chondrites, as initially proposed. A large scatter at δ57Fe=0.08±0.19‰ for ferroan anorthosites, Mg-suite rocks and a KREEP basalt imparts more complexities for global isotopic view of the Moon. A better understanding of the cause of Fe isotope heterogeneity among the lunar highland rocks will likely allow to better estimate the bulk Moon composition, and possibly to improve our knowledge about the genesis of the lunar crust itself.
Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina.
Booker, John R; Favetto, Alicia; Pomposiello, M Cristina
2004-05-27
Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30 degrees (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28 degrees and 33 degrees S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Chao; Ding, Lin; Zhang, Li-Yun; Wang, Chao; Qiu, Zhi-Li; Wang, Jian-Gang; Shen, Xiao-Li; Deng, Xiao-Qin
2018-07-01
The Yeba Formation volcanic rocks in the Gangdese arc recorded important information regarding the early history of the Neo-Tethyan subduction. To explore their magmatic evolution and tectonic significance, we performed a systematic petrological, geochronological and geochemical study on these volcanic rocks. Our data indicated that the Yeba Formation documents a transition from andesite-dominated volcanism (which started before 182 Ma and continued until 176 Ma) to bimodal volcanism ( 174-168 Ma) in the earliest Middle Jurassic. The early-stage andesite-dominated volcanics are characterized by various features of major and trace elements and are interpreted as the products of interactions between mantle-derived arc magmas and lower crustal melts. Their positive εNd(t) and εHf(t) values suggest a significant contribution of asthenosphere-like mantle. The late-stage bimodal volcanism is dominated by felsic rocks with subordinate basalts. Geochemical signatures of the basalts indicate a composite magma source that included a "subduction component", an asthenosphere-like upper mantle domain and an ancient subcontinental lithospheric mantle component. The felsic rocks of the late stage were produced mainly by the melting of juvenile crust, with some ancient crustal materials also involved. We suggest that the occurrence and preservation of the Yeba Formation volcanic rocks were tied to a tectonic switch from contraction to extension in the Gangdese arc, which probably resulted from slab rollback of the subducting Neo-Tethyan oceanic slab during the Jurassic.
NASA Astrophysics Data System (ADS)
Liu, Fang; Li, Xin; Wang, Guiqin; Liu, Yufei; Zhu, Hongli; Kang, Jinting; Huang, Fang; Sun, Weidong; Xia, Xiaoping; Zhang, Zhaofeng
2017-12-01
Tracing and identifying recycled carbonates is a key issue to reconstruct the deep carbon cycle. To better understand carbonate subduction and recycling beneath the southeastern Tibetan Plateau, high-K cal-alkaline volcanic rocks including trachy-basalts and trachy-andesites from Tengchong were studied using Mg and Ca isotopes. The low δ26Mg (-0.31 ± 0.03‰ to -0.38 ± 0.03‰) and δ44/40Ca (0.67 ± 0.07‰ to 0.80 ± 0.04‰) values of these volcanic rocks compared to those of the mantle (-0.25 ± 0.07‰ and 0.94 ± 0.05‰, respectively) indicate the incorporation of isotopically light materials into the mantle source, which may be carbonate-bearing sediments with low δ26Mg and δ44/40Ca values. In addition, no correlations of δ26Mg and δ44/40Ca with either SiO2 contents or trace element abundance ratios (e.g., Sm/Yb and Ba/Y) were observed, suggesting that limited Mg and Ca isotopic fractionation occurred during cal-alkaline magmatic differentiation. A binary mixing model using Mg-Ca isotopes shows that 5-8% carbonates dominated primarily by dolostone were recycled back into the mantle. Since Tengchong volcanism is still active and probably related to ongoing plate tectonic movement, we propose that the recycled carbonates are derived from oceanic crust related to the ongoing subduction of the Indian plate.
A large mantle water source for the northern San Andreas Fault System: A ghost of subduction past
Kirby, Stephen H.; Wang, Kelin; Brocher, Thomas M.
2014-01-01
Recent research indicates that the shallow mantle of the Cascadia subduction margin under near-coastal Pacific Northwest U.S. is cold and partially serpentinized, storing large quantities of water in this wedge-shaped region. Such a wedge probably formed to the south in California during an earlier period of subduction. We show by numerical modeling that after subduction ceased with the creation of the San Andreas Fault System (SAFS), the mantle wedge warmed, slowly releasing its water over a period of more than 25 Ma by serpentine dehydration into the crust above. This deep, long-term water source could facilitate fault slip in San Andreas System at low shear stresses by raising pore pressures in a broad region above the wedge. Moreover, the location and breadth of the water release from this model gives insights into the position and breadth of the SAFS. Such a mantle source of water also likely plays a role in the occurrence of Non-Volcanic Tremor (NVT) that has been reported along the SAFS in central California. This process of water release from mantle depths could also mobilize mantle serpentinite from the wedge above the dehydration front, permitting upward emplacement of serpentinite bodies by faulting or by diapiric ascent. Specimens of serpentinite collected from tectonically emplaced serpentinite blocks along the SAFS show mineralogical and structural evidence of high fluid pressures during ascent from depth. Serpentinite dehydration may also lead to tectonic mobility along other plate boundaries that succeed subduction, such as other continental transforms, collision zones, or along present-day subduction zones where spreading centers are subducting.
NASA Astrophysics Data System (ADS)
Zhang, Yi-Shen; Hou, Tong; Veksler, Ilya V.; Lesher, Charles E.; Namur, Olivier
2018-02-01
Phase equilibrium experiments have been performed on an extremely high-Ti (5.4 wt.% TiO2) picrite from the base of the Paleogene ( 55 Ma) East Greenland Flood Basalt Province. This sample has a high CaO/Al2O3 ratio (1.14), a steep rare-earth elements (REE) profile, is enriched in incompatible trace elements, and is in chemical equilibrium with highly primitive olivine. This all suggests that the picrite is a near-primary melt that did not suffer major chemical evolution during ascent from the mantle source and through the crust. Near-liquidus phase relations were determined over the pressure range of 1 atm, 1 to 1.5 GPa and at temperatures from 1094 to 1400°C. They provide an important constraint on the petrogenesis of these lavas. The high-Ti picritic melt is multi-saturated with olivine (Ol) + orthopyroxene (Opx) at 1 GPa but has only Ol or Opx on the liquidus at lower and higher pressures, respectively. This indicates the primitive melt was last equilibrated with its mantle source at relatively shallow pressure ( 1 GPa). Melting probably started at 2-3 GPa and the picritic melt was produced by 15-30% melting of the mantle source. Such a degree of partial melting requires a mantle with a high potential temperature (1480-1530˚C). The relatively low CaO content and high FeO/MnO ratios of the most primitive East Greenland picrites, the high Ni content of olivine phenocrysts and the presence of low-Ca pyroxene (i.e., pigeonite) at high pressure in our experiments all suggest that the mantle source contained a major component of garnet pyroxenite. Residual garnet in the source could adequately explain the low Al2O3 content (7.92 wt.%) and steep REE patterns of the picrite sample. However, simple melting of a lherzolitic source, even with a major pyroxenite component, cannot explain the formation of magmas with the very high Ti contents observed in some East Greenland basalts. We therefore propose that magmas highly-enriched in Ti were produced by melting of a metasomatized mantle source containing Ti-enriched amphibole and/or phlogopite.
The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion
NASA Astrophysics Data System (ADS)
Stein, C.; Hansen, U.
2017-12-01
The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.
NASA Astrophysics Data System (ADS)
Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup; Nielsen, Mia Rohde
2014-05-01
Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr-Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb-Sr-Nd isotopes indicate a major crustal compositional change at the southern end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.
The role of Late Veneer impacts in the evolution of Venus
NASA Astrophysics Data System (ADS)
Gillmann, C.; Golabek, G.; Tackley, P.; Raymond, S.
2017-09-01
We study how different mechanisms contribute to changes in long term evolution. In particular, the primitive history (the first Gy) of terrestrial planets is heavily influenced by collisions. We investigate how the coupled evolution of Venus' atmosphere and mantle is modified by those impacts. We focus on volatile fluxes: atmospheric escape and mantle degassing. We observe that large impacts are unlikely to erode the atmosphere significantly. They are, on the contrary, an important source of volatiles for the primitive planet. Collisions also generate a lot of melting and rapidly dries the mantle through degassing. Without recycling of volatiles into the mantle (like in plate tectonics regime), the mantle is efficiently depleted.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Zuccarello, Francesco
2017-09-01
Mantle ingredients responsible for the signature of Etnean Na- and K-alkaline magmas and their relationships with short-term geochemical changes of the erupted volcanic rocks have been constrained through a partial melting model that considers major, trace elements and water contents in the produced liquids. Characteristics of the Etnean source for alkaline magmas have been supposed similar to those of the mantle accessible at a regional scale, namely below the Hyblean Plateau. The assumption that the Etnean mantle resembles the one beneath the Hyblean Plateau is justified by the large geochemical affinities of the Etnean hawaiites/K-trachybasalts and the Hyblean hawaiites/alkali basalts for what concerns both trace elements and isotope systematics. We have modeled partial melting of a composite source constituted by two rock types, inferred by lithological and geochemical features of the Hyblean xenoliths: 1) a spinel lherzolite bearing metasomatic, hydrous phases and 2) a garnet pyroxenite in form of veins intruded into the spinel lherzolite. The partial melting modeling has been applied to each rock type and the resulting primary liquids have been then mixed in various proportions. These compositions have been compared with some Etnean alkaline magmas of the post ∼60 ka activity, which were firstly re-equilibrated to mantle conditions through mass balance calculations. Our results put into evidence that concentrations of major and trace elements along with the water obtained from the modeling are remarkably comparable with those of Etnean melts re-equilibrated at primary conditions. Different proportions of the spinel lherzolite with variable modal contents of metasomatic phases and of the garnet pyroxenite can therefore account for the signature of a large spectrum of Etnean alkaline magmas and for their geochemical variability through time, emphasizing the crucial role played by compositional small-scale heterogeneity of the source. These heterogeneities are able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.
Interactions between magma and the lithospheric mantle during Cenozoic rifting in Central Europe
NASA Astrophysics Data System (ADS)
Meyer, Romain; Elkins-Tanton, Linda T.
2010-05-01
During the Cenozoic, extensive intraplate volcanic activity occurred throughout Central Europe. Volcanic eruptions extend over France (the Massif Central), central Germany (Eifel, Vogelsberg, Rhön; Heldburg), the Czech Republic (the Eger graben) and SW Poland (Lower Silesia), a region ~1,200 km wide. The origin of this predominantly alkaline intraplate magmatism is often genetically linked to one or several mantle plumes, but there is no convincing evidence for this. We have measured Pb isotope ratios, together with major and trace elements, in a representative set of mafic to felsic igneous rocks from the intra-plate Cenozoic Rhön Mts. and the Heldburg dike swarm in order to gain insight into the melting source and petrogenetic history of these melts. Three different mafic rock types (tholeiitic basalt, alkali basalt, basanite) were distinguished based on petrography and geochemistry within the investigated areas. Except for the lherzolite-bearing phonolite from the Veste Heldburg all other evolved magmas are trachytes. REE geochemistry and calculated partial melting modeling experiments for the three mafic magma types point to different degrees of partial melting in a garnet-bearing mantle source. In addition a new version of the ternary Th-Hf-Ta diagram is presented in this study as a useful petrological tool. This diagram is not only able to define potentially involved melting source end-members (e.g. asthenosphere, sub-continental lithospheric mantle and continental crust) but also interactions between these members are illustrated. An advantage of this diagram compared to partial melting degree sensitive multi-element diagrams is that a ternary diagram is a closed system. An earlier version of this diagram has been recently used to establish the nature and extent of crust mantle melt interaction of volcanic rifted margins magmas (Meyer et al. 2009). The Th-Hf-Ta geochemistry of the investigated magmas is similar to spinel and garnet xenoliths from different continental intra-plate volcanic fields The in the Rhön Mts. and the Heldburg dike swarm tapped mantle source is characterized by an enriched Pb-isotope geology. The highest HIMU component has been measured in the lherzolite-bearing Veste Heldburg phonolite. This higher enriched Pb isotope signature compared to the mafic magmas cannot be explained by crustal contamination. Assimilation fractionation crystallization (AFC) modeling of the Heldburg phonolite allows us to petrogenetically link this melt with HIMU rich shallow mantle amphibole-bearing xenoliths. These new observations suggest that melting started in more depleted mantle segments. And that these melts interacted with more enriched metasomatic overprinted lithospheric mantle domains.
Interactions between magma and the lithospheric mantle during Cenozoic rifting in Central Europe
NASA Astrophysics Data System (ADS)
Meyer, R.; Song, X.; Elkins-Tanton, L. T.
2009-12-01
During the Cenozoic, extensive intraplate volcanic activity occurred throughout Central Europe. Volcanic eruptions extend over France (the Massif Central), central Germany (Eifel, Vogelsberg, Rhön; Heldburg), the Czech Republic (the Eger graben) and SW Poland (Lower Silesia), a region ~1,200 km wide. The origin of this predominantly alkaline intraplate magmatism is often genetically linked to one or several mantle plumes, but there is no convincing evidence for this. We have measured Pb isotope ratios, together with major and trace elements, in a representative set of mafic to felsic igneous rocks from the intra-plate Cenozoic Rhön Mts. and the Heldburg dike swarm in order to gain insight into the melting source and petrogenetic history of these melts. Three different mafic rock types (tholeiitic basalt, alkali basalt, basanite) were distinguished based on petrography and geochemistry within the investigated areas. Except for the lherzolite-bearing phonolite from the Veste Heldburg all other evolved magmas are trachytes. REE geochemistry and calculated partial melting modeling experiments for the three mafic magma types point to different degrees of partial melting in a garnet-bearing mantle source. In addition a new version of the ternary Th-Hf-Ta diagram is presented in this study as a useful petrological tool. This diagram is not only able to define potentially involved melting source end-members (e.g. asthenosphere, sub-continental lithospheric mantle and continental crust) but also interactions between these members are illustrated. An advantage of this diagram compared to partial melting degree sensitive multi-element diagrams is that a ternary diagram is a closed system. An earlier version of this diagram has been recently used to establish the nature and extent of crust mantle melt interaction of volcanic rifted margins magmas (Meyer et al. 2009). The Th-Hf-Ta geochemistry of the investigated magmas is similar to spinel and garnet xenoliths from different continental intra-plate volcanic fields The in the Rhön Mts. and the Heldburg dike swarm tapped mantle source is characterized by an enriched Pb-isotope geology. The highest HIMU component has been measured in the lherzolite-bearing Veste Heldburg phonolite. This higher enriched Pb isotope signature compared to the mafic magmas cannot be explained by crustal contamination. Assimilation fractionation crystallization (AFC) modeling of the Heldburg phonolite allows us to petrogenetically link this melt with HIMU rich shallow mantle amphibole-bearing xenoliths. These new observations suggest that melting started in more depleted mantle segments. And that these melts interacted with more enriched metasomatic overprinted lithospheric mantle domains.
Post-collisional and intraplate Cenozoic volcanism in the rifted Apennines/Adriatic domain
NASA Astrophysics Data System (ADS)
Bianchini, G.; Beccaluva, L.; Siena, F.
2008-02-01
The distinctive tectono-magmatic characteristics of rift volcanism in the Apennines/Adria domains are discussed focussing attention on the nature of mantle sources, stress regimes, and conditions of magma generation. Post-collisional intensive lithospheric rifting and tectonic collapse of the Apennines generate large amounts of Pliocene-Quaternary orogenic magmas which overlie a nearly vertical subducted slab along the peri-Tyrrhenian border. This magmatism includes the Roman Magmatic Province sensu lato (RMP-s.l.) and the Internal Apennines Volcanism (IAV), and consists of high-K calcalkaline, potassic (shoshonitic) and ultrapotassic (leucitites, leucite basanite and minor lamproites and kamafugites) products. Integrated petrological and geochemical studies of these rocks (and associated mantle xenoliths) indicate that most of them could have been generated by a restricted partial melting range ( F ≤ 5-10%) of extremely inhomogeneous phlogopite-veined lithospheric mantle sources, resulting from subduction related K-metasomatic processes. Moreover, the presence of both intermediate anorogenic and subduction related geochemical features in Mt. Vulture magmas support the existence of a slab window beneath the central-southern Apennines, which could have allowed inflow of subduction components to intraplate mantle sources. This slab discontinuity may mark the transition between the already collisioned Adriatic and the still subducting Ionian lithospheric slabs. By contrast, the Paleogene intraplate magmatism of the Adriatic foreland (i.e., the Veneto Province (VVP) and the minor Mt. Queglia and Pietre Nere magmatic bodies) is characterized by small volumes of basic magmas, varying from tholeiitic to strongly Na-alkaline in composition. This magmatism appears to be related to a limited extensional regime typical of the low volcanicity rifts. Petrogenetic modelling of the intraplate Adriatic foreland magmas indicates that their composition is remarkably depth-dependent, with generation of tholeiites to nephelinites/alkaline lamprophyres by decreasing degrees of partial melting ( F = 25 to ≤ 5%) of lherzolite lithospheric sources at progressively increasing depths (ca. 40 to 100 km). Moreover, geochemical features of these anorogenic magmas testify that their mantle sources are remarkable homogeneous, as also confirmed by lack of veining in the VVP mantle xenoliths. This homogeneity suggests that Na-metasomatic agents pervasively affected the overlying Adriatic lithospheric mantle by porous flow mechanisms without causing significant inhomogeneities at a regional scale.
NASA Astrophysics Data System (ADS)
Kimura, J.; Sisson, T. W.; Coombs, M.; Lipman, P. W.
2002-12-01
Lava samples recovered from off-shore Hawaii Island, using remote and manned submersibles during JAMSTEC cruises in 1998, 1999, and 2001, were analyzed for major and trace elements. On the scarp below the Hilina bench (~ 3000 m bmsl), clasts of alkali and transitional basalt were recovered from debris-flow breccias, but tholeiite basalt of modern Kilauea type is absent (Sisson et al., 2002). In 2001 (dive K508), a succession of in-place pillow lavas of alkali basalt was found for the first time on the slope above the Hilina bench, along a well-exposed a rib. These in-place samples of alklic material in relative shallow water depths provide a critical link between modern-day and ancestral Kilauea. The rib is part of ancient Kilauea volcano that has remained in place, while the Hilina Bench contains slide/slump material from Kilauea (Lipman et al., 2002). At the same water depths but ~15 km to the southwest, Dive K207 sampled a series of alkali basalt breccia clasts that are compositionally similar to the in-place lavas of K208. In contrast, a dive on Papa'u Seamount (K509), located at the upper southwest margin of the bench, traversed massive breccias of subaerially erupted tholeiitic basalt. The breccias are compositionally similar to Mauna Loa lavas, and must be ancient landslide material from this volcano. Geochemical characteristics of transitional basalts from the slope above the Hilina bench are related to historical Kilauea tholeiites in major and trace elements. Alkali basalts from both the lower flank of the Hilina bench and the upper rib are more Ti rich than the transitional basalts, with elevated light-rare-earth and large-ion-lithophile elements. Various binary plots between highly incompatible trace element pairs define confined straight lines, including historical Kilauea tholeiite, the transitional basalts, and the Hilina alkalic pillows, suggesting a common mantle source with different degrees of partial melting. However, chemistry of these basalts differ from the more alkalic basanite and nephelinite lava clasts from the lower flank (Sisson et al., 2002). The highly alkaline lavas would have derived from different mantle sources, perhaps from perimeters of the Hawaiian mantle plume, whereas alkali, transitional, and tholeiitic basalts are from more central parts of the plume. The in-place alkalic pillow basalts provides new insights on earlier growth history and changes in states of basalt sources during the magmatic evolution of Kilauea, which is still in progress.
Dynamics of metasomatic transformation of lithospheric mantle rocks under Siberian Craton
NASA Astrophysics Data System (ADS)
Sharapov, Victor; Perepechko, Yury; Tomilenko, Anatoly; Chudnenko, Konstantin; Sorokin, Konstantin
2014-05-01
Numerical problem for one- and two-velocity hydrodynamics of heat and mass transfer in permeable zones over 'asthenospheric lenses' (with estimates for dynamics of non-isothermal metasomatosis of mantle rocks, using the approximation of flow reactor scheme) was formulated and solved based on the study of inclusion contents in minerals of metamorphic rocks of the lithosphere mantle and earth crust, estimates of thermodynamic conditions of inclusions appearance, and the results of experimental modeling of influence of hot reduced gases on rocks and minerals of xenoliths in mantle rocks under the cratons of Siberian Platform (SP): 1) the supply of fluid flows of any composition from upper mantle magma sources results in formation of zonal metasomatic columns in ultrabasic lithosphere mantle in permeable zones of deep faults; 2) when major element or petrogenetic components are supplied from magma source, depleted ultrabasic rocks of the lithosphere mantle are transformed into substrates which can be regarded as deep analogs of crust rodingites; 3) other fluid compositions cause deep calcinations and noticeable salination of metasomated substrate, or garnetization (eclogitization) of primary ultrabasic matrix develops; 4) above these zones the zone of basification appears; it is changed by the area of pyroxenitization, amphibolization, and biotitization; 5) modeling of thermo and mass exchange for two-velocity hydrodynamic problem showed that hydraulic approximation increases velocities of heat front during convective heating and decreases pressure in fluid along the flow. It was shown that grospydites, regarded earlier as eclogites, in permeable areas of lithosphere mantle, are typical zones draining upper mantle magma sources of metasomatic columns. As a result of the convective melting the polybaric magmatic sources may appear. Thus the formation of the (kimberlites?) melilitites or carbonatites is possible at the base of the lithospheric plates. It is shown that the physico - chemical conditions of the carbonation of the depleted mantle peridotites refer to the narrow interval of the possible fluid compositions. The bulk fluid content near 4 weight % with the SiO2 CaO 0.5 - 0.1 molar volumes the 1) the Si/Ca molar ratio is < 1; 2) in the C-H-O system the molar ration should be 1/2/3 - 2/1/2; 3) the pO2 variations should be -8 < lg pO2 < -11; 4) in the fluid the CO2 content is twice higher than H2O and Cl essentially prevail under F. In the system with smaller fraction of the fluid phase less increased by the major element rock components the carbonation is more intensive when the Ca content decrease. The fusions of the basic magmas are possible within the wehrlitization zones. The work is supported by RFBR grant 12-05-00625.
NASA Astrophysics Data System (ADS)
Shi, Yu; Pei, Xiaoli; Castillo, Paterno R.; Liu, Xijun; Ding, Haihong; Guo, Zhichao
2017-06-01
The Fushui mafic intrusion in the Qinling orogenic belt (QOB) is composed of meta-gabbro, meta-gabbro-diorite, diorite, and syenite. Most of these rocks are metamorphosed under the upper greenschist facies to lower amphibolite facies metamorphism. Zircon separates from eight samples have LA-ICP-MS U-Pb ages of 497-501 Ma which are taken to be the emplacement age of magmas that formed the Fushui intrusion. Most of the zircon grains exhibit negative εHf values, correspond to TDM2 model ages of late Paleoproterozoic-early Mesoproterozoic or Neoproterozoic and suggest that the mafic rocks were most probably derived from mafic melts produced by partial melting of a previously metasomatized lithospheric mantle. The intrusion is not extensively contaminated by crustal materials and most chemical compositions of rocks are not modified during the greenschist to amphibolite-facies metamorhism. Rocks from the intrusion have primitive mantle-normalized trace element patterns with significant enrichment in light-REE and large ion lithophile elements (LILE) and depletion in high field-strength elements (HFSE). On the basis of the trace element contents, the Fushui intrusion was derived from parental magmas generated by <10% partial melting of both phlogopite-lherzolite and garnet-lherzolite mantle sources. These sources are best interpreted to be in a subduction-related arc environment and have been modified by fluids released from a subducting slab. The formation of the Fushui intrusion was related to the subduction of the Paleotethyan Shangdan oceanic lithosphere at ∼500 Ma.
U-Series Disequilibria across the New Southern Ocean Mantle Province, Australian-Antarctic Ridge
NASA Astrophysics Data System (ADS)
Scott, S. R.; Sims, K. W. W.; Park, S. H.; Langmuir, C. H.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Michael, P. J.; Choi, H.; Yang, Y. S.
2017-12-01
Mid-ocean ridge basalts (MORB) provide a unique window into the temporal and spatial scales of mantle evolution. Long-lived radiogenic isotopes in MORB have demonstrated that the mantle contains many different chemical components or "flavors". U-series disequilibria in MORB have further shown that different chemical components/lithologies in the mantle contribute differently to mantle melting processes beneath mid-ocean ridges. Recent Sr, Nd, Hf, and Pb isotopic analyses from newly collected basalts along the Australian-Antarctic Ridge (AAR) have revealed that a large distinct mantle province exists between the Australian-Antarctic Discordance and the Pacific-Antarctic Ridge, extending from West Antarctica and Marie Byrd Land to New Zealand and Eastern Australia (Park et al., submitted). This southern mantle province is located between the Indian-type mantle and the Pacific-type mantle domains. U-series measurements in the Southeast Indian Ridge and East Pacific Rise provinces show distinct signatures suggestive of differences in melting processes and source lithology. To examine whether the AAR mantle province also exhibits different U-series systematics we have measured U-Th-Ra disequilibria data on 38 basalts from the AAR sampled along 500 km of ridge axis from two segments that cross the newly discovered Southern Ocean Mantle province. We compare the data to those from nearby ridge segments show that the AAR possesses unique U-series disequilibria, and are thus undergoing distinct mantle melting dynamics relative to the adjacent Pacific and Indian ridges. (230Th)/(238U) excesses in zero-age basalts (i.e., those with (226Ra)/(230Th) > 1.0) range from 1.3 to 1.7, while (226Ra)/(230Th) ranges from 1.0 to 2.3. (226Ra)/(230Th) and (230Th)/(238U) are negatively correlated, consistent with the model of mixing between deep and shallow melts. The AAR data show higher values of disequilibria compared to the Indian and Pacific Ridges, which can be explained by either lower melting rates and porosities, or a higher gt/cpx ratio in their mantle source. That both long-lived radiogenic isotopes and U-series disequilibria are distinct in these three adjacent mantle provinces suggests that lithological differences are strongly influencing the melting process beneath each of these mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Xu, Zheng; Zheng, Yong-Fei
2017-09-01
Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by the crustal metasomatism through melt-peridotite reaction at the slab-mantle interface in oceanic subduction channels. Continental basalts of Mesozoic to Cenozoic ages from eastern China are used as a case example to illustrate the above petrogenetic mechanism. Subduction of the paleo-Pacific oceanic slab beneath the eastern edge of Eurasian continent in the Early Mesozoic would have transferred the crustal signatures into the mantle sources of these basalts. This process would be associated with rollback of the subducting slab at that time, whereas the partial melting of metasomatites takes place mainly in the Late Mesozoic to Cenozoic to produce the continental basalts. Therefore, OIB-like continental basalts are also the product of subduction-zone magmatism though they occur in intraplate settings.
NASA Astrophysics Data System (ADS)
Cheng, Zhiguo; Zhang, Zhaochong; Xie, Qiuhong; Hou, Tong; Ke, Shan
2018-05-01
Incorporation of subducted slabs may account for the geochemical and isotopic variations of large igneous provinces (LIPs). However, the mechanism and process by which subducted slabs are involved into magmas is still highly debated. Here, we report a set of high resolution Mg isotopes for a suite of alkaline and Fe-rich rocks (including basalts, mafic-ultramafic layered intrusions, diabase dykes and mantle xenoliths in the kimberlitic rocks) from Tarim Large Igneous Province (TLIP). We observed that δ26 Mg values of basalts range from -0.29 to - 0.45 ‰, -0.31 to - 0.42 ‰ for mafic-ultramafic layered intrusions, -0.28 to - 0.31 ‰ for diabase dykes and -0.29 to - 0.44 ‰ for pyroxenite xenoliths from the kimberlitic rocks, typically lighter than the normal mantle source (- 0.25 ‰ ± 0.04, 2 SD). After carefully precluding other possibilities, we propose that the light Mg isotopic compositions and high FeO contents should be ascribed to the involvement of recycled sedimentary carbonate rocks and pyroxenite/eclogite. Moreover, from basalts, through layered intrusions to diabase dykes, (87Sr/86Sr)i values and δ18OV-SMOW declined, whereas ε (Nd) t and δ26 Mg values increased with progressive partial melting of mantle, indicating that components of carbonate rock and pyroxenite/eclogite in the mantle sources were waning over time. In combination with the previous reported Mg isotopes for carbonatite, nephelinite and kimberlitic rocks in TLIP, two distinct mantle domains are recognized for this province: 1) a lithospheric mantle source for basalts and mafic-ultramafic layered intrusions which were modified by calcite/dolomite and eclogite-derived high-Si melts, as evidenced by enriched Sr-Nd-O and light Mg isotopic compositions; 2) a plume source for carbonatite, nephelinite and kimberlitic rocks which were related to magnesite or periclase/perovskite involvement as reflected by depleted Sr-Nd-O and extremely light Mg isotopes. Ultimately, our study suggests that subducted slabs could make important contributions to LIP generation, and establishes a potential linkage between plate tectonics and mantle plume.
Mantle plume capture, anchoring and outflow during ridge interaction
NASA Astrophysics Data System (ADS)
Gibson, S. A.; Richards, M. A.; Geist, D.
2015-12-01
Geochemical and geophysical studies have shown that >40% of the world's mantle plumes are currently interacting with the global ridge system and such interactions may continue for up to 180 Myr[1]. At sites of plume-ridge interaction up to 1400 km of the spreading centre is influenced by dispersed plume material but there are few constraints on how and where the ridge-ward transfer of deep-sourced material occurs, and also how it is sustained over long time intervals. Galápagos is an archetypal example of an off-axis plume and sheds important light on these mechanisms. The Galápagos plume stem is located ~200 km south of the spreading axis and its head influences 1000 km of the ridge. Nevertheless, the site of enriched basalts, greatest crustal thickness and elevated topography on the ridge, together with active volcanism in the archipelago, correlate with a narrow zone (~150 km) of low-velocity, high-temperature mantle that connects the plume stem and ridge at depths of ~100 km[2]. The enriched ridge basalts contain a greater amount of partially-dehydrated, recycled oceanic crust than basalts elsewhere on the spreading axis, or indeed basalts erupted in the region between the plume stem and ridge. The presence of these relatively volatile-rich ridge basalts requires flow of plume material below the peridotite solidus (i.e.>80 km). We propose a 2-stage model for the development and sustainment of a confined zone of deep ridge-ward plume flow. This involves initial on-axis capture and establishment of a sub-ridge channel of plume flow. Subsequent anchoring of the plume stem to a contact point on the ridge during axis migration results in confined ridge-ward flow of plume material via a deep network of melt channels embedded in the normal spreading and advection of the plume head[2]. Importantly, sub-ridge flow is maintained. The physical parameters and styles of mantle flow we have defined for Galápagos are less-well known at other sites of plume-ridge interactions, e.g. Tristan, Amsterdam. The observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge. [1] Whittaker JM et al (2015) Nature Geosci 10.1038/ngeo2437 [2]Gibson SA, Geist DG & Richards MA (2015) Geochem Geophys Geosyst 10.1002/2015GC005723
Transition Element Abundances in MORB Basalts
NASA Astrophysics Data System (ADS)
Yang, S.; Humayun, M.; Salters, V. J.; Fields, D.; Jefferson, G.; Perfit, M. R.
2012-12-01
The mineralogy of the mantle sources of basalts is an important, but hard to constrain parameter, especially with the basalts as chemical probes of major element mantle composition. Geophysical models imply that the deep mantle may have significant variations in Fe and Si relative to the ambient mantle sampled by MORB. Some petrological models of sub-ridge melting involve both pyroxenite and peridotite, implying that basalts preferentially sample a pyroxenite endmember. The First-Row Transition Elements (FRTE), Ga and Ge are compatible to moderately incompatible during partial melting, and are sensitive to mineralogical variability in the mantle and thus can provide constraints on mantle source mineralogy for MORB. We have analyzed major elements, FRTE, Ga and Ge on 231 basaltic glasses from the Middle Atlantic Ridge (MAR between -23°S to 36.44°N), 30 Mid-Cayman Rise basaltic glasses, 12 glasses from the Siqueiros Fracture Zone (EPR), 9 glasses from the Blanco Trough, Juan de Fuca ridge, and Galapagos Spreading Centers (EPR), and 4 Indian Ocean MORB. Large spots (150 μm) were precisely (±1%) analyzed by a New Wave UP193FX excimer (193 nm) laser ablation system coupled to a high-resolution ICP-MS at the National High Magnetic Field Laboratory using a high ablation rate (50 Hz) to yield blank contributions <1% for all elements, particularly Ge. The data demonstrate that the Ge/Si (6.96 x 10E-6 ± 3%, 1σ) and Fe/Mn (55 ± 2%) ratios for MORB are insensitive to fractional crystallization within the MgO range 6%-10%. MORB have Zn/Fe (9.9 x 10E-4 ± 7%), Ga/Sc (0.37-0.50), Ga/Al (2.2 x 10E-4 ± 11%) ratios, with the variations mostly due to the effects of fractional crystallization. Recent experimental determination of FRTE, Ga and Ge partition coefficients provide a framework within which to interpret these data [1]. Using these new partition coefficients, we have modeled the sensitivity of each element to mineralogical variations in the mantle source. Olivine primarily controls the partitioning of Fe, Zn, Ga and Ge; garnet dominates the Sc abundance; spinel exerts exceptionally strong control over Ga and Zn, and cannot be neglected as a source mineral for these elements. MORB FRTE, Ga and Ge abundances are consistent with partial melting of a spinel peridotite source (<1% garnet) similar to that estimated for DMM, although the abundances of many of these elements need to be better constrained in the model sources. [1] Davis et al. GCA (submitted)
Constraining the volatile budget of the lunar interior
NASA Astrophysics Data System (ADS)
Potts, N. J.; Bromiley, G. D.
2017-12-01
Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The implications of this are not only important for understanding the behaviour of volatiles during planetary differentiation but would impact any future seismic study of the Moon.
NASA Technical Reports Server (NTRS)
Shearer, C. K.; Messenger, S.; Sharp, Z. D.; Burger, P. V.; Nguyen, N.; McCubbin, F. M.
2017-01-01
The style, magnitude, timing, and mixing components involved in the interaction between mantle derived Martian magmas and Martian crust have long been a point of debate. Understanding this process is fundamental to deciphering the composition of the Martian crust and its interaction with the atmosphere, the compositional diversity and oxygen fugacity variations in the Martian mantle, the bulk composition of Mars and the materials from which it accreted, and the noble gas composition of Mars and the Sun. Recent studies of the chlorine isotopic composition of Martian meteorites imply that although the variation in delta (sup 37) Cl is limited (total range of approximately14 per mille), there appears to be distinct signatures for the Martian crust and mantle. However, there are potential issues with this interpretation. New Cl isotope data from the SAM (Sample Analysis at Mars) instrument on the Mars Science Lab indicate a very wide range of Cl isotopic compositions on the Martian surface. Recent measurements by [10] duplicated the results of [7,8], but placed them within the context of SAM surface data. In addition, Martian meteorite Chassigny contains trapped noble gases with isotopic ratios similar to solar abundance, and has long been considered a pristine, mantle derived sample. However, previous studies of apatite in Chassigny indicate that crustal fluids have interacted with regions interstitial to the cumulus olivine. The initial Cl isotope measurements of apatite in Chassigny suggest an addition of crustal component to this lithology, apparently contradicting the rare gas data. Here, we examine the Cl isotopic composition of multiple generations and textures of apatite in Chassigny to extricate the crustal and mantle components in this meteorite and to reveal the style and timing of the addition of crustal components to mantle-derived magmas. These data reveal distinct Martian Cl sources whose signatures have their origins linked to both the early Solar System and the evolving Martian atmosphere.
NASA Astrophysics Data System (ADS)
Bolhar, Robert; Hofmann, Axel; Kemp, Anthony I. S.; Whitehouse, Martin J.; Wind, Sandra; Kamber, Balz S.
2017-10-01
Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207Pb/206Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon δ18O values from +4 to +10‰ point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In εHf-time space, 3.8-3.6 Ga grains define an array consistent with reworking of a mafic reservoir (176Lu/177Hf ∼0.015) that separated from chondritic mantle at ∼3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral accretion of arc-related crustal blocks until 3.35 Ga.
Reconstructing mantle volatile contents through the veil of degassing
NASA Astrophysics Data System (ADS)
Tucker, J.; Mukhopadhyay, S.; Gonnermann, H. M.
2014-12-01
The abundance of volatile elements in the mantle reveals critical information about the Earth's origin and evolution such as the chemical constituents that built the Earth and material exchange between the mantle and exosphere. However, due to magmatic degassing, volatile element abundances measured in basalts usually do not represent those in undegassed magmas and hence in the mantle source of the basalts. While estimates of average mantle concentrations of some volatile species can be obtained, such as from the 3He flux into the oceans, volatile element variability within the mantle remains poorly constrained. Here, we use CO2-He-Ne-Ar-Xe measurements in basalts and a new degassing model to reconstruct the initial volatile contents of 8 MORBs from the Mid-Atlantic Ridge and Southwest Indian Ridge that span a wide geochemical range from depleted to enriched MORBs. We first show that equilibrium degassing (e.g. Rayleigh degassing), cannot simultaneously fit the measured CO2-He-Ne-Ar-Xe compositions in MORBs and argue that kinetic fractionation between bubbles and melt lowers the dissolved ratios of light to heavy noble gas species in the melt from that expected at equilibrium. We present a degassing model (after Gonnermann and Mukhopadhyay, 2007) that explicitly accounts for diffusive fractionation between melt and bubbles. The model computes the degassed composition based on an initial volatile composition and a diffusive timescale. To reconstruct the undegassed volatile content of a sample, we find the initial composition and degassing timescale which minimize the misfit between predicted and measured degassed compositions. Initial 3He contents calculated for the 8 MORB samples vary by a factor of ~7. We observe a correlation between initial 3He and CO2 contents, indicating relatively constant CO2/3He ratios despite the geochemical diversity and variable gas content in the basalts. Importantly, the gas-rich popping rock from the North Atlantic, as well as the average mantle ratio computed from the ridge 3He flux and independently estimated CO2 content fall along the same correlation. This observation suggests that undegassed CO2 and noble gas concentrations can be reconstructed in individual samples through measurement of noble gases and CO2 in erupted basalts.
NASA Astrophysics Data System (ADS)
Cottrell, E.; Kelley, K. A.
2012-12-01
Mantle oxygen fugacity (fO2) has a first-order effect on the petrogenesis of mantle-derived melts and the speciation of mantle fluids. Current debate centers on the spatial uniformity of upper mantle fO2 and its constancy through geologic time. We use iron K-edge X-ray absorption near-edge structure (μXANES) spectroscopy to provide Fe3+ /ΣFe ratios of submarine mantle-derived basalts from mid-ocean ridges (MORB) as a proxy for fO2. A global survey of primitive (>8.75 wt% MgO) MORB glasses at spreading centers, unaffected by plumes, reveals a decrease in Fe3+ /ΣFe ratio of 12% relative with indices of mantle enrichment such as 87/86Sr, 208/204Pb, Ba/La, and Rb/Sr ratios. The strong negative correlation between upper mantle fO2 and enrichment recorded by MORB glasses contrasts with the positive relationship hinted at by abyssal peridotite oxybarometry (e.g. Ballhaus, CMP, 1993) and the general prediction of a positive correlation born of the expectation that Fe3+ can be treated as more incompatible than Fe2+ during mantle melting. These data unequivocally link upper mantle oxidation state to mantle source enrichment. EMORB generation is commonly attributed to subduction-related processes. That EMORB is more reduced than NMORB implies that deeply subducted and recycled lithologies, such as anoxic sediment, may be more reduced than ambient mantle. Negative correlations between traditional tracers of recycled sediment (e.g. +Nb anomaly, high 87/86Sr, high LILE/LREE) and redox support this hypothesis. Preservation of redox signatures on plate-recycling timescales of hundreds of millions to billions of years would require the mantle to be very poorly buffered. Alternatively, MORB Fe3+ /ΣFe ratios may be generated in situ beneath ridges as a function of variable carbon content. The shallow MORB source is too oxidized to stabilize graphite (Cottrell and Kelley, EPSL, 2011) and carbon exists as oxides. Decreasing fO2 with increasing depth eventually stabilizes reduced carbon species (diamond, carbides, alloys), however, and aCO2 may buffer mantle assemblages. Upon ascent, reduced carbon in upwelling mantle must oxidize, reducing Fe in the process such that more carbon-rich mantle would arrive at the surface with a lower Fe3+ /ΣFe ratio. We cannot directly correlate Fe3+ /ΣFe ratios with CO2 concentrations because submarine basalts have variably degassed CO2; however, the unequivocally carbon-rich sample 2πD43 (popping rock) does record a low Fe3+ /ΣFe ratio. CO2 variations on the order of 80 ppm in the mantle source would explain the range of MORB/EMORB Fe3+ /ΣFe ratios we observe, indicating a possible range of carbon concentrations in subduction-related lithologies. The relationships between MORB Fe3+ /ΣFe ratios, trace elements, and isotopes are consistent with modeled mixtures of depleted melts and low-degree carbonatitic melts of ancient subducted igneous crust plus 5-15% sediment (Stracke et al., G3, 2001) using the near-solidus carbonatitic partition coefficients of Dasgupta et al., Chem Geol, (2009). It may be that low degree carbonatitic melts even act through geologic time to scavenge and fractionate trace elements, creating enriched high-carbon reservoirs. Low Fe3+ /ΣFe ratios, and even EMORB itself, may therefore herald greater carbon concentrations, and the influence of low-degree carbonatitic melts, in Earth's mantle.
NASA Astrophysics Data System (ADS)
Guo, Peng; Xu, Wen-Liang; Wang, Chun-Guang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.; Wang, Zhi-Wei
2017-06-01
New geochemical and Re-Os isotopic data of mantle xenoliths entrained in Cenozoic Sviyagino alkali basalts from the Russian Far East provide insights into the age and evolution of the sub-continental lithospheric mantle (SCLM) beneath the Khanka Massif, within the Central Asian Orogenic Belt (CAOB). These mantle xenoliths are predominantly spinel lherzolites with minor spinel harzburgite. The lherzolites contain high whole-rock concentrations of Al2O3 and CaO, with low forsterite content in olivine (Fo = 89.5-90.3%) and low Cr# in spinel (0.09-0.11). By contrast, the harzburgite is more refractory, containing lower whole rock Al2O3 and CaO contents, with higher Fo (91.3%) and spinel Cr# (0.28). Their whole rock and mineral compositions suggest that the lherzolites experienced low-degree (1-4%) batch melting and negligible metasomatism, whereas the harzburgite underwent a higher degree (10%) of fractional melting, and experienced minor post-melting silicate metasomatism. Two-pyroxene rare earth element (REE)-based thermometry (TREE) yields predominant equilibrium temperatures of 884-1043 °C, similar to values obtained from two-pyroxene major element-based thermometry (TBKN = 942-1054 °C). Two lherzolite samples yield high TREE relative to TBKN (TREE - TBKN ≥ 71 °C), suggesting that they cooled rapidly as a result of the upwelling of hot asthenospheric mantle material that underplated a cold ancient lithosphere. The harzburgite with a low Re/Os value has an 187Os/188Os ratio of 0.11458, yielding an Os model age (TMA) relative to the primitive upper mantle (PUM) of 2.09 Ga, and a Re depletion ages (TRD) of 1.91 Ga; both of which record ancient melt depletion during the Paleoproterozoic ( 2.0 Ga). The 187Os/188Os values of lherzolites (0.12411-0.12924) correlate well with bulk Al2O3 concentrations and record the physical mixing of ancient mantle domains and PUM-like ambient mantle material within the asthenosphere. This indicates that the SCLM beneath the Khanka Massif had been formed since at least the Paleoproterozoic ( 2.0 Ga), and was replaced by juvenile (Phanerozoic) mantle material accreted from the asthenosphere. The synthesis of available TRD ages for mantle-derived rocks and sulfides in xenoliths is consistent with the prior existence of a common Paleoproterozoic ( 2.0 Ga) SCLM beneath the eastern CAOB. Finally, comparing of mantle TRD ages and the ages of crustal rocks suggests temporal and genetic links between crust and mantle formation during the evolution of the CAOB.
Mantle Sources Beneath the SW Indian Ridge - Remelting the African Superplume
NASA Astrophysics Data System (ADS)
Dick, H. J. B.; Zhou, H.
2012-04-01
The SW Indian Ridge runs some 7700 km from the Bouvet to the Rodgriguez Triple Junction, crossing over or near two postulated mantle plumes. The latter are associated with large oceanic rises where the ridge axis shoals dramatically in the vicinity of the mantle hotspot. The Marion Rise, extends 3100 km from the Andrew Bain FZ to near the Rodriguez TJ, with an along axis rise of 5600-m to it crest north of Marion Island. The rise has thin crust inferred on the basis of abundant exposures of mantle peridotites along its length. We suggest that this is the result of its sub-axial mantle source, which is a depleted residue originally emplaced by the African Superplume into the asthenosphere beneath southern Africa during the Karoo volcanic event ~185 Ma. Based on shallow mantle anisotropy, plate reconstructions, and hotspot traces, it now forms the mantle substrate for the SW Indian Ridge due to the breakup of Gondwanaland. The Marion Rise is associated with Marion Island, the present location of the Marion Hotspot, some 256 km south of the modern ridge. This plume is a vestigial remnant of the African Superplume now imbedded in and centered on asthenospheric mantle derived from the Karoo event. Based on the numerous large offset fracture zones, which would dam sub-axial asthenospheric flow along the ridge, the low postulated flux of the Marion plume, its off-axis position, and the thin crust along the ridge it is clear that the present day plume does not support the Marion Rise. Instead, this must be supported isostatically by the underlying mantle residue of the Karoo event. The Bouvet Rise is much shorter than the Marion Rise, extending ~664 km from the Conrad FZ on the American-Antarctic Ridge to the Shaka FZ on the SW Indian Ridge. It has ~3000-m of axial relief, peaking at Speiss Smt at Speiss Ridge: the last spreading segment of the SW Indian Ridge adjacent to the Bouvet TJ. Unlike the Marion plume, Bouvet is ridge-centered, and much of its rise is likely supported by sub-axial flow of hot mantle from the present-day plume. It is also clear from the isotopic composition of the Bouvet Plume that while it may also be a manifestation of the underlying seismic anomaly situated above D" that gave rise to the Marion Plume, this source must be compositionally heterogeneous at a very large scale. Secondary mantle heterogeneities are evident beyond those associated with the Marion and Bouvet Plumes. These likely explain the frequently extreme local isotopic variability of MORB along the SW Indian Ridge, and are likely due to entrainment of cratonic lithosphere from beneath Africa into the asthenosphere (e.g.: Meyzen et al., Nature, 2003). This is supported by major element anomalies in peridotites from adjacent to the 750-km offset Andrew Bain FZ, and by anomalously thick crust situated at Atlantis Bank, the site of an abrupt MORB isotopic anomaly, that suggest anomalously fertile mantle sources inconsistent with the regional basalt and peridotite major element compositional gradients attributed to the Superplume.
Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes
NASA Astrophysics Data System (ADS)
Fischer, T.
2001-05-01
Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and 5.4 Mmol/a of non-mantle N2). Other subduction zone volcanoes are currently degassing a much more substantial amount of volatiles. Popocatepetl, Mexico, has degassed approximately 14 Mt of SO2 to the atmosphere over the past 6 years (Witter et al. 2000). Satsuma-Iwojima, Japan, has degassed for longer than 800 years and is currently releasing 500-1000 tones/day (Kazahaya et al. 2000). At these volcanoes CO2 and N2 discharges from the magma should also be balanced by the supply from slab and crustal sources. The rate of subduction off Mexico and Japan, however, is similar to the rate at the Kuriles. Therefore, large amounts of slab derived volatiles must be, in some fashion, stored in the "subduction factory" to supply the large amounts degassing passively from these volcanoes. Kazahaya et al. (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI. Witter et al (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI.
Inverse problems for torsional modes.
Willis, C.
1984-01-01
Considers a spherically symmetric, non-rotating Earth consisting of an isotropic, perfect elastic material where the density and the S-wave velocity may have one or two discontinuities in the upper mantle. Shows that given the velocity throughout the mantle and the crust and given the density in the lower mantle, then the freqencies of the torsional oscillations of one angular order (one torsional spectrum), determine the density in the upper mantle and in the crust uniquely. If the velocity is known only in the lower mantle, then the frequencies of the torsional oscillations of two angular orders uniquely determine both the density and the velocity in the upper mantle and in the crust. In particular, the position and size of the discontinuities in the density and velocity are uniquely determined by two torsional spectra.-Author
Borgeaud, Anselme F. E.; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J.
2017-01-01
D″ (Dee double prime), the lowermost layer of the Earth’s mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth’s liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth’s evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004–2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth’s surface might control the modality of convection in the lower mantle. PMID:29209659
NASA Astrophysics Data System (ADS)
Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Wang, Xinyu; Yang, Yueheng
2018-04-01
Late Paleozoic is a key period for the accretion and collision of the southern Central Asian Orogenic Belt (CAOB). Here, we present new zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotopic compositions for four Late Paleozoic felsic plutons in Eastern Tianshan (or Tienshan in some literatures) in order to constrain the tectonic evolution of the southern CAOB. The granodioritic pluton and its dioritic enclaves were synchronously formed in the Early Carboniferous (336 ± 3 Ma and 335 ± 2 Ma, respectively). These rocks are depleted in Nb, Ta and Ti, and enriched in Rb, Ba, Th and U related to the primitive mantle, which show typical features of arc rocks. They both have similar Sr-Nd isotopic ratios to those granitic rocks from the eastern Central Tianshan Block and have the latest Mesoproterozoic two stage Nd model ages (TDM2) (1111-1195 Ma for the granodioritic pluton and 1104-1108 Ma for the enclaves, respectively), indicating that their source magmas may have been derived from the Mesoproterozoic crust. The albitophyric pluton was also emplaced in the Early Carboniferous (333 ± 3 Ma). Rocks of this pluton have similar εNd(t) values (-0.69 to -0.37) and TDM2 ages (1135-1161 Ma) to those of the granodioritic rocks, suggest similar crustal source for both types of rocks. In contrast, the K-feldspar granitic and monzonitic plutons were emplaced in the Early Permian (292 ± 3 Ma and 281 ± 2 Ma, respectively). Samples of the K-feldspar granitic pluton have high K2O + Na2O, FeO/MgO, Ga/Al, HFSE (e.g., Zr and Hf) and low CaO, Sr and Ba, exhibiting characteristics of A2-type granites, which probably emplaced in a post-collisional extension environment. They have higher εNd(t) values (+2.77 to +3.27) and more juvenile TDM2 ages (799-841 Ma) than the Early Carboniferous plutons, suggesting that they were derived from relatively younger crustal sources. The monzonitic granites are metaluminous to weakly peraluminous with A/CNK ranging from 0.93 to 1.05, and have very low P2O5, indicating characteristics of I-type granites. They also have positive εNd(t) values (+2.22 to +2.34) and juvenile TDM2 ages (868-878 Ma), suggesting this pluton was also produced by partial melting of relatively young crustal source. Based on an isotopic mixing simulation, significant mantle contributions were added to the magma source of both the Early Carboniferous and the Early Permian felsic rocks. The mantle contribution changes from 60% in the Early Carboniferous to 75% in the Early Permian. The remarkably increasing of mantle materials in the magma source of the felsic rocks in the Aqishan-Yamansu belt was most likely induced by the tectonic transition from an Early Carboniferous continental arc to an Early Permian post-collisional extension environment.
NASA Technical Reports Server (NTRS)
Anderson, D. L.; Kovach, R. L.
1972-01-01
The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.
Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume
NASA Astrophysics Data System (ADS)
Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.
2018-01-01
Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method is shown for the West Eifel volcanic field.
NASA Astrophysics Data System (ADS)
Tejada, Maria Luisa G.; Hanyu, Takeshi; Ishikawa, Akira; Senda, Ryoko; Suzuki, Katsuhiko; Fitton, Godfrey; Williams, Rebecca
2015-02-01
The Louisville Seamount Chain (LSC) is, besides the Hawaiian-Emperor Chain, one of the longest-lived hotspot traces. We report here the first Re-Os isotope and platinum group element (PGE) data for Canopus, Rigil, and Burton Guyots along the chain, which were drilled during IODP Expedition 330. The LSC basalts possess (187Os/188Os)i = 0.1245-0.1314 that are remarkably homogeneous and do not vary with age. A Re-Os isochron age of 64.9 ± 3.2 Ma was obtained for Burton seamount (the youngest of the three seamounts drilled), consistent with 40Ar-39Ar data. Isochron-derived initial 187Os/188Os ratio of 0.1272 ± 0.0008, together with data for olivines (0.1271-0.1275), are within the estimated primitive mantle values. This (187Os/188Os)i range is similar to those of Rarotonga (0.124-0.139) and Samoan shield (0.1276-0.1313) basalts and lower than those of Cook-Austral (0.136-0.155) and Hawaiian shield (0.1283-0.1578) basalts, suggesting little or no recycled component in the LSC mantle source. The PGE data of LSC basalts are distinct from those of oceanic lower crust. Variation in PGE patterns can be largely explained by different low degrees of melting under sulfide-saturated conditions of the same relatively fertile mantle source, consistent with their primitive mantle-like Os and primordial Ne isotope signatures. The PGE patterns and the low 187Os/188Os composition of LSC basalts contrast with those of Ontong Java Plateau (OJP) tholeiites. We conclude that the Re-Os isotope and PGE composition of LSC basalts reflect a relatively pure deep-sourced common mantle sampled by some ocean island basalts but is not discernible in the composition of OJP tholeiites.
Manning, Andrew H.; Hofstra, Albert H.
2017-01-01
The He, Ne, and Ar isotopic composition of fluid inclusions in ore and gangue minerals were analyzed to determine the source of volatiles in the high-grade Goldfield and Tonopah epithermal Au-Ag deposits in southwestern Nevada, USA. Ar and Ne are mainly atmospheric, whereas He has only a minor atmospheric component. Corrected 3He/4He ratios (with atmospheric He removed) range widely from 0.05 to 35.8 times the air 3He/4He ratio (RA), with a median of 1.43 RA. Forty-one percent of measured 3He/4He ratios are ≥4 RA, corresponding to ≥50% mantle He assuming a mantle ratio of 8 RA. These results suggest that mafic magmas were part of the magmatic-hydrothermal system underlying Goldfield and Tonopah, and that associated mantle-sourced volatiles may have played a role in ore formation. The three highest corrected 3He/4He ratios of 17.0, 23.7, and 35.8 RAindicate a primitive mantle He source and are the highest yet reported for any epithermal-porphyry system and for the Cascades arc region. Compiled 3He/4He measurements from epithermal-porphyry systems in subduction-related magmatic arcs around the world (n = 209) display a statistically significant correlation between 3He/4He and Au-Ag grade. The correlation suggests that conditions which promote higher fluid inclusion 3He/4He ratios (abundance of mantle volatiles and focused upward volatile transport) have some relation to conditions that promote higher Au-Ag grades (focused flow of metal-bearing fluids and efficient chemical traps). Results of this and previous investigations of He isotopes in epithermal-porphyry systems are consistent with the hypothesis posed in recent studies that mafic magmas serve an important function in the formation of these deposits.
Lunar initial Nd-143/Nd-144 - Differential evolution of the lunar crust and mantle
NASA Technical Reports Server (NTRS)
Lugmair, G. W.; Marti, K.
1978-01-01
The Sm-Nd evolution of Apollo 15 green glass is discussed. The ICE age (intercept with chondritic evolution) of 3.8 + or - 0.4 eons overlaps the range of reported (Ar-39)-(Ar-40) ages and implies a distinct source region for green glass, characterized by very low and unfractionated REE abundances. Evidence is presented that LINd (lunar initial Nd) is compatible with a 'chondritic'-type Nd isotopic evolution as observed in the Juvinas meteorite. This normalization is used to study the Sm-Nd system of various lunar rock types. The results obtained from a limited number of rocks clearly indicate differential Sm-Nd evolution for the lunar crust and mantle. High-Ti basalts returned by the Apollo 11 and 17 missions were derived from distinct source regions. The Nd-143 evolution in KREEP requires a source region which is clearly distinct from any mantle reservoir.
Tungsten Abundances in Hawaiian Picrites: Implications for the Mantle Sources of Hawaiian Volcanoes
NASA Astrophysics Data System (ADS)
Ireland, T. J.; Arevalo, R. D.; Walker, R. J.; McDonough, W. F.
2008-12-01
Tungsten abundances have been measured in a suite of Hawaiian picrites (MgO >13 wt.%) from nine Hawaiian shield volcanoes (Mauna Kea, Mauna Loa, Hualalai, Loihi, Koolau, Kilauea, Kohala, Lanai and Molokai). Tungsten concentrations in the parental melts for these volcanoes have been estimated via the intersection of linear W-MgO trends with the putative MgO content of the parental melt (~16 wt.%). Tungsten behaves as a highly incompatible trace element in mafic to ultramafic systems; thus, given an independent assessment of the degree of partial melting for each volcanic center, the W abundances in their mantle sources can be determined. The mantle sources for Hualalai, Kilauea, Kohala and Loihi have non- uniform estimated W abundances of 11, 13, 16 and 27 ng/g, respectively, giving an average source abundance of 17±5 ng/g. This average source abundance is nearly six times more enriched than Depleted MORB Mantle (DMM: 3.0±2.3 ng/g) and slightly elevated relative to the Bulk Silicate Earth (BSE: 13±10 ng/g). The relatively high abundances of W in the Hawaiian sources relative to the DMM can potentially be explained as a consequence of crustal recycling. For example, incorporation of 30% oceanic crust (30 ng/g W), including 3% sediment (1500 ng/g W), into a DMM source could create the W enrichment observed in the Loihi source, consistent with estimates from earlier models based on other trace elements and isotope systems. The Hualalai source, however, has also been suggested to contain a substantial recycled component, as implied by similarly radiogenic 187Os/188Os, yet this source has the lowest estimated W abundance among the volcanic centers studied. The conflict between these results may: 1) reflect chemical differences among recycled components, 2) indicate a more complex history for Hualalai samples, e.g. involvement of a melt percolation component, or 3) implicate other sources of W.
Redox state of earth's upper mantle from kimberlitic ilmenites
NASA Technical Reports Server (NTRS)
Haggerty, S. E.; Tompkins, L. A.
1983-01-01
Temperatures and oxygen fugacities are reported on discrete ilmenite nodules in kimberlites from West Africa which demonstrate that the source region in the upper mantle is moderately oxidized, consistent with other nodule suites in kimberlites from southern Africa and the United States. A model is presented for a variety of tectonic settings, proposing that the upper mantle is profiled in redox potential, oxidized in the fertile asthenosphere but reduced in the depleted lithosphere.
Petroleum formation during serpentinization: the evidence of trace elements
NASA Astrophysics Data System (ADS)
Szatmari, P.; Fonseca, T. C.; Miekeley, N. F.
2002-05-01
An organic source of petroleum formation is well attested by many biomarkers. This need not, however, exclude contribution from inorganic sources. During serpentinization, in the absence of free oxygen, oxidation of bivalent Fe to magnetite breaks up the water molecule, generating hydrogen and creating one of the most reducing environments near the Earth's surface (Janecky & Seyfried, 1986). Szatmari (1989) proposed that some petroleum forms at plate boundaries by Fischer-Tropsch-type synthesis over serpentinizing peridotites and suggested that Ni, an element rare in the continental crust but important in both petroleum and the mantle, may be indicative of such a source. Recently, Holm and Charlou (2001) observed hydrocarbon formation by Fischer-Tropsch-type synthesis over serpentinizing peridotites of the Mid-Atlantic Ridge. To test whether the relative amounts of other trace elements in petroleum are in agreement with a serpentinizing source, we analyzed by internally coupled plasma-mass spectroscopy (ICP-MS) 22 trace elements in 68 oils sampled in seven sedimentary basins throughout Brazil. We found that trace elements in the oils correlate well with mantle peridotites and reflects the process of hydrothermal serpentinization during continental breakup. Four groups may be distinguished. In serpentinites, trace elements of the first group, Ti, Cr, Mn, and Fe, are largely retained in low-solubility magnetite and other spinels formed during serpentinization or inherited from the original peridotites. In the oils, when normalized to mantle peridotites, these elements are at relatively low levels, about 10,000 times less than their abundances in mantle peridotites, reflecting their low availability from stable minerals. In contrast, trace elements of the second group, which includes V, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Ba, La, Ce, and Nd, pass during serpentinization mostly into serpentine minerals or solution. In the oils, when normalized to mantle peridotites, these elements are at higher levels than those of the first group, about 300 times less than their abundances in mantle peridotites, reflecting their higher availability during serpentinization. Within both groups, trace metal ratios and A/(A+B) type proportionalities in the oils are close to mantle peridotites. V behaves somewhat differently: in lacustrine sequences V contents in the oils are low and the ratios of V to other elements of the second group are mantle-like, whereas in marine sequences V and its ratios to other trace elements rise by orders of magnitude. Trace elements commonly enriched in formation fluids and hydrothermal brines (Rb, Sr, Ba, Cu, Zn), when normalized to mantle peridotites, are enriched in the oils by about 0.5 order of magnitude relative to other elements of the second group. The third group of elements includes S, Mo, and As. These elements occur in the oils at abundances similar to sea water and are, when normalized to mantle peridotites and Ni, enriched in the oils by several orders of magnitude, indicating sea water reacting with peridotites during sepentinization as their possible source. Finally trace elements of the fourth group, such as Pb and Ag, are enriched in the oils by several orders of magnitude relative to both mantle peridotites and sea water and were presumably mobilized from shales by hydrothermal fluids. References:Holm, N.G. and Charlou, J.L., 2001, EPSL 191, 1-8. Janecky, D.R. and Seyfried, W.E., 1986, Geochim. Cosmochim. Acta 50, 1357-1378. Szatmari, P., 1989, AAPG Bull. 73, 989-998.
HIMU-type Mid-Ocean Ridge Basalts Incorporate a Primitive Component
NASA Astrophysics Data System (ADS)
Tucker, J.; Mukhopadhyay, S.; Schilling, J. E.
2011-12-01
Samples from 5°N to 7°S along the MAR axis span a range of compositions from depleted MORB (La/SmN ~0.5, 206Pb/204Pb ~18) to very enriched MORB (La/SmN ~3, 206Pb/204Pb ~20). The measured 206Pb/204Pb in the enriched samples are among the highest measured MORB values and are thought to represent a HIMU type mantle (high μ where μ is the U/Pb ratio). Therefore, the enriched samples provide a unique opportunity to characterize the heavy noble gas composition of the HIMU mantle. If HIMU mantle is related to recycled crust, then the noble gas measurements can also provide insights into recycling of atmospheric noble gases back into the mantle. Additionally, the depleted equatorial samples provide an opportunity to characterize the Ar and Xe composition of the N-MORB source for comparison to the 14°N E-MORB popping rock. Finally, the large variations in lithophile isotopes over a geographically short distance affords the opportunity to study the nature of coupling between the noble gases and lithophile tracers, and understand the origin of the heterogeneities in the MORB source. Stepwise crushing and rare gas analysis (He, Ne, Ar, Xe) was undertaken for both enriched and depleted samples. Many of the crushing steps yielded 20Ne/22Ne > 12, and good correlations between Ne, Ar, and Xe isotopes allow for mantle source compositions of Ar and Xe to be determined by extrapolating the measured values to a mantle 20Ne/22Ne of 12.5. The highest measured values of Ar and Xe in a depleted N-MORB are comparable to measured values of the E-MORB popping rock (40Ar/36Ar ~28,000, 129Xe/130Xe ~7.7). When extrapolated to a mantle 20Ne/22Ne of 12.5, the depleted MORB sample indicates a 40Ar/36Ar of ~43,000 (higher than popping rock) and 129Xe/130Xe of ~7.8. Enriched MORB samples from this suite, thought to represent the HIMU mantle, have the same He and Ne characteristics as HIMU basalts from the Cook and Austral Islands; more radiogenic He than MORBs is accompanied by less nucleogenic Ne than MORBs. Additionally, the enriched MORB samples also constrain the HIMU mantle 40Ar/36Ar to ~20,000 and 129Xe/130Xe ~7.3-7.5, significantly lower than the depleted MORBs. Like the HIMU basalts from the Cook and Austral Islands, a less degassed reservoir than the MORB source must be invoked to explain the He and Ne systematics in the HIMU-type MORBs. If HIMU represents recycled crust, then it must have entrained or been entrained by a less degassed mantle from the deep interior. This less degassed reservoir would also explain the good correspondence between low 21Ne/22Ne, low 40Ar/36Ar and low 129Xe/130Xe in the HIMU-type samples. While we cannot rule out recycling of atmospheric noble gases to explain the low 40Ar/36Ar and 129Xe/130Xe, involvement of a source less degassed in He and Ne would also be accompanied by a less degassed Ar and Xe isotopic signature. Therefore the simplest explanation of the covariation between the noble gases and lithophile isotopes involves a mixture of a less processed and hence more primitive component, a degassed recycled component, and depleted MORB mantle beneath the equatorial Mid-Atlantic Ridge.
Fluorine and chlorine in mantle minerals and the halogen budget of the Earth's mantle
NASA Astrophysics Data System (ADS)
Urann, B. M.; Le Roux, V.; Hammond, K.; Marschall, H. R.; Lee, C.-T. A.; Monteleone, B. D.
2017-07-01
The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth's upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4-31 µg/g F and 0.14-0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1-9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that nearly all MORB may be somewhat contaminated by seawater-rich material and that the Cl content of DMM could be overestimated. With this study, we demonstrate that the halogen contents of natural peridotite minerals are a unique tool to understand the cycling of halogens, from ridge settings to subduction zones.
The role of small-scale convection on the formation of volcanic passive margins
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; Phethean, Jordan
2014-05-01
Volcanic passive margins (VPMs) are areas of continental rifting where the amount of newly formed igneous crust is larger than normal, in some areas up to 30 km. In comparison, magma-poor margins have initial oceanic crustal thicknesses of less than 7 km (Simon et al., 2009; Franke, 2012). The mechanism for the formation of these different types of margins is debated, and proposed mechanisms include: 1) variation in rifting speed (van Wijk et al., 2001), variation in rifting history (Armitage et al., 2010), enhanced melting from mantle plumes (e.g. White and McKenzie, 1989), and enhanced movement of mantle material through the melting zone by sublithospheric small-scale convection (SSC) driven by lithospheric detachments (Simon et al., 2009). Understanding the mechanism is important to constrain the petroleum potential of VPM. In this study, we use a numerical modelling approach to further elaborate the effect of SSC on the rate of crust production during continental rifting. Conceptually, SSC results in patterns of upwelling (and downwelling) mantle material with a typical horizontal wavelength of a 100 to a few 100 km (van Hunen et al., 2005). If occurring shallowly enough, such upwellings lead to decompression melting (Raddick et al., 2002). Subsequent mantle depletion has multiple effects on buoyancy (from both latent heat consumption and compositional changes), which, in turn, can affect mantle dynamics under the MOR, and can potentially enhance SSC and melting further. We use two- and three-dimensional Cartesian flow models to examine the mantle dynamics associated with continental rifting, using a linear viscous rheology (in addition to a semi-brittle stress limiter to localize rifting) in which melting (parameterized using (Katz et al., 2003)) leads to mantle depletion and crust accumulation at the surface. The newly formed crust is advected away with the diverging plates. A parameter sensitivity study of the effects of mantle viscosity, spreading rate, mantle temperature, and a range material parameters have indicated the following results. Decompression melting leads to a colder (from consumption of latent heat of melting) and therefore thermally denser, but compositionally more buoyant residue. The competition between thermal and compositional buoyancy determines the mantle dynamics after rifting initiation. For a mantle viscosity > ~ 1022 Pa s, no SSC occurs, and a uniform 7-8 km-thick oceanic crust forms. For mantle viscosity < ~ 1021 Pa s, SSC might be vigorous and can form passive margins with a crustal thickness > 10-20 km. If thermal density effects dominate, a convection inversion may occur for low mantle viscosities, and mantle downwellings underneath the rift/ridge area can result in a significant upwelling return flow that enhances further decompression melting, and can create VPMs. Such dynamics could also explain the continent-dipping normal faults that are commonly observed at VPMs. After the initial rifting phase, the crustal thickness reduces significantly, but not always to a uniformly thick 7-8 km, as would be appropriate for mature oceanic basins.
Mantle structure: The message from scattered seismic waves (Invited)
NASA Astrophysics Data System (ADS)
Helffrich, G. R.; Kaneshima, S.
2009-12-01
When Francis Birch named the Transition Zone, the deep mantle became a dull place. It was homogeneous material simply becoming denser as pressure increased with depth. No more respect was accorded to it by geochemists than by geophysicists. For geochemists, the deep mantle was simply a dark box in which chemical components were held until needed for delicate flavoring of various sorts of rock cocktails. It deserves more respect. Though it may be dregs, the part of the mantle in contact with the core is rich in seismologically annoying structural detail. This might be written off as an observational quirk due to a mendacious Earth or investigative incompetence, except that more of the lower mantle is grudgingly revealing structure as well. The structural details are fine-scale, at characteristic sizes of around one to one hundred kilometers. The details are emerging from studies of scattered seismic waves. These are unscheduled arrivals in the timetable following an earthquake. They don't arise in a uniform or even a layered Earth. Rather, they originate from the wave field's interactions with sub-wavelength roughness in Earth structure. A lot of data is needed to be sure those arrivals are real and repeatable, but networks of hundreds of seismometers such as the ones in existence in Asia, Europe and North America can provide or have provided the necessary redundancy for confident detection. The results of studies of S-to-P and P-to-P scattering to date show that some lower mantle heterogeneity is associated with present subduction. Some is also found at sites of past subduction, but it is difficult to generalize to all heterogeneity. Scattering strength varies with depth: the shallowest lower mantle is rougher than the deeper parts. The peak scattering strength is around 1600 km deep in the mantle, followed by a slow decline. The roughness clusters, too, with individual groups separated by around 100 km. Individual clusters appear to have particular fabrics that influence their scattering characteristics. Because the km- to 100 km-length scales are present in oceanic plates in their layer thicknesses and plate thickness, these features strongly suggest that the scattered waves emanate from solid material injected into the lower mantle by subduction. They also suggest that the deep mantle is not strongly layered in viscosity or density because scattering strength depth profiles do not change abruptly. A real puzzle is the material identity of the heterogeneity. Seismic wavespeeds must change by more than 5% within a kilometer. Clearly, this is no thermal signal, but compositional differences that extreme in mantle mineralogies require extreme variations in silica or a very broad pressure-dependent phase transition to change properties that significantly. Only about 2% of the lower mantle volume has been explored to date. Much of the mantle away from subduction zones will never be visible. Different methods will be needed to see all of the mantle's structure details, even using scattering.
NASA Astrophysics Data System (ADS)
2017-04-01
Hidden under many kilometres of silicate mantle material, the cores of Earth and other planets are hard to investigate. The Psyche spacecraft, designed to visit a metal body that may be a core stripped of its mantle, could bring a close-up view.
NASA Astrophysics Data System (ADS)
Liu, B.; Liang, Y.
2017-12-01
The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.
NASA Astrophysics Data System (ADS)
Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Zhang, Dongyang; Ke, Shan
2015-04-01
The nephelinite exposed in the Wajilitage area in the northwestern margin of the Tarim large igneous province (TLIP), Xinjiang, NW China display porphyritic textures with clinopyroxene, nepheline and olivine as the major phenocryst phases, together with minor apatite, sodalite and alkali feldspar. The groundmass typically has cryptocrystalline texture and is composed of crystallites of clinopyroxene, nepheline, Fe-Ti oxides, sodalite, apatite, rutile, biotite, amphibole and alkali feldspar. We report rutile SIMS U-Pb age of 268 ± 30 Ma suggesting that the nephelinite may represent the last phase of the TLIP magmatism, which is also confirmed by the field relation. The nephelinite shows depleted Sr-Nd isotopic compositions with age-corrected 87Sr/86Sr and εNd(t) values of 0.70348-0.70371 and + 3.28 to + 3.88 respectively indicating asthenospheric mantle source. Based on the reconstructed primary melt composition, the depth of magma generation is estimated as 115-140 km and the temperatures of mantle melting as 1540-1575 °C. The hotter than normal asthenospheric mantle temperature suggests the involvement of mantle thermal plume. The Mg isotope values display a limited range of δ26Mg from - 0.35 to - 0.55‰, which are lower than the mantle values (- 0.25‰). The Mg isotopic compositions, combined with the Sr-Nd isotopes and major and trace element data suggest that the Wajilitage nephelinite was most likely generated by low-degree partial melting of the hybridized carbonated peridotite/eclogite source, which we correlate with metasomatism by subducted carbonates within the early-middle Paleozoic convergent regime. A plume-lithosphere model is proposed with slight thinning of the lithosphere and variable depth and degree of melting of the carbonated mantle during the plume-lithosphere interaction. This model also accounts for the variation in lithology of the TLIP.
NASA Astrophysics Data System (ADS)
Evangelidis, C. P.
2017-12-01
The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve a more definite image of the structure and geodynamics of this area.
Circumventing shallow air contamination in Mid Ocean Ridge Basalts
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles
2016-04-01
Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step-crushes in the aliquot left exposed to air display significantly more scatter, which makes it difficult to fit a two-component mixing hyperbola and obtain the mantle source value for this aliquot. In summary, our simple and inexpensive experiment demonstrates that at least in some samples, significant air contamination is added after dredge retrieval from the ocean floor. Bottling samples in ultrapure N2 upon dredge retrieval can largely eliminate this component of shallow-level air contamination. As a result, the number of step crushes required to characterize a sample decreases and estimating the mantle source compositions of the basalts becomes significantly easier, which in turn leads to more refined estimates of mantle degassing and regassing rates.
NASA Technical Reports Server (NTRS)
Arndt, Nicholas T.; Goldstein, Steven L.
1988-01-01
A mechanism is presented for recycling of lower continental material back into the mantle. Picritic magmas, possible parental to volumious continental volcanics such as the Karoo and Deccan, became trapped at the Moho, where they interacted with and become contaminated by lower crustal materials. Upon crystallization, the magmas differentiated into lower ultramafic cumulate zones and upper gabbroic-anorthositic zones. The ultramafic cumulates are denser than underlying mantle and sink, carrying lower crustal components as trapped liquid, as xenoliths or rafts, and as constituents of cumulate minerals. This model provides a potentially significant crust-mantle differentiation mechanism, and may also represent a contributing factor in crustal recycling, possibly important in producing some OIB reservoirs.
NASA Astrophysics Data System (ADS)
McSween, H. Y., Jr.; McLennan, S. M.
Of all the planets, Mars is the most Earthlike, inviting geochemical comparisons. Geochemical data for Mars are derived from spacecraft remote sensing, surface measurements and Martian meteorites. These analyses of exposed crustal materials enable estimates of bulk planet composition and inferences about its iron-rich mantle and core, as well as constraints on planetary differentiation and crust-mantle evolution. Mars probably had an early magma ocean, but there is no evidence for plate tectonics or crustal recycling any time in its history. The crust is basaltic in composition and lithologically heterogeneous, with radiometric crystallization ages ranging from ~4 billion years to within the last several hundred million years. Mantle sources for magmas vary considerably in incompatible element abundances. Although Mars is volatile element-rich, estimations of the amount of water delivered to the surface by volcanism are controversial. Low-temperature aqueous alteration affected the ancient Martian surface, producing clay minerals, sulfates, and other secondary minerals. Weathering and diagenetic trends are distinct from terrestrial chemical alteration, indicating different aqueous conditions. Organic matter has been found in Martian meteorites, but no geochemical signal of life has yet been discovered. Dynamic geochemical cycles for some volatile elements are revealed by stable isotope measurements. Long-term secular changes in chemical and mineralogical compositions of igneous rocks and sediments have been documented but are not well understood.
Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.
2008-01-01
There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.
Upper mantle anisotropy from long-period P polarization
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, Vera; Masters, Guy; Shearer, Peter M.
2001-10-01
We introduce a method to infer upper mantle azimuthal anisotropy from the polarization, i.e., the direction of particle motion, of teleseismic long-period P onsets. The horizontal polarization of the initial P particle motion can deviate by >10° from the great circle azimuth from station to source despite a high degree of linearity of motion. Recent global isotropic three-dimensional mantle models predict effects that are an order of magnitude smaller than our observations. Stations within regional distances of each other show consistent azimuthal deviation patterns, while the deviations seem to be independent of source depth and near-source structure. We demonstrate that despite this receiver-side spatial coherence, our polarization data cannot be fit by a large-scale joint inversion for whole mantle structure. However, they can be reproduced by azimuthal anisotropy in the upper mantle and crust. Modeling with an anisotropic reflectivity code provides bounds on the magnitude and depth range of the anisotropy manifested in our data. Our method senses anisotropy within one wavelength (250 km) under the receiver. We compare our inferred fast directions of anisotropy to those obtained from Pn travel times and SKS splitting. The results of the comparison are consistent with azimuthal anisotropy situated in the uppermost mantle, with SKS results deviating from Pn and Ppol in some regions with probable additional deeper anisotropy. Generally, our fast directions are consistent with anisotropic alignment due to lithospheric deformation in tectonically active regions and to absolute plate motion in shield areas. Our data provide valuable additional constraints in regions where discrepancies between results from different methods exist since the effect we observe is local rather than cumulative as in the case of travel time anisotropy and shear wave splitting. Additionally, our measurements allow us to identify stations with incorrectly oriented horizontal components.
NASA Astrophysics Data System (ADS)
Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya
2013-04-01
Emplacement (130-115 m.y. ago) of dikes and sills of alkaline-ultrabasic composition within Jetty oasis (East Antarctica) is suggested as a later appearance of plume magmatism within the East-Antarctic Shield [Andronikov et al., 1993, 2001; Laiba et al., 1987]. This region is located opposite Kerguelen Islands and possibly could be properly connected with activity of the Kerguelen-plume [Foley et al., 2001, 2006]. Jurassic-Cretaceous dykes, stocks and sills of alkaline-ultrabasic rocks, relatively close to kimberlite-type, are exposed within Jetty oasis and on the southern shore of the Raddock Lake. This alkaline-ultrabasic magmatism has appeared to be connected with the main Mesozoic stage of the evolution of the Lambert and Amery glaciers riftogenic structure [Kurinin et al., 1980, 1988]. The alkaline-ultrabasic dikes and sills within Jetty oasis cut the rocks of the Beaver complex, Permo-Triassic terrigeneous successions of the Amery complex, and late Paleozoic low-alkaline basic dikes as well. Dashed chain of 6 stock bodies spread out on 15 km along the eastern shore of the Beaver Lake, marked their allocation with submeridianal zone of the deep cracks, boarded of the eastern side of the Beaver Lake trough. At the same time, new data upon Quaternary magmatism of the mountain Gaussberg has confirmed the unique features of ultra-potassium alkaline magmatism (up to 14-17% K2O) formed under exclusively continental conditions [Murphy et al., 2002]. Volcanic cone is located at the continuation of Gaussberg rift zone which is possibly a part of Lambert fracture zone. Its formation is connected with the early stages of Gondwana development, perhaps, reactivated in different Precambrian events and according to numerous data is a single rift zone which is traced Indian inland (Indrani graben, [Golynsky, 2011]). The time of lamproitic magmas eruption is estimated at 56000±5000 yeas ago [Tingey et al., 1983]. Earlier it had been shown the Mesozoic (about 170 Ma) basaltic dykes of the Schirmacher Oasis and basalts and dolerites of the Queen Maud Land (180 Ma) are identical in petrology and geochemistry terms and supposedly could be interpreted as the manifestation of the Karoo-Maud plume activity in Antarctica [Sushchevskaya et al., 2012]. The spatial distribution of the dikes indicates the eastward spreading of the plume material from DML to the Schirmacher Oasis within at least 10 Ma (up to ~35 Ma, taking into account the uncertainty of age determination). On the other hand, the considerable duration and multistage character of plume magmatism related to the activity of the Karoo-Maud plume in Antarctica and Africa [Leat et al., 2007; Luttinen et al., 2002] may indicate that the Mesozoic dikes of the oasis correspond to a single stage of plume magmatism. On the basis of obtained isotopic data it has been determined two magmatic melt evolution trends for basalts from: Queen Maud Land - Kerguelen Archipelago - Afanasy Nikitin Rise (Indian Ocean) and Jetty - Schirmacher oasises which mantle sources are quite different. Thus the Jetty - Schirmacher oasises magmatic melt sources are characterized by prevalence of the matter of moderately enriched or primitive chondritic mantle source and lithospheric mantle of Proterozoic ages but the substances of depleted mantle source similar to MORB-type and ancient mantle are absent. New data obtained on Nd, Sr, Pb isotopic and lithophile elements compositions of the alkaline-ultrabasic rocks from the Jetty oasis and Gaussberg volcano completed imagine of the Kerguelen-plume evolution. It has been confirmed unique character of the alkaline lamproiites of the Gaussberg volcano enrichments. Highly radiogenic Sr and Pb isotope ratios of these lamproiites reflect melting of the ancient sublithospheric depleted mantle which was stored from the Archean till nowadays unaffected by metasomatic-enrichment processes. During modern melting of this mantle part there is input of additional substances (crustal fluid of sediment origins, subducted sediments etc.) with high Rb/Sr ratio.
NASA Astrophysics Data System (ADS)
Hofstra, A. H.; Manning, A. H.
2013-12-01
Goldfield is the largest high sulfidation epithermal gold mining district in the United States with over 130 t of gold production and 23 sq. km. of argillic alteration (with alunite, pyrophyllite, or kaolinite). It formed at 20.0×0.5 Ma in an andesite to rhyolite volcanic field in the ancestral Cascades continental magmatic arc. Previous stable isotope studies of quartz, alunite, and sulfide minerals suggest that the gold ores formed in a magmatic vapor plume derived from a subjacent porphyry intrusion, which displaced and mixed with meteoric groundwater at shallow levels. The isotopic compositions of He, Ne, and Ar trapped in fluid inclusions in hydrothermal minerals (Cu-sulfides and sulfosalts, pyrite, quartz) were measured to further constrain volatile source and migration processes. Gases were released by thermal decrepitation at 300°C and analyzed using a high resolution static sector mass spectrometer. The isotopic compositions of Ne and Ar are typical of air-saturated water (ASW), indicating that the samples contain little nucleogenic Ne or radiogenic Ar derived from underlying old crustal sources. In contrast, He/Ne and He/Ar ratios are much greater than ASW, indicating that a component of He was produced in the subsurface. The wide range of He R/Ra values, 0.4 to 20, suggests that He was derived from both crustal and mantle sources. 4He/40Ar* and 4He/21Ne* systematics are characteristic of magma degassing. The highest R/Ra values (15-20) are well above those previously reported for modern volcanic rocks and geothermal fluids in subduction-related arcs. Such R/Ra values indicate a primitive mantle source, perhaps below the subducting slab. We hypothesize that the discharge of metal-laden fluids from the subjacent porphyry intrusion was influenced by the input of hot volatiles from mafic mantle-derived magmas. This scenario implies a magma column that remained open to the flux of volatiles over a considerable depth range, from the mantle to the shallow crust. This exceptional volatile plumbing system may be an important ingredient in the formation of large, high sulfidation gold deposits. The ascent of mantle-sourced volatiles may be related to the coeval transition from transpression to transtension within the western North American plate caused by microplate capture along the San Andreas transform.
Elemental composition of the Martian crust.
McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B
2009-05-08
The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.
Magnetic properties of the upper mantle beneath the continental United States
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Ferre, E. C.; Demory, F.; Rochette, P.; Martin Hernandez, F.; Conder, J. A.
2012-12-01
The interpretation of long wavelength satellite magnetic data (Magsat, Oersted, CHAMP, SWARM) requires an understanding of magnetic mineralogy in the lithospheric mantle and reliable models of induced and remanent magnetic sources in the lithospheric mantle and the crust. Blakely et al. (2005) proposed the hypothesis of a magnetic lithospheric mantle in subduction zones. This prompted us to reexamine magnetic sources in the lithospheric mantle in different tectonic settings where unaltered mantle xenolith have been reported since the 1990s. Xenoliths from the upper mantle beneath the continental United States show different magnetic properties depending on the tectonic setting in which they equilibrated. Three localities in the South Central United States (San Carlos, AZ; Kilbourne Hole, NM; Knippa, TX) produced lherzolite and harzburgite xenoliths, while the Bearpaw Mountains in Montana (subduction zone) produced dunite and phlogopite-rich dunite xenoliths. Paleomagnetic data on these samples shows the lack of secondary alteration which is commonly caused by post-eruption serpentinization and the lack of basalt contamination. The main magnetic carrier is pure magnetite. The ascent of mantle xenoliths to the surface of the Earth generally takes only a few hours. Numerical modelling shows that nucleation of magnetite during ascent would form superparamagnetic grains and therefore cannot explain the observed magnetic grain sizes. This implies that the ferromagnetic phases present in the studied samples formed at mantle depth. The samples from the South Central United States exhibit a small range in low-field magnetic susceptibility (+/- 0.00003 [SI]), and Natural Remanent Magnetization (NRM) between 0.001 - 0.100 A/m. To the contrary samples from the Bearpaw Mountains exhibit a wider range of low-field susceptibilities (0.00001 to 0.0015 [SI]) and NRM (0.01 and 9.00 A/m). These samples have been serpentinized in-situ by metasomatic fluids related to the Farallon plate (Facer et al., 2009). Hence, the magnetic properties of the lithospheric mantle beneath the continental United States differ significantly depending on tectonic setting. The combination of the low geotherm observed in the Bearpaw Mountains with the stronger induced and remanent magnetization of mantle rocks in this area may produce a detectable LWMA.
Mantle helium in ground waters of eastern North America: Time and space constraints on sources
Torgersen, T.; Drenkard, S.; Stute, M.; Schlosser, P.; Shapiro, A.
1995-01-01
Mantle helium in continental environments is generally considered to be the result of active volcanism and/or active extension. The latest episodes of volcanism in northeastern North America are the track of the New England hotspot (95–190 Ma) and the closure of the Iapetus sea (before 300 Ma). Thus, the identification of mantle helium in young ground waters of central New England is counter to the conventional wisdom. On the basis of evaluation of helium evolution in emplaced magmas, we postulate an “aged” mantle source for the excess helium component in ground waters of central New England that is either (1) a local, near-surface–emplaced, gas-rich magma that has retained significant volatiles (e.g., in fluid inclusions) or (2) a deeply emplaced gas-rich magma with high initial 2He/4He (10−5) and helium transport (with dispersion) through the crust over time. This gas-rich initial condition may support the concept of a volatile-enriched mantle wedge and thus explain the increased buoyancy flux of the New England hotspot as it traversed eastern North America, as has been suggested by others.
Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle
NASA Astrophysics Data System (ADS)
Trampert, Jeannot; Vacher, Pierre; Vlaar, Nico
2001-08-01
We calculated temperature, pressure and compositional sensitivities of seismic velocities in the lower mantle using latest mineral physics data. The compositional variable refers to the volume proportion of perovskite in a simplified perovskite-magnesiowüstite mantle assemblage. The novelty of our approach is the exploration of a reasonable range of input parameters which enter the lower mantle extrapolations. This leads to realistic error bars on the sensitivities. Temperature variations can be inferred throughout the lower mantle within a good degree of precision. Contrary to the uppermost mantle, modest compositional changes in the lower mantle can be detected by seismic tomography, with a larger uncertainty though. A likely trade-off between temperature and composition will be largely determined by uncertainties in tomography itself. Given current sources of uncertainties on recent data, anelastic contributions to the temperature sensitivities (calculated using Karato's approach) appear less significant than previously thought. Recent seismological determinations of the ratio of relative S to P velocity heterogeneity can be entirely explain by thermal effects, although isolated spots beneath Africa and the Central Pacific in the lowermost mantle may ask for a compositional origin.
Pb isotope constaints on the extent of crustal recycling into a steady state mantle
NASA Technical Reports Server (NTRS)
Galer, S. J. G.; Goldstein, S. L.; Onions, R. K.
1988-01-01
Isotopic and geochemical evidence was discussed against recycling of continental crust into the mantle. Element ratios such as Sm/Nd, Th/Sc, and U/Pb in sedimentary masses have remained relatively constant throughout Earth history, and this can only be reconciled with steady state recycling models if new crustal materials added from the mantle have had similar ratios. Such recycling models would also require shorter processing times for U, Th, and Pb through the mantle than are geodynamically reasonable. Models favoring subduction of pelagic sediments as the only recycling mechanism fail to account for the Pb isotopic signature of the mantle. Recycling of bulk crust with Pb isotopic compositions similar to those expected for primitive mantle would be permissable with available data, but there appear to be no plausible tectonic mechanisms to carry this out.
On the instability and energy flux of lower hybrid waves in the Venus plasma mantle
NASA Technical Reports Server (NTRS)
Strangeway, R. J.; Crawford, G. K.
1993-01-01
Waves generated near the lower hybrid resonance frequency by the modified two stream instability have been invoked as a possible source of energy flux into the topside ionosphere of Venus. These waves are observed above the ionopause in a region known as the plasma mantle. The plasma within the mantle appears to be a mixture of magnetosheath and ionospheric plasmas. Since the magnetosheath electrons and ions have temperatures of several tens of eV, any instability analysis of the modified two stream instability requires the inclusion of finite electron and ion temperatures. Finite temperature effects are likely to reduce the growth rate of the instability. Furthermore, the lower hybrid waves are only quasi-electrostatic, and the energy flux of the waves is mainly carried by parallel Poynting flux. The magnetic field in the mantle is draped over the ionopause. Lower hybrid waves therefore cannot transport any significant wave energy to lower altitudes, and so do not act as a source of additional heat to the topside ionosphere.
NASA Astrophysics Data System (ADS)
Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun
2016-03-01
Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.
Osmium isotope and highly siderophile element systematics of the lunar crust
NASA Astrophysics Data System (ADS)
Day, James M. D.; Walker, Richard J.; James, Odette B.; Puchtel, Igor S.
2010-01-01
Coupled 187Os/ 188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g - 1 Os, 1.5 ± 0.6 pg g - 1 Ir, 6.8 ± 2.7 pg g - 1 Ru, 16 ± 15 pg g - 1 Pt, 33 ± 30 pg g - 1 Pd and 0.29 ± 0.10 pg g - 1 Re (˜ 0.00002 × CI) and Re/Os ratios that were modestly elevated ( 187Re/ 188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (˜ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios ( D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.
Osmium isotope and highly siderophile element systematics of the lunar crust
Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.
2010-01-01
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion. ?? 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, W. R.; Shirey, S. B.; Graham, D. W.
2011-12-01
The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore, although the flood basalts and lithospheric mantle bear some isotopic similarities, the basalts were not derived from this portion of the lithospheric mantle, nor are the peridotites crystalline cumulates derived from asthenosphere -derived magmas. The isotopic variations in these peridotites demonstrate that the Afro-Arabian lithosphere contains anciently depleted mantle, created during or prior to the late Proterozoic Pan-African orogeny.
NASA Astrophysics Data System (ADS)
Yoshida, Masaki
2014-05-01
Previous numerical studies of mantle convection focusing on subduction dynamics have indicated that the viscosity contrast between the subducting plate and the surrounding mantle have a primary effect on the behavior of subducting plates. The seismically observed plate stagnation at the base of the mantle transition zone (MTZ) under the Western Pacific and Eastern Eurasia is considered to mainly result from a viscosity increase at the ringwoodite to perovskite + magnesiowüstite (Rw→Pv+Mw) phase decomposition boundary, i.e., the boundary between the upper and lower mantle. The harzburgite layer, which is sandwiched between basaltic crust and depleted peridotite (lherzolite) layers, is a key component of highly viscous, cold oceanic plates. However, the possible sensitivity of the effective viscosity of harzburgite layers in the morphology of subducting plates that are flattened in the MTZ and/or penetrated in the lower mantle has not been examined systematically in previous three-dimensional (3D) numerical modeling studies that consider the viscosity increase at the boundary between the upper and lower mantle. In this study, in order to investigate the role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, I performed a series of numerical simulations of mantle convection with semi-dynamic plate subduction in 3D regional spherical-shell geometry. The results show that a buckled crustal layer is observed under the "heel" of the stagnant slab that begins to penetrate into the lower mantle, regardless of the magnitude of the viscosity contrast between the harzburgite layer and the underlying mantle, when the factor of viscosity increase at the boundary of the upper and lower mantle is larger than 60-100. As the viscosity contrast between the harzburgite layer and the underlying mantle increases, the curvature of buckling is larger. When the viscosity increase at the boundary of the upper and lower mantle and the viscosity contrast between the harzburgite layer and the underlying mantle are larger, the volumes of crustal and harzburgite materials trapped in the mantle transition zone (MTZ) are also larger, although almost all of the materials penetrate into the lower mantle. These materials are trapped in the MTZ for over tens of millions of years. The bending of crustal layers numerically observed in the present study is consistent with seismological evidence that there is a piece of subducted oceanic crust in the uppermost lower mantle beneath the subducting slab under the Mariana trench [Niu et al., 2003, JGR]. The results of the present study suggest that when the viscosity increase at the boundary of the upper and lower mantle is larger than 60-100, a seismically observed stagnant slab is reproduced. This result is consistent with the previous independent geodynamic studies. For instance, a 2D geodynamic model with lateral viscosity variations suggested that it would need to be substantially greater than 30, say, around 100, to explain the positive geoid anomaly in the subduction zones where the subducting slab reaches the boundary between the upper and lower mantle such as that of the western Pacific [Tosi et al., 2009, GJI]. References: [1] Tajima, F. Yoshida, M. and Ohtani, E., Conjecture with water and rheological control for subducting slab in the mantle transition zone, Geoscience Frontiers, doi:10.1016/j.gsf.2013.12.005, 2014. [2] Yoshida, M. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, Geophys. Res. Lett., 40(20), 5387-5392, doi:10.1002/2013GL057578, 2013. [3] Yoshida, M. and Tajima, F., On the possibility of a folded crustal layer stored in the hydrous mantle transition zone, Phys. Earth Planet. Inter., 219, 34-48, doi:10.1016/j.pepi.2013.03.004, 2013.
Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamic implications
NASA Astrophysics Data System (ADS)
Meshesha, Daniel; Shinjo, Ryuichi
2008-09-01
We discuss the spatial and temporal variation in the geochemistry of mantle sources which were sampled by the Eocene to Quaternary mafic magmas in the vicinity of the Afar and Kenya plume upwelling zones, East Africa. Despite the contributions of lithospheric and crustal sources, carefully screened Eocene to Quaternary mafic lavas display wide range of Sr-Nd-Pb isotopic and incompatible trace elemental compositions that can be attributed to significant intraplume heterogeneity. The geochemical variations reflect the involvement of at least four mantle plume components as sources for the northeastern Africa magmatism: (1) isotopically depleted but trace element-enriched component; (2) component characterized by radiogenic Pb isotope signatures (HIMU?); (3) enriched mantle-like component; and (4) high-3He/4He-type (as HT2-type basalts) plume component. The first component disappears in the Miocene-Quaternary magmatism, and the second component is hardly recognized after the eruption of Miocene basalt in southern Ethiopia. Plume-unrelated depleted asthenosphere starts to involve at a nascent stage of seafloor spreading centers in the Red Sea and Gulf of Aden. The other two-plume components have persisted from the late Eocene to present, but their proportions have changed through time and space. We propose a model of multiple impingements of plumelets within the broad upwelling zone connected to the African Superplume in the lower mantle beneath southern Africa. The plumelet contains a matrix of high-3He/4He-type component with blobs, streaks, or ribbons of other components.
NASA Astrophysics Data System (ADS)
Soager, N.; Holm, P. M.; Llambias, E.
2010-12-01
The lavas sampled around Río Colorado ~37°S at the border of Mendoza and Neuquén provinces, Argentina, define an OIB-like end-member composition for the Pleistocene and Holocene activity in the Payún Matrú volcanic field. Although positioned in the far back-arc of the Andes, only a few lavas show signs of involvement of slab fluids or crustal contamination such as relatively high LILEs relative to Nb. The very low La/Nb (~0.66) and Zr/Nb (~5) and high U/Pb (0.3-0.4) of the end-member composition clearly distinguish the source from normal MORB mantle, while high Ba/Nb (~10) and K/Nb (370-400) compared to FOZO and HIMU type OIBs suggest an EM type of mantle. Overall, the trace element patterns of the Río Colorado lavas are similar to the central and north Patagonian intraplate basalts and to South Atlantic E-MORB affected by the Discovery plume and the LOMU component (le Roux et al., 2002, EPSL 203). The isotopic composition of the Río Colorado component has a 206Pb/204Pb = 18.4, 207Pb/204Pb = 15.58, 208Pb/204Pb = 38.3, 87Sr/86Sr = 0.70353 and 143Nd/144Nd = 0.51285. This composition overlaps the central and north Patagonian intraplate basalts in Pb-isotopic space but is slightly less enriched in Sr and Nd-isotopes. It is distinctly different from the FOZO like composition of the south Patagonian intraplate basalts and the nearby Juan Fernandéz plume but similar to the South Atlantic N-MORB and MORB from the southern Chile Ridge segment 4 (Sturm et al., 1999, JGR 104) described as DUPAL type. The DUPAL-MORB type isotopic composition and the plume-like trace element patterns of the Río Colorado lavas suggest the presence of a weak plume beneath the area. The eruption of the large Payún Matrú volcano and the gigantic Pleistocene flood basalts also calls for a thermal anomaly to produce these melts during a weakly compressive tectonic regime with no significant addition of slab fluids. This was supported by Burd et al. (2008, Abstr., 7th Int. Sym. And. Geo.) who recognized a plume-like conductive structure beneath Payún Matrú volcano on an electrical resistivity profile across the Payún Matrú volcanic field. The many Argentine and Chile Ridge EM1 basalts form part of the global DUPAL-anomaly (Hart, 1984, Nature 309) which suggests a common mode of formation of the enriched mantle sources; most likely anciently subducted components in the underlying upper mantle, either in a larger reservoir or as dispersed bodies of material. From there they can rise as small plumes or be entrained in a convecting MORB source mantle.
Necroplanetology: Disrupted Planetary Material Transiting WD 1145+017
NASA Astrophysics Data System (ADS)
Manideep Duvvuri, Girish; Redfield, Seth; Veras, Dimitri
2018-06-01
The WD 1145+017 system shows irregular transit features that are consistent with the tidal disruption of differentiated asteroids with bulk densities < 4 g cm-3 and bulk masses < 1021 kg. We use the open-source N-body code REBOUND to simulate this disruption with different internal structures: varying the core volume fraction, mantle/core density ratio, and the presence/absence of a thin low-density crust. We show that these parameters have observationally distinguishable effects on the transit light curve as the asteroid is disrupted and fit the simulation-generated lightcurves to data. We find that an asteroid with a low core fraction, low mantle/density ratio, and without a crust is most consistent with the A1 feature present for multiple weeks circa April 2017. This combination of observations and simulations to study the interior structure and chemistry of exoplanetary bodies via their destruction in action is an early example of necroplanetology, a field that will hopefully grow with the discovery of other systems like WD 1145+017.
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Iwamori, Hikaru
2017-10-01
We investigate the cycling of water (regassing, dehydration, and degassing) in mantle convection simulations as a function of the strength of the oceanic lithosphere and its influence on the evolution of mantle water content. We also consider pseudo-plastic yielding with a friction coefficient for simulating brittle behavior of the plates and the water-weakening effect of mantle materials. This model can generate long-term plate-like behavior as a consequence of the water-weakening effect of mantle minerals. This finding indicates that water cycling plays an essential role in generating tectonic plates. In vigorous plate motion, the mantle water content rapidly increases by up to approximately 4-5 ocean masses, which we define as the "burst" effect. A burst is related to the mantle temperature and water solubility in the mantle transition zone. When the mantle is efficiently cooled down, the mantle transition zone can store water transported by the subducted slabs that can pass through the "choke point" of water solubility. The onset of the burst effect is strongly dependent on the friction coefficient. The burst effect of the mantle water content could have significantly influenced the evolution of the surface water if the burst started early, in which case the Earth's surface cannot preserve the surface water over the age of the Earth.
NASA Astrophysics Data System (ADS)
Holm, Paul M.; Søager, Nina; Alfastsen, Mads; Bertotto, Gustavo W.
2016-10-01
We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar-39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba-Th-Sm variation we demonstrate that fluids as well as 1-2% melts of upper continental crust (UCC) enriched their mantle sources, and La-Nb-Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc rocks. The fluid-borne enrichment seems to have been derived from South Atlantic wedge mantle with no significant transfer of solubles in the slab fluids from the subducting altered Pacific oceanic crust to the wedge. The Northern Segment magmatism is proposed to be related to the steepening of Nazca plate subduction in the Pleistocene after a shallow slab period, where melts of subducted UCC plus slab fluids metasomatized the overlying depleted wedge mantle. During this steepening, the enriched depleted and undepleted mantle mixed or interacted, and yielded the Northern Segment and Nevado magmas.
A Heated Debate: Evidence for Two Thermal Upwellings in East Africa
NASA Astrophysics Data System (ADS)
Rooney, T.; Herzberg, C.; Bastow, I.
2008-12-01
East African Cenozoic magmatism records the thermal influence of one or more long-lived mantle plumes. We present primary magma compositions, mantle potential temperatures (Tp), and mantle melt fractions using PRIMELT2 in order to examine the geographic and historical distribution of upper mantle thermal anomalies in East Africa. Regional magmatism can be divided into an early flood basalt phase in Ethiopia/Yemen (~30 Ma), a longer-lived episode of basaltic magmatism in Kenya and Southern Ethiopia (~45 to 23 Ma), and a more recent phase (~23 Ma to Present) that is coincidental with the development of the East African Rift (EAR). We have carefully selected a total of 54 samples from these time periods, excluding erroneous results derived from lavas with evidence of clinopyroxene fractionation or volatile rich and pyroxenitic sources. Our results show that elevated Tp in the Ethiopian/Yemen flood basalt province (Tp max =1520°C) and in the early Kenya/S. Ethiopia magmatism (Tp max = 1510°C) are virtually identical. Our results indicate that the existing geochemical division between high and low Ti Ethiopia/Yemen flood basalts has a thermal basis: low-Ti lavas are hotter than the high-Ti lavas. Magmatism in the region subsequent to 23 Ma exhibits only minor cooling (Tp max = 1490°C), though more substantial cooling is observed in Turkana, Kenya (60°C) and Yemen (80°C). Rift lavas from Ethiopia exhibit a clear decrease in Tp away from Afar southwestward along the EAR before progressively rising again in Southern Ethiopia towards Turkana. South of Turkana, elevated Tp is observed in the western and eastern branches of the EAR surrounding the Tanzania Craton. The modern spatial distribution of Tp in EAR magmatism indicate two distinct heat sources, one in Afar and another under the Tanzania craton. We suggest that hot mantle plume material from Afar and Turkana (which may or may not merge at depth) is channeled beneath the thinned rift lithosphere and provides a significant thermal input to EAR magmatism resulting in elevated Tp, even in magmas clearly derived from the lithosphere. Our results add to the debate generated by numerous global-scale tomographic inversions that presently do not show consensus as to the number and location of low-velocity upwellings beneath East Africa.
Fossil plume head beneath the Arabian lithosphere?
NASA Astrophysics Data System (ADS)
Stein, Mordechai; Hofmann, Albrecht W.
1992-12-01
Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are temporarily trapped at the base of the lithosphere, may explain why the uppermost mantle normally appears enriched when it is sampled by continental rift zones but depleted when it is sampled by MORB.
The record of mantle heterogeneity preserved in Earth's oceanic crust
NASA Astrophysics Data System (ADS)
Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.
2017-12-01
Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.
The role of mantle CO2 in volcanism
Barnes, I.; Evans, William C.; White, L.D.
1988-01-01
Carbon dioxide is the propellant gas in volcanic eruptions and is also found in mantle xenoliths. It is speculated that CO2 occurs as a free gas phase in the mantle because there is no reason to expect CO2 to be so universally associated with volcanic rocks unless the CO2 comes from the same source as the volcanic rocks and their xenoliths. If correct, the presence of a free gas in the mantle would lead to physical instability, with excess gas pressure providing the cause of both buoyancy of volcanic melts and seismicity in volcanic regions. Convection in the mantle and episodic volcanic eruptions are likely necessary consequences. This suggestion has considerable implications for those responsible for providing warnings of impending disasters resulting from volcanic eruptions and earthquakes in volcanic regions. ?? 1988.
NASA Astrophysics Data System (ADS)
Gangopadhyay, Amitava; Sproule, Rebecca A.; Walker, Richard J.; Lesher, C. Michael
2005-11-01
Osmium isotopic compositions, and Re and Os concentrations have been examined in one komatiite unit and two komatiitic basalt units at Dundonald Beach, part of the 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re may have been lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after emplacement. Second, the Re-Os isotope systematics of whole rock samples with 187Re/ 188Os ratios >1 were reset at ˜2.5 Ga, possibly due to a regional metamorphic event. Third, there is evidence for relatively recent gain and loss of Re in some rocks. Despite the open-system behavior, some aspects of the Re-Os systematics of these rocks can be deciphered. The bulk distribution coefficient for Os (D Ossolid/liquid) for the Dundonald rocks is ˜3 ± 1 and is well within the estimated D values obtained for komatiites from the nearby Alexo area and stratigraphically-equivalent komatiites from Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magmas parental to the Kidd-Munro komatiitic rocks. Whole-rock samples and chromite separates with low 187Re/ 188Os ratios (<1) yield a precise chondritic average initial 187Os/ 188Os ratio of 0.1083 ± 0.0006 (γ Os = 0.0 ± 0.6) for their well-constrained ˜2715 Ma crystallization age. The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township, suggesting that the mantle source region for the Kidd-Munro volcanic assemblage had evolved with a long-term chondritic Re/Os before eruption. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for ca. 89 Ma komatiites from the Gorgona Island, arc-related rocks and present-day ocean island basalts. This suggests that the Kidd-Munro komatiites sampled a late-Archean mantle source region that was significantly more homogeneous with respect to Re/Os relative to most modern mantle-derived rocks.
NASA Astrophysics Data System (ADS)
Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D. W.; Kerr, A. C.
2000-01-01
Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ˜3×10 6 km 2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96±0.16, n=64 out of 79 samples, 2σ) and initial Nd-Pb isotopic compositions (e.g. 143Nd/ 144Nd in=0.51291±3, ɛNdi=7.3±0.6, 206Pb/ 204Pb in=18.86±0.12, n=54 out of 66, 2σ). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/ 4He in olivines of enriched picrites at Quepos are ˜12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been ≤500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.
NASA Astrophysics Data System (ADS)
García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire
2014-12-01
We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.
Evidence for debris flow gully formation initiated by shallow subsurface water on Mars
Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.
2010-01-01
The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2015-12-01
Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [2,3]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Hauri et al. 1996, Nature 382, 415-419. [2] Dixon et al. 2002, Nature 420:385-89 [3] Workman et al. 2006, EPSL 241:932-51.
Trench-parallel flow beneath the nazca plate from seismic anisotropy.
Russo, R M; Silver, P G
1994-02-25
Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.
Crustal formation and recycling in an oceanic environment in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2003-04-01
Several lines of evidence indicate higher mantle temperatures (by some hundreds of degrees) during the early history of the Earth. Due to the strong effect of temperature on viscosity as well as on the degree of melting, this enforces a geodynamic regime which is different from the present plate tectonics, and in which smaller scale processes play a more important role. Upwelling of a hotter mantle produces a thicker oceanic crust, of which the lower part may reside in the eclogite stability field. This facilitates delamination, making room for fresh mantle material which may partly melt and add new material to the crust (Vlaar et al., 1994). We present results of numerical thermo-chemical convection models including a simple approximate melt segregation mechanism in which we investigate this alternative geodynamic regime, and its effect on the cooling history and chemical evolution of the mantle. Our results show that the mechanism is capable of working on two scales. On a small scale, involving the lower boundary of the crust, delaminations and downward transport of eclogite into the upper mantle takes place. On a larger scale, involving the entire crustal column, (parts of) the crust may episodically sink into the mantle and be replaced by a fresh crust. Both are capable of significantly and rapidly cooling a hot upper mantle by driving partial melting and thus the generation of new crust. After some hundreds of millions of years, as the temperature drops, the mechanism shuts itself off, and the cooling rate significantly decreases. Vlaar, N.J., P.E. van Keken and A.P. van den Berg (1994), Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle, Earth and Planetary Science Letters, vol 121, pp. 1-18
Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses
NASA Technical Reports Server (NTRS)
Shih, C.-Y.; Nyquist, L. E.; Reese, Y.
2012-01-01
Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.
Partial separation of halogens during the subduction of oceanic crust
NASA Astrophysics Data System (ADS)
Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.
2014-05-01
Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep into the mantle through subduction of oceanic crust, possibly via marine pore fluids (Sumino et al. 2010). The OIB source region is, however, significantly enriched in fluorine relative to the primitive mantle by a factor of 1.4-3.6, which indicates that significantly larger amounts of fluorine are transported deep into the Earth's mantle through subduction. An explanation for the partial separation of chlorine and fluorine during subduction is that the heavy halogens are more likely to escape from the subducting slab in hydrous fluids at an early subduction stage whereas significant amounts of fluorine are likely to remain in the slab, possibly incorporated in the lattice of hydrous amphibole or mica, or in anhydrous high-pressure phases of eclogite. The MORB source mantle is degassed in fluorine (17-88%) and chlorine (22-99%) relative to primitive mantle estimates. Preliminary data suggest that the bromine partitioning behaviour between forsterite and melt is roughly comparable to the behaviour of fluorine and chlorine. If true, this would imply that the Earth's upper mantle is presumably degassed of all halogens despite the more likely escape of heavy halogens from the slab at an early subduction stage, implying that these halogens are at least partly accumulating in the crust after leaving the slab. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Earth Planet Sci. Lett. 337-338, pp. 1-9. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Contrib. Mineral. Petrol. 163, pp. 591-609. Palme H, O'Neill HSTC (2003) Treatise Geochem. 2, pp. 1-38. Ruzié L, Burgess R, Hilton DR, Ballentine CJ (2012) AGU Fall Meeting 2012. V31A-2762 (abstr.). Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Earth Planet. Sci. Lett. 294, pp. 163-172.
NASA Astrophysics Data System (ADS)
Iwamori, Hikaru; Albaréde, Francis; Nakamura, Hitomi
2010-11-01
In order to further our understanding of the global geochemical structure and mantle dynamics, a global isotopic data set of oceanic basalts was analyzed by Independent Component Analysis (ICA), a relatively new method of multivariate analysis. The data set consists of 2773 mid-ocean ridge basalts (MORB) and 1515 ocean island basalts (OIB) with five isotopic ratios of Pb, Nd and Sr. The data set spatially covers the major oceans and enables us to compare the results with global geophysical observations. Three independent components (ICs) have been found, two of which are essentially identical to those previously found for basalts from the Atlantic and Indian Oceans. The two ICs (IC1 and IC2) span a compositional plane that accounts for 95.7% of the sample variance, while the third IC (IC3) accounts for 3.7%. Based on the geochemical nature of ICs and a forward model concerning trace elemental and isotopic compositions, the origin of the ICs is discussed. IC1 discriminates OIB from MORB, and may be related to elemental fractionation associated with melting and the subsequent radiogenic in growth with an average recycling time of 0.8 to 2.4 Ga. IC2 tracks the regional provenance of both MORB and OIB and may be related to aqueous fluid-rock interaction and the subsequent radiogenic ingrowth with an average recycling time of 0.3 to 0.9 Ga. IC3 fingerprints upper continental crustal material and its high value appears in limited geographical and tectonic settings. Variations in the melt component (IC1) and in the aqueous fluid component (IC2) inherited in the mantle most likely reflect mid-ocean ridge and subduction zone processes, respectively. Long-term accumulation of dense materials rich in the IC1 melt component at the base of the convective mantle accounts for its longer recycling time with respect to that for less dense materials rich in the aqueous fluid component (IC2). IC2 broadly correlates with the seismic velocity structures of the lowermost mantle and electric conductivity around the mantle transition zones. We propose that IC2 reflects hydrogen distribution within the mantle and that several global domains enriched in hydrogen could exist as vertical sectors extending all the way down to the core-mantle boundary.
NASA Technical Reports Server (NTRS)
Peslier, A. H.; Hnatyshin, D.; Herd, C. D. K.; Walton, E. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J.
2010-01-01
A detailed petrographic study of melt inclusions and Cr-Fe-Ti oxides of LAR 06319 leads to two main conclusions: 1) this enriched oxidized olivine- phyric shergottite represents nearly continuous crystallization of a basaltic shergottite melt, 2) the melt became more oxidized during differentiation. The first crystallized mineral assemblages record the oxygen fugacity which is closest to that of the melt s mantle source, and which is lower than generally attributed to the enriched shergottite group.
Geomorphic Terrains and Evidence for Ancient Volcanism within Northeastern South Pole-Aitken Basin
NASA Technical Reports Server (NTRS)
Petro, Noah; Mest, Scott C.; Teich, Yaron
2010-01-01
The interior of the enigmatic South Pole-Aitken Basin has long been recognized as being compositionally distinct from its exterior. However, the source of the compositional anomaly has been subject to some debate. Is the source of the iron-enhancement due to lower-crustal/upper-mantle material being exposed at the surface, or was there some volume of ancient volcanism that covered portions of the basin interior? While several obvious mare basalt units are found within the basin and regions that appear to represent the original basin interior, there are several regions that appear to have an uncertain origin. Using a combination of Clementine and Lunar Orbiter images, several morphologic units are defined based on albedo, crater density, and surface roughness. An extensive unit of ancient mare basalt (cryptomare) is defined and, based on the number of superimposed craters, potentially represents the oldest volcanic materials within the basin. Thus, the overall iron-rich interior of the basin is not solely due to deeply derived crustal material, but is, in part due to the presence of ancient volcanic units.
Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China
Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.
1986-01-01
Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.
NASA Astrophysics Data System (ADS)
Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk
2018-04-01
The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic magmatic enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic magmatism, might have occurred along the areas affected by ridge subduction. We suggest that this sequential magmatism would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite magmatism.
Petrogenesis of the Northwest Africa 4898 high-Al mare basalt
NASA Astrophysics Data System (ADS)
Li, Shaolin; Hsu, Weibiao; Guan, Yunbin; Wang, Linyan; Wang, Ying
2016-07-01
Northwest Africa (NWA) 4898 is the only low-Ti, high-Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12-62Fs25-62Wo11-36), which display a continuous trend from Mg-rich cores toward Ca-rich mantles and then to Fe-rich rims. Plagioclase has relatively restricted compositions (An87-96Or0-1Ab4-13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high-Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high-Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high-Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed-system fractional crystallization.
NASA Astrophysics Data System (ADS)
Peters, Bradley J.; Day, James M. D.; Taylor, Lawrence A.
2016-08-01
Ultramafic cumulate rocks form during intrusive crystallization of high-MgO magmas, incorporating relatively high abundances of compatible elements, including Cr and Ni, and high abundances of the highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re). Here, we utilize a suite of cumulate xenoliths from Piton de la Fournaise, La Réunion (Indian Ocean), to examine the mantle source composition of the Réunion hotspot using HSE abundances and Os isotopes. Dunite and wherlite xenoliths and associated lavas from the Piton de la Fournaise volcanic complex span a range of MgO contents (46 to 7 wt.%), yet exhibit remarkably homogeneous 187Os/188Os (0.1324 ± 0.0014, 2σ), representing the Os-isotopic composition of Réunion hotspot primary melts. A significant fraction of the xenoliths also have primitive upper-mantle (PUM) normalized HSE patterns with elevated Ru and Pd (PUM-normalized Ru/Ir and Pd/Ir of 0.8-6.3 and 0.2-7.2, respectively). These patterns are not artifacts of alteration, fractional crystallization, or partial melting processes, but rather require a primary magma with similar relative enrichments. Some highly olivine-phyric (>40 modal percent olivine) Piton de la Fournaise lavas also preserve these relative Ru and Pd enrichments, while others preserve a pattern that is likely related to sulfur saturation in evolved melts. The estimate of HSE abundances in PUM indicates high Ru/Ir and Pd/Pt values relative to carbonaceous, ordinary and enstatite chondrite meteorite groups. Thus, the existence of cumulate rocks with even more fractionated HSE patterns relative to PUM suggests that the Réunion hotspot samples a yet unrecognized mantle source. The origin of fractionated HSE patterns in Réunion melts may arise from sampling of a mantle source that experienced limited late accretion (<0.2% by mass) compared with PUM (0.5-0.8%), possibly involving impactors that were distinct from present-day chondrites, or limited core-mantle interactions. Given the remarkably homogeneous Os, Pb, and noble-gas isotopic signatures of Réunion, which plot near the convergence point of isotopic data for many hotspots, such a conclusion provides evidence for an early differentiated and subsequently isolated mantle domain that may be partially sampled by some ocean island basalts.
NASA Astrophysics Data System (ADS)
Mata, J.; Martins, S.; Mattielli, N.; Madeira, J.; Faria, B.; Ramalho, R. S.; Silva, P.; Moreira, M.; Caldeira, R.; Moreira, M.; Rodrigues, J.; Martins, L.
2017-09-01
Recurrent eruptions at very active ocean island volcanoes provide the ideal means to gain insight on the scale of spatial variations at the mantle source and on temporal changes of magma genesis and evolution processes. In 2014, after 19 years of quiescence, Fogo volcano (Cape Verde Archipelago) experienced a new eruption, with the vents located 200 m from those of the 1995 eruption, and less than 2000 m from those of the 1951 event. This offered a unique opportunity to investigate the existence of small-scale mantle heterogeneities and the short-term compositional evolution of magmas erupted by a very active oceanic volcano like Fogo. Here we present petrological and geochemical data from the early stages of the Fogo's most recent eruption - started on November 23, 2014 - and compare them with the signature of previous eruptions (particularly those of 1995 and 1951). The magmas erupted in 2014 are alkaline (up to 23.4% and 0.94% of normative ne and lc, respectively) with somewhat evolved compositions (Mg # < 56), ranging from tephrites to phonotephrites. The eruption of phonotephritic lavas preceded the effusion of tephritic ones. Lavas carried to the surface clinopyroxene and kaersutite phenocrysts and cognate megacrysts, which indicate that the main stages of magma evolution occurred in magma chambers most probably located at mantle depths (25.6 ± 5.5 km below sea level). This was followed by a shallower (< 1.5 km below sea level) and shorter (≈ 50 days) magma stagnation before the eruption. 2014 magmas have more unradiogenic Sr and more radiogenic Nd compositions than those of the previous 1951 and 1995 eruptions, which generally have less radiogenic Pb ratios. These isotopic differences - coming from quasi-coeval materials erupted almost in the same place - are remarkable and reflect the small-scale heterogeneity of the underlying mantle source. Moreover, they reflect the limited isotopic averaging of the source composition during partial melting events as well as the inefficient homogenization within the plumbing system when on route to the surface. The lid effect of an old and thick lithosphere is considered of utmost importance to the preservation of a significant part of source heterogeneity by erupted magmas. The decrease in the contribution of an enriched component to the Fogo magmas in the 2014 eruption marks a change on the volcano short-term evolution that was characterized by a progressive increase of the importance of such a component. Nb/U ratios of the 2014 lavas are similar, within 2σ, to the mean value of OIB, but significantly lower than those reported for the 1995 and 1951 eruptions. This is considered to reflect the lack of significant mixing of the 2014 magmas with lithospheric melts, as opposed to what is here hypothesised for the two previous eruptions.
NASA Astrophysics Data System (ADS)
Ogawa, M.
2017-12-01
The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra < 107, basaltic materials generated by the initial widespread magmatism accumulate in the deep mantle to form a layer; the basaltic layer is colder than the overlying shallow mantle. At Ra > 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.
NASA Astrophysics Data System (ADS)
Smithka, I. N.; Perfit, M. R.
2013-12-01
Mid-ocean ridges (MORs) are the sites of oceanic lithosphere creation and construction. Ridge discontinuities are a global phenomenom but are not as well understood as ridge axes. Geochemical analyses provide insights into upper mantle processes since elements fractionate with melting and freezing as well as reside in material to retain source signature. Lavas collected from ridge discontinuities consist of greater chemical diversity and represent variations in source, melting parameters, and local crustal processes. The small overlapping spreading center (OSC) near the third parallel north on the East Pacific Rise has been superficially analyzed previously, but here we present new isotope analyses and expand our understanding of MOR processes and processes near OSCs. Initial analyses of lavas collected in 2000 on AHA-NEMO2 revealed normal MOR basalt trends in rare earth element enrichments as well as in major element concentrations. Crystal fractionation varies along the tips of both axes, with MgO and TiO2 concentrations increasing towards the OSC basin. Newly analyzed Sr, Nd, and Pb isotope ratios will further constrain the nature of geochemical diversity along axis. As the northern tip seems to be propagating and the southern tip dying, lavas collected from each may reflect two different underlying mantle melting and magma storage processes.
NASA Astrophysics Data System (ADS)
Casey, J. F.; Gao, Y.; Benavidez, R.; Dragoi, C.
2010-12-01
The region between 12°N and 16°N along the Mid-Atlantic Ridge is known for its prolific development of oceanic core complexes and for a geochemical anomaly centered at ~14°N. We examine the correlation of the geochemical anomaly with a region characterized by low magma supply. Basalt glasses over the geochemical anomaly are unusual in exhibiting E-MORB to T-MORB HIMU-DMM isotopic gradients. The most enriched MORBs exhibit positive Ta and Nb anomalies and negative Th and Pb anomalies that are similar to some OIB basalts. Some more primitive basalts exhibit positive Ti, Sr and Eu anomalies. The center of the geochemical anomaly is characterized by elevated La/Sm ratios that are strongly correlated with Nb/La, Nb/Nb*, Ta/Ta* and Sr, Nd, Pb isotopic anomalies. In addition, we have recently documented a regional anomaly in δ7Li, with the lowest values ever recorded in MORB glasses near the center of the anomaly. We interpret this data to indicate that the mantle source in the 12-16°N region of the Mid-Atlantic Ridge involves subducted slab components including a refractory rutile-bearing eclogitic source that has suffered significant dehydration and a previously depleted mantle source that has undergone an ancient depletion event that results in little melt supply being contributed to the ridge axis. We examine melt supply implications in the context of core complex development and these unusual mantle source characteristics.
NASA Astrophysics Data System (ADS)
Litvin, Yuriy; Spivak, Anna
2017-04-01
Melting relations of the lower-mantle magmatic system MgO - FeO - CaO - SiO2 are characterized by peritectic reaction of bridgmanite (Mg,Fe)SiO3 and melt with formation of Fe-rich phases of periclase-wustite solid solutions (MgO•FeO)ss and stishovite SiO2. The reaction proceeds also in melts-solutions of lower-mantle diamond-parental system MgO - FeO - CaO - SiO2 - (Mg-Fe-Ca-Na-carbonate) - C. Xenoliths of lower mantle rocks were never found among the deep mantle derived materials. Estimation of lower-mantle mineralogy as ferropericlase+ bridgmanite+ Ca-perovskite association is inferred from high-pressure subsolidus experiments with ultrabasic pyrolite composition (Akaogi, 2007). The paradoxical in situ paragenesis of stishovite and ferropericlase as primary inclusions in lower-mantle diamonds (Kaminsky, 2012) takes its explanation from the bridgmanite peritectic reaction (effect of "stishovite paradox") (Litvin et al., 2014). Based on the data for inclusions, physico-chemical study on syngenesis of diamonds and primary inclusions has experimentally revealed the ferropericlase-bridgmanite-Ca-perovskite-stishovite-magnesiowustite-(Mg-Fe-Ca-Na-carbonate)-carbon compositions of the lower-mantle diamond-forming system .(Litvin et al., 2016). The generalized diagram of diamong-forming media characterizes the variable compositions of growths melts for diamonds and paragenetic phases and their genetic relationships with lower mantle matter, and it is the reason for genetic classifying primary inclusions. Fractional ultrabasic-basic evolution and continuous paragenetic transition from ultrabasic bridgmanite-ferropericlase to basic stishovite-magnesiowustite assemblages in the of lower-mantle diamond-parental melts-solutions are providing by the physico-chemical mechanism of stishovite paradox. References Akaogi M. (2007). Phase transformations of minerals in the transition zone and upper part of the lower mantle. In Advances in High-Pressure Mineralogy (Ohtani E., ed.). Geol. Soc. Am. Spec. Paper 421, 1-13. Kaminsky F.V. (2012). Mineralogy of the lower mantle: a review of "supper-deep" mineral inclusions in diamonds. Earth Sci. Rev. 110, 127-147. Litvin Yu.A., Spivak A.V., Solopova N.A., Dubrovinsky L.S. (2014). On origin of lower-mantle diamonds and their primary inclusions. Phys. Earth Planet. Inter. 228, 176-185. Litvin Yu.A., Spivak A.V., Dubrovinsky L.S. (2016). Magmatic evolution of the material of the Earth's lower mantle: stishovite paradox and origin of superdeep diamonds (experiments at 24-26 GPa). Geochemistry Internat. 54(11, 936-947.)
NASA Astrophysics Data System (ADS)
Tassara, C. S.; González-Jiménez, J. M.; Reich, M.; Morata, D.; Barra, F.; Gregoire, M.; Saunders, J. E.; Cannatelli, C.
2017-12-01
Refertilisation of the subcontinental lithospheric mantle is a key process controlling the noble metal budget of the mantle, and recent views point to anomalously enriched mantle sources as a critical factor in the formation of noble metal (e.g., Au) provinces at a lithospheric scale. Here we test this hypothesis by studying peridotite xenoliths from the mantle beneath the Deseado Massif auriferous province in southern Patagonia, Argentina. Extensive Neogene back-arc plateau magmatism composed of alkaline basalts ( 3.5 Ma) has brought to the surface deep-seated mantle xenoliths from beneath the crust that host the Au mineralization. In the studied xenolith samples we found gold particles enclosed within primary olivine and pyroxene, and embedded in a highly alkaline interstitial glass or sulphides. Detailed inspection of the sulphide hosts using FESEM reveals abundant native Au nanoparticles, which are consistent with the high Au (up to 6 ppm) obtained by LA-ICP-MS analysis of these sulphides. It is relevant to note that these sulphides also contain significant amounts of Ag (up to 163 ppm). Different generations of sulphides were identified on the basis of their chondrite-normalized PGE patterns, and they can be systematically associated with different events of melt depletion and metasomatism in the mantle. Noticeably, Cu-Pd-Pt-Au rich sulfides are associated with clinopyroxene showing typical carbonatite markers (i.e., large LREE/HREE, Zr and Hf negative anomalies) and accessory minerals such as carbonates and apatite. Still, clinopyroxene commonly has high Ti contents suggesting that a "basaltic" component was also present during the metasomatism. These results suggest that overprinting of events of melt depletion and metasomatism lead to the formation of several generations of sulfides. We propose that the Cu-Pd-Pt-Au rich sulfides may be associated with carbonated silicate melts in the mantle. Our results point to 1) a link between an enriched source of gold (and silver) in the mantle and the formation of the Deseado Massif auriferous province; and 2) carbonated silicate melt metasomatism as an important factor in the PPGE + Au refertilisation of the mantle.
a View of the Marble-Cake Mantle from the Southeast Indian Ridge
NASA Astrophysics Data System (ADS)
Hanan, B. B.; Graham, D. W.; Hemond, C.; Blichert-Toft, J.; Albarede, F.
2014-12-01
Along the Southeast Indian Ridge, variations in axial depth, crustal thickness, hydrothermal venting [1], basaltic major elements and U-series disequilibria [2] all indicate a west-to-east decrease in magma supply and mantle temperature from the Amsterdam-St. Paul hotspot to the Australian-Antarctic Discordance. Paired Hf-Pb isotopes in closely spaced glasses (5-10 km) from 81-100°E define two populations revealing compositional streaks in the upper mantle [3]. The number density of the streaks follows a Poisson distribution with a characteristic thickness of ~20 km. K/Ti and Na8 do not correlate with Pb or Hf isotopes, and both isotopic domains encompass N- and E-MORB types indicating the variations represent mantle source heterogeneities. 3He/4He varies from 7.5 - 10.2 RA, more than half the range in global MORB away from hotspot influence [4]. No systematic relationship exists between 3He/4He and Pb or Hf isotopes. A general negative correlation between K/Ti and Fe8 for the SEIR resembles that for MORBs globally, with higher K/Ti associated with lower 3He/4He. Collectively the observations suggest the presence of lithologically heterogeneous mantle. Lower 3He/4He derives from a source containing a few percent pyroxenite or ecologite, while 3He/4He > 9 RA arises from peridotite. Mantle convection has folded together distinct composite reservoirs of heterogeneous mantle, and stretched them into streaks that remain discernible units. The mantle 'unit' giving rise to each MORB sample represents a 'mixture of mixtures' with a multi-stage mixing history. Spectral analysis of the length scales of Hf, Pb and He isotopic variability allows a visual representation of this upper mantle 'texture'. The dominant length scales reflect large (1000, 500 km) and regional scale (100-150 km) structures in mantle flow, and sampling of heterogeneities during partial melting (20-30 km). 1-Baker et al., doi:10.1002/2014GC005344; 2-Russo et al., doi:10.1016/j.epsl.2008.11.016; 3-Hanan et al., doi:10.1016/j.epsl.2013.05.028; 4-Graham et al., doi:10.1002/2014GC005264
Lu-Hf and Sm-Nd evolution in lunar mare basalts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unruh, D.M.; Stille, P.; Patchett, P.J.
1984-02-15
Lu-Hf and Sm-Nd data for mare basalts combined with Rb-Sr and total REE data taken from the literature suggest that the mare basalts were derived by small (< or =10%) degrees of partial melting of cumulate sources, but that the magma ocean from which these sources formed was light REE and Hf-enriched. Calculated source compositions range fromm lherzolite to olivine websterite. Nonmodal melting of small amounts of ilmenite (< or =3%) in the sources seems to be required by the Lu/Hf data. A comparison of the Hf and Nd isotopic characteristics between the mare basalts and terrestrial oceanic basalts revealsmore » that the epsilonHf/epsilonNd ratios of low-Ti mare basalts are much higher than in terrestrial oceanic basalts. The results are qualitatively consistent with the hypothesis that terrestrial basalt sources are partial melt residues whereas mare basalt sources are cumulates. Alternatively, the results may imply that the terrestrial mantle has evolved in two (or more) stages of evolution, and that the net effect was depletion of the mantle during the first approx.1-3 b.y. followed by enrichment during the last 1-2 b.y.; or simply that there is a difference in Lu-Hf crystal-liquid partitioning (relative to Sm-Nd) between the lunar and terrestrial mantles.« less
NASA Astrophysics Data System (ADS)
Peyve, A. A.
2015-09-01
In this paper, we discuss a broad range of issues related to the formation of large igneous provinces in the African segment of Pangea on the basis of modern seismic tomography data. The formation of older igneous provinces (Central American and Karoo) is attributed to a prolonged phase of upwelling of hot mantle material or fluids in separate jets within a much larger area than the supposed plume head. Owing to its huge size and the thick, dense continental crust, Pangea acted as a shield promoting the accumulation and lateral channeling of heat energy beneath the lithosphere. The changes in global Earth dynamics and the generation of extensional stresses alone may have led to the breakup of Pangea, triggering the eruption of large volumes of magma over short period of time. The same factors led to the opening of the Atlantic Ocean. We provide arguments that the African superplume represents a Cenozoic structure not associated with the emplacement of the Karoo province. At the same time, the hot material brought under the lithosphere by this superplume synchronously with the start of magmatism in east Africa then spread out to the northwest to form local melting areas in Central and Northwestern Africa. We suggest that magmatic activity within the same region may have lasted, with interruptions, over tens of millions of years. Because of plate motion, these lowvelocity zones acting as heat sources appear to have lost their deep-seated roots, so that mantle reservoirs surviving at the base of the lithosphere may have fed magmatism and drifted together with the lithosphere.
NASA Astrophysics Data System (ADS)
MacLean, L. S.; Romanowicz, B. A.; French, S.
2015-12-01
Seismic wavefield computations using the Spectral Element Method are now regularly used to recover tomographic images of the upper mantle and crust at the local, regional, and global scales (e.g. Fichtner et al., GJI, 2009; Tape et al., Science 2010; Lekic and Romanowicz, GJI, 2011; French and Romanowicz, GJI, 2014). However, the heaviness of the computations remains a challenge, and contributes to limiting the resolution of the produced images. Using source stacking, as suggested by Capdeville et al. (GJI,2005), can considerably speed up the process by reducing the wavefield computations to only one per each set of N sources. This method was demonstrated through synthetic tests on low frequency datasets, and therefore should work for global mantle tomography. However, the large amplitudes of surface waves dominates the stacked seismograms and these cases can no longer be separated by windowing in the time domain. We have developed a processing approach that helps address this issue and demonstrate its usefulness through a series of synthetic tests performed at long periods (T >60 s) on toy upper mantle models. The summed synthetics are computed using the CSEM code (Capdeville et al., 2002). As for the inverse part of the procedure, we use a quasi-Newton method, computing Frechet derivatives and Hessian using normal mode perturbation theory.
Remote detection of widespread indigenous water in lunar pyroclastic deposits
NASA Astrophysics Data System (ADS)
Milliken, Ralph E.; Li, Shuai
2017-08-01
Laboratory analyses of lunar samples provide a direct means to identify indigenous volatiles and have been used to argue for the presence of Earth-like water content in the lunar interior. Some volatile elements, however, have been interpreted as evidence for a bulk lunar mantle that is dry. Here we demonstrate that, for a number of lunar pyroclastic deposits, near-infrared reflectance spectra acquired by the Moon Mineralogy Mapper instrument onboard the Chandrayaan-1 orbiter exhibit absorptions consistent with enhanced OH- and/or H2O-bearing materials. These enhancements suggest a widespread occurrence of water in pyroclastic materials sourced from the deep lunar interior, and thus an indigenous origin. Water abundances of up to 150 ppm are estimated for large pyroclastic deposits, with localized values of about 300 to 400 ppm at potential vent areas. Enhanced water content associated with lunar pyroclastic deposits and the large areal extent, widespread distribution and variable chemistry of these deposits on the lunar surface are consistent with significant water in the bulk lunar mantle. We therefore suggest that water-bearing volcanic glasses from Apollo landing sites are not anomalous, and volatile loss during pyroclastic eruptions may represent a significant pathway for the transport of water to the lunar surface.
NASA Astrophysics Data System (ADS)
Veter, Marina; Foley, Stephen F.; Mertz-Kraus, Regina; Groschopf, Nora
2017-11-01
Carbonate-rich ultramafic lamprophyres (aillikites) and associated rocks characteristically occur during the early stages of thinning and rifting of cratonic mantle lithosphere, prior to the eruption of melilitites, nephelinites and alkali basalts. It is accepted that they require volatile-rich melting conditions, and the presence of phlogopite and carbonate in the source, but the exact source rock assemblages are debated. Melts similar to carbonate-rich ultramafic lamprophyres (aillikites) have been produced by melting of peridotites in the presence of CO2 and H2O, whereas isotopes and trace elements appear to favor distinct phlogopite-bearing rocks. Olivine macrocrysts in aillikites are usually rounded and abraded, so that it is debated whether they are phenocrysts or mantle xenocrysts. We have analyzed minor and trace element composition in olivines from the type aillikites from Aillik Bay in Labrador, Canada. We characterize five groups of olivines: [1] mantle xenocrysts, [2] the main phenocryst population, and [3] reversely zoned crystals interpreted as phenocrysts from earlier, more fractionated, magma batches, [4] rims on the phenocrysts, which delineate aillikite melt fractionation trends, and [5] rims around the reversely zoned olivines. The main phenocryst population is characterized by mantle-like Ni (averaging 3400 μg g- 1) and Ni/Mg at Mg# of 88-90, overlapping with phenocrysts in ocean island basalts and Mediterranean lamproites. However, they also have low 100 Mn/Fe of 0.9-1.3 and no correlation between Ni and other trace elements (Sc, Co, Li) that would indicate recycled oceanic or continental crust in their sources. The low Mn/Fe without high Ni/Mg, and the high V/Sc (2-5) are inherited from phlogopite in the source that originated by solidification of lamproitic melts at the base of the cratonic lithosphere in a previous stage of igneous activity. The olivine phenocryst compositions are interpreted to result from phlogopite and not high modal pyroxene in the source. The presence of kimberlites and ultramafic lamprophyres of Mesozoic age in Greenland indicates the persistence of a steep edge to the cratonic lithosphere at a time when this had been removed from the western flank in Labrador.
Enrichment of 18O in the mantle sources of the Antarctic portion of the Karoo large igneous province
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Luttinen, Arto V.; Whitehouse, Martin J.
2018-03-01
Karoo continental flood basalt (CFB) province is known for its highly variable trace element and isotopic composition, often attributed to the involvement of continental lithospheric sources. Here, we report oxygen isotopic compositions measured with secondary ion mass spectrometry for hand-picked olivine phenocrysts from 190 to 180 Ma CFBs and intrusive rocks from Vestfjella, western Dronning Maud Land, that form an Antarctic extension of the Karoo province. The Vestfjella lavas exhibit heterogeneous trace element and radiogenic isotope compositions (e.g., ɛ Nd from - 16 to + 2 at 180 Ma) and the involvement of continental lithospheric mantle and/or crust in their petrogenesis has previously been suggested. Importantly, our sample set also includes rare primitive dikes that have been derived from depleted asthenospheric mantle sources ( ɛ Nd up to + 8 at 180 Ma). The majority of the oxygen isotopic compositions of the olivines from these dike rocks (δ18O = 4.4-5.2‰; Fo = 78-92 mol%) are also compatible with such sources. The olivine phenocrysts in the lavas, however, are characterized by notably higher δ18O (6.2-7.5‰; Fo = 70-88 mol%); and one of the dike samples gives intermediate compositions (5.2‒6.1‰, Fo = 83-87 mol%) between the other dikes and the CFBs. The oxygen isotopic compositions do not correlate with radiogenic isotope compositions susceptible to crustal assimilation (Sr, Nd, and Pb) or with geochemical indicators of pyroxene-rich mantle sources. Instead, δ18O correlates positively with enrichments in large-ion lithophile elements (especially K) and 187Os. We suggest that the oxygen isotopic compositions of the Vestfjella CFB olivines primarily record large-scale subduction-related metasomatism of the sub-Gondwanan mantle (base of the lithosphere or deeper) prior to Karoo magmatism. The overall influence of such sources to Karoo magmatism is not known, but, in addition to continental lithosphere, they may be responsible for some of the geochemical heterogeneity observed in the CFBs.
NASA Astrophysics Data System (ADS)
Willbold, M.; Freymuth, H.; Hibbert, K.; Lai, Y. J.; Elliott, T.
2016-12-01
How and to what extent crustal material is recycled into the deeper mantle as a result of plate tectonic processes is a long-standing but still not fully understood question in Earth Sciences. Indirect evidence from chemical as well as radiogenic isotope data in oceanic basalts suggest that such a process may indeed have operated over much of Earth's history. Yet, uncertainties in characterising the age of the presumed recycled crustal components as well as the wide range in their chemical composition do not allow us to verify the mantle recycling hypothesis. Technological advances now enable us to explore new isotopic tracers that could shed light on this question. One of these new tools are mass-dependent isotope variation of molybdenum (Mo). Mass-dependent Mo isotope data in clastic and chemical sediments are a well-established geochemical tool to study redox conditions in the Earth's water masses over the geological past [1, 2, 3]. Being an intrinsic property of rocks exposed to the hydrosphere (see Anbar [4] for an overview), mass-dependent Mo isotope variation in mantle-derived rocks from oceanic settings could therefore be used a tracer of recycled crustal material in the Earth's mantle. In this contribution we provide a current overview over how different geological and magmatic processes - such as seawater alteration of oceanic crust, slab dehydration during plate subduction as well as magmatic emplacement - could affect the Mo isotopic composition of crustal components being transferred into the deeper mantle, as well as that of mantle melts that may contain such a recycled component. With this in mind, we explore the use of mass-dependent Mo isotope variations in mantle-derived rocks as a tracer of recycled crust in the mantle. [1] Archer & Vance (2008) Nature Geoscience 1, 597-600. [2] Barling et al. (2001) EPSL 193, 447-457. [3] Siebert et al. (2003) EPSL 211, 159-171. [4] Anbar (2004) Rev. Min. Geochem. 55, 429-454.
NASA Technical Reports Server (NTRS)
Okal, E. A.
1978-01-01
The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.
1996-07-01
Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.
NASA Astrophysics Data System (ADS)
Lee, J. W.; Roden, M.
2016-12-01
The Easy Chair Crater (ECC), located within the Lunar Crater Volcanic Field (LCVF) in central Nevada is particularly interesting because of the unusually high equilibrium temperatures and strain recorded by the mantle-derived xenoliths at LCVF1. In addition, a gravity and elevation anomaly suggests the possibility of an underlying thermal plume in the region2. In order to determine if the rocks at ECC are geochemically similar to rocks from other plume-related regions, we analyzed melt inclusions and olivine phenocrysts collected from basalts near the crater. Chlorine amounts in melt inclusions were normalized to the highly incompatible K to produce a ratio that is insensitive to crystallization within or along the walls of the inclusion3. Because Cl is implicated in lithosphere recycling, the Cl/K ratio can be used to differentiate magmatic source components. Initial results (Fig. 1) indicate that basalts from ECC are geochemically more similar to ocean island basalts than to MORB or arc basalts. Elemental ratios in olivine phenocrysts from basaltic magmas can be used to determine the petrology of the source rock for particular silicate melts. In turn, petrology of mantle sources is thought to correlate with source nature (e.g., plume versus upper mantle)4. Specifically, Ni and Mn amounts were evaluated in order to determine if magma sources were pyroxenite-rich. Preliminary calculations of the wt. fraction of pyroxenite in the source of ECC basalts ranged from 0.13 to 0.68 indicating the possibility of a significant amount of pyroxenite in the magmatic source which would be expected if a plume was present beneath LCVF. References:1Smith, D. (2000) JGR 105: 16769; 2Saltus, R.W. & Thompson, G.A. (1995) Tectonics 14:1235; 3Patiño Douce, A.E. & Roden, M.F. (2006) Geochim Cosmochim Acta 70: 3173; 4Gurenko et al. (2010) Contrib Mineral Petrol 159: 689
Identifying mantle lithosphere inheritance in controlling intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-09-01
Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.
Abundant carbon in the mantle beneath Hawai`i
NASA Astrophysics Data System (ADS)
Anderson, Kyle R.; Poland, Michael P.
2017-09-01
Estimates of carbon concentrations in Earth’s mantle vary over more than an order of magnitude, hindering our ability to understand mantle structure and mineralogy, partial melting, and the carbon cycle. CO2 concentrations in mantle-derived magmas supplying hotspot ocean island volcanoes yield our most direct constraints on mantle carbon, but are extensively modified by degassing during ascent. Here we show that undegassed magmatic and mantle carbon concentrations may be estimated in a Bayesian framework using diverse geologic information at an ocean island volcano. Our CO2 concentration estimates do not rely upon complex degassing models, geochemical tracer elements, assumed magma supply rates, or rare undegassed rock samples. Rather, we couple volcanic CO2 emission rates with probabilistic magma supply rates, which are obtained indirectly from magma storage and eruption rates. We estimate that the CO2 content of mantle-derived magma supplying Hawai`i’s active volcanoes is 0.97-0.19+0.25 wt%--roughly 40% higher than previously believed--and is supplied from a mantle source region with a carbon concentration of 263-62+81 ppm. Our results suggest that mantle plumes and ocean island basalts are carbon-rich. Our data also shed light on helium isotope abundances, CO2/Nb ratios, and may imply higher CO2 emission rates from ocean island volcanoes.
Ceres: Dawn visits a Warm Wet Planet
NASA Astrophysics Data System (ADS)
McCord, T. B.; Combe, J. P.
2014-12-01
Ceres likely contains considerable water, has differentiated, and formed a hydrated silicate core and water mantle. There were major dimensional, thermal and chemical changes over its history, making it more a planet than an asteroid. These factors created the present day body, which the Dawn misson will visit next March. I will summarize our current understanding of Ceres and suggest what Dawn will find. A major uncertainty is how processes, such as aqueous mineralization, impact and cratering, infall of external material, mixing, and viscous relaxation of surface features have altered the formation materials and surface, hiding Ceres' secrets. Ceres' bulk density of 2100 kg/m3, suggest major water content. Modeling of Ceres' thermodynamic evolution for different times of accretion, assuming several radioactive heating scenarios, produces results ranging from a dry Vestal-like object (earlier, hotter formation) to retention and melting of the ice and differentiation of silicates from liquid water. Mixing of liquid water and silicates leads to exothermic hydration reactions, formation of a core and a liquid mantle. Large dimensional changes are associated. A crust stays frozen but founders at times due to gravitational instability, dimensional changes and impacts. The liquid mantle freezes from top, down, but a layer of salty liquid water probably exists today near the core. Hydrated silicates from the initial differentiation would likely dehydrate near the core center due to temperature and pressure. From observations, only subdued spatial albedo and color variations are observed at UV and IR wavelengths on Ceres' surface at the scale possible from Earth (~50-100 km) and an oblate spheroid shape is found, consistent with a differentiated body. Compositional evidence includes the long known similarity of Ceres' albedo and visual-IR reflectance spectrum to those for carbonaceous chondrite meteorites. Thus, the surface is likely made of carbon-bearing, hydroxolated materials, with spectral evidence of OH and maybe H2O molecules, consistent with the results of both the evolutionary thermodynamic models and infill of carbonaceous chondrite-like materials. Two reports of OH and H2O in the exosphere, apparently originating from localized sources, suggest present day cryovolcanism.