Sample records for manually segmented images

  1. Segmentation of stereo terrain images

    NASA Astrophysics Data System (ADS)

    George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.

    2000-06-01

    We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.

  2. Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation

    PubMed Central

    Parmar, Chintan; Blezek, Daniel; Estepar, Raul San Jose; Pieper, Steve; Kim, John; Aerts, Hugo J. W. L.

    2017-01-01

    Purpose Accurate segmentation of lung nodules is crucial in the development of imaging biomarkers for predicting malignancy of the nodules. Manual segmentation is time consuming and affected by inter-observer variability. We evaluated the robustness and accuracy of a publically available semiautomatic segmentation algorithm that is implemented in the 3D Slicer Chest Imaging Platform (CIP) and compared it with the performance of manual segmentation. Methods CT images of 354 manually segmented nodules were downloaded from the LIDC database. Four radiologists performed the manual segmentation and assessed various nodule characteristics. The semiautomatic CIP segmentation was initialized using the centroid of the manual segmentations, thereby generating four contours for each nodule. The robustness of both segmentation methods was assessed using the region of uncertainty (δ) and Dice similarity index (DSI). The robustness of the segmentation methods was compared using the Wilcoxon-signed rank test (pWilcoxon<0.05). The Dice similarity index (DSIAgree) between the manual and CIP segmentations was computed to estimate the accuracy of the semiautomatic contours. Results The median computational time of the CIP segmentation was 10 s. The median CIP and manually segmented volumes were 477 ml and 309 ml, respectively. CIP segmentations were significantly more robust than manual segmentations (median δCIP = 14ml, median dsiCIP = 99% vs. median δmanual = 222ml, median dsimanual = 82%) with pWilcoxon~10−16. The agreement between CIP and manual segmentations had a median DSIAgree of 60%. While 13% (47/354) of the nodules did not require any manual adjustment, minor to substantial manual adjustments were needed for 87% (305/354) of the nodules. CIP segmentations were observed to perform poorly (median DSIAgree≈50%) for non-/sub-solid nodules with subtle appearances and poorly defined boundaries. Conclusion Semi-automatic CIP segmentation can potentially reduce the physician workload for 13% of nodules owing to its computational efficiency and superior stability compared to manual segmentation. Although manual adjustment is needed for many cases, CIP segmentation provides a preliminary contour for physicians as a starting point. PMID:28594880

  3. Three-dimensional murine airway segmentation in micro-CT images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.

    2007-03-01

    Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.

  4. Multi-Modal Glioblastoma Segmentation: Man versus Machine

    PubMed Central

    Pica, Alessia; Schucht, Philippe; Beck, Jürgen; Verma, Rajeev Kumar; Slotboom, Johannes; Reyes, Mauricio; Wiest, Roland

    2014-01-01

    Background and Purpose Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. Methods We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. Results Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. Conclusions In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity. PMID:24804720

  5. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    NASA Astrophysics Data System (ADS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  6. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    PubMed

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-21

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians' manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  7. User-guided segmentation for volumetric retinal optical coherence tomography images

    PubMed Central

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  8. User-guided segmentation for volumetric retinal optical coherence tomography images.

    PubMed

    Yin, Xin; Chao, Jennifer R; Wang, Ruikang K

    2014-08-01

    Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.

  9. A Manual Segmentation Tool for Three-Dimensional Neuron Datasets.

    PubMed

    Magliaro, Chiara; Callara, Alejandro L; Vanello, Nicola; Ahluwalia, Arti

    2017-01-01

    To date, automated or semi-automated software and algorithms for segmentation of neurons from three-dimensional imaging datasets have had limited success. The gold standard for neural segmentation is considered to be the manual isolation performed by an expert. To facilitate the manual isolation of complex objects from image stacks, such as neurons in their native arrangement within the brain, a new Manual Segmentation Tool (ManSegTool) has been developed. ManSegTool allows user to load an image stack, scroll down the images and to manually draw the structures of interest stack-by-stack. Users can eliminate unwanted regions or split structures (i.e., branches from different neurons that are too close each other, but, to the experienced eye, clearly belong to a unique cell), to view the object in 3D and save the results obtained. The tool can be used for testing the performance of a single-neuron segmentation algorithm or to extract complex objects, where the available automated methods still fail. Here we describe the software's main features and then show an example of how ManSegTool can be used to segment neuron images acquired using a confocal microscope. In particular, expert neuroscientists were asked to segment different neurons from which morphometric variables were subsequently extracted as a benchmark for precision. In addition, a literature-defined index for evaluating the goodness of segmentation was used as a benchmark for accuracy. Neocortical layer axons from a DIADEM challenge dataset were also segmented with ManSegTool and compared with the manual "gold-standard" generated for the competition.

  10. Carotid stenosis assessment with multi-detector CT angiography: comparison between manual and automatic segmentation methods.

    PubMed

    Zhu, Chengcheng; Patterson, Andrew J; Thomas, Owen M; Sadat, Umar; Graves, Martin J; Gillard, Jonathan H

    2013-04-01

    Luminal stenosis is used for selecting the optimal management strategy for patients with carotid artery disease. The aim of this study is to evaluate the reproducibility of carotid stenosis quantification using manual and automated segmentation methods using submillimeter through-plane resolution Multi-Detector CT angiography (MDCTA). 35 patients having carotid artery disease with >30 % luminal stenosis as identified by carotid duplex imaging underwent contrast enhanced MDCTA. Two experienced CT readers quantified carotid stenosis from axial source images, reconstructed maximum intensity projection (MIP) and 3D-carotid geometry which was automatically segmented by an open-source toolkit (Vascular Modelling Toolkit, VMTK) using NASCET criteria. Good agreement among the measurement using axial images, MIP and automatic segmentation was observed. Automatic segmentation methods show better inter-observer agreement between the readers (intra-class correlation coefficient (ICC): 0.99 for diameter stenosis measurement) than manual measurement of axial (ICC = 0.82) and MIP (ICC = 0.86) images. Carotid stenosis quantification using an automatic segmentation method has higher reproducibility compared with manual methods.

  11. The Impact of Manual Segmentation of CT Images on Monte Carlo Based Skeletal Dosimetry

    NASA Astrophysics Data System (ADS)

    Frederick, Steve; Jokisch, Derek; Bolch, Wesley; Shah, Amish; Brindle, Jim; Patton, Phillip; Wyler, J. S.

    2004-11-01

    Radiation doses to the skeleton from internal emitters are of importance in both protection of radiation workers and patients undergoing radionuclide therapies. Improved dose estimates involve obtaining two sets of medical images. The first image provides the macroscopic boundaries (spongiosa volume and cortical shell) of the individual skeletal sites. A second, higher resolution image of the spongiosa microstructure is also obtained. These image sets then provide the geometry for a Monte Carlo radiation transport code. Manual segmentation of the first image is required in order to provide the macrostructural data. For this study, multiple segmentations of the same CT image were performed by multiple individuals. The segmentations were then used in the transport code and the results compared in order to determine the impact of differing segmentations on the skeletal doses. This work has provided guidance on the extent of training required of the manual segmenters. (This work was supported by a grant from the National Institute of Health.)

  12. Fully Automatic Segmentation of Fluorescein Leakage in Subjects With Diabetic Macular Edema

    PubMed Central

    Rabbani, Hossein; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Farsiu, Sina

    2015-01-01

    Purpose. To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Methods. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. Results. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Conclusions. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. PMID:25634978

  13. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.

    PubMed

    Rabbani, Hossein; Allingham, Michael J; Mettu, Priyatham S; Cousins, Scott W; Farsiu, Sina

    2015-01-29

    To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  14. Individual muscle segmentation in MR images: A 3D propagation through 2D non-linear registration approaches.

    PubMed

    Ogier, Augustin; Sdika, Michael; Foure, Alexandre; Le Troter, Arnaud; Bendahan, David

    2017-07-01

    Manual and automated segmentation of individual muscles in magnetic resonance images have been recognized as challenging given the high variability of shapes between muscles and subjects and the discontinuity or lack of visible boundaries between muscles. In the present study, we proposed an original algorithm allowing a semi-automatic transversal propagation of manually-drawn masks. Our strategy was based on several ascending and descending non-linear registration approaches which is similar to the estimation of a Lagrangian trajectory applied to manual masks. Using several manually-segmented slices, we have evaluated our algorithm on the four muscles of the quadriceps femoris group. We mainly showed that our 3D propagated segmentation was very accurate with an averaged Dice similarity coefficient value higher than 0.91 for the minimal manual input of only two manually-segmented slices.

  15. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-08

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system.

  16. Segmentation of Image Ensembles via Latent Atlases

    PubMed Central

    Van Leemput, Koen; Menze, Bjoern H.; Wells, William M.; Golland, Polina

    2010-01-01

    Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the availability of comprehensive, reliable and suitable manual segmentations for atlas construction is limited. We therefore propose a method for joint segmentation of corresponding regions of interest in a collection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cortical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal longitudinal experiment. We compare the segmentation results to manual segmentations, when those exist, and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results supports the latent atlas as a promising alternative when existing atlases are not compatible with the images to be segmented. PMID:20580305

  17. Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.

    PubMed

    Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo

    2017-10-01

    Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.

  18. Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms.

    PubMed

    Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas

    2017-03-18

    Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.

  19. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    NASA Astrophysics Data System (ADS)

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  20. The diagnostic performance of leak-plugging automated segmentation versus manual tracing of breast lesions on ultrasound images.

    PubMed

    Xiong, Hui; Sultan, Laith R; Cary, Theodore W; Schultz, Susan M; Bouzghar, Ghizlane; Sehgal, Chandra M

    2017-05-01

    To assess the diagnostic performance of a leak-plugging segmentation method that we have developed for delineating breast masses on ultrasound images. Fifty-two biopsy-proven breast lesion images were analyzed by three observers using the leak-plugging and manual segmentation methods. From each segmentation method, grayscale and morphological features were extracted and classified as malignant or benign by logistic regression analysis. The performance of leak-plugging and manual segmentations was compared by: size of the lesion, overlap area ( O a ) between the margins, and area under the ROC curves ( A z ). The lesion size from leak-plugging segmentation correlated closely with that from manual tracing ( R 2 of 0.91). O a was higher for leak plugging, 0.92 ± 0.01 and 0.86 ± 0.06 for benign and malignant masses, respectively, compared to 0.80 ± 0.04 and 0.73 ± 0.02 for manual tracings. Overall O a between leak-plugging and manual segmentations was 0.79 ± 0.14 for benign and 0.73 ± 0.14 for malignant lesions. A z for leak plugging was consistently higher (0.910 ± 0.003) compared to 0.888 ± 0.012 for manual tracings. The coefficient of variation of A z between three observers was 0.29% for leak plugging compared to 1.3% for manual tracings. The diagnostic performance, size measurements, and observer variability for automated leak-plugging segmentations were either comparable to or better than those of manual tracings.

  1. Contour-Driven Atlas-Based Segmentation

    PubMed Central

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2016-01-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  2. WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rossi, P; Jani, A

    Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage.more » During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less

  3. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  4. Automated breast segmentation in ultrasound computer tomography SAFT images

    NASA Astrophysics Data System (ADS)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  5. Comparison between manual and semi-automatic segmentation of nasal cavity and paranasal sinuses from CT images.

    PubMed

    Tingelhoff, K; Moral, A I; Kunkel, M E; Rilk, M; Wagner, I; Eichhorn, K G; Wahl, F M; Bootz, F

    2007-01-01

    Segmentation of medical image data is getting more and more important over the last years. The results are used for diagnosis, surgical planning or workspace definition of robot-assisted systems. The purpose of this paper is to find out whether manual or semi-automatic segmentation is adequate for ENT surgical workflow or whether fully automatic segmentation of paranasal sinuses and nasal cavity is needed. We present a comparison of manual and semi-automatic segmentation of paranasal sinuses and the nasal cavity. Manual segmentation is performed by custom software whereas semi-automatic segmentation is realized by a commercial product (Amira). For this study we used a CT dataset of the paranasal sinuses which consists of 98 transversal slices, each 1.0 mm thick, with a resolution of 512 x 512 pixels. For the analysis of both segmentation procedures we used volume, extension (width, length and height), segmentation time and 3D-reconstruction. The segmentation time was reduced from 960 minutes with manual to 215 minutes with semi-automatic segmentation. We found highest variances segmenting nasal cavity. For the paranasal sinuses manual and semi-automatic volume differences are not significant. Dependent on the segmentation accuracy both approaches deliver useful results and could be used for e.g. robot-assisted systems. Nevertheless both procedures are not useful for everyday surgical workflow, because they take too much time. Fully automatic and reproducible segmentation algorithms are needed for segmentation of paranasal sinuses and nasal cavity.

  6. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.

    PubMed

    Norman, Berk; Pedoia, Valentina; Majumdar, Sharmila

    2018-03-27

    Purpose To analyze how automatic segmentation translates in accuracy and precision to morphology and relaxometry compared with manual segmentation and increases the speed and accuracy of the work flow that uses quantitative magnetic resonance (MR) imaging to study knee degenerative diseases such as osteoarthritis (OA). Materials and Methods This retrospective study involved the analysis of 638 MR imaging volumes from two data cohorts acquired at 3.0 T: (a) spoiled gradient-recalled acquisition in the steady state T1 ρ -weighted images and (b) three-dimensional (3D) double-echo steady-state (DESS) images. A deep learning model based on the U-Net convolutional network architecture was developed to perform automatic segmentation. Cartilage and meniscus compartments were manually segmented by skilled technicians and radiologists for comparison. Performance of the automatic segmentation was evaluated on Dice coefficient overlap with the manual segmentation, as well as by the automatic segmentations' ability to quantify, in a longitudinally repeatable way, relaxometry and morphology. Results The models produced strong Dice coefficients, particularly for 3D-DESS images, ranging between 0.770 and 0.878 in the cartilage compartments to 0.809 and 0.753 for the lateral meniscus and medial meniscus, respectively. The models averaged 5 seconds to generate the automatic segmentations. Average correlations between manual and automatic quantification of T1 ρ and T2 values were 0.8233 and 0.8603, respectively, and 0.9349 and 0.9384 for volume and thickness, respectively. Longitudinal precision of the automatic method was comparable with that of the manual one. Conclusion U-Net demonstrates efficacy and precision in quickly generating accurate segmentations that can be used to extract relaxation times and morphologic characterization and values that can be used in the monitoring and diagnosis of OA. © RSNA, 2018 Online supplemental material is available for this article.

  7. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.

    PubMed

    Shahedi, Maysam; Cool, Derek W; Romagnoli, Cesare; Bauman, Glenn S; Bastian-Jordan, Matthew; Gibson, Eli; Rodrigues, George; Ahmad, Belal; Lock, Michael; Fenster, Aaron; Ward, Aaron D

    2014-11-01

    Three-dimensional (3D) prostate image segmentation is useful for cancer diagnosis and therapy guidance, but can be time-consuming to perform manually and involves varying levels of difficulty and interoperator variability within the prostatic base, midgland (MG), and apex. In this study, the authors measured accuracy and interobserver variability in the segmentation of the prostate on T2-weighted endorectal magnetic resonance (MR) imaging within the whole gland (WG), and separately within the apex, midgland, and base regions. The authors collected MR images from 42 prostate cancer patients. Prostate border delineation was performed manually by one observer on all images and by two other observers on a subset of ten images. The authors used complementary boundary-, region-, and volume-based metrics [mean absolute distance (MAD), Dice similarity coefficient (DSC), recall rate, precision rate, and volume difference (ΔV)] to elucidate the different types of segmentation errors that they observed. Evaluation for expert manual and semiautomatic segmentation approaches was carried out. Compared to manual segmentation, the authors' semiautomatic approach reduces the necessary user interaction by only requiring an indication of the anteroposterior orientation of the prostate and the selection of prostate center points on the apex, base, and midgland slices. Based on these inputs, the algorithm identifies candidate prostate boundary points using learned boundary appearance characteristics and performs regularization based on learned prostate shape information. The semiautomated algorithm required an average of 30 s of user interaction time (measured for nine operators) for each 3D prostate segmentation. The authors compared the segmentations from this method to manual segmentations in a single-operator (mean whole gland MAD = 2.0 mm, DSC = 82%, recall = 77%, precision = 88%, and ΔV = - 4.6 cm(3)) and multioperator study (mean whole gland MAD = 2.2 mm, DSC = 77%, recall = 72%, precision = 86%, and ΔV = - 4.0 cm(3)). These results compared favorably with observed differences between manual segmentations and a simultaneous truth and performance level estimation reference for this data set (whole gland differences as high as MAD = 3.1 mm, DSC = 78%, recall = 66%, precision = 77%, and ΔV = 15.5 cm(3)). The authors found that overall, midgland segmentation was more accurate and repeatable than the segmentation of the apex and base, with the base posing the greatest challenge. The main conclusions of this study were that (1) the semiautomated approach reduced interobserver segmentation variability; (2) the segmentation accuracy of the semiautomated approach, as well as the accuracies of recently published methods from other groups, were within the range of observed expert variability in manual prostate segmentation; and (3) further efforts in the development of computer-assisted segmentation would be most productive if focused on improvement of segmentation accuracy and reduction of variability within the prostatic apex and base.

  8. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system. PACS number(s): 87.57.nm, 87.57.N-, 87.61.Tg. © 2016 The Authors.

  9. Automated tumor volumetry using computer-aided image segmentation.

    PubMed

    Gaonkar, Bilwaj; Macyszyn, Luke; Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A; Ali, Zarina S; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M; Davatzikos, Christos

    2015-05-01

    Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0-5 rating scale where 5 indicated perfect segmentation. The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  10. Automated Tumor Volumetry Using Computer-Aided Image Segmentation

    PubMed Central

    Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A.; Ali, Zarina S.; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M.; Davatzikos, Christos

    2015-01-01

    Rationale and Objectives Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. Materials and Methods A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Results Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where 5 indicated perfect segmentation. Conclusions The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. PMID:25770633

  11. A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT

    PubMed Central

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J.; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa

    2016-01-01

    On‐board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real‐time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image‐guided radiotherapy (MR‐IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k‐means (FKM), k‐harmonic means (KHM), and reaction‐diffusion level set evolution (RD‐LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR‐TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR‐TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD‐LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP‐TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high‐contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR‐TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on‐board MR‐IGRT system. PACS number(s): 87.57.nm, 87.57.N‐, 87.61.Tg

  12. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  13. Algorithm guided outlining of 105 pancreatic cancer liver metastases in Ultrasound.

    PubMed

    Hann, Alexander; Bettac, Lucas; Haenle, Mark M; Graeter, Tilmann; Berger, Andreas W; Dreyhaupt, Jens; Schmalstieg, Dieter; Zoller, Wolfram G; Egger, Jan

    2017-10-06

    Manual segmentation of hepatic metastases in ultrasound images acquired from patients suffering from pancreatic cancer is common practice. Semiautomatic measurements promising assistance in this process are often assessed using a small number of lesions performed by examiners who already know the algorithm. In this work, we present the application of an algorithm for the segmentation of liver metastases due to pancreatic cancer using a set of 105 different images of metastases. The algorithm and the two examiners had never assessed the images before. The examiners first performed a manual segmentation and, after five weeks, a semiautomatic segmentation using the algorithm. They were satisfied in up to 90% of the cases with the semiautomatic segmentation results. Using the algorithm was significantly faster and resulted in a median Dice similarity score of over 80%. Estimation of the inter-operator variability by using the intra class correlation coefficient was good with 0.8. In conclusion, the algorithm facilitates fast and accurate segmentation of liver metastases, comparable to the current gold standard of manual segmentation.

  14. Boundary segmentation for fluorescence microscopy using steerable filters

    NASA Astrophysics Data System (ADS)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  15. Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features.

    PubMed

    Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L

    2015-11-18

    Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.

  16. A semiautomatic segmentation method for prostate in CT images using local texture classification and statistical shape modeling.

    PubMed

    Shahedi, Maysam; Halicek, Martin; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei

    2018-06-01

    Prostate segmentation in computed tomography (CT) images is useful for treatment planning and procedure guidance such as external beam radiotherapy and brachytherapy. However, because of the low, soft tissue contrast of CT images, manual segmentation of the prostate is a time-consuming task with high interobserver variation. In this study, we proposed a semiautomated, three-dimensional (3D) segmentation for prostate CT images using shape and texture analysis and we evaluated the method against manual reference segmentations. The prostate gland usually has a globular shape with a smoothly curved surface, and its shape could be accurately modeled or reconstructed having a limited number of well-distributed surface points. In a training dataset, using the prostate gland centroid point as the origin of a coordination system, we defined an intersubject correspondence between the prostate surface points based on the spherical coordinates. We applied this correspondence to generate a point distribution model for prostate shape using principal component analysis and to study the local texture difference between prostate and nonprostate tissue close to the different prostate surface subregions. We used the learned shape and texture characteristics of the prostate in CT images and then combined them with user inputs to segment a new image. We trained our segmentation algorithm using 23 CT images and tested the algorithm on two sets of 10 nonbrachytherapy and 37 postlow dose rate brachytherapy CT images. We used a set of error metrics to evaluate the segmentation results using two experts' manual reference segmentations. For both nonbrachytherapy and post-brachytherapy image sets, the average measured Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 1.9 mm. The average measured differences between the two experts on both datasets were 92% (DSC) and 1.1 mm (MAD). The proposed, semiautomatic segmentation algorithm showed a fast, robust, and accurate performance for 3D prostate segmentation of CT images, specifically when no previous, intrapatient information, that is, previously segmented images, was available. The accuracy of the algorithm is comparable to the best performance results reported in the literature and approaches the interexpert variability observed in manual segmentation. © 2018 American Association of Physicists in Medicine.

  17. A knowledge-guided active model method of cortical structure segmentation on pediatric MR images.

    PubMed

    Shan, Zuyao Y; Parra, Carlos; Ji, Qing; Jain, Jinesh; Reddick, Wilburn E

    2006-10-01

    To develop an automated method for quantification of cortical structures on pediatric MR images. A knowledge-guided active model (KAM) approach was proposed with a novel object function similar to the Gibbs free energy function. Triangular mesh models were transformed to images of a given subject by maximizing entropy, and then actively slithered to boundaries of structures by minimizing enthalpy. Volumetric results and image similarities of 10 different cortical structures segmented by KAM were compared with those traced manually. Furthermore, the segmentation performances of KAM and SPM2, (statistical parametric mapping, a MATLAB software package) were compared. The averaged volumetric agreements between KAM- and manually-defined structures (both 0.95 for structures in healthy children and children with medulloblastoma) were higher than the volumetric agreement for SPM2 (0.90 and 0.80, respectively). The similarity measurements (kappa) between KAM- and manually-defined structures (0.95 and 0.93, respectively) were higher than those for SPM2 (both 0.86). We have developed a novel automatic algorithm, KAM, for segmentation of cortical structures on MR images of pediatric patients. Our preliminary results indicated that when segmenting cortical structures, KAM was in better agreement with manually-delineated structures than SPM2. KAM can potentially be used to segment cortical structures for conformal radiation therapy planning and for quantitative evaluation of changes in disease or abnormality. Copyright (c) 2006 Wiley-Liss, Inc.

  18. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis.

    PubMed

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2016-02-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.

  19. Semi-automated segmentation of a glioblastoma multiforme on brain MR images for radiotherapy planning.

    PubMed

    Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori

    2010-04-20

    We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.

  20. Multi-atlas-based segmentation of the parotid glands of MR images in patients following head-and-neck cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian

    2013-02-01

    Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.

  1. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images.

    PubMed

    Jian, Junming; Xiong, Fei; Xia, Wei; Zhang, Rui; Gu, Jinhui; Wu, Xiaodong; Meng, Xiaochun; Gao, Xin

    2018-06-01

    Segmentation of colorectal tumors is the basis of preoperative prediction, staging, and therapeutic response evaluation. Due to the blurred boundary between lesions and normal colorectal tissue, it is hard to realize accurate segmentation. Routinely manual or semi-manual segmentation methods are extremely tedious, time-consuming, and highly operator-dependent. In the framework of FCNs, a segmentation method for colorectal tumor was presented. Normalization was applied to reduce the differences among images. Borrowing from transfer learning, VGG-16 was employed to extract features from normalized images. We conducted five side-output blocks from the last convolutional layer of each block of VGG-16 along the network, these side-output blocks can deep dive multiscale features, and produced corresponding predictions. Finally, all of the predictions from side-output blocks were fused to determine the final boundaries of the tumors. A quantitative comparison of 2772 colorectal tumor manual segmentation results from T2-weighted magnetic resonance images shows that the average Dice similarity coefficient, positive predictive value, specificity, sensitivity, Hammoude distance, and Hausdorff distance were 83.56, 82.67, 96.75, 87.85%, 0.2694, and 8.20, respectively. The proposed method is superior to U-net in colorectal tumor segmentation (P < 0.05). There is no difference between cross-entropy loss and Dice-based loss in colorectal tumor segmentation (P > 0.05). The results indicate that the introduction of FCNs contributed to accurate segmentation of colorectal tumors. This method has the potential to replace the present time-consuming and nonreproducible manual segmentation method.

  2. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model.

    PubMed

    Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent

    2010-04-01

    The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.

  3. A combined learning algorithm for prostate segmentation on 3D CT images.

    PubMed

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei

    2017-11-01

    Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmentation method can be used in various applications including volume measurement and treatment planning of the prostate. © 2017 American Association of Physicists in Medicine.

  4. Interactive 3D segmentation using connected orthogonal contours.

    PubMed

    de Bruin, P W; Dercksen, V J; Post, F H; Vossepoel, A M; Streekstra, G J; Vos, F M

    2005-05-01

    This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.1 This method solves the contour-to-contour correspondence problem and can capture extrema of objects in a more flexible way than manual segmentation of a stack of 2D images. The resulting 3D model is guaranteed to be free of geometric and topological errors. We show that manual segmentation using connected orthogonal contours has great advantages over conventional manual segmentation. Furthermore, the method provides effective feedback and control for creating an initial model for, and control and steering of, (semi-)automatic segmentation methods.

  5. Image segmentation evaluation for very-large datasets

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  6. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  7. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.

    PubMed

    Neubert, A; Yang, Z; Engstrom, C; Xia, Y; Strudwick, M W; Chandra, S S; Fripp, J; Crozier, S

    2016-10-01

    Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone-cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.

  8. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubert, A., E-mail: ales.neubert@csiro.au

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hipmore » joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). Conclusions: This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.« less

  9. Analysis of manual segmentation in paranasal CT images.

    PubMed

    Tingelhoff, Kathrin; Eichhorn, Klaus W G; Wagner, Ingo; Kunkel, Maria E; Moral, Analia I; Rilk, Markus E; Wahl, Friedrich M; Bootz, Friedrich

    2008-09-01

    Manual segmentation is often used for evaluation of automatic or semi-automatic segmentation. The purpose of this paper is to describe the inter and intraindividual variability, the dubiety of manual segmentation as a gold standard and to find reasons for the discrepancy. We realized two experiments. In the first one ten ENT surgeons, ten medical students and one engineer outlined the right maxillary sinus and ethmoid sinuses manually on a standard CT dataset of a human head. In the second experiment two participants outlined maxillary sinus and ethmoid sinuses five times consecutively. Manual segmentation was accomplished with custom software using a line segmentation tool. The first experiment shows the interindividual variability of manual segmentation which is higher for ethmoidal sinuses than for maxillary sinuses. The variability can be caused by the level of experience, different interpretation of the CT data or different levels of accuracy. The second experiment shows intraindividual variability which is lower than interindividual variability. Most variances in both experiments appear during segmentation of ethmoidal sinuses and outlining hiatus semilunaris. Concerning the inter and intraindividual variances the segmentation result of one manual segmenter could not directly be used as gold standard for the evaluation of automatic segmentation algorithms.

  10. Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms

    PubMed Central

    2011-01-01

    Background Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods. Results We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation. Conclusions We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss/. PMID:21668958

  11. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less

  12. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  13. Automatic and manual segmentation of healthy retinas using high-definition optical coherence tomography.

    PubMed

    Golbaz, Isabelle; Ahlers, Christian; Goesseringer, Nina; Stock, Geraldine; Geitzenauer, Wolfgang; Prünte, Christian; Schmidt-Erfurth, Ursula Margarethe

    2011-03-01

    This study compared automatic- and manual segmentation modalities in the retina of healthy eyes using high-definition optical coherence tomography (HD-OCT). Twenty retinas in 20 healthy individuals were examined using an HD-OCT system (Carl Zeiss Meditec, Inc.). Three-dimensional imaging was performed with an axial resolution of 6 μm at a maximum scanning speed of 25,000 A-scans/second. Volumes of 6 × 6 × 2 mm were scanned. Scans were analysed using a matlab-based algorithm and a manual segmentation software system (3D-Doctor). The volume values calculated by the two methods were compared. Statistical analysis revealed a high correlation between automatic and manual modes of segmentation. The automatic mode of measuring retinal volume and the corresponding three-dimensional images provided similar results to the manual segmentation procedure. Both methods were able to visualize retinal and subretinal features accurately. This study compared two methods of assessing retinal volume using HD-OCT scans in healthy retinas. Both methods were able to provide realistic volumetric data when applied to raster scan sets. Manual segmentation methods represent an adequate tool with which to control automated processes and to identify clinically relevant structures, whereas automatic procedures will be needed to obtain data in larger patient populations. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  14. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images

    PubMed Central

    Dysli, Chantal; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin S.

    2015-01-01

    Purpose Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. Methods Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2/J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. Results Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. Conclusions Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. Translational Relevance The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. PMID:26336634

  15. Automated segmentation of midbrain structures with high iron content.

    PubMed

    Garzón, Benjamín; Sitnikov, Rouslan; Bäckman, Lars; Kalpouzos, Grégoria

    2018-04-15

    The substantia nigra (SN), the subthalamic nucleus (STN), and the red nucleus (RN) are midbrain structures of ample interest in many neuroimaging studies, which may benefit from the availability of automated segmentation methods. The high iron content of these structures awards them high contrast in quantitative susceptibility mapping (QSM) images. We present a novel segmentation method that leverages the information of these images to produce automated segmentations of the SN, STN, and RN. The algorithm builds a map of spatial priors for the structures by non-linearly registering a set of manually-traced training labels to the midbrain. The priors are used to inform a Gaussian mixture model of the image intensities, with smoothness constraints imposed to ensure anatomical plausibility. The method was validated on manual segmentations from a sample of 40 healthy younger and older subjects. Average Dice scores were 0.81 (0.05) for the SN, 0.66 (0.14) for the STN and 0.88 (0.04) for the RN in the left hemisphere, and similar values were obtained for the right hemisphere. In all structures, volumes of manual and automatically obtained segmentations were significantly correlated. The algorithm showed lower accuracy on R 2 * and T 2 -weighted Fluid Attenuated Inversion Recovery (FLAIR) images, which are also sensitive to iron content. To illustrate an application of the method, we show that the automated segmentations were comparable to the manual ones regarding detection of age-related differences to putative iron content. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Hemorrhage Detection and Segmentation in Traumatic Pelvic Injuries

    PubMed Central

    Davuluri, Pavani; Wu, Jie; Tang, Yang; Cockrell, Charles H.; Ward, Kevin R.; Najarian, Kayvan; Hargraves, Rosalyn H.

    2012-01-01

    Automated hemorrhage detection and segmentation in traumatic pelvic injuries is vital for fast and accurate treatment decision making. Hemorrhage is the main cause of deaths in patients within first 24 hours after the injury. It is very time consuming for physicians to analyze all Computed Tomography (CT) images manually. As time is crucial in emergence medicine, analyzing medical images manually delays the decision-making process. Automated hemorrhage detection and segmentation can significantly help physicians to analyze these images and make fast and accurate decisions. Hemorrhage segmentation is a crucial step in the accurate diagnosis and treatment decision-making process. This paper presents a novel rule-based hemorrhage segmentation technique that utilizes pelvic anatomical information to segment hemorrhage accurately. An evaluation measure is used to quantify the accuracy of hemorrhage segmentation. The results show that the proposed method is able to segment hemorrhage very well, and the results are promising. PMID:22919433

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogunovic, Hrvoje; Pozo, Jose Maria; Villa-Uriol, Maria Cruz

    Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D x-ray reconstruction angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available in the clinical routine. Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols, and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA andmore » TOF-MRA. Images were obtained from two clinical centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: isointensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an intermodality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE differed from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability of GAR was superior to manual measurements and ISE. The intermodality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.« less

  18. Statistical Validation of Automatic Methods for Hippocampus Segmentation in MR Images of Epileptic Patients

    PubMed Central

    Hosseini, Mohammad-Parsa; Nazem-Zadeh, Mohammad R.; Pompili, Dario; Soltanian-Zadeh, Hamid

    2015-01-01

    Hippocampus segmentation is a key step in the evaluation of mesial Temporal Lobe Epilepsy (mTLE) by MR images. Several automated segmentation methods have been introduced for medical image segmentation. Because of multiple edges, missing boundaries, and shape changing along its longitudinal axis, manual outlining still remains the benchmark for hippocampus segmentation, which however, is impractical for large datasets due to time constraints. In this study, four automatic methods, namely FreeSurfer, Hammer, Automatic Brain Structure Segmentation (ABSS), and LocalInfo segmentation, are evaluated to find the most accurate and applicable method that resembles the bench-mark of hippocampus. Results from these four methods are compared against those obtained using manual segmentation for T1-weighted images of 157 symptomatic mTLE patients. For performance evaluation of automatic segmentation, Dice coefficient, Hausdorff distance, Precision, and Root Mean Square (RMS) distance are extracted and compared. Among these four automated methods, ABSS generates the most accurate results and the reproducibility is more similar to expert manual outlining by statistical validation. By considering p-value<0.05, the results of performance measurement for ABSS reveal that, Dice is 4%, 13%, and 17% higher, Hausdorff is 23%, 87%, and 70% lower, precision is 5%, -5%, and 12% higher, and RMS is 19%, 62%, and 65% lower compared to LocalInfo, FreeSurfer, and Hammer, respectively. PMID:25571043

  19. Fetal brain volumetry through MRI volumetric reconstruction and segmentation

    PubMed Central

    Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.

    2013-01-01

    Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848

  20. Region-based multi-step optic disk and cup segmentation from color fundus image

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Lock, Jane; Manresa, Javier Moreno; Vignarajan, Janardhan; Tay-Kearney, Mei-Ling; Kanagasingam, Yogesan

    2013-02-01

    Retinal optic cup-disk-ratio (CDR) is a one of important indicators of glaucomatous neuropathy. In this paper, we propose a novel multi-step 4-quadrant thresholding method for optic disk segmentation and a multi-step temporal-nasal segmenting method for optic cup segmentation based on blood vessel inpainted HSL lightness images and green images. The performance of the proposed methods was evaluated on a group of color fundus images and compared with the manual outlining results from two experts. Dice scores of detected disk and cup regions between the auto and manual results were computed and compared. Vertical CDRs were also compared among the three results. The preliminary experiment has demonstrated the robustness of the method for automatic optic disk and cup segmentation and its potential value for clinical application.

  1. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  2. Automated Segmentation of Kidneys from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B.; Torres, Vicente E.; Yu, Alan S.L.; Mrug, Michal; Bennett, William M.; Flessner, Michael F.; Landsittel, Doug P.

    2016-01-01

    Background and objectives Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Design, setting, participants, & measurements Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2–weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Results Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. Conclusions We have developed a fully automated method for segmentation of kidneys from abdominal magnetic resonance images in patients with autosomal dominant polycystic kidney disease with varying kidney volumes. The performance of the automated method was in good agreement with that of manual method. PMID:26797708

  3. Automated Segmentation of Kidneys from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B; Torres, Vicente E; Yu, Alan S L; Mrug, Michal; Bennett, William M; Flessner, Michael F; Landsittel, Doug P; Bae, Kyongtae T

    2016-04-07

    Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2-weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. We have developed a fully automated method for segmentation of kidneys from abdominal magnetic resonance images in patients with autosomal dominant polycystic kidney disease with varying kidney volumes. The performance of the automated method was in good agreement with that of manual method. Copyright © 2016 by the American Society of Nephrology.

  4. Statistical shape (ASM) and appearance (AAM) models for the segmentation of the cerebellum in fetal ultrasound

    NASA Astrophysics Data System (ADS)

    Reyes López, Misael; Arámbula Cosío, Fernando

    2017-11-01

    The cerebellum is an important structure to determine the gestational age of the fetus, moreover most of the abnormalities it presents are related to growth disorders. In this work, we present the results of the segmentation of the fetal cerebellum applying statistical shape and appearance models. Both models were tested on ultrasound images of the fetal brain taken from 23 pregnant women, between 18 and 24 gestational weeks. The accuracy results obtained on 11 ultrasound images show a mean Hausdorff distance of 6.08 mm between the manual segmentation and the segmentation using active shape model, and a mean Hausdorff distance of 7.54 mm between the manual segmentation and the segmentation using active appearance model. The reported results demonstrate that the active shape model is more robust in the segmentation of the fetal cerebellum in ultrasound images.

  5. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-02-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy.

  6. Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images--data from the Osteoarthritis Initiative.

    PubMed

    Paproki, A; Engstrom, C; Chandra, S S; Neubert, A; Fripp, J; Crozier, S

    2014-09-01

    To validate an automatic scheme for the segmentation and quantitative analysis of the medial meniscus (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee. We analysed sagittal water-excited double-echo steady-state MR images of the knee from a subset of the Osteoarthritis Initiative (OAI) cohort. The MM and LM were automatically segmented in the MR images based on a deformable model approach. Quantitative parameters including volume, subluxation and tibial-coverage were automatically calculated for comparison (Wilcoxon tests) between knees with variable radiographic osteoarthritis (rOA), medial and lateral joint space narrowing (mJSN, lJSN) and pain. Automatic segmentations and estimated parameters were evaluated for accuracy using manual delineations of the menisci in 88 pathological knee MR examinations at baseline and 12 months time-points. The median (95% confidence-interval (CI)) Dice similarity index (DSI) (2 ∗|Auto ∩ Manual|/(|Auto|+|Manual|)∗ 100) between manual and automated segmentations for the MM and LM volumes were 78.3% (75.0-78.7), 83.9% (82.1-83.9) at baseline and 75.3% (72.8-76.9), 83.0% (81.6-83.5) at 12 months. Pearson coefficients between automatic and manual segmentation parameters ranged from r = 0.70 to r = 0.92. MM in rOA/mJSN knees had significantly greater subluxation and smaller tibial-coverage than no-rOA/no-mJSN knees. LM in rOA knees had significantly greater volumes and tibial-coverage than no-rOA knees. Our automated method successfully segmented the menisci in normal and osteoarthritic knee MR images and detected meaningful morphological differences with respect to rOA and joint space narrowing (JSN). Our approach will facilitate analyses of the menisci in prospective MR cohorts such as the OAI for investigations into pathophysiological changes occurring in early osteoarthritis (OA) development. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Segmentation of Brain Lesions in MRI and CT Scan Images: A Hybrid Approach Using k-Means Clustering and Image Morphology

    NASA Astrophysics Data System (ADS)

    Agrawal, Ritu; Sharma, Manisha; Singh, Bikesh Kumar

    2018-04-01

    Manual segmentation and analysis of lesions in medical images is time consuming and subjected to human errors. Automated segmentation has thus gained significant attention in recent years. This article presents a hybrid approach for brain lesion segmentation in different imaging modalities by combining median filter, k means clustering, Sobel edge detection and morphological operations. Median filter is an essential pre-processing step and is used to remove impulsive noise from the acquired brain images followed by k-means segmentation, Sobel edge detection and morphological processing. The performance of proposed automated system is tested on standard datasets using performance measures such as segmentation accuracy and execution time. The proposed method achieves a high accuracy of 94% when compared with manual delineation performed by an expert radiologist. Furthermore, the statistical significance test between lesion segmented using automated approach and that by expert delineation using ANOVA and correlation coefficient achieved high significance values of 0.986 and 1 respectively. The experimental results obtained are discussed in lieu of some recently reported studies.

  8. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  9. Cerebella segmentation on MR images of pediatric patients with medulloblastoma

    NASA Astrophysics Data System (ADS)

    Shan, Zu Y.; Ji, Qing; Glass, John; Gajjar, Amar; Reddick, Wilburn E.

    2005-04-01

    In this study, an automated method has been developed to identify the cerebellum from T1-weighted MR brain images of patients with medulloblastoma. A new objective function that is similar to Gibbs free energy in classic physics was defined; and the brain structure delineation was viewed as a process of minimizing Gibbs free energy. We used a rigid-body registration and an active contour (snake) method to minimize the Gibbs free energy in this study. The method was applied to 20 patient data sets to generate cerebellum images and volumetric results. The generated cerebellum images were compared with two manually drawn results. Strong correlations were found between the automatically and manually generated volumetric results, the correlation coefficients with each of manual results were 0.971 and 0.974, respectively. The average Jaccard similarities with each of two manual results were 0.89 and 0.88, respectively. The average Kappa indexes with each of two manual results were 0.94 and 0.93, respectively. These results showed this method was both robust and accurate for cerebellum segmentation. The method may be applied to various research and clinical investigation in which cerebellum segmentation and quantitative MR measurement of cerebellum are needed.

  10. Validation tools for image segmentation

    NASA Astrophysics Data System (ADS)

    Padfield, Dirk; Ross, James

    2009-02-01

    A large variety of image analysis tasks require the segmentation of various regions in an image. For example, segmentation is required to generate accurate models of brain pathology that are important components of modern diagnosis and therapy. While the manual delineation of such structures gives accurate information, the automatic segmentation of regions such as the brain and tumors from such images greatly enhances the speed and repeatability of quantifying such structures. The ubiquitous need for such algorithms has lead to a wide range of image segmentation algorithms with various assumptions, parameters, and robustness. The evaluation of such algorithms is an important step in determining their effectiveness. Therefore, rather than developing new segmentation algorithms, we here describe validation methods for segmentation algorithms. Using similarity metrics comparing the automatic to manual segmentations, we demonstrate methods for optimizing the parameter settings for individual cases and across a collection of datasets using the Design of Experiment framework. We then employ statistical analysis methods to compare the effectiveness of various algorithms. We investigate several region-growing algorithms from the Insight Toolkit and compare their accuracy to that of a separate statistical segmentation algorithm. The segmentation algorithms are used with their optimized parameters to automatically segment the brain and tumor regions in MRI images of 10 patients. The validation tools indicate that none of the ITK algorithms studied are able to outperform with statistical significance the statistical segmentation algorithm although they perform reasonably well considering their simplicity.

  11. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  12. Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis.

    PubMed

    Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D

    2017-05-01

    MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.

  13. Subcortical structure segmentation using probabilistic atlas priors

    NASA Astrophysics Data System (ADS)

    Gouttard, Sylvain; Styner, Martin; Joshi, Sarang; Smith, Rachel G.; Cody Hazlett, Heather; Gerig, Guido

    2007-03-01

    The segmentation of the subcortical structures of the brain is required for many forms of quantitative neuroanatomic analysis. The volumetric and shape parameters of structures such as lateral ventricles, putamen, caudate, hippocampus, pallidus and amygdala are employed to characterize a disease or its evolution. This paper presents a fully automatic segmentation of these structures via a non-rigid registration of a probabilistic atlas prior and alongside a comprehensive validation. Our approach is based on an unbiased diffeomorphic atlas with probabilistic spatial priors built from a training set of MR images with corresponding manual segmentations. The atlas building computes an average image along with transformation fields mapping each training case to the average image. These transformation fields are applied to the manually segmented structures of each case in order to obtain a probabilistic map on the atlas. When applying the atlas for automatic structural segmentation, an MR image is first intensity inhomogeneity corrected, skull stripped and intensity calibrated to the atlas. Then the atlas image is registered to the image using an affine followed by a deformable registration matching the gray level intensity. Finally, the registration transformation is applied to the probabilistic maps of each structures, which are then thresholded at 0.5 probability. Using manual segmentations for comparison, measures of volumetric differences show high correlation with our results. Furthermore, the dice coefficient, which quantifies the volumetric overlap, is higher than 62% for all structures and is close to 80% for basal ganglia. The intraclass correlation coefficient computed on these same datasets shows a good inter-method correlation of the volumetric measurements. Using a dataset of a single patient scanned 10 times on 5 different scanners, reliability is shown with a coefficient of variance of less than 2 percents over the whole dataset. Overall, these validation and reliability studies show that our method accurately and reliably segments almost all structures. Only the hippocampus and amygdala segmentations exhibit relative low correlation with the manual segmentation in at least one of the validation studies, whereas they still show appropriate dice overlap coefficients.

  14. TH-CD-206-02: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in MR Images Using Patch-Based Anatomical Signature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Jani, A; Rossi, P

    Purpose: MRI has shown promise in identifying prostate tumors with high sensitivity and specificity for the detection of prostate cancer. Accurate segmentation of the prostate plays a key role various tasks: to accurately localize prostate boundaries for biopsy needle placement and radiotherapy, to initialize multi-modal registration algorithms or to obtain the region of interest for computer-aided detection of prostate cancer. However, manual segmentation during biopsy or radiation therapy can be time consuming and subject to inter- and intra-observer variation. This study’s purpose it to develop an automated method to address this technical challenge. Methods: We present an automated multi-atlas segmentationmore » for MR prostate segmentation using patch-based label fusion. After an initial preprocessing for all images, all the atlases are non-rigidly registered to a target image. And then, the resulting transformation is used to propagate the anatomical structure labels of the atlas into the space of the target image. The top L similar atlases are further chosen by measuring intensity and structure difference in the region of interest around prostate. Finally, using voxel weighting based on patch-based anatomical signature, the label that the majority of all warped labels predict for each voxel is used for the final segmentation of the target image. Results: This segmentation technique was validated with a clinical study of 13 patients. The accuracy of our approach was assessed using the manual segmentation (gold standard). The mean volume Dice Overlap Coefficient was 89.5±2.9% between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D MRI-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning label fusion framework, demonstrated its clinical feasibility, and validated its accuracy. This segmentation technique could be a useful tool in image-guided interventions for prostate-cancer diagnosis and treatment.« less

  15. Semi-Automatic Segmentation Software for Quantitative Clinical Brain Glioblastoma Evaluation

    PubMed Central

    Zhu, Y; Young, G; Xue, Z; Huang, R; You, H; Setayesh, K; Hatabu, H; Cao, F; Wong, S.T.

    2012-01-01

    Rationale and Objectives Quantitative measurement provides essential information about disease progression and treatment response in patients with Glioblastoma multiforme (GBM). The goal of this paper is to present and validate a software pipeline for semi-automatic GBM segmentation, called AFINITI (Assisted Follow-up in NeuroImaging of Therapeutic Intervention), using clinical data from GBM patients. Materials and Methods Our software adopts the current state-of-the-art tumor segmentation algorithms and combines them into one clinically usable pipeline. Both the advantages of the traditional voxel-based and the deformable shape-based segmentation are embedded into the software pipeline. The former provides an automatic tumor segmentation scheme based on T1- and T2-weighted MR brain data, and the latter refines the segmentation results with minimal manual input. Results Twenty six clinical MR brain images of GBM patients were processed and compared with manual results. The results can be visualized using the embedded graphic user interface (GUI). Conclusion Validation results using clinical GBM data showed high correlation between the AFINITI results and manual annotation. Compared to the voxel-wise segmentation, AFINITI yielded more accurate results in segmenting the enhanced GBM from multimodality MRI data. The proposed pipeline could be used as additional information to interpret MR brain images in neuroradiology. PMID:22591720

  16. Gray matter segmentation of the spinal cord with active contours in MR images.

    PubMed

    Datta, Esha; Papinutto, Nico; Schlaeger, Regina; Zhu, Alyssa; Carballido-Gamio, Julio; Henry, Roland G

    2017-02-15

    Fully or partially automated spinal cord gray matter segmentation techniques for spinal cord gray matter segmentation will allow for pivotal spinal cord gray matter measurements in the study of various neurological disorders. The objective of this work was multi-fold: (1) to develop a gray matter segmentation technique that uses registration methods with an existing delineation of the cord edge along with Morphological Geodesic Active Contour (MGAC) models; (2) to assess the accuracy and reproducibility of the newly developed technique on 2D PSIR T1 weighted images; (3) to test how the algorithm performs on different resolutions and other contrasts; (4) to demonstrate how the algorithm can be extended to 3D scans; and (5) to show the clinical potential for multiple sclerosis patients. The MGAC algorithm was developed using a publicly available implementation of a morphological geodesic active contour model and the spinal cord segmentation tool of the software Jim (Xinapse Systems) for initial estimate of the cord boundary. The MGAC algorithm was demonstrated on 2D PSIR images of the C2/C3 level with two different resolutions, 2D T2* weighted images of the C2/C3 level, and a 3D PSIR image. These images were acquired from 45 healthy controls and 58 multiple sclerosis patients selected for the absence of evident lesions at the C2/C3 level. Accuracy was assessed though visual assessment, Hausdorff distances, and Dice similarity coefficients. Reproducibility was assessed through interclass correlation coefficients. Validity was assessed through comparison of segmented gray matter areas in images with different resolution for both manual and MGAC segmentations. Between MGAC and manual segmentations in healthy controls, the mean Dice similarity coefficient was 0.88 (0.82-0.93) and the mean Hausdorff distance was 0.61 (0.46-0.76) mm. The interclass correlation coefficient from test and retest scans of healthy controls was 0.88. The percent change between the manual segmentations from high and low-resolution images was 25%, while the percent change between the MGAC segmentations from high and low resolution images was 13%. Between MGAC and manual segmentations in MS patients, the average Dice similarity coefficient was 0.86 (0.8-0.92) and the average Hausdorff distance was 0.83 (0.29-1.37) mm. We demonstrate that an automatic segmentation technique, based on a morphometric geodesic active contours algorithm, can provide accurate and precise spinal cord gray matter segmentations on 2D PSIR images. We have also shown how this automated technique can potentially be extended to other imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeswijk, Miriam M. van; Department of Surgery, Maastricht University Medical Centre, Maastricht; Lambregts, Doenja M.J., E-mail: d.lambregts@nki.nl

    Purpose: Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Methods and Materials: Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained bymore » method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Results: Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the automated method, 41 to 69 seconds (pre-CRT) and 60 to 67 seconds (post-CRT) for the semiautomated method, and 180 to 296 seconds (pre-CRT) and 84 to 91 seconds (post-CRT) for the manual method. Conclusions: DWI volumetry using a semiautomated segmentation approach is promising and a potentially time-saving alternative to manual tumor delineation, particularly for primary tumor volumetry. Once further optimized, it could be a helpful tool for tumor response assessment in rectal cancer.« less

  18. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    PubMed

    van Heeswijk, Miriam M; Lambregts, Doenja M J; van Griethuysen, Joost J M; Oei, Stanley; Rao, Sheng-Xiang; de Graaff, Carla A M; Vliegen, Roy F A; Beets, Geerard L; Papanikolaou, Nikos; Beets-Tan, Regina G H

    2016-03-15

    Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the automated method, 41 to 69 seconds (pre-CRT) and 60 to 67 seconds (post-CRT) for the semiautomated method, and 180 to 296 seconds (pre-CRT) and 84 to 91 seconds (post-CRT) for the manual method. DWI volumetry using a semiautomated segmentation approach is promising and a potentially time-saving alternative to manual tumor delineation, particularly for primary tumor volumetry. Once further optimized, it could be a helpful tool for tumor response assessment in rectal cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Carotid artery phantom designment and simulation using field II

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yang, Xin; Ding, Mingyue

    2013-10-01

    Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of mortality and disability. Morphology and structure features of carotid plaques are the keys to identify plaques and monitoring the disease. Manually segmentation on the ultrasonic images to get the best-fitted actual size of the carotid plaques based on physicians personal experience, namely "gold standard", is a important step in the study of plaque size. However, it is difficult to qualitatively measure the segmentation error caused by the operator's subjective factors. In order to reduce the subjective factors, and the uncertainty factors of quantification, the experiments in this paper were carried out. In this study, we firstly designed a carotid artery phantom, and then use three different beam-forming algorithms of medical ultrasound to simulate the phantom. Finally obtained plaques areas were analyzed through manual segmentation on simulation images. We could (1) directly evaluate the different beam-forming algorithms for the ultrasound imaging simulation on the effect of carotid artery; (2) also analyze the sensitivity of detection on different size of plaques; (3) indirectly reflect the accuracy of the manual segmentation base on segmentation results the evaluation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang Duc, Albert K., E-mail: albert.hoangduc.ucl@gmail.com; McClelland, Jamie; Modat, Marc

    Purpose: The aim of this study was to assess whether clinically acceptable segmentations of organs at risk (OARs) in head and neck cancer can be obtained automatically and efficiently using the novel “similarity and truth estimation for propagated segmentations” (STEPS) compared to the traditional “simultaneous truth and performance level estimation” (STAPLE) algorithm. Methods: First, 6 OARs were contoured by 2 radiation oncologists in a dataset of 100 patients with head and neck cancer on planning computed tomography images. Each image in the dataset was then automatically segmented with STAPLE and STEPS using those manual contours. Dice similarity coefficient (DSC) wasmore » then used to compare the accuracy of these automatic methods. Second, in a blind experiment, three separate and distinct trained physicians graded manual and automatic segmentations into one of the following three grades: clinically acceptable as determined by universal delineation guidelines (grade A), reasonably acceptable for clinical practice upon manual editing (grade B), and not acceptable (grade C). Finally, STEPS segmentations graded B were selected and one of the physicians manually edited them to grade A. Editing time was recorded. Results: Significant improvements in DSC can be seen when using the STEPS algorithm on large structures such as the brainstem, spinal canal, and left/right parotid compared to the STAPLE algorithm (all p < 0.001). In addition, across all three trained physicians, manual and STEPS segmentation grades were not significantly different for the brainstem, spinal canal, parotid (right/left), and optic chiasm (all p > 0.100). In contrast, STEPS segmentation grades were lower for the eyes (p < 0.001). Across all OARs and all physicians, STEPS produced segmentations graded as well as manual contouring at a rate of 83%, giving a lower bound on this rate of 80% with 95% confidence. Reduction in manual interaction time was on average 61% and 93% when automatic segmentations did and did not, respectively, require manual editing. Conclusions: The STEPS algorithm showed better performance than the STAPLE algorithm in segmenting OARs for radiotherapy of the head and neck. It can automatically produce clinically acceptable segmentation of OARs, with results as relevant as manual contouring for the brainstem, spinal canal, the parotids (left/right), and optic chiasm. A substantial reduction in manual labor was achieved when using STEPS even when manual editing was necessary.« less

  1. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method

    PubMed Central

    Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi

    2015-01-01

    Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359

  2. Combining population and patient-specific characteristics for prostate segmentation on 3D CT images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei

    2016-03-01

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.

  3. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    PubMed

    Liyanage, Kishan Andre; Steward, Christopher; Moffat, Bradford Armstrong; Opie, Nicholas Lachlan; Rind, Gil Simon; John, Sam Emmanuel; Ronayne, Stephen; May, Clive Newton; O'Brien, Terence John; Milne, Marjorie Eileen; Oxley, Thomas James

    2016-01-01

    Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution) MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap) to 1 (complete overlap). For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  4. Breast Cancer Diagnostics Based on Spatial Genome Organization

    DTIC Science & Technology

    2012-07-01

    using an already established imaging tool, called NMFA-FLO (Nuclei Manual and FISH automatic). In order to achieve accurate segmentation of nuclei...in tissue we used an artificial neuronal network (ANN)-based supervised pattern recognition approach to screen out well segmented nuclei, after image ... segmentation used to process images for automated nuclear segmentation . Part a) has been adapted from [15] and b) from [16]. Figure 4. Comparison of

  5. The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsager, Anne Sofie, E-mail: asko@hst.aau.dk; Østergaard, Lasse Riis; Fortunati, Valerio

    2015-04-15

    Purpose: An automatic method for 3D prostate segmentation in magnetic resonance (MR) images is presented for planning image-guided radiotherapy treatment of prostate cancer. Methods: A spatial prior based on intersubject atlas registration is combined with organ-specific intensity information in a graph cut segmentation framework. The segmentation is tested on 67 axial T{sub 2}-weighted MR images in a leave-one-out cross validation experiment and compared with both manual reference segmentations and with multiatlas-based segmentations using majority voting atlas fusion. The impact of atlas selection is investigated in both the traditional atlas-based segmentation and the new graph cut method that combines atlas andmore » intensity information in order to improve the segmentation accuracy. Best results were achieved using the method that combines intensity information, shape information, and atlas selection in the graph cut framework. Results: A mean Dice similarity coefficient (DSC) of 0.88 and a mean surface distance (MSD) of 1.45 mm with respect to the manual delineation were achieved. Conclusions: This approaches the interobserver DSC of 0.90 and interobserver MSD 0f 1.15 mm and is comparable to other studies performing prostate segmentation in MR.« less

  6. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    NASA Astrophysics Data System (ADS)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  7. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    PubMed

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  8. Computer-aided liver volumetry: performance of a fully-automated, prototype post-processing solution for whole-organ and lobar segmentation based on MDCT imaging.

    PubMed

    Fananapazir, Ghaneh; Bashir, Mustafa R; Marin, Daniele; Boll, Daniel T

    2015-06-01

    To evaluate the performance of a prototype, fully-automated post-processing solution for whole-liver and lobar segmentation based on MDCT datasets. A polymer liver phantom was used to assess accuracy of post-processing applications comparing phantom volumes determined via Archimedes' principle with MDCT segmented datasets. For the IRB-approved, HIPAA-compliant study, 25 patients were enrolled. Volumetry performance compared the manual approach with the automated prototype, assessing intraobserver variability, and interclass correlation for whole-organ and lobar segmentation using ANOVA comparison. Fidelity of segmentation was evaluated qualitatively. Phantom volume was 1581.0 ± 44.7 mL, manually segmented datasets estimated 1628.0 ± 47.8 mL, representing a mean overestimation of 3.0%, automatically segmented datasets estimated 1601.9 ± 0 mL, representing a mean overestimation of 1.3%. Whole-liver and segmental volumetry demonstrated no significant intraobserver variability for neither manual nor automated measurements. For whole-liver volumetry, automated measurement repetitions resulted in identical values; reproducible whole-organ volumetry was also achieved with manual segmentation, p(ANOVA) 0.98. For lobar volumetry, automated segmentation improved reproducibility over manual approach, without significant measurement differences for either methodology, p(ANOVA) 0.95-0.99. Whole-organ and lobar segmentation results from manual and automated segmentation showed no significant differences, p(ANOVA) 0.96-1.00. Assessment of segmentation fidelity found that segments I-IV/VI showed greater segmentation inaccuracies compared to the remaining right hepatic lobe segments. Automated whole-liver segmentation showed non-inferiority of fully-automated whole-liver segmentation compared to manual approaches with improved reproducibility and post-processing duration; automated dual-seed lobar segmentation showed slight tendencies for underestimating the right hepatic lobe volume and greater variability in edge detection for the left hepatic lobe compared to manual segmentation.

  9. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system.

    PubMed

    Byrne, N; Velasco Forte, M; Tandon, A; Valverde, I; Hussain, T

    2016-01-01

    Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded. Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992-2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods.

  10. Myocardial scar segmentation from magnetic resonance images using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zabihollahy, Fatemeh; White, James A.; Ukwatta, Eranga

    2018-02-01

    Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 +/- 3.62%, 96.08 +/- 3.10%, and 93.96 +/- 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.

  11. Technical report on semiautomatic segmentation using the Adobe Photoshop.

    PubMed

    Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae; Lee, Yong Sook; Har, Dong-Hwan

    2005-12-01

    The purpose of this research is to enable users to semiautomatically segment the anatomical structures in magnetic resonance images (MRIs), computerized tomographs (CTs), and other medical images on a personal computer. The segmented images are used for making 3D images, which are helpful to medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was scanned to make 557 MRIs. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL and manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a similar manner, 13 anatomical structures in 8,590 anatomical images were segmented. Proper segmentation was verified by making 3D images from the segmented images. Semiautomatic segmentation using Adobe Photoshop is expected to be widely used for segmentation of anatomical structures in various medical images.

  12. Automatic cerebrospinal fluid segmentation in non-contrast CT images using a 3D convolutional network

    NASA Astrophysics Data System (ADS)

    Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra

    2017-03-01

    Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.

  13. Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening.

    PubMed

    Chen, C; Li, H; Zhou, X; Wong, S T C

    2008-05-01

    Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.

  14. Prostate segmentation in MRI using fused T2-weighted and elastography images

    NASA Astrophysics Data System (ADS)

    Nir, Guy; Sahebjavaher, Ramin S.; Baghani, Ali; Sinkus, Ralph; Salcudean, Septimiu E.

    2014-03-01

    Segmentation of the prostate in medical imaging is a challenging and important task for surgical planning and delivery of prostate cancer treatment. Automatic prostate segmentation can improve speed, reproducibility and consistency of the process. In this work, we propose a method for automatic segmentation of the prostate in magnetic resonance elastography (MRE) images. The method utilizes the complementary property of the elastogram and the corresponding T2-weighted image, which are obtained from the phase and magnitude components of the imaging signal, respectively. It follows a variational approach to propagate an active contour model based on the combination of region statistics in the elastogram and the edge map of the T2-weighted image. The method is fast and does not require prior shape information. The proposed algorithm is tested on 35 clinical image pairs from five MRE data sets, and is evaluated in comparison with manual contouring. The mean absolute distance between the automatic and manual contours is 1.8mm, with a maximum distance of 5.6mm. The relative area error is 7.6%, and the duration of the segmentation process is 2s per slice.

  15. Semiautomatic segmentation of liver metastases on volumetric CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@cumc.columbia.edu

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accuratelymore » delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation method.« less

  16. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  17. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  18. TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric GBM Segmentation in the TCGA-GBM Dataset: Prognosis and Correlation with VASARI Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios Velazquez, E; Meier, R; Dunn, W

    Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showedmore » high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research.« less

  19. Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Grinias, Elias; Pagonidis, Konstantin; Tziritas, George; Damilakis, John

    2010-02-01

    The purpose of this study was to develop and evaluate a semiautomatic method for left ventricular (LV) segmentation on cine MR images and subsequent estimation of cardiac parameters. The study group comprised cardiac MR examinations of 18 consecutive patients with known or suspected coronary artery disease. The new method allowed the automatic detection of the LV endocardial and epicardial boundaries on each short-axis cine MR image using a Bayesian flooding segmentation algorithm and weighted least-squares B-splines minimization. Manual editing of the automatic contours could be performed for unsatisfactory segmentation results. The end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and LV mass estimated by the new method were compared with the reference values obtained by manually tracing the LV cavity borders. The reproducibility of the new method was determined using data from two independent observers. The mean number of endocardial and epicardial outlines not requiring any manual adjustment was more than 80% and 76% of the total contour number per study, respectively. The mean segmentation time including the required manual corrections was 2.3 ± 0.7 min per patient. LV volumes estimated by the semiautomatic method were significantly lower than those by manual tracing (P < 0.05), whereas no difference was found for EF and LV mass (P > 0.05). LV indices estimated by the two methods were well correlated (r >= 0.80). The mean difference between manual and semiautomatic method for estimating EDV, ESV, EF and LV mass was 6.1 ± 7.2 ml, 3.0 ± 5.2 ml, -0.6 ± 4.3% and -6.2 ± 12.2 g, respectively. The intraobserver and interobserver variability associated with the semiautomatic determination of LV indices was 0.5-1.2% and 0.8-3.9%, respectively. The estimation of LV parameters with the new semiautomatic segmentation method is technically feasible, highly reproducible and time effective.

  20. Automatic segmentation of right ventricular ultrasound images using sparse matrix transform and a level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Fei, Baowei

    2013-11-01

    An automatic segmentation framework is proposed to segment the right ventricle (RV) in echocardiographic images. The method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform, a training model, and a localized region-based level set. First, the sparse matrix transform extracts main motion regions of the myocardium as eigen-images by analyzing the statistical information of the images. Second, an RV training model is registered to the eigen-images in order to locate the position of the RV. Third, the training model is adjusted and then serves as an optimized initialization for the segmentation of each image. Finally, based on the initializations, a localized, region-based level set algorithm is applied to segment both epicardial and endocardial boundaries in each echocardiograph. Three evaluation methods were used to validate the performance of the segmentation framework. The Dice coefficient measures the overall agreement between the manual and automatic segmentation. The absolute distance and the Hausdorff distance between the boundaries from manual and automatic segmentation were used to measure the accuracy of the segmentation. Ultrasound images of human subjects were used for validation. For the epicardial and endocardial boundaries, the Dice coefficients were 90.8 ± 1.7% and 87.3 ± 1.9%, the absolute distances were 2.0 ± 0.42 mm and 1.79 ± 0.45 mm, and the Hausdorff distances were 6.86 ± 1.71 mm and 7.02 ± 1.17 mm, respectively. The automatic segmentation method based on a sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  1. Automated tissue segmentation of MR brain images in the presence of white matter lesions.

    PubMed

    Valverde, Sergi; Oliver, Arnau; Roura, Eloy; González-Villà, Sandra; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Rovira, Àlex; Lladó, Xavier

    2017-01-01

    Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance of our method with other state-of-the-art techniques. On the MRBrainS13 data, the presented approach was at the time of submission the best ranked unsupervised intensity model method of the challenge (7th position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12. On MS data, the differences in tissue segmentation between the images segmented with our method and the same images where manual expert annotations were used to refill lesions on T1-w images before segmentation were lower or similar to the best state-of-the-art pipeline incorporating automated lesion segmentation and filling. Our results show that the proposed pipeline achieved very competitive results on both vascular and MS lesions. A public version of this approach is available to download for the neuro-imaging community. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Functional segmentation of dynamic PET studies: Open source implementation and validation of a leader-follower-based algorithm.

    PubMed

    Mateos-Pérez, José María; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Vaquero, Juan José

    2016-02-01

    We present a novel segmentation algorithm for dynamic PET studies that groups pixels according to the similarity of their time-activity curves. Sixteen mice bearing a human tumor cell line xenograft (CH-157MN) were imaged with three different (68)Ga-DOTA-peptides (DOTANOC, DOTATATE, DOTATOC) using a small animal PET-CT scanner. Regional activities (input function and tumor) were obtained after manual delineation of regions of interest over the image. The algorithm was implemented under the jClustering framework and used to extract the same regional activities as in the manual approach. The volume of distribution in the tumor was computed using the Logan linear method. A Kruskal-Wallis test was used to investigate significant differences between the manually and automatically obtained volumes of distribution. The algorithm successfully segmented all the studies. No significant differences were found for the same tracer across different segmentation methods. Manual delineation revealed significant differences between DOTANOC and the other two tracers (DOTANOC - DOTATATE, p=0.020; DOTANOC - DOTATOC, p=0.033). Similar differences were found using the leader-follower algorithm. An open implementation of a novel segmentation method for dynamic PET studies is presented and validated in rodent studies. It successfully replicated the manual results obtained in small-animal studies, thus making it a reliable substitute for this task and, potentially, for other dynamic segmentation procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms

    PubMed Central

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly

    2013-01-01

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652

  4. A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context.

    PubMed

    Storelli, L; Pagani, E; Rocca, M A; Horsfield, M A; Gallo, A; Bisecco, A; Battaglini, M; De Stefano, N; Vrenken, H; Thomas, D L; Mancini, L; Ropele, S; Enzinger, C; Preziosa, P; Filippi, M

    2016-07-21

    The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented. The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers. We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (P > .05). The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS. © 2016 American Society of Neuroradiology.

  5. An Integrated Approach to Segmentation and Nonrigid Registration for Application in Image-Guided Pelvic Radiotherapy

    PubMed Central

    Lu, Chao; Chelikani, Sudhakar; Papademetris, Xenophon; Knisely, Jonathan P.; Milosevic, Michael F.; Chen, Zhe; Jaffray, David A.; Staib, Lawrence H.; Duncan, James S.

    2011-01-01

    External beam radiotherapy (EBRT) has become the preferred options for non-surgical treatment of prostate cancer and cervix cancer. In order to deliver higher doses to cancerous regions within these pelvic structures (i.e. prostate or cervix) while maintaining or lowering the doses to surrounding non-cancerous regions, it is critical to account for setup variation, organ motion, anatomical changes due to treatment and intra-fraction motion. In previous work, manual segmentation of the soft tissues is performed and then images are registered based on the manual segmentation. In this paper, we present an integrated automatic approach to multiple organ segmentation and nonrigid constrained registration, which can achieve these two aims simultaneously. The segmentation and registration steps are both formulated using a Bayesian framework, and they constrain each other using an iterative conditional model strategy. We also propose a new strategy to assess cumulative actual dose for this novel integrated algorithm, in order to both determine whether the intended treatment is being delivered and, potentially, whether or not a plan should be adjusted for future treatment fractions. Quantitative results show that the automatic segmentation produced results that have an accuracy comparable to manual segmentation, while the registration part significantly outperforms both rigid and non-rigid registration. Clinical application and evaluation of dose delivery show the superiority of proposed method to the procedure currently used in clinical practice, i.e. manual segmentation followed by rigid registration. PMID:21646038

  6. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Yang, J; Beadle, B

    2014-06-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of imaging information available in radiotherapy today. This project was supported by a grant by Varian Medical Systems.« less

  8. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    PubMed Central

    Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231

  9. A Multiscale Parallel Computing Architecture for Automated Segmentation of the Brain Connectome

    PubMed Central

    Knobe, Kathleen; Newton, Ryan R.; Schlimbach, Frank; Blower, Melanie; Reid, R. Clay

    2015-01-01

    Several groups in neurobiology have embarked into deciphering the brain circuitry using large-scale imaging of a mouse brain and manual tracing of the connections between neurons. Creating a graph of the brain circuitry, also called a connectome, could have a huge impact on the understanding of neurodegenerative diseases such as Alzheimer’s disease. Although considerably smaller than a human brain, a mouse brain already exhibits one billion connections and manually tracing the connectome of a mouse brain can only be achieved partially. This paper proposes to scale up the tracing by using automated image segmentation and a parallel computing approach designed for domain experts. We explain the design decisions behind our parallel approach and we present our results for the segmentation of the vasculature and the cell nuclei, which have been obtained without any manual intervention. PMID:21926011

  10. Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction

    PubMed Central

    Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu’s segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images. PMID:28515636

  11. Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction.

    PubMed

    Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu's segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images.

  12. Optic disc segmentation: level set methods and blood vessels inpainting

    NASA Astrophysics Data System (ADS)

    Almazroa, A.; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-03-01

    Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head (ONH) pathology such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of ONH abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique is applied. The algorithm is evaluated using a new retinal fundus image dataset called RIGA (Retinal Images for Glaucoma Analysis). In the case of low quality images, a double level set is applied in which the first level set is considered to be a localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as its agreement with manual markings by six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid is 83.9%, and the best agreement is observed between the results of the algorithm and manual markings in 379 images.

  13. Automated segmentation of foveal avascular zone in fundus fluorescein angiography.

    PubMed

    Zheng, Yalin; Gandhi, Jagdeep Singh; Stangos, Alexandros N; Campa, Claudio; Broadbent, Deborah M; Harding, Simon P

    2010-07-01

    PURPOSE. To describe and evaluate the performance of a computerized automated segmentation technique for use in quantification of the foveal avascular zone (FAZ). METHODS. A computerized technique for automated segmentation of the FAZ using images from fundus fluorescein angiography (FFA) was applied to 26 transit-phase images obtained from patients with various grades of diabetic retinopathy. The area containing the FAZ zone was first extracted from the original image and smoothed by a Gaussian kernel (sigma = 1.5). An initializing contour was manually placed inside the FAZ of the smoothed image and iteratively moved by the segmentation program toward the FAZ boundary. Five tests with different initializing curves were run on each of 26 images to assess reproducibility. The accuracy of the program was also validated by comparing results obtained by the program with the FAZ boundaries manually delineated by medical retina specialists. Interobserver performance was then evaluated by comparing delineations from two of the experts. RESULTS. One-way analysis of variance indicated that the disparities between different tests were not statistically significant, signifying excellent reproducibility for the computer program. There was a statistically significant linear correlation between the results obtained by automation and manual delineations by experts. CONCLUSIONS. This automated segmentation program can produce highly reproducible results that are comparable to those made by clinical experts. It has the potential to assist in the detection and management of foveal ischemia and to be integrated into automated grading systems.

  14. Localization of the transverse processes in ultrasound for spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Kamali, Shahrokh; Ungi, Tamas; Lasso, Andras; Yan, Christina; Lougheed, Matthew; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks such as transverse processes, but as bones have reduced visibility in ultrasound imaging, skeletal landmarks are typically segmented manually, which is an exceedingly laborious and long process. We propose an automatic algorithm to segment and localize the surface of bony areas in the transverse process for scoliosis in ultrasound. METHODS: The algorithm uses cascade of filters to remove low intensity pixels, smooth the image and detect bony edges. By applying first differentiation, candidate bony areas are classified. The average intensity under each area has a correlation with the possibility of a shadow, and areas with strong shadow are kept for bone segmentation. The segmented images are used to reconstruct a 3-D volume to represent the whole spinal structure around the transverse processes. RESULTS: A comparison between the manual ground truth segmentation and the automatic algorithm in 50 images showed 0.17 mm average difference. The time to process all 1,938 images was about 37 Sec. (0.0191 Sec. / Image), including reading the original sequence file. CONCLUSION: Initial experiments showed the algorithm to be sufficiently accurate and fast for segmentation transverse processes in ultrasound for spinal curvature measurement. An extensive evaluation of the method is currently underway on images from a larger patient cohort and using multiple observers in producing ground truth segmentation.

  15. Semi-automatic image analysis methodology for the segmentation of bubbles and drops in complex dispersions occurring in bioreactors

    NASA Astrophysics Data System (ADS)

    Taboada, B.; Vega-Alvarado, L.; Córdova-Aguilar, M. S.; Galindo, E.; Corkidi, G.

    2006-09-01

    Characterization of multiphase systems occurring in fermentation processes is a time-consuming and tedious process when manual methods are used. This work describes a new semi-automatic methodology for the on-line assessment of diameters of oil drops and air bubbles occurring in a complex simulated fermentation broth. High-quality digital images were obtained from the interior of a mechanically stirred tank. These images were pre-processed to find segments of edges belonging to the objects of interest. The contours of air bubbles and oil drops were then reconstructed using an improved Hough transform algorithm which was tested in two, three and four-phase simulated fermentation model systems. The results were compared against those obtained manually by a trained observer, showing no significant statistical differences. The method was able to reduce the total processing time for the measurements of bubbles and drops in different systems by 21-50% and the manual intervention time for the segmentation procedure by 80-100%.

  16. A patient-specific segmentation framework for longitudinal MR images of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido

    2012-02-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, reproducible segmentations of MR images with TBI are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects related to head injury. In this paper, we introduce a multi-modal image segmentation framework for longitudinal TBI images. The framework is initialized through manual input of primary lesion sites at each time point, which are then refined by a joint approach composed of Bayesian segmentation and construction of a personalized atlas. The personalized atlas construction estimates the average of the posteriors of the Bayesian segmentation at each time point and warps the average back to each time point to provide the updated priors for Bayesian segmentation. The difference between our approach and segmenting longitudinal images independently is that we use the information from all time points to improve the segmentations. Given a manual initialization, our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can handle different sets of modalities at each time point, which provides flexibility in analyzing clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up scans. The results demonstrate that joint analysis of all the points yields improved segmentation compared to independent analysis of the two time points.

  17. Automatic segmentation of vessels in in-vivo ultrasound scans

    NASA Astrophysics Data System (ADS)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen

    2017-03-01

    Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.

  18. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    PubMed

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  19. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    PubMed Central

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  20. Interactive surface correction for 3D shape based segmentation

    NASA Astrophysics Data System (ADS)

    Schwarz, Tobias; Heimann, Tobias; Tetzlaff, Ralf; Rau, Anne-Mareike; Wolf, Ivo; Meinzer, Hans-Peter

    2008-03-01

    Statistical shape models have become a fast and robust method for segmentation of anatomical structures in medical image volumes. In clinical practice, however, pathological cases and image artifacts can lead to local deviations of the detected contour from the true object boundary. These deviations have to be corrected manually. We present an intuitively applicable solution for surface interaction based on Gaussian deformation kernels. The method is evaluated by two radiological experts on segmentations of the liver in contrast-enhanced CT images and of the left heart ventricle (LV) in MRI data. For both applications, five datasets are segmented automatically using deformable shape models, and the resulting surfaces are corrected manually. The interactive correction step improves the average surface distance against ground truth from 2.43mm to 2.17mm for the liver, and from 2.71mm to 1.34mm for the LV. We expect this method to raise the acceptance of automatic segmentation methods in clinical application.

  1. Quantification of regional fat volume in rat MRI

    NASA Astrophysics Data System (ADS)

    Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren

    2003-05-01

    Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.

  2. Gland segmentation in prostate histopathological images

    PubMed Central

    Singh, Malay; Kalaw, Emarene Mationg; Giron, Danilo Medina; Chong, Kian-Tai; Tan, Chew Lim; Lee, Hwee Kuan

    2017-01-01

    Abstract. Glandular structural features are important for the tumor pathologist in the assessment of cancer malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An automated gland segmentation system can highlight various glandular shapes and structures for further analysis by the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and stroma regions. Our automated gland segmentation system was trained using these manual annotations. It identifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial information for consolidating pixel-level classification results into object-level segmentation. Experimental results show that our method outperforms various texture and gland structure-based gland segmentation algorithms in the literature. Our method has good performance and can be a promising tool to help decrease interobserver variability among pathologists. PMID:28653016

  3. Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation.

    PubMed

    Lee, Aaron Y; Lee, Cecilia S; Keane, Pearse A; Tufail, Adnan

    2016-01-01

    Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images.

  4. Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation

    PubMed Central

    Lee, Aaron Y.; Lee, Cecilia S.; Keane, Pearse A.; Tufail, Adnan

    2016-01-01

    Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images. PMID:27293877

  5. Research on Method of Interactive Segmentation Based on Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Li, H.; Han, Y.; Yu, F.

    2017-09-01

    In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.

  6. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  7. Myocardial Infarct Segmentation from Magnetic Resonance Images for Personalized Modeling of Cardiac Electrophysiology

    PubMed Central

    Ukwatta, Eranga; Arevalo, Hermenegild; Li, Kristina; Yuan, Jing; Qiu, Wu; Malamas, Peter; Wu, Katherine C.

    2016-01-01

    Accurate representation of myocardial infarct geometry is crucial to patient-specific computational modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut optimization problem, which was solved using its dual formulation, the continuous max-flow (CMF). The optimization objective comprised of a smoothness term, and a data term that quantified the similarity between image intensity histograms of segmented regions and those of a set of training images. A manual segmentation of the LV myocardium was used to initialize and constrain the developed method. The three-dimensional geometry of infarct was reconstructed from its segmentation using an implicit, shape-based interpolation method. The proposed methodology was extensively evaluated using metrics based on geometry, and outcomes of individualized electrophysiological simulations of cardiac dys(function). Several existing LV infarct segmentation approaches were implemented, and compared with the proposed method. Our results demonstrated that the CMF method was more accurate than the existing approaches in reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The infarct segmentation method we have developed and comprehensively evaluated in this study constitutes an important step in advancing clinical applications of personalized simulations of cardiac electrophysiology. PMID:26731693

  8. Standing on the shoulders of giants: improving medical image segmentation via bias correction.

    PubMed

    Wang, Hongzhi; Das, Sandhitsu; Pluta, John; Craige, Caryne; Altinay, Murat; Avants, Brian; Weiner, Michael; Mueller, Susanne; Yushkevich, Paul

    2010-01-01

    We propose a simple strategy to improve automatic medical image segmentation. The key idea is that without deep understanding of a segmentation method, we can still improve its performance by directly calibrating its results with respect to manual segmentation. We formulate the calibration process as a bias correction problem, which is addressed by machine learning using training data. We apply this methodology on three segmentation problems/methods and show significant improvements for all of them.

  9. A Learning-Based Wrapper Method to Correct Systematic Errors in Automatic Image Segmentation: Consistently Improved Performance in Hippocampus, Cortex and Brain Segmentation

    PubMed Central

    Wang, Hongzhi; Das, Sandhitsu R.; Suh, Jung Wook; Altinay, Murat; Pluta, John; Craige, Caryne; Avants, Brian; Yushkevich, Paul A.

    2011-01-01

    We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation method. The wrapper method attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors produced by the host method on training data for which manual segmentations are available. The method then attempts to correct such errors in segmentations produced by the host method on new images. One practical use of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to imaging data and segmentation protocols that are different from those on which the tools were trained and tuned. An open-source implementation of the proposed wrapper method is provided, and can be applied to a wide range of image segmentation problems. The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al., 2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label fusion as the host method, the average Dice overlap between reference segmentations and segmentations produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter segmentation and gray matter segmentation, respectively. PMID:21237273

  10. SU-E-J-132: Automated Segmentation with Post-Registration Atlas Selection Based On Mutual Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X; Gao, H; Sharp, G

    2015-06-15

    Purpose: The delineation of targets and organs-at-risk is a critical step during image-guided radiation therapy, for which manual contouring is the gold standard. However, it is often time-consuming and may suffer from intra- and inter-rater variability. The purpose of this work is to investigate the automated segmentation. Methods: The automatic segmentation here is based on mutual information (MI), with the atlas from Public Domain Database for Computational Anatomy (PDDCA) with manually drawn contours.Using dice coefficient (DC) as the quantitative measure of segmentation accuracy, we perform leave-one-out cross-validations for all PDDCA images sequentially, during which other images are registered to eachmore » chosen image and DC is computed between registered contour and ground truth. Meanwhile, six strategies, including MI, are selected to measure the image similarity, with MI to be the best. Then given a target image to be segmented and an atlas, automatic segmentation consists of: (a) the affine registration step for image positioning; (b) the active demons registration method to register the atlas to the target image; (c) the computation of MI values between the deformed atlas and the target image; (d) the weighted image fusion of three deformed atlas images with highest MI values to form the segmented contour. Results: MI was found to be the best among six studied strategies in the sense that it had the highest positive correlation between similarity measure (e.g., MI values) and DC. For automated segmentation, the weighted image fusion of three deformed atlas images with highest MI values provided the highest DC among four proposed strategies. Conclusion: MI has the highest correlation with DC, and therefore is an appropriate choice for post-registration atlas selection in atlas-based segmentation. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  11. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth.

    PubMed

    Odland, Audun; Server, Andres; Saxhaug, Cathrine; Breivik, Birger; Groote, Rasmus; Vardal, Jonas; Larsson, Christopher; Bjørnerud, Atle

    2015-11-01

    Volumetric magnetic resonance imaging (MRI) is now widely available and routinely used in the evaluation of high-grade gliomas (HGGs). Ideally, volumetric measurements should be included in this evaluation. However, manual tumor segmentation is time-consuming and suffers from inter-observer variability. Thus, tools for semi-automatic tumor segmentation are needed. To present a semi-automatic method (SAM) for segmentation of HGGs and to compare this method with manual segmentation performed by experts. The inter-observer variability among experts manually segmenting HGGs using volumetric MRIs was also examined. Twenty patients with HGGs were included. All patients underwent surgical resection prior to inclusion. Each patient underwent several MRI examinations during and after adjuvant chemoradiation therapy. Three experts performed manual segmentation. The results of tumor segmentation by the experts and by the SAM were compared using Dice coefficients and kappa statistics. A relatively close agreement was seen among two of the experts and the SAM, while the third expert disagreed considerably with the other experts and the SAM. An important reason for this disagreement was a different interpretation of contrast enhancement as either surgically-induced or glioma-induced. The time required for manual tumor segmentation was an average of 16 min per scan. Editing of the tumor masks produced by the SAM required an average of less than 2 min per sample. Manual segmentation of HGG is very time-consuming and using the SAM could increase the efficiency of this process. However, the accuracy of the SAM ultimately depends on the expert doing the editing. Our study confirmed a considerable inter-observer variability among experts defining tumor volume from volumetric MRIs. © The Foundation Acta Radiologica 2014.

  12. Two and three-dimensional segmentation of hyperpolarized 3He magnetic resonance imaging of pulmonary gas distribution

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace

    2012-03-01

    A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.

  13. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  14. Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images.

    PubMed

    Seghier, Mohamed L; Kolanko, Magdalena A; Leff, Alexander P; Jäger, Hans R; Gregoire, Simone M; Werring, David J

    2011-03-23

    Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating an "extra" tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients with multiple (≥2) lobar microbleeds. MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds.

  15. Using trainable segmentation and watershed transform for identifying unilocular and multilocular cysts from ultrasound images of ovarian tumour

    NASA Astrophysics Data System (ADS)

    Ibrahim, Dheyaa Ahmed; Al-Assam, Hisham; Du, Hongbo; Jassim, Sabah

    2017-05-01

    Ovarian masses are categorised into different types of malignant and benign. In order to optimize patient treatment, it is necessary to carry out pre-operational characterisation of the suspect ovarian mass to determine its category. Ultrasound imaging has been widely used in differentiating malignant from benign cases due to its safe and non-intrusive nature, and can be used for determining the number of cysts in the ovary. Presently, the gynaecologist is tasked with manually counting the number of cysts shown on the ultrasound image. This paper proposes, a new approach that automatically segments the ovarian masses and cysts from a static B-mode image. Initially, the method uses a trainable segmentation procedure and a trained neural network classifier to accurately identify the position of the masses and cysts. After that, the borders of the masses can be appraised using watershed transform. The effectiveness of the proposed method has been tested by comparing the number of cysts identified by the method against the manual examination by a gynaecologist. A total of 65 ultrasound images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual counting method for accurately determining the number of cysts in a US ovarian image.

  16. Development and Evaluation of a Semi-automated Segmentation Tool and a Modified Ellipsoid Formula for Volumetric Analysis of the Kidney in Non-contrast T2-Weighted MR Images.

    PubMed

    Seuss, Hannes; Janka, Rolf; Prümmer, Marcus; Cavallaro, Alexander; Hammon, Rebecca; Theis, Ragnar; Sandmair, Martin; Amann, Kerstin; Bäuerle, Tobias; Uder, Michael; Hammon, Matthias

    2017-04-01

    Volumetric analysis of the kidney parenchyma provides additional information for the detection and monitoring of various renal diseases. Therefore the purposes of the study were to develop and evaluate a semi-automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non-contrast T2-weighted magnetic resonance (MR)-images. Three readers performed semi-automated segmentation of the total kidney volume (TKV) in axial, non-contrast-enhanced T2-weighted MR-images of 24 healthy volunteers (48 kidneys) twice. A semi-automated threshold-based segmentation tool was developed to segment the kidney parenchyma. Furthermore, the three readers measured renal dimensions (length, width, depth) and applied different formulas to calculate the TKV. Manual segmentation served as a reference volume. Volumes of the different methods were compared and time required was recorded. There was no significant difference between the semi-automatically and manually segmented TKV (p = 0.31). The difference in mean volumes was 0.3 ml (95% confidence interval (CI), -10.1 to 10.7 ml). Semi-automated segmentation was significantly faster than manual segmentation, with a mean difference = 188 s (220 vs. 408 s); p < 0.05. Volumes did not differ significantly comparing the results of different readers. Calculation of TKV with a modified ellipsoid formula (ellipsoid volume × 0.85) did not differ significantly from the reference volume; however, the mean error was three times higher (difference of mean volumes -0.1 ml; CI -31.1 to 30.9 ml; p = 0.95). Applying the modified ellipsoid formula was the fastest way to get an estimation of the renal volume (41 s). Semi-automated segmentation and volumetric analysis of the kidney in native T2-weighted MR data delivers accurate and reproducible results and was significantly faster than manual segmentation. Applying a modified ellipsoid formula quickly provides an accurate kidney volume.

  17. Local contrast-enhanced MR images via high dynamic range processing.

    PubMed

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  18. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.

    PubMed

    Celi, Simona; Berti, Sergio

    2014-10-01

    Optical coherence tomography (OCT) is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. This technique is particularly useful for studying coronary atherosclerosis. In this paper, we present a new framework that allows a segmentation and quantification of OCT images of coronary arteries to define the plaque type and stenosis grading. These analyses are usually carried out on-line on the OCT-workstation where measuring is mainly operator-dependent and mouse-based. The aim of this program is to simplify and improve the processing of OCT images for morphometric investigations and to present a fast procedure to obtain 3D geometrical models that can also be used for external purposes such as for finite element simulations. The main phases of our toolbox are the lumen segmentation and the identification of the main tissues in the artery wall. We validated the proposed method with identification and segmentation manually performed by expert OCT readers. The method was evaluated on ten datasets from clinical routine and the validation was performed on 210 images randomly extracted from the pullbacks. Our results show that automated segmentation of the vessel and of the tissue components are possible off-line with a precision that is comparable to manual segmentation for the tissue component and to the proprietary-OCT-console for the lumen segmentation. Several OCT sections have been processed to provide clinical outcome. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evaluation metrics for bone segmentation in ultrasound

    NASA Astrophysics Data System (ADS)

    Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas

    2015-03-01

    Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.

  20. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-01

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  1. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer.

    PubMed

    Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-07

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  2. Multivariate statistical model for 3D image segmentation with application to medical images.

    PubMed

    John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O

    2003-12-01

    In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).

  3. Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.

    PubMed

    García-Lorenzo, Daniel; Lecoeur, Jeremy; Arnold, Douglas L; Collins, D Louis; Barillot, Christian

    2009-01-01

    Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed in synthetic and real images showing good agreement between the automatic segmentation and the target segmentation. We compare our algorithm with the state of the art techniques and with several manual segmentations. An advantage of our algorithm over previously published ones is the possibility to semi-automatically improve the segmentation due to the Graph Cuts interactive feature.

  4. Validation of automated white matter hyperintensity segmentation.

    PubMed

    Smart, Sean D; Firbank, Michael J; O'Brien, John T

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion.

  5. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    PubMed

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images.

    PubMed

    Rangel-Fonseca, Piero; Gómez-Vieyra, Armando; Malacara-Hernández, Daniel; Wilson, Mario C; Williams, David R; Rossi, Ethan A

    2013-12-01

    Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the cellular mosaics under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells; however, most of these methods are not well suited for characterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to manual cell identification and yielded better than 91% correspondence. This method can be used to segment RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased RPE mosaics.

  7. An Automatic Image Processing System for Glaucoma Screening

    PubMed Central

    Alodhayb, Sami; Lakshminarayanan, Vasudevan

    2017-01-01

    Horizontal and vertical cup to disc ratios are the most crucial parameters used clinically to detect glaucoma or monitor its progress and are manually evaluated from retinal fundus images of the optic nerve head. Due to the rarity of the glaucoma experts as well as the increasing in glaucoma's population, an automatically calculated horizontal and vertical cup to disc ratios (HCDR and VCDR, resp.) can be useful for glaucoma screening. We report on two algorithms to calculate the HCDR and VCDR. In the algorithms, level set and inpainting techniques were developed for segmenting the disc, while thresholding using Type-II fuzzy approach was developed for segmenting the cup. The results from the algorithms were verified using the manual markings of images from a dataset of glaucomatous images (retinal fundus images for glaucoma analysis (RIGA dataset)) by six ophthalmologists. The algorithm's accuracy for HCDR and VCDR combined was 74.2%. Only the accuracy of manual markings by one ophthalmologist was higher than the algorithm's accuracy. The algorithm's best agreement was with markings by ophthalmologist number 1 in 230 images (41.8%) of the total tested images. PMID:28947898

  8. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.

    PubMed

    Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd

    2016-05-01

    Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Advanced two-layer level set with a soft distance constraint for dual surfaces segmentation in medical images

    NASA Astrophysics Data System (ADS)

    Ji, Yuanbo; van der Geest, Rob J.; Nazarian, Saman; Lelieveldt, Boudewijn P. F.; Tao, Qian

    2018-03-01

    Anatomical objects in medical images very often have dual contours or surfaces that are highly correlated. Manually segmenting both of them by following local image details is tedious and subjective. In this study, we proposed a two-layer region-based level set method with a soft distance constraint, which not only regularizes the level set evolution at two levels, but also imposes prior information on wall thickness in an effective manner. By updating the level set function and distance constraint functions alternatingly, the method simultaneously optimizes both contours while regularizing their distance. The method was applied to segment the inner and outer wall of both left atrium (LA) and left ventricle (LV) from MR images, using a rough initialization from inside the blood pool. Compared to manual annotation from experience observers, the proposed method achieved an average perpendicular distance (APD) of less than 1mm for the LA segmentation, and less than 1.5mm for the LV segmentation, at both inner and outer contours. The method can be used as a practical tool for fast and accurate dual wall annotations given proper initialization.

  10. Towards Automatic Image Segmentation Using Optimised Region Growing Technique

    NASA Astrophysics Data System (ADS)

    Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi

    Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.

  11. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.

    PubMed

    Awad, Joseph; Owrangi, Amir; Villemaire, Lauren; O'Riordan, Elaine; Parraga, Grace; Fenster, Aaron

    2012-02-01

    Manual segmentation of lung tumors is observer dependent and time-consuming but an important component of radiology and radiation oncology workflow. The objective of this study was to generate an automated lung tumor measurement tool for segmentation of pulmonary metastatic tumors from x-ray computed tomography (CT) images to improve reproducibility and decrease the time required to segment tumor boundaries. The authors developed an automated lung tumor segmentation algorithm for volumetric image analysis of chest CT images using shape constrained Otsu multithresholding (SCOMT) and sparse field active surface (SFAS) algorithms. The observer was required to select the tumor center and the SCOMT algorithm subsequently created an initial surface that was deformed using level set SFAS to minimize the total energy consisting of mean separation, edge, partial volume, rolling, distribution, background, shape, volume, smoothness, and curvature energies. The proposed segmentation algorithm was compared to manual segmentation whereby 21 tumors were evaluated using one-dimensional (1D) response evaluation criteria in solid tumors (RECIST), two-dimensional (2D) World Health Organization (WHO), and 3D volume measurements. Linear regression goodness-of-fit measures (r(2) = 0.63, p < 0.0001; r(2) = 0.87, p < 0.0001; and r(2) = 0.96, p < 0.0001), and Pearson correlation coefficients (r = 0.79, p < 0.0001; r = 0.93, p < 0.0001; and r = 0.98, p < 0.0001) for 1D, 2D, and 3D measurements, respectively, showed significant correlations between manual and algorithm results. Intra-observer intraclass correlation coefficients (ICC) demonstrated high reproducibility for algorithm (0.989-0.995, 0.996-0.997, and 0.999-0.999) and manual measurements (0.975-0.993, 0.985-0.993, and 0.980-0.992) for 1D, 2D, and 3D measurements, respectively. The intra-observer coefficient of variation (CV%) was low for algorithm (3.09%-4.67%, 4.85%-5.84%, and 5.65%-5.88%) and manual observers (4.20%-6.61%, 8.14%-9.57%, and 14.57%-21.61%) for 1D, 2D, and 3D measurements, respectively. The authors developed an automated segmentation algorithm requiring only that the operator select the tumor to measure pulmonary metastatic tumors in 1D, 2D, and 3D. Algorithm and manual measurements were significantly correlated. Since the algorithm segmentation involves selection of a single seed point, it resulted in reduced intra-observer variability and decreased time, for making the measurements.

  12. Asymmetric bias in user guided segmentations of brain structures

    NASA Astrophysics Data System (ADS)

    Styner, Martin; Smith, Rachel G.; Graves, Michael M.; Mosconi, Matthew W.; Peterson, Sarah; White, Scott; Blocher, Joe; El-Sayed, Mohammed; Hazlett, Heather C.

    2007-03-01

    Brain morphometric studies often incorporate comparative asymmetry analyses of left and right hemispheric brain structures. In this work we show evidence that common methods of user guided structural segmentation exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. We studied several structural segmentation methods with varying degree of user interaction from pure manual outlining to nearly fully automatic procedures. The methods were applied to MR images and their corresponding left-right mirrored images from an adult and a pediatric study. Several expert raters performed the segmentations of all structures. The asymmetric segmentation bias is assessed by comparing the left-right volumetric asymmetry in the original and mirrored datasets, as well as by testing each sides volumetric differences to a zero mean standard t-tests. The structural segmentations of caudate, putamen, globus pallidus, amygdala and hippocampus showed a highly significant asymmetric bias using methods with considerable manual outlining or landmark placement. Only the lateral ventricle segmentation revealed no asymmetric bias due to the high degree of automation and a high intensity contrast on its boundary. Our segmentation methods have been adapted in that they are applied to only one of the hemispheres in an image and its left-right mirrored image. Our work suggests that existing studies of hemispheric asymmetry without similar precautions should be interpreted in a new, skeptical light. Evidence of an asymmetric segmentation bias is novel and unknown to the imaging community. This result seems less surprising to the visual perception community and its likely cause is differences in perception of oppositely curved 3D structures.

  13. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    NASA Astrophysics Data System (ADS)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  14. Iterative normalization method for improved prostate cancer localization with multispectral magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Samil Yetik, Imam

    2012-04-01

    Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.

  15. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2013-01-01

    The paper addresses the automated segmentation of multiple organs in upper abdominal CT data. We propose a framework of multi-organ segmentation which is adaptable to any imaging conditions without using intensity information in manually traced training data. The features of the framework are as follows: (1) the organ correlation graph (OCG) is introduced, which encodes the spatial correlations among organs inherent in human anatomy; (2) the patient-specific organ shape and location priors obtained using OCG enable the estimation of intensity priors from only target data and optionally a number of untraced CT data of the same imaging condition as the target data. The proposed methods were evaluated through segmentation of eight abdominal organs (liver, spleen, left and right kidney, pancreas, gallbladder, aorta, and inferior vena cava) from 86 CT data obtained by four imaging conditions at two hospitals. The performance was comparable to the state-of-the-art method using intensity priors constructed from manually traced data.

  16. Task-oriented lossy compression of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques

    1996-04-01

    A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.

  17. Deep convolutional neural network for prostate MR segmentation

    NASA Astrophysics Data System (ADS)

    Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei

    2017-03-01

    Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.

  18. Automated intraretinal layer segmentation of optical coherence tomography images using graph-theoretical methods

    NASA Astrophysics Data System (ADS)

    Roy, Priyanka; Gholami, Peyman; Kuppuswamy Parthasarathy, Mohana; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. However, manual segmentation is subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. Efforts are therefore being made to implement active-contours, artificial intelligence, and graph-search to automatically segment retinal layers with accuracy comparable to that of manual segmentation, to ease clinical decision-making. Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to automated segmentation. Graph-based image segmentation approach stands out from the rest because of its ability to minimize the cost function while maximising the flow. This study has developed and implemented a shortest-path based graph-search algorithm for automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the minimal-weight path between two graph-nodes based on their gradients. Boundary position indices (BPI) are computed from the transition between pixel intensities. The mean difference between BPIs of two consecutive layers quantify individual layer thicknesses, which shows statistically insignificant differences when compared to a previous study [for overall retina: p = 0.17, for individual layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean computation time of 0.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-reliant for denoising, the algorithm is further computationally optimized to restrict segmentation within the user defined region-of-interest. The efficiency and reliability of this algorithm, even in noisy image conditions, makes it clinically applicable.

  19. Simultaneous 3D segmentation of three bone compartments on high resolution knee MR images from osteoarthritis initiative (OAI) using graph cuts

    NASA Astrophysics Data System (ADS)

    Shim, Hackjoon; Kwoh, C. Kent; Yun, Il Dong; Lee, Sang Uk; Bae, Kyongtae

    2009-02-01

    Osteoarthritis (OA) is associated with degradation of cartilage and related changes in the underlying bone. Quantitative measurement of those changes from MR images is an important biomarker to study the progression of OA and it requires a reliable segmentation of knee bone and cartilage. As the most popular method, manual segmentation of knee joint structures by boundary delineation is highly laborious and subject to user-variation. To overcome these difficulties, we have developed a semi-automated method for segmentation of knee bones, which consisted of two steps: placement of seeds and computation of segmentation. In the first step, seeds were placed by the user on a number of slices and then were propagated automatically to neighboring images. The seed placement could be performed on any of sagittal, coronal, and axial planes. The second step, computation of segmentation, was based on a graph-cuts algorithm where the optimal segmentation is the one that minimizes a cost function, which integrated the seeds specified by the user and both the regional and boundary properties of the regions to be segmented. The algorithm also allows simultaneous segmentation of three compartments of the knee bone (femur, tibia, patella). Our method was tested on the knee MR images of six subjects from the osteoarthritis initiative (OAI). The segmentation processing time (mean+/-SD) was (22+/-4)min, which is much shorter than that by the manual boundary delineation method (typically several hours). With this improved efficiency, our segmentation method will facilitate the quantitative morphologic analysis of changes in knee bones associated with osteoarthritis.

  20. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study.

    PubMed

    Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Noh, Kyoung Jin; Shim, Hackjoon; Seol, Hae Young

    2017-05-01

    We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ c ) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP.

  1. Manual versus Automated Carotid Artery Plaque Component Segmentation in High and Lower Quality 3.0 Tesla MRI Scans

    PubMed Central

    Smits, Loek P.; van Wijk, Diederik F.; Duivenvoorden, Raphael; Xu, Dongxiang; Yuan, Chun; Stroes, Erik S.; Nederveen, Aart J.

    2016-01-01

    Purpose To study the interscan reproducibility of manual versus automated segmentation of carotid artery plaque components, and the agreement between both methods, in high and lower quality MRI scans. Methods 24 patients with 30–70% carotid artery stenosis were planned for 3T carotid MRI, followed by a rescan within 1 month. A multicontrast protocol (T1w,T2w, PDw and TOF sequences) was used. After co-registration and delineation of the lumen and outer wall, segmentation of plaque components (lipid-rich necrotic cores (LRNC) and calcifications) was performed both manually and automated. Scan quality was assessed using a visual quality scale. Results Agreement for the detection of LRNC (Cohen’s kappa (k) is 0.04) and calcification (k = 0.41) between both manual and automated segmentation methods was poor. In the high-quality scans (visual quality score ≥ 3), the agreement between manual and automated segmentation increased to k = 0.55 and k = 0.58 for, respectively, the detection of LRNC and calcification larger than 1 mm2. Both manual and automated analysis showed good interscan reproducibility for the quantification of LRNC (intraclass correlation coefficient (ICC) of 0.94 and 0.80 respectively) and calcified plaque area (ICC of 0.95 and 0.77, respectively). Conclusion Agreement between manual and automated segmentation of LRNC and calcifications was poor, despite a good interscan reproducibility of both methods. The agreement between both methods increased to moderate in high quality scans. These findings indicate that image quality is a critical determinant of the performance of both manual and automated segmentation of carotid artery plaque components. PMID:27930665

  2. Investigation of random walks knee cartilage segmentation model using inter-observer reproducibility: Data from the osteoarthritis initiative.

    PubMed

    Hong-Seng, Gan; Sayuti, Khairil Amir; Karim, Ahmad Helmy Abdul

    2017-01-01

    Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images. The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method. Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories. A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15). The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.

  3. Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images

    PubMed Central

    Seghier, Mohamed L.; Kolanko, Magdalena A.; Leff, Alexander P.; Jäger, Hans R.; Gregoire, Simone M.; Werring, David J.

    2011-01-01

    Background Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. Methodology/Principal Findings Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating an “extra” tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients with multiple (≥2) lobar microbleeds. Conclusions/Significance MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds. PMID:21448456

  4. WRIST: A WRist Image Segmentation Toolkit for carpal bone delineation from MRI.

    PubMed

    Foster, Brent; Joshi, Anand A; Borgese, Marissa; Abdelhafez, Yasser; Boutin, Robert D; Chaudhari, Abhijit J

    2018-01-01

    Segmentation of the carpal bones from 3D imaging modalities, such as magnetic resonance imaging (MRI), is commonly performed for in vivo analysis of wrist morphology, kinematics, and biomechanics. This crucial task is typically carried out manually and is labor intensive, time consuming, subject to high inter- and intra-observer variability, and may result in topologically incorrect surfaces. We present a method, WRist Image Segmentation Toolkit (WRIST), for 3D semi-automated, rapid segmentation of the carpal bones of the wrist from MRI. In our method, the boundary of the bones were iteratively found using prior known anatomical constraints and a shape-detection level set. The parameters of the method were optimized using a training dataset of 48 manually segmented carpal bones and evaluated on 112 carpal bones which included both healthy participants without known wrist conditions and participants with thumb basilar osteoarthritis (OA). Manual segmentation by two expert human observers was considered as a reference. On the healthy subject dataset we obtained a Dice overlap of 93.0 ± 3.8, Jaccard Index of 87.3 ± 6.2, and a Hausdorff distance of 2.7 ± 3.4 mm, while on the OA dataset we obtained a Dice overlap of 90.7 ± 8.6, Jaccard Index of 83.0 ± 10.6, and a Hausdorff distance of 4.0 ± 4.4 mm. The short computational time of 20.8 s per bone (or 5.1 s per bone in the parallelized version) and the high agreement with the expert observers gives WRIST the potential to be utilized in musculoskeletal research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Validation of Automated White Matter Hyperintensity Segmentation

    PubMed Central

    Smart, Sean D.; Firbank, Michael J.; O'Brien, John T.

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion. PMID:21904678

  6. Optimal reinforcement of training datasets in semi-supervised landmark-based segmentation

    NASA Astrophysics Data System (ADS)

    Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2015-03-01

    During the last couple of decades, the development of computerized image segmentation shifted from unsupervised to supervised methods, which made segmentation results more accurate and robust. However, the main disadvantage of supervised segmentation is a need for manual image annotation that is time-consuming and subjected to human error. To reduce the need for manual annotation, we propose a novel learning approach for training dataset reinforcement in the area of landmark-based segmentation, where newly detected landmarks are optimally combined with reference landmarks from the training dataset and therefore enriches the training process. The approach is formulated as a nonlinear optimization problem, where the solution is a vector of weighting factors that measures how reliable are the detected landmarks. The detected landmarks that are found to be more reliable are included into the training procedure with higher weighting factors, whereas the detected landmarks that are found to be less reliable are included with lower weighting factors. The approach is integrated into the landmark-based game-theoretic segmentation framework and validated against the problem of lung field segmentation from chest radiographs.

  7. Comparison of computer systems and ranking criteria for automatic melanoma detection in dermoscopic images.

    PubMed

    Møllersen, Kajsa; Zortea, Maciel; Schopf, Thomas R; Kirchesch, Herbert; Godtliebsen, Fred

    2017-01-01

    Melanoma is the deadliest form of skin cancer, and early detection is crucial for patient survival. Computer systems can assist in melanoma detection, but are not widespread in clinical practice. In 2016, an open challenge in classification of dermoscopic images of skin lesions was announced. A training set of 900 images with corresponding class labels and semi-automatic/manual segmentation masks was released for the challenge. An independent test set of 379 images, of which 75 were of melanomas, was used to rank the participants. This article demonstrates the impact of ranking criteria, segmentation method and classifier, and highlights the clinical perspective. We compare five different measures for diagnostic accuracy by analysing the resulting ranking of the computer systems in the challenge. Choice of performance measure had great impact on the ranking. Systems that were ranked among the top three for one measure, dropped to the bottom half when changing performance measure. Nevus Doctor, a computer system previously developed by the authors, was used to participate in the challenge, and investigate the impact of segmentation and classifier. The diagnostic accuracy when using an automatic versus the semi-automatic/manual segmentation is investigated. The unexpected small impact of segmentation method suggests that improvements of the automatic segmentation method w.r.t. resemblance to semi-automatic/manual segmentation will not improve diagnostic accuracy substantially. A small set of similar classification algorithms are used to investigate the impact of classifier on the diagnostic accuracy. The variability in diagnostic accuracy for different classifier algorithms was larger than the variability for segmentation methods, and suggests a focus for future investigations. From a clinical perspective, the misclassification of a melanoma as benign has far greater cost than the misclassification of a benign lesion. For computer systems to have clinical impact, their performance should be ranked by a high-sensitivity measure.

  8. Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.

    2017-09-01

    Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35  ±  1.21 mm and 2.27  ±  1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.

  9. Prostate segmentation by feature enhancement using domain knowledge and adaptive region based operations

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Nuwan D.; Samarabandu, Jagath; Fenster, Aaron

    2006-04-01

    Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this paper, we present a semi-automatic discrete dynamic contour (DDC) model based image segmentation algorithm, which effectively combines a multi-resolution model refinement procedure together with the domain knowledge of the image class. The segmentation begins on a low-resolution image by defining a closed DDC model by the user. This contour model is then deformed progressively towards higher resolution images. We use a combination of a domain knowledge based fuzzy inference system (FIS) and a set of adaptive region based operators to enhance the edges of interest and to govern the model refinement using a DDC model. The automatic vertex relocation process, embedded into the algorithm, relocates deviated contour points back onto the actual prostate boundary, eliminating the need of user interaction after initialization. The accuracy of the prostate boundary produced by the proposed algorithm was evaluated by comparing it with a manually outlined contour by an expert observer. We used this algorithm to segment the prostate boundary in 114 2D transrectal ultrasound (TRUS) images of six patients scheduled for brachytherapy. The mean distance between the contours produced by the proposed algorithm and the manual outlines was 2.70 ± 0.51 pixels (0.54 ± 0.10 mm). We also showed that the algorithm is insensitive to variations of the initial model and parameter values, thus increasing the accuracy and reproducibility of the resulting boundaries in the presence of noise and artefacts.

  10. Evaluation of a deformable registration algorithm for subsequent lung computed tomography imaging during radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stützer, Kristin; Haase, Robert; Exner, Florian

    2016-09-15

    Purpose: Rating both a lung segmentation algorithm and a deformable image registration (DIR) algorithm for subsequent lung computed tomography (CT) images by different evaluation techniques. Furthermore, investigating the relative performance and the correlation of the different evaluation techniques to address their potential value in a clinical setting. Methods: Two to seven subsequent CT images (69 in total) of 15 lung cancer patients were acquired prior, during, and after radiochemotherapy. Automated lung segmentations were compared to manually adapted contours. DIR between the first and all following CT images was performed with a fast algorithm specialized for lung tissue registration, requiring themore » lung segmentation as input. DIR results were evaluated based on landmark distances, lung contour metrics, and vector field inconsistencies in different subvolumes defined by eroding the lung contour. Correlations between the results from the three methods were evaluated. Results: Automated lung contour segmentation was satisfactory in 18 cases (26%), failed in 6 cases (9%), and required manual correction in 45 cases (66%). Initial and corrected contours had large overlap but showed strong local deviations. Landmark-based DIR evaluation revealed high accuracy compared to CT resolution with an average error of 2.9 mm. Contour metrics of deformed contours were largely satisfactory. The median vector length of inconsistency vector fields was 0.9 mm in the lung volume and slightly smaller for the eroded volumes. There was no clear correlation between the three evaluation approaches. Conclusions: Automatic lung segmentation remains challenging but can assist the manual delineation process. Proven by three techniques, the inspected DIR algorithm delivers reliable results for the lung CT data sets acquired at different time points. Clinical application of DIR demands a fast DIR evaluation to identify unacceptable results, for instance, by combining different automated DIR evaluation methods.« less

  11. Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation

    PubMed Central

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2015-01-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  12. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM.

    PubMed

    Schlaeger, Sarah; Freitag, Friedemann; Klupp, Elisabeth; Dieckmeyer, Michael; Weidlich, Dominik; Inhuber, Stephanie; Deschauer, Marcus; Schoser, Benedikt; Bublitz, Sarah; Montagnese, Federica; Zimmer, Claus; Rummeny, Ernst J; Karampinos, Dimitrios C; Kirschke, Jan S; Baum, Thomas

    2018-01-01

    Magnetic resonance imaging (MRI) can non-invasively assess muscle anatomy, exercise effects and pathologies with different underlying causes such as neuromuscular diseases (NMD). Quantitative MRI including fat fraction mapping using chemical shift encoding-based water-fat MRI has emerged for reliable determination of muscle volume and fat composition. The data analysis of water-fat images requires segmentation of the different muscles which has been mainly performed manually in the past and is a very time consuming process, currently limiting the clinical applicability. An automatization of the segmentation process would lead to a more time-efficient analysis. In the present work, the manually segmented thigh magnetic resonance imaging database MyoSegmenTUM is presented. It hosts water-fat MR images of both thighs of 15 healthy subjects and 4 patients with NMD with a voxel size of 3.2x2x4 mm3 with the corresponding segmentation masks for four functional muscle groups: quadriceps femoris, sartorius, gracilis, hamstrings. The database is freely accessible online at https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. The database is mainly meant as ground truth which can be used as training and test dataset for automatic muscle segmentation algorithms. The segmentation allows extraction of muscle cross sectional area (CSA) and volume. Proton density fat fraction (PDFF) of the defined muscle groups from the corresponding images and quadriceps muscle strength measurements/neurological muscle strength rating can be used for benchmarking purposes.

  13. An iterative method for airway segmentation using multiscale leakage detection

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.

    2017-02-01

    There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.

  14. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.

    PubMed

    Abdulhay, Enas; Mohammed, Mazin Abed; Ibrahim, Dheyaa Ahmed; Arunkumar, N; Venkatraman, V

    2018-02-17

    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.

  15. Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy.

    PubMed

    Landes, Constantin A; Weichert, Frank; Geis, Philipp; Helga, Fritsch; Wagner, Mathias

    2006-03-01

    Cleft lip and palate reconstructive surgery requires thorough knowledge of normal and pathological labial, palatal, and velopharyngeal anatomy. This study compared two software algorithms and their 3D virtual anatomical reconstruction because exact 3D micromorphological reconstruction may improve learning, reveal spatial relationships, and provide data for mathematical modeling. Transverse and frontal serial sections of the midface of 18 fetal specimens (11th to 32nd gestational week) were used for two manual segmentation approaches. The first manual segmentation approach used bitmap images and either Windows-based or Mac-based SURFdriver commercial software that allowed manual contour matching, surface generation with average slice thickness, 3D triangulation, and real-time interactive virtual 3D reconstruction viewing. The second manual segmentation approach used tagged image format and platform-independent prototypical SeViSe software developed by one of the authors (F.W.). Distended or compressed structures were dynamically transformed. Registration was automatic but allowed manual correction, such as individual section thickness, surface generation, and interactive virtual 3D real-time viewing. SURFdriver permitted intuitive segmentation, easy manual offset correction, and the reconstruction showed complex spatial relationships in real time. However, frequent software crashes and erroneous landmarks appearing "out of the blue," requiring manual correction, were tedious. Individual section thickness, defined smoothing, and unlimited structure number could not be integrated. The reconstruction remained underdimensioned and not sufficiently accurate for this study's reconstruction problem. SeViSe permitted unlimited structure number, late addition of extra sections, and quantified smoothing and individual slice thickness; however, SeViSe required more elaborate work-up compared to SURFdriver, yet detailed and exact 3D reconstructions were created.

  16. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.

    PubMed

    Dolz, Jose; Laprie, Anne; Ken, Soléakhéna; Leroy, Henri-Arthur; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien

    2016-01-01

    To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI). SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours. Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes. Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.

  17. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.

  18. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    PubMed

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1

    PubMed Central

    Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron

    2005-01-01

    Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593

  20. An automatic multi-atlas prostate segmentation in MRI using a multiscale representation and a label fusion strategy

    NASA Astrophysics Data System (ADS)

    Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo

    2015-01-01

    The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.

  1. Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.

    PubMed

    Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco

    2018-04-01

    In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Segmentation of the lumen and media-adventitia boundaries of the common carotid artery from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Ukwatta, E.; Awad, J.; Ward, A. D.; Samarabandu, J.; Krasinski, A.; Parraga, G.; Fenster, A.

    2011-03-01

    Three-dimensional ultrasound (3D US) vessel wall volume (VWV) measurements provide high measurement sensitivity and reproducibility for the monitoring and assessment of carotid atherosclerosis. In this paper, we describe a semiautomated approach based on the level set method to delineate the media-adventitia and lumen boundaries of the common carotid artery from 3D US images to support the computation of VWV. Due to the presence of plaque and US image artifacts, the carotid arteries are challenging to segment using image information alone. Our segmentation framework combines several image cues with domain knowledge and limited user interaction. Our method was evaluated with respect to manually outlined boundaries on 430 2D US images extracted from 3D US images of 30 patients who have carotid stenosis of 60% or more. The VWV given by our method differed from that given by manual segmentation by 6.7% +/- 5.0%. For the media-adventitia and lumen segmentations, respectively, our method yielded Dice coefficients of 95.2% +/- 1.6%, 94.3% +/- 2.6%, mean absolute distances of 0.3 +/- 0.1 mm, 0.2 +/- 0.1 mm, maximum absolute distances of 0.8 +/- 0.4 mm, 0.6 +/- 0.3 mm, and volume differences of 4.2% +/- 3.1%, 3.4% +/- 2.6%. The realization of a semi-automated segmentation method will accelerate the translation of 3D carotid US to clinical care for the rapid, non-invasive, and economical monitoring of atherosclerotic disease progression and regression during therapy.

  3. Reliable and fast volumetry of the lumbar spinal cord using cord image analyser (Cordial).

    PubMed

    Tsagkas, Charidimos; Altermatt, Anna; Bonati, Ulrike; Pezold, Simon; Reinhard, Julia; Amann, Michael; Cattin, Philippe; Wuerfel, Jens; Fischer, Dirk; Parmar, Katrin; Fischmann, Arne

    2018-04-30

    To validate the precision and accuracy of the semi-automated cord image analyser (Cordial) for lumbar spinal cord (SC) volumetry in 3D T1w MRI data of healthy controls (HC). 40 3D T1w images of 10 HC (w/m: 6/4; age range: 18-41 years) were acquired at one 3T-scanner in two MRI sessions (time interval 14.9±6.1 days). Each subject was scanned twice per session, allowing determination of test-retest reliability both in back-to-back (intra-session) and scan-rescan images (inter-session). Cordial was applied for lumbar cord segmentation twice per image by two raters, allowing for assessment of intra- and inter-rater reliability, and compared to a manual gold standard. While manually segmented volumes were larger (mean: 2028±245 mm 3 vs. Cordial: 1636±300 mm 3 , p<0.001), accuracy assessments between manually and semi-automatically segmented images showed a mean Dice-coefficient of 0.88±0.05. Calculation of within-subject coefficients of variation (COV) demonstrated high intra-session (1.22-1.86%), inter-session (1.26-1.84%), as well as intra-rater (1.73-1.83%) reproducibility. No significant difference was shown between intra- and inter-session reproducibility or between intra-rater reliabilities. Although inter-rater reproducibility (COV: 2.87%) was slightly lower compared to all other reproducibility measures, between rater consistency was very strong (intraclass correlation coefficient: 0.974). While under-estimating the lumbar SCV, Cordial still provides excellent inter- and intra-session reproducibility showing high potential for application in longitudinal trials. • Lumbar spinal cord segmentation using the semi-automated cord image analyser (Cordial) is feasible. • Lumbar spinal cord is 40-mm cord segment 60 mm above conus medullaris. • Cordial provides excellent inter- and intra-session reproducibility in lumbar spinal cord region. • Cordial shows high potential for application in longitudinal trials.

  4. Cellular automata segmentation of the boundary between the compacta of vertebral bodies and surrounding structures

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Nimsky, Christopher

    2016-03-01

    Due to the aging population, spinal diseases get more and more common nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and 13% for white men in the United States. Thus the numbers of surgical spinal procedures are also increasing with the aging population and precise diagnosis plays a vital role in reducing complication and recurrence of symptoms. Spinal imaging of vertebral column is a tedious process subjected to interpretation errors. In this contribution, we aim to reduce time and error for vertebral interpretation by applying and studying the GrowCut - algorithm for boundary segmentation between vertebral body compacta and surrounding structures. GrowCut is a competitive region growing algorithm using cellular automata. For our study, vertebral T2-weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined by neurosurgeons. Then, the vertebral bodies were segmented in the medical images by a GrowCut-trained physician using the semi-automated GrowCut-algorithm. Afterwards, results of both segmentation processes were compared using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD) which yielded to a DSC of 82.99+/-5.03% and a HD of 18.91+/-7.2 voxel, respectively. In addition, the times have been measured during the manual and the GrowCut segmentations, showing that a GrowCutsegmentation - with an average time of less than six minutes (5.77+/-0.73) - is significantly shorter than a pure manual outlining.

  5. An automated skin segmentation of Breasts in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

    PubMed

    Lee, Chia-Yen; Chang, Tzu-Fang; Chang, Nai-Yun; Chang, Yeun-Chung

    2018-04-18

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to diagnose breast disease. Obtaining anatomical information from DCE-MRI requires the skin be manually removed so that blood vessels and tumors can be clearly observed by physicians and radiologists; this requires considerable manpower and time. We develop an automated skin segmentation algorithm where the surface skin is removed rapidly and correctly. The rough skin area is segmented by the active contour model, and analyzed in segments according to the continuity of the skin thickness for accuracy. Blood vessels and mammary glands are retained, which remedies the defect of removing some blood vessels in active contours. After three-dimensional imaging, the DCE-MRIs without the skin can be used to see internal anatomical information for clinical applications. The research showed the Dice's coefficients of the 3D reconstructed images using the proposed algorithm and the active contour model for removing skins are 93.2% and 61.4%, respectively. The time performance of segmenting skins automatically is about 165 times faster than manually. The texture information of the tumors position with/without the skin is compared by the paired t-test yielded all p < 0.05, which suggested the proposed algorithm may enhance observability of tumors at the significance level of 0.05.

  6. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model.

    PubMed

    Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L

    2013-03-13

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.

  7. White matter lesion extension to automatic brain tissue segmentation on MRI.

    PubMed

    de Boer, Renske; Vrooman, Henri A; van der Lijn, Fedde; Vernooij, Meike W; Ikram, M Arfan; van der Lugt, Aad; Breteler, Monique M B; Niessen, Wiro J

    2009-05-01

    A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.

  8. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  9. Automated T2-mapping of the Menisci From Magnetic Resonance Images in Patients with Acute Knee Injury.

    PubMed

    Paproki, Anthony; Engstrom, Craig; Strudwick, Mark; Wilson, Katharine J; Surowiec, Rachel K; Ho, Charles; Crozier, Stuart; Fripp, Jurgen

    2017-10-01

    This study aimed to evaluate the accuracy of an automated method for segmentation and T2 mapping of the medial meniscus (MM) and lateral meniscus (LM) in clinical magnetic resonance images from patients with acute knee injury. Eighty patients scheduled for surgery of an anterior cruciate ligament or meniscal injury underwent magnetic resonance imaging of the knee (multiplanar two-dimensional [2D] turbo spin echo [TSE] or three-dimensional [3D]-TSE examinations, T2 mapping). Each meniscus was automatically segmented from the 2D-TSE (composite volume) or 3D-TSE images, auto-partitioned into anterior, mid, and posterior regions, and co-registered onto the T2 maps. The Dice similarity index (spatial overlap) was calculated between automated and manual segmentations of 2D-TSE (15 patients), 3D-TSE (16 patients), and corresponding T2 maps (31 patients). Pearson and intraclass correlation coefficients (ICC) were calculated between automated and manual T2 values. T2 values were compared (Wilcoxon rank sum tests) between torn and non-torn menisci for the subset of patients with both manual and automated segmentations to compare statistical outcomes of both methods. The Dice similarity index values for the 2D-TSE, 3D-TSE, and T2 map volumes, respectively, were 76.4%, 84.3%, and 75.2% for the MM and 76.4%, 85.1%, and 76.1% for the LM. There were strong correlations between automated and manual T2 values (r MM  = 0.95, ICC MM  = 0.94; r LM  = 0.97, ICC LM  = 0.97). For both the manual and the automated methods, T2 values were significantly higher in torn than in non-torn MM for the full meniscus and its subregions (P < .05). Non-torn LM had higher T2 values than non-torn MM (P < .05). The present automated method offers a promising alternative to manual T2 mapping analyses of the menisci and a considerable advance for integration into clinical workflows. Copyright © 2017 The Association of University Radiologists. All rights reserved.

  10. Development of representative magnetic resonance imaging-based atlases of the canine brain and evaluation of three methods for atlas-based segmentation.

    PubMed

    Milne, Marjorie E; Steward, Christopher; Firestone, Simon M; Long, Sam N; O'Brien, Terrence J; Moffat, Bradford A

    2016-04-01

    To develop representative MRI atlases of the canine brain and to evaluate 3 methods of atlas-based segmentation (ABS). 62 dogs without clinical signs of epilepsy and without MRI evidence of structural brain disease. The MRI scans from 44 dogs were used to develop 4 templates on the basis of brain shape (brachycephalic, mesaticephalic, dolichocephalic, and combined mesaticephalic and dolichocephalic). Atlas labels were generated by segmenting the brain, ventricular system, hippocampal formation, and caudate nuclei. The MRI scans from the remaining 18 dogs were used to evaluate 3 methods of ABS (manual brain extraction and application of a brain shape-specific template [A], automatic brain extraction and application of a brain shape-specific template [B], and manual brain extraction and application of a combined template [C]). The performance of each ABS method was compared by calculation of the Dice and Jaccard coefficients, with manual segmentation used as the gold standard. Method A had the highest mean Jaccard coefficient and was the most accurate ABS method assessed. Measures of overlap for ABS methods that used manual brain extraction (A and C) ranged from 0.75 to 0.95 and compared favorably with repeated measures of overlap for manual extraction, which ranged from 0.88 to 0.97. Atlas-based segmentation was an accurate and repeatable method for segmentation of canine brain structures. It could be performed more rapidly than manual segmentation, which should allow the application of computer-assisted volumetry to large data sets and clinical cases and facilitate neuroimaging research and disease diagnosis.

  11. Techniques on semiautomatic segmentation using the Adobe Photoshop

    NASA Astrophysics Data System (ADS)

    Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae

    2005-04-01

    The purpose of this research is to enable anybody to semiautomatically segment the anatomical structures in the MRIs, CTs, and other medical images on the personal computer. The segmented images are used for making three-dimensional images, which are helpful in medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was MR scanned to make 557 MRIs, which were transferred to a personal computer. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL; successively, manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a likewise manner, 11 anatomical structures in the 8,500 anatomcial images were segmented. Also, 12 brain and 10 heart anatomical structures in anatomical images were segmented. Proper segmentation was verified by making and examining the coronal, sagittal, and three-dimensional images from the segmented images. During semiautomatic segmentation on Adobe Photoshop, suitable algorithm could be used, the extent of automatization could be regulated, convenient user interface could be used, and software bugs rarely occurred. The techniques of semiautomatic segmentation using Adobe Photoshop are expected to be widely used for segmentation of the anatomical structures in various medical images.

  12. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    PubMed Central

    Ukwatta, Eranga; Arevalo, Hermenegild; Rajchl, Martin; White, James; Pashakhanloo, Farhad; Prakosa, Adityo; Herzka, Daniel A.; McVeigh, Elliot; Lardo, Albert C.; Trayanova, Natalia A.; Vadakkumpadan, Fijoy

    2015-01-01

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations. PMID:26233186

  13. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitlymore » represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations.« less

  14. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  15. Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih

    Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less

  16. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen.

    PubMed

    Rios Velazquez, Emmanuel; Aerts, Hugo J W L; Gu, Yuhua; Goldgof, Dmitry B; De Ruysscher, Dirk; Dekker, Andre; Korn, René; Gillies, Robert J; Lambin, Philippe

    2012-11-01

    To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). For 20 NSCLC patients (stages Ib-IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org. High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2 cm(3), mean±SD) and manual delineations (81.9±94.1 cm(3); p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96). Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the "gold standard". This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Automated hippocampal subfield segmentation at 7 tesla MRI

    PubMed Central

    Wisse, Laura E.M.; Kuijf, Hugo J.; Honingh, Anita M.; Wang, Hongzhi; Pluta, John B.; Das, Sandhitsu R.; Wolk, David A.; Zwanenburg, Jaco J.M.; Yushkevich, Paul A.; Geerlings, Mirjam I.

    2015-01-01

    Purpose We aimed to evaluate an automated technique to segment hippocampal subfields and the entorhinal cortex (ERC) at 7 tesla MRI. Materials and Methods Cornu Ammonis (CA)1, CA2, CA3, dentate gyrus (DG), subiculum (SUB) and ERC were manually segmented, covering most of the long axis of the hippocampus, on 0.70 mm3 T2-weighted 7 tesla images of twenty-six participants (59±9 years, 46% men). The Automated Segmentation of Hippocampal Subfields (ASHS) approach was applied and evaluated using leave-one-out cross-validation. Results Comparison of automated segmentations with corresponding manual segmentation yielded a Dice similarity coefficient (DSC) of >0.75 for CA1, DG, SUB and ERC; and >0.54 for CA2 and CA3. Intraclass correlation coefficients (ICC) were >0.74 for CA1, DG and SUB; and >0.43 for CA2, CA3 and the ERC. Restricting the comparison of the ERC segmentation to a smaller range along the anterior-posterior axis improved both ICCs (left: 0.71; right: 0.82) and DSCs (left: 0.78; right: 0.77). The accuracy of ASHS vs a manual rater was lower, though only slightly for most subfields, than the intra-rater reliability of an expert manual rater, but was similar or slightly higher than the accuracy of an expert vs. a manual rater with ~170h of training for almost all subfields. Conclusion This work demonstrates the feasibility of using a computational technique to automatically label hippocampal subfields and the ERC at 7 tesla MRI, with a high accuracy for most subfields that is competitive with the labor intensive manual segmentation. The software and atlas are publicly available: http://www.nitrc.org/projects/ashs/. PMID:26846925

  18. US-Cut: interactive algorithm for rapid detection and segmentation of liver tumors in ultrasound acquisitions

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Chen, Xiaojun; Zoller, Wolfram G.; Schmalstieg, Dieter; Hann, Alexander

    2016-04-01

    Ultrasound (US) is the most commonly used liver imaging modality worldwide. It plays an important role in follow-up of cancer patients with liver metastases. We present an interactive segmentation approach for liver tumors in US acquisitions. Due to the low image quality and the low contrast between the tumors and the surrounding tissue in US images, the segmentation is very challenging. Thus, the clinical practice still relies on manual measurement and outlining of the tumors in the US images. We target this problem by applying an interactive segmentation algorithm to the US data, allowing the user to get real-time feedback of the segmentation results. The algorithm has been developed and tested hand-in-hand by physicians and computer scientists to make sure a future practical usage in a clinical setting is feasible. To cover typical acquisitions from the clinical routine, the approach has been evaluated with dozens of datasets where the tumors are hyperechoic (brighter), hypoechoic (darker) or isoechoic (similar) in comparison to the surrounding liver tissue. Due to the interactive real-time behavior of the approach, it was possible even in difficult cases to find satisfying segmentations of the tumors within seconds and without parameter settings, and the average tumor deviation was only 1.4mm compared with manual measurements. However, the long term goal is to ease the volumetric acquisition of liver tumors in order to evaluate for treatment response. Additional aim is the registration of intraoperative US images via the interactive segmentations to the patient's pre-interventional CT acquisitions.

  19. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis.

    PubMed

    Lian, Yanyun; Song, Zhijian

    2014-01-01

    Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.

  20. MIA-Clustering: a novel method for segmentation of paleontological material.

    PubMed

    Dunmore, Christopher J; Wollny, Gert; Skinner, Matthew M

    2018-01-01

    Paleontological research increasingly uses high-resolution micro-computed tomography (μCT) to study the inner architecture of modern and fossil bone material to answer important questions regarding vertebrate evolution. This non-destructive method allows for the measurement of otherwise inaccessible morphology. Digital measurement is predicated on the accurate segmentation of modern or fossilized bone from other structures imaged in μCT scans, as errors in segmentation can result in inaccurate calculations of structural parameters. Several approaches to image segmentation have been proposed with varying degrees of automation, ranging from completely manual segmentation, to the selection of input parameters required for computational algorithms. Many of these segmentation algorithms provide speed and reproducibility at the cost of flexibility that manual segmentation provides. In particular, the segmentation of modern and fossil bone in the presence of materials such as desiccated soft tissue, soil matrix or precipitated crystalline material can be difficult. Here we present a free open-source segmentation algorithm application capable of segmenting modern and fossil bone, which also reduces subjective user decisions to a minimum. We compare the effectiveness of this algorithm with another leading method by using both to measure the parameters of a known dimension reference object, as well as to segment an example problematic fossil scan. The results demonstrate that the medical image analysis-clustering method produces accurate segmentations and offers more flexibility than those of equivalent precision. Its free availability, flexibility to deal with non-bone inclusions and limited need for user input give it broad applicability in anthropological, anatomical, and paleontological contexts.

  1. Automatic FDG-PET-based tumor and metastatic lymph node segmentation in cervical cancer

    NASA Astrophysics Data System (ADS)

    Arbonès, Dídac R.; Jensen, Henrik G.; Loft, Annika; Munck af Rosenschöld, Per; Hansen, Anders Elias; Igel, Christian; Darkner, Sune

    2014-03-01

    Treatment of cervical cancer, one of the three most commonly diagnosed cancers worldwide, often relies on delineations of the tumour and metastases based on PET imaging using the contrast agent 18F-Fluorodeoxyglucose (FDG). We present a robust automatic algorithm for segmenting the gross tumour volume (GTV) and metastatic lymph nodes in such images. As the cervix is located next to the bladder and FDG is washed out through the urine, the PET-positive GTV and the bladder cannot be easily separated. Our processing pipeline starts with a histogram-based region of interest detection followed by level set segmentation. After that, morphological image operations combined with clustering, region growing, and nearest neighbour labelling allow to remove the bladder and to identify the tumour and metastatic lymph nodes. The proposed method was applied to 125 patients and no failure could be detected by visual inspection. We compared our segmentations with results from manual delineations of corresponding MR and CT images, showing that the detected GTV lays at least 97.5% within the MR/CT delineations. We conclude that the algorithm has a very high potential for substituting the tedious manual delineation of PET positive areas.

  2. Live minimal path for interactive segmentation of medical images

    NASA Astrophysics Data System (ADS)

    Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.

    2015-03-01

    Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..

  3. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    PubMed

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.

  4. Comparison of in vivo 3D cone-beam computed tomography tooth volume measurement protocols.

    PubMed

    Forst, Darren; Nijjar, Simrit; Flores-Mir, Carlos; Carey, Jason; Secanell, Marc; Lagravere, Manuel

    2014-12-23

    The objective of this study is to analyze a set of previously developed and proposed image segmentation protocols for precision in both intra- and inter-rater reliability for in vivo tooth volume measurements using cone-beam computed tomography (CBCT) images. Six 3D volume segmentation procedures were proposed and tested for intra- and inter-rater reliability to quantify maxillary first molar volumes. Ten randomly selected maxillary first molars were measured in vivo in random order three times with 10 days separation between measurements. Intra- and inter-rater agreement for all segmentation procedures was attained using intra-class correlation coefficient (ICC). The highest precision was for automated thresholding with manual refinements. A tooth volume measurement protocol for CBCT images employing automated segmentation with manual human refinement on a 2D slice-by-slice basis in all three planes of space possessed excellent intra- and inter-rater reliability. Three-dimensional volume measurements of the entire tooth structure are more precise than 3D volume measurements of only the dental roots apical to the cemento-enamel junction (CEJ).

  5. Automatic segmentation and measurements of gestational sac using static B-mode ultrasound images

    NASA Astrophysics Data System (ADS)

    Ibrahim, Dheyaa Ahmed; Al-Assam, Hisham; Du, Hongbo; Farren, Jessica; Al-karawi, Dhurgham; Bourne, Tom; Jassim, Sabah

    2016-05-01

    Ultrasound imagery has been widely used for medical diagnoses. Ultrasound scanning is safe and non-invasive, and hence used throughout pregnancy for monitoring growth. In the first trimester, an important measurement is that of the Gestation Sac (GS). The task of measuring the GS size from an ultrasound image is done manually by a Gynecologist. This paper presents a new approach to automatically segment a GS from a static B-mode image by exploiting its geometric features for early identification of miscarriage cases. To accurately locate the GS in the image, the proposed solution uses wavelet transform to suppress the speckle noise by eliminating the high-frequency sub-bands and prepare an enhanced image. This is followed by a segmentation step that isolates the GS through the several stages. First, the mean value is used as a threshold to binarise the image, followed by filtering unwanted objects based on their circularity, size and mean of greyscale. The mean value of each object is then used to further select candidate objects. A Region Growing technique is applied as a post-processing to finally identify the GS. We evaluated the effectiveness of the proposed solution by firstly comparing the automatic size measurements of the segmented GS against the manual measurements, and then integrating the proposed segmentation solution into a classification framework for identifying miscarriage cases and pregnancy of unknown viability (PUV). Both test results demonstrate that the proposed method is effective in segmentation the GS and classifying the outcomes with high level accuracy (sensitivity (miscarriage) of 100% and specificity (PUV) of 99.87%).

  6. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.

    PubMed

    Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison

    2014-04-01

    This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

  7. A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

    PubMed

    Nanthagopal, A Padma; Rajamony, R Sukanesh

    2012-07-01

    The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

  8. Microscopic image analysis for reticulocyte based on watershed algorithm

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.

    2007-12-01

    We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.

  9. MRI and Additive Manufacturing of Nasal Alar Constructs for Patient-specific Reconstruction.

    PubMed

    Visscher, Dafydd O; van Eijnatten, Maureen; Liberton, Niels P T J; Wolff, Jan; Hofman, Mark B M; Helder, Marco N; Don Griot, J Peter W; Zuijlen, Paul P M van

    2017-08-30

    Surgical reconstruction of cartilaginous defects remains a major challenge. In the current study, we aimed to identify an imaging strategy for the development of patient-specific constructs that aid in the reconstruction of nasal deformities. Magnetic Resonance Imaging (MRI) was performed on a human cadaver head to find the optimal MRI sequence for nasal cartilage. This sequence was subsequently used on a volunteer. Images of both were assessed by three independent researchers to determine measurement error and total segmentation time. Three dimensionally (3D) reconstructed alar cartilage was then additively manufactured. Validity was assessed by comparing manually segmented MR images to the gold standard (micro-CT). Manual segmentation allowed delineation of the nasal cartilages. Inter- and intra-observer agreement was acceptable in the cadaver (coefficient of variation 4.6-12.5%), but less in the volunteer (coefficient of variation 0.6-21.9%). Segmentation times did not differ between observers (cadaver P = 0.36; volunteer P = 0.6). The lateral crus of the alar cartilage was consistently identified by all observers, whereas part of the medial crus was consistently missed. This study suggests that MRI is a feasible imaging modality for the development of 3D alar constructs for patient-specific reconstruction.

  10. Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images.

    PubMed

    Freire, Paulo G L; Ferrari, Ricardo J

    2016-06-01

    Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei

    2017-02-01

    Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

  12. Cardiac Multi-detector CT Segmentation Based on Multiscale Directional Edge Detector and 3D Level Set.

    PubMed

    Antunes, Sofia; Esposito, Antonio; Palmisano, Anna; Colantoni, Caterina; Cerutti, Sergio; Rizzo, Giovanna

    2016-05-01

    Extraction of the cardiac surfaces of interest from multi-detector computed tomographic (MDCT) data is a pre-requisite step for cardiac analysis, as well as for image guidance procedures. Most of the existing methods need manual corrections, which is time-consuming. We present a fully automatic segmentation technique for the extraction of the right ventricle, left ventricular endocardium and epicardium from MDCT images. The method consists in a 3D level set surface evolution approach coupled to a new stopping function based on a multiscale directional second derivative Gaussian filter, which is able to stop propagation precisely on the real boundary of the structures of interest. We validated the segmentation method on 18 MDCT volumes from healthy and pathologic subjects using manual segmentation performed by a team of expert radiologists as gold standard. Segmentation errors were assessed for each structure resulting in a surface-to-surface mean error below 0.5 mm and a percentage of surface distance with errors less than 1 mm above 80%. Moreover, in comparison to other segmentation approaches, already proposed in previous work, our method presented an improved accuracy (with surface distance errors less than 1 mm increased of 8-20% for all structures). The obtained results suggest that our approach is accurate and effective for the segmentation of ventricular cavities and myocardium from MDCT images.

  13. X-ray agricultural product inspection: segmentation and classification

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Talukder, Ashit; Lee, Ha-Woon

    1997-09-01

    Processing of real-time x-ray images of randomly oriented and touching pistachio nuts for product inspection is considered. We describe the image processing used to isolate individual nuts (segmentation). This involves a new watershed transform algorithm. Segmentation results on approximately 3000 x-ray (film) and real time x-ray (linescan) nut images were excellent (greater than 99.9% correct). Initial classification results on film images are presented that indicate that the percentage of infested nuts can be reduced to 1.6% of the crop with only 2% of the good nuts rejected; this performance is much better than present manual methods and other automated classifiers have achieved.

  14. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  15. Corpus callosum segmentation using deep neural networks with prior information from multi-atlas images

    NASA Astrophysics Data System (ADS)

    Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min

    2018-03-01

    In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.

  16. Automated coronary artery calcification detection on low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  17. Software for hyperspectral, joint photographic experts group (.JPG), portable network graphics (.PNG) and tagged image file format (.TIFF) segmentation

    NASA Astrophysics Data System (ADS)

    Bruno, L. S.; Rodrigo, B. P.; Lucio, A. de C. Jorge

    2016-10-01

    This paper presents a system developed by an application of a neural network Multilayer Perceptron for drone acquired agricultural image segmentation. This application allows a supervised user training the classes that will posteriorly be interpreted by neural network. These classes will be generated manually with pre-selected attributes in the application. After the attribute selection a segmentation process is made to allow the relevant information extraction for different types of images, RGB or Hyperspectral. The application allows extracting the geographical coordinates from the image metadata, geo referencing all pixels on the image. In spite of excessive memory consume on hyperspectral images regions of interest, is possible to perform segmentation, using bands chosen by user that can be combined in different ways to obtain different results.

  18. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  19. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  20. Rapid Contour-based Segmentation for 18F-FDG PET Imaging of Lung Tumors by Using ITK-SNAP: Comparison to Expert-based Segmentation.

    PubMed

    Besson, Florent L; Henry, Théophraste; Meyer, Céline; Chevance, Virgile; Roblot, Victoire; Blanchet, Elise; Arnould, Victor; Grimon, Gilles; Chekroun, Malika; Mabille, Laurence; Parent, Florence; Seferian, Andrei; Bulifon, Sophie; Montani, David; Humbert, Marc; Chaumet-Riffaud, Philippe; Lebon, Vincent; Durand, Emmanuel

    2018-04-03

    Purpose To assess the performance of the ITK-SNAP software for fluorodeoxyglucose (FDG) positron emission tomography (PET) segmentation of complex-shaped lung tumors compared with an optimized, expert-based manual reference standard. Materials and Methods Seventy-six FDG PET images of thoracic lesions were retrospectively segmented by using ITK-SNAP software. Each tumor was manually segmented by six raters to generate an optimized reference standard by using the simultaneous truth and performance level estimate algorithm. Four raters segmented 76 FDG PET images of lung tumors twice by using ITK-SNAP active contour algorithm. Accuracy of ITK-SNAP procedure was assessed by using Dice coefficient and Hausdorff metric. Interrater and intrarater reliability were estimated by using intraclass correlation coefficients of output volumes. Finally, the ITK-SNAP procedure was compared with currently recommended PET tumor delineation methods on the basis of thresholding at 41% volume of interest (VOI; VOI 41 ) and 50% VOI (VOI 50 ) of the tumor's maximal metabolism intensity. Results Accuracy estimates for the ITK-SNAP procedure indicated a Dice coefficient of 0.83 (95% confidence interval: 0.77, 0.89) and a Hausdorff distance of 12.6 mm (95% confidence interval: 9.82, 15.32). Interrater reliability was an intraclass correlation coefficient of 0.94 (95% confidence interval: 0.91, 0.96). The intrarater reliabilities were intraclass correlation coefficients above 0.97. Finally, VOI 41 and VOI 50 accuracy metrics were as follows: Dice coefficient, 0.48 (95% confidence interval: 0.44, 0.51) and 0.34 (95% confidence interval: 0.30, 0.38), respectively, and Hausdorff distance, 25.6 mm (95% confidence interval: 21.7, 31.4) and 31.3 mm (95% confidence interval: 26.8, 38.4), respectively. Conclusion ITK-SNAP is accurate and reliable for active-contour-based segmentation of heterogeneous thoracic PET tumors. ITK-SNAP surpassed the recommended PET methods compared with ground truth manual segmentation. © RSNA, 2018.

  1. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, S; Rapacchi, S; Hu, P

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionarymore » learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.« less

  2. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  3. Right ventricle functional parameters estimation in arrhythmogenic right ventricular dysplasia using a robust shape based deformable model.

    PubMed

    Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad

    2014-07-01

    Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based method and this work can develop by four-dimensional processing for determining the first ventricular slices.

  4. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.

    PubMed

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Fast and accurate semi-automated segmentation method of spinal cord MR images at 3T applied to the construction of a cervical spinal cord template.

    PubMed

    El Mendili, Mohamed-Mounir; Chen, Raphaël; Tiret, Brice; Villard, Noémie; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib

    2015-01-01

    To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects' images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.

  6. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  7. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients.

    PubMed

    Hosseini, Mohammad-Parsa; Nazem-Zadeh, Mohammad-Reza; Pompili, Dario; Jafari-Khouzani, Kourosh; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2016-01-01

    Segmentation of the hippocampus from magnetic resonance (MR) images is a key task in the evaluation of mesial temporal lobe epilepsy (mTLE) patients. Several automated algorithms have been proposed although manual segmentation remains the benchmark. Choosing a reliable algorithm is problematic since structural definition pertaining to multiple edges, missing and fuzzy boundaries, and shape changes varies among mTLE subjects. Lack of statistical references and guidance for quantifying the reliability and reproducibility of automated techniques has further detracted from automated approaches. The purpose of this study was to develop a systematic and statistical approach using a large dataset for the evaluation of automated methods and establish a method that would achieve results better approximating those attained by manual tracing in the epileptogenic hippocampus. A template database of 195 (81 males, 114 females; age range 32-67 yr, mean 49.16 yr) MR images of mTLE patients was used in this study. Hippocampal segmentation was accomplished manually and by two well-known tools (FreeSurfer and hammer) and two previously published methods developed at their institution [Automatic brain structure segmentation (ABSS) and LocalInfo]. To establish which method was better performing for mTLE cases, several voxel-based, distance-based, and volume-based performance metrics were considered. Statistical validations of the results using automated techniques were compared with the results of benchmark manual segmentation. Extracted metrics were analyzed to find the method that provided a more similar result relative to the benchmark. Among the four automated methods, ABSS generated the most accurate results. For this method, the Dice coefficient was 5.13%, 14.10%, and 16.67% higher, Hausdorff was 22.65%, 86.73%, and 69.58% lower, precision was 4.94%, -4.94%, and 12.35% higher, and the root mean square (RMS) was 19.05%, 61.90%, and 65.08% lower than LocalInfo, FreeSurfer, and hammer, respectively. The Bland-Altman similarity analysis revealed a low bias for the ABSS and LocalInfo techniques compared to the others. The ABSS method for automated hippocampal segmentation outperformed other methods, best approximating what could be achieved by manual tracing. This study also shows that four categories of input data can cause automated segmentation methods to fail. They include incomplete studies, artifact, low signal-to-noise ratio, and inhomogeneity. Different scanner platforms and pulse sequences were considered as means by which to improve reliability of the automated methods. Other modifications were specially devised to enhance a particular method assessed in this study.

  8. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients

    PubMed Central

    Hosseini, Mohammad-Parsa; Nazem-Zadeh, Mohammad-Reza; Pompili, Dario; Jafari-Khouzani, Kourosh; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2016-01-01

    Purpose: Segmentation of the hippocampus from magnetic resonance (MR) images is a key task in the evaluation of mesial temporal lobe epilepsy (mTLE) patients. Several automated algorithms have been proposed although manual segmentation remains the benchmark. Choosing a reliable algorithm is problematic since structural definition pertaining to multiple edges, missing and fuzzy boundaries, and shape changes varies among mTLE subjects. Lack of statistical references and guidance for quantifying the reliability and reproducibility of automated techniques has further detracted from automated approaches. The purpose of this study was to develop a systematic and statistical approach using a large dataset for the evaluation of automated methods and establish a method that would achieve results better approximating those attained by manual tracing in the epileptogenic hippocampus. Methods: A template database of 195 (81 males, 114 females; age range 32–67 yr, mean 49.16 yr) MR images of mTLE patients was used in this study. Hippocampal segmentation was accomplished manually and by two well-known tools (FreeSurfer and hammer) and two previously published methods developed at their institution [Automatic brain structure segmentation (ABSS) and LocalInfo]. To establish which method was better performing for mTLE cases, several voxel-based, distance-based, and volume-based performance metrics were considered. Statistical validations of the results using automated techniques were compared with the results of benchmark manual segmentation. Extracted metrics were analyzed to find the method that provided a more similar result relative to the benchmark. Results: Among the four automated methods, ABSS generated the most accurate results. For this method, the Dice coefficient was 5.13%, 14.10%, and 16.67% higher, Hausdorff was 22.65%, 86.73%, and 69.58% lower, precision was 4.94%, −4.94%, and 12.35% higher, and the root mean square (RMS) was 19.05%, 61.90%, and 65.08% lower than LocalInfo, FreeSurfer, and hammer, respectively. The Bland–Altman similarity analysis revealed a low bias for the ABSS and LocalInfo techniques compared to the others. Conclusions: The ABSS method for automated hippocampal segmentation outperformed other methods, best approximating what could be achieved by manual tracing. This study also shows that four categories of input data can cause automated segmentation methods to fail. They include incomplete studies, artifact, low signal-to-noise ratio, and inhomogeneity. Different scanner platforms and pulse sequences were considered as means by which to improve reliability of the automated methods. Other modifications were specially devised to enhance a particular method assessed in this study. PMID:26745947

  9. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    NASA Astrophysics Data System (ADS)

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  10. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.

    PubMed

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-22

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  11. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    PubMed Central

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-01-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments. PMID:27001047

  12. Interactive lesion segmentation on dynamic contrast enhanced breast MRI using a Markov model

    NASA Astrophysics Data System (ADS)

    Wu, Qiu; Salganicoff, Marcos; Krishnan, Arun; Fussell, Donald S.; Markey, Mia K.

    2006-03-01

    The purpose of this study is to develop a method for segmenting lesions on Dynamic Contrast-Enhanced (DCE) breast MRI. DCE breast MRI, in which the breast is imaged before, during, and after the administration of a contrast agent, enables a truly 3D examination of breast tissues. This functional angiogenic imaging technique provides noninvasive assessment of microcirculatory characteristics of tissues in addition to traditional anatomical structure information. Since morphological features and kinetic curves from segmented lesions are to be used for diagnosis and treatment decisions, lesion segmentation is a key pre-processing step for classification. In our study, the ROI is defined by a bounding box containing the enhancement region in the subtraction image, which is generated by subtracting the pre-contrast image from 1st post-contrast image. A maximum a posteriori (MAP) estimate of the class membership (lesion vs. non-lesion) for each voxel is obtained using the Iterative Conditional Mode (ICM) method. The prior distribution of the class membership is modeled as a multi-level logistic model, a Markov Random Field model in which the class membership of each voxel is assumed to depend upon its nearest neighbors only. The likelihood distribution is assumed to be Gaussian. The parameters of each Gaussian distribution are estimated from a dozen voxels manually selected as representative of the class. The experimental segmentation results demonstrate anatomically plausible breast tissue segmentation and the predicted class membership of voxels from the interactive segmentation algorithm agrees with the manual classifications made by inspection of the kinetic enhancement curves. The proposed method is advantageous in that it is efficient, flexible, and robust.

  13. Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks.

    PubMed

    Jimenez-Del-Toro, Oscar; Muller, Henning; Krenn, Markus; Gruenberg, Katharina; Taha, Abdel Aziz; Winterstein, Marianne; Eggel, Ivan; Foncubierta-Rodriguez, Antonio; Goksel, Orcun; Jakab, Andras; Kontokotsios, Georgios; Langs, Georg; Menze, Bjoern H; Salas Fernandez, Tomas; Schaer, Roger; Walleyo, Anna; Weber, Marc-Andre; Dicente Cid, Yashin; Gass, Tobias; Heinrich, Mattias; Jia, Fucang; Kahl, Fredrik; Kechichian, Razmig; Mai, Dominic; Spanier, Assaf B; Vincent, Graham; Wang, Chunliang; Wyeth, Daniel; Hanbury, Allan

    2016-11-01

    Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the cloud where participants can only access the training data and can be run privately by the benchmark administrators to objectively compare their performance in an unseen common test set. Overall, 120 computed tomography and magnetic resonance patient volumes were manually annotated to create a standard Gold Corpus containing a total of 1295 structures and 1760 landmarks. Ten participants contributed with automatic algorithms for the organ segmentation task, and three for the landmark localization task. Different algorithms obtained the best scores in the four available imaging modalities and for subsets of anatomical structures. The annotation framework, resulting data set, evaluation setup, results and performance analysis from the three VISCERAL Anatomy benchmarks are presented in this article. Both the VISCERAL data set and Silver Corpus generated with the fusion of the participant algorithms on a larger set of non-manually-annotated medical images are available to the research community.

  14. Comparison of liver volumetry on contrast‐enhanced CT images: one semiautomatic and two automatic approaches

    PubMed Central

    Cai, Wei; He, Baochun; Fang, Chihua

    2016-01-01

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods— one interactive method, an in‐house‐developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)‐based segmentation, and one automatic probabilistic atlas (PA)‐guided segmentation method on clinical contrast‐enhanced CT images. Forty‐two datasets, including 27 normal liver and 15 space‐occupying liver lesion patients, were retrospectively included in this study. The three methods — one semiautomatic 3DMIA, one automatic ASM‐based, and one automatic PA‐based liver volumetry — achieved an accuracy with VD (volume difference) of −1.69%,−2.75%, and 3.06% in the normal group, respectively, and with VD of −3.20%,−3.35%, and 4.14% in the space‐occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excellent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p<0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p<0.001). The semiautomatic interactive 3DMIA, automatic ASM‐based, and automatic PA‐based liver volumetry agreed well with manual gold standard in both the normal liver group and the space‐occupying lesion group. The ASM‐ and PA‐based automatic segmentation have better efficiency in clinical use. PACS number(s): 87.55.‐x PMID:27929487

  15. Comparison of liver volumetry on contrast-enhanced CT images: one semiautomatic and two automatic approaches.

    PubMed

    Cai, Wei; He, Baochun; Fan, Yingfang; Fang, Chihua; Jia, Fucang

    2016-11-08

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods- one interactive method, an in-house-developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)-based segmentation, and one automatic probabilistic atlas (PA)-guided segmentation method on clinical contrast-enhanced CT images. Forty-two datasets, including 27 normal liver and 15 space-occupying liver lesion patients, were retrospectively included in this study. The three methods - one semiautomatic 3DMIA, one automatic ASM-based, and one automatic PA-based liver volumetry - achieved an accuracy with VD (volume difference) of -1.69%, -2.75%, and 3.06% in the normal group, respectively, and with VD of -3.20%, -3.35%, and 4.14% in the space-occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excel-lent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p < 0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p < 0.001). The semiautomatic interactive 3DMIA, automatic ASM-based, and automatic PA-based liver volum-etry agreed well with manual gold standard in both the normal liver group and the space-occupying lesion group. The ASM- and PA-based automatic segmentation have better efficiency in clinical use. © 2016 The Authors.

  16. [Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm].

    PubMed

    Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian

    2017-06-01

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

  17. Automatic quantitative computed tomography segmentation and analysis of aerated lung volumes in acute respiratory distress syndrome-A comparative diagnostic study.

    PubMed

    Klapsing, Philipp; Herrmann, Peter; Quintel, Michael; Moerer, Onnen

    2017-12-01

    Quantitative lung computed tomographic (CT) analysis yields objective data regarding lung aeration but is currently not used in clinical routine primarily because of the labor-intensive process of manual CT segmentation. Automatic lung segmentation could help to shorten processing times significantly. In this study, we assessed bias and precision of lung CT analysis using automatic segmentation compared with manual segmentation. In this monocentric clinical study, 10 mechanically ventilated patients with mild to moderate acute respiratory distress syndrome were included who had received lung CT scans at 5- and 45-mbar airway pressure during a prior study. Lung segmentations were performed both automatically using a computerized algorithm and manually. Automatic segmentation yielded similar lung volumes compared with manual segmentation with clinically minor differences both at 5 and 45 mbar. At 5 mbar, results were as follows: overdistended lung 49.58mL (manual, SD 77.37mL) and 50.41mL (automatic, SD 77.3mL), P=.028; normally aerated lung 2142.17mL (manual, SD 1131.48mL) and 2156.68mL (automatic, SD 1134.53mL), P = .1038; and poorly aerated lung 631.68mL (manual, SD 196.76mL) and 646.32mL (automatic, SD 169.63mL), P = .3794. At 45 mbar, values were as follows: overdistended lung 612.85mL (manual, SD 449.55mL) and 615.49mL (automatic, SD 451.03mL), P=.078; normally aerated lung 3890.12mL (manual, SD 1134.14mL) and 3907.65mL (automatic, SD 1133.62mL), P = .027; and poorly aerated lung 413.35mL (manual, SD 57.66mL) and 469.58mL (automatic, SD 70.14mL), P=.007. Bland-Altman analyses revealed the following mean biases and limits of agreement at 5 mbar for automatic vs manual segmentation: overdistended lung +0.848mL (±2.062mL), normally aerated +14.51mL (±49.71mL), and poorly aerated +14.64mL (±98.16mL). At 45 mbar, results were as follows: overdistended +2.639mL (±8.231mL), normally aerated 17.53mL (±41.41mL), and poorly aerated 56.23mL (±100.67mL). Automatic single CT image and whole lung segmentation were faster than manual segmentation (0.17 vs 125.35seconds [P<.0001] and 10.46 vs 7739.45seconds [P<.0001]). Automatic lung CT segmentation allows fast analysis of aerated lung regions. A reduction of processing times by more than 99% allows the use of quantitative CT at the bedside. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach.

    PubMed

    Beichel, Reinhard R; Van Tol, Markus; Ulrich, Ethan J; Bauer, Christian; Chang, Tangel; Plichta, Kristin A; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M

    2016-06-01

    The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the "just-enough-interaction" principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.

  19. Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach

    PubMed Central

    Beichel, Reinhard R.; Van Tol, Markus; Ulrich, Ethan J.; Bauer, Christian; Chang, Tangel; Plichta, Kristin A.; Smith, Brian J.; Sunderland, John J.; Graham, Michael M.; Sonka, Milan; Buatti, John M.

    2016-01-01

    Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction. PMID:27277044

  20. Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beichel, Reinhard R., E-mail: reinhard-beichel@uiowa.edu; Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242

    Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behaviormore » of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.« less

  1. Contour Tracking in Echocardiographic Sequences via Sparse Representation and Dictionary Learning

    PubMed Central

    Huang, Xiaojie; Dione, Donald P.; Compas, Colin B.; Papademetris, Xenophon; Lin, Ben A.; Bregasi, Alda; Sinusas, Albert J.; Staib, Lawrence H.; Duncan, James S.

    2013-01-01

    This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets. PMID:24292554

  2. Automatic pelvis segmentation from x-ray images of a mouse model

    NASA Astrophysics Data System (ADS)

    Al Okashi, Omar M.; Du, Hongbo; Al-Assam, Hisham

    2017-05-01

    The automatic detection and quantification of skeletal structures has a variety of different applications for biological research. Accurate segmentation of the pelvis from X-ray images of mice in a high-throughput project such as the Mouse Genomes Project not only saves time and cost but also helps achieving an unbiased quantitative analysis within the phenotyping pipeline. This paper proposes an automatic solution for pelvis segmentation based on structural and orientation properties of the pelvis in X-ray images. The solution consists of three stages including pre-processing image to extract pelvis area, initial pelvis mask preparation and final pelvis segmentation. Experimental results on a set of 100 X-ray images showed consistent performance of the algorithm. The automated solution overcomes the weaknesses of a manual annotation procedure where intra- and inter-observer variations cannot be avoided.

  3. Automated segmentation of knee and ankle regions of rats from CT images to quantify bone mineral density for monitoring treatments of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Cruz, Francisco; Sevilla, Raquel; Zhu, Joe; Vanko, Amy; Lee, Jung Hoon; Dogdas, Belma; Zhang, Weisheng

    2014-03-01

    Bone mineral density (BMD) obtained from a CT image is an imaging biomarker used pre-clinically for characterizing the Rheumatoid arthritis (RA) phenotype. We use this biomarker in animal studies for evaluating disease progression and for testing various compounds. In the current setting, BMD measurements are obtained manually by selecting the regions of interest from three-dimensional (3-D) CT images of rat legs, which results in a laborious and low-throughput process. Combining image processing techniques, such as intensity thresholding and skeletonization, with mathematical techniques in curve fitting and curvature calculations, we developed an algorithm for quick, consistent, and automatic detection of joints in large CT data sets. The implemented algorithm has reduced analysis time for a study with 200 CT images from 10 days to 3 days and has improved the robust detection of the obtained regions of interest compared with manual segmentation. This algorithm has been used successfully in over 40 studies.

  4. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  5. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  6. Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L.; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.

    2017-02-01

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≍1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  7. Multi-atlas Segmentation Enables Robust Multi-contrast MRI Spleen Segmentation for Splenomegaly.

    PubMed

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L; Assad, Albert; Abramson, Richard G; Landman, Bennett A

    2017-02-11

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≈1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  8. Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle

    PubMed Central

    Valentinitsch, Alexander; Karampinos, Dimitrios C.; Alizai, Hamza; Subburaj, Karupppasamy; Kumar, Deepak; Link, Thomas M.; Majumdar, Sharmila

    2012-01-01

    Purpose To introduce and validate an automated unsupervised multi-parametric method for segmentation of the subcutaneous fat and muscle regions in order to determine subcutaneous adipose tissue (SAT) and intermuscular adipose tissue (IMAT) areas based on data from a quantitative chemical shift-based water-fat separation approach. Materials and Methods Unsupervised standard k-means clustering was employed to define sets of similar features (k = 2) within the whole multi-modal image after the water-fat separation. The automated image processing chain was composed of three primary stages including tissue, muscle and bone region segmentation. The algorithm was applied on calf and thigh datasets to compute SAT and IMAT areas and was compared to a manual segmentation. Results The IMAT area using the automatic segmentation had excellent agreement with the IMAT area using the manual segmentation for all the cases in the thigh (R2: 0.96) and for cases with up to moderate IMAT area in the calf (R2: 0.92). The group with the highest grade of muscle fat infiltration in the calf had the highest error in the inner SAT contour calculation. Conclusion The proposed multi-parametric segmentation approach combined with quantitative water-fat imaging provides an accurate and reliable method for an automated calculation of the SAT and IMAT areas reducing considerably the total post-processing time. PMID:23097409

  9. Extracting oil palm crown from WorldView-2 satellite image

    NASA Astrophysics Data System (ADS)

    Korom, A.; Phua, M.-H.; Hirata, Y.; Matsuura, T.

    2014-02-01

    Oil palm (OP) is the most commercial crop in Malaysia. Estimating the crowns is important for biomass estimation from high resolution satellite (HRS) image. This study examined extraction of individual OP crown from a WorldView-2 image using twofold algorithms, i.e., masking of Non-OP pixels and detection of individual OP crown based on the watershed segmentation of greyscale images. The study site was located in Beluran district, central Sabah, where matured OPs with the age ranging from 15 to 25 years old have been planted. We examined two compound vegetation indices of (NDVI+1)*DVI and NDII for masking non-OP crown areas. Using kappa statistics, an optimal threshold value was set with the highest accuracy at 90.6% for differentiating OP crown areas from Non-OP areas. After the watershed segmentation of OP crown areas with additional post-procedures, about 77% of individual OP crowns were successfully detected in comparison to the manual based delineation. Shape and location of each crown segment was then assessed based on a modified version of the goodness measures of Möller et al which was 0.3, indicating an acceptable CSGM (combined segmentation goodness measures) agreements between the automated and manually delineated crowns (perfect case is '1').

  10. Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors

    PubMed Central

    Sanjuán, Ana; Price, Cathy J.; Mancini, Laura; Josse, Goulven; Grogan, Alice; Yamamoto, Adam K.; Geva, Sharon; Leff, Alex P.; Yousry, Tarek A.; Seghier, Mohamed L.

    2013-01-01

    Brain tumors can have different shapes or locations, making their identification very challenging. In functional MRI, it is not unusual that patients have only one anatomical image due to time and financial constraints. Here, we provide a modified automatic lesion identification (ALI) procedure which enables brain tumor identification from single MR images. Our method rests on (A) a modified segmentation-normalization procedure with an explicit “extra prior” for the tumor and (B) an outlier detection procedure for abnormal voxel (i.e., tumor) classification. To minimize tissue misclassification, the segmentation-normalization procedure requires prior information of the tumor location and extent. We therefore propose that ALI is run iteratively so that the output of Step B is used as a patient-specific prior in Step A. We test this procedure on real T1-weighted images from 18 patients, and the results were validated in comparison to two independent observers' manual tracings. The automated procedure identified the tumors successfully with an excellent agreement with the manual segmentation (area under the ROC curve = 0.97 ± 0.03). The proposed procedure increases the flexibility and robustness of the ALI tool and will be particularly useful for lesion-behavior mapping studies, or when lesion identification and/or spatial normalization are problematic. PMID:24381535

  11. Computer vision based nacre thickness measurement of Tahitian pearls

    NASA Astrophysics Data System (ADS)

    Loesdau, Martin; Chabrier, Sébastien; Gabillon, Alban

    2017-03-01

    The Tahitian Pearl is the most valuable export product of French Polynesia contributing with over 61 million Euros to more than 50% of the total export income. To maintain its excellent reputation on the international market, an obligatory quality control for every pearl deemed for exportation has been established by the local government. One of the controlled quality parameters is the pearls nacre thickness. The evaluation is currently done manually by experts that are visually analyzing X-ray images of the pearls. In this article, a computer vision based approach to automate this procedure is presented. Even though computer vision based approaches for pearl nacre thickness measurement exist in the literature, the very specific features of the Tahitian pearl, namely the large shape variety and the occurrence of cavities, have so far not been considered. The presented work closes the. Our method consists of segmenting the pearl from X-ray images with a model-based approach, segmenting the pearls nucleus with an own developed heuristic circle detection and segmenting possible cavities with region growing. Out of the obtained boundaries, the 2-dimensional nacre thickness profile can be calculated. A certainty measurement to consider imaging and segmentation imprecisions is included in the procedure. The proposed algorithms are tested on 298 manually evaluated Tahitian pearls, showing that it is generally possible to automatically evaluate the nacre thickness of Tahitian pearls with computer vision. Furthermore the results show that the automatic measurement is more precise and faster than the manual one.

  12. Cerebrovascular plaque segmentation using object class uncertainty snake in MR images

    NASA Astrophysics Data System (ADS)

    Das, Bipul; Saha, Punam K.; Wolf, Ronald; Song, Hee Kwon; Wright, Alexander C.; Wehrli, Felix W.

    2005-04-01

    Atherosclerotic cerebrovascular disease leads to formation of lipid-laden plaques that can form emboli when ruptured causing blockage to cerebral vessels. The clinical manifestation of this event sequence is stroke; a leading cause of disability and death. In vivo MR imaging provides detailed image of vascular architecture for the carotid artery making it suitable for analysis of morphological features. Assessing the status of carotid arteries that supplies blood to the brain is of primary interest to such investigations. Reproducible quantification of carotid artery dimensions in MR images is essential for plaque analysis. Manual segmentation being the only method presently makes it time consuming and sensitive to inter and intra observer variability. This paper presents a deformable model for lumen and vessel wall segmentation of carotid artery from MR images. The major challenges of carotid artery segmentation are (a) low signal-to-noise ratio, (b) background intensity inhomogeneity and (c) indistinct inner and/or outer vessel wall. We propose a new, effective object-class uncertainty based deformable model with additional features tailored toward this specific application. Object-class uncertainty optimally utilizes MR intensity characteristics of various anatomic entities that enable the snake to avert leakage through fuzzy boundaries. To strengthen the deformable model for this application, some other properties are attributed to it in the form of (1) fully arc-based deformation using a Gaussian model to maximally exploit vessel wall smoothness, (2) construction of a forbidden region for outer-wall segmentation to reduce interferences by prominent lumen features and (3) arc-based landmark for efficient user interaction. The algorithm has been tested upon T1- and PD- weighted images. Measures of lumen area and vessel wall area are computed from segmented data of 10 patient MR images and their accuracy and reproducibility are examined. These results correspond exceptionally well with manual segmentation completed by radiology experts. Reproducibility of the proposed method is estimated for both intra- and inter-operator studies.

  13. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Yangzhou; Zhao, Qunfei; Xia, Zeyang, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn

    Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slicemore » and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0.28 ± 0.03 mm, and 1.06 ± 0.40 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the premolar were 37.95 ± 10.13 mm{sup 3}, 92.45 ± 2.29%, 0.29 ± 0.06 mm, 0.33 ± 0.10 mm, and 1.28 ± 0.72 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the molar were 52.38 ± 17.27 mm{sup 3}, 94.12 ± 1.38%, 0.30 ± 0.08 mm, 0.35 ± 0.17 mm, and 1.52 ± 0.75 mm, respectively. The computation time of the proposed method for segmenting CBCT images of one subject was 7.25 ± 0.73 min. Compared with two other methods, the proposed method achieves significant improvement in terms of accuracy. Conclusions: The presented tooth segmentation method can be used to segment tooth contours from CT images accurately and efficiently.« less

  14. ACME: Automated Cell Morphology Extractor for Comprehensive Reconstruction of Cell Membranes

    PubMed Central

    Mosaliganti, Kishore R.; Noche, Ramil R.; Xiong, Fengzhu; Swinburne, Ian A.; Megason, Sean G.

    2012-01-01

    The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1) detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available publicly under an open source BSD license (https://github.com/krm15/ACME). PMID:23236265

  15. Segmentation of the ovine lung in 3D CT Images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Hoffman, Eric A.; Reinhardt, Joseph M.

    2004-04-01

    Pulmonary CT images can provide detailed information about the regional structure and function of the respiratory system. Prior to any of these analyses, however, the lungs must be identified in the CT data sets. A popular animal model for understanding lung physiology and pathophysiology is the sheep. In this paper we describe a lung segmentation algorithm for CT images of sheep. The algorithm has two main steps. The first step is lung extraction, which identifies the lung region using a technique based on optimal thresholding and connected components analysis. The second step is lung separation, which separates the left lung from the right lung by identifying the central fissure using an anatomy-based method incorporating dynamic programming and a line filter algorithm. The lung segmentation algorithm has been validated by comparing our automatic method to manual analysis for five pulmonary CT datasets. The RMS error between the computer-defined and manually-traced boundary is 0.96 mm. The segmentation requires approximately 10 minutes for a 512x512x400 dataset on a PC workstation (2.40 GHZ CPU, 2.0 GB RAM), while it takes human observer approximately two hours to accomplish the same task.

  16. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification.

    PubMed

    Soares, João V B; Leandro, Jorge J G; Cesar Júnior, Roberto M; Jelinek, Herbert F; Cree, Michael J

    2006-09-01

    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and two-dimensional Gabor wavelet transform responses taken at multiple scales. The Gabor wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et al., 2000) databases of manually labeled images. On the DRIVE database, it achieves an area under the receiver operating characteristic curve of 0.9614, being slightly superior than that presented by state-of-the-art approaches. We are making our implementation available as open source MATLAB scripts for researchers interested in implementation details, evaluation, or development of methods.

  17. Color normalization for robust evaluation of microscopy images

    NASA Astrophysics Data System (ADS)

    Švihlík, Jan; Kybic, Jan; Habart, David

    2015-09-01

    This paper deals with color normalization of microscopy images of Langerhans islets in order to increase robustness of the islet segmentation to illumination changes. The main application is automatic quantitative evaluation of the islet parameters, useful for determining the feasibility of islet transplantation in diabetes. First, background illumination inhomogeneity is compensated and a preliminary foreground/background segmentation is performed. The color normalization itself is done in either lαβ or logarithmic RGB color spaces, by comparison with a reference image. The color-normalized images are segmented using color-based features and pixel-wise logistic regression, trained on manually labeled images. Finally, relevant statistics such as the total islet area are evaluated in order to determine the success likelihood of the transplantation.

  18. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    NASA Astrophysics Data System (ADS)

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  19. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    PubMed

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system.

    PubMed

    Thomas, Marianna S; Newman, David; Leinhard, Olof Dahlqvist; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N; Karlsson, Anette; Rosander, Johannes; Borga, Magnus; Toms, Andoni P

    2014-09-01

    To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19·32 L (SD9·1) and 19·28 L (SD9·12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1·0, 95% level of agreement -0·32-0·2 L). ICC for all automated test-retest muscle volumes were almost perfect (0·99-1·0) with 95% levels of agreement 1.8-6.6% of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1·68 L (2SD0·6) compared to automated 1·64 L (2SD 0·6), left lower leg: manual 1·69 L (2SD 0·64) compared to automated 1·63 L (SD0·61), correlation coefficients for automated and manual segmentation were 0·94-0·96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. Sarcopaenia is an important reversible complication of a number of diseases. Manual quantification of muscle volume is time-consuming and expensive. Muscles can be imaged using in and out of phase MRI. Automated atlas-based segmentation can identify muscle groups. Automated muscle volume segmentation is reproducible and can replace manual measurements.

  1. A generative model for segmentation of tumor and organs-at-risk for radiation therapy planning of glioblastoma patients

    NASA Astrophysics Data System (ADS)

    Agn, Mikael; Law, Ian; Munck af Rosenschöld, Per; Van Leemput, Koen

    2016-03-01

    We present a fully automated generative method for simultaneous brain tumor and organs-at-risk segmentation in multi-modal magnetic resonance images. The method combines an existing whole-brain segmentation technique with a spatial tumor prior, which uses convolutional restricted Boltzmann machines to model tumor shape. The method is not tuned to any specific imaging protocol and can simultaneously segment the gross tumor volume, peritumoral edema and healthy tissue structures relevant for radiotherapy planning. We validate the method on a manually delineated clinical data set of glioblastoma patients by comparing segmentations of gross tumor volume, brainstem and hippocampus. The preliminary results demonstrate the feasibility of the method.

  2. Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters

    PubMed Central

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  3. Segmentation of nerve bundles and ganglia in spine MRI using particle filters.

    PubMed

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.

  4. Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Chuan; Chan, H.-P.; Sahiner, Berkman

    2007-12-15

    The authors are developing a computerized pulmonary vessel segmentation method for a computer-aided pulmonary embolism (PE) detection system on computed tomographic pulmonary angiography (CTPA) images. Because PE only occurs inside pulmonary arteries, an automatic and accurate segmentation of the pulmonary vessels in 3D CTPA images is an essential step for the PE CAD system. To segment the pulmonary vessels within the lung, the lung regions are first extracted using expectation-maximization (EM) analysis and morphological operations. The authors developed a 3D multiscale filtering technique to enhance the pulmonary vascular structures based on the analysis of eigenvalues of the Hessian matrix atmore » multiple scales. A new response function of the filter was designed to enhance all vascular structures including the vessel bifurcations and suppress nonvessel structures such as the lymphoid tissues surrounding the vessels. An EM estimation is then used to segment the vascular structures by extracting the high response voxels at each scale. The vessel tree is finally reconstructed by integrating the segmented vessels at all scales based on a 'connected component' analysis. Two CTPA cases containing PEs were used to evaluate the performance of the system. One of these two cases also contained pleural effusion disease. Two experienced thoracic radiologists provided the gold standard of pulmonary vessels including both arteries and veins by manually tracking the arterial tree and marking the center of the vessels using a computer graphical user interface. The accuracy of vessel tree segmentation was evaluated by the percentage of the 'gold standard' vessel center points overlapping with the segmented vessels. The results show that 96.2% (2398/2494) and 96.3% (1910/1984) of the manually marked center points in the arteries overlapped with segmented vessels for the case without and with other lung diseases. For the manually marked center points in all vessels including arteries and veins, the segmentation accuracy are 97.0% (4546/4689) and 93.8% (4439/4732) for the cases without and with other lung diseases, respectively. Because of the lack of ground truth for the vessels, in addition to quantitative evaluation of the vessel segmentation performance, visual inspection was conducted to evaluate the segmentation. The results demonstrate that vessel segmentation using our method can extract the pulmonary vessels accurately and is not degraded by PE occlusion to the vessels in these test cases.« less

  5. Cortical Enhanced Tissue Segmentation of Neonatal Brain MR Images Acquired by a Dedicated Phased Array Coil

    PubMed Central

    Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang

    2010-01-01

    The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268

  6. An algorithm for calculi segmentation on ureteroscopic images.

    PubMed

    Rosa, Benoît; Mozer, Pierre; Szewczyk, Jérôme

    2011-03-01

    The purpose of the study is to develop an algorithm for the segmentation of renal calculi on ureteroscopic images. In fact, renal calculi are common source of urological obstruction, and laser lithotripsy during ureteroscopy is a possible therapy. A laser-based system to sweep the calculus surface and vaporize it was developed to automate a very tedious manual task. The distal tip of the ureteroscope is directed using image guidance, and this operation is not possible without an efficient segmentation of renal calculi on the ureteroscopic images. We proposed and developed a region growing algorithm to segment renal calculi on ureteroscopic images. Using real video images to compute ground truth and compare our segmentation with a reference segmentation, we computed statistics on different image metrics, such as Precision, Recall, and Yasnoff Measure, for comparison with ground truth. The algorithm and its parameters were established for the most likely clinical scenarii. The segmentation results are encouraging: the developed algorithm was able to correctly detect more than 90% of the surface of the calculi, according to an expert observer. Implementation of an algorithm for the segmentation of calculi on ureteroscopic images is feasible. The next step is the integration of our algorithm in the command scheme of a motorized system to build a complete operating prototype.

  7. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  8. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach.

    PubMed

    Qazi, Arish A; Pekar, Vladimir; Kim, John; Xie, Jason; Breen, Stephen L; Jaffray, David A

    2011-11-01

    Intensity modulated radiation therapy (IMRT) allows greater control over dose distribution, which leads to a decrease in radiation related toxicity. IMRT, however, requires precise and accurate delineation of the organs at risk and target volumes. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. State of the art auto-segmentation methods are either atlas-based, model-based or hybrid however, robust fully automated segmentation is often difficult due to the insufficient discriminative information provided by standard medical imaging modalities for certain tissue types. In this paper, the authors present a fully automated hybrid approach which combines deformable registration with the model-based approach to accurately segment normal and target tissues from head and neck CT images. The segmentation process starts by using an average atlas to reliably identify salient landmarks in the patient image. The relationship between these landmarks and the reference dataset serves to guide a deformable registration algorithm, which allows for a close initialization of a set of organ-specific deformable models in the patient image, ensuring their robust adaptation to the boundaries of the structures. Finally, the models are automatically fine adjusted by our boundary refinement approach which attempts to model the uncertainty in model adaptation using a probabilistic mask. This uncertainty is subsequently resolved by voxel classification based on local low-level organ-specific features. To quantitatively evaluate the method, they auto-segment several organs at risk and target tissues from 10 head and neck CT images. They compare the segmentations to the manual delineations outlined by the expert. The evaluation is carried out by estimating two common quantitative measures on 10 datasets: volume overlap fraction or the Dice similarity coefficient (DSC), and a geometrical metric, the median symmetric Hausdorff distance (HD), which is evaluated slice-wise. They achieve an average overlap of 93% for the mandible, 91% for the brainstem, 83% for the parotids, 83% for the submandibular glands, and 74% for the lymph node levels. Our automated segmentation framework is able to segment anatomy in the head and neck region with high accuracy within a clinically-acceptable segmentation time.

  9. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y; Chen, I; Kashani, R

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less

  10. Colorization and Automated Segmentation of Human T2 MR Brain Images for Characterization of Soft Tissues

    PubMed Central

    Attique, Muhammad; Gilanie, Ghulam; Hafeez-Ullah; Mehmood, Malik S.; Naweed, Muhammad S.; Ikram, Masroor; Kamran, Javed A.; Vitkin, Alex

    2012-01-01

    Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described. PMID:22479421

  11. Unsupervised sputum color image segmentation for lung cancer diagnosis based on a Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sammouda, Rachid; Niki, Noboru; Nishitani, Hiroshi; Nakamura, S.; Mori, Shinichiro

    1997-04-01

    The paper presents a method for automatic segmentation of sputum cells with color images, to develop an efficient algorithm for lung cancer diagnosis based on a Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of squared errors, and the second term a temporary noise added to the network as an excitation to escape certain local minima with the result of being closer to the global minimum. To increase the accuracy in segmenting the regions of interest, a preclassification technique is used to extract the sputum cell regions within the color image and remove those of the debris cells. The former is then given with the raw image to the input of Hopfield neural network to make a crisp segmentation by assigning each pixel to label such as background, cytoplasm, and nucleus. The proposed technique has yielded correct segmentation of complex scene of sputum prepared by ordinary manual staining method in most of the tested images selected from our database containing thousands of sputum color images.

  12. AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.

    PubMed

    Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J

    2015-04-01

    A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.

  13. Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining.

    PubMed

    Zhang, Ling; Kong, Hui; Ting Chin, Chien; Liu, Shaoxiong; Fan, Xinmin; Wang, Tianfu; Chen, Siping

    2014-03-01

    Current automation-assisted technologies for screening cervical cancer mainly rely on automated liquid-based cytology slides with proprietary stain. This is not a cost-efficient approach to be utilized in developing countries. In this article, we propose the first automation-assisted system to screen cervical cancer in manual liquid-based cytology (MLBC) slides with hematoxylin and eosin (H&E) stain, which is inexpensive and more applicable in developing countries. This system consists of three main modules: image acquisition, cell segmentation, and cell classification. First, an autofocusing scheme is proposed to find the global maximum of the focus curve by iteratively comparing image qualities of specific locations. On the autofocused images, the multiway graph cut (GC) is performed globally on the a* channel enhanced image to obtain cytoplasm segmentation. The nuclei, especially abnormal nuclei, are robustly segmented by using GC adaptively and locally. Two concave-based approaches are integrated to split the touching nuclei. To classify the segmented cells, features are selected and preprocessed to improve the sensitivity, and contextual and cytoplasm information are introduced to improve the specificity. Experiments on 26 consecutive image stacks demonstrated that the dynamic autofocusing accuracy was 2.06 μm. On 21 cervical cell images with nonideal imaging condition and pathology, our segmentation method achieved a 93% accuracy for cytoplasm, and a 87.3% F-measure for nuclei, both outperformed state of the art works in terms of accuracy. Additional clinical trials showed that both the sensitivity (88.1%) and the specificity (100%) of our system are satisfyingly high. These results proved the feasibility of automation-assisted cervical cancer screening in MLBC slides with H&E stain, which is highly desirable in community health centers and small hospitals. © 2013 International Society for Advancement of Cytometry.

  14. Breast tumor segmentation in DCE-MRI using fully convolutional networks with an application in radiogenomics

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.

  15. Emergence of Convolutional Neural Network in Future Medicine: Why and How. A Review on Brain Tumor Segmentation

    NASA Astrophysics Data System (ADS)

    Alizadeh Savareh, Behrouz; Emami, Hassan; Hajiabadi, Mohamadreza; Ghafoori, Mahyar; Majid Azimi, Seyed

    2018-03-01

    Manual analysis of brain tumors magnetic resonance images is usually accompanied by some problem. Several techniques have been proposed for the brain tumor segmentation. This study will be focused on searching popular databases for related studies, theoretical and practical aspects of Convolutional Neural Network surveyed in brain tumor segmentation. Based on our findings, details about related studies including the datasets used, evaluation parameters, preferred architectures and complementary steps analyzed. Deep learning as a revolutionary idea in image processing, achieved brilliant results in brain tumor segmentation too. This can be continuing until the next revolutionary idea emerging.

  16. Automatic lumbar spine measurement in CT images

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Zheng, Dong; Liao, Shu; Peng, Zhigang; Yan, Ruyi; Liu, Junhua; Dong, Zhongxing; Gong, Liyan; Zhou, Xiang Sean; Zhan, Yiqiang; Fei, Jun

    2017-03-01

    Accurate lumbar spine measurement in CT images provides an essential way for quantitative spinal diseases analysis such as spondylolisthesis and scoliosis. In today's clinical workflow, the measurements are manually performed by radiologists and surgeons, which is time consuming and irreproducible. Therefore, automatic and accurate lumbar spine measurement algorithm becomes highly desirable. In this study, we propose a method to automatically calculate five different lumbar spine measurements in CT images. There are three main stages of the proposed method: First, a learning based spine labeling method, which integrates both the image appearance and spine geometry information, is used to detect lumbar and sacrum vertebrae in CT images. Then, a multiatlases based image segmentation method is used to segment each lumbar vertebra and the sacrum based on the detection result. Finally, measurements are derived from the segmentation result of each vertebra. Our method has been evaluated on 138 spinal CT scans to automatically calculate five widely used clinical spine measurements. Experimental results show that our method can achieve more than 90% success rates across all the measurements. Our method also significantly improves the measurement efficiency compared to manual measurements. Besides benefiting the routine clinical diagnosis of spinal diseases, our method also enables the large scale data analytics for scientific and clinical researches.

  17. Generalized pixel profiling and comparative segmentation with application to arteriovenous malformation segmentation.

    PubMed

    Babin, D; Pižurica, A; Bellens, R; De Bock, J; Shang, Y; Goossens, B; Vansteenkiste, E; Philips, W

    2012-07-01

    Extraction of structural and geometric information from 3-D images of blood vessels is a well known and widely addressed segmentation problem. The segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, with a special application in diagnostics and surgery on arteriovenous malformations (AVM). However, the techniques addressing the problem of the AVM inner structure segmentation are rare. In this work we present a novel method of pixel profiling with the application to segmentation of the 3-D angiography AVM images. Our algorithm stands out in situations with low resolution images and high variability of pixel intensity. Another advantage of our method is that the parameters are set automatically, which yields little manual user intervention. The results on phantoms and real data demonstrate its effectiveness and potentials for fine delineation of AVM structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Automatic detection of left and right ventricles from CTA enables efficient alignment of anatomy with myocardial perfusion data.

    PubMed

    Piccinelli, Marina; Faber, Tracy L; Arepalli, Chesnal D; Appia, Vikram; Vinten-Johansen, Jakob; Schmarkey, Susan L; Folks, Russell D; Garcia, Ernest V; Yezzi, Anthony

    2014-02-01

    Accurate alignment between cardiac CT angiographic studies (CTA) and nuclear perfusion images is crucial for improved diagnosis of coronary artery disease. This study evaluated in an animal model the accuracy of a CTA fully automated biventricular segmentation algorithm, a necessary step for automatic and thus efficient PET/CT alignment. Twelve pigs with acute infarcts were imaged using Rb-82 PET and 64-slice CTA. Post-mortem myocardium mass measurements were obtained. Endocardial and epicardial myocardial boundaries were manually and automatically detected on the CTA and both segmentations used to perform PET/CT alignment. To assess the segmentation performance, image-based myocardial masses were compared to experimental data; the hand-traced profiles were used as a reference standard to assess the global and slice-by-slice robustness of the automated algorithm in extracting myocardium, LV, and RV. Mean distances between the automated and the manual 3D segmented surfaces were computed. Finally, differences in rotations and translations between the manual and automatic surfaces were estimated post-PET/CT alignment. The largest, smallest, and median distances between interactive and automatic surfaces averaged 1.2 ± 2.1, 0.2 ± 1.6, and 0.7 ± 1.9 mm. The average angular and translational differences in CT/PET alignments were 0.4°, -0.6°, and -2.3° about x, y, and z axes, and 1.8, -2.1, and 2.0 mm in x, y, and z directions. Our automatic myocardial boundary detection algorithm creates surfaces from CTA that are similar in accuracy and provide similar alignments with PET as those obtained from interactive tracing. Specific difficulties in a reliable segmentation of the apex and base regions will require further improvements in the automated technique.

  19. Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation

    PubMed Central

    Maji, Pradipta; Roy, Shaswati

    2015-01-01

    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961

  20. A marker-based watershed method for X-ray image segmentation.

    PubMed

    Zhang, Xiaodong; Jia, Fucang; Luo, Suhuai; Liu, Guiying; Hu, Qingmao

    2014-03-01

    Digital X-ray images are the most frequent modality for both screening and diagnosis in hospitals. To facilitate subsequent analysis such as quantification and computer aided diagnosis (CAD), it is desirable to exclude image background. A marker-based watershed segmentation method was proposed to segment background of X-ray images. The method consisted of six modules: image preprocessing, gradient computation, marker extraction, watershed segmentation from markers, region merging and background extraction. One hundred clinical direct radiograph X-ray images were used to validate the method. Manual thresholding and multiscale gradient based watershed method were implemented for comparison. The proposed method yielded a dice coefficient of 0.964±0.069, which was better than that of the manual thresholding (0.937±0.119) and that of multiscale gradient based watershed method (0.942±0.098). Special means were adopted to decrease the computational cost, including getting rid of few pixels with highest grayscale via percentile, calculation of gradient magnitude through simple operations, decreasing the number of markers by appropriate thresholding, and merging regions based on simple grayscale statistics. As a result, the processing time was at most 6s even for a 3072×3072 image on a Pentium 4 PC with 2.4GHz CPU (4 cores) and 2G RAM, which was more than one time faster than that of the multiscale gradient based watershed method. The proposed method could be a potential tool for diagnosis and quantification of X-ray images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Interactive 3D segmentation of the prostate in magnetic resonance images using shape and local appearance similarity analysis

    NASA Astrophysics Data System (ADS)

    Shahedi, Maysam; Fenster, Aaron; Cool, Derek W.; Romagnoli, Cesare; Ward, Aaron D.

    2013-03-01

    3D segmentation of the prostate in medical images is useful to prostate cancer diagnosis and therapy guidance, but is time-consuming to perform manually. Clinical translation of computer-assisted segmentation algorithms for this purpose requires a comprehensive and complementary set of evaluation metrics that are informative to the clinical end user. We have developed an interactive 3D prostate segmentation method for 1.5T and 3.0T T2-weighted magnetic resonance imaging (T2W MRI) acquired using an endorectal coil. We evaluated our method against manual segmentations of 36 3D images using complementary boundary-based (mean absolute distance; MAD), regional overlap (Dice similarity coefficient; DSC) and volume difference (ΔV) metrics. Our technique is based on inter-subject prostate shape and local boundary appearance similarity. In the training phase, we calculated a point distribution model (PDM) and a set of local mean intensity patches centered on the prostate border to capture shape and appearance variability. To segment an unseen image, we defined a set of rays - one corresponding to each of the mean intensity patches computed in training - emanating from the prostate centre. We used a radial-based search strategy and translated each mean intensity patch along its corresponding ray, selecting as a candidate the boundary point with the highest normalized cross correlation along each ray. These boundary points were then regularized using the PDM. For the whole gland, we measured a mean+/-std MAD of 2.5+/-0.7 mm, DSC of 80+/-4%, and ΔV of 1.1+/-8.8 cc. We also provided an anatomic breakdown of these metrics within the prostatic base, mid-gland, and apex.

  2. Optic disc segmentation for glaucoma screening system using fundus images.

    PubMed

    Almazroa, Ahmed; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head pathologies such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of optic nerve head abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique was applied. As well an important contribution was to involve the variations in opinions among the ophthalmologists in detecting the disc boundaries and diagnosing the glaucoma. Most of the previous studies were trained and tested based on only one opinion, which can be assumed to be biased for the ophthalmologist. In addition, the accuracy was calculated based on the number of images that coincided with the ophthalmologists' agreed-upon images, and not only on the overlapping images as in previous studies. The ultimate goal of this project is to develop an automated image processing system for glaucoma screening. The disc algorithm is evaluated using a new retinal fundus image dataset called RIGA (retinal images for glaucoma analysis). In the case of low-quality images, a double level set was applied, in which the first level set was considered to be localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as the agreement among the manual markings of six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid was 83.9%, and the best agreement was observed between the results of the algorithm and manual markings in 379 images.

  3. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    USDA-ARS?s Scientific Manuscript database

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing h...

  4. TuMore: generation of synthetic brain tumor MRI data for deep learning based segmentation approaches

    NASA Astrophysics Data System (ADS)

    Lindner, Lydia; Pfarrkirchner, Birgit; Gsaxner, Christina; Schmalstieg, Dieter; Egger, Jan

    2018-03-01

    Accurate segmentation and measurement of brain tumors plays an important role in clinical practice and research, as it is critical for treatment planning and monitoring of tumor growth. However, brain tumor segmentation is one of the most challenging tasks in medical image analysis. Since manual segmentations are subjective, time consuming and neither accurate nor reliable, there exists a need for objective, robust and fast automated segmentation methods that provide competitive performance. Therefore, deep learning based approaches are gaining interest in the field of medical image segmentation. When the training data set is large enough, deep learning approaches can be extremely effective, but in domains like medicine, only limited data is available in the majority of cases. Due to this reason, we propose a method that allows to create a large dataset of brain MRI (Magnetic Resonance Imaging) images containing synthetic brain tumors - glioblastomas more specifically - and the corresponding ground truth, that can be subsequently used to train deep neural networks.

  5. Automated MRI segmentation for individualized modeling of current flow in the human head.

    PubMed

    Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C

    2013-12-01

    High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  6. Improved 3D live-wire method with application to 3D CT chest image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Higgins, William E.

    2006-03-01

    The definition of regions of interests (ROIs), such as suspect cancer nodules or lymph nodes in 3D CT chest images, is often difficult because of the complexity of the phenomena that give rise to them. Manual slice tracing has been used widely for years for such problems, because it is easy to implement and guaranteed to work. But the manual method is extremely time-consuming, especially for high-solution 3D images which may have hundreds of slices, and it is subject to operator biases. Numerous automated image-segmentation methods have been proposed, but they are generally strongly application dependent, and even the "most robust" methods have difficulty in defining complex anatomical ROIs. To address this problem, the semi-automatic interactive paradigm referred to as "live wire" segmentation has been proposed by researchers. In live-wire segmentation, the human operator interactively defines an ROI's boundary guided by an active automated method which suggests what to define. This process in general is far faster, more reproducible and accurate than manual tracing, while, at the same time, permitting the definition of complex ROIs having ill-defined boundaries. We propose a 2D live-wire method employing an improved cost over previous works. In addition, we define a new 3D live-wire formulation that enables rapid definition of 3D ROIs. The method only requires the human operator to consider a few slices in general. Experimental results indicate that the new 2D and 3D live-wire approaches are efficient, allow for high reproducibility, and are reliable for 2D and 3D object segmentation.

  7. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation

    PubMed Central

    2013-01-01

    The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  8. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-08-09

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.

  9. Robust segmentation of trabecular bone for in vivo CT imaging using anisotropic diffusion and multi-scale morphological reconstruction

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Jin, Dakai; Zhang, Xiaoliu; Levy, Steven M.; Saha, Punam K.

    2017-03-01

    Osteoporosis is associated with an increased risk of low-trauma fractures. Segmentation of trabecular bone (TB) is essential to assess TB microstructure, which is a key determinant of bone strength and fracture risk. Here, we present a new method for TB segmentation for in vivo CT imaging. The method uses Hessian matrix-guided anisotropic diffusion to improve local separability of trabecular structures, followed by a new multi-scale morphological reconstruction algorithm for TB segmentation. High sensitivity (0.93), specificity (0.93), and accuracy (0.92) were observed for the new method based on regional manual thresholding on in vivo CT images. Mechanical tests have shown that TB segmentation using the new method improved the ability of derived TB spacing measure for predicting actual bone strength (R2=0.83).

  10. SU-E-J-220: Evaluation of Atlas-Based Auto-Segmentation (ABAS) in Head-And-Neck Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Yan, D

    2014-06-01

    Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b)more » intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore, they can be reliably implemented in the clinical HN ART process.« less

  11. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hidden Markov random field model and Broyden-Fletcher-Goldfarb-Shanno algorithm for brain image segmentation

    NASA Astrophysics Data System (ADS)

    Guerrout, EL-Hachemi; Ait-Aoudia, Samy; Michelucci, Dominique; Mahiou, Ramdane

    2018-05-01

    Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted.

  13. Anatomy guided automated SPECT renal seed point estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar; Kumar, Sailendra

    2010-04-01

    Quantification of SPECT(Single Photon Emission Computed Tomography) images can be more accurate if correct segmentation of region of interest (ROI) is achieved. Segmenting ROI from SPECT images is challenging due to poor image resolution. SPECT is utilized to study the kidney function, though the challenge involved is to accurately locate the kidneys and bladder for analysis. This paper presents an automated method for generating seed point location of both kidneys using anatomical location of kidneys and bladder. The motivation for this work is based on the premise that the anatomical location of the bladder relative to the kidneys will not differ much. A model is generated based on manual segmentation of the bladder and both the kidneys on 10 patient datasets (including sum and max images). Centroid is estimated for manually segmented bladder and kidneys. Relatively easier bladder segmentation is followed by feeding bladder centroid coordinates into the model to generate seed point for kidneys. Percentage error observed in centroid coordinates of organs from ground truth to estimated values from our approach are acceptable. Percentage error of approximately 1%, 6% and 2% is observed in X coordinates and approximately 2%, 5% and 8% is observed in Y coordinates of bladder, left kidney and right kidney respectively. Using a regression model and the location of the bladder, the ROI generation for kidneys is facilitated. The model based seed point estimation will enhance the robustness of kidney ROI estimation for noisy cases.

  14. Semi-automated brain tumor and edema segmentation using MRI.

    PubMed

    Xie, Kai; Yang, Jie; Zhang, Z G; Zhu, Y M

    2005-10-01

    Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. A semi-automated method has been developed for brain tumor and edema segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments non-enhancing brain tumor and edema from healthy tissues in magnetic resonance images. In this study, a semi-automated method was developed for brain tumor and edema segmentation and volume measurement using magnetic resonance imaging (MRI). Some novel algorithms for tumor segmentation from MRI were integrated in this medical diagnosis system. We exploit a hybrid level set (HLS) segmentation method driven by region and boundary information simultaneously, region information serves as a propagation force which is robust and boundary information serves as a stopping functional which is accurate. Ten different patients with brain tumors of different size, shape and location were selected, a total of 246 axial tumor-containing slices obtained from 10 patients were used to evaluate the effectiveness of segmentation methods. This method was applied to 10 non-enhancing brain tumors and satisfactory results were achieved. Two quantitative measures for tumor segmentation quality estimation, namely, correspondence ratio (CR) and percent matching (PM), were performed. For the segmentation of brain tumor, the volume total PM varies from 79.12 to 93.25% with the mean of 85.67+/-4.38% while the volume total CR varies from 0.74 to 0.91 with the mean of 0.84+/-0.07. For the segmentation of edema, the volume total PM varies from 72.86 to 87.29% with the mean of 79.54+/-4.18% while the volume total CR varies from 0.69 to 0.85 with the mean of 0.79+/-0.08. The HLS segmentation method perform better than the classical level sets (LS) segmentation method in PM and CR. The results of this research may have potential applications, both as a staging procedure and a method of evaluating tumor response during treatment, this method can be used as a clinical image analysis tool for doctors or radiologists.

  15. Automated and simultaneous fovea center localization and macula segmentation using the new dynamic identification and classification of edges model.

    PubMed

    Onal, Sinan; Chen, Xin; Satamraju, Veeresh; Balasooriya, Maduka; Dabil-Karacal, Humeyra

    2016-07-01

    Detecting the position of retinal structures, including the fovea center and macula, in retinal images plays a key role in diagnosing eye diseases such as optic nerve hypoplasia, amblyopia, diabetic retinopathy, and macular edema. However, current detection methods are unreliable for infants or certain ethnic populations. Thus, a methodology is proposed here that may be useful for infants and across ethnicities that automatically localizes the fovea center and segments the macula on digital fundus images. First, dark structures and bright artifacts are removed from the input image using preprocessing operations, and the resulting image is transformed to polar space. Second, the fovea center is identified, and the macula region is segmented using the proposed dynamic identification and classification of edges (DICE) model. The performance of the method was evaluated using 1200 fundus images obtained from the relatively large, diverse, and publicly available Messidor database. In 96.1% of these 1200 cases, the distance between the fovea center identified manually by ophthalmologists and automatically using the proposed method remained within 0 to 8 pixels. The dice similarity index comparing the manually obtained results with those of the model for macula segmentation was 96.12% for these 1200 cases. Thus, the proposed method displayed a high degree of accuracy. The methodology using the DICE model is unique and advantageous over previously reported methods because it simultaneously determines the fovea center and segments the macula region without using any structural information, such as optic disc or blood vessel location, and it may prove useful for all populations, including infants.

  16. A Unified Framework for Brain Segmentation in MR Images

    PubMed Central

    Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.

    2015-01-01

    Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978

  17. Safe electrode trajectory planning in SEEG via MIP-based vessel segmentation

    NASA Astrophysics Data System (ADS)

    Scorza, Davide; Moccia, Sara; De Luca, Giuseppe; Plaino, Lisa; Cardinale, Francesco; Mattos, Leonardo S.; Kabongo, Luis; De Momi, Elena

    2017-03-01

    Stereo-ElectroEncephaloGraphy (SEEG) is a surgical procedure that allows brain exploration of patients affected by focal epilepsy by placing intra-cerebral multi-lead electrodes. The electrode trajectory planning is challenging and time consuming. Various constraints have to be taken into account simultaneously, such as absence of vessels at the electrode Entry Point (EP), where bleeding is more likely to occur. In this paper, we propose a novel framework to help clinicians in defining a safe trajectory and focus our attention on EP. For each electrode, a Maximum Intensity Projection (MIP) image was obtained from Computer Tomography Angiography (CTA) slices of the brain first centimeter measured along the electrode trajectory. A Gaussian Mixture Model (GMM), modified to include neighborhood prior through Markov Random Fields (GMM-MRF), is used to robustly segment vessels and deal with the noisy nature of MIP images. Results are compared with simple GMM and manual global Thresholding (Th) by computing sensitivity, specificity, accuracy and Dice similarity index against manual segmentation performed under the supervision of an expert surgeon. In this work we present a novel framework which can be easily integrated into manual and automatic planner to help surgeon during the planning phase. GMM-MRF qualitatively showed better performance over GMM in reproducing the connected nature of brain vessels also in presence of noise and image intensity drops typical of MIP images. With respect Th, it is a completely automatic method and it is not influenced by inter-subject variability.

  18. An automated method for accurate vessel segmentation.

    PubMed

    Yang, Xin; Liu, Chaoyue; Le Minh, Hung; Wang, Zhiwei; Chien, Aichi; Cheng, Kwang-Ting Tim

    2017-05-07

    Vessel segmentation is a critical task for various medical applications, such as diagnosis assistance of diabetic retinopathy, quantification of cerebral aneurysm's growth, and guiding surgery in neurosurgical procedures. Despite technology advances in image segmentation, existing methods still suffer from low accuracy for vessel segmentation in the two challenging while common scenarios in clinical usage: (1) regions with a low signal-to-noise-ratio (SNR), and (2) at vessel boundaries disturbed by adjacent non-vessel pixels. In this paper, we present an automated system which can achieve highly accurate vessel segmentation for both 2D and 3D images even under these challenging scenarios. Three key contributions achieved by our system are: (1) a progressive contrast enhancement method to adaptively enhance contrast of challenging pixels that were otherwise indistinguishable, (2) a boundary refinement method to effectively improve segmentation accuracy at vessel borders based on Canny edge detection, and (3) a content-aware region-of-interests (ROI) adjustment method to automatically determine the locations and sizes of ROIs which contain ambiguous pixels and demand further verification. Extensive evaluation of our method is conducted on both 2D and 3D datasets. On a public 2D retinal dataset (named DRIVE (Staal 2004 IEEE Trans. Med. Imaging 23 501-9)) and our 2D clinical cerebral dataset, our approach achieves superior performance to the state-of-the-art methods including a vesselness based method (Frangi 1998 Int. Conf. on Medical Image Computing and Computer-Assisted Intervention) and an optimally oriented flux (OOF) based method (Law and Chung 2008 European Conf. on Computer Vision). An evaluation on 11 clinical 3D CTA cerebral datasets shows that our method can achieve 94% average accuracy with respect to the manual segmentation reference, which is 23% to 33% better than the five baseline methods (Yushkevich 2006 Neuroimage 31 1116-28; Law and Chung 2008 European Conf. on Computer Vision; Law and Chung 2009 IEEE Trans. Image Process. 18 596-612; Wang 2015 J. Neurosci. Methods 241 30-6) with manually optimized parameters. Our system has also been applied clinically for cerebral aneurysm development analysis. Experimental results on 10 patients' data, with two 3D CT scans per patient, show that our system's automatic diagnosis outcomes are consistent with clinicians' manual measurements.

  19. An automated method for accurate vessel segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Liu, Chaoyue; Le Minh, Hung; Wang, Zhiwei; Chien, Aichi; (Tim Cheng, Kwang-Ting

    2017-05-01

    Vessel segmentation is a critical task for various medical applications, such as diagnosis assistance of diabetic retinopathy, quantification of cerebral aneurysm’s growth, and guiding surgery in neurosurgical procedures. Despite technology advances in image segmentation, existing methods still suffer from low accuracy for vessel segmentation in the two challenging while common scenarios in clinical usage: (1) regions with a low signal-to-noise-ratio (SNR), and (2) at vessel boundaries disturbed by adjacent non-vessel pixels. In this paper, we present an automated system which can achieve highly accurate vessel segmentation for both 2D and 3D images even under these challenging scenarios. Three key contributions achieved by our system are: (1) a progressive contrast enhancement method to adaptively enhance contrast of challenging pixels that were otherwise indistinguishable, (2) a boundary refinement method to effectively improve segmentation accuracy at vessel borders based on Canny edge detection, and (3) a content-aware region-of-interests (ROI) adjustment method to automatically determine the locations and sizes of ROIs which contain ambiguous pixels and demand further verification. Extensive evaluation of our method is conducted on both 2D and 3D datasets. On a public 2D retinal dataset (named DRIVE (Staal 2004 IEEE Trans. Med. Imaging 23 501-9)) and our 2D clinical cerebral dataset, our approach achieves superior performance to the state-of-the-art methods including a vesselness based method (Frangi 1998 Int. Conf. on Medical Image Computing and Computer-Assisted Intervention) and an optimally oriented flux (OOF) based method (Law and Chung 2008 European Conf. on Computer Vision). An evaluation on 11 clinical 3D CTA cerebral datasets shows that our method can achieve 94% average accuracy with respect to the manual segmentation reference, which is 23% to 33% better than the five baseline methods (Yushkevich 2006 Neuroimage 31 1116-28; Law and Chung 2008 European Conf. on Computer Vision; Law and Chung 2009 IEEE Trans. Image Process. 18 596-612; Wang 2015 J. Neurosci. Methods 241 30-6) with manually optimized parameters. Our system has also been applied clinically for cerebral aneurysm development analysis. Experimental results on 10 patients’ data, with two 3D CT scans per patient, show that our system’s automatic diagnosis outcomes are consistent with clinicians’ manual measurements.

  20. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  1. Automatic segmentation of multimodal brain tumor images based on classification of super-voxels.

    PubMed

    Kadkhodaei, M; Samavi, S; Karimi, N; Mohaghegh, H; Soroushmehr, S M R; Ward, K; All, A; Najarian, K

    2016-08-01

    Despite the rapid growth in brain tumor segmentation approaches, there are still many challenges in this field. Automatic segmentation of brain images has a critical role in decreasing the burden of manual labeling and increasing robustness of brain tumor diagnosis. We consider segmentation of glioma tumors, which have a wide variation in size, shape and appearance properties. In this paper images are enhanced and normalized to same scale in a preprocessing step. The enhanced images are then segmented based on their intensities using 3D super-voxels. Usually in images a tumor region can be regarded as a salient object. Inspired by this observation, we propose a new feature which uses a saliency detection algorithm. An edge-aware filtering technique is employed to align edges of the original image to the saliency map which enhances the boundaries of the tumor. Then, for classification of tumors in brain images, a set of robust texture features are extracted from super-voxels. Experimental results indicate that our proposed method outperforms a comparable state-of-the-art algorithm in term of dice score.

  2. A wavelet-based Bayesian framework for 3D object segmentation in microscopy

    NASA Astrophysics Data System (ADS)

    Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil

    2012-03-01

    In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.

  3. Fully convolutional neural network for removing background in noisy images of uranium bearing particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarolli, Jay G.; Naes, Benjamin E.; Butler, Lamar

    A fully convolutional neural network (FCN) was developed to supersede automatic or manual thresholding algorithms used for tabulating SIMS particle search data. The FCN was designed to perform a binary classification of pixels in each image belonging to a particle or not, thereby effectively removing background signal without manually or automatically determining an intensity threshold. Using 8,000 images from 28 different particle screening analyses, the FCN was trained to accurately predict pixels belonging to a particle with near 99% accuracy. Background eliminated images were then segmented using a watershed technique in order to determine isotopic ratios of particles. A comparisonmore » of the isotopic distributions of an independent data set segmented using the neural network, compared to a commercially available automated particle measurement (APM) program developed by CAMECA, highlighted the necessity for effective background removal to ensure that resulting particle identification is not only accurate, but preserves valuable signal that could be lost due to improper segmentation. The FCN approach improves the robustness of current state-of-the-art particle searching algorithms by reducing user input biases, resulting in an improved absolute signal per particle and decreased uncertainty of the determined isotope ratios.« less

  4. A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations

    PubMed Central

    Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary

    2016-01-01

    There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699

  5. Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method

    NASA Astrophysics Data System (ADS)

    Feng, Min-nan; Wang, Yu-cong; Wang, Hao; Liu, Guo-quan; Xue, Wei-hua

    2017-03-01

    Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation.

  6. Automated skin segmentation in ultrasonic evaluation of skin toxicity in breast cancer radiotherapy.

    PubMed

    Gao, Yi; Tannenbaum, Allen; Chen, Hao; Torres, Mylin; Yoshida, Emi; Yang, Xiaofeng; Wang, Yuefeng; Curran, Walter; Liu, Tian

    2013-11-01

    Skin toxicity is the most common side effect of breast cancer radiotherapy and impairs the quality of life of many breast cancer survivors. We, along with other researchers, have recently found quantitative ultrasound to be effective as a skin toxicity assessment tool. Although more reliable than standard clinical evaluations (visual observation and palpation), the current procedure for ultrasound-based skin toxicity measurements requires manual delineation of the skin layers (i.e., epidermis-dermis and dermis-hypodermis interfaces) on each ultrasound B-mode image. Manual skin segmentation is time consuming and subjective. Moreover, radiation-induced skin injury may decrease image contrast between the dermis and hypodermis, which increases the difficulty of delineation. Therefore, we have developed an automatic skin segmentation tool (ASST) based on the active contour model with two significant modifications: (i) The proposed algorithm introduces a novel dual-curve scheme for the double skin layer extraction, as opposed to the original single active contour method. (ii) The proposed algorithm is based on a geometric contour framework as opposed to the previous parametric algorithm. This ASST algorithm was tested on a breast cancer image database of 730 ultrasound breast images (73 ultrasound studies of 23 patients). We compared skin segmentation results obtained with the ASST with manual contours performed by two physicians. The average percentage differences in skin thickness between the ASST measurement and that of each physician were less than 5% (4.8 ± 17.8% and -3.8 ± 21.1%, respectively). In summary, we have developed an automatic skin segmentation method that ensures objective assessment of radiation-induced changes in skin thickness. Our ultrasound technology offers a unique opportunity to quantify tissue injury in a more meaningful and reproducible manner than the subjective assessments currently employed in the clinic. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. A region-based segmentation method for ultrasound images in HIFU therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentationmore » becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori information about the tumor position, shape, and size. Additionally, an appropriate cluster number for spectral clustering can be determined by the same algorithm, thus the automatic segmentation of the tumor region is achieved. Results: To evaluate the performance of the proposed method, 50 uterine fibroid ultrasound images from different patients receiving HIFU therapy were segmented, and the obtained tumor contours were compared with those delineated by an experienced radiologist. For area-based evaluation results, the mean values of the true positive ratio, the false positive ratio, and the similarity were 94.42%, 4.71%, and 90.21%, respectively, and the corresponding standard deviations were 2.54%, 3.12%, and 3.50%, respectively. For distance-based evaluation results, the mean values of the normalized Hausdorff distance and the normalized mean absolute distance were 4.93% and 0.90%, respectively, and the corresponding standard deviations were 2.22% and 0.34%, respectively. The running time of the segmentation process was 12.9 s for a 318 × 333 (pixels) image. Conclusions: Experiments show that the proposed method can segment the tumor region accurately and efficiently with less manual intervention, which provides for the possibility of automatic segmentation and real-time guidance in HIFU therapy.« less

  8. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  9. Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong

    2017-02-01

    In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI images with high precision, which could be a laborious task when performed manually. Herein a fully automatic framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about 0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which demonstrates the accuracy and robustness of the proposed inter-species translational approach.

  10. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    PubMed

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  11. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer.

    PubMed

    Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib

    2009-11-01

    We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.

  12. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics1[OPEN

    PubMed Central

    Poeschl, Yvonne; Plötner, Romina

    2017-01-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. PMID:28931626

  13. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.

  14. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements.

    PubMed

    van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna

    2012-03-01

    Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.

  15. Reconstructing liver shape and position from MR image slices using an active shape model

    NASA Astrophysics Data System (ADS)

    Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas

    2008-03-01

    We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.

  16. Colour segmentation of multi variants tuberculosis sputum images using self organizing map

    NASA Astrophysics Data System (ADS)

    Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri

    2017-05-01

    Lung tuberculosis detection is still identified from Ziehl-Neelsen sputum smear images in low and middle countries. The clinicians decide the grade of this disease by counting manually the amount of tuberculosis bacilli. It is very tedious for clinicians with a lot number of patient and without standardization for sputum staining. The tuberculosis sputum images have multi variant characterizations in colour, because of no standardization in staining. The sputum has more variants colour and they are difficult to be identified. For helping the clinicians, this research examined the Self Organizing Map method for colouring image segmentation in sputum images based on colour clustering. This method has better performance than k-means clustering which also tried in this research. The Self Organizing Map could segment the sputum images with y good result and cluster the colours adaptively.

  17. Automated boundary segmentation and wound analysis for longitudinal corneal OCT images

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Shi, Fei; Zhu, Weifang; Pan, Lingjiao; Chen, Haoyu; Huang, Haifan; Zheng, Kangkeng; Chen, Xinjian

    2017-03-01

    Optical coherence tomography (OCT) has been widely applied in the examination and diagnosis of corneal diseases, but the information directly achieved from the OCT images by manual inspection is limited. We propose an automatic processing method to assist ophthalmologists in locating the boundaries in corneal OCT images and analyzing the recovery of corneal wounds after treatment from longitudinal OCT images. It includes the following steps: preprocessing, epithelium and endothelium boundary segmentation and correction, wound detection, corneal boundary fitting and wound analysis. The method was tested on a data set with longitudinal corneal OCT images from 20 subjects. Each subject has five images acquired after corneal operation over a period of time. The segmentation and classification accuracy of the proposed algorithm is high and can be used for analyzing wound recovery after corneal surgery.

  18. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    PubMed

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  19. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  20. Reproducibility of myelin content-based human habenula segmentation at 3 Tesla.

    PubMed

    Kim, Joo-Won; Naidich, Thomas P; Joseph, Joshmi; Nair, Divya; Glasser, Matthew F; O'halloran, Rafael; Doucet, Gaelle E; Lee, Won Hee; Krinsky, Hannah; Paulino, Alejandro; Glahn, David C; Anticevic, Alan; Frangou, Sophia; Xu, Junqian

    2018-03-26

    In vivo morphological study of the human habenula, a pair of small epithalamic nuclei adjacent to the dorsomedial thalamus, has recently gained significant interest for its role in reward and aversion processing. However, segmenting the habenula from in vivo magnetic resonance imaging (MRI) is challenging due to the habenula's small size and low anatomical contrast. Although manual and semi-automated habenula segmentation methods have been reported, the test-retest reproducibility of the segmented habenula volume and the consistency of the boundaries of habenula segmentation have not been investigated. In this study, we evaluated the intra- and inter-site reproducibility of in vivo human habenula segmentation from 3T MRI (0.7-0.8 mm isotropic resolution) using our previously proposed semi-automated myelin contrast-based method and its fully-automated version, as well as a previously published manual geometry-based method. The habenula segmentation using our semi-automated method showed consistent boundary definition (high Dice coefficient, low mean distance, and moderate Hausdorff distance) and reproducible volume measurement (low coefficient of variation). Furthermore, the habenula boundary in our semi-automated segmentation from 3T MRI agreed well with that in the manual segmentation from 7T MRI (0.5 mm isotropic resolution) of the same subjects. Overall, our proposed semi-automated habenula segmentation showed reliable and reproducible habenula localization, while its fully-automated version offers an efficient way for large sample analysis. © 2018 Wiley Periodicals, Inc.

  1. Purification of Training Samples Based on Spectral Feature and Superpixel Segmentation

    NASA Astrophysics Data System (ADS)

    Guan, X.; Qi, W.; He, J.; Wen, Q.; Chen, T.; Wang, Z.

    2018-04-01

    Remote sensing image classification is an effective way to extract information from large volumes of high-spatial resolution remote sensing images. Generally, supervised image classification relies on abundant and high-precision training data, which is often manually interpreted by human experts to provide ground truth for training and evaluating the performance of the classifier. Remote sensing enterprises accumulated lots of manually interpreted products from early lower-spatial resolution remote sensing images by executing their routine research and business programs. However, these manually interpreted products may not match the very high resolution (VHR) image properly because of different dates or spatial resolution of both data, thus, hindering suitability of manually interpreted products in training classification models, or small coverage area of these manually interpreted products. We also face similar problems in our laboratory in 21st Century Aerospace Technology Co. Ltd (short for 21AT). In this work, we propose a method to purify the interpreted product to match newly available VHRI data and provide the best training data for supervised image classifiers in VHR image classification. And results indicate that our proposed method can efficiently purify the input data for future machine learning use.

  2. Spinal cord grey matter segmentation challenge.

    PubMed

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-05-15

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

    PubMed

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B

    2015-10-06

    Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.

  4. Segment and Fit Thresholding: A New Method for Image Analysis Applied to Microarray and Immunofluorescence Data

    PubMed Central

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M.; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E.; Allen, Peter J.; Sempere, Lorenzo F.; Haab, Brian B.

    2016-01-01

    Certain experiments involve the high-throughput quantification of image data, thus requiring algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multi-color, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu’s method for selected images. SFT promises to advance the goal of full automation in image analysis. PMID:26339978

  5. A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.

    PubMed

    Khelifi, Lazhar; Mignotte, Max

    2017-08-01

    Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.

  6. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less

  7. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less

  8. Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.

  9. A hybrid segmentation method for partitioning the liver based on 4D DCE-MR images

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Wu, Zhiyi; Runge, Jurgen H.; Lavini, Cristina; Stoker, Jaap; van Gulik, Thomas; Cieslak, Kasia P.; van Vliet, Lucas J.; Vos, Frans M.

    2018-03-01

    The Couinaud classification of hepatic anatomy partitions the liver into eight functionally independent segments. Detection and segmentation of the hepatic vein (HV), portal vein (PV) and inferior vena cava (IVC) plays an important role in the subsequent delineation of the liver segments. To facilitate pharmacokinetic modeling of the liver based on the same data, a 4D DCE-MR scan protocol was selected. This yields images with high temporal resolution but low spatial resolution. Since the liver's vasculature consists of many tiny branches, segmentation of these images is challenging. The proposed framework starts with registration of the 4D DCE-MRI series followed by region growing from manually annotated seeds in the main branches of key blood vessels in the liver. It calculates the Pearson correlation between the time intensity curves (TICs) of a seed and all voxels. A maximum correlation map for each vessel is obtained by combining the correlation maps for all branches of the same vessel through a maximum selection per voxel. The maximum correlation map is incorporated in a level set scheme to individually delineate the main vessels. Subsequently, the eight liver segments are segmented based on three vertical intersecting planes fit through the three skeleton branches of HV and IVC's center of mass as well as a horizontal plane fit through the skeleton of PV. Our segmentation regarding delineation of the vessels is more accurate than the results of two state-of-the-art techniques on five subjects in terms of the average symmetric surface distance (ASSD) and modified Hausdorff distance (MHD). Furthermore, the proposed liver partitioning achieves large overlap with manual reference segmentations (expressed in Dice Coefficient) in all but a small minority of segments (mean values between 87% and 94% for segments 2-8). The lower mean overlap for segment 1 (72%) is due to the limited spatial resolution of our DCE-MR scan protocol.

  10. Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images

    PubMed Central

    Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.

    2010-01-01

    High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043

  11. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.

    PubMed

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.

  12. Segmentation of the whole breast from low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Salvatore, Mary; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential breast density readings as well as lesion detection in LDCT will provide useful information for women who have received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated segmentation algorithm achieves results consistent with manual annotations of a radiologist.

  13. Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images.

    PubMed

    Nandy, Kaustav; Gudla, Prabhakar R; Amundsen, Ryan; Meaburn, Karen J; Misteli, Tom; Lockett, Stephen J

    2012-09-01

    Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. Published 2012 Wiley Periodicals, Inc.

  14. Watershed-based segmentation of the corpus callosum in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto

    2012-02-01

    The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.

  15. Automated Detection of Leakage in Fluorescein Angiography Images with Application to Malarial Retinopathy

    PubMed Central

    Zhao, Yitian; J. C. MacCormick, Ian; G. Parry, David; Leach, Sophie; A. V. Beare, Nicholas; P. Harding, Simon; Zheng, Yalin

    2015-01-01

    The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and validated it on images from patients with malarial retinopathy. This framework comprises three steps: vessel segmentation, saliency feature generation and leakage detection. We tested the effectiveness of this framework by applying it to images from 20 patients with large focal leak, 10 patients with punctate focal leak, and 5,846 vessel segments from 10 patients with vessel leakage. The sensitivity in detecting large focal, punctate focal and vessel segment leakage are 95%, 82% and 81%, respectively, when compared to manual annotation by expert human observers. Our framework has the potential to become a powerful new tool for studying malarial retinopathy, and other conditions involving retinal leakage. PMID:26030010

  16. Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy.

    PubMed

    Zhao, Yitian; MacCormick, Ian J C; Parry, David G; Leach, Sophie; Beare, Nicholas A V; Harding, Simon P; Zheng, Yalin

    2015-06-01

    The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and validated it on images from patients with malarial retinopathy. This framework comprises three steps: vessel segmentation, saliency feature generation and leakage detection. We tested the effectiveness of this framework by applying it to images from 20 patients with large focal leak, 10 patients with punctate focal leak, and 5,846 vessel segments from 10 patients with vessel leakage. The sensitivity in detecting large focal, punctate focal and vessel segment leakage are 95%, 82% and 81%, respectively, when compared to manual annotation by expert human observers. Our framework has the potential to become a powerful new tool for studying malarial retinopathy, and other conditions involving retinal leakage.

  17. Multi-atlas propagation based left atrium segmentation coupled with super-voxel based pulmonary veins delineation in late gadolinium-enhanced cardiac MRI

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David

    2017-02-01

    Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is a non-invasive technique, which has shown promise in detecting native and post-ablation atrial scarring. To visualize the scarring, a precise segmentation of the left atrium (LA) and pulmonary veins (PVs) anatomy is performed as a first step—usually from an ECG gated CMRI roadmap acquisition—and the enhanced scar regions from the LGE CMRI images are superimposed. The anatomy of the LA and PVs in particular is highly variable and manual segmentation is labor intensive and highly subjective. In this paper, we developed a multi-atlas propagation based whole heart segmentation (WHS) to delineate the LA and PVs from ECG gated CMRI roadmap scans. While this captures the anatomy of the atrium well, the PVs anatomy is less easily visualized. The process is therefore augmented by semi-automated manual strokes for PVs identification in the registered LGE CMRI data. This allows us to extract more accurate anatomy than the fully automated WHS. Both qualitative visualization and quantitative assessment with respect to manual segmented ground truth showed that our method is efficient and effective with an overall mean Dice score of 0.91.

  18. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging.

    PubMed

    Bonekamp, S; Ghosh, P; Crawford, S; Solga, S F; Horska, A; Brancati, F L; Diehl, A M; Smith, S; Clark, J M

    2008-01-01

    To examine five available software packages for the assessment of abdominal adipose tissue with magnetic resonance imaging, compare their features and assess the reliability of measurement results. Feature evaluation and test-retest reliability of softwares (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision) used in manual, semi-automated or automated segmentation of abdominal adipose tissue. A random sample of 15 obese adults with type 2 diabetes. Axial T1-weighted spin echo images centered at vertebral bodies of L2-L3 were acquired at 1.5 T. Five software packages were evaluated (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision), comparing manual, semi-automated and automated segmentation approaches. Images were segmented into cross-sectional area (CSA), and the areas of visceral (VAT) and subcutaneous adipose tissue (SAT). Ease of learning and use and the design of the graphical user interface (GUI) were rated. Intra-observer accuracy and agreement between the software packages were calculated using intra-class correlation. Intra-class correlation coefficient was used to obtain test-retest reliability. Three of the five evaluated programs offered a semi-automated technique to segment the images based on histogram values or a user-defined threshold. One software package allowed manual delineation only. One fully automated program demonstrated the drawbacks of uncritical automated processing. The semi-automated approaches reduced variability and measurement error, and improved reproducibility. There was no significant difference in the intra-observer agreement in SAT and CSA. The VAT measurements showed significantly lower test-retest reliability. There were some differences between the software packages in qualitative aspects, such as user friendliness. Four out of five packages provided essentially the same results with respect to the inter- and intra-rater reproducibility. Our results using SliceOmatic, Analyze or NIHImage were comparable and could be used interchangeably. Newly developed fully automated approaches should be compared to one of the examined software packages.

  19. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging

    PubMed Central

    Bonekamp, S; Ghosh, P; Crawford, S; Solga, SF; Horska, A; Brancati, FL; Diehl, AM; Smith, S; Clark, JM

    2009-01-01

    Objective To examine five available software packages for the assessment of abdominal adipose tissue with magnetic resonance imaging, compare their features and assess the reliability of measurement results. Design Feature evaluation and test–retest reliability of softwares (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision) used in manual, semi-automated or automated segmentation of abdominal adipose tissue. Subjects A random sample of 15 obese adults with type 2 diabetes. Measurements Axial T1-weighted spin echo images centered at vertebral bodies of L2–L3 were acquired at 1.5 T. Five software packages were evaluated (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision), comparing manual, semi-automated and automated segmentation approaches. Images were segmented into cross-sectional area (CSA), and the areas of visceral (VAT) and subcutaneous adipose tissue (SAT). Ease of learning and use and the design of the graphical user interface (GUI) were rated. Intra-observer accuracy and agreement between the software packages were calculated using intra-class correlation. Intra-class correlation coefficient was used to obtain test–retest reliability. Results Three of the five evaluated programs offered a semi-automated technique to segment the images based on histogram values or a user-defined threshold. One software package allowed manual delineation only. One fully automated program demonstrated the drawbacks of uncritical automated processing. The semi-automated approaches reduced variability and measurement error, and improved reproducibility. There was no significant difference in the intra-observer agreement in SAT and CSA. The VAT measurements showed significantly lower test–retest reliability. There were some differences between the software packages in qualitative aspects, such as user friendliness. Conclusion Four out of five packages provided essentially the same results with respect to the inter- and intra-rater reproducibility. Our results using SliceOmatic, Analyze or NIHImage were comparable and could be used interchangeably. Newly developed fully automated approaches should be compared to one of the examined software packages. PMID:17700582

  20. Fast and Accurate Semi-Automated Segmentation Method of Spinal Cord MR Images at 3T Applied to the Construction of a Cervical Spinal Cord Template

    PubMed Central

    El Mendili, Mohamed-Mounir; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib

    2015-01-01

    Objective To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. Materials and Methods A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects’ images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Results Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. Conclusion A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template. PMID:25816143

  1. Semi-automatic medical image segmentation with adaptive local statistics in Conditional Random Fields framework.

    PubMed

    Hu, Yu-Chi J; Grossberg, Michael D; Mageras, Gikas S

    2008-01-01

    Planning radiotherapy and surgical procedures usually require onerous manual segmentation of anatomical structures from medical images. In this paper we present a semi-automatic and accurate segmentation method to dramatically reduce the time and effort required of expert users. This is accomplished by giving a user an intuitive graphical interface to indicate samples of target and non-target tissue by loosely drawing a few brush strokes on the image. We use these brush strokes to provide the statistical input for a Conditional Random Field (CRF) based segmentation. Since we extract purely statistical information from the user input, we eliminate the need of assumptions on boundary contrast previously used by many other methods, A new feature of our method is that the statistics on one image can be reused on related images without registration. To demonstrate this, we show that boundary statistics provided on a few 2D slices of volumetric medical data, can be propagated through the entire 3D stack of images without using the geometric correspondence between images. In addition, the image segmentation from the CRF can be formulated as a minimum s-t graph cut problem which has a solution that is both globally optimal and fast. The combination of a fast segmentation and minimal user input that is reusable, make this a powerful technique for the segmentation of medical images.

  2. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue

    PubMed Central

    Ahmad, Iftikhar; Gribble, Adam; Murtza, Iqbal; Ikram, Masroor; Pop, Mihaela; Vitkin, Alex

    2017-01-01

    Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA) lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy) zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02), sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08), specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17) and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10) for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification. PMID:28380013

  3. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain.

    PubMed

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-04-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes.

  4. Fully automatic cervical vertebrae segmentation framework for X-ray images.

    PubMed

    Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg

    2018-04-01

    The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.

    PubMed

    Dalmış, Mehmet Ufuk; Litjens, Geert; Holland, Katharina; Setio, Arnaud; Mann, Ritse; Karssemeijer, Nico; Gubern-Mérida, Albert

    2017-02-01

    Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net." We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed Pearson's correlation between the breast density values computed based on manual and automated segmentations. The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848 obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively. The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than 0.957 as obtained from 2C U-nets (P < 0.0001, Steiger's Z-test with Bonferoni correction) and 0.938 as obtained from atlas-based method (P = 0.0016). In conclusion, we applied a deep-learning method, U-net, for segmenting breast and FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results showed that U-net-based methods significantly outperformed the existing algorithms and resulted in significantly more accurate breast density computation. © 2016 American Association of Physicists in Medicine.

  6. Unsupervised background-constrained tank segmentation of infrared images in complex background based on the Otsu method.

    PubMed

    Zhou, Yulong; Gao, Min; Fang, Dan; Zhang, Baoquan

    2016-01-01

    In an effort to implement fast and effective tank segmentation from infrared images in complex background, the threshold of the maximum between-class variance method (i.e., the Otsu method) is analyzed and the working mechanism of the Otsu method is discussed. Subsequently, a fast and effective method for tank segmentation from infrared images in complex background is proposed based on the Otsu method via constraining the complex background of the image. Considering the complexity of background, the original image is firstly divided into three classes of target region, middle background and lower background via maximizing the sum of their between-class variances. Then, the unsupervised background constraint is implemented based on the within-class variance of target region and hence the original image can be simplified. Finally, the Otsu method is applied to simplified image for threshold selection. Experimental results on a variety of tank infrared images (880 × 480 pixels) in complex background demonstrate that the proposed method enjoys better segmentation performance and even could be comparative with the manual segmentation in segmented results. In addition, its average running time is only 9.22 ms, implying the new method with good performance in real time processing.

  7. Automatic Segmenting Structures in MRI's Based on Texture Analysis and Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Rattan, Munish; Singh, Pushpinder

    2017-12-01

    The purpose of this paper is to present the variational method for geometric contours which helps the level set function remain close to the sign distance function, therefor it remove the need of expensive re-initialization procedure and thus, level set method is applied on magnetic resonance images (MRI) to track the irregularities in them as medical imaging plays a substantial part in the treatment, therapy and diagnosis of various organs, tumors and various abnormalities. It favors the patient with more speedy and decisive disease controlling with lesser side effects. The geometrical shape, the tumor's size and tissue's abnormal growth can be calculated by the segmentation of that particular image. It is still a great challenge for the researchers to tackle with an automatic segmentation in the medical imaging. Based on the texture analysis, different images are processed by optimization of level set segmentation. Traditionally, optimization was manual for every image where each parameter is selected one after another. By applying fuzzy logic, the segmentation of image is correlated based on texture features, to make it automatic and more effective. There is no initialization of parameters and it works like an intelligent system. It segments the different MRI images without tuning the level set parameters and give optimized results for all MRI's.

  8. Assessing the Effects of Software Platforms on Volumetric Segmentation of Glioblastoma

    PubMed Central

    Dunn, William D.; Aerts, Hugo J.W.L.; Cooper, Lee A.; Holder, Chad A.; Hwang, Scott N.; Jaffe, Carle C.; Brat, Daniel J.; Jain, Rajan; Flanders, Adam E.; Zinn, Pascal O.; Colen, Rivka R.; Gutman, David A.

    2017-01-01

    Background Radiological assessments of biologically relevant regions in glioblastoma have been associated with genotypic characteristics, implying a potential role in personalized medicine. Here, we assess the reproducibility and association with survival of two volumetric segmentation platforms and explore how methodology could impact subsequent interpretation and analysis. Methods Post-contrast T1- and T2-weighted FLAIR MR images of 67 TCGA patients were segmented into five distinct compartments (necrosis, contrast-enhancement, FLAIR, post contrast abnormal, and total abnormal tumor volumes) by two quantitative image segmentation platforms - 3D Slicer and a method based on Velocity AI and FSL. We investigated the internal consistency of each platform by correlation statistics, association with survival, and concordance with consensus neuroradiologist ratings using ordinal logistic regression. Results We found high correlations between the two platforms for FLAIR, post contrast abnormal, and total abnormal tumor volumes (spearman’s r(67) = 0.952, 0.959, and 0.969 respectively). Only modest agreement was observed for necrosis and contrast-enhancement volumes (r(67) = 0.693 and 0.773 respectively), likely arising from differences in manual and automated segmentation methods of these regions by 3D Slicer and Velocity AI/FSL, respectively. Survival analysis based on AUC revealed significant predictive power of both platforms for the following volumes: contrast-enhancement, post contrast abnormal, and total abnormal tumor volumes. Finally, ordinal logistic regression demonstrated correspondence to manual ratings for several features. Conclusion Tumor volume measurements from both volumetric platforms produced highly concordant and reproducible estimates across platforms for general features. As automated or semi-automated volumetric measurements replace manual linear or area measurements, it will become increasingly important to keep in mind that measurement differences between segmentation platforms for more detailed features could influence downstream survival or radio genomic analyses. PMID:29600296

  9. 3-D segmentation of articular cartilages by graph cuts using knee MR images from osteoarthritis initiative

    NASA Astrophysics Data System (ADS)

    Shim, Hackjoon; Lee, Soochan; Kim, Bohyeong; Tao, Cheng; Chang, Samuel; Yun, Il Dong; Lee, Sang Uk; Kwoh, Kent; Bae, Kyongtae

    2008-03-01

    Knee osteoarthritis is the most common debilitating health condition affecting elderly population. MR imaging of the knee is highly sensitive for diagnosis and evaluation of the extent of knee osteoarthritis. Quantitative analysis of the progression of osteoarthritis is commonly based on segmentation and measurement of articular cartilage from knee MR images. Segmentation of the knee articular cartilage, however, is extremely laborious and technically demanding, because the cartilage is of complex geometry and thin and small in size. To improve precision and efficiency of the segmentation of the cartilage, we have applied a semi-automated segmentation method that is based on an s/t graph cut algorithm. The cost function was defined integrating regional and boundary cues. While regional cues can encode any intensity distributions of two regions, "object" (cartilage) and "background" (the rest), boundary cues are based on the intensity differences between neighboring pixels. For three-dimensional (3-D) segmentation, hard constraints are also specified in 3-D way facilitating user interaction. When our proposed semi-automated method was tested on clinical patients' MR images (160 slices, 0.7 mm slice thickness), a considerable amount of segmentation time was saved with improved efficiency, compared to a manual segmentation approach.

  10. Vessel network detection using contour evolution and color components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge

    2011-06-22

    Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum numbermore » of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.« less

  11. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    PubMed Central

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  12. Integration of Sparse Multi-modality Representation and Anatomical Constraint for Isointense Infant Brain MR Image Segmentation

    PubMed Central

    Wang, Li; Shi, Feng; Gao, Yaozong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination process. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6–8 months of age, where the white and gray matter tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a general framework that adopts sparse representation to fuse the multi-modality image information and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we first derive an initial segmentation from a library of aligned images with ground-truth segmentations by using sparse representation in a patch-based fashion for the multi-modality T1, T2 and FA images. The segmentation result is further iteratively refined by integration of the anatomical constraint. The proposed method was evaluated on 22 infant brain MR images acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10 unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the volume overlap between automated and manual segmentations, i.e., 0.889±0.008 for white matter and 0.870±0.006 for gray matter. PMID:24291615

  13. OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI.

    PubMed

    Sweeney, Elizabeth M; Shinohara, Russell T; Shiee, Navid; Mateen, Farrah J; Chudgar, Avni A; Cuzzocreo, Jennifer L; Calabresi, Peter A; Pham, Dzung L; Reich, Daniel S; Crainiceanu, Ciprian M

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is time-consuming, costly, and associated with large inter- and intra-observer variability. We propose OASIS is Automated Statistical Inference for Segmentation (OASIS), an automated statistical method for segmenting MS lesions in MRI studies. We use logistic regression models incorporating multiple MRI modalities to estimate voxel-level probabilities of lesion presence. Intensity-normalized T1-weighted, T2-weighted, fluid-attenuated inversion recovery and proton density volumes from 131 MRI studies (98 MS subjects, 33 healthy subjects) with manual lesion segmentations were used to train and validate our model. Within this set, OASIS detected lesions with a partial area under the receiver operating characteristic curve for clinically relevant false positive rates of 1% and below of 0.59% (95% CI; [0.50%, 0.67%]) at the voxel level. An experienced MS neuroradiologist compared these segmentations to those produced by LesionTOADS, an image segmentation software that provides segmentation of both lesions and normal brain structures. For lesions, OASIS out-performed LesionTOADS in 74% (95% CI: [65%, 82%]) of cases for the 98 MS subjects. To further validate the method, we applied OASIS to 169 MRI studies acquired at a separate center. The neuroradiologist again compared the OASIS segmentations to those from LesionTOADS. For lesions, OASIS ranked higher than LesionTOADS in 77% (95% CI: [71%, 83%]) of cases. For a randomly selected subset of 50 of these studies, one additional radiologist and one neurologist also scored the images. Within this set, the neuroradiologist ranked OASIS higher than LesionTOADS in 76% (95% CI: [64%, 88%]) of cases, the neurologist 66% (95% CI: [52%, 78%]) and the radiologist 52% (95% CI: [38%, 66%]). OASIS obtains the estimated probability for each voxel to be part of a lesion by weighting each imaging modality with coefficient weights. These coefficients are explicit, obtained using standard model fitting techniques, and can be reused in other imaging studies. This fully automated method allows sensitive and specific detection of lesion presence and may be rapidly applied to large collections of images.

  14. Fully automated chest wall line segmentation in breast MRI by using context information

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina

    2012-03-01

    Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).

  15. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  16. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  17. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    PubMed

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P < 0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Comparison of parameter-adapted segmentation methods for fluorescence micrographs.

    PubMed

    Held, Christian; Palmisano, Ralf; Häberle, Lothar; Hensel, Michael; Wittenberg, Thomas

    2011-11-01

    Interpreting images from fluorescence microscopy is often a time-consuming task with poor reproducibility. Various image processing routines that can help investigators evaluate the images are therefore useful. The critical aspect for a reliable automatic image analysis system is a robust segmentation algorithm that can perform accurate segmentation for different cell types. In this study, several image segmentation methods were therefore compared and evaluated in order to identify the most appropriate segmentation schemes that are usable with little new parameterization and robustly with different types of fluorescence-stained cells for various biological and biomedical tasks. The study investigated, compared, and enhanced four different methods for segmentation of cultured epithelial cells. The maximum-intensity linking (MIL) method, an improved MIL, a watershed method, and an improved watershed method based on morphological reconstruction were used. Three manually annotated datasets consisting of 261, 817, and 1,333 HeLa or L929 cells were used to compare the different algorithms. The comparisons and evaluations showed that the segmentation performance of methods based on the watershed transform was significantly superior to the performance of the MIL method. The results also indicate that using morphological opening by reconstruction can improve the segmentation of cells stained with a marker that exhibits the dotted surface of cells. Copyright © 2011 International Society for Advancement of Cytometry.

  19. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  20. Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images

    PubMed Central

    Jang, Yeonggul; Jung, Ho Yub; Hong, Youngtaek; Cho, Iksung; Shim, Hackjoon; Chang, Hyuk-Jae

    2016-01-01

    This paper presents a method for the automatic 3D segmentation of the ascending aorta from coronary computed tomography angiography (CCTA). The segmentation is performed in three steps. First, the initial seed points are selected by minimizing a newly proposed energy function across the Hough circles. Second, the ascending aorta is segmented by geodesic distance transformation. Third, the seed points are effectively transferred through the next axial slice by a novel transfer function. Experiments are performed using a database composed of 10 patients' CCTA images. For the experiment, the ground truths are annotated manually on the axial image slices by a medical expert. A comparative evaluation with state-of-the-art commercial aorta segmentation algorithms shows that our approach is computationally more efficient and accurate under the DSC (Dice Similarity Coefficient) measurements. PMID:26904151

  1. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    NASA Astrophysics Data System (ADS)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  2. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    PubMed Central

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  3. Automated tissue classification of pediatric brains from magnetic resonance images using age-specific atlases

    NASA Astrophysics Data System (ADS)

    Metzger, Andrew; Benavides, Amanda; Nopoulos, Peg; Magnotta, Vincent

    2016-03-01

    The goal of this project was to develop two age appropriate atlases (neonatal and one year old) that account for the rapid growth and maturational changes that occur during early development. Tissue maps from this age group were initially created by manually correcting the resulting tissue maps after applying an expectation maximization (EM) algorithm and an adult atlas to pediatric subjects. The EM algorithm classified each voxel into one of ten possible tissue types including several subcortical structures. This was followed by a novel level set segmentation designed to improve differentiation between distal cortical gray matter and white matter. To minimize the req uired manual corrections, the adult atlas was registered to the pediatric scans using high -dimensional, symmetric image normalization (SyN) registration. The subject images were then mapped to an age specific atlas space, again using SyN registration, and the resulting transformation applied to the manually corrected tissue maps. The individual maps were averaged in the age specific atlas space and blurred to generate the age appropriate anatomical priors. The resulting anatomical priors were then used by the EM algorithm to re-segment the initial training set as well as an independent testing set. The results from the adult and age-specific anatomical priors were compared to the manually corrected results. The age appropriate atlas provided superior results as compared to the adult atlas. The image analysis pipeline used in this work was built using the open source software package BRAINSTools.

  4. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    PubMed Central

    Schmitz, Christoph; Eastwood, Brian S.; Tappan, Susan J.; Glaser, Jack R.; Peterson, Daniel A.; Hof, Patrick R.

    2014-01-01

    Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) “cell counting” approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections. PMID:24847213

  5. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    PubMed Central

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-01-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods. PMID:26257473

  6. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-02-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.

  7. Medical image segmentation to estimate HER2 gene status in breast cancer

    NASA Astrophysics Data System (ADS)

    Palacios-Navarro, Guillermo; Acirón-Pomar, José Manuel; Vilchez-Sorribas, Enrique; Zambrano, Eddie Galarza

    2016-02-01

    This work deals with the estimation of HER2 Gene status in breast tumour images treated with in situ hybridization techniques (ISH). We propose a simple algorithm to obtain the amplification factor of HER2 gene. The obtained results are very close to those obtained by specialists in a manual way. The developed algorithm is based on colour image segmentation and has been included in a software application tool for breast tumour analysis. The developed tool focus on the estimation of the seriousness of tumours, facilitating the work of pathologists and contributing to a better diagnosis.

  8. Real-time myocardium segmentation for the assessment of cardiac function variation

    NASA Astrophysics Data System (ADS)

    Zoehrer, Fabian; Huellebrand, Markus; Chitiboi, Teodora; Oechtering, Thekla; Sieren, Malte; Frahm, Jens; Hahn, Horst K.; Hennemuth, Anja

    2017-03-01

    Recent developments in MRI enable the acquisition of image sequences with high spatio-temporal resolution. Cardiac motion can be captured without gating and triggering. Image size and contrast relations differ from conventional cardiac MRI cine sequences requiring new adapted analysis methods. We suggest a novel segmentation approach utilizing contrast invariant polar scanning techniques. It has been tested with 20 datasets of arrhythmia patients. The results do not differ significantly more between automatic and manual segmentations than between observers. This indicates that the presented solution could enable clinical applications of real-time MRI for the examination of arrhythmic cardiac motion in the future.

  9. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    PubMed

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

  10. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Kitslaar, Pieter H; Coolen, Bram F; van den Berg, Alexandra M; Smits, Loek P; Shahzad, Rahil; Shamonin, Denis P; de Koning, Patrick J H; Nederveen, Aart J; van der Geest, Rob J

    2017-10-01

    The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI. The proposed method segments the lumen and outer wall surfaces including the bifurcation region by fitting a subdivision surface constructed hierarchical-tree model to the image data. In particular, a hybrid segmentation which combines deformable model fitting with boundary classification was applied to extract the lumen surface. The 3D model ensures the correct shape and topology of the carotid artery, while the boundary classification uses combined image information of 3D TOF-MRA and 3D BB-MRI to promote accurate delineation of the lumen boundaries. The proposed algorithm was validated on 25 subjects (48 arteries) including both healthy volunteers and atherosclerotic patients with 30% to 70% carotid stenosis. For both lumen and outer wall border detection, our result shows good agreement between manually and automatically determined contours, with contour-to-contour distance less than 1 pixel as well as Dice overlap greater than 0.87 at all different carotid artery sections. The presented 3D segmentation technique has demonstrated the capability of providing vessel wall delineation for 3D carotid MRI data with high accuracy and limited user interaction. This brings benefits to large-scale patient studies for assessing the effect of pharmacological treatment of atherosclerosis by reducing image analysis time and bias between human observers. © 2017 American Association of Physicists in Medicine.

  11. Automated renal histopathology: digital extraction and quantification of renal pathology

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.

    2016-03-01

    The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.

  12. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.

    PubMed

    Salvi, Massimo; Molinari, Filippo

    2018-06-20

    Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.

  13. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  14. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.

    PubMed

    Möller, Birgit; Poeschl, Yvonne; Plötner, Romina; Bürstenbinder, Katharina

    2017-11-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Integrating atlas and graph cut methods for right ventricle blood-pool segmentation from cardiac cine MRI

    NASA Astrophysics Data System (ADS)

    Dangi, Shusil; Linte, Cristian A.

    2017-03-01

    Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  16. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features

    PubMed Central

    Bakas, Spyridon; Akbari, Hamed; Sotiras, Aristeidis; Bilello, Michel; Rozycki, Martin; Kirby, Justin S.; Freymann, John B.; Farahani, Keyvan; Davatzikos, Christos

    2017-01-01

    Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release segmentation labels and radiomic features for all pre-operative multimodal magnetic resonance imaging (MRI) (n=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The Cancer Imaging Archive (TCIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM, n=135) and low-grade-glioma (TCGA-LGG, n=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method. PMID:28872634

  17. Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan

    2013-08-01

    Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

  18. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients.

    PubMed

    Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders

    2013-10-03

    Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.

  19. Automated MRI Segmentation for Individualized Modeling of Current Flow in the Human Head

    PubMed Central

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-01-01

    Objective High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography (HD-EEG) require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images (MRI) requires labor-intensive manual segmentation, even when leveraging available automated segmentation tools. Also, accurate placement of many high-density electrodes on individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach A fully automated segmentation technique based on Statical Parametric Mapping 8 (SPM8), including an improved tissue probability map (TPM) and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on 4 healthy subjects and 7 stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. Main results The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view (FOV) extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Significance Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials. PMID:24099977

  20. Automated MRI segmentation for individualized modeling of current flow in the human head

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-12-01

    Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.Main results. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.Significance. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  1. Calibration of a semi-automated segmenting method for quantification of adipose tissue compartments from magnetic resonance images of mice.

    PubMed

    Garteiser, Philippe; Doblas, Sabrina; Towner, Rheal A; Griffin, Timothy M

    2013-11-01

    To use an automated water-suppressed magnetic resonance imaging (MRI) method to objectively assess adipose tissue (AT) volumes in whole body and specific regional body components (subcutaneous, thoracic and peritoneal) of obese and lean mice. Water-suppressed MR images were obtained on a 7T, horizontal-bore MRI system in whole bodies (excluding head) of 26 week old male C57BL6J mice fed a control (10% kcal fat) or high-fat diet (60% kcal fat) for 20 weeks. Manual (outlined regions) versus automated (Gaussian fitting applied to threshold-weighted images) segmentation procedures were compared for whole body AT and regional AT volumes (i.e., subcutaneous, thoracic, and peritoneal). The AT automated segmentation method was compared to dual-energy X-ray (DXA) analysis. The average AT volumes for whole body and individual compartments correlated well between the manual outlining and the automated methods (R2>0.77, p<0.05). Subcutaneous, peritoneal, and total body AT volumes were increased 2-3 fold and thoracic AT volume increased more than 5-fold in diet-induced obese mice versus controls (p<0.05). MRI and DXA-based method comparisons were highly correlative (R2=0.94, p<0.0001). Automated AT segmentation of water-suppressed MRI data using a global Gaussian filtering algorithm resulted in a fairly accurate assessment of total and regional AT volumes in a pre-clinical mouse model of obesity. © 2013 Elsevier Inc. All rights reserved.

  2. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  3. Shape based segmentation of MRIs of the bones in the knee using phase and intensity information

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Bourgeat, Pierrick; Crozier, Stuart; Ourselin, Sébastien

    2007-03-01

    The segmentation of the bones from MR images is useful for performing subsequent segmentation and quantitative measurements of cartilage tissue. In this paper, we present a shape based segmentation scheme for the bones that uses texture features derived from the phase and intensity information in the complex MR image. The phase can provide additional information about the tissue interfaces, but due to the phase unwrapping problem, this information is usually discarded. By using a Gabor filter bank on the complex MR image, texture features (including phase) can be extracted without requiring phase unwrapping. These texture features are then analyzed using a support vector machine classifier to obtain probability tissue matches. The segmentation of the bone is fully automatic and performed using a 3D active shape model based approach driven using gradient and texture information. The 3D active shape model is automatically initialized using a robust affine registration. The approach is validated using a database of 18 FLASH MR images that are manually segmented, with an average segmentation overlap (Dice similarity coefficient) of 0.92 compared to 0.9 obtained using the classifier only.

  4. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.

    PubMed

    Sauwen, N; Acou, M; Van Cauter, S; Sima, D M; Veraart, J; Maes, F; Himmelreich, U; Achten, E; Van Huffel, S

    2016-01-01

    Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.

  5. Lymph node segmentation on CT images by a shape model guided deformable surface methodh

    NASA Astrophysics Data System (ADS)

    Maleike, Daniel; Fabel, Michael; Tetzlaff, Ralf; von Tengg-Kobligk, Hendrik; Heimann, Tobias; Meinzer, Hans-Peter; Wolf, Ivo

    2008-03-01

    With many tumor entities, quantitative assessment of lymph node growth over time is important to make therapy choices or to evaluate new therapies. The clinical standard is to document diameters on transversal slices, which is not the best measure for a volume. We present a new algorithm to segment (metastatic) lymph nodes and evaluate the algorithm with 29 lymph nodes in clinical CT images. The algorithm is based on a deformable surface search, which uses statistical shape models to restrict free deformation. To model lymph nodes, we construct an ellipsoid shape model, which strives for a surface with strong gradients and user-defined gray values. The algorithm is integrated into an application, which also allows interactive correction of the segmentation results. The evaluation shows that the algorithm gives good results in the majority of cases and is comparable to time-consuming manual segmentation. The median volume error was 10.1% of the reference volume before and 6.1% after manual correction. Integrated into an application, it is possible to perform lymph node volumetry for a whole patient within the 10 to 15 minutes time limit imposed by clinical routine.

  6. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully automatic vessel wall quantification was developed and validated on healthy volunteers as well as patients with increased vessel wall thickness. This method holds promise for helping in efficient image interpretation for large-scale cohort studies. 4 J. Magn. Reson. Imaging 2017;45:215-228. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    NASA Astrophysics Data System (ADS)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  8. Survey of Protocols for the Manual Segmentation of the Hippocampus: Preparatory Steps Towards a Joint EADC-ADNI Harmonized Protocol

    PubMed Central

    Boccardi, Marina; Ganzola, Rossana; Bocchetta, Martina; Pievani, Michela; Redolfi, Alberto; Bartzokis, George; Camicioli, Richard; Csernansky, John G.; de Leon, Mony J.; deToledo-Morrell, Leyla; Killiany, Ronald J.; Lehéricy, Stéphane; Pantel, Johannes; Pruessner, Jens C.; Soininen, H.; Watson, Craig; Duchesne, Simon; Jack, Clifford R.; Frisoni, Giovanni B.

    2013-01-01

    Manual segmentation from magnetic resonance imaging (MR) is the gold standard for evaluating hippocampal atrophy in Alzheimer’s disease (AD). Nonetheless, different segmentation protocols provide up to 2.5-fold volume differences. Here we surveyed the most frequently used segmentation protocols in the AD literature as a preliminary step for international harmonization. The anatomical landmarks (anteriormost and posteriormost slices, superior, inferior, medial, and lateral borders) were identified from 12 published protocols for hippocampal manual segmentation ([Abbreviation] first author, publication year: [B] Bartzokis, 1998; [C] Convit, 1997; [dTM] deToledo-Morrell, 2004; [H] Haller, 1997; [J] Jack, 1994; [K] Killiany, 1993; [L] Lehericy, 1994; [M] Malykhin, 2007; [Pa] Pantel, 2000; [Pr] Pruessner, 2000; [S] Soininen, 1994; [W] Watson, 1992). The hippocampi of one healthy control and one AD patient taken from the 1.5T MR ADNI database were segmented by a single rater according to each protocol. The accuracy of the protocols’ interpretation and translation into practice was checked with lead authors of protocols through individual interactive web conferences. Semantically harmonized landmarks and differences were then extracted, regarding: (a) the posteriormost slice, protocol [B] being the most restrictive, and [H, M, Pa, Pr, S] the most inclusive; (b) inclusion [C, dTM, J, L, M, Pr, W] or exclusion [B, H, K, Pa, S] of alveus/fimbria; (c) separation from the parahippocampal gyrus, [C] being the most restrictive, [B, dTM, H, J, Pa, S] the most inclusive. There were no substantial differences in the definition of the anteriormost slice. This survey will allow us to operationalize differences among protocols into tracing units, measure their impact on the repeatability and diagnostic accuracy of manual hippocampal segmentation, and finally develop a harmonized protocol. PMID:21971451

  9. Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol.

    PubMed

    Boccardi, Marina; Ganzola, Rossana; Bocchetta, Martina; Pievani, Michela; Redolfi, Alberto; Bartzokis, George; Camicioli, Richard; Csernansky, John G; de Leon, Mony J; deToledo-Morrell, Leyla; Killiany, Ronald J; Lehéricy, Stéphane; Pantel, Johannes; Pruessner, Jens C; Soininen, H; Watson, Craig; Duchesne, Simon; Jack, Clifford R; Frisoni, Giovanni B

    2011-01-01

    Manual segmentation from magnetic resonance imaging (MR) is the gold standard for evaluating hippocampal atrophy in Alzheimer's disease (AD). Nonetheless, different segmentation protocols provide up to 2.5-fold volume differences. Here we surveyed the most frequently used segmentation protocols in the AD literature as a preliminary step for international harmonization. The anatomical landmarks (anteriormost and posteriormost slices, superior, inferior, medial, and lateral borders) were identified from 12 published protocols for hippocampal manual segmentation ([Abbreviation] first author, publication year: [B] Bartzokis, 1998; [C] Convit, 1997; [dTM] deToledo-Morrell, 2004; [H] Haller, 1997; [J] Jack, 1994; [K] Killiany, 1993; [L] Lehericy, 1994; [M] Malykhin, 2007; [Pa] Pantel, 2000; [Pr] Pruessner, 2000; [S] Soininen, 1994; [W] Watson, 1992). The hippocampi of one healthy control and one AD patient taken from the 1.5T MR ADNI database were segmented by a single rater according to each protocol. The accuracy of the protocols' interpretation and translation into practice was checked with lead authors of protocols through individual interactive web conferences. Semantically harmonized landmarks and differences were then extracted, regarding: (a) the posteriormost slice, protocol [B] being the most restrictive, and [H, M, Pa, Pr, S] the most inclusive; (b) inclusion [C, dTM, J, L, M, Pr, W] or exclusion [B, H, K, Pa, S] of alveus/fimbria; (c) separation from the parahippocampal gyrus, [C] being the most restrictive, [B, dTM, H, J, Pa, S] the most inclusive. There were no substantial differences in the definition of the anteriormost slice. This survey will allow us to operationalize differences among protocols into tracing units, measure their impact on the repeatability and diagnostic accuracy of manual hippocampal segmentation, and finally develop a harmonized protocol.

  10. Diagnostic accuracy of ovarian cyst segmentation in B-mode ultrasound images

    NASA Astrophysics Data System (ADS)

    Bibicu, Dorin; Moraru, Luminita; Stratulat (Visan), Mirela

    2013-11-01

    Cystic and polycystic ovary syndrome is an endocrine disorder affecting women in the fertile age. The Moore Neighbor Contour, Watershed Method, Active Contour Models, and a recent method based on Active Contour Model with Selective Binary and Gaussian Filtering Regularized Level Set (ACM&SBGFRLS) techniques were used in this paper to detect the border of the ovarian cyst from echography images. In order to analyze the efficiency of the segmentation an original computer aided software application developed in MATLAB was proposed. The results of the segmentation were compared and evaluated against the reference contour manually delineated by a sonography specialist. Both the accuracy and time complexity of the segmentation tasks are investigated. The Fréchet distance (FD) as a similarity measure between two curves and the area error rate (AER) parameter as the difference between the segmented areas are used as estimators of the segmentation accuracy. In this study, the most efficient methods for the segmentation of the ovarian were analyzed cyst. The research was carried out on a set of 34 ultrasound images of the ovarian cyst.

  11. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    PubMed

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  12. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    NASA Astrophysics Data System (ADS)

    Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng

    2015-07-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.

  13. BgCut: automatic ship detection from UAV images.

    PubMed

    Xu, Chao; Zhang, Dongping; Zhang, Zhengning; Feng, Zhiyong

    2014-01-01

    Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches.

  14. BgCut: Automatic Ship Detection from UAV Images

    PubMed Central

    Zhang, Zhengning; Feng, Zhiyong

    2014-01-01

    Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches. PMID:24977182

  15. Anatomy-aware measurement of segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Tizhoosh, H. R.; Othman, A. A.

    2016-03-01

    Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.

  16. Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error

    PubMed Central

    Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong

    2013-01-01

    A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526

  17. Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Antong; Deeley, Matthew A.; Niermann, Kenneth J.

    2010-12-15

    Purpose: Intensity-modulated radiation therapy (IMRT) is the state of the art technique for head and neck cancer treatment. It requires precise delineation of the target to be treated and structures to be spared, which is currently done manually. The process is a time-consuming task of which the delineation of lymph node regions is often the longest step. Atlas-based delineation has been proposed as an alternative, but, in the authors' experience, this approach is not accurate enough for routine clinical use. Here, the authors improve atlas-based segmentation results obtained for level II-IV lymph node regions using an active shape model (ASM)more » approach. Methods: An average image volume was first created from a set of head and neck patient images with minimally enlarged nodes. The average image volume was then registered using affine, global, and local nonrigid transformations to the other volumes to establish a correspondence between surface points in the atlas and surface points in each of the other volumes. Once the correspondence was established, the ASMs were created for each node level. The models were then used to first constrain the results obtained with an atlas-based approach and then to iteratively refine the solution. Results: The method was evaluated through a leave-one-out experiment. The ASM- and atlas-based segmentations were compared to manual delineations via the Dice similarity coefficient (DSC) for volume overlap and the Euclidean distance between manual and automatic 3D surfaces. The mean DSC value obtained with the ASM-based approach is 10.7% higher than with the atlas-based approach; the mean and median surface errors were decreased by 13.6% and 12.0%, respectively. Conclusions: The ASM approach is effective in reducing segmentation errors in areas of low CT contrast where purely atlas-based methods are challenged. Statistical analysis shows that the improvements brought by this approach are significant.« less

  18. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images.

    PubMed

    Chen, Qiang; Niu, Sijie; Fang, Wangyi; Shuai, Yuanlu; Fan, Wen; Yuan, Songtao; Liu, Qinghuai

    2018-05-01

    The measurement of choroidal volume is more related with eye diseases than choroidal thickness, because the choroidal volume can reflect the diseases comprehensively. The purpose is to automatically segment choroid for three-dimensional (3D) spectral domain optical coherence tomography (SD-OCT) images. We present a novel choroid segmentation strategy for SD-OCT images by incorporating the enhanced depth imaging OCT (EDI-OCT) images. The down boundary of the choroid, namely choroid-sclera junction (CSJ), is almost invisible in SD-OCT images, while visible in EDI-OCT images. During the SD-OCT imaging, the EDI-OCT images can be generated for the same eye. Thus, we present an EDI-OCT-driven choroid segmentation method for SD-OCT images, where the choroid segmentation results of the EDI-OCT images are used to estimate the average choroidal thickness and to improve the construction of the CSJ feature space of the SD-OCT images. We also present a whole registration method between EDI-OCT and SD-OCT images based on retinal thickness and Bruch's Membrane (BM) position. The CSJ surface is obtained with a 3D graph search in the CSJ feature space. Experimental results with 768 images (6 cubes, 128 B-scan images for each cube) from 2 healthy persons, 2 age-related macular degeneration (AMD) and 2 diabetic retinopathy (DR) patients, and 210 B-scan images from other 8 healthy persons and 21 patients demonstrate that our method can achieve high segmentation accuracy. The mean choroid volume difference and overlap ratio for 6 cubes between our proposed method and outlines drawn by experts were -1.96µm3 and 88.56%, respectively. Our method is effective for the 3D choroid segmentation of SD-OCT images because the segmentation accuracy and stability are compared with the manual segmentation. Copyright © 2017. Published by Elsevier B.V.

  19. The challenge of cerebral magnetic resonance imaging in neonates: A new method using mathematical morphology for the segmentation of structures including diffuse excessive high signal intensities.

    PubMed

    Xu, Yongchao; Morel, Baptiste; Dahdouh, Sonia; Puybareau, Élodie; Virzì, Alessio; Urien, Héléne; Géraud, Thierry; Adamsbaum, Catherine; Bloch, Isabelle

    2018-05-17

    Preterm birth is a multifactorial condition associated with increased morbidity and mortality. Diffuse excessive high signal intensity (DEHSI) has been recently described on T2-weighted MR sequences in this population and thought to be associated with neuropathologies. To date, no robust and reproducible method to assess the presence of white matter hyperintensities has been developed, perhaps explaining the current controversy over their prognostic value. The aim of this paper is to propose a new semi-automated framework to detect DEHSI on neonatal brain MR images having a particular pattern due to the physiological lack of complete myelination of the white matter. A novel method for semi- automatic segmentation of neonatal brain structures and DEHSI, based on mathematical morphology and on max-tree representations of the images is thus described. It is a mandatory first step to identify and clinically assess homogeneous cohorts of neonates for DEHSI and/or volume of any other segmented structures. Implemented in a user-friendly interface, the method makes it straightforward to select relevant markers of structures to be segmented, and if needed, apply eventually manual corrections. This method responds to the increasing need for providing medical experts with semi-automatic tools for image analysis, and overcomes the limitations of visual analysis alone, prone to subjectivity and variability. Experimental results demonstrate that the method is accurate, with excellent reproducibility and with very few manual corrections needed. Although the method was intended initially for images acquired at 1.5T, which corresponds to the usual clinical practice, preliminary results on images acquired at 3T suggest that the proposed approach can be generalized. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Topological leakage detection and freeze-and-grow propagation for improved CT-based airway segmentation

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Hoffman, Eric A.; Sieren, Jered P.; Saha, Punam K.

    2018-03-01

    Numerous large multi-center studies are incorporating the use of computed tomography (CT)-based characterization of the lung parenchyma and bronchial tree to understand chronic obstructive pulmonary disease status and progression. To the best of our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. A failure in even a fraction of segmentation results necessitates manual revision of all segmentation masks which is laborious considering the thousands of image data sets evaluated in large studies. In this paper, we present a novel CT-based airway tree segmentation algorithm using topological leakage detection and freeze-and-grow propagation. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity-based connectivity and a freeze-and-grow propagation algorithm to iteratively grow the airway tree starting from an initial seed inside the trachea. It begins with a conservative parameter and then, gradually shifts toward more generous parameter values. The method was applied on chest CT scans of fifteen subjects at total lung capacity. Airway segmentation results were qualitatively assessed and performed comparably to established airway segmentation method with no major visual leakages.

  1. Automated image segmentation-assisted flattening of atomic force microscopy images.

    PubMed

    Wang, Yuliang; Lu, Tongda; Li, Xiaolai; Wang, Huimin

    2018-01-01

    Atomic force microscopy (AFM) images normally exhibit various artifacts. As a result, image flattening is required prior to image analysis. To obtain optimized flattening results, foreground features are generally manually excluded using rectangular masks in image flattening, which is time consuming and inaccurate. In this study, a two-step scheme was proposed to achieve optimized image flattening in an automated manner. In the first step, the convex and concave features in the foreground were automatically segmented with accurate boundary detection. The extracted foreground features were taken as exclusion masks. In the second step, data points in the background were fitted as polynomial curves/surfaces, which were then subtracted from raw images to get the flattened images. Moreover, sliding-window-based polynomial fitting was proposed to process images with complex background trends. The working principle of the two-step image flattening scheme were presented, followed by the investigation of the influence of a sliding-window size and polynomial fitting direction on the flattened images. Additionally, the role of image flattening on the morphological characterization and segmentation of AFM images were verified with the proposed method.

  2. Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes

    PubMed Central

    de Sisternes, Luis; Jonna, Gowtham; Moss, Jason; Marmor, Michael F.; Leng, Theodore; Rubin, Daniel L.

    2017-01-01

    This work introduces and evaluates an automated intra-retinal segmentation method for spectral-domain optical coherence (SD-OCT) retinal images. While quantitative assessment of retinal features in SD-OCT data is important, manual segmentation is extremely time-consuming and subjective. We address challenges that have hindered prior automated methods, including poor performance with diseased retinas relative to healthy retinas, and data smoothing that obscures image features such as small retinal drusen. Our novel segmentation approach is based on the iterative adaptation of a weighted median process, wherein a three-dimensional weighting function is defined according to image intensity and gradient properties, and a set of smoothness constraints and pre-defined rules are considered. We compared the segmentation results for 9 segmented outlines associated with intra-retinal boundaries to those drawn by hand by two retinal specialists and to those produced by an independent state-of-the-art automated software tool in a set of 42 clinical images (from 14 patients). These images were obtained with a Zeiss Cirrus SD-OCT system, including healthy, early or intermediate AMD, and advanced AMD eyes. As a qualitative evaluation of accuracy, a highly experienced third independent reader blindly rated the quality of the outlines produced by each method. The accuracy and image detail of our method was superior in healthy and early or intermediate AMD eyes (98.15% and 97.78% of results not needing substantial editing) to the automated method we compared against. While the performance was not as good in advanced AMD (68.89%), it was still better than the manual outlines or the comparison method (which failed in such cases). We also tested our method’s performance on images acquired with a different SD-OCT manufacturer, collected from a large publicly available data set (114 healthy and 255 AMD eyes), and compared the data quantitatively to reference standard markings of the internal limiting membrane and inner boundary of retinal pigment epithelium, producing a mean unsigned positioning error of 6.04 ± 7.83µm (mean under 2 pixels). Our automated method should be applicable to data from different OCT manufacturers and offers detailed layer segmentations in healthy and AMD eyes. PMID:28663874

  3. Using multimodal information for the segmentation of fluorescent micrographs with application to virology and microbiology.

    PubMed

    Held, Christian; Wenzel, Jens; Webel, Rike; Marschall, Manfred; Lang, Roland; Palmisano, Ralf; Wittenberg, Thomas

    2011-01-01

    In order to improve reproducibility and objectivity of fluorescence microscopy based experiments and to enable the evaluation of large datasets, flexible segmentation methods are required which are able to adapt to different stainings and cell types. This adaption is usually achieved by the manual adjustment of the segmentation methods parameters, which is time consuming and challenging for biologists with no knowledge on image processing. To avoid this, parameters of the presented methods automatically adapt to user generated ground truth to determine the best method and the optimal parameter setup. These settings can then be used for segmentation of the remaining images. As robust segmentation methods form the core of such a system, the currently used watershed transform based segmentation routine is replaced by a fast marching level set based segmentation routine which incorporates knowledge on the cell nuclei. Our evaluations reveal that incorporation of multimodal information improves segmentation quality for the presented fluorescent datasets.

  4. Segmentation of breast ultrasound images based on active contours using neutrosophic theory.

    PubMed

    Lotfollahi, Mahsa; Gity, Masoumeh; Ye, Jing Yong; Mahlooji Far, A

    2018-04-01

    Ultrasound imaging is an effective approach for diagnosing breast cancer, but it is highly operator-dependent. Recent advances in computer-aided diagnosis have suggested that it can assist physicians in diagnosis. Definition of the region of interest before computer analysis is still needed. Since manual outlining of the tumor contour is tedious and time-consuming for a physician, developing an automatic segmentation method is important for clinical application. The present paper represents a novel method to segment breast ultrasound images. It utilizes a combination of region-based active contour and neutrosophic theory to overcome the natural properties of ultrasound images including speckle noise and tissue-related textures. First, due to inherent speckle noise and low contrast of these images, we have utilized a non-local means filter and fuzzy logic method for denoising and image enhancement, respectively. This paper presents an improved weighted region-scalable active contour to segment breast ultrasound images using a new feature derived from neutrosophic theory. This method has been applied to 36 breast ultrasound images. It generates true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. The purposed method indicates clear advantages over other conventional methods of active contour segmentation, i.e., region-scalable fitting energy and weighted region-scalable fitting energy.

  5. A segmentation editing framework based on shape change statistics

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Vicory, Jared; Styner, Martin; Pizer, Stephen

    2017-02-01

    Segmentation is a key task in medical image analysis because its accuracy significantly affects successive steps. Automatic segmentation methods often produce inadequate segmentations, which require the user to manually edit the produced segmentation slice by slice. Because editing is time-consuming, an editing tool that enables the user to produce accurate segmentations by only drawing a sparse set of contours would be needed. This paper describes such a framework as applied to a single object. Constrained by the additional information enabled by the manually segmented contours, the proposed framework utilizes object shape statistics to transform the failed automatic segmentation to a more accurate version. Instead of modeling the object shape, the proposed framework utilizes shape change statistics that were generated to capture the object deformation from the failed automatic segmentation to its corresponding correct segmentation. An optimization procedure was used to minimize an energy function that consists of two terms, an external contour match term and an internal shape change regularity term. The high accuracy of the proposed segmentation editing approach was confirmed by testing it on a simulated data set based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. Segmentation results indicated that our method can provide efficient and adequately accurate segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 10%), which is promising in greatly decreasing the work expected from the user.

  6. Electromagnetic navigated condylar positioning after high oblique sagittal split osteotomy of the mandible: a guided method to attain pristine temporomandibular joint conditions.

    PubMed

    Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Engel, Michael; Freudlsperger, Christian; Hoffmann, Jürgen; Seeberger, Robin

    2018-05-01

    Reproduction of the exact preoperative proximal-mandible position after osteotomy in orthognathic surgery is difficult to achieve. This clinical pilot study evaluated an electromagnetic (EM) navigation system for condylar positioning after high-oblique sagittal split osteotomy (HSSO). After HSSO as part of 2-jaw surgery, the position of 10 condyles was intraoperatively guided by an EM navigation system. As controls, 10 proximal segments were positioned by standard manual replacement. Accuracy was measured by pre- and postoperative cone beam computed tomography imaging. Overall, EM condyle repositioning was equally accurate compared with manual repositioning (P > .05). Subdivided into 3 axes, significant differences could be identified (P < .05). Nevertheless, no significantly and clinically relevant dislocations of the proximal segment of either the EM or the manual repositioning method could be shown (P > .05). This pilot study introduces a guided method for proximal segment positioning after HSSO by applying the intraoperative EM system. The data demonstrate the high accuracy of EM navigation, although manual replacement of the condyles could not be surpassed. However, EM navigation can avoid clinically hidden, severe malpositioning of the condyles. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo

    PubMed Central

    Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan

    2012-01-01

    Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578

  8. Multi-atlas segmentation for abdominal organs with Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-03-01

    Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.

  9. Automatic segmentation of the bone and extraction of the bone cartilage interface from magnetic resonance images of the knee

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2007-03-01

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  10. Automated red blood cells extraction from holographic images using fully convolutional neural networks.

    PubMed

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-10-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm.

  11. White blood cell counting analysis of blood smear images using various segmentation strategies

    NASA Astrophysics Data System (ADS)

    Safuan, Syadia Nabilah Mohd; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    In white blood cell (WBC) diagnosis, the most crucial measurement parameter is the WBC counting. Such information is widely used to evaluate the effectiveness of cancer therapy and to diagnose several hidden infection within human body. The current practice of manual WBC counting is laborious and a very subjective assessment which leads to the invention of computer aided system (CAS) with rigorous image processing solution. In the CAS counting work, segmentation is the crucial step to ensure the accuracy of the counted cell. The optimal segmentation strategy that can work under various blood smeared image acquisition conditions is remain a great challenge. In this paper, a comparison between different segmentation methods based on color space analysis to get the best counting outcome is elaborated. Initially, color space correction is applied to the original blood smeared image to standardize the image color intensity level. Next, white blood cell segmentation is performed by using combination of several color analysis subtraction which are RGB, CMYK and HSV, and Otsu thresholding. Noises and unwanted regions that present after the segmentation process is eliminated by applying a combination of morphological and Connected Component Labelling (CCL) filter. Eventually, Circle Hough Transform (CHT) method is applied to the segmented image to estimate the number of WBC including the one under the clump region. From the experiment, it is found that G-S yields the best performance.

  12. Automated red blood cells extraction from holographic images using fully convolutional neural networks

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-01-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078

  13. Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices.

    PubMed

    Chen, Liyuan; Shen, Chenyang; Zhou, Zhiguo; Maquilan, Genevieve; Thomas, Kimberly; Folkert, Michael R; Albuquerque, Kevin; Wang, Jing

    2018-06-01

    Because in PET imaging cervical tumors are close to the bladder with high capacity for the secreted 18 FDG tracer, conventional intensity-based segmentation methods often misclassify the bladder as a tumor. Based on the observation that tumor position and area do not change dramatically from slice to slice, we propose a two-stage scheme that facilitates segmentation. In the first stage, we used a graph-cut based algorithm to obtain initial contouring of the tumor based on local similarity information between voxels; this was achieved through manual contouring of the cervical tumor on one slice. In the second stage, initial tumor contours were fine-tuned to more accurate segmentation by incorporating similarity information on tumor shape and position among adjacent slices, according to an intensity-spatial-distance map. Experimental results illustrate that the proposed two-stage algorithm provides a more effective approach to segmenting cervical tumors in 3D 18 FDG PET images than the benchmarks used for comparison. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review

    PubMed Central

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143

  15. Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Plaza, Stephen M.; Chakraborty, Anirban; Katz, William T.

    2014-01-01

    The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them. PMID:24772079

  16. Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure

    PubMed Central

    Pouch, Alison M.; Tian, Sijie; Takabe, Manabu; Wang, Hongzhi; Yuan, Jiefu; Cheung, Albert T.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.; Yushkevich, Paul A.

    2015-01-01

    3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that benefits from shape-guided deformable modeling methods, which enable inter-subject statistical shape comparison. Prior work demonstrates the efficacy of using continuous medial representation (cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve apparatus is limited since the structure has a branching medial geometry that cannot be explicitly parameterized in the original cm-rep framework. In this work, we show that the aortic valve apparatus can be accurately segmented using a new branching medial modeling paradigm. The segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology. PMID:26247062

  17. Quantitative Neuroimaging Software for Clinical Assessment of Hippocampal Volumes on MR Imaging

    PubMed Central

    Ahdidan, Jamila; Raji, Cyrus A.; DeYoe, Edgar A.; Mathis, Jedidiah; Noe, Karsten Ø.; Rimestad, Jens; Kjeldsen, Thomas K.; Mosegaard, Jesper; Becker, James T.; Lopez, Oscar

    2015-01-01

    Background: Multiple neurological disorders including Alzheimer’s disease (AD), mesial temporal sclerosis, and mild traumatic brain injury manifest with volume loss on brain MRI. Subtle volume loss is particularly seen early in AD. While prior research has demonstrated the value of this additional information from quantitative neuroimaging, very few applications have been approved for clinical use. Here we describe a US FDA cleared software program, NeuroreaderTM, for assessment of clinical hippocampal volume on brain MRI. Objective: To present the validation of hippocampal volumetrics on a clinical software program. Method: Subjects were drawn (n = 99) from the Alzheimer Disease Neuroimaging Initiative study. Volumetric brain MR imaging was acquired in both 1.5 T (n = 59) and 3.0 T (n = 40) scanners in participants with manual hippocampal segmentation. Fully automated hippocampal segmentation and measurement was done using a multiple atlas approach. The Dice Similarity Coefficient (DSC) measured the level of spatial overlap between NeuroreaderTM and gold standard manual segmentation from 0 to 1 with 0 denoting no overlap and 1 representing complete agreement. DSC comparisons between 1.5 T and 3.0 T scanners were done using standard independent samples T-tests. Results: In the bilateral hippocampus, mean DSC was 0.87 with a range of 0.78–0.91 (right hippocampus) and 0.76–0.91 (left hippocampus). Automated segmentation agreement with manual segmentation was essentially equivalent at 1.5 T (DSC = 0.879) versus 3.0 T (DSC = 0.872). Conclusion: This work provides a description and validation of a software program that can be applied in measuring hippocampal volume, a biomarker that is frequently abnormal in AD and other neurological disorders. PMID:26484924

  18. Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA).

    PubMed

    Belghith, Akram; Bowd, Christopher; Medeiros, Felipe A; Hammel, Naama; Yang, Zhiyong; Weinreb, Robert N; Zangwill, Linda M

    2016-02-01

    We determined if the Bruch's membrane opening (BMO) location changes over time in healthy eyes and eyes with progressing glaucoma, and validated an automated segmentation algorithm for identifying the BMO in Cirrus high-definition coherence tomography (HD-OCT) images. We followed 95 eyes (35 progressing glaucoma and 60 healthy) for an average of 3.7 ± 1.1 years. A stable group of 50 eyes had repeated tests over a short period. In each B-scan of the stable group, the BMO points were delineated manually and automatically to assess the reproducibility of both segmentation methods. Moreover, the BMO location variation over time was assessed longitudinally on the aligned images in 3D space point by point in x, y, and z directions. Mean visual field mean deviation at baseline of the progressing glaucoma group was -7.7 dB. Mixed-effects models revealed small nonsignificant changes in BMO location over time for all directions in healthy eyes (the smallest P value was 0.39) and in the progressing glaucoma eyes (the smallest P value was 0.30). In the stable group, the overall intervisit-intraclass correlation coefficient (ICC) and coefficient of variation (CV) were 98.4% and 2.1%, respectively, for the manual segmentation and 98.1% and 1.9%, respectively, for the automated algorithm. Bruch's membrane opening location was stable in normal and progressing glaucoma eyes with follow-up between 3 and 4 years indicating that it can be used as reference point in monitoring glaucoma progression. The BMO location estimation with Cirrus HD-OCT using manual and automated segmentation showed excellent reproducibility.

  19. Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.

    PubMed

    Zhao, Liang; Wu, Wei; Corso, Jason J

    2013-01-01

    Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.

  20. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects

    PubMed Central

    2014-01-01

    Background Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. Results The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Conclusions Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems. PMID:24964954

  1. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects.

    PubMed

    Kloster, Michael; Kauer, Gerhard; Beszteri, Bánk

    2014-06-25

    Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems.

  2. Segmentation of humeral head from axial proton density weighted shoulder MR images

    NASA Astrophysics Data System (ADS)

    Sezer, Aysun; Sezer, Hasan Basri; Albayrak, Songul

    2015-01-01

    The purpose of this study is to determine the effectiveness of segmentation of axial MR proton density (PD) images of bony humeral head. PD sequence images which are included in standard shoulder MRI protocol are used instead of T1 MR images. Bony structures were reported to be successfully segmented in the literature from T1 MR images. T1 MR images give more sharp determination of bone and soft tissue border but cannot address the pathological process which takes place in the bone. In the clinical settings PD images of shoulder are used to investigate soft tissue alterations which can cause shoulder instability and are better in demonstrating edema and the pathology but have a higher noise ratio than other modalities. Moreover the alteration of humeral head intensity in patients and soft tissues in contact with the humeral head which have the very similar intensities with bone makes the humeral head segmentation a challenging problem in PD images. However segmentation of the bony humeral head is required initially to facilitate the segmentation of the soft tissues of shoulder. In this study shoulder MRI of 33 randomly selected patients were included. Speckle reducing anisotropic diffusion (SRAD) method was used to decrease noise and then Active Contour Without Edge (ACWE) and Signed Pressure Force (SPF) models were applied on our data set. Success of these methods is determined by comparing our results with manually segmented images by an expert. Applications of these methods on PD images provide highly successful results for segmentation of bony humeral head. This is the first study to determine bone contours in PD images in literature.

  3. Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi

    We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).

  4. Accurate segmentation of lung fields on chest radiographs using deep convolutional networks

    NASA Astrophysics Data System (ADS)

    Arbabshirani, Mohammad R.; Dallal, Ahmed H.; Agarwal, Chirag; Patel, Aalpan; Moore, Gregory

    2017-02-01

    Accurate segmentation of lung fields on chest radiographs is the primary step for computer-aided detection of various conditions such as lung cancer and tuberculosis. The size, shape and texture of lung fields are key parameters for chest X-ray (CXR) based lung disease diagnosis in which the lung field segmentation is a significant primary step. Although many methods have been proposed for this problem, lung field segmentation remains as a challenge. In recent years, deep learning has shown state of the art performance in many visual tasks such as object detection, image classification and semantic image segmentation. In this study, we propose a deep convolutional neural network (CNN) framework for segmentation of lung fields. The algorithm was developed and tested on 167 clinical posterior-anterior (PA) CXR images collected retrospectively from picture archiving and communication system (PACS) of Geisinger Health System. The proposed multi-scale network is composed of five convolutional and two fully connected layers. The framework achieved IOU (intersection over union) of 0.96 on the testing dataset as compared to manual segmentation. The suggested framework outperforms state of the art registration-based segmentation by a significant margin. To our knowledge, this is the first deep learning based study of lung field segmentation on CXR images developed on a heterogeneous clinical dataset. The results suggest that convolutional neural networks could be employed reliably for lung field segmentation.

  5. SIMA: Python software for analysis of dynamic fluorescence imaging data.

    PubMed

    Kaifosh, Patrick; Zaremba, Jeffrey D; Danielson, Nathan B; Losonczy, Attila

    2014-01-01

    Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.

  6. Measurement of gamma' precipitates in a nickel-based superalloy using energy-filtered transmission electron microscopy coupled with automated segmenting techniques.

    PubMed

    Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L

    2010-08-01

    Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy.

    PubMed

    Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui; Zhou, Zhengyang; Yu, David S; Beitler, Jonathan J; Curran, Walter J; Liu, Tian

    2014-12-01

    To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RT MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Comparison of pre-processing techniques for fluorescence microscopy images of cells labeled for actin.

    PubMed

    Muralidhar, Gautam S; Channappayya, Sumohana S; Slater, John H; Blinka, Ellen M; Bovik, Alan C; Frey, Wolfgang; Markey, Mia K

    2008-11-06

    Automated analysis of fluorescence microscopy images of endothelial cells labeled for actin is important for quantifying changes in the actin cytoskeleton. The current manual approach is laborious and inefficient. The goal of our work is to develop automated image analysis methods, thereby increasing cell analysis throughput. In this study, we present preliminary results on comparing different algorithms for cell segmentation and image denoising.

  9. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    PubMed

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The agreement against the CTA segmentations was slightly lower with a median Dice coefficient between 85% and 57%. In this work, we successfully showed the accuracy and robustness of the proposed multi-cavity segmentation scheme. This is a promising development for intraoperative procedure guidance, e.g., in cardiac electrophysiology.

  10. Technical Note: Validation of two methods to determine contact area between breast and compression paddle in mammography.

    PubMed

    Branderhorst, Woutjan; de Groot, Jerry E; van Lier, Monique G J T B; Highnam, Ralph P; den Heeten, Gerard J; Grimbergen, Cornelis A

    2017-08-01

    To assess the accuracy of two methods of determining the contact area between the compression paddle and the breast in mammography. An accurate method to determine the contact area is essential to accurately calculate the average compression pressure applied by the paddle. For a set of 300 breast compressions, we measured the contact areas between breast and paddle, both capacitively using a transparent foil with indium-tin-oxide (ITO) coating attached to the paddle, and retrospectively from the obtained mammograms using image processing software (Volpara Enterprise, algorithm version 1.5.2). A gold standard was obtained from video images of the compressed breast. During each compression, the breast was illuminated from the sides in order to create a dark shadow on the video image where the breast was in contact with the compression paddle. We manually segmented the shadows captured at the time of x-ray exposure and measured their areas. We found a strong correlation between the manual segmentations and the capacitive measurements [r = 0.989, 95% CI (0.987, 0.992)] and between the manual segmentations and the image processing software [r = 0.978, 95% CI (0.972, 0.982)]. Bland-Altman analysis showed a bias of -0.0038 dm 2 for the capacitive measurement (SD 0.0658, 95% limits of agreement [-0.1329, 0.1252]) and -0.0035 dm 2 for the image processing software [SD 0.0962, 95% limits of agreement (-0.1921, 0.1850)]. The size of the contact area between the paddle and the breast can be determined accurately and precisely, both in real-time using the capacitive method, and retrospectively using image processing software. This result is beneficial for scientific research, data analysis and quality control systems that depend on one of these two methods for determining the average pressure on the breast during mammographic compression. © 2017 Sigmascreening B.V. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Filter Design and Performance Evaluation for Fingerprint Image Segmentation

    PubMed Central

    Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten

    2016-01-01

    Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150

  12. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  13. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    PubMed

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  14. Segmentation of common carotid artery with active appearance models from ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; He, Wanji; Fenster, Aaron; Yuchi, Ming; Ding, Mingyue

    2013-02-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, a new segmentation method is proposed and evaluated for outlining the common carotid artery (CCA) from transverse view images, which were sliced from three-dimensional ultrasound (3D US) of 1mm inter-slice distance (ISD), to support the monitoring and assessment of carotid atherosclerosis. The data set consists of forty-eight 3D US images acquired from both left and right carotid arteries of twelve patients in two time points who had carotid stenosis of 60% or more at the baseline. The 3D US data were collected at baseline and three-month follow-up, where seven treated with 80mg atorvastatin and five with placebo. The baseline manual boundaries were used for Active Appearance Models (AAM) training; while the treatment data for segmentation testing and evaluation. The segmentation results were compared with experts manually outlined boundaries, as a surrogate for ground truth, for further evaluation. For the adventitia and lumen segmentations, the algorithm yielded Dice Coefficients (DC) of 92.06%+/-2.73% and 89.67%+/-3.66%, mean absolute distances (MAD) of 0.28+/-0.18 mm and 0.22+/-0.16 mm, maximum absolute distances (MAXD) of 0.71+/-0.28 mm and 0.59+/-0.21 mm, respectively. The segmentation results were also evaluated via Pratt's figure of merit (FOM) with the value of 0.61+/-0.06 and 0.66+/-0.05, which provides a quantitative measure for judging the similarity. Experimental results indicate that the proposed method can promote the carotid 3D US usage for a fast, safe and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  15. A minimum spanning forest based classification method for dedicated breast CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei, E-mail: bfei@emory.edu

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting modelmore » used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.« less

  16. Segmentation of optic disc and optic cup in retinal fundus images using shape regression.

    PubMed

    Sedai, Suman; Roy, Pallab K; Mahapatra, Dwarikanath; Garnavi, Rahil

    2016-08-01

    Glaucoma is one of the leading cause of blindness. The manual examination of optic cup and disc is a standard procedure used for detecting glaucoma. This paper presents a fully automatic regression based method which accurately segments optic cup and disc in retinal colour fundus image. First, we roughly segment optic disc using circular hough transform. The approximated optic disc is then used to compute the initial optic disc and cup shapes. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape of the optic cup and disc from a given initial shape. Gradient boosted regression trees are employed to learn each regressor in the cascade. A novel data augmentation approach is proposed to improve the regressors performance by generating synthetic training data. The proposed optic cup and disc segmentation method is applied on an image set of 50 patients and demonstrate high segmentation accuracy for optic cup and disc with dice metric of 0.95 and 0.85 respectively. Comparative study shows that our proposed method outperforms state of the art optic cup and disc segmentation methods.

  17. Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study.

    PubMed

    Dolz, Jose; Betrouni, Nacim; Quidet, Mathilde; Kharroubi, Dris; Leroy, Henri A; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien

    2016-09-01

    Delineation of organs at risk (OARs) is a crucial step in surgical and treatment planning in brain cancer, where precise OARs volume delineation is required. However, this task is still often manually performed, which is time-consuming and prone to observer variability. To tackle these issues a deep learning approach based on stacking denoising auto-encoders has been proposed to segment the brainstem on magnetic resonance images in brain cancer context. Additionally to classical features used in machine learning to segment brain structures, two new features are suggested. Four experts participated in this study by segmenting the brainstem on 9 patients who underwent radiosurgery. Analysis of variance on shape and volume similarity metrics indicated that there were significant differences (p<0.05) between the groups of manual annotations and automatic segmentations. Experimental evaluation also showed an overlapping higher than 90% with respect to the ground truth. These results are comparable, and often higher, to those of the state of the art segmentation methods but with a considerably reduction of the segmentation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, E., E-mail: emmanuel.brun@esrf.fr; Grandl, S.; Sztrókay-Gaul, A.

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer basedmore » phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.« less

  19. An Image Segmentation Based on a Genetic Algorithm for Determining Soil Coverage by Crop Residues

    PubMed Central

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P.; Pajares, Gonzalo; Sanchez del Arco, Maria J.; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain). PMID:22163966

  20. Automated segmentation of geographic atrophy using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wang, Ziyuan; Sadda, SriniVas R.

    2018-02-01

    Geographic atrophy (GA) is an end-stage manifestation of the advanced age-related macular degeneration (AMD), the leading cause of blindness and visual impairment in developed nations. Techniques to rapidly and precisely detect and quantify GA would appear to be of critical importance in advancing the understanding of its pathogenesis. In this study, we develop an automated supervised classification system using deep convolutional neural networks (CNNs) for segmenting GA in fundus autofluorescene (FAF) images. More specifically, to enhance the contrast of GA relative to the background, we apply the contrast limited adaptive histogram equalization. Blood vessels may cause GA segmentation errors due to similar intensity level to GA. A tensor-voting technique is performed to identify the blood vessels and a vessel inpainting technique is applied to suppress the GA segmentation errors due to the blood vessels. To handle the large variation of GA lesion sizes, three deep CNNs with three varying sized input image patches are applied. Fifty randomly chosen FAF images are obtained from fifty subjects with GA. The algorithm-defined GA regions are compared with manual delineation by a certified grader. A two-fold cross-validation is applied to evaluate the algorithm performance. The mean segmentation accuracy, true positive rate (i.e. sensitivity), true negative rate (i.e. specificity), positive predictive value, false discovery rate, and overlap ratio, between the algorithm- and manually-defined GA regions are 0.97 +/- 0.02, 0.89 +/- 0.08, 0.98 +/- 0.02, 0.87 +/- 0.12, 0.13 +/- 0.12, and 0.79 +/- 0.12 respectively, demonstrating a high level of agreement.

  1. 3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilation

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; Chen, Yimin; de Ribaupierre, Sandrine; Chiu, Bernard; Fenster, Aaron

    2015-03-01

    Intraventricular hemorrhage (IVH) or bleed within the brain is a common condition among pre-term infants that occurs in very low birth weight preterm neonates. The prognosis is further worsened by the development of progressive ventricular dilatation, i.e., post-hemorrhagic ventricle dilation (PHVD), which occurs in 10-30% of IVH patients. In practice, predicting PHVD accurately and determining if that specific patient with ventricular dilatation requires the ability to measure accurately ventricular volume. While monitoring of PHVD in infants is typically done by repeated US and not MRI, once the patient has been treated, the follow-up over the lifetime of the patient is done by MRI. While manual segmentation is still seen as a gold standard, it is extremely time consuming, and therefore not feasible in a clinical context, and it also has a large inter- and intra-observer variability. This paper proposes a segmentation algorithm to extract the cerebral ventricles from 3D T1- weighted MR images of pre-term infants with PHVD. The proposed segmentation algorithm makes use of the convex optimization technique combined with the learned priors of image intensities and label probabilistic map, which is built from a multi-atlas registration scheme. The leave-one-out cross validation using 7 PHVD patient T1 weighted MR images showed that the proposed method yielded a mean DSC of 89.7% +/- 4.2%, a MAD of 2.6 +/- 1.1 mm, a MAXD of 17.8 +/- 6.2 mm, and a VD of 11.6% +/- 5.9%, suggesting a good agreement with manual segmentations.

  2. A Rapid Segmentation-Insensitive "Digital Biopsy" Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non-Small Cell Lung Cancer.

    PubMed

    Echegaray, Sebastian; Nair, Viswam; Kadoch, Michael; Leung, Ann; Rubin, Daniel; Gevaert, Olivier; Napel, Sandy

    2016-12-01

    Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called "digital biopsy," that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non-small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of <3 minutes per nodule. We simulated additional digital biopsies using morphological procedures. Finally, we compared the features extracted from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to characterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that 84/94 features had an ICC >0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required.

  3. Machine learning in a graph framework for subcortical segmentation

    NASA Astrophysics Data System (ADS)

    Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek

    2017-02-01

    Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).

  4. Variability of manual ciliary muscle segmentation in optical coherence tomography images.

    PubMed

    Chang, Yu-Cherng; Liu, Keke; Cabot, Florence; Yoo, Sonia H; Ruggeri, Marco; Ho, Arthur; Parel, Jean-Marie; Manns, Fabrice

    2018-02-01

    Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct in vivo visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.

  5. Segmentation of radiographic images under topological constraints: application to the femur.

    PubMed

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  6. Radio Frequency Ablation Registration, Segmentation, and Fusion Tool

    PubMed Central

    McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.

    2008-01-01

    The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716

  7. Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector

    PubMed Central

    Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar

    2014-01-01

    Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798

  8. Reproducibility measurements of three methods for calculating in vivo MR-based knee kinematics.

    PubMed

    Lansdown, Drew A; Zaid, Musa; Pedoia, Valentina; Subburaj, Karupppasamy; Souza, Richard; Benjamin, C; Li, Xiaojuan

    2015-08-01

    To describe three quantification methods for magnetic resonance imaging (MRI)-based knee kinematic evaluation and to report on the reproducibility of these algorithms. T2 -weighted, fast-spin echo images were obtained of the bilateral knees in six healthy volunteers. Scans were repeated for each knee after repositioning to evaluate protocol reproducibility. Semiautomatic segmentation defined regions of interest for the tibia and femur. The posterior femoral condyles and diaphyseal axes were defined using the previously defined tibia and femur. All segmentation was performed twice to evaluate segmentation reliability. Anterior tibial translation (ATT) and internal tibial rotation (ITR) were calculated using three methods: a tibial-based registration system, a combined tibiofemoral-based registration method with all manual segmentation, and a combined tibiofemoral-based registration method with automatic definition of condyles and axes. Intraclass correlation coefficients and standard deviations across multiple measures were determined. Reproducibility of segmentation was excellent (ATT = 0.98; ITR = 0.99) for both combined methods. ATT and ITR measurements were also reproducible across multiple scans in the combined registration measurements with manual (ATT = 0.94; ITR = 0.94) or automatic (ATT = 0.95; ITR = 0.94) condyles and axes. The combined tibiofemoral registration with automatic definition of the posterior femoral condyle and diaphyseal axes allows for improved knee kinematics quantification with excellent in vivo reproducibility. © 2014 Wiley Periodicals, Inc.

  9. The feasibility of using manual segmentation in a multifeature computer-aided diagnosis system for classification of skin lesions: a retrospective comparative study.

    PubMed

    Chang, Wen-Yu; Huang, Adam; Chen, Yin-Chun; Lin, Chi-Wei; Tsai, John; Yang, Chung-Kai; Huang, Yin-Tseng; Wu, Yi-Fan; Chen, Gwo-Shing

    2015-05-03

    To investigate the feasibility of manual segmentation by users of different backgrounds in a previously developed multifeature computer-aided diagnosis (CADx) system to classify melanocytic and non-melanocytic skin lesions based on conventional digital photographic images. In total, 347 conventional photographs of melanocytic and non-melanocytic skin lesions were retrospectively reviewed, and manually segmented by two groups of physicians, dermatologists and general practitioners, as well as by an automated segmentation software program, JSEG. The performance of CADx based on inputs from these two groups of physicians and that of the JSEG program was compared using feature agreement analysis. The estimated area under the receiver operating characteristic curve for classification of benign or malignant skin lesions based were comparable on individual segmentation by the gold standard (0.893, 95% CI 0.856 to 0.930), dermatologists (0.886, 95% CI 0.863 to 0.908), general practitioners (0.883, 95% CI 0.864 to 0.903) and JSEG (0.856, 95% CI 0.812 to 0.899). The agreement in the malignancy probability scores among the physicians was excellent (intraclass correlation coefficient: 0.91). By selecting an optimal cut-off value of malignancy probability score, the sensitivity and specificity were 80.07% and 81.47% for dermatologists and 79.90% and 80.20% for general practitioners. This study suggests that manual segmentation by general practitioners is feasible in the described CADx system for classifying benign and malignant skin lesions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Adipose tissue MRI for quantitative measurement of central obesity.

    PubMed

    Poonawalla, Aziz H; Sjoberg, Brett P; Rehm, Jennifer L; Hernando, Diego; Hines, Catherine D; Irarrazaval, Pablo; Reeder, Scott B

    2013-03-01

    To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. Copyright © 2012 Wiley Periodicals, Inc.

  11. Survey statistics of automated segmentations applied to optical imaging of mammalian cells.

    PubMed

    Bajcsy, Peter; Cardone, Antonio; Chalfoun, Joe; Halter, Michael; Juba, Derek; Kociolek, Marcin; Majurski, Michael; Peskin, Adele; Simon, Carl; Simon, Mylene; Vandecreme, Antoine; Brady, Mary

    2015-10-15

    The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.

  12. Quantification of intraventricular blood clot in MR-guided focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Hess, Maggie; Looi, Thomas; Lasso, Andras; Fichtinger, Gabor; Drake, James

    2015-03-01

    Intraventricular hemorrhage (IVH) affects nearly 15% of preterm infants. It can lead to ventricular dilation and cognitive impairment. To ablate IVH clots, MR-guided focused ultrasound surgery (MRgFUS) is investigated. This procedure requires accurate, fast and consistent quantification of ventricle and clot volumes. We developed a semi-autonomous segmentation (SAS) algorithm for measuring changes in the ventricle and clot volumes. Images are normalized, and then ventricle and clot masks are registered to the images. Voxels of the registered masks and voxels obtained by thresholding the normalized images are used as seed points for competitive region growing, which provides the final segmentation. The user selects the areas of interest for correspondence after thresholding and these selections are the final seeds for region growing. SAS was evaluated on an IVH porcine model. SAS was compared to ground truth manual segmentation (MS) for accuracy, efficiency, and consistency. Accuracy was determined by comparing clot and ventricle volumes produced by SAS and MS, and comparing contours by calculating 95% Hausdorff distances between the two labels. In Two-One-Sided Test, SAS and MS were found to be significantly equivalent (p < 0.01). SAS on average was found to be 15 times faster than MS (p < 0.01). Consistency was determined by repeated segmentation of the same image by both SAS and manual methods, SAS being significantly more consistent than MS (p < 0.05). SAS is a viable method to quantify the IVH clot and the lateral brain ventricles and it is serving in a large-scale porcine study of MRgFUS treatment of IVH clot lysis.

  13. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang; Niu, Sijie; Yuan, Songtao

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, basedmore » on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.« less

  14. Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm.

    PubMed

    Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis

    2017-01-01

    Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.

  15. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    PubMed

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

  16. Placental fetal stem segmentation in a sequence of histology images

    NASA Astrophysics Data System (ADS)

    Athavale, Prashant; Vese, Luminita A.

    2012-02-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an initial guess to obtain segmentation in the rest of the images in the sequence. This constitutes an important step in the extraction and understanding of the fetal stem vasculature.

  17. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  18. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  19. Automated registration of multispectral MR vessel wall images of the carotid artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purposemore » of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and moving image after registration. Results: The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available. Conclusions: An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images.« less

  20. Interactive tele-radiological segmentation systems for treatment and diagnosis.

    PubMed

    Zimeras, S; Gortzis, L G

    2012-01-01

    Telehealth is the exchange of health information and the provision of health care services through electronic information and communications technology, where participants are separated by geographic, time, social and cultural barriers. The shift of telemedicine from desktop platforms to wireless and mobile technologies is likely to have a significant impact on healthcare in the future. It is therefore crucial to develop a general information exchange e-medical system to enables its users to perform online and offline medical consultations through diagnosis. During the medical diagnosis, image analysis techniques combined with doctor's opinions could be useful for final medical decisions. Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. In medical images, segmentation has traditionally been done by human experts. Even with the aid of image processing software (computer-assisted segmentation tools), manual segmentation of 2D and 3D CT images is tedious, time-consuming, and thus impractical, especially in cases where a large number of objects must be specified. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore automated or semi-automated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. The main purpose of this work is to analyze segmentation techniques for the definition of anatomical structures under telemedical systems.

  1. Anatomy-based algorithm for automatic segmentation of human diaphragm in noncontrast computed tomography images

    PubMed Central

    Karami, Elham; Wang, Yong; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2016-01-01

    Abstract. In-depth understanding of the diaphragm’s anatomy and physiology has been of great interest to the medical community, as it is the most important muscle of the respiratory system. While noncontrast four-dimensional (4-D) computed tomography (CT) imaging provides an interesting opportunity for effective acquisition of anatomical and/or functional information from a single modality, segmenting the diaphragm in such images is very challenging not only because of the diaphragm’s lack of image contrast with its surrounding organs but also because of respiration-induced motion artifacts in 4-D CT images. To account for such limitations, we present an automatic segmentation algorithm, which is based on a priori knowledge of diaphragm anatomy. The novelty of the algorithm lies in using the diaphragm’s easy-to-segment contacting organs—including the lungs, heart, aorta, and ribcage—to guide the diaphragm’s segmentation. Obtained results indicate that average mean distance to the closest point between diaphragms segmented using the proposed technique and corresponding manual segmentation is 2.55±0.39  mm, which is favorable. An important feature of the proposed technique is that it is the first algorithm to delineate the entire diaphragm. Such delineation facilitates applications, where the diaphragm boundary conditions are required such as biomechanical modeling for in-depth understanding of the diaphragm physiology. PMID:27921072

  2. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y; Olsen, J.; Parikh, P.

    2014-06-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE),more » along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information, different filtering methods and their influences on the segmentation results. Parag Parikh receives research grant from ViewRay. Sasa Mutic has consulting and research agreements with ViewRay. Yanle Hu receives travel reimbursement from ViewRay. Iwan Kawrakow and James Dempsey are ViewRay employees.« less

  3. Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT.

    PubMed

    Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren

    2015-12-01

    To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.

  4. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    NASA Astrophysics Data System (ADS)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  5. Fully automatic detection of salient features in 3-d transesophageal images.

    PubMed

    Curiale, Ariel H; Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Ren, Ben; Aja-Fernández, Santiago; Bosch, Johan G

    2014-12-01

    Most automated segmentation approaches to the mitral valve and left ventricle in 3-D echocardiography require a manual initialization. In this article, we propose a fully automatic scheme to initialize a multicavity segmentation approach in 3-D transesophageal echocardiography by detecting the left ventricle long axis, the mitral valve and the aortic valve location. Our approach uses a probabilistic and structural tissue classification to find structures such as the mitral and aortic valves; the Hough transform for circles to find the center of the left ventricle; and multidimensional dynamic programming to find the best position for the left ventricle long axis. For accuracy and agreement assessment, the proposed method was evaluated in 19 patients with respect to manual landmarks and as initialization of a multicavity segmentation approach for the left ventricle, the right ventricle, the left atrium, the right atrium and the aorta. The segmentation results revealed no statistically significant differences between manual and automated initialization in a paired t-test (p > 0.05). Additionally, small biases between manual and automated initialization were detected in the Bland-Altman analysis (bias, variance) for the left ventricle (-0.04, 0.10); right ventricle (-0.07, 0.18); left atrium (-0.01, 0.03); right atrium (-0.04, 0.13); and aorta (-0.05, 0.14). These results indicate that the proposed approach provides robust and accurate detection to initialize a multicavity segmentation approach without any user interaction. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Automatic Measurement of Fetal Brain Development from Magnetic Resonance Imaging: New Reference Data.

    PubMed

    Link, Daphna; Braginsky, Michael B; Joskowicz, Leo; Ben Sira, Liat; Harel, Shaul; Many, Ariel; Tarrasch, Ricardo; Malinger, Gustavo; Artzi, Moran; Kapoor, Cassandra; Miller, Elka; Ben Bashat, Dafna

    2018-01-01

    Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). The developed method showed high correlation with manual segmentation (r2 = 0.9183, p < 0.001) as well as mean volume and volume overlap differences of 4.77 and 18.13%, respectively. New reference data on 199 normal fetuses were created, and all 9 IUGR fetuses were at or below the third percentile of the normal growth chart. The proposed method is fast, accurate, reproducible, user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. © 2017 S. Karger AG, Basel.

  7. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less

  8. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound.

    PubMed

    Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M

    2014-02-01

    To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  9. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    PubMed Central

    Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.

    2014-01-01

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648

  10. A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy.

    PubMed

    Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming

    2018-02-19

    The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.

  11. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  12. Plexiform neurofibroma tissue classification

    NASA Astrophysics Data System (ADS)

    Weizman, L.; Hoch, L.; Ben Sira, L.; Joskowicz, L.; Pratt, L.; Constantini, S.; Ben Bashat, D.

    2011-03-01

    Plexiform Neurofibroma (PN) is a major complication of NeuroFibromatosis-1 (NF1), a common genetic disease that involving the nervous system. PNs are peripheral nerve sheath tumors extending along the length of the nerve in various parts of the body. Treatment decision is based on tumor volume assessment using MRI, which is currently time consuming and error prone, with limited semi-automatic segmentation support. We present in this paper a new method for the segmentation and tumor mass quantification of PN from STIR MRI scans. The method starts with a user-based delineation of the tumor area in a single slice and automatically detects the PN lesions in the entire image based on the tumor connectivity. Experimental results on seven datasets yield a mean volume overlap difference of 25% as compared to manual segmentation by expert radiologist with a mean computation and interaction time of 12 minutes vs. over an hour for manual annotation. Since the user interaction in the segmentation process is minimal, our method has the potential to successfully become part of the clinical workflow.

  13. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Abdomen and spinal cord segmentation with augmented active shape models.

    PubMed

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC.

  15. A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Yu, Ning; Wu, Jia; Weinstein, Susan P.; Gaonkar, Bilwaj; Keller, Brad M.; Ashraf, Ahmed B.; Jiang, YunQing; Davatzikos, Christos; Conant, Emily F.; Kontos, Despina

    2015-03-01

    Accurate and efficient automated tumor segmentation in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is highly desirable for computer-aided tumor diagnosis. We propose a novel automatic segmentation framework which incorporates mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts partitioning, and morphological refinement. A set of 15 breast DCE-MR images, obtained from the American College of Radiology Imaging Network (ACRIN) 6657 I-SPY trial, were manually segmented to generate tumor masks (as ground truth) and breast masks (as regions of interest). Four state-of-the-art segmentation approaches based on diverse models were also utilized for comparison. Based on five standard evaluation metrics for segmentation, the proposed framework consistently outperformed all other approaches. The performance of the proposed framework was: 1) 0.83 for Dice similarity coefficient, 2) 0.96 for pixel-wise accuracy, 3) 0.72 for VOC score, 4) 0.79 mm for mean absolute difference, and 5) 11.71 mm for maximum Hausdorff distance, which surpassed the second best method (i.e., adaptive geodesic transformation), a semi-automatic algorithm depending on precise initialization. Our results suggest promising potential applications of our segmentation framework in assisting analysis of breast carcinomas.

  16. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images.

    PubMed

    Simões, Rita; Mönninghoff, Christoph; Dlugaj, Martha; Weimar, Christian; Wanke, Isabel; van Cappellen van Walsum, Anne-Marie; Slump, Cornelis

    2013-09-01

    Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild Cognitive Impairment patients who take part in large population-based studies. Most existing segmentation approaches use multimodal MR images. However, multiple acquisitions represent a limitation in terms of both patient comfort and computational complexity of the algorithms. In this work, we propose an automatic lesion segmentation method that uses only three-dimensional fluid-attenuation inversion recovery (FLAIR) images. We use a modified context-sensitive Gaussian mixture model to determine voxel class probabilities, followed by correction of FLAIR artifacts. We evaluate the method against the manual segmentation performed by an experienced neuroradiologist and compare the results with other unimodal segmentation approaches. Finally, we apply our method to the segmentation of multiple sclerosis lesions by using a publicly available benchmark dataset. Results show a similar performance to other state-of-the-art multimodal methods, as well as to the human rater. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Adaptive deformable model for colonic polyp segmentation and measurement on CT colonography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Jianhua; Summers, Ronald M.

    2007-05-15

    Polyp size is one important biomarker for the malignancy risk of a polyp. This paper presents an improved approach for colonic polyp segmentation and measurement on CT colonography images. The method is based on a combination of knowledge-guided intensity adjustment, fuzzy clustering, and adaptive deformable model. Since polyps on haustral folds are the most difficult to be segmented, we propose a dual-distance algorithm to first identify voxels on the folds, and then introduce a counter-force to control the model evolution. We derive linear and volumetric measurements from the segmentation. The experiment was conducted on 395 patients with 83 polyps, ofmore » which 43 polyps were on haustral folds. The results were validated against manual measurement from the optical colonoscopy and the CT colonography. The paired t-test showed no significant difference, and the R{sup 2} correlation was 0.61 for the linear measurement and 0.98 for the volumetric measurement. The mean Dice coefficient for volume overlap between automatic and manual segmentation was 0.752 (standard deviation 0.154)« less

  18. Segmentation of histological images and fibrosis identification with a convolutional neural network.

    PubMed

    Fu, Xiaohang; Liu, Tong; Xiong, Zhaohan; Smaill, Bruce H; Stiles, Martin K; Zhao, Jichao

    2018-07-01

    Segmentation of histological images is one of the most crucial tasks for many biomedical analyses involving quantification of certain tissue types, such as fibrosis via Masson's trichrome staining. However, challenges are posed by the high variability and complexity of structural features in such images, in addition to imaging artifacts. Further, the conventional approach of manual thresholding is labor-intensive, and highly sensitive to inter- and intra-image intensity variations. An accurate and robust automated segmentation method is of high interest. We propose and evaluate an elegant convolutional neural network (CNN) designed for segmentation of histological images, particularly those with Masson's trichrome stain. The network comprises 11 successive convolutional - rectified linear unit - batch normalization layers. It outperformed state-of-the-art CNNs on a dataset of cardiac histological images (labeling fibrosis, myocytes, and background) with a Dice similarity coefficient of 0.947. With 100 times fewer (only 300,000) trainable parameters than the state-of-the-art, our CNN is less susceptible to overfitting, and is efficient. Additionally, it retains image resolution from input to output, captures fine-grained details, and can be trained end-to-end smoothly. To the best of our knowledge, this is the first deep CNN tailored to the problem of concern, and may potentially be extended to solve similar segmentation tasks to facilitate investigations into pathology and clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  20. Interactive lung segmentation in abnormal human and animal chest CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less

  1. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    PubMed Central

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.

    2014-01-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 ± 0.12, HDintraobserver = 3.6 mm ± 1.5, DCinterobserver = 0.89 ± 0.15, and HDinterobserver = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy. PMID:24726701

  2. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.

    2014-10-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observersmore » on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.« less

  3. Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Stork, Alexander; Peterfy, Charles G.; Genant, Harry K.

    2000-06-01

    A technique for segmentation of articular cartilage from 3D MRI scans of the knee has been developed. It overcomes the limitations of the conventionally used region growing techniques, which are prone to inter- and intra-observer variability, and which can require much manual intervention. We describe a hybrid segmentation method combining expert knowledge with directionally oriented Canny filters, cost functions and cubic splines. After manual initialization, the technique utilized 3 cost functions which aided automated detection of cartilage and its boundaries. Using the sign of the edge strength, and the local direction of the boundary, this technique is more reliable than conventional 'snakes,' and the user had little control over smoothness of boundaries. This means that the automatically detected boundary can conform to the true shape of the real boundary, also allowing reliable detection of subtle local lesions on the normally smooth cartilage surface. Manual corrections, with possible re-optimization were sometimes needed. When compared to the conventionally used region growing techniques, this newly described technique measured local cartilage volume with 3 times better reproducibility, and involved two thirds less human interaction. Combined with the use of 3D image registration, the new technique should also permit unbiased segmentation of followup scans by automated initialization from a baseline segmentation of an earlier scan of the same patient.

  4. The segmentation of bones in pelvic CT images based on extraction of key frames.

    PubMed

    Yu, Hui; Wang, Haijun; Shi, Yao; Xu, Ke; Yu, Xuyao; Cao, Yuzhen

    2018-05-22

    Bone segmentation is important in computed tomography (CT) imaging of the pelvis, which assists physicians in the early diagnosis of pelvic injury, in planning operations, and in evaluating the effects of surgical treatment. This study developed a new algorithm for the accurate, fast, and efficient segmentation of the pelvis. The proposed method consists of two main parts: the extraction of key frames and the segmentation of pelvic CT images. Key frames were extracted based on pixel difference, mutual information and normalized correlation coefficient. In the pelvis segmentation phase, skeleton extraction from CT images and a marker-based watershed algorithm were combined to segment the pelvis. To meet the requirements of clinical application, physician's judgment is needed. Therefore the proposed methodology is semi-automated. In this paper, 5 sets of CT data were used to test the overlapping area, and 15 CT images were used to determine the average deviation distance. The average overlapping area of the 5 sets was greater than 94%, and the minimum average deviation distance was approximately 0.58 pixels. In addition, the key frame extraction efficiency and the running time of the proposed method were evaluated on 20 sets of CT data. For each set, approximately 13% of the images were selected as key frames, and the average processing time was approximately 2 min (the time for manual marking was not included). The proposed method is able to achieve accurate, fast, and efficient segmentation of pelvic CT image sequences. Segmentation results not only provide an important reference for early diagnosis and decisions regarding surgical procedures, they also offer more accurate data for medical image registration, recognition and 3D reconstruction.

  5. CT image segmentation methods for bone used in medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; van Dijk, Roelof; Dobbe, Johannes; Streekstra, Geert; Koivisto, Juha; Wolff, Jan

    2018-01-01

    The accuracy of additive manufactured medical constructs is limited by errors introduced during image segmentation. The aim of this study was to review the existing literature on different image segmentation methods used in medical additive manufacturing. Thirty-two publications that reported on the accuracy of bone segmentation based on computed tomography images were identified using PubMed, ScienceDirect, Scopus, and Google Scholar. The advantages and disadvantages of the different segmentation methods used in these studies were evaluated and reported accuracies were compared. The spread between the reported accuracies was large (0.04 mm - 1.9 mm). Global thresholding was the most commonly used segmentation method with accuracies under 0.6 mm. The disadvantage of this method is the extensive manual post-processing required. Advanced thresholding methods could improve the accuracy to under 0.38 mm. However, such methods are currently not included in commercial software packages. Statistical shape model methods resulted in accuracies from 0.25 mm to 1.9 mm but are only suitable for anatomical structures with moderate anatomical variations. Thresholding remains the most widely used segmentation method in medical additive manufacturing. To improve the accuracy and reduce the costs of patient-specific additive manufactured constructs, more advanced segmentation methods are required. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. An automatic bone segmentation method based on anatomical structure for the knee joint in MDCT image.

    PubMed

    Uozumi, Y; Nagamune, K

    2013-01-01

    The purpose of this study is to propose an automatic segmentation about each bone (the femur, the tibia, the patellar, and fibular) of the knee in MDCT image. The proposed method was applied for six patients (Age 33 ± 13, four males/tew females). The proposed method segmented the knee joint into each bone by using anatomical structure for the knee joint. The experiments calculate matching rate of the manual and the proposed method for evaluating it. As a result, The matching rate of the femur, the tibia, the patellar, and fibula were 95.84 ± 0.57%, 94.12 ± 1.01%, 94.49 ± 0.83%, 86.37 ± 4.28%, respectively. This study concluded that the proposed method is enough to segment the knee bones.

  7. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    NASA Astrophysics Data System (ADS)

    Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.

    2017-02-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  8. Automated segmentation of geographic atrophy in fundus autofluorescence images using supervised pixel classification.

    PubMed

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Sadda, Srinivas R

    2015-01-01

    Geographic atrophy (GA) is a manifestation of the advanced or late stage of age-related macular degeneration (AMD). AMD is the leading cause of blindness in people over the age of 65 in the western world. The purpose of this study is to develop a fully automated supervised pixel classification approach for segmenting GA, including uni- and multifocal patches in fundus autofluorescene (FAF) images. The image features include region-wise intensity measures, gray-level co-occurrence matrix measures, and Gaussian filter banks. A [Formula: see text]-nearest-neighbor pixel classifier is applied to obtain a GA probability map, representing the likelihood that the image pixel belongs to GA. Sixteen randomly chosen FAF images were obtained from 16 subjects with GA. The algorithm-defined GA regions are compared with manual delineation performed by a certified image reading center grader. Eight-fold cross-validation is applied to evaluate the algorithm performance. The mean overlap ratio (OR), area correlation (Pearson's [Formula: see text]), accuracy (ACC), true positive rate (TPR), specificity (SPC), positive predictive value (PPV), and false discovery rate (FDR) between the algorithm- and manually defined GA regions are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], respectively.

  9. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; King, J.; Keiser, Jr., D.

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less

  10. Partial volume segmentation in 3D of lesions and tissues in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Johnston, Brian; Atkins, M. Stella; Booth, Kellogg S.

    1994-05-01

    An important first step in diagnosis and treatment planning using tomographic imaging is differentiating and quantifying diseased as well as healthy tissue. One of the difficulties encountered in solving this problem to date has been distinguishing the partial volume constituents of each voxel in the image volume. Most proposed solutions to this problem involve analysis of planar images, in sequence, in two dimensions only. We have extended a model-based method of image segmentation which applies the technique of iterated conditional modes in three dimensions. A minimum of user intervention is required to train the algorithm. Partial volume estimates for each voxel in the image are obtained yielding fractional compositions of multiple tissue types for individual voxels. A multispectral approach is applied, where spatially registered data sets are available. The algorithm is simple and has been parallelized using a dataflow programming environment to reduce the computational burden. The algorithm has been used to segment dual echo MRI data sets of multiple sclerosis patients using lesions, gray matter, white matter, and cerebrospinal fluid as the partial volume constituents. The results of the application of the algorithm to these datasets is presented and compared to the manual lesion segmentation of the same data.

  11. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE PAGES

    Collette, R.; King, J.; Keiser, Jr., D.; ...

    2016-06-08

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less

  12. SU-C-BRA-04: Automated Segmentation of Head-And-Neck CT Images for Radiotherapy Treatment Planning Via Multi-Atlas Machine Learning (MAML)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X; Gao, H; Sharp, G

    Purpose: Accurate image segmentation is a crucial step during image guided radiation therapy. This work proposes multi-atlas machine learning (MAML) algorithm for automated segmentation of head-and-neck CT images. Methods: As the first step, the algorithm utilizes normalized mutual information as similarity metric, affine registration combined with multiresolution B-Spline registration, and then fuses together using the label fusion strategy via Plastimatch. As the second step, the following feature selection strategy is proposed to extract five feature components from reference or atlas images: intensity (I), distance map (D), box (B), center of gravity (C) and stable point (S). The box feature Bmore » is novel. It describes a relative position from each point to minimum inscribed rectangle of ROI. The center-of-gravity feature C is the 3D Euclidean distance from a sample point to the ROI center of gravity, and then S is the distance of the sample point to the landmarks. Then, we adopt random forest (RF) in Scikit-learn, a Python module integrating a wide range of state-of-the-art machine learning algorithms as classifier. Different feature and atlas strategies are used for different ROIs for improved performance, such as multi-atlas strategy with reference box for brainstem, and single-atlas strategy with reference landmark for optic chiasm. Results: The algorithm was validated on a set of 33 CT images with manual contours using a leave-one-out cross-validation strategy. Dice similarity coefficients between manual contours and automated contours were calculated: the proposed MAML method had an improvement from 0.79 to 0.83 for brainstem and 0.11 to 0.52 for optic chiasm with respect to multi-atlas segmentation method (MA). Conclusion: A MAML method has been proposed for automated segmentation of head-and-neck CT images with improved performance. It provides the comparable result in brainstem and the improved result in optic chiasm compared with MA. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less

  13. Automatic knee cartilage delineation using inheritable segmentation

    NASA Astrophysics Data System (ADS)

    Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.

    2008-03-01

    We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.

  14. Automated segmentation of dental CBCT image with prior-guided sequential random forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Gao, Yaozong; Shi, Feng

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimatemore » the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method for CBCT segmentation.« less

  15. A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model.

    PubMed

    Mazzaferri, Javier; Larrivée, Bruno; Cakir, Bertan; Sapieha, Przemyslaw; Costantino, Santiago

    2018-03-02

    Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License ( https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva ).

  16. On the importance of FIB-SEM specific segmentation algorithms for porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzer, Martin, E-mail: martin.salzer@uni-ulm.de; Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de; Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de

    2014-09-15

    A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin,more » is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.« less

  17. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  18. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.

    PubMed

    Kieselmann, Jennifer Petra; Kamerling, Cornelis Philippus; Burgos, Ninon; Menten, Martin J; Fuller, Clifton David; Nill, Simeon; Cardoso, M Jorge; Oelfke, Uwe

    2018-06-08

    Owing to its excellent soft-tissue contrast, magnetic resonance (MR) imaging has found an increased application in radiation therapy (RT). Harnessing these properties for treatment planning, automated segmentation methods can alleviate the manual workload burden to the clinical workflow. We investigated atlas-based segmentation methods of organs at risk (OARs) in the head and neck (H&N) region: one approach selecting the most similar atlas from a library of segmented images and two multi-atlas approaches. The latter were based on weighted majority voting and an iterative atlas-fusion approach called STEPS. We built the atlas library from pre-treatment T1-weighted MR images of 12 patients with manual contours of the parotids, spinal cord and mandible, delineated by a clinician. Following a leave-one-out cross-validation strategy, we measured geometric accuracy calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances (HD and HD95), as well as the mean surface distance (MSD), whereby the manual contours served as the gold standard. To benchmark the algorithm, we determined the inter-expert variability (IEV) between three experts. To investigate the dosimetric effect of segmentation inaccuracies, we implemented an auto-planning strategy within the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). For each set of auto-segmented volumes of interest (VOIs), we generated a plan for a 9-beam step and shoot intensity modulated RT treatment, designed according to our institution's clinical H\\&N protocol. Superimposing the dose distributions on the gold standard VOIs, we calculated dose differences to OARs caused by contouring differences between auto-segmented and gold standard VOIs. We investigated the correlation between geometric and dosimetric differences. The mean DSC was larger than 0.8 and the mean MSD smaller than 2mm for the multi-atlas approaches, resulting in a geometric accuracy comparable to previously published results and within the range of the IEV. While dosimetric differences could be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical goals for the gold standard OARs. Correlations between geometric and dosimetric measures were low with R<sup>2</sup><0.5. The geometric accuracy and ability to achieve clinically acceptable treatment plans indicate the suitability of using atlas-based contours for RT treatment planning purposes. The low correlations between geometric and dosimetric measures indicate that geometric measures alone are not sufficient to predict the dosimetric impact of segmentation inaccuracies on treatment planning for the data utilised in this study. Creative Commons Attribution license.

  19. Watermarked cardiac CT image segmentation using deformable models and the Hermite transform

    NASA Astrophysics Data System (ADS)

    Gomez-Coronel, Sandra L.; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge

    2015-01-01

    Medical image watermarking is an open area for research and is a solution for the protection of copyright and intellectual property. One of the main challenges of this problem is that the marked images should not differ perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as segmentation of important anatomical structures do not be impaired or affected. We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that includes a brightness model to generate a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric code, such as patient's information, within the watermark. The watermark scheme is based on the Hermite transform as a bio-inspired image representation model. In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation task based on deformable models. The segmentation technique is based on a vector-value level sets method such that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray level and the steered Hermite coefficients as texture descriptors. Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested different mark sizes and different insertion schemes on images that were later segmented either automatic or manual by physicians.

  20. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier.

    PubMed

    Memari, Nogol; Ramli, Abd Rahman; Bin Saripan, M Iqbal; Mashohor, Syamsiah; Moghbel, Mehrdad

    2017-01-01

    The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of the Retina (STARE) and Child Heart and Health Study in England (CHASE_DB1) datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.

Top