Science.gov

Sample records for manufacture micro light

  1. Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System

    DTIC Science & Technology

    2012-12-11

    There are three types of digital mask technologies: (1) liquid crystal display (LCD); (2) digital micromirror device ( DMD ); and (3) LCoS. LCD is the...curable resins.17 The DMD offers improved contrast over the LCD and is better suited to handle UV light than LCD. However, DMD tends to mechanically

  2. Laser 3D micro-manufacturing

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.

    2016-06-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.

  3. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    DTIC Science & Technology

    2011-03-03

    FLAPPING WING MICRO AIR VEHICLE WING MANUFACTURE AND FORCE TESTING THESIS Nathanael J...FLAPPING WING MICRO AIR VEHICLE WING MANUFACTURE AND FORCE TESTING THESIS Presented to the Faculty Department of Aeronautics and Astronautics...March 2011 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GA/ENY/11-M14 FLAPPING WING MICRO AIR VEHICLE WING MANUFACTURE AND FORCE

  4. Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Peharz, Gerhard; Kuna, Ladislav; Leiner, Claude

    2015-03-01

    The laser-generation of micro-optical volume elements is a promising approach to decrease the optical shadowing of front side metal contacts of solar cells. Focusing a femtosecond laser beam into the volume of the encapsulation material causes a local modification its optical constants. Suchlike fabricated micro-optical elements can be used to decrease the optical shadowing of the front side metallization of c-Si solar cells. Test samples comprising of a sandwich structure of a glass sheet with metallic grid-lines, an Ethylene-vinyl acetate (EVA) encapsulant and another glass sheet were manufactured in order to investigate the optical performance of the volume optics. Transmission measurements show that the shadowing of the metalling grid-lines is substantially decreased by the micro-optical volume elements created in the EVA bulk right above the grid-fingers. A detailed investigation of the optical properties of these volume elements was performed: (i) experimentally on the basis of goniometric measurements, as well as (ii) theoretically by applying optical modelling and optimization procedures. This resulted in a better understanding of the effectiveness of the optical volume elements in decreasing the optical shadowing of metal grid lines on the active cell surfaces. Moreover, results of photovoltaic mini-modules with incorporated micro-optical volume elements are presented. Results of optical simulation and Laser Beam Induced Current (LBIC) experiments show that the losses due to the grid fingers can be reduced by about 50%, when using this fs-laser structuring approach for the fabrication of micro-optical volume elements in the EVA material.

  5. Improving metrology for micro-optics manufacturing

    NASA Astrophysics Data System (ADS)

    Davies, Angela D.; Bergner, Brent C.; Gardner, Neil W.

    2003-11-01

    Metrology is one of the critical enabling technologies for realizing the full market potential for micro-optical systems. Measurement capabilities are currently far behind present and future needs. Much of today"s test equipment was developed for the micro-electronics industry and is not optimized for micro-optic materials and geometries. Metrology capabilities currently limit the components that can be realized, in many cases. Improved testing will be come increasingly important as the technology moves to integration where it will become important to "test early and test often" to achieve high yields. In this paper, we focus on micro-refractive components in particular, and describe measurement challenges for this class of components and current and future needs. We also describe a new micro-optics metrology research program at UNC Charlotte under the Center for Precision Metrology and the new Center for Optoelectronics and Optical Communications to address these needs.

  6. Challenging micro-optical applications demand diverse manufacturing solutions

    NASA Astrophysics Data System (ADS)

    Borek, Gregg; Weissbrodt, Peter; Schrenk, Manfred; Cumme, Matthias

    2007-02-01

    Many manufacturing techniques have been developed and implemented to fabricate a wide range of micro-optical products. The challenges of the micro-optics business are diverse and tend to resist a widely accepted manufacturing process such as has been implemented for CMOS fabrication. Many of the challenges that have been addressed with various solutions include optical waveband of operation from DUV through LWIR, material systems, cost of manufacturing for the intended application space, feature sizes based on device functionality, and fabrication technology based on the manufacturing volume. Some of the technologies to be discussed include device patterning by e-beam lithography, optical lithography, direct CNC machining and micro-polishing, and plastic replication.

  7. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan

    2012-11-01

    Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.

  8. Manufacturing: 3D printed micro-optics

    NASA Astrophysics Data System (ADS)

    Juodkazis, Saulius

    2016-08-01

    Uncompromised performance of micro-optical compound lenses has been achieved by high-fidelity shape definition during two-photon absorption microfabrication. The lenses have been made directly onto image sensors and even onto the tip of an optic fibre.

  9. Laser additive manufacturing of stainless steel micro fuel cells

    NASA Astrophysics Data System (ADS)

    Scotti, Gianmario; Matilainen, Ville; Kanninen, Petri; Piili, Heidi; Salminen, Antti; Kallio, Tanja; Franssila, Sami

    2014-12-01

    This paper introduces laser additive manufacturing as a new method for the fabrication of micro fuel cells: The method opens up the capability of ultrafast prototyping, as the whole device can be produced at once, starting from a digital 3D model. In fact, many different devices can be produced at once, which is useful for the comparison of competing designs. The micro fuel cells are made of stainless steel, so they are very robust, thermally and chemically inert and long-lasting. This enables the researcher to perform a large number of experiments on the same cell without physical or chemical degradation. To demonstrate the validity of our method, we have produced three versions of a micro fuel cell with square pillar flowfield. All three have produced high current and power density, with maximum values of 1.2 A cm-2 for the current and 238 mW cm-2 for power.

  10. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  11. Solid State Lighting OLED Manufacturing Roundtable Summary

    SciTech Connect

    none,

    2010-03-31

    Summary of a meeting of OLED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  12. Micro-lens array design on a flexible light-emitting diode package for indoor lighting.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2015-10-01

    An advanced, ultra-thin, flexible LED (FLED) package technique is first proposed in this study, where a polyimide substrate was used as the lead frame package material due to its physical stability in thermal processing. The experimental results showed that the thickness of the mockup sample measured by a vernier caliper was 260 μm and 35% thinner than the Panasonic organic LED lighting panel announced on 4 March 2014 in Tokyo. Moreover, the flexible angle of the ultra-thin LED package was 200.54° when it surrounded a disk with a 1 cm radius. A design of a micro-lens array manufactured by silicone molding on the FLED is also proposed in this study. Finally, different types of micro-lenses were applied to different lighting regions to investigate their lighting effects.

  13. Capabilities Of Micro Powder Injection Molding For Microparts Manufacturing

    NASA Astrophysics Data System (ADS)

    Kong, X.; Barriere, T.; Gelin, J. C.

    2011-01-01

    The Micro-PIM processing technology satisfies the increasing demand in terms of smaller parts and miniaturization. Research works in this area have been carried out at FEMTO-ST Institute by performing the injection molding with 316L stainless steel fine powders and polymer binders. Several formulations with different proportion of powders and binders as well various polymers have been tested, and then a well adapted one has been selected. The process to select the well adapted formulation and the rheological characteristics of the feedstock realized according with the selected formulation are also detailed. Several test specimens have been successfully manufactured.

  14. Influence of Micro-Rivet Manufacturing Process on Quality of Micro-Joint

    NASA Astrophysics Data System (ADS)

    Presz, Wojciech; Cacko, Robert

    2011-05-01

    One of the modern industry endeavors is to be able to manufacture smaller size components using traditional or new technologies. Smaller components usually need special assembly techniques. New course of mechanical joining improvement is to develop process modification for decreased scale, i.e. micro-joining. Very interesting problems arise with self-piercing riveting (SPR) method, because one of the factors influencing SPR joint strength is rivet material properties. Rivet production by forming produces certain distribution of stress/strain field within cross-section of a rivet, influencing the process of SPR joint formation in micro-joining. Results of initial analysis of micro-joint strength are presented in the paper. Stress/strain field obtained during rivet production is taken into account in numerical simulation of micro-riveting process. Joint loading test was numerically modeled. Simulations consisted of three phases: manufacturing of the rivet, forming a joint and strength test. Stress strain fields were superimposed over the joint on every stage. Influence of the manufacturing method of the rivet on the joint quality and strength was observed. The commercial FEM software MSC-Marc is used for numerical simulations.

  15. Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes

    NASA Astrophysics Data System (ADS)

    Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra

    2017-06-01

    Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.

  16. Light-Mediated Manufacture and Manipulation of Actuators.

    PubMed

    Han, Dong-Dong; Zhang, Yong-Lai; Ma, Jia-Nan; Liu, Yu-Qing; Han, Bing; Sun, Hong-Bo

    2016-10-01

    Recent years have seen a considerable growth of research interests in developing novel technologies that permit designable manufacture and controllable manipulation of actuators. Among various fabrication and driving strategies, light has emerged as an enabler to reach this end, contributing to the development of actuators. Several accessible light-mediated manufacturing technologies, such as ultraviolet (UV) lithography and direct laser writing (DLW), are summarized. A series of light-driven strategies including optical trapping, photochemical actuation, and photothermal actuation for controllable manipulation of actuators is introduced. Current challenges and future perspectives of this field are discussed. To generalize, light holds great promise for the development of actuators.

  17. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  18. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  19. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  20. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  1. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2016-07-12

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  2. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2016-07-12

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  3. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  4. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    SciTech Connect

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  5. Rapid manufacture of freeform micro-optics for high power applications

    NASA Astrophysics Data System (ADS)

    Currie, Matthew; McBride, Roy

    2014-03-01

    We report a new route to obtaining custom freeform micro-optical components that is free from symmetry restrictions, offering drastically lower cost and delivery times than what is required by other freeform manufacturing methods. We describe how this process can be used to realize a complex custom optic using data generated directly from a design in Zemax. This surface is then extracted from Zemax and fabricated using the LightForge service before being measured. A quantitative analysis of the real optic is carried out both numerically and with the design source in Zemax, and we present a comparison between design and fabricated part performance.

  6. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  7. The proposed Institute for Micro-manufacturing, Louisiana Tech University

    SciTech Connect

    Not Available

    1994-07-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) DOE/EA-0958, evaluating the construction and equipping of two components of the proposed Institute for Micro-manufacturing at Louisiana Tech University (LTU), a proposed R and D facility to be located in Ruston, LA. and, the proposed installation of a beamline for micro-machining applications at the Center for Advanced Microstructures and Devices (CAMD) facility at Louisiana State University in Baton Rouge, LA. The objective of the proposed project is to focus on the applied, rather than basic research emphasizing the design and development, metrology, inspection and testing, and the assembly and production of micron and submicron structures and devices. Also, the objective of the beamline at CAMD would be the fundamental study of processing and analysis technologies, including x-ray lithography, which are important to microstructures fabrication and electronic device development. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  8. Light-regulated microRNAs.

    PubMed

    Jayanthy, Ashika; Setaluri, Vijayasaradhi

    2015-01-01

    In addition to exposure to passive diurnal cycles of sunlight, humans are also subjected to intentional acute exposure to other types of electromagnetic radiation (EM). Understanding the molecular mechanisms involved in the physiological, pathological and therapeutic responses to exposure to radiation is an active area of research. With the advent of methods to readily catalog and identify patterns of changes in gene expression, many studies have reported changes in gene expression upon exposure of various human and mouse cells in vitro, whole experimental organisms such as mice and parts of human body. However, the molecular mechanisms underlying these broad ranging changes in gene expression are not yet fully understood. MicroRNAs, which are short, noncoding RNAs that regulate gene expression by targeting many messenger RNAs, are also emerging as important mediators of radiation-induced changes in gene expression and hence critical for the manifestation of light-induced cellular phenotypes and physiological responses. In this article, we review available knowledge on microRNAs implicated in responses to various forms of solar and other EM radiation. Based on this knowledge, we elaborate some unifying themes in the regulation and functions of some of these miRNAs.

  9. Micro-valve pump light valve display

    DOEpatents

    Yeechun Lee.

    1993-01-19

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  10. Micro-valve pump light valve display

    DOEpatents

    Lee, Yee-Chun

    1993-01-01

    A flat panel display incorporates a plurality of micro-pump light valves (MLV's) to form pixels for recreating an image. Each MLV consists of a dielectric drop sandwiched between substrates, at least one of which is transparent, a holding electrode for maintaining the drop outside a viewing area, and a switching electrode from accelerating the drop from a location within the holding electrode to a location within the viewing area. The sustrates may further define non-wetting surface areas to create potential energy barriers to assist in controlling movement of the drop. The forces acting on the drop are quadratic in nature to provide a nonlinear response for increased image contrast. A crossed electrode structure can be used to activate the pixels whereby a large flat panel display is formed without active driver components at each pixel.

  11. Detail, turntable manufactured by the "Light Railway Equipment Company, Philadelphia, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, turntable manufactured by the "Light Railway Equipment Company, Philadelphia, Penna." This device turned seaplanes ninety degrees in their movement between storage in the hangars (to the left, out of view) and the Delaware River used for take-offs and landings. - Lazaretto Quarantine Station, Marine Aviation Hangars, Wanamaker Avenue and East Second Street, Essington, Delaware County, PA

  12. Light diffusing effects of nano and micro-structures on OLED with microcavity.

    PubMed

    Cho, Doo-Hee; Shin, Jin-Wook; Joo, Chul Woong; Lee, Jonghee; Park, Seung Koo; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2014-10-20

    We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure. Furthermore, the nano-structure has advantages including light extraction of the substrate mode, reproducibility of manufacturing process, and minimizing pixel blur problems in an OLED display panel. The nano-structure is a promising candidate for a light diffuser, resolving the viewing angle problems in microcavity OLEDs.

  13. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  14. Micro spectrometer for parallel light and method of use

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.

  15. Manufacturing of polymer light-emitting device structures

    NASA Astrophysics Data System (ADS)

    Tuomikoski, M.; Suhonen, R.; Välimäki, M.; Maaninen, T.; Maaninen, A.; Sauer, M.; Rogin, P.; Mennig, M.; Heusing, S.; Puetz, J.; Aegerter, M. A.

    2006-04-01

    The gravure printing technique is currently under investigation as a possible method for the roll-to-roll production of OLEDs in the 6th framework EU funded project entitled ROLLED - "Roll-to-roll manufacturing technology for flexible OLED devices and arbitrary size and shape displays". The objective in the project is to fabricate an entire OLED structure by using roll-to-roll manufacturing methods and to examine, how the commercial production could be set up and integrated into an existing printing process. In order to attain a roll-to-roll compatibility, all the materials, inks and device structures need to be suitable for printing. Since, such OLED device structures are very sensitive to moisture and oxygen, high barrier materials to be applied as wet chemical coatings on transparent polymer films such as PET by common roll-to-roll coating techniques have been investigated. The barrier films on their respective substrates act as front and back side encapsulation materials, where the front side encapsulation material is to be used as a transparent and flexible substrate for OLED fabrication. The transmission rates to be achieved for both front and back side encapsulation for oxygen and water vapour are 5 mg m -2day -1 (corresponding to 7 cm 3m -2day -1 for O II). In this paper, we show how light-emitting devices manufactured by gravure printing operate compared to the ones manufactured by traditional methods. Furthermore, we present recent results on the development of ITO nanoparticle coatings, cathode inks and flexible barrier materials.

  16. 3D manufacturing of micro and nano-architected materials

    NASA Astrophysics Data System (ADS)

    Valdevit, Lorenzo

    2016-04-01

    Reducing mass without sacrificing mechanical integrity and performance is a critical goal in a vast range of applications. Introducing a controlled amount of porosity in a strong and dense material (hence fabricating a cellular solid) is an obvious avenue to weight reduction. The mechanical effectiveness of this strategy, though, depends strongly on the architecture of the resulting cellular material (i.e., the topology of the introduced porosity). Recent progress in additive manufacturing enables fabrication of macro-scale cellular materials (both single-phase and hybrid) with unprecedented dimensional control on the unit-cell and sub-unit-cell features, potentially producing architectures with structural hierarchy from the nano to the macro-scale. As mechanical properties of materials often exhibit beneficial size effects at the nano-scale (e.g., strengthening of metals and toughening of ceramics), these novel manufacturing approaches provide a unique opportunity to translate these beneficial effects to the macro-scale, further improving the mechanical performance of architected materials. The enormous design space for architected materials, and the strong relationship between the topological features of the architecture and the effective physical and mechanical properties of the material at the macro-scale, present both a huge opportunity and an urgent need for the development of suitable optimal design strategies. Here we present a number of strategies for the advanced manufacturing, characterization and optimal design of a variety of lightweight architected materials with unique combinations of mechanical properties (stiffness, strength, damping coefficient…). The urgent need to form strong synergies among the fields of additive manufacturing, topology optimization and architectureproperties relations is emphasized throughout.

  17. Review of Polyimides Used in the Manufacturing of Micro Systems

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  18. Light driven micro-robotics with holographic 3D tracking

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper

    2016-04-01

    We recently pioneered the concept of light-driven micro-robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically trapped and "remote-controlled" in a volume with six-degrees-of-freedom. To be exploring the full potential of this new drone-like 3D light robotics approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of "light robots" in 3D to ensure continuous optimal light coupling on the fly. Our latest developments in this new and exciting area will be reviewed in this invited paper.

  19. Light-driven micro/nanomotors: from fundamentals to applications.

    PubMed

    Xu, Leilei; Mou, Fangzhi; Gong, Haotian; Luo, Ming; Guan, Jianguo

    2017-09-26

    Light, as an external stimulus, is capable of driving the motion of micro/nanomotors (MNMs) with the advantages of reversible, wireless and remote manoeuvre on demand with excellent spatial and temporal resolution. This review focuses on the state-of-the-art light-driven MNMs, which are able to move in liquids or on a substrate surface by converting light energy into mechanical work. The general design strategies for constructing asymmetric fields around light-driven MNMs to propel themselves are introduced as well as the photoactive materials for light-driven MNMs, including photocatalytic materials, photothermal materials and photochromic materials. Then, the propulsion mechanisms and motion behaviors of the so far developed light-driven MNMs are illustrated in detail involving light-induced phoretic propulsion, bubble recoil and interfacial tension gradient, followed by recent progress in the light-driven movement of liquid crystalline elastomers based on light-induced deformation. An outlook is further presented on the future development of light-driven MNMs towards overcoming key challenges after summarizing the potential applications in biomedical, environmental and micro/nanoengineering fields.

  20. 76 FR 77585 - Notice to Manufacturers of Airport Lighting and Navigation Aid Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...Projects funded under the Airport Improvement Program (AIP) must meet the requirements of 49 U.S.C. 50101, Buy American Preferences. The Federal Aviation Administration (FAA) is considering issuing waivers to foreign manufacturers of certain airport lighting and navigation aid equipment that is lit with Light Emitting Diode (LED) lighting. This notice requests information from manufacturers of......

  1. Design of a micro lapping system based on double-feedback control algorithm for manufacturing optical micro components

    NASA Astrophysics Data System (ADS)

    Che, Lin; Li, Guo; Wang, Bo; Ding, Fei; Mao, Xing; Dong, Wenxia

    2014-08-01

    This paper presents a micro lapping machine tool, which is dedicated for manufacturing the high-precision optical micro components with 3-D micro structures. And it can remove the damaged surface layer efficiently.In order to control machining process precisely, a double-feedback control system strategy is proposed and implemented. Lapping force signal from the clamp feeds back at the same time with position signal from grating scale close-looped devices. With the function of position keeping , a dual-stage drive micro-displacement servo system is used to provide the desired performance in the vertical feeding direction. Random lapping trace is formed with combinations of two mutually-perpendicular horizontal liner motion. A clamp with the function of micro force detection is designed to monitor the machining process and control the lapping force. Based on force feedback, a tool auto-checking strategy is conducted to realize the tool checking in limited tiny space. Corresponding experiments are undertaken to test the properties of the machine tool.And, the optical micro components are manufactured successfully. The optical components are measured and analysised before and after processing. The experimental results show that the position-keeping accuracy of the dual-stage feed drive system can reach to ±0.02μm, the resolution of motion control can reach to 20nm.The Sa value of the processed component can reach 0.0882um. Surface quality can be improved obviously and the damaged surface layer is removed efficiently.The theoretical and experimental results show the validity of the machine tool and the control algorithm.

  2. Evaluation of Superficial and Dimensional Quality Features in Metallic Micro-Channels Manufactured by Micro-End-Milling

    PubMed Central

    Monroy-Vázquez, Karla P.; Attanasio, Aldo; Ceretti, Elisabetta; Siller, Héctor R.; Hendrichs-Troeglen, Nicolás J.; Giardini, Claudio

    2013-01-01

    Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS). Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap), channel depth (d), feed per tooth (fz) and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness). The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications. PMID:28809219

  3. Manufacturing of freeform micro-optical elements by mask-less laser direct write lithography and replication by imprinting

    NASA Astrophysics Data System (ADS)

    Kuna, L.; Leiner, C.; Ruttloff, S.; Nemitz, W.; Reil, F.; Hartmann, P.; Wenzl, F. P.; Sommer, C.

    2016-09-01

    Today, freeform micro-optical structures are desired components in many photonic and optical applications such as lighting and detection systems due to their compactness, ease of system integration and superior optical performance. The high complexity of a freeform structure's arbitrary surface profile and the need for high throughput upon fabrication require novel approaches for their integration into a manufacturing process. For the fabrication of polymer freeform optics, in this contribution we discuss two principal technologies, mask-less laser direct write lithography (MALA) and replication from the as-fabricated master by imprinting. We show the high flexibility in design and rapid-prototyping of freeform optical microstructures that can be achieved by such an approach. First, the original structures known as masters are fabricated using MALA. Because of the specific requirements on shape and height (>50μm) of the microstructures, laser writing and photoresist processing have to be performed within a narrow range of fabrication parameters. Subsequently, UV-soft lithography based replication is used for serial production of the freeform micro-optical elements within a batch process. Aided by profilometry, optical microscopy and atomic force microscopy, the fidelity of the fabricated freeform microoptical elements to the design is characterised. Finally, the light intensity distribution on a target plane caused by the freeform micro-optical element illuminated with an LED is determined and compared with the predicted one.

  4. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    PubMed

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  5. Manufacture of fibrous dosage forms by wet micro-patterning and drying.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2017-09-18

    Recently, we have introduced fibrous dosage forms prepared by the predictable deposition, or 3D-micro-patterning, of a drug-laden fibrous melt on a surface. Such dosage forms enable precisely controlled microstructures and drug release rates, and can be manufactured by an efficient, continuous melt process. However, the applicability of melt-processing to manufacture pharmaceutical dosage forms is limited because the temperatures at which suitable excipients plasticize by melting are greater than the degradation or melting temperatures of many kinds of drugs. In this work, therefore, a continuous wet micro-patterning process is presented for the manufacture of fibrous dosage forms, wherein the excipient is plasticized by solvation and solidified by drying. Models are developed to illustrate the effects of the fiber radius, the inter-fiber spacing, the drying conditions, and the viscosity of the drug-excipient-solvent mixture on microstructure, drug release properties, and process time of the dosage forms. Experimental results show that the microstructure can be well controlled by the above parameters. They also confirm that the drug release behaviour of the dosage forms is predictable. Furthermore, the small excipient particles and the thin fibers are solvated, micro-patterned, and dried rapidly, in a few seconds or about a minute, respectively, which affords short process times. Thus it is demonstrated that fibrous dosage forms with predictable properties can be readily prepared by a continuous wet micro-patterning process. Copyright © 2017. Published by Elsevier Inc.

  6. Analysis of Light Gathering Abilities of Dynamically Solidified Micro-lenses, and Their Implementation to Improve Sensitivity of Fluorescent PCR Micro-detectors.

    PubMed

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Chen, Tao; Li, Yinghui

    2015-06-01

    Fluorescent polymerase chain reaction (PCR) is becoming the preferred method of quantitative analysis due to its high specificity and sensitivity. We propose to use a new kind of micro-lens, dynamically solidified with optic glue, to improve the sensitivity of fluorescent PCR micro-detector. We developed light ray track equations for these lenses and used them to calculate relative light intensity distribution curve for stimulation lenses and illumination point probability distribution curve for detection lenses. We manufactured dynamically solidified micro-lenses using optic glue NOA61, and measured their light gathering ability. Lenses with radius/thickness (R/H) ratio of 4 reached light focusing ratio of 3.85 (stimulation lens) and photon collection efficiency of 0.86 (detection lens). We then used dynamically solidified lenses in PCR fluorescence micro-detector and analyzed their effect on the detector sensitivity. We showed that the use of dynamically solidified micro-lenses with R/H = 4 resulted in over 4.4-fold increased sensitivity of the detector.

  7. Monitoring of Airborne Tritium in Vicinity of Radioluminescent Light Manufacturer

    SciTech Connect

    Ilin, M.; Thompson, P.; Rabski, H.

    2005-07-15

    Passive diffusion samplers (PDS) composed of a vial with a solution of distilled water and ethylene glycol have an affinity to capture tritium oxide (tritiated water vapour, HTO) from surrounding air through an orifice in a lid. In order to ascertain the effectiveness of such samplers for tracking changes in the HTO air concentrations attributable to variations in tritium emission rates, the Canadian Nuclear Safety Commission (CNSC) measured the HTO concentrations in air for one year on a bi-weekly basis at various distances along four directions from an operating radioluminescent light manufacturing facility. The collected data demonstrate that the PDS are low cost and low maintenance means for reliable monitoring of airborne HTO emissions. The data indicate a rapid decrease of atmospheric HTO concentrations with increasing distance from the facility in all directions. A strong correlation (r=0.89) was found between reported releases of HTO from the facility and the HTO air concentrations observed at the monitoring locations. Distribution of HTO around the facility correlated strongly (r=0.99) with local wind distribution.

  8. Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes

    NASA Astrophysics Data System (ADS)

    Mekras, N.; Artemakis, I.

    2012-09-01

    In this paper a methodology and an application example are presented aiming to show how Artificial Neural Networks (ANNs) can be used to model manufacturing processes when mathematical models are missing or are not applicable e.g. due to the micro- & nano-scaling, due to non-conventional processes, etc. Besides the ANNs methodology, the results of a Software System developed will be presented, which was used to create ANNs models for micro & nano manufacturing processes. More specifically results of a specific application example will be presented, concerning the modeling of extrusion processes for polymeric micro-tubes. ANNs models are capable for modeling manufacturing processes as far as adequate experimental and/or historical data of processes' inputs & outputs are available for their training. The POLYTUBES ANNs models have been trained and tested with experimental data records of process' inputs and outputs concerning a micro-extrusion process of polymeric micro-tubes for several materials such as: COC, PC, PET, PETG, PP and PVDF. The main ANN model of the extrusion application example has 3 inputs and 9 outputs. The inputs are: tube's inner & outer diameters, and the material density. The model outputs are 9 process parameters, which correspond to the specific inputs e.g. process temperature, die inner & outer diameters, extrusion pressure, draw speed etc. The training of the ANN model was completed, when the errors for the model's outputs, which expressed the difference between the training target values and the ANNs outputs, were minimized to acceptable levels. After the training, the micro-extrusion ANN is capable to simulate the process and can be used to calculate model's outputs, which are the process parameters for any new set of inputs. By this way a satisfactory functional approximation of the whole process is achieved. This research work has been supported by the EU FP7 NMP project POLYTUBES.

  9. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  10. Manipulating spatial light fields for micro- and nano-photonics

    NASA Astrophysics Data System (ADS)

    Xie, Xiangsheng; Liu, Yikun; Zhang, Mudong; Zhou, Jianying; Wong, Kam Sing

    2012-04-01

    Spatial properties of a light field, including its amplitude, polarization and phase distribution, can be modulated via spatial light modulators, digital mirror devices, optical mask, waveplates or diffraction optic elements. In conjunction with additional optical components, e.g., optical lenses or imaging systems, rich micro- and nano-photonic applications can be demonstrated. This paper reviews various useful techniques applied for the spatial light field modulations. Important applications, most notably, optical lithography for the fabrication of functional photonic crystals, and light field conversion and transmission through material system, are discussed. Key issues in the control of optical field, including phase-locking, phase distribution regulation and adaptive optical field synthesizing, are described in detail. The applications of light field modulation to enhance light-matter interaction are demonstrated for some fundamental optical processes, such as light diffraction in liquid crystal, beam combining in nonlinear optical crystal and light field transmission through a tapered nano-tip. It is anticipated that the wide-spread application of light field modulation be expected in the near future, especially in view of a rapid advancement in the nano-photonic research and applications.

  11. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  12. Micro-hardness evaluation of a micro-hybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser.

    PubMed

    Rode, Katia M; de Freitas, Patricia M; Lloret, Patricia R; Powell, Lynn G; Turbino, Miriam L

    2009-01-01

    This in vitro study aimed to determine whether the micro-hardness of a composite resin is modified by the light units or by the thickness of the increment. Composite resin disks were divided into 15 groups (n = 5), according to the factors under study: composite resin thickness (0 mm, 1 mm, 2 mm , 3 mm and 4 mm) and light units. The light activation was performed with halogen light (HL) (40 s, 500 mW/cm(2)), argon ion laser (AL) (30 s, 600 mW/cm(2)) or light-emitting diode (LED) (30 s, 400 mW/cm(2)). Vickers micro-hardness tests were performed after 1 week and were carried out on the top surface (0 mm-control) and at different depths of the samples. Analysis of variance (ANOVA) and Tukey tests (P < or = 0.05) revealed no statistically significant difference among the light units for the groups of 0 mm and 1 mm thickness. At 2 mm depth, the AL was not statistically different from the HL, but the latter showed higher micro-hardness values than the LED. In groups with 3 mm and 4 mm thickness, the HL also showed higher micro-hardness values than the groups activated by the AL and the LED. Only the HL presented satisfactory polymerization with 3 mm of thickness. With a 4 mm increment no light unit was able to promote satisfactory polymerization.

  13. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    NASA Astrophysics Data System (ADS)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  14. Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications

    NASA Astrophysics Data System (ADS)

    Tunna, L.; O'Neill, W.; Khan, A.; Sutcliffe, C.

    2005-09-01

    Conventional laser machining of aluminium with long wavelength lasers has its inherent problems due to the high reflectivity of aluminium to laser radiation (Handbook of Optics, vol 1, 2nd ed. New York: McGraw-Hill; 1995). Laser processing at shorter wavelengths reduces the reflectivity of the workpiece to the incident laser radiation and can also reduce the dimensions of the obtainable machining geometries. This paper reviews the limiting factors in the micro machining of aluminium using a diode pumped solid state (DPSS) Nd:YAG laser operated at 1064, 532, and 355 nm. The geometries of the laser-machined samples were investigated using interferometric, and optical methods to assess how the processing fluence and wavelength will affect the obtainable precision for successful integration of the laser in a micromachining CAD/CAM system.

  15. Micro-Plasma Transferred Arc Additive Manufacturing for Die and Mold Surface Remanufacturing

    NASA Astrophysics Data System (ADS)

    Jhavar, Suyog; Paul, Christ Prakash; Jain, Neelesh Kumar

    2016-07-01

    Micro-plasma transferred arc ( µPTA) additive manufacturing is one of the newest options for remanufacturing of dies and molds surfaces in the near-millimeter range leading to extended usage of the same. We deployed an automatic micro-plasma deposition setup to deposit a wire of 300 µm of AISI P20 tool steel on the substrate of same material for the potential application in remanufacturing of the die and mold surface. Our present research effort is to establish µPTA additive manufacturing as a viable economical and cleaner methodology for potential industrial applications. We undertook the optimization of single weld bead geometry as the first step in our present study. Bead-on-plate trials were conducted to deposit single bead geometry at various processing parameters. The bead geometry (shape and size) and dilution were measured and the parametric dependence was derived. A set of parameters leading to reproducible regular and smooth single bead geometry were identified and used to prepare a thin wall for mechanical testing. The deposits were subjected to material characterization such as microscopic studies, micro-hardness measurements and tensile testing. The process was compared qualitatively with other deposition processes involving high-energy density beams and was found to be advantageous in terms of low initial and running costs with comparable properties. The outcome of the study confirmed the process capability of µPTA deposition leading to deployment of cost-effective and environmentally friendlier technology for die and mold remanufacturing.

  16. 3D model of filler melting with micro-beam plasma arc based on additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Chen, Weilin; Yang, Tao; Yang, Ruixin

    2017-07-01

    Additive manufacturing technology is a systematic process based on discrete-accumulation principle, which is derived by the dimension of parts. Aiming at the dimension mathematical model and slicing problems in additive manufacturing process, the constitutive relations between micro-beam plasma welding parameters and the dimension of part were investigated. The slicing algorithm and slicing were also studied based on the dimension characteristics. By using the direct slicing algorithm according to the geometric characteristics of model, a hollow thin-wall spherical part was fabricated by 3D additive manufacturing technology using micro-beam plasma.

  17. Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof

    DOEpatents

    Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.

    2017-03-28

    A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.

  18. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE PAGES

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; ...

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  19. Light-drive biomedical micro-tools and biochemical IC chips fabricated by 3D micro/nano stereolithography

    NASA Astrophysics Data System (ADS)

    Ikuta, Koji; Maruo, Shoji; Hasegawa, Tadahiro; Itho, Suenobu; Korogi, Hayato; Takahashi, Atsushi

    2004-10-01

    New concept of micro/nano tools working in water solutuon has been proposed by the author. A real three dimensional micro fabrication process using photo curable polymer named "micro/nano stereolithography" has been also developed by the author's group. The latest version of this process achieved 100 nm in 3D resolution and freely movable micro/nano mechanism are easily fabricated within 20 min. Nano tweezers and nano needle with two degrees of freedom were successfully fabricated without any assembly process. Cell and delicate biological materials can be remotely handled with neither any micro actuators nor lead wire. It was verified that this light-driven micro tool has precise force control with 10 FtN. These light-driven micro tools contribute to cellular biology as well as medical tools. The second application of microstereolithography is the biochemical IC chips for both micro chemical analysis and synthesis. Unlike conventional "lab. on a chip" and "micro total analysis system" (micro-TAS), our biochemical IC has micro pumps and active valves in one chip. Users can construct their own micro chemical device by themselves. The advanced biochemical IC chip-set for "on chip cell-free protein synthesis" has been prototyped and verified experimentally. A luminous enzyme of fire fly so called "Luciferase" and useful bio-marker protein "GFP" were synthesized successfully. According to above results, the biomchemical IC chips will be useful to "Order-made medicine" in near future.

  20. US manufacturers of commercially available stand-alone photovoltaic lighting systems

    SciTech Connect

    McNutt, P

    1994-05-01

    This report introduces photovoltaic (PV) lighting systems, gives some specifications for ordering these systems, and provides a list of some of the manufacturers of these systems in the United States. These PV lighting systems are all commercially available. They are stand-alone systems because they are not tied to the electric utility power grid.

  1. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies.

    PubMed

    Kostovski, Gorgi; Stoddart, Paul R; Mitchell, Arnan

    2014-06-18

    The flat tip of an optical fiber is a unique and unconventional platform for micro and nanotechnologies. The small cross-section and large aspect ratio of the fiber provide an inherently light-coupled substrate that is uniquely suited to remote, in vivo and in situ applications. However, these same characteristics challenge established fabrication technologies, which are best suited to large planar substrates. This review presents a broad overview of strategies for patterning the flat tip of an optical fiber. Techniques discussed include self-assembly, numerous lithographies, through-fiber patterning, hybrid techniques, and strategies for mass manufacture, while the diverse applications are discussed in context throughout. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    SciTech Connect

    Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei; Naimark, Oleg Borisovich; Jeng, Yeau-Ren

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments with a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.

  3. A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart material

    NASA Astrophysics Data System (ADS)

    Huang, Chaolei; Lv, Jiu-an; Tian, Xiaojun; Wang, Yuechao; Liu, Jie; Yu, Yanlei

    2016-09-01

    Micro-gripper is an important tool to manipulate and assemble micro-scale objects. Generally, as micro-gripper is too small to be directly driven by general motors, it always needs special driving devices and suitable structure design. In this paper, two-finger micro-grippers are designed and fabricated, which utilize light-induced deformation smart material to make one of the two fingers. As the smart material is directly driven and controlled by remote lights instead of lines and motors, this light-driven mode simplifies the design of the two-finger micro-gripper and avoids special drivers and complex mechanical structure. In addition, a micro-manipulation experiment system is set up which is based on the light-driven micro-gripper. Experimental results show that this remotely light-driven micro-gripper has ability to manipulate and assemble micro-scale objects both in air and water. Furthermore, two micro-grippers can also work together for cooperation which can further enhance the assembly ability. On the other hand, this kind of remotely controllable micro-gripper that does not require on-board energy storage, can be used in mobile micro-robot as a manipulation hand.

  4. Ultraminiature Broadband Light Source and Method of Manufacturing Same

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Helvajian, Henry (Inventor); Pocha, Michael D. (Inventor); Meyer, Glenn A. (Inventor); McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Hansen, William W. (Inventor)

    2010-01-01

    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light ource is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.

  5. Environment for thin-film manufacturing process development for product engineering of micro and nano devices

    NASA Astrophysics Data System (ADS)

    Ortloff, Dirk; Hahn, Kai; Popp, Jens; Schmidt, Thilo; Brück, Rainer

    2009-08-01

    Product engineering of micro and nano technology (MNT) devices differs substantially from product engineering in more traditional industries. The general development approach is mostly bottom up, as it centers around the available fabrication techniques and is characterised by application specific fabrication flows, i.e. fabrication processes depending on the later product. In the first part of this paper we introduce a comprehensive customer-oriented product engineering methodology for MNT products that regards the customer as the driving force behind new product developments. The MNT product engineering process is analyzed with regard to application-specific procedures and interfaces. An environment for the development of MNT manufacturing processes has been identified as a technical foundation for the methodology and will be described in the second part of this paper.

  6. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures.

    PubMed

    Zhang, Chaoqun; Mcadams, Daniel A; Grunlan, Jaime C

    2016-08-01

    Through billions of years of evolution and natural selection, biological systems have developed strategies to achieve advantageous unification between structure and bulk properties. The discovery of these fascinating properties and phenomena has triggered increasing interest in identifying characteristics of biological materials, through modern characterization and modeling techniques. In an effort to produce better engineered materials, scientists and engineers have developed new methods and approaches to construct artificial advanced materials that resemble natural architecture and function. A brief review of typical naturally occurring materials is presented here, with a focus on chemical composition, nano-structure, and architecture. The critical mechanisms underlying their properties are summarized, with a particular emphasis on the role of material architecture. A review of recent progress on the nano/micro-manufacturing of bio-inspired hybrid materials is then presented in detail. In this case, the focus is on nacre and bone-inspired structural materials, petals and gecko foot-inspired adhesive films, lotus and mosquito eye inspired superhydrophobic materials, brittlestar and Morpho butterfly-inspired photonic structured coatings. Finally, some applications, current challenges and future directions with regard to manufacturing bio-inspired hybrid materials are provided.

  7. EDITORIAL: Extreme Ultraviolet Light Sources for Semiconductor Manufacturing

    NASA Astrophysics Data System (ADS)

    Attwood, David

    2004-12-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] provides industry expectations for high volume computer chip fabrication a decade into the future. It provides expectations to anticipated performance and requisite specifications. While the roadmap provides a collective projection of what international industry expects to produce, it does not specify the technology that will be employed. Indeed, there are generally several competing technologies for each two or three year step forward—known as `nodes'. Recent successful technologies have been based on KrF (248 nm), and now ArF (193 nm) lasers, combined with ultraviolet transmissive refractive optics, in what are known as step and scan exposure tools. Less fortunate technologies in the recent past have included soft x-ray proximity printing and, it appears, 157 nm wavelength F2 lasers. In combination with higher numerical aperture liquid emersion optics, 193 nm is expected to be used for the manufacture of leading edge chip performance for the coming five years. Beyond that, starting in about 2009, the technology to be employed is less clear. The leading candidate for the 2009 node is extreme ultraviolet (EUV) lithography, however this requires that several remaining challenges, including sufficient EUV source power, be overcome in a timely manner. This technology is based on multilayer coated reflective optics [2] and an EUV emitting plasma. Following Moore's Law [3] it is expected, for example, that at the 2009 `32 nm node' (printable patterns of 32 nm half-pitch), isolated lines with 18 nm width will be formed in resist (using threshold effects), and that these will be further narrowed to 13 nm in transfer to metalized electronic gates. These narrow features are expected to provide computer chips of 19 GHz clock frequency, with of the order of 1.5 billion transistors per chip [1]. This issue of Journal of Physics D: Applied Physics contains a cluster of eight papers addressing the critical

  8. PowerLight Corporation Lean Manufacturing, PV Manufacturing R&D Phase I Report: 6 December 2001--31 March 2003

    SciTech Connect

    Hargis, L; Botkin, J.

    2005-06-01

    PowerLight Corporation (PowerLight) has completed Phase I of its PV Manufacturing R&D subcontract, ''PowerGuard Lean Manufacturing,'' Subcontract No. NDO-1-30628-04. The overall technical goal of this project was to reduce the cost of PowerGuard manufacturing while simultaneously improving product quality. This will enable PowerLight to scale up production capacity as the market for PowerGuard continues to grow. Through the introduction of world-class lean manufacturing techniques, PowerLight was to cut out waste in the manufacturing process of PowerGuard. The manufacturing process was to be overhauled with an objective of removing as much as possible those steps that do not add value to the product. Quality of finished goods was also to be improved through the use of statistical process control and error-proofing in the manufacturing process. Factory operations were also to be addressed to streamline those factory activities that support the manufacturing process. This report de tails the progress made toward the above listed goals during the first phase of this subcontract.

  9. Micro-Structured Materials for Generation of Coherent Light and Optical Signal Processing

    DTIC Science & Technology

    2008-12-22

    within a laser linewidth of 1 GHz (matched to the doppler broadened bandwidth of the sodium layer) to provide enough return light to the wavefront...AND SUBTITLE Micro-Structured Materials for Generation of Coherent Light And Optical Signal Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...2008 3. TITLE OF PROPOSAL: Micro-Structured Matenals for Generation of Coherent Light And Optical Signal Processing 4. LIST OF MANUSCRIPTS

  10. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  11. Waste generation and utilisation in micro-sized furniture-manufacturing enterprises in Turkey.

    PubMed

    Top, Y

    2015-01-01

    The number of small-scale businesses within most national economies is generally high, especially in developing countries. Often these businesses have a weak economic status and limited environmental awareness. The type and amount of waste produced, and the recycling methods adopted by these businesses during their operation can have negative effects on the environment. This study investigated the types of waste generated and the recycling methods adopted in micro-sized enterprises engaged in the manufacture of furniture. An assessment was also made of whether the characteristics of the enterprise had any effect on the waste recycling methods that were practised. A survey was conducted of 31 enterprises in the furniture industry in Gumushane province, Turkey, which is considered a developing economy. Surveys were undertaken via face-to-face interviews. It was found that medium-density fibreboard (MDF), and to a lesser extent, chipboard, were used in the manufacture of furniture, and two major types of waste in the form of fine dust and small fragments of board are generated during the cutting of these boards. Of the resulting composite board waste, 96.9% was used for heating homes and workplaces, where it was burnt under conditions of incomplete combustion. Enterprises were found to have adopted other methods to utilise their wastes in addition to using them as fuel. Such enterprises include those operating from a basement or first floor of a building in the cities, those continuing production throughout the year, those in need for capital and those enterprises not operating a dust-collection system. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  13. Experimental Study of Red-, Green-, and Blue-Based Light Emitting Diodes Visible Light Communications for Micro-Projector Application

    NASA Astrophysics Data System (ADS)

    Chou, H.-H.; Liaw, S.-K.; Jiang, J.-S.; Teng, C.

    2016-05-01

    In this research, an experimental short-range visible light communication link using red-, green-, and blue-based light-emitting diodes (LEDs) for portable micro-projector applications is presented. A Reconfigurable design of a post-equalizer aimed to improve the inherent narrow modulation bandwidth of red-, green-, and blue-based LEDs has been experimentally implemented, and its effectiveness with optical filters at the receiver is investigated. Reflective liquid-crystal-on-silicon-based micro-projection architecture, widely used in portable micro-projectors, was set up to evaluate the proposed visible light communication system. The measurement results demonstrated that a significant aggregative bandwidth improvement of 162 MHz as well as an aggregative data transmission rate of nearly 400 Mb/s can be achieved by using a non-return-to-zero-on-off keying (NRZ-OOK) modulation scheme based on only one polarization state of incident light without any offline signal processing.

  14. Numerical investigation on thermal properties at Cu-Al interface in micro/nano manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Yang, Ping; Chen, Min; Liao, Ningbo

    2012-02-01

    A hybrid model by integrating TTM (two-temperature model) and MD (molecular dynamics) is proposed to investigate the properties on interface of dissimilar materials under thermal flux conditions. This model can describe the electron phonon coupling and phonon scattering at the interface of different metals easily. By comparing the Cu-Cu interface and Cu-Al interface, the atoms of the Cu-Cu interface at different sides tend to move together; while, the atoms displacements of Cu and Al are opposite along the interface, which may cause stress and voids at the interface. Moreover, the propagation mechanisms of nanocracks and the corresponding change of temperature distribution and thermal flux are investigated. The results show that the interfaces of dissimilar materials are prone to crack initiations, leading to delaminations because of the high temperature. All these are useful for understanding the deformation and failure of the interfaces structures. It implies a potential method for design and analysis of interface structure in micro/nano manufacturing.

  15. Replicative manufacturing of complex lighting optics by non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.

  16. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  17. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  18. Shedding new light on historical metal samples using micro-focused synchrotron X-ray fluorescence and spectroscopy

    NASA Astrophysics Data System (ADS)

    Grolimund, D.; Senn, M.; Trottmann, M.; Janousch, M.; Bonhoure, I.; Scheidegger, A. M.; Marcus, M.

    2004-10-01

    insights concerning the nature and origin of used raw materials as well as regarding employed processing techniques during historic iron fabrication and weapon manufacturing.The study demonstrates the potential of oxidation state and mineral phase mapping based on energy selective micro-XRF maps and spectroscopic phase identification. Such a spatially resolved recording of the chemical speciation is based on X-ray absorption spectroscopy. This analytical technique is exclusive to synchrotron light sources. However, the steadily increasing number of available synchrotron-based X-ray microprobes allows nowadays for more routine utilization of such micro-XAS techniques.

  19. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.

    PubMed

    Zarowna-Dabrowska, Alicja; Neale, Steven L; Massoubre, David; McKendry, Jonathan; Rae, Bruce R; Henderson, Robert K; Rose, Mervyn J; Yin, Huabing; Cooper, Jonathan M; Gu, Erdan; Dawson, Martin D

    2011-01-31

    A novel, miniaturized optoelectronic tweezers (OET) system has been developed using a CMOS-controlled GaN micro-pixelated light emitting diode (LED) array as an integrated micro-light source. The micro-LED array offers spatio-temporal and intensity control of the emission pattern, enabling the creation of reconfigurable virtual electrodes to achieve OET. In order to analyse the mechanism responsible for particle manipulation in this OET system, the average particle velocity, electrical field and forces applied to the particles were characterized and simulated. The capability of this miniaturized OET system for manipulating and trapping multiple particles including polystyrene beads and live cells has been successfully demonstrated.

  20. Anisotropic micro-cloths fabricated from DNA-stabilized carbon nanotubes: one-stop manufacturing with electrode needles.

    PubMed

    Frusawa, Hiroshi; Yoshii, Gen

    2015-01-01

    Among a variety of solution-based approaches to fabricate anisotropic films of aligned carbon nanotubes (CNTs), we focus on the dielectrophoretic assembly method using AC electric fields in DNA-stabilized CNT suspensions. We demonstrate that a one-stop manufacturing system using electrode needles can draw anisotropic DNA-CNT hybrid films of 10 to 100 µm in size (i.e., free-standing DNA-CNT micro-cloths) from the remaining suspension into the atmosphere while maintaining structural order. It has been found that a maximal degree of polarization (ca. 40%) can be achieved by micro-cloths fabricated from a variety of DNA-CNT mixtures. Our results suggest that the one-stop method can impart biocompatibility to the downsized CNT films and that the DNA-stabilized CNT micro-cloths directly connected to an electrode could be useful for biofuel cells in terms of electron transfer and/or enzymatic activity.

  1. Anisotropic micro-cloths fabricated from DNA-stabilized carbon nanotubes: one-stop manufacturing with electrode needles

    NASA Astrophysics Data System (ADS)

    Frusawa, Hiroshi; Yoshii, Gen

    2015-03-01

    Among a variety of solution-based approaches to fabricate anisotropic films of aligned carbon nanotubes (CNTs), we focus on the dielectrophoretic assembly method using AC electric fields in DNA-stabilized CNT suspensions. We demonstrate that a one-stop manufacturing system using electrode needles can draw anisotropic DNA-CNT hybrid films of 10 to 100 µm in size (i.e., free-standing DNA-CNT micro-cloths) from the remaining suspension into the atmosphere while maintaining structural order. It has been found that a maximal degree of polarization (ca. 40%) can be achieved by micro-cloths fabricated from a variety of DNA-CNT mixtures. Our results suggest that the one-stop method can impart biocompatibility to the downsized CNT films and that the DNA-stabilized CNT micro-cloths directly connected to an electrode could be useful for biofuel cells in terms of electron transfer and/or enzymatic activity.

  2. Employees' perception of lighting conditions in manufacturing plants: associations with illuminance measurements.

    PubMed

    Vahedi, Abdollah; Dianat, Iman

    2014-01-01

    The aims of this study were to evaluate the employees' subjective assessments of different aspects of lighting condition as well as task area illuminance in manufacturing plants. This field study was conducted between March and May 2013, in three packing plants (Saveh, central Iran). Data were collected by questionnaire and measurement of the task area illuminance levels. Data were analysed using contingency coefficient test, Spearman's correlation analysis and non-parametric Friedman tests. The recommended illuminance levels were not met in 46.9% of the work areas. This finding was in agreement with the employees' perception of light level, and with low satisfaction with lighting in the work environment. Adverse effects of lighting condition on job performance, changing posture for better viewing of the work area and eye tiredness were reported as 64%, 33% and 31% of the employees, respectively. Satisfaction with lighting was negatively correlated with the age of respondents (r=-0.229; P<0.010). The employees' satisfaction with lighting was also highly correlated with the employees' subjective assessments of the light level (r=0.779; P<0.001), type of artificial light sources (r=0.591; P<0.001), light colour (r=0.50; P<0.001) and use of daylight (r=0.254; P<0.004). The type of artificial light sources was correlated with job performance (r=0.311, P<0.001) and eye tiredness (r=0.273; P<0.002). The findings highlight the potential usefulness of subjective assessments to supplement objective measures and provide a more holistic approach to lighting design and planning.

  3. X-ray micro-Tomography at the Advanced Light Source

    USDA-ARS?s Scientific Manuscript database

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  4. Nano-sized light mill drives micro-sized disk

    SciTech Connect

    2010-01-01

    Filmed through water, a silica microdisk embedded with a gold, gammadion-shaped light mill nanomotor rotates in one direction under illumination from laser light at 810 nanometers wavelength. When the wavelength is switched to 1,715 nanometers, the rotational direction is reversed. Torque is produced when the laser light frequencies resonate with the frequencie of the metal's plasmons. (Movie courtesy of Zhang group)

  5. Light extraction and customized optical distribution from plastic micro-optics integrated OLEDs

    NASA Astrophysics Data System (ADS)

    Melpignano, P.; Rotaris, G.; Biondo, V.; Sinesi, S.; Westenhöfer, S.; Gale, M. T.; Murgia, M.; Caria, S.; Zamboni, R.

    2006-04-01

    An OLED device suitable for automobile ceiling lights has been designed, fabricated and evaluated. The OLED structure is fabricated on a thin (120 µm), flexible polymer foil with integrated micro-optics to achieve customized beam shaping in the far field. A pixelated OLED structure matched to a patch-pad microlens matrix was used to convert the OLED Lambertian emission into a Gaussian-shaped illumination beam. Both refractive and diffractive microlenses were investigated. The integrated micro-optics OLED architecture reduces light losses due to waveguiding effects and effectively increases the light extraction by up to 70%.

  6. High light extraction efficiency LEDs with asymmetric obtuse angle micro-structured roofs

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Jiang; Chao, Ju-Hung; Zhu, Wenbin; Yin, Stuart

    2016-09-01

    This study reports a high light extraction efficiency (LEE) light emitting diode (LED) by harnessing asymmetric obtuse angle micro-structured roofs. In comparison to conventional symmetric micro-structured roofs, the LEE has been improved from 62% to 73%. This represents an 11% improvement in LEE, which is significant for LED. It is speculated that this improvement is largely due to the increased surface area and better randomization on the direction of transmitted/reflected light, which enhances the escaping probability after multiple reflections.

  7. Light controlled drug delivery containers based on spiropyran doped liquid crystal micro spheres

    PubMed Central

    Petriashvili, Gia; Devadze, Lali; Zurabishvili, Tsisana; Sepashvili, Nino; Chubinidze, Ketevan

    2016-01-01

    We have developed a novel, light activated drug delivery containers, based on spiropyran doped liquid crystal micro spheres. Upon exposure to UV/violet light, the spiropyran molecules entrapped inside the nematic liquid crystal micro spheres, interconvert from the hydrophobic, oil soluble form, to the hydrophilic, water soluble merocyanine one, which stimulates the translocation of the merocyanine molecules across the nematic liquid crystal-water barrier and results their homogeneous distribution throughout in an aqueous environment. Light controllable switching property and extremely high solubility of spiropyran in the nematic liquid crystal, promise to elaborate a novel and reliable vehicles for the drug delivery systems. PMID:26977353

  8. Mathieu beams as versatile light moulds for 3D micro particle assemblies.

    PubMed

    Alpmann, C; Bowman, R; Woerdemann, M; Padgett, M; Denz, C

    2010-12-06

    We present tailoring of three dimensional light fields which act as light moulds for elaborate particle micro structures of variable shapes. Stereo microscopy is used for visualization of the 3D particle assemblies. The powerful method is demonstrated for the class of propagation invariant beams, where we introduce the use of Mathieu beams as light moulds with non-rotationally-symmetric structure. They offer multifarious field distributions and facilitate the creation of versatile particle structures. This general technique may find its application in micro fluidics, chemistry, biology, and medicine, to create highly efficient mixing tools, for hierarchical supramolecular organization or in 3D tissue engineering.

  9. Surface Roughness Measurement of Parts Manufactured by FDM Process using Light Sectioning Vision System

    NASA Astrophysics Data System (ADS)

    Kelkar, A. S.; Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    Fused Deposition Modeling (FDM) is a process of developing prototypes by depositing layers of material according to predetermined cross sectional geometry. Quality of the produced part is highly dependent on surface finish. This work describes a methodology to calculate the surface roughness of part manufactured using FDM process. The surface roughness values are measured using conventional stylus instrument and light sectioning vision system. In conventional stylus instrument method, diamond tipped stylus destroys the surface topography. Light sectioning method is non-contact method hence it overcomes this problem. In light sectioning method microscope and light source are arranged in such a manner, as both are inclined at an angle of 45° to the normal plane. The light section is projected on surface of profile at an incident angle of 45°. The reflected light can be observed using microscope. The camera is connected with microscope to capture the micrograph. These images are analyzed and processed using various image processing techniques. Experimental results are validated by comparing final results with conventional system.

  10. Micro/nano-hybrid lens for enhancing light extraction using micro-milling and anodic aluminium oxide (AAO)

    NASA Astrophysics Data System (ADS)

    Kim, Shin Hyeong; Kim, Min Gu; Kang, Jeong Jin; Lee, Pyeong An; Kim, Bo Hyun; Cho, Young Hak

    2016-01-01

    In the recent past there has been much research towards increasing the transmission of light in optical systems by reducing the Fresnel reflection of radiation, as the reflection of light from surfaces seriously decreases the performance of an optical device. These drawbacks have been overcome by mainly two methods, which are anti-reflective coating and anti-reflective nanostructure formation. In this study, we developed a simple fabrication process for Al micro/nano hybrid lens (MNHL) moulds for efficient light extraction using micro-milling and anodic aluminum oxide (AAO). From these moulds, two different types of polymer MNHL were fabricated using hot-embossing; one was a polymer MNHL that was covered with nanostructures over the entire surface, and the other was one for which only the microlens surface was covered with nanostructures. Two different types of polymer MNHLs were evaluated and compared with each other concerning the light extraction performance. The MNHL with nanostructures only on the microlens surface exhibited a higher light extraction performance than the other by 20.7%. It is expected that the fabricated MNHL can be used for the amplification of small signals when observing the presence of bio-molecules dyed with a fluorescent material.

  11. Study on micro-bend light transmission performance of novel liquid-core optical fiber

    NASA Astrophysics Data System (ADS)

    Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng

    2007-01-01

    With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.

  12. Diode-based additive manufacturing of metals using an optically-addressable light valve

    DOE PAGES

    Matthews, Manyalibo J.; Guss, Gabe; Drachenberg, Derrek R.; ...

    2017-05-10

    We present that Selective Laser Melting (SLM) of metal powder bed layers, whereby 3D metal objects can be printed from a digital file with unprecedented design flexibility, is spurring manufacturing innovations in medical, automotive, aerospace and textile industries. Because SLM is based on raster-scanning a laser beam over each layer, the process is relatively slow compared to most traditional manufacturing methods (hours to days), thus limiting wider spread use. Here we demonstrate the use of a large area, photolithographic method for 3D metal printing, using an optically-addressable light valve (OALV) as the photomask, to print entire layers of metal powdermore » at once. An optical sheet of multiplexed ~5 kW, 20 ms laser diode and ~1 MW, 7 ns Q-switched laser pulses are used to selectively melt each layer. Finally, the patterning of near infrared light is accomplished by imaging 470 nm light onto the transmissive OALV, which consists of polarization-selective nematic liquid crystal sandwiched between a photoconductor and transparent conductor for switching.« less

  13. Diode-based additive manufacturing of metals using an optically-addressable light valve.

    PubMed

    Matthews, Manyalibo J; Guss, Gabe; Drachenberg, Derrek R; Demuth, James A; Heebner, John E; Duoss, Eric B; Kuntz, Joshua D; Spadaccini, Christopher M

    2017-05-15

    Selective Laser Melting (SLM) of metal powder bed layers, whereby 3D metal objects can be printed from a digital file with unprecedented design flexibility, is spurring manufacturing innovations in medical, automotive, aerospace and textile industries. Because SLM is based on raster-scanning a laser beam over each layer, the process is relatively slow compared to most traditional manufacturing methods (hours to days), thus limiting wider spread use. Here we demonstrate the use of a large area, photolithographic method for 3D metal printing, using an optically-addressable light valve (OALV) as the photomask, to print entire layers of metal powder at once. An optical sheet of multiplexed ~5 kW, 20 ms laser diode and ~1 MW, 7 ns Q-switched laser pulses are used to selectively melt each layer. The patterning of near infrared light is accomplished by imaging 470 nm light onto the transmissive OALV, which consists of polarization-selective nematic liquid crystal sandwiched between a photoconductor and transparent conductor for switching.

  14. Micro-manufacturing of micro-scale porous surface structures for enhanced heat transfer applications: an experimental process optimization study

    NASA Astrophysics Data System (ADS)

    Cora, Ömer N.; Usta, Yusuf; Koç, Muammer

    2009-04-01

    Integrated and compact products necessitate the use of advanced thermal management systems with reduced footprint and cost as well as increased efficiency. Micro-scale, porous and modulated (i.e. channels, pyramids, etc) surfaces offer increased surface area for a given volume and lead to two-phase heat transfer conditions with efficiency enhancements up to 300%. Such surfaces made of copper powders were demonstrated to be quite effective by several researchers after they were produced in controlled lab environments. Similar surfaces made of high temperature resistant materials such as stainless steel, nickel and titanium can also be used in fuel processor, SOFC and PEM fuel cell applications as bipolar/interconnect plates. However, their fabrication under mass-production conditions for marketable and cost-effective products requires well-established process parameters. In this study, warm compaction of copper powders onto thin copper solid substrates was experimented with under different compaction pressure (15-50 MPa), temperature (350-500 °C) and surface geometry (flat, large and small channeled) parameters using a design of experiment (DOE) approach to determine the proper process conditions. Porosity and bonding strength of compacted samples were measured to characterize their feasibility for compact and/or micro-scale heat/mass transfer applications. Results showed that a minimum 350 °C temperature and 15 MPa pressure level is necessary to obtain sound porous and micro-channeled surface layers. It was also found that at higher pressure levels (50 MPa), fabrication of micro-scale surface structures is highly repeatable with enhanced bonding strength characteristics. DOE findings will be used to establish proper process conditions to produce such porous surfaces using a continuous roll compaction process in the future.

  15. Comparative efficiency of plasma and halogen light sources on composite micro-hardness in different curing conditions.

    PubMed

    Dietschi, D; Marret, N; Krejci, I

    2003-09-01

    Recent developments have led to the introduction of high power curing lights, which are claimed to greatly reduce the total curing time. This study evaluated the effectiveness of a plasma-curing device (Apollo 95 E) and a halogen device (Heliolux DLX), in different curing conditions. Vicker's micro-hardness values were performed on 1 and 2 mm thick composite discs cured in a natural tooth mold by direct irradiation or indirect irradiation through composite material (2 or 4 mm) and dental tissues (1 mm enamel or 2 mm enamel-dentin). Measures were, respectively, performed after a 1, 3, 6 s (SC, step curing mode) or 18 s (3xSC) exposure to the plasma light, and a 5, 10, 20 or 40 s exposure to the halogen light. With the PAC light used, a 3 s irradiation in the direct curing condition was necessary to reach hardness values similar to those obtained after a 40 s exposure to the halogen light. Using the indirect curing condition, hardness values reached after an 18 s exposure (3xSC mode) with the plasma light were either equivalent or inferior to those obtained with 40 s halogen irradiation. Direct polymerization with the plasma light used requires longer exposure times than those initially proposed by the manufacturer. The effectiveness of plasma generated light was lowered by composite or natural tissues, and therefore requires an important increase in the irradiation time when applied to indirect polymerization. The practical advantage of this polymerization method is less than expected, when compared to traditional halogen curing.

  16. Cyanobacteria use micro-optics to sense light direction

    PubMed Central

    Schuergers, Nils; Lenn, Tchern; Kampmann, Ronald; Meissner, Markus V; Esteves, Tiago; Temerinac-Ott, Maja; Korvink, Jan G; Lowe, Alan R; Mullineaux, Conrad W; Wilde, Annegret

    2016-01-01

    Bacterial phototaxis was first recognized over a century ago, but the method by which such small cells can sense the direction of illumination has remained puzzling. The unicellular cyanobacterium Synechocystis sp. PCC 6803 moves with Type IV pili and measures light intensity and color with a range of photoreceptors. Here, we show that individual Synechocystis cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We show that directional light sensing is possible because Synechocystis cells act as spherical microlenses, allowing the cell to see a light source and move towards it. A high-resolution image of the light source is focused on the edge of the cell opposite to the source, triggering movement away from the focused spot. Spherical cyanobacteria are probably the world’s smallest and oldest example of a camera eye. DOI: http://dx.doi.org/10.7554/eLife.12620.001 PMID:26858197

  17. Raman micro-spectroscopy as a non-destructive key analysis tool in current power semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Kraft, M.; Geier, E.; Goller, B.; Bergmann, Ch.; Esteve, R.; Cerezuela-Barreto, M.; Lewke, D.; Schellenberger, M.; Roesner, M.

    2017-05-01

    There is a strong commercial incentive for characterizing power semiconductor devices during manufacture non-destructively. One area of concern are the stresses in the material introduced during manufacture by processes such as wafer thinning and chip separation. Raman spectroscopy can be used to measure stress in different semiconductor materials directly, non-destructively and quantitatively. Here, we describe Raman measurements on two semiconductor materials: silicon and silicon carbide. Measurements of silicon carbide are made on silicon carbide wafers; stress and material analyses of silicon are performed on: (i.) silicon wafers that had undergone different wafer thinning methods and (ii) along die sidewalls formed by mechanical and laser dicing. Our measurements demonstrate that micro-Raman spectroscopy is a feasible method for both measuring stress in thin wafers and for optimizing the thin wafer processes.

  18. Micro- to Macroroughness of Additively Manufactured Titanium Implants in Terms of Coagulation and Contact Activation.

    PubMed

    Klingvall Ek, Rebecca; Hong, Jaan; Thor, Andreas; Bäckström, Mikael; Rännar, Lars-Erik

    This study aimed to evaluate how as-built electron beam melting (EBM) surface properties affect the onset of blood coagulation. The properties of EBM-manufactured implant surfaces for placement have, until now, remained largely unexplored in literature. Implants with conventional designs and custom-made implants have been manufactured using EBM technology and later placed into the human body. Many of the conventional implants used today, such as dental implants, display modified surfaces to optimize bone ingrowth, whereas custom-made implants, by and large, have machined surfaces. However, titanium in itself demonstrates good material properties for the purpose of bone ingrowth. Specimens manufactured using EBM were selected according to their surface roughness and process parameters. EBM-produced specimens, conventional machined titanium surfaces, as well as PVC surfaces for control were evaluated using the slide chamber model. A significant increase in activation was found, in all factors evaluated, between the machined samples and EBM-manufactured samples. The results show that EBM-manufactured implants with as-built surfaces augment the thrombogenic properties. EBM that uses Ti6Al4V powder appears to be a good manufacturing solution for load-bearing implants with bone anchorage. The as-built surfaces can be used "as is" for direct bone contact, although any surface treatment available for conventional implants can be performed on EBM-manufactured implants with a conventional design.

  19. High angular accuracy manufacture method of micro v-grooves based on tool alignment by on-machine measurement.

    PubMed

    Zhang, Xiaodong; Jiang, Lili; Zeng, Zhen; Fang, Fengzhou; Liu, Xianlei

    2015-10-19

    Micro v-groove has found wide applications in optical areas as one of the most important structures. However, its performance is significantly affected by its angular geometry accuracy. The diamond cutting has been commonly used as the fabrication method of micro v-groove, but it is still difficult to guarantee the cutting tool angle, which is limited by the measurement accuracy in the manufacture and mounting of the diamond tool. A cutting tool alignment method based on the on-machine measurement is proposed to improve the fabricated quality of the v-groove angle. An on-machine probe is employed to scan the v-groove geometrical deviation precisely. The system errors model, data processing algorithm and tool alignment methods are analyzed in details. Experimental results show that the measurement standard deviation within 0.01° can be achieved. Retro-reflection mirrors are fabricated and measured finally by the proposed method for verification.

  20. Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2012-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.

  1. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2013-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substrate particles to the at least one first conductor; converting the plurality of substrate particles into a plurality of diodes; forming at least one second conductor coupled to the plurality of spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer, with the lenses and the suspending polymer having different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.

  2. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark D. (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2013-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substantially spherical substrate particles to the at least one first conductor; converting the substrate particles into a plurality of substantially spherical diodes; forming at least one second conductor coupled to the substantially spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.

  3. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark David (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2014-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.

  4. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Ray, William Johnstone (Inventor); Lowenthal, Mark David (Inventor); Shotton, Neil O. (Inventor); Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor)

    2014-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.

  5. Micro-electromechanical spatial light modulators with integrated electronics

    NASA Astrophysics Data System (ADS)

    Cornelissen, Steven; Bifano, Thomas G.; Bierden, Paul A.

    2002-02-01

    This paper describes design and development of a microelectromechanical, micromachined spatial light modulator ((mu) SLM) integrated with complementary metal- oxide semiconductor (CMOS) electronics, for control of optical phase in phase-only optical correlators. The (mu) SLM will consist of a large array of piston-motion MEMS mirror segments (pixels) each of which capable of altering the phase of reflected light by up to one wavelength for infrared (1.5 micrometers ) illumination. Results of a proof-of- concept study are presented along with an electromechanical model and details of the fabrication process for the (mu) SLM.

  6. UV light photo-Fenton degradation of polyphenols in oolong tea manufacturing wastewater.

    PubMed

    Sabaikai, Waraluk; Sekine, Makoto; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The UV light photo-Fenton degradation of oolong tea polyphenols in tea manufacturing effluent that color the wastewater to a dark brown has been examined. In order to elucidate the photo-Fenton degradation mechanism of oolong tea polyphenols and find the optimal dosages of the Fenton reagents, systematic study has been conducted. For the UV light photo-Fenton degradation of oolong tea effluent being 70 mg-(polyphenol) L(-1), the optimum dosages of Fenton reagents were found to be 20 mgL(-1) of total Fe and 500 mgL(-1) of H2O2. The polyphenol degradation could be divided into two stages. The polyphenols concentration rapidly decreased to around 30% of the initial concentration within 2 min and the degradation rate significantly slowed down in the subsequent stage. After 60 min of UV light irradiation, 97% polyphenol removal was obtained. The initial quick degradation of oolong tea polyphenols suggests that hydroxyl radical generated by the photo-Fenton process might preferentially attack polyphenols having high antioxidant activity by scavenging hydroxyl radicals. Almost complete decolorization of the oolong tea effluent was achieved after 80 min. About 96% mineralization of 63 mgL(-1) TOC loading was achieved within 60 min and then further mineralization was rather slow. The complete COD removal of 239 mgL(-1) COD loading was obtained after 100 min. The present results indicate that the UV light photo-Fenton degradation process can treat tea manufacturing wastewaters very effectively.

  7. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    PubMed

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

  8. Mask-less ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes.

    PubMed

    Elfström, D; Guilhabert, B; McKendry, J; Poland, S; Gong, Z; Massoubre, D; Richardson, E; Rae, B R; Valentine, G; Blanco-Gomez, G; Gu, E; Cooper, J M; Henderson, R K; Dawson, M D

    2009-12-21

    We report on an approach to ultraviolet (UV) photolithography and direct writing where both the exposure pattern and dose are determined by a complementary metal oxide semiconductor (CMOS) controlled micro-pixellated light emitting diode array. The 370 nm UV light from a demonstrator 8 x 8 gallium nitride micro-pixel LED is projected onto photoresist covered substrates using two back-to-back microscope objectives, allowing controlled demagnification. In the present setup, the system is capable of delivering up to 8.8 W/cm2 per imaged pixel in circular spots of diameter approximately 8 microm. We show example structures written in positive as well as in negative photoresist.

  9. Multiscale Micro-Nano Nested Structures: Engineered Surface Morphology for Efficient Light Escaping in Organic Light-Emitting Diodes.

    PubMed

    Zhou, Lei; Dong, Xiaoxuan; Zhou, Yun; Su, Wenming; Chen, Xiaolian; Zhu, Yufu; Shen, Su

    2015-12-09

    Various micro-to-nanometer scale structures are extremely attractive for light escaping in organic light-emitting diodes. To develop and optimize such structures, an innovative approach was demonstrated for the first time to fabricate multiscale micro-nano nested structures by photolithography with a well-designed mask pattern followed by a controllable thermal reflow process. The experimental and theoretical characterizations verify that these unique nested structures hold the capability of light concentration, noticeable low haze, and efficient antireflection. As a proof-of-concept, the incorporation of this pattern onto the glass substrate efficiently facilitates light escaping from the device, resulting in current efficiency 1.60 times and external quantum efficiency 1.63 times that of a control flat device, respectively. Moreover, compared to a hexagonally arranged microlens array and quasi-random biomimetic moth eye nanostructures, the nested structures proposed here can magically tune the spatial emission profile to comply with the Lambertian radiation pattern. Hence, this novel structure is expected to be of great potential in related ubiquitous optoelectronic applications and provide scientific inspiration to other novel multiscale micro-nanostructure research.

  10. Light reflection control in biogenic micro-mirror by diamagnetic orientation.

    PubMed

    Iwasaka, Masakazu; Mizukawa, Yuri

    2013-04-02

    As has become known, most materials, such as proteins and DNA, show orientation under strong magnetic fields. However, the critical threshold for the magnetic field of the magnetomechanical phenomena is still unknown. We demonstrate that a thin micro-mirror from a fish scale with high reflectivity exhibits a distinct magnetic response at 100 mT. A dramatic event under a magnetic field is the decrease of light scattering from guanine crystals as well as rapid rotation against the applied magnetic field. Enhancement of light scattering intensity is also observed when the three vectors of light incidence, magnetic field, and observation are orthogonally directed. The results indicate that biogenic guanine crystals have a large diamagnetic anisotropy along the surface parallel and normal directions. The micrometer to submicrometer scale of thin biogenic plates can act as a noninvasively, magnetically controlled micro-mirror for light irradiation control in the micrometer-scale region.

  11. DLP-based light engines for additive manufacturing of ceramic parts

    NASA Astrophysics Data System (ADS)

    Hatzenbichler, M.; Geppert, M.; Gruber, S.; Ipp, E.; Almedal, R.; Stampfl, J.

    2012-03-01

    In the framework of the European research project PHOCAM (http://www.phocam.eu) the involved partners are developing systems and materials for lithography-based additive manufacturing technologies (AMT) which are used for shaping advanced ceramic materials. In this approach a ceramic-filled photosensitive resin is selectively exposed layer by layer. By stacking up the individual layers with a typical layer thickness between 25 and 50μm, a three-dimensional part is built up. After structuring, a solid part consisting of a ceramic filled polymer is obtained. The polymer is afterwards burnt off and in a last step the part is sintered to obtain a fully dense ceramic part. The developed systems are based on selective exposure with DLP projection (Digital Light Processing). A key element of the developed systems is a light engine which uses digital mirror devices (DMD) in combination light emitting diodes (460nm) as light source. In the current setup DMDs with 1920x1080 pixels are used. The use of LEDs in combination with a customized optical projection system ensures a spatial and temporal homogeneity of the intensity at the build platform which is significantly better than with traditionally used light engines. The system has a resolution of 40μm and a build size of 79x43x100mm. It could be shown that this system can fabricate dense ceramic parts with excellent strength. In the case of alumina densities up to 99.6% of the theoretical density were achieved, yielding a biaxial strength of 510MPa. Besides technical ceramics like alumina it is also possible to structure bioceramics, e.g. tricalcium phosphate.

  12. Toxicity assessment of effluent from flash light manufacturing industry by bioassay tests in Trigonella foenumgracum.

    PubMed

    Kumari, Narendra; Kumar, Sanjeev; Bauddh, Kuldeep; Dwivedi, Neetu; Singh, D P; Barman, S C

    2014-11-01

    A rapid bioassay test was conducted to study heavy metal accumulation and biochemical changes in Trigonella foenumgracum (methi) irrigated with 25, 50, 75 and 100% of effluent from flash light manufacturing industry at 60 days after sowing. Total metal concentration in effluent samples was: Cr = 0.12 < Cd = 0.18 < Pb = 0.24 < Cu = 2.68 mg l(-1) whereas, metals were not detected in control. An increase in photosynthetic pigments of exposed plant was noticed up to 50% concentrations of the effluent followed by a decrease at higher concentration as compared to their respective control.An enhanced lipid peroxidation in the treated plants was observed, which was evident by increased level of antioxidants: proline, cysteine, malondialdehyde and ascorbic acid content. The treated plants accumulated metals in the following order: Cu > Pb > Cr > Cd in the roots and shoots.

  13. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    SciTech Connect

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the “remote phosphor” platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  14. Manipulation of Micro Scale Particles in Optical Traps Using Programmable Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Seibel, Robin E.; Decker, Arthur J. (Technical Monitor)

    2003-01-01

    1064 nm light, from an Nd:YAG laser, was polarized and incident upon a programmable parallel aligned liquid crystal spatial light modulator (PAL-SLM), where it was phase modulated according to the program controlling the PAL-SLM. Light reflected from the PAL-SLM was injected into a microscope and focused. At the focus, multiple optical traps were formed in which 9.975 m spheres were captured. The traps and the spheres were moved by changing the program of the PAL-SLM. The motion of ordered groups of micro particles was clearly demonstrated.

  15. Light-Driven Reversible Shaping of Individual Azopolymeric Micro-Pillars

    PubMed Central

    Pirani, Federica; Angelini, Angelo; Frascella, Francesca; Rizzo, Riccardo; Ricciardi, Serena; Descrovi, Emiliano

    2016-01-01

    Azopolymers are known to exhibit a strong light responsivity known as athermal photofluidization. Although the underlying physics is still under debate, athermal photofluidization has been demonstrated to trigger mass-migration according to the polarization of a proper illumination light. Here, a polymer blend is proposed wherein a commercial azo-polyelectrolyte is mixed with a passive polymer. The blend is patterned as an array of micro-pillars that are individually exposed to visible laser illumination. Thanks to the interplay between the two blend components, a reversible and controlled deformation of the micro-pillars by periodically tuning the laser polarization in time is demonstrated. A reduced mobility of the azo-compound allows to repeatibly elongate and rotate micro-pillars along specific directions, with no significant material flow outisde the initial volume and no significant degradation of the structure morphology over several cycles. The proposed work suggests new degrees of freedom in controlling the mechanical features of micro-patterned light-responsive materials that can be usefully exploited in many application fields. PMID:27531219

  16. Light-Driven Reversible Shaping of Individual Azopolymeric Micro-Pillars.

    PubMed

    Pirani, Federica; Angelini, Angelo; Frascella, Francesca; Rizzo, Riccardo; Ricciardi, Serena; Descrovi, Emiliano

    2016-08-17

    Azopolymers are known to exhibit a strong light responsivity known as athermal photofluidization. Although the underlying physics is still under debate, athermal photofluidization has been demonstrated to trigger mass-migration according to the polarization of a proper illumination light. Here, a polymer blend is proposed wherein a commercial azo-polyelectrolyte is mixed with a passive polymer. The blend is patterned as an array of micro-pillars that are individually exposed to visible laser illumination. Thanks to the interplay between the two blend components, a reversible and controlled deformation of the micro-pillars by periodically tuning the laser polarization in time is demonstrated. A reduced mobility of the azo-compound allows to repeatibly elongate and rotate micro-pillars along specific directions, with no significant material flow outisde the initial volume and no significant degradation of the structure morphology over several cycles. The proposed work suggests new degrees of freedom in controlling the mechanical features of micro-patterned light-responsive materials that can be usefully exploited in many application fields.

  17. Ionogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds.

    PubMed

    Benito-Lopez, Fernando; Byrne, Robert; Răduţă, Ana Maria; Vrana, Nihal Engin; McGuinness, Garrett; Diamond, Dermot

    2010-01-21

    We present the fabrication, characterisation and performance of four novel ionic liquid polymer gels (ionogels) as photo-actuated valves incorporated into micro-fluidic manifolds. The ionogels incorporate benzospiropyran units and phosphonium-based ionic liquids. Each ionogel is photo-polymerised in situ in the channels of a poly(methyl methacrylate) micro-fluidic device, generating a manifold incorporating four different micro-valves. The valves are actuated by simply applying localised white light irradiation, meaning that no physical contact between the actuation impulse (light) and the valve structure is required. Through variation of the composition of the ionogels, each of the micro-valves can be tuned to open at different times under similar illumination conditions. Therefore, flows through the manifold can be independently controlled by a single light source. At present, the contraction process to open the channel is relatively rapid (seconds) while the recovery (expansion) process to re-close the channel is relatively slow (minutes), meaning that the valve, in its current form, is better suited for single-actuation events.

  18. Structural design and manufacture of high packing density micro-thermoelectric power generators using thermoelectric films

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Jin, Yi-Teng; Zhu, Yan-Bing; Liao, Xia; Xu, Han; Li, Huan; Gao, Jian-Ping

    2011-05-01

    A new micro-thermoelectric power generator module with high packing density of film thermoelectric legs has been proposed, in which a large number of p-type and n-type thin-film thermoelectric legs are electrically connected in series. A theoretical model has been established to simulate the output voltage and power of the proposed module, and the results shows that much higher output voltage and output power can be obtained simply by integrating more film thermoelectric components. Based on the proposed module, a micro-thermoelectric power generator containing 160 film thermocouples is fabricated with a size of 25mm (length) × 4mm (width) × 1mm (thickness). Its open-circuit voltage, maximum output power and corresponding power density at a temperature difference of 20K are 630mV, 35.73μW and 357.3μW·cm-3, respectively.

  19. Heat transport in polymer thin films for micro/nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Hung, Ming-Tsung

    The rapid growth in micro/nanotechnology has opened a great opportunity for polymer thin films and polymer nanocomposites. Thermal management or thermal effects in those applications need to be carefully examined. For example, the local heating in electron-beam lithography, emersion lithography, and scanning near field optical lithography may cause the degradation of photoresists and reduce the resolution. The development of many organic electronics, polymer micro-electro-mechanical-systems (MEMS) devices, and polymer nanocomposites may require the knowledge of heat transport in micro/nano-sized polymers. Thermolithography, a novel lithography, uses controlled localized heating to transfer patterns and requires the thermal conductivity data to control. It is of considerable scientific and technological interests for study heat transport in polymer thin films. Unlike bulk polymers that can be measured using commercially available instruments, polymer thin films are difficult to measure. In this manuscript, we develop the measurement techniques suitable for measuring thermal conductivity of polymer thin films and polymer nanocomposites. Using a microfabricated membrane-based device, we study the heat conduction in photoresists at difference process stages. This data is used in our thermolithography study, where we use microheater to study the kinetic of crosslinking reaction of photoresist. The feasibility of thermolithography and potential three dimensional micro/nano-fabrication is presented. The uniqueness of thermolithography is also demonstrated by patterning amorphous fluoropolymers. A modified hot-wire technique is used to measure the thermal conductivity of graphite nanoplatelet (GNP) reinforced nanocomposites, one of the promising candidates for multifunctional materials. Thermal interface resistance in GNP nanocomposites is investigated, which shows a strong effect on energy transport in the nanocomposites and can be diminished through surface treatment.

  20. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds.

    PubMed

    Dean, David; Jonathan, Wallace; Siblani, Ali; Wang, Martha O; Kim, Kyobum; Mikos, Antonios G; Fisher, John P

    2012-03-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP(®) (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory(®). To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO(2)) as a dye, Irgacure(®) 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity.

  1. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds

    PubMed Central

    Dean, David; Wallace, Jonathan; Siblani, Ali; Wang, Martha O.; Kim, Kyobum; Mikos, Antonios G.; Fisher, John P.

    2012-01-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP® (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory®. To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO2) as a dye, Irgacure® 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity. PMID:23066427

  2. Sensing nanometric displacement of a micro-/nano-fiber induced by optical forces by use of white light interferometry

    NASA Astrophysics Data System (ADS)

    Qiu, Weiqia; Huang, Hankai; Yu, Jianhui; Dong, Huazhuo; Chen, Zhe; Lu, Huihui

    2015-07-01

    Sensing the nanometric displacement of a micro-/nano-fiber induced by optical forces is a key technology to study optical forces and optical momentum. When the gap between a micro-/nano-fiber and glass substrate becomes down to micrometer scale or less, a white light interference was observed. The gap changes when optical force arising from the propagating pump light along the micro-/nano-fiber causes a transversal nanometric displacement of a micro-/nanofiber, resulting in movement of the interferometric fringes. Therefore this movement of the interferometric fringes can be used to sense the nanometric displacement of the micro-/nano-fiber induced by optical forces. Experimental results show that the resolutions of this method can reach 7.27nm/pixel for tilted angle 0.8o between the micro-/nano-fiber and substrate. It is concluded that the white light interferometry method is suitable for measuring the weak optical force.

  3. micro-Hotplate enhanced optical heating by infrared light for single cell treatment.

    PubMed

    Reinhardt, Helke; Dittrich, Petra Stephanie; Manz, Andreas; Franzke, Joachim

    2007-11-01

    In this study we present a simple approach for fast and localised heating that relies on the strong absorbance of infrared light by microsized patterned surfaces ("micro-hotplates"). Two different materials, micro-arrays of carbon and gold, were tested with respect to their absorbance of the 830 nm diode laser light and their applicability. Both materials were found to be suitable for inducing controlled heating to a temperature increase of more than 10 degrees C within less than a second. The effect of optical heating on living cells (colon cancer cell line SW 480) was investigated with a modified fluorescence microscope. The temperature was controlled by varying the intensity and the exposure time of the laser light. Depending on temperature, induced death of cells in direct contact with the absorbent material was observed, or otherwise cells were kept alive. Cells survive the direct exposure of IR light without the use of the micro-hotplates. In contrast to common heating systems, the optical heating does not need direct contact to a temperature control device. Therefore, it is a very flexible method that can easily be implemented within any microchip. We believe that it will be a versatile tool for initiation and modulation of biochemical or cellular reactions, reversible cell membrane opening, and for control of cell growth.

  4. Light propagation in the micro-size capillary injected by high temperature liquid

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Li, Edward; Xiao, Hai

    2016-11-01

    The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.

  5. Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2014-08-26

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  6. Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2015-12-01

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  7. Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3'-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks.

    PubMed

    Wang, Lei; Yan, Jian; Hardy, William; Mosley, Charity; Wang, Shuguang; Yu, Hongtao

    2005-02-28

    DCB, 3,3'-dichlorobenzidine, is used primarily as an intermediate in the manufacture of diarylide yellow or azo red pigments for printing ink, textile, paint, and plastics. It is also used in tattoo inks. In this article, we investigate light-induced toxicity of DCB in both bacteria and human Jurkat T-cells. DCB itself is not toxic or mutagenic to Salmonella typhimurium TA102, but is photomutagenic at concentrations as low as 2 microM and phototoxic at concentrations >100 microM when bacteria are exposed to DCB and light at the same time (1.2 J/cm2 of UVA and 2.1 J/cm2 of visible light). Furthermore, DCB is both photocytotoxic and photogenotoxic to human Jurkat T-cells. Under a light irradiation dose of 2.3 J/cm2 of UVA and 4.2 J/cm2 of visible light, it causes the Jurkat T-cells to become nonviable in a DCB dose-dependent manner and the nonviable cells reaches 60% at DCB concentrations higher than 50 microM. At the same time, DNA fragmentation is observed for cells exposed to both DCB and light, determined by single cell gel electrophoresis (alkaline comet assay). As much as 5% (average) DNA fragmentation was observed when exposed to 200 microM DCB and light irradiation. This suggests that DCB can penetrate the cell membrane and enter the cell. Upon light activation, DCB in the cells can cause various cellular damages, leading to nonviable Jurkat T-cells. It appears, the nonviable cells are not caused solely by fragmentation of cellular DNA, but by other damages such as to proteins and cell membranes, or DNA alkylation. Therefore, persons exposed to DCB through environmental contamination or through tattoo piercing using DCB-containing inks must not only concern about its toxicity without exposing to light, but also its phototoxicity.

  8. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    SciTech Connect

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  9. Photon management in solution-processed organic light-emitting diodes: a review of light outcoupling micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Gomard, Guillaume; Preinfalk, Jan B.; Egel, Amos; Lemmer, Uli

    2016-07-01

    To allow a greater acceptance in the display and lighting markets, organic light-emitting diode (OLED) technology is currently the subject of intensive research efforts aimed at manufacturing cost-effective devices with higher efficiencies. In this regard, strategies matured in the field of photonics and nanophotonics can be applied for photon management purposes to improve the outcoupling of the generated light and to control the emission pattern. In this review, we report on the recent experimental and numerical advances to pursue those goals by highlighting the example of bottom-emitting devices. The cases of periodical micro- and nanostructures, as well as of stochastic ensembles that can be easily implemented using printing techniques, are covered herein. It is shown that beyond the sole optical properties, such additional elements can simultaneously improve the electrical characteristics of solution-processed OLEDs, and thus enable an optimization of the devices at different levels.

  10. High speed GaN micro-light-emitting diode arrays for data communications

    NASA Astrophysics Data System (ADS)

    Watson, Scott; McKendry, Jonathan J. D.; Zhang, Shuailong; Massoubre, David; Rae, Bruce R.; Green, Richard P.; Gu, Erdan; Henderson, Robert K.; Kelly, A. E.; Dawson, Martin D.

    2012-10-01

    Micro light-emitting diode (micro-LED) arrays based on an AlInGaN structure have attracted much interest recently as light sources for data communications. Visible light communication (VLC), over free space or plastic optical fibre (POF), has become a very important technique in the role of data transmission. The micro-LEDs which are reported here contain pixels ranging in diameter from 14 to 84μm and can be driven directly using a high speed probe or via complementary metal-oxide semiconductor (CMOS) technology. The CMOS arrays allow for easy, computer control of individual pixels within arrays containing up to 16×16 elements. The micro-LEDs best suited for data transmission have peak emissions of 450nm or 520nm, however various other wavelengths across the visible spectrum can also be used. Optical modulation bandwidths of over 400MHz have been achieved as well as error-free (defined as an error rate of <1x10-10) data transmission using on-off keying (OOK) non-return-to-zero (NRZ) modulation at data rates of over 500Mbit/s over free space. Also, as a step towards a more practical multi-emitter data transmitter, the frequency response of a micro-LED integrated with CMOS circuitry was measured and found to be up to 185MHz. Despite the reduction in bandwidth compared to the bare measurements using a high speed probe, a good compromise is achieved from the additional control available to select each pixel. It has been shown that modulating more than one pixel simultaneously can increase the data rate. As work continues in this area, the aim will be to further increase the data transmission rate by modulating more pixels on a single device to transmit multiple parallel data channels simultaneously.

  11. Data report of hypervelocity micro-particle impact light flash data and MOS impact detector output

    NASA Astrophysics Data System (ADS)

    Serna, Patrick J.

    1995-06-01

    A series of hypervelocity impact tests were conducted at the Max-Plank Institut fur Kernphysik, Heidelberg, Germany using the Institut's 2 MV Van De Graaff micro-particle accelerator. The purpose of this experimental effort was to collect impact flash data resulting from hypervelocity impact events. The results of these test experiments are to be correlated with actual waveforms obtained from on-orbit systems. Furthermore, these experimental results will supplement ongoing theoretical predictions being conducted within the Phillips Laboratory by the Space Kinetic Impact/Debris Branch (pLJWSCD). This report only describes the instrumentation configuration and presents data collected from light flash measurements and a MOS micro-particle impact detector. An analysis of the acquired light flash data is contained in a separate report authored by Allahdadi, Medina, Serna, and Long. Iron particles in the mass range of 1 x 10(exp -15) to 8 x 10(exp -18) kg were accelerated to velocities between 7 and 38 km/sec. Three targets were used for these impact test: spacecraft optical lens, spacecraft optical sunshade, and MOS spacecraft micro-particle impact detector. The hypervelocity particle impacted the lens and micro-particle impact detector targets normal to the target surface. The sunshade was impacted at a 25 degree angle measured from the particle direction of flight.

  12. From Extended Nanofluidics to an Autonomous Solar-Light-Driven Micro Fuel-Cell Device.

    PubMed

    Pihosh, Yuriy; Uemura, Jin; Turkevych, Ivan; Mawatari, Kazuma; Kazoe, Yutaka; Smirnova, Adelina; Kitamori, Takehiko

    2017-07-03

    Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (μFC) and a photocatalytic micro fuel generator (μFG) integrated on a single microfluidic chip. The μFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the μFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic μFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that μFG/μFC source achieves remarkable energy density of ca. 17.2 mWh cm(-2) at room temperature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Numerical Investigation on Micro-Cavity Effect of Top-Emitting Organic Light Emitting Diode.

    PubMed

    Lee, Hyeongi; Hwang, Youngwook; Won, Taeyoung

    2015-02-01

    In this paper, we report our numerical investigation on the top-emitting OLED (Organic Light Emitting Diodes) with micro-cavity. Our numerical model includes an ensemble of radiating dipole antennas for light emission as well as Poisson Equation for carrier injection and transportation. We formulated a set of differential equations by the Finite Element Method. Our simulation revealed that the recombination rate is affected by the thickness of each layer comprising the OLED structure and the amount of emission is determined by the total thickness of the OLED structure due to micro-cavity effect which is observed in between the total reflection layer and the half reflection layer. Our numerical solver enables us to optimize the OLED structure and thereby improve the external quantum efficiency.

  14. Industrial applications of micro/nanofabrication at Singapore Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Casse, B. D. F.; Heussler, S. P.; Kong, J. R.; Saw, B. T.; Mahmood, Shahrain bin; Moser, H. O.

    2006-04-01

    SSLS (Singapore Synchrotron Light Source) has set up a complete one-stop shop for micro/nanofabrication in the framework of the LIGA process. It is dubbed LiMiNT for Lithography for Micro and Nanotechnology and allows complete prototyping using the integral cycle of the LIGA process for producing micro/nanostructures from mask design/fabrication over X-ray lithography to electroplating in Ni, Cu, or Au, and, finally, hot embossing in a wide variety of plastics as one of the capabilities to cover a wide range of application fields and to go into higher volume production. The process chain also includes plasma cleaning and sputtering as well as substrate preparation processes including metal buffer layers, plating bases, and spin coating, polishing, and dicing. Furthermore, metrology using scanning electron microscopy (SEM), optical profilometry, and optical microscopy is available. LiMiNT is run as a research lab as well as a foundry. In this paper, several industrial applications will be presented, in which LiMiNT functions as a foundry to provide external customers the micro/nano fabrication services. These services include the fabrication of optical or X-ray masks, of micro/nano structures from polymers or from metals and of moulds for hot embossing or injection moulding.

  15. Characterization of micro structure through hybrid interference and phase determination in broadband light interferometry.

    PubMed

    Zhou, Yi; Tang, Yan; Zhu, Jiangping; Deng, Qinyuan; Yang, Yong; Zhao, Lixin; Hu, Song

    2017-03-10

    Broadband light interferometry, which is a well-developed method for surface profiling, has been applied with great success in the past years. Conventional multi-wavelength interferometric surface profilers mostly utilize the light irradiance to locate the zero fringe order, but the accuracy and stability can be negatively influenced by intensity fluctuations and external light disturbance, which is a serious problem. In this paper we discuss a hybrid technique combining light intensity and spectral modulation to determine zero optical path difference in which the light instability can be effectively suppressed. Additionally, the phase evaluation at each pixel will provide a high vertical resolution to obtain the characterization of the micro structure. The hybrid-interference method will not only improve the sensitivity of the measurement system but also level up the robustness and stability. Both simulation and experiment on a micro-dome structure have been presented to verify the effectiveness. Furthermore, the proposed method may be promising to replace the previously intensity-based method, especially in a complex application environment.

  16. Dimensional metrology of smooth micro structures utilizing the spatial modulation of white-light interference fringes

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin

    2017-08-01

    Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.

  17. New developments in the manufacture of large freeform surfaces with micro-structures

    NASA Astrophysics Data System (ADS)

    Roblee, Jeff; Walter, Mark; Jacobs, Ben

    2015-10-01

    A new capability for simultaneously generating micro-structures and large freeform surfaces has been developed. Multiple axes of CNC coordinated motion have been integrated into an ultra precision machine platform, enabling a wide variety of optical mold masters to be created. Facilitated by a specially developed control system, freeform optical surfaces as large as 600 x 600 x 100 mm are possible. Some machine alignments are critical to the production of accurate parts and these will be discussed. A bridge construction reduces Abbe offsets, and oil hydrostatic linear slide ways provide sub-micron straightness. The linear axes are capable of accurate positioning by means of linear motors in combination with the non contact oil hydrostatic slide ways. Optical surface finishes are achieved with the stability of a large granite base supported by a high performance vibration isolation system. The machine includes a unique, self-compensating, patented oil bearing rotary axis. Critical machine errors are measured and corrected with integrated CNC machine compensation. The machine has accuracy and repeatability for the creation of precise, intersecting groove structures with multiple angles over large areas. Optical surfaces can be generated either by a ruling/shaping operation with a non-rotating tool, or by a flycutting tool rotating on a high speed air bearing spindle. The spindle can double as a positioning axis to generate variable angle grooves in ruling mode. A Fast Tool Servo can be utilized to create fine micro-structures. Work piece quality can be evaluated in-situ with metrology sensors.

  18. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    NASA Astrophysics Data System (ADS)

    De Jesus Vega, Marisely

    rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.

  19. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing.

    PubMed

    Jägle, Eric A; Sheng, Zhendong; Kürnsteiner, Philipp; Ocylok, Sörn; Weisheit, Andreas; Raabe, Dierk

    2016-12-24

    Maraging steels are used to produce tools by Additive Manufacturing (AM) methods such as Laser Metal Deposition (LMD) and Selective Laser Melting (SLM). Although it is well established that dense parts can be produced by AM, the influence of the AM process on the microstructure-in particular the content of retained and reversed austenite as well as the nanostructure, especially the precipitate density and chemistry, are not yet explored. Here, we study these features using microhardness measurements, Optical Microscopy, Electron Backscatter Diffraction (EBSD), Energy Dispersive Spectroscopy (EDS), and Atom Probe Tomography (APT) in the as-produced state and during ageing heat treatment. We find that due to microsegregation, retained austenite exists in the as-LMD- and as-SLM-produced states but not in the conventionally-produced material. The hardness in the as-LMD-produced state is higher than in the conventionally and SLM-produced materials, however, not in the uppermost layers. By APT, it is confirmed that this is due to early stages of precipitation induced by the cyclic re-heating upon further deposition-i.e., the intrinsic heat treatment associated with LMD. In the peak-aged state, which is reached after a similar time in all materials, the hardness of SLM- and LMD-produced material is slightly lower than in conventionally-produced material due to the presence of retained austenite and reversed austenite formed during ageing.

  20. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    PubMed

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  1. Multi-functional micro electromechanical devices and method of bulk manufacturing same

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2004-01-01

    A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiC wafer may be also be etched.

  2. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing

    PubMed Central

    Jägle, Eric A.; Sheng, Zhendong; Kürnsteiner, Philipp; Ocylok, Sörn; Weisheit, Andreas; Raabe, Dierk

    2016-01-01

    Maraging steels are used to produce tools by Additive Manufacturing (AM) methods such as Laser Metal Deposition (LMD) and Selective Laser Melting (SLM). Although it is well established that dense parts can be produced by AM, the influence of the AM process on the microstructure—in particular the content of retained and reversed austenite as well as the nanostructure, especially the precipitate density and chemistry, are not yet explored. Here, we study these features using microhardness measurements, Optical Microscopy, Electron Backscatter Diffraction (EBSD), Energy Dispersive Spectroscopy (EDS), and Atom Probe Tomography (APT) in the as-produced state and during ageing heat treatment. We find that due to microsegregation, retained austenite exists in the as-LMD- and as-SLM-produced states but not in the conventionally-produced material. The hardness in the as-LMD-produced state is higher than in the conventionally and SLM-produced materials, however, not in the uppermost layers. By APT, it is confirmed that this is due to early stages of precipitation induced by the cyclic re-heating upon further deposition—i.e., the intrinsic heat treatment associated with LMD. In the peak-aged state, which is reached after a similar time in all materials, the hardness of SLM- and LMD-produced material is slightly lower than in conventionally-produced material due to the presence of retained austenite and reversed austenite formed during ageing. PMID:28772369

  3. Enhanced light extraction efficiency of chip-on board light-emitting diodes through micro-lens array fabricated by ion wind

    NASA Astrophysics Data System (ADS)

    Chu, Jingcao; Lei, Xiang; Wu, Jiading; Peng, Yang; Liu, Sheng; Yang, Qian; Zheng, Huai

    2017-03-01

    Low light extraction efficiency (LEE) is a key challenge of chip-on board (COB) packaging light-emitting diodes (LEDs). In this paper, a facile preparation of micro-lens array was proposed based on the ion wind patterning. The geometries and sizes of the micro-lens arrays were controlled through adjusting the voltage parameter of the ion wind generation. Consequently, the micro-lens array with the diameter of 180 μm and the gap distance of 15 μm has been fabricated. Benefitting from this micro-lens array, the LEE of COB packaging LEDs was enhanced by 9%. This facile fabrication of micro-lens array would be a promising method to improve the LEE of COB packaging LEDs.

  4. Non-destructive micro-analytical system for the study of the manufacturing processes of a group of gold jewels from "El Carambolo" treasure

    NASA Astrophysics Data System (ADS)

    Scrivano, S.; Ortega-Feliu, I.; Gómez-Tubío, B.; Ager, F. J.; de la Bandera, M. L.; Respaldiza, M. A.; Ontalba-Salamanca, M. A.

    2017-01-01

    The impressive gold treasure of El Carambolo, representative of the Tartesic culture and dated from the 8th to 6th century BCE, constitutes a typological and stylistic unity unparalleled in the archeological field. Due to the importance of this treasure and the interest in studying it in depth, a new micro X-ray fluorescence (micro-XRF) portable system has been developed at the Centro Nacional de Aceleradores (Sevilla, Spain). Eleven jewels of El Carambolo treasure have been analyzed in order to characterize the composition of the employed alloys, to identify the manufacturing processes and to discuss hypothesis about the production workshop of the treasure. Besides, the application of the new micro-XRF instrumentation allowed the analysis of small details like decoration elements and joining areas. This study permits the characterization of the joining methods and manufacturing procedures, thus, the construction stages of these highly complex jewels can be inferred. Many archeological and historical studies of the treasure have been performed during the last years but very few analytical results have been published. Furthermore, the results demonstrate the capability of the new developed portable micro-XRF setup to substitute satisfactorily other micro-analytical techniques, such as micro-PIXE (Particle Induced X-ray Emission), when the sample cannot be brought to a laboratory.

  5. Classical and quantum light generation using nitride-based semiconductor micro- and nanostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Hoon

    2017-02-01

    We present classical and quantum light generation based on various types of group III-nitride micro- and nano-structures. We fabricated three-dimensional GaN-based pyramidal, annular, columnar, and tapered rod structures, on which InGaN/GaN quantum wells structures were grown by metal-organic chemical vapor deposition. We demonstrate phosphor-free white-color light emission with pyramidal and annular structures, unidirectional light propagation in energy-gradient, tapered core-shell rod structures, ultrafast single photon generation from a quantum dot formed at the apex of pyramid structures, and exciton-polariton formation at room-temperature in bulk GaN and GaN/InGaN core-shell rod structures.

  6. Low cost and manufacturable complete microTAS for detecting bacteria.

    PubMed

    Sauer-Budge, Alexis F; Mirer, Paul; Chatterjee, Anirban; Klapperich, Catherine M; Chargin, David; Sharon, Andre

    2009-10-07

    In this paper, we present a fully integrated lab-on-a-chip and associated instrument for the detection of bacteria from liquid samples. The system conducts bacterial lysis, nucleic acid isolation and concentration, polymerase chain reaction (PCR), and end-point fluorescent detection. To enable truly low-cost manufacture of the single-use disposable chip, we designed the plastic chip in a planar format without any active components to be amenable to injection molding and utilized a novel porous polymer monolith (PPM) embedded with silica that has been shown to lyse bacteria and isolate the nucleic acids from clinical samples (M. D. Kulinski, M. Mahalanabis, S. Gillers, J. Y. Zhang, S. Singh and C. M. Klapperich, Biomed. Microdevices, 2009, 11, 671-678).(1) The chip is made of Zeonex(R), a thermoplastic with a high melting temperature to allow PCR, good UV transmissibility for UV-curing of the PPM, and low auto-fluorescence for fluorescence detection of the amplicon. We have built a prototype instrument to automate control of the fluids, temperature cycling, and optical detection with the capability of accommodating various chip designs. To enable fluid control without including valves or pumps on the chip, we utilized a remote valve switching technique. To allow fluid flow rate changes on the valveless chip, we incorporated speed changing fluid reservoirs. The PCR thermal cycling was achieved with a ceramic heater and air cooling, while end-point fluorescence detection was accomplished with an optical spectrometer; all integrated in the instrument. The chip seamlessly and automatically is mated to the instrument through an interface block that presses against the chip. The interface block aligns and ensures good contact of the chip to the temperature controlled region and the optics. The integrated functionality of the chip was demonstrated using Bacillus subtilis as a model bacterial target. A Taqman assay was employed on-chip to detect the isolated bacterial DNA.

  7. Application of micro-PIXE, MRI and light microscopy for research in wood science and dendroecology

    NASA Astrophysics Data System (ADS)

    Merela, M.; Pelicon, P.; Vavpetič, P.; Regvar, M.; Vogel-Mikuš, K.; Serša, I.; Poličnik, H.; Pokorny, B.; Levanič, T.; Oven, P.

    2009-06-01

    Beech ( Fagus sylvatica L.) branches were topped and after five months the wound response was analyzed by PIXE, 3D-MRI and light microscopy. From freshly cut and deeply frozen sample 30 μm thick longitudinal-radial tissue sections were prepared for anatomical investigations and micro-PIXE analysis. Light microscopy revealed the structural response to wounding, i.e. occurrence of the reaction zone between the exposed and dehydrated dead tissue and healthy sound wood. The reaction zone was characterized by tylosis in vessels and accumulation of colored deposits in parenchyma cells, fibres and vessels. 3D MRI of a parallel sample showed that the moisture content in the reaction zone was three times higher than in normal healthy wood. Micro-PIXE mapping at margins of compromised wood in beech revealed an increased concentration of potassium in the reaction zone. The increase in the calcium concentration was associated with the dehydrated tissue adjacent to reaction zones. In addition, micro-PIXE was used to determine the elemental distribution in annual tree rings. This may be relevant for retrospective assessment of environmental pollution in wood by measuring yearly increments as a biomonitoring tool. The analysis of European larch ( Larix decidua Mill.) wood revealed a high similarity between optical characteristics (i.e. late versus earlywood) and elemental (e.g. Cl, K, Ca, Mn, Zn) distribution.

  8. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Wang, Weibiao; Liang, Zhongzhu; Liang, Jingqiu; Qin, Yuxin; Lv, Jinguang

    2016-10-01

    In this study, we design micro, flexible light-emitting diode (LED) array devices. Using theoretical calculations and finite element simulations, we analyze the deformation of the conventional single electrode bar. Through structure optimization, we obtain a three-dimensional (3D), chain-shaped electrode structure, which has a greater bending degree. The optimized electrodes not only have a bigger bend but can also be made to spin. When the supporting body is made of polydimethylsiloxane (PDMS), the maximum bending degree of the micro, flexible LED arrays (4  ×  1 arrays) was approximately 230 µm this was obtained using the finite element method. The device (4  ×  1 arrays) can stretch to 15%. This paper describes the fabrication of micro, flexible LED arrays using microelectromechancial (MEMS) technology combined with electroplating technology. Specifically, the isolated grooves are made by dry etching which can isolate and protect the light-emitting units. A combination of MEMS technology and wet etching is used to fabricate the large size spacing.

  9. Analysis of light emission performance of pseudoheterostructure diode based on germanium micro-bridge

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Sun, Junqiang; Jiang, Jialin; Zhang, Ruiwen; Gao, Jianfeng; Zhou, Heng

    2017-08-01

    We present an electrically driven pseudoheterostructure diode based on germanium micro-bridge structure, and investigate the electrical transport, internal quantum efficiency and transparency current density of the diode. The effects of injected carrier density and uniaxial tensile strain on intervalence band absorption is also discussed. The injected carrier is well confined in the diode with uniaxial strain around 4%. An internal quantum efficiency around 9% and transparency current density of 5.8 kA /cm2 can be obtained with doping density of 5 ×1018cm-3 and transparency carrier density of 2 ×1018cm-3 when uniaxial tensile strain is 4%. The result indicates the pseudoheterostructure diode based on the Ge micro-bridge can be used to realize an efficient electrically driven Si-based light emission source.

  10. Evaluation of laser ablation crater relief by white light micro interferometer

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana

    2017-06-01

    A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.

  11. Investigation of Very Fast Light Detectors: Silicon Photomultiplier and Micro PMT for a Cosmic Ray Array

    NASA Astrophysics Data System (ADS)

    Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan

    2016-03-01

    To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.

  12. Photovoltaic device with increased light absorption and method for its manufacture

    DOEpatents

    Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger

    1993-07-20

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  13. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio

    2009-01-01

    MicroRNAs provide a formidable tool not only in cancer research but also to investigate physiological mechanisms and to assess the effect of environmental exposures in healthy tissues. Collectively, cigarette smoke and sunlight have been estimated to account for 40% of all human cancers, and not only smoke but also, surprisingly, UV light induced genomic and postgenomic alterations in mouse lung. Here we evaluated by microarray the expression of 484 microRNAs in the lungs of CD-1 mice, including newborns, postweanling males and females, and their dams, either untreated or exposed to environmental cigarette smoke and/or UV-containing light. The results obtained highlighted age-related variations in microRNA profiles, especially during the weanling period, due to perinatal stress and postnatal maturation of the lung. UV light alone did not affect pulmonary microRNAs, whereas smoke produced dramatic changes, mostly in the sense of down-regulation, reflecting both adaptive mechanisms and activation of pathways involved in the pathogenesis of pulmonary diseases. Both gender and age affected smoke-related microRNA dysregulation in mice. The data presented provide supporting evidence that microRNAs play a fundamental role in both physiological and pathological changes occurring in mouse lung.—Izzotti, A., Calin, G. A., Vernon E. St., Croce, G. M., De Flora, S. Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. PMID:19465468

  14. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    SciTech Connect

    Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan Dawson, Martin D.; Watson, Scott; Kelly, Anthony E.

    2014-10-27

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 μm in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  15. Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses

    NASA Astrophysics Data System (ADS)

    Woodhead, C. S.; Roberts, J.; Noori, Y. J.; Cao, Y.; Bernardo-Gavito, R.; Tovee, P.; Kozikov, A.; Novoselov, K.; Young, R. J.

    2017-03-01

    The recent discovery of semiconducting two-dimensional materials is predicted to lead to the introduction of a series of revolutionary optoelectronic components that are just a few atoms thick. Key remaining challenges for producing practical devices from these materials lie in improving the coupling of light into and out of single atomic layers, and in making these layers robust to the influence of their surrounding environment. We present a solution to tackle both of these problems simultaneously, by deterministically placing an epoxy based micro-lens directly onto the materials’ surface. We show that this approach enhances the photoluminescence of tungsten diselenide (WSe2) monolayers by up to 300%, and nearly doubles the imaging resolution of the system. Furthermore, this solution fully encapsulates the monolayer, preventing it from physical damage and degradation in air. The optical solution we have developed could become a key enabling technology for the mass production of ultra-thin optical devices, such as quantum light emitting diodes.

  16. Plasmofluidics: Merging Light and Fluids at the Micro-/Nano-Scale

    PubMed Central

    Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph

    2016-01-01

    Plasmofluidics is the synergistic integration of plasmonics and micro/nano fluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids, and precise manipulation via micro/nano fluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, we examine and categorize the most recent advances in plasmofluidics into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro-/nano-scale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. We conclude with our perspectives on the upcoming challenges, opportunities, and the possible future directions of the emerging field of plasmofluidics. PMID:26140612

  17. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers.

    PubMed

    Lay, Kok Keong; Cheong, Brian Mun Yew; Tong, Wei Li; Tan, Ming Kwang; Hung, Yew Mun

    2017-04-21

    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.

  18. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers

    NASA Astrophysics Data System (ADS)

    Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun

    2017-04-01

    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.

  19. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit.

    PubMed

    de Wild, Michael; Schumacher, Ralf; Mayer, Kyrill; Schkommodau, Erik; Thoma, Daniel; Bredell, Marius; Kruse Gujer, Astrid; Grätz, Klaus W; Weber, Franz E

    2013-12-01

    The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (μCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone

  20. The analysis of light extraction efficiency of GaN-based LEDs with a novel micro-cavity

    NASA Astrophysics Data System (ADS)

    Chang, Jee-Gong; Liao, Lun-De; Hwang, Chi-Chuan

    2006-08-01

    This paper demonstrates the strong enhancement of light extraction efficiency of light-emitting diodes (LEDs) by a novel three-dimensionally arranged micro-cavity. There are several optimal designed parameters, including chip dimensions, absorption coefficients, the shape of the micro-cavity and package are analyzed on the basis of a Monte-Carlo ray tracing simulation. The most important that studying includes GaN LEDs which are applied to various applications, including traffic signals, backlight system for LCD and outdoor illumination by white light LEDs. The functional of the three-dimensionally arranged micro-cavity is to make the light extraction from LED with high efficiency. The shape of micro-cavities are making like hexagon solids on the top view. The structure were evaluated and simulated by TracePro software respectively. The light extraction efficiency of LED can be greatly improved by three-dimensionally arranged micro-cavity. This study shows that the micro-cavities induced on the surface rather than that inside the LED greatly enhances the light extraction efficiency. This stipulation holds for both sapphire-based and Thin-GaN LEDs. The results indeed identify the attributes of the LED, which make it possible to achieve excellent luminance performance using a GaN-based approach from the LED of "three-dimensionally arranged micro-cavity". This structure was stringent expected to allow a high-efficiency LED, since the illumination systems needed for higher luminance energy can be added independently of the effects.

  1. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis.

    PubMed

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; Zhong, Mingjiang; Jordan, Alex M; Biswas, Santidan; Korley, LaShanda T J; Balazs, Anna C; Johnson, Jeremiah A

    2017-02-22

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials "dead" toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative "living additive manufacturing" strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant "parent" materials to generate more complex and diversely functionalized "daughter" materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent's average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.

  2. Quantifying representative elementary volume of connectivity for translucent granular materials by light transmission micro-tomography

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Cheng, Zhou; Wu, Jianfeng; Wu, Jichun

    2017-02-01

    Aquifers composed of granular materials are major repositories of groundwater resource in which water can flow freely and be stored abundantly. Undoubtedly, exploring connectivity of granular materials is essential to understand the mechanism of water and contaminant migration in subsurface environment, while characterizing the connectivity remains a difficult task currently. This study proposes a new light transmission micro-tomography (LTM) with high resolution to address this problem. The new approach relies on scanning micro-structure by light transmission through translucent granular materials in given thickness. An experiment of light transmission through a two dimensional (2D) sandbox packed by heterogeneous translucent silica is conducted to examine the efficiency of LTM in capturing all the features of connectivity including porosity (n), density (ρ), solid phase-pores interface area (Asp), and tortuosity (τ). Considering the importance of representative elementary volume (REV) in characterizing the representativeness and reliability of connectivity, associated REV scales of characteristic variables are also estimated using a criterion of relative gradient error (εgi). Results suggest that the frequencies of minimum REV sizes of connectivity are close to Gaussian distribution in 0.0-12.0 mm and the REV size of approximately 10.0 mm is available to represent connectivity of translucent silica. Then the quantification of connectivity and the corresponding REV estimates are significant for accurate simulation of fluid migration and for associated optimal design of contaminant remediation in subsurface environment. More important, this study provides the possibility of rapid, handy and economical on-site measurements of connectivity for translucent materials.

  3. Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions

    NASA Astrophysics Data System (ADS)

    Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-02-01

    Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.

  4. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  5. Verify Module for Reporting A/C and Off-Cycle GHG Credits for Light-Duty Vehicle and Truck Manufacturers

    EPA Pesticide Factsheets

    This EPA presentation provides information on using the new Verify module, streamlining the process required to electronically submit annual reporting of air conditioning (A/C) and off-cycle GHG credits for light duty manufacturers.

  6. Analysis of micro-lens integrated flip-chip InGaN light-emitting diodes by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Li, K. H.; Feng, C.; Choi, H. W.

    2014-02-01

    A hexagonally close-packed microlens array has been integrated onto the sapphire face of a flip-chip bonded InGaN light-emitting diode (LED). The micro-optics is formed by etching a self-assembled monolayer of 1-μm silica microspheres coated on the sapphire substrate, producing hemispherical sapphire lenses. Without degrading electrical characteristic, the light output power of the lensed LED is increased by more than a quarter compared with the unlensed LED. Enhanced light extraction via micro-optics is verified by rigorous coupled wave analysis. The focusing behavior of the micro-lenses, as well as the emission characteristics of the lensed LED, is studied by confocal microscopy.

  7. Subwavelength light confinement and quantum chaos in micro- and nano-structured metamaterials

    NASA Astrophysics Data System (ADS)

    Govyadinov, Alexander A.

    This dissertation concerns a broad range of unique phenomena related to the light propagation at nano- and micro-scales. To access the nano-domain, we introduce anisotropy-based waveguides with positive- and negative-index modes. These novel structures allow energy propagation in subwavelength regions and, in contrast to surface waves, have the mode structure identical to that of telecom fibers. We design multilayered meta-materials for far-IR to visible frequencies and develop analytical homogenization techniques for light transmission through these systems. Our numerical simulations demonstrate that tapered waveguides with anisotropic cores can efficiently transfer energy to and from regions as small as 1/45-th of the wavelength, substantially outperforming conventional techniques. We analyze the behavior of volume and surface modes in nano-waveguides and demonstrate theoretically that subwavelength geometry enables the unique control over modes' dispersive properties, unavailable in diffraction-limited systems. In particular, the inter-scale transition between "photonic-funnel" and "photonic-compressor" regimes in nano-structures allows versatile management of the group velocity of light pulses ranging from slow to superluminal values. As a control mechanism, we employ the material gain, previously suggested for loss compensation, and develop an analytical description of the relevant physics. We further study the prospects of gain-assisted dispersion management in passive and active negative index structures and formulate a universal approach for defining the causal direction of the wave vector of modes in optical metamaterials. This approach also determines signs of the refractive index and impedance. We employ the developed formalism to demonstrate a broadband dispersion-less index and impedance matching in the nanowire-based negative index materials. Finally, we address light scattering phenomena in asymmetric micro-cavity resonators. We introduce a novel

  8. Light extraction efficiency enhancement for InGaN quantum wells light-emitting diodes with GaN micro-domes

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Han, Lu; Zhao, Hongping

    2013-03-01

    The enhancement of light extraction efficiency for thin-film-flip-chip (TFFC) InGaN QWs LEDs with GaN microdomes on n-GaN layer was studied. The three dimensional FDTD method was used to calculate the light extraction efficiency for the TFFC InGaN QWs LEDs emitting at visible spectral regime, as compared to that of the conventional TFFC InGaN QWs LEDs. The calculation indicates significant dependence of the p-GaN layer thickness on the light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λpeak=460nm and 2.7- 2.8 times for λpeak=550nm) is achievable from LEDs with GaN micro-domes with optimized micro-dome diameter and height.

  9. Environmental research brief: Pollution prevention assessment for a manufacturer of automotive lighting equipment and accessories

    SciTech Connect

    Fleischman, M.; Couch, B.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The US Environmental Protection Agency (EPA) has funded a Pilot project to assist small and medium-size manufacture who want to minimize their generation of waste but who lac the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) we established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at the University of Tennessee performed an assessment at a plant that manufactures outboard motors for water craft. Three basic subunits received from other manufacturing plants undergo primarily painting and assembly operations in order to produce the final product. The team`s report, detailing findings and recommendations, indicated that paint overspray waste and spent clean-up solvent are generated in large quantities and that significant cost savings could be achieved by installing robotic paint application equipment. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  10. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    SciTech Connect

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  11. Manufacturing Challenges Implementing Material Changes for the Super Light Weight External Tank: A Welding Process Perspective

    NASA Technical Reports Server (NTRS)

    Lawless, K.; Jones, C.

    2001-01-01

    A viewgraph presentation gives an overview of the manufacturing challenges in implementing welding material changes for the super lightweight external tank. Details are given on the external tank configuration, the weld purging equipment used, planning the selection of weld filler wire alloy, the initial weld microstructure, the wide panel tensile testing, and the dome cap welding.

  12. Highly transparent sapphire micro-grating structures with large diffuse light scattering.

    PubMed

    Ko, Yeong Hwan; Yu, Jae Su

    2011-08-01

    The highly transparent micro-grating structures (MGSs) of sapphire substrate with large diffuse light scattering were theoretically and experimentally studied. From the finite difference time domain simulation, it was found that the degree of diffuse light scattering is strongly dependent on the size of grating structures. For a highly transparent property, the sapphire MGSs were optimally designed by the theoretical calculations using the rigorous coupled wave analysis method. The order of taper, geometry (i.e., width and height), and pitch length of MGSs were optimized to maximize their average total transmittance over a wide wavelength range of 300-1800 nm. Additionally, the influence of the deposition of low-refractive index material such as SiO2 onto sapphire MGSs on the transmittance characteristics was investigated. To verify experimentally the feasibility, the sapphire MGSs were fabricated by the conventional lithography and dry etching processes. The SiO2 deposited sapphire MGS exhibited a further increase in the total transmittance due to its relatively more graded refractive index profile while maintaining a significantly enhanced diffuse light scattering. The experimental data were in a reasonable agreement with the theoretical results.

  13. The use of light-cured resin as an alternative method of occlusal splints manufacturing--in vitro study.

    PubMed

    Więckiewicz, Mieszko; Boening, Klaus W; Richter, Gert; Więckiewicz, Włodzimierz

    2014-01-01

    Temporomandibular disorders are very common nowadays. One of the methods to treat these problems is occlusal splint therapy. Modern materials should be introduced to this treatment. The aim of this paper was to evaluate the properties of light-activated urethane dimethacrylate and the quality of the bonds it creates with thermoforming foils. Thermoforming foils were covered with light-cured resin. A bond was formed between the materials using an adhesive. A coating lacquer was used on the resin as a final preparatory step. Three laboratory tests were run: dye penetrant inspection, a Vickers microhardness test and a linear polymerization shrinkage test. The materials were layered and then cured with a polymerizing lamp emitting light of a wavelength of 400 Nm, according to the manufacturer's instructions. All the occlusal splints were fitted to upper dental arch. The devices had been made in an articulator on specially prepared gypsum models. The results were analyzed statistically using a one-sided binomial test, Spearman's rank-order correlation coefficient and the Friedman ANOVA (p=0.05). In the dye penetrant inspection, only one sample out of sixty showed the effects of color penetration to the adhesive connection. The dye only penetrated the layer of lacquer coating the resin. The average value of the Vickers microhardness test with a load of F=50 g applied to the material surface for 30 s was HV0.05=7.43 N/mm2. The average linear shrinkage of the resin observed after polymerization was 1.175%. Light-cured resin and an adhesive connection between the resin and thermoforming foil do not show susceptibility even to strong dye. The maximum polymerization shrinkage occurs immediately after curing. The light-cured resin that was tested seems to be a good alternative method for occlusal splints manufacturing.

  14. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    PubMed Central

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-01-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10–30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination. PMID:21974588

  15. Hybrid noise control in a duct using a light micro-perforated plate.

    PubMed

    Wang, X N; Choy, Y S; Cheng, L

    2012-12-01

    A plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. It works effectively with a wide stopband from low-to-medium frequencies only if the plate is extremely stiff, to ensure a strong reflection of acoustic wave to the upstream in the duct. However, a plate with a slightly weak bending stiffness will result in non-uniform transmission loss (TL) spectra with narrowed stopband. In this study, a hybrid silencer is proposed by introducing micro-perforations into the plate to elicit the sound absorption in order to compensate for the deficiency in the passband caused by the insufficient sound reflection in a certain frequency range due to weaker plate stiffness. A theoretical model, capable of dealing with the strong coupling between the vibrating micro-perforated plate and sound fields inside the cavity and the duct, is developed. Through proper balancing between the sound absorption and reflection, the proposed hybrid silencer provides a more flattened and uniform TL and a widened stopband by more than 20% while relaxing the harsh requirement on the bending stiffness of the plate. Theoretical predictions are validated by experimental data, with phenomenon explained through numerical analyses.

  16. Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays.

    PubMed

    Chern, Winston; Hsu, Keng; Chun, Ik Su; Azeredo, Bruno P de; Ahmed, Numair; Kim, Kyou-Hyun; Zuo, Jian-min; Fang, Nick; Ferreira, Placid; Li, Xiuling

    2010-05-12

    Semiconductor nanowires have potential applications in photovoltaics, batteries, and thermoelectrics. We report a top-down fabrication method that involves the combination of superionic-solid-state-stamping (S4) patterning with metal-assisted-chemical-etching (MacEtch), to produce silicon nanowire arrays with defined geometry and optical properties in a manufacturable fashion. Strong light emission in the entire visible and near infrared wavelength range at room temperature, tunable by etching condition, attributed to surface features, and enhanced by silver surface plasmon, is demonstrated.

  17. Automated image mosaics by non-automated light microscopes: the MicroMos software tool.

    PubMed

    Piccinini, F; Bevilacqua, A; Lucarelli, E

    2013-12-01

    Light widefield microscopes and digital imaging are the basis for most of the analyses performed in every biological laboratory. In particular, the microscope's user is typically interested in acquiring high-detailed images for analysing observed cells and tissues, meanwhile being representative of a wide area to have reliable statistics. The microscopist has to choose between higher magnification factor and extension of the observed area, due to the finite size of the camera's field of view. To overcome the need of arrangement, mosaicing techniques have been developed in the past decades for increasing the camera's field of view by stitching together more images. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Or alternatively, the methods are conceived just to provide visually pleasant mosaics not suitable for quantitative analyses. This work presents a tool for building mosaics of images acquired with nonautomated light microscopes. The method proposed is based on visual information only and the mosaics are built by incrementally stitching couples of images, making the approach available also for online applications. Seams in the stitching regions as well as tonal inhomogeneities are corrected by compensating the vignetting effect. In the experiments performed, we tested different registration approaches, confirming that the translation model is not always the best, despite the fact that the motion of the sample holder of the microscope is apparently translational and typically considered as such. The method's implementation is freely distributed as an open source tool called MicroMos. Its usability makes building mosaics of microscope images at subpixel accuracy easier. Furthermore, optional parameters for building mosaics according to different strategies make MicroMos an easy and reliable tool to compare different registration approaches, warping models and tonal corrections.

  18. Can Increasing the Manufacturer's Recommended Shortest Curing Time of High-intensity Light-emitting Diodes Adequately Cure Sealants?

    PubMed

    Branchal, Caroline F; Wells, Martha H; Tantbirojn, Daranee; Versluis, Antheunis

    2015-01-01

    To investigate sealant depth of cure after increasing the curing times of high-intensity light-emitting diode units (LEDs). Three sealants (opaque-unfilled, opaque-filled, and clear-filled) were light cured in a covered-slot mold with: (a) three LEDs (VALO, SmartLite, Fusion) for six to 15 seconds; and (b) a quartz-tungsten halogen (QTH) light for 40 seconds as a control (N=10). Twenty-four hours after light curing, microhardness was measured at the sealant surface and through the depth at 0.5 mm increments. Results were analyzed via analysis of variance followed by the Student-Newman-Keuls test (significance level 0.05). The opaque-filled and clear-filled sealants cured with VALO for six or nine seconds had hardness values that were statistically equivalent to or better than the QTH to a depth of 1.5 mm. Using Fusion for 10 seconds (exposure limit) did not adequately cure the three sealants beyond one mm. SmartLite at 15 seconds (maximum exposure period without overheating) did not adequately cure the sealants beyond 0.5 mm. Among the tested high-intensity LEDs, only VALO at double or triple the manufacturers' shortest curing time (six or nine seconds) provided adequate curing of opaque-filled and clear-filled sealants at 1.5 mm depth compared to the 40-second QTH light.

  19. Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Nagasaki, Mizuki; Sasagawa, Kiyotaka; Takehara, Hiroaki; Noda, Toshihiko; Tokuda, Takashi; Ohta, Jun

    2016-03-01

    Digital enzyme-linked immunosorbent assay (ELISA) is used for detecting various biomarkers with hypersensitivity. We have been developing compact systems by replacing the fluorescence microscope with a CMOS image sensor. Here, we propose a micro-light-pipe array structure made of metal filled with dye-doped resin, which can be used as a fabrication substrate of the micro-reaction-chamber array of digital ELISA. The possibility that this structure enhances the coupling efficiency for fluorescence was simulated using a simple model. To realize the structure, we fabricated a 30-µm-thick micropipe array by copper electroplating around a thick photoresist pattern. The typical diameter of each fabricated micropipe was 10 µm. The pipes were filled with yellow-dye-doped epoxy resin. The transmittance ratio of fluorescence and excitation light could be controlled by adjusting the doping concentration. We confirmed that an angled excitation light incidence suppressed the leakage of excitation light.

  20. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  1. Discharge light and carbonization distribution characteristics at XLPE-silicon rubber interface with micro-cavity in tracking failure test

    NASA Astrophysics Data System (ADS)

    Gu, L.; Li, S.; Wang, S. B.; Lei, S. L.; Liu, S. X.

    2011-12-01

    Installation of cross-linked polyethylene (XLPE) cable joint possibly introduces defects into the XLPE-silicon rubber interface, such as micro-cavity and micro-wire. Those defects greatly decrease the interfacial breakdown strength and endanger the stability of power system. However, the traditional method only measures the breakdown strength, which alone is limited and can not provide detailed information to more clearly understand the dielectric performance and tracking failure mechanism. This paper investigated the effect of micro-cavity on tracking failure by analyzing the distribution characteristics of discharge light and carbonization. Interfaces with those defects were setup by pressing together a slice of XLPE and a slice of transparent silicon rubber. A 50 Hz AC voltage was applied on a pair of flat-round electrodes sandwiched at the interface with their insulation distance of 5 mm until tracking failure occurred. The evolution of both discharge light and carbonization at the interface from discharge to the failure was recorded with a video recorder and then their channel width was analyzed with image processing method. Obtained results show that micro-cavity at an XLPE-silicon rubber interface strengthens the transportation of charge and easily leads to interfacial discharge and tracking failure. The distribution of discharge light and carbonization at the interface with micro-wire proves this.

  2. Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates: Internal pressure-assisted embossing of micro-channels with in-die mechanical bonding

    NASA Astrophysics Data System (ADS)

    Koç, Muammer; Mahabunphachai, Sasawat

    In this paper, we present the results of our studies on conceptual design and feasibility experiments towards development of a novel hybrid manufacturing process to fabricate fuel cell bipolar plates that consists of multi-array micro-channels on a large surface area. The premises of this hybrid micro-manufacturing process stem from the use of an internal pressure-assisted embossing process (cold or warm) combined with mechanical bonding of double bipolar plates in a single-die and single-step operation. Such combined use of hydraulic and mechanical forming forces and in-process bonding will (a) enable integrated forming of micro-channels on both surfaces (as anode and cathode flow fields) and at the middle (as cooling channels), (b) reduce the process steps, (c) reduce variation in dimensional tolerances and surface finish, (d) increase the product quality, (e) increase the performance of fuel cell by optimizing flow-field designs and ensuring consistent contact resistance, and (f) reduce the overall stack cost. This paper explains two experimental investigations that were performed to characterize and evaluate the feasibility of the conceptualized manufacturing process. The first investigation involved hydroforming of micro-channels using thin sheet metals of SS304 with a thickness of 51 μm. The width of the channels ranged from 0.46 to 1.33 mm and the height range was between 0.15 and 0.98 mm. Our feasibility experiments resulted in that different aspect ratios of micro-channels could be fabricated using internal pressure in a controllable manner although there is a limit to very sharp channel shapes (i.e., high aspect ratios with narrow channels). The second investigation was on the feasibility of mechanical bonding of thin sheet metal blanks. The effects of different process and material variables on the bond quality were studied. Successful bonding of various metal blanks (Ni201, Al3003, and SS304) was obtained. The experimental results from both

  3. White Light Modeling, Algorithm Development, and Validation on the Micro-arcsecond Metrology Testbed

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Regher, Martin; Shen, Tsae Pyng

    2004-01-01

    The Space Interferometry Mission (SIM) scheduled for launch in early 2010, is an optical interferometer that will perform narrow angle and global wide angle astrometry with unprecedented accuracy, providing differential position accuracies of 1uas, and 4uas global accuracies in position, proper motion and parallax. The astrometric observations of the SIM instrument are performed via delay measurements provided by three Michelson-type, white light interferometers. Two 'guide' interferometers acquire fringes on bright guide stars in order to make highly precise measurements of variations in spacecraft attitude, while the third interferometer performs the science measurement. SIM derives its performance from a combination of precise fringe measurements of the interfered starlight (a few ten-thousandths of a wave) and very precise (tens of picometers) relative distance measurements made between a set of fiducials. The focus of the present paper is on the development and analysis of algorithms for accurate white light estimation, and on validating some of these algorithms on the MicroArcsecond Testbed.

  4. Living additive manufacturing: Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis

    DOE PAGES

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; ...

    2017-01-13

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinducedmore » single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Furthermore, daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.« less

  5. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis

    PubMed Central

    2017-01-01

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials “dead” toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative “living additive manufacturing” strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant “parent” materials to generate more complex and diversely functionalized “daughter” materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent’s average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized. PMID:28280779

  6. A Correlative Method for Imaging Identical Regions of Samples by Micro-CT, Light Microscopy, and Electron Microscopy

    PubMed Central

    Sengle, Gerhard; Tufa, Sara F.; Sakai, Lynn Y.; Zulliger, Martin A.

    2013-01-01

    We present a method in which a precise region of interest within an intact organism is spatially mapped in three dimensions by non-invasive micro-computed X-ray tomography (micro-CT), then further evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Tissues are prepared as if for TEM including osmium fixation, which imparts soft tissue contrast in the micro-CT due to its strong X-ray attenuation. This method may therefore be applied to embedded, archived TEM samples. Upon selection of a two-dimensional (2-D) projection from a region of interest (ROI) within the three-dimensional volume, the epoxy-embedded sample is oriented for microtomy so that the sectioning plane is aligned with the micro-CT projection. Registration is verified by overlaying LM images with 2-D micro-CT projections. Structures that are poorly resolved in the micro-CT may be evaluated at TEM resolution by observing the next serial ultrathin section, thereby accessing the same ROI by all three imaging techniques. We compare white adipose tissue within the forelimbs of mice harboring a lipid-altering mutation with their littermate controls. We demonstrate that individual osmium-stained lipid droplets as small as 15 µm and separated by as little as 35 µm may be discerned as separate entities in the micro-CT, validating this to be a high-resolution, non-destructive technique for evaluation of fat content. PMID:23264636

  7. Advanced light source technologies that enable high-volume manufacturing of DUV lithography extensions

    NASA Astrophysics Data System (ADS)

    Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin

    2012-03-01

    Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.

  8. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    SciTech Connect

    Chung, Kunook; Beak, Hyeonjun; Tchoe, Youngbin; Oh, Hongseok; Yi, Gyu-Chul; Yoo, Hyobin; Kim, Miyoung

    2014-09-01

    We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO{sub 2}/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, In{sub x}Ga{sub 1–x}N/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  9. Micro-pixel array of organic light-emitting diodes applying imprinting technique with a polymer replica

    NASA Astrophysics Data System (ADS)

    Park, Tae Hyun; Kim, Young Min; Park, Young Wook; Choi, Jin Hwan; Jeong, Jin-Wook; Dong, Ki Young; Choi, Kyung Cheol; Ju, Byeong-Kwon

    2009-08-01

    Efficient micro-pixel array of small molecule organic light-emitting diodes (OLEDs) has been fabricated by an imprinting technique which uses a polymer replica. To confirm the effect of the oxygen plasma for removing the residual layer, the performance of two kinds of OLEDs with varying thicknesses of resin as the micro-pixel array, have been compared. The measured results of the OLEDs have shown comparable device performances that are significantly characterized depending on the residues on the substrate. The performance of enhanced device has achieved efficiencies of 3.6 cd/A and 1.9 lm/W at 20 mA/cm2.

  10. Investigation on Clarified Fruit Juice Composition by Using Visible Light Micro-Raman Spectroscopy

    PubMed Central

    Camerlingo, Carlo; Zenone, Flora; Delfino, Ines; Diano, Nadia; Mita, Damiano Gustavo; Lepore, Maria

    2007-01-01

    Liquid samples of clarified apple and apricot juices at different production stages were investigated using visible light micro-Raman spectroscopy in order to assess its potential in monitoring fruit juice production. As is well-known, pectin plays a strategic role in the production of clarified juice and the possibility of using Raman for its detection during production was therefore evaluated. The data analysis has enabled the clear identification of pectin. In particular, Raman spectra of apple juice samples from washed and crushed fruits revealed a peak at 845 cm-1 (typical of pectin) which disappears in the Raman spectra of depectinised samples. The fructose content was also revealed by the presence of four peaks at 823 cm-1, 872 cm-1, 918 cm-1 and 975 cm-1. In the case of apricot juice, several Raman fingerprints of β-carotene at 1008, 1159 and 1520 cm-1 were also highlighted. Present results resulted interesting for the exclusive use of optical methods for the quantitative determination of the above-mentioned substances in place of the biochemical assays generally used for this purpose, which are time consuming and require different chemical reagents for each of them.

  11. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel

    2017-06-01

    Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.

  12. Images and spectra of inhibited light propagation in a 2-dimensional photonic lattice at 1.5 {micro}m

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; McDonald, A.E.; Bieber, A.E.

    1996-06-01

    Using infrared light scattering microscopy, the authors have directly observed the inhibition of photon propagation in a 2-dimensional photonic lattice fabricated as a hexagonal array of AlGaAs posts. The lattice was formed by reactive ion etching of {approximately}400 nm diameter posts defined by electron beam lithography. The lattice design parameters correspond to a photonic bandgap near 1.5 {micro}m as calculated by Meade et al. This hexagonal array of posts is an improvement over early honeycomb lattices because it is easier to fabricate. The photonic lattice of 1.4 {micro}m high posts was incorporated into waveguide designed for single mode at 1.5 {micro}m. Several waveguide/lattice combinations were fabricated, including M-bar and K-bar lattice orientations aligned parallel to the waveguide and different numbers of lattice periods. The waveguide/lattice structures were fabricated on GaAs substrates that were subsequently thinned and cleaved to couple light into the waveguide facets. Using a specially designed triple infrared microscope system, they simultaneously imaged the input and output facets and the top surface of the waveguide as laser light was focused onto the input facet. Because of internal scattering in the waveguide, light is scattered upward outward and can be imaged with an infrared camera. Images for reflected input, waveguide scattered light, and transmitted output light for the waveguide with (left images) and without the photonic lattice (right images) are shown. The lefthand image shows how the lattice interrupts the transport of light through the waveguide.

  13. Microscopic study of stress effects around micro-crack tips using a non-contact stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Y.; Terasaki, N.; Nonaka, K.

    2016-09-01

    Fine-polishing techniques may cause micro-cracks under glass substrate surfaces. According to highly requirement from production field, a thermal stress-induced light scattering method (T-SILSM) was successfully developed for a non-contact inspection to detect the micro-cracks through changing in the intensity of light scattering accompanied by applying thermal stress at the responding position of the micro-cracks. In this study, in order to investigate that the origin of the measuring principle in microscopic order, a newly developed microscopic T-SILSM system with a rotation stage and a numerical simulation analysis were used to investigate the following; (1) the scattering points and surface in the micro-crack, (2) the stress concentration points in the micro-crack, and (3) the relationship between these information and the point in which intensity of the light scattering changes in the micro-crack through T-SILSM. Light scattering was observed at the responding position of the micro-crack with selectivity in the direction of laser irradiation even in the microscopic order. In addition, the position of the changes in the light scattering in was at both tips in the micro-crack, and it was consistent with the stress concentration point in the micro-crack. Therefore, it can be concluded that the intentional change in light scattering though T-SILSM is originated from light scattering at micro-crack and also from stress concentration and consecutive change in refractive index at both tips in micro-crack.

  14. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology.

    PubMed

    Henle, C; Raab, M; Cordeiro, J G; Doostkam, S; Schulze-Bonhage, A; Stieglitz, T; Rickert, J

    2011-02-01

    A novel computer aided manufacturing (CAM) method for electrocorticography (ECoG) microelectrodes was developed to be able to manufacture small, high density microelectrode arrays based on laser-structuring medical grade silicone rubber and high purity platinum. With this manufacturing process, we plan to target clinical applications, such as presurgical epilepsy monitoring, functional imaging during cerebral tumor resections and brain-computer interface control in paralysed patients, in the near future. This paper describes the manufacturing, implantation and long-term behaviour of such an electrode array. In detail, we implanted 8-channel electrode arrays subdurally over rat cerebral cortex over a period of up to 25 weeks. Our primary objective was to ascertain the electrode's stability over time, and to analyse the host response in vivo. For this purpose, impedance measurements were carried out at regular intervals over the first 18 weeks of the implantation period. The impedances changed between day 4 and day 7 after implantation, and then remained stable until the end of the implantation period, in accordance with typical behaviour of chronically implanted microelectrodes. A post-mortem histological examination was made to assess the tissue reaction due to the implantation. A mild, chronically granulated inflammation was found in the area of the implant, which was essentially restricted to the leptomeninges. Overall, these findings suggest that the concept of the presented ECoG-electrodes is promising for use in long-term implantations.

  15. Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications.

    PubMed

    Gauthier, Robert C; Tait, R Niall; Ubriaco, Mike

    2002-04-20

    We examine the light-activation properties of micrometer-sized gear structures fabricated with polysilicon surface micromachining techniques. The gears are held in place on a substrate through a capped anchor post and are free to rotate about the post. The light-activation technique is modeled on photon radiation pressure, and the equation of motion of the gear is solved for this activation technique. Experimental measurements of torque and damping are found to be consistent with expected results for micrometer-scale devices. Design optimization for optically actuated microstructures is discussed.

  16. Note: detection of micro-cracks in the interlayer dielectric film by the stress based light scattering method.

    PubMed

    Sakai, Kazufumi; Nonaka, Kazuhiro

    2011-11-01

    A phenomenon was discovered wherein light scattering strength from cracks increases when tensile stress is applied to micro-cracks produced in the interlayer dielectric film by chemical mechanical polishing treatment. It is likely that the change in light scattering intensity occurs because a region of high stress concentration (region with high variation in index of refraction) is produced near the crack tip due to stress, thus forming a type of scatterer. With this method, it is possible to detect only scatterers which respond to stress, and thus, it is possible to classify and separately detect cracks and particles. © 2011 American Institute of Physics

  17. Advanced manufacturing technologies for light-weight post- polished snap-together reflective optical system designs

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael N.

    2002-09-01

    Fast, light weight, off-axis, aspheric, reflective optical designs are increasingly being designed and built for space-based remote sensing, fire control systems, aerial reconnaissance, cryovac instrumentation and laser scanning. Diamond point turning (DPT) is the technology of first resort for many of these applications. In many cases the best diamond machining technologies available cannot meet the desired requirements for system wavefront error and scatter. Aluminum, beryllium, AlBeMet and silicon carbide mirrors, layered with thin films of electroless nickel or silicon can be first diamond machined and then post polished to achieve greatly enhanced performance levels for surface scatter, wavefront error (WFE), and alignment registration. By application of post polishing using precise null testing techniques, the objectives of snap-together, or limited compensation alignment of aggressive reflective optical systems can be achieved that are well beyond the performance envelope achievable by diamond machining alone. This paper discusses the tradeoffs among materials and processes selection for post polished reflective systems and illustrates actual applications including telescopes for earth and Mars orbit, and a commercial, high speed, flat field scan engine.

  18. Floating Light-Activated Micro Electrical Stimulators Tested in the Rat Spinal Cord

    PubMed Central

    Abdo, Ammar; Sahin, Mesut; Freedman, David S.; Cevik, Elif; Spuhler, Philipp S.; Unlu, M. Selim

    2011-01-01

    Microelectrodes of neural stimulation utilize fine wires for electrical connections to driving electronics. Breakage of these wires and the neural tissue response due to their tethering forces are major problems encountered with long term implantation of microelectrodes. The lifetime of an implant for neural stimulation can be substantially improved if the wire interconnects are eliminated. Thus, we proposed a floating light-activated micro electrical stimulator (FLAMES) for wireless neural stimulation. In this paradigm, a laser beam at near infrared (NIR) wavelengths will be used as a means of energy transfer to the device. In this study, microstimulators of various sizes were fabricated, with two cascaded GaAs p-i-n photodiodes, and tested in the rat spinal cord. A train of NIR pulses (0.2 ms, 50 Hz) was sent through the tissue to wirelessly activate the devices and generate the stimulus current. The forces elicited by intraspinal stimulation were measured from the ipsilateral forelimb with a force transducer. The largest forces were around 1.08N, a significant level of force for the rat forelimb motor function. These in vivo tests suggest that the FLAMES can be used for intraspinal microstimulation even for the deepest implant locations in the rat spinal cord. The power required to generate a threshold arm movement was investigated as the laser source was moved away from the microstimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source. PMID:21914931

  19. Spatiotemporal control of microRNA function using light-activated antagomirs.

    PubMed

    Connelly, Colleen M; Uprety, Rajendra; Hemphill, James; Deiters, Alexander

    2012-11-01

    MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators and have been shown to regulate many biological processes including embryonal development, cell differentiation, apoptosis, and proliferation. Variations in the expression of certain miRNAs have been linked to a wide range of human diseases - especially cancer - and the diversity of miRNA targets suggests that they are involved in various cellular networks. Several tools have been developed to control the function of individual miRNAs and have been applied to study their biogenesis, biological role, and therapeutic potential; however, common methods lack a precise level of control that allows for the study of miRNA function with high spatial and temporal resolution. Light-activated miRNA antagomirs for mature miR-122 and miR-21 were developed through the site-specific installation of caging groups on the bases of selected nucleotides. Installation of caged nucleotides led to complete inhibition of the antagomir-miRNA hybridization and thus inactivation of antagomir function. The miRNA-inhibitory activity of the caged antagomirs was fully restored upon decaging through a brief UV irradiation. The synthesized antagomirs were applied to the photochemical regulation of miRNA function in mammalian cells. Moreover, spatial control over antagomir activity was obtained in mammalian cells through localized UV exposure. The presented approach enables the precise regulation of miRNA function and miRNA networks with unprecedented spatial and temporal resolution using UV irradiation and can be extended to any miRNA of interest.

  20. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    PubMed

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Micro-X-ray fluorescence spectrometer with x-ray single bounce metallic capillary optics for light element analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mroczka, Robert; Żukociński, Grzegorz; Łopucki, Rafał

    2017-05-01

    In the last 20 years, , due to the rapid development of X-ray optics, micro X-ray fluorescence spectrometry (micro-XRF) has become a powerful tool to determine the spatial distribution of major, minor, and trace elements within a sample. Micro-X-ray fluorescence (micro-XRF) spectrometers for light element analysis (6 <= Z <= 14) using glass polycapillary optics are usually designed and applied to confocal geometry. Two such X-ray optics systems are used in this setup. The first one focuses the primary beam on the sample; the second restricts the field of view of the detector. In order to be able to analyze a wider range of elements especialy with (6 <= Z <= 14), both sample and detector are under vacuum. Depth resolution varies between 100 μm at 1 keV fluorescence energy (Na-Kα) and 30 μm for 17.5 keV (Mo-Kα) [1,2]. In order to improve resolution at energies below 9 keV, our group designed similar spectrometer (in cooperation with PREVAC) but instead of primary polycapillary optics we applied single bounce metallic capillaries optics , designed and manufactured in our Laboratory. The vacuum chumber is currently under construction and is expected to be fully operational in September this year. Single bounce gold capillaries with elliptic internal shape have recently been redesigned and developed in our Laboratory. Surface roughness was reduced up to 0.5 nm and slope error to 0.3 mrad. For these capillaries an expected depth resolution varies from 3 μm (1 keV) and 10 µm for 9 keV (Cu-Kα). The spectrometer equipped with gold capillaries offers the possibility of elemental analysis with better depth resolution than is offerred by glass polycapillaries at energies below 9 keV. Furthermore, we will compare the capabilities and limitations of this spectrometer with others, that use laboratory and/or synchrotron sources. Acknowledgments: This work was supported and co-funded by the European Union as part of the Operational Programme Development of Eastern Poland for

  2. Contour scanning of textile preforms using a light-section sensor for the automated manufacturing of fibre-reinforced plastics

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Niggemann, C.; Mersmann, C.

    2008-04-01

    Fibre-reinforced plastics (FRP) are particularly suitable for components where light-weight structures with advanced mechanical properties are required, e.g. for aerospace parts. Nevertheless, many manufacturing processes for FRP include manual production steps without an integrated quality control. A vital step in the process chain is the lay-up of the textile preform, as it greatly affects the geometry and the mechanical performance of the final part. In order to automate the FRP production, an inline machine vision system is needed for a closed-loop control of the preform lay-up. This work describes the development of a novel laser light-section sensor for optical inspection of textile preforms and its integration and validation in a machine vision prototype. The proposed method aims at the determination of the contour position of each textile layer through edge scanning. The scanning route is automatically derived by using texture analysis algorithms in a preliminary step. As sensor output a distinct stage profile is computed from the acquired greyscale image. The contour position is determined with sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a sigmoid function. The whole contour position is generated through data fusion of the measured edge points. The proposed method provides robust process automation for the FRP production improving the process quality and reducing the scrap quota. Hence, the range of economically feasible FRP products can be increased and new market segments with cost sensitive products can be addressed.

  3. Light Chain Deposition Disease Diagnosed with Laser Micro-dissection, Liquid Chromatography, and Tandem Mass Spectrometry of Nodular Glomerular Lesions

    PubMed Central

    Kasagi, Tomomichi; Nobata, Hironobu; Suzuki, Keisuke; Miura, Naoto; Banno, Shogo; Takami, Akiyoshi; Yamashita, Taro; Ando, Yukio; Imai, Hirokazu

    2017-01-01

    A 42-year-old man developed nephrotic syndrome and rapidly progressive renal failure. Kidney biopsy demonstrated nodular glomerulosclerosis, negative Congo red staining, and no deposition of light or heavy chains. Laser micro-dissection and liquid chromatography with tandem mass spectrometry of nodular lesions revealed the presence of a kappa chain constant region and kappa III variable region, which signified light chain deposition disease. Dexamethasone and thalidomide were effective in decreasing the serum levels of free kappa light chain from 147.0 to 38.0 mg/L, eliminating proteinuria, and halting the worsening of the kidney dysfunction, with serum creatinine levels stable around 4.0 mg/dL for 3 years. PMID:28050001

  4. Stray light reduction in testing of NIRSpec subsystems: the focal plane array and micro-shutter assembly

    NASA Astrophysics Data System (ADS)

    Connelly, Joseph A.; Hadjimichael, Theo J.; Boucarut, Rene A.; Tveekrem, June L.; Mott, D. Brent

    2006-08-01

    The James Webb Space Telescope (JWST) is an infrared, space-based telescope scheduled for launch in 2013. JWST will hold four scientific instruments, including the Near Infrared Spectrograph (NIRSpec). NIRSpec operates in the wavelength range from 0.6 to 5 microns, and will be assembled by the European Space Agency. NASA/Goddard Space Flight Center (GSFC) is responsible for two NIRSpec subsystems: the detector subsystem, with the focal plane array (FPA), and the micro-shutter subsystem, with the micro-shutter assembly (MSA). The FPA consists of two side-by-side Rockwell Scientific HgCdTe 2Kx2K detectors, with the detectors and readout electronics optimized for low noise. The MSA is a GSFC developed micro-electro-mechanical system (MEMS) that serves as a programmable slit mask, allowing NIRSpec to obtain simultaneous spectra of >100 objects in a single field of view. We present the optical characterization test plan of the FPA. The test plan is driven by many requirements: cryogenic operating temperature, a flight-like beam shape, and multi-wavelength flux from 1 to 10,000 photons per second, thus low stray light is critical. We use commercial optical modeling software to predict stray light effects at the FPA. We also present the optical contrast test plan of the MSA. Each individual shutter element operates in an on/off state, and the most important optical metric is contrast. The MSA is designed to minimize stray and scattered light, and the test setup reduces stray light such that the optical contrast is measurable.

  5. Micro-leakage of a Fissure Sealant Cured Using Quartz-tungsten-halogen and Plasma Arc Light Curing Units.

    PubMed

    Bahrololoomi, Zahra; Soleimani, Ali Asghar; Jafari, Najmeh; Varkesh, Bentolhoda

    2014-01-01

    Background and aims. Newer curing units such as plasma arc can polymerize the sealants in much shorter curing times. The aim of this study was to compare the effect of two different curing units on the micro-leakage of a fissure sealant material. Materials and methods. Sixty two extracted premolars without caries were randomly divided into two groups of 31 samples. Occlusal surfaces of all teeth were cleansed. Then, teeth surfaces were etched by 37% phosphoric acid. After rinsing and drying, occlusal surfaces of teeth were sealed by a fissure sealant. The sealant was then cured using either a halogen light curing unit or a plasma arc curing light. After sealing, the teeth were thermocycled for 500 cycles. The teeth were then sectioned and examined for micro-leakage. Statistical analyses were performed with Mann-Whitney test. Results. There was no significant difference between two groups regarding micro-leakage (P = 0.42). Conclusion. Results showed that there was no significant difference between two different curing units. Therefore, plasma arc unit might be a useful alternative for sealant polymerization.

  6. Micro-leakage of a Fissure Sealant Cured Using Quartz-tungsten-halogen and Plasma Arc Light Curing Units

    PubMed Central

    Bahrololoomi, Zahra; Soleimani, Ali Asghar; Jafari, Najmeh; Varkesh, Bentolhoda

    2014-01-01

    Background and aims. Newer curing units such as plasma arc can polymerize the sealants in much shorter curing times. The aim of this study was to compare the effect of two different curing units on the micro-leakage of a fissure sealant material. Materials and methods. Sixty two extracted premolars without caries were randomly divided into two groups of 31 samples. Occlusal surfaces of all teeth were cleansed. Then, teeth surfaces were etched by 37% phosphoric acid. After rinsing and drying, occlusal surfaces of teeth were sealed by a fissure sealant. The sealant was then cured using either a halogen light curing unit or a plasma arc curing light. After sealing, the teeth were thermocycled for 500 cycles. The teeth were then sectioned and examined for micro-leakage. Statistical analyses were performed with Mann-Whitney test. Results. There was no significant difference between two groups regarding micro-leakage (P = 0.42). Conclusion. Results showed that there was no significant difference between two different curing units. Therefore, plasma arc unit might be a useful alternative for sealant polymerization. PMID:25587389

  7. Adaptation of an evaporative light-scattering detector to micro and capillary liquid chromatography and response assessment.

    PubMed

    Gaudin, Karen; Baillet, Arlette; Chaminade, Pierre

    2004-10-08

    A commercially available evaporative light-scattering detection (ELSD) system was adapted for micro and capillary LC. Therefore the various parameters involved in the droplet formation during the nebulization step in the ELSD system were studied. It was shown that the velocity term in the Nukiyama Tanasawa equation remains constant, leading to droplets of the same order of magnitude for narrow bore and capillary columns. Consequently, the ELSD modification was performed by decreasing the internal diameter of the effluent capillary tube in the nebulizer nozzle and by keeping its external diameter constant. Next, response curves for a conventional and the developed micro and capillary LC were compared as to investigate why a linear ELSD response is often obtained when used in micro or capillary LC. By splitting the flow rate post column, we showed that the nebulization process was not at the origin of the phenomenon. For ceramide III and tripalmitin, the response curves were found to be non-linear. However the curvature was less significant when the columns internal diameter decreased. Calculated particle size profiles for micro or capillary LC suggest that the particle entering the detection chamber are bigger than under conventional LC conditions. Last, triethylamine and formic acid were used to increase the response of the detector. The response enhancement, expected from previous studies, was established for the two lipids involved in this study.

  8. A PIV study of light-driven tangential micro flows occurring near a decane-water interface

    NASA Astrophysics Data System (ADS)

    Cui, Nai-Yi; Zhang, Fan; Wan, Xuexiang

    2015-10-01

    It is observed that light radiation can drive tangential micro/mili-scale flows in vicinity of the liquid-liquid interface between two immiscible liquids. Particle Image Velocimetry (PIV) study for these newly-reported phenomena shows that the strength of these light-driven flows strongly depends on the radiation power of the excitation light used, the inclination of the liquid-liquid interface, the thickness of the top-layer liquid, and the concentrations of the liquid involved. The effect occurs only in the case that the thickness of the top-layer liquid is sufficiently thin and positionally non-uniform. For a decane-water dual layer liquid system with a particular geometry, a Gaussian-type CW IR laser with a radiation power of several tens mili-watts can maintain a micro-scale flow with its maximum flow speed of several millimeter per second at the fastest point of the flow stream. The strength of the flows increases with inclination of the liquid-liquid interface but decreases with the thickness of the top-layer liquid. Adding another solute liquid into water in the decane-water system weakens the strength of the flows remarkably. For interpretation, Marangoni effect in association with an asymmetric deflection of the excitation light may be employed as a driving mechanism behind these phenomena. However, some characteristic behaviors of these flows revealed by PIV data also suggest that the recoil effects due to the abrupt change in the momenta of photons, which also occur associated with asymmetric light deflection at the inclined interfaces of liquid media, may also contribute significantly. In terms of application, these phenomena suggest a novel technological principle, based on which direct mechanical actuation and manipulation of liquids of extensive quantity using light beams may be accomplished.

  9. X27A - A New Hard X-ray Micro-Spectroscopy Facility at the National Synchrtron Light Source

    SciTech Connect

    Ablett,J.; Kao, C.; Reeder, R.; Tang, Y.; Lanzirotti, A.

    2006-01-01

    A new hard X-ray micro-spectroscopy beamline has recently been installed at bending-magnet beamline X27A at the National Synchrotron Light Source, where the focus of research is primarily directed towards the environmental, geological and materials science communities. This instrument delivers moderate, {approx}10 {micro}m spatial resolution using achromatic dynamically bent Kirkpatrick-Baez mirrors, in addition to providing high X-ray flux throughput and selectable energy resolution. The balance between moderate spatial resolution and high flux throughput, in combination with a liquid nitrogen-cooled 13-element energy-dispersive high-purity germanium detector, is particularly well suited to the investigation of dilute and thin-film systems using the fluorescence X-ray absorption fine-structure mode of detection. In this paper, we report on the design and performance of this instrument and highlight a recent experimental study undertaken at this facility.

  10. Micro optical power meter for direct in situ measurement of light transmitted from microscopic systems and focused on micro-samples.

    PubMed

    Zhang, Gangping; Huang, Yao-Xiong

    2012-08-01

    This paper reports a micro optical power meter which is able to perform effective and precise measurement on the optical power at the focus of different microscopic systems. The power meter can be easily placed on the stages of different microscopes and even partly immersed into solution to directly measure the optical power transmitted from the microscope objective and focused on the sample suspended in solution. The testing experiments demonstrated that the power meter has the characteristics of high precision, excellent linearity, high sensitivity, good stability, and high responding speed. It can accurately measure power levels from 0.1 to 50 mW in visible wavelength in various conditions and environments, which may encounter in practical applications. The optical power measurements using the power meter performed in some biological cell culturing solutions and in air for the same laser light reveal the first time that the powers measured in solutions were about 5%-8% greater than that measured in air at the same position. This not only suggests the necessity of performing direct measurement in situ in solution to obtain the real optical power projected on the suspended samples, but also indicates that such a micro optical power meter can meet almost all the requirements of optical power measurement in different fields from biomedicine to material sciences.

  11. Micro optical power meter for direct in situ measurement of light transmitted from microscopic systems and focused on micro-samples

    NASA Astrophysics Data System (ADS)

    Zhang, Gangping; Huang, Yao-Xiong

    2012-08-01

    This paper reports a micro optical power meter which is able to perform effective and precise measurement on the optical power at the focus of different microscopic systems. The power meter can be easily placed on the stages of different microscopes and even partly immersed into solution to directly measure the optical power transmitted from the microscope objective and focused on the sample suspended in solution. The testing experiments demonstrated that the power meter has the characteristics of high precision, excellent linearity, high sensitivity, good stability, and high responding speed. It can accurately measure power levels from 0.1 to 50 mW in visible wavelength in various conditions and environments, which may encounter in practical applications. The optical power measurements using the power meter performed in some biological cell culturing solutions and in air for the same laser light reveal the first time that the powers measured in solutions were about 5%-8% greater than that measured in air at the same position. This not only suggests the necessity of performing direct measurement in situ in solution to obtain the real optical power projected on the suspended samples, but also indicates that such a micro optical power meter can meet almost all the requirements of optical power measurement in different fields from biomedicine to material sciences.

  12. Fibre coupled micro-light emitting diode array light source with integrated band-pass filter for fluorescence detection in miniaturised analytical systems.

    PubMed

    Vaculovičová, Markéta; Akther, Mahbub; Maaskant, Pleun; Brabazon, Dermot; Macka, Mirek

    2015-04-29

    In this work, a new type of miniaturized fibre-coupled solid-state light source is demonstrated as an excitation source for fluorescence detection in capillary electrophoresis. It is based on a parabolically shaped micro-light emitting diode (μ-LED) array with a custom band-pass optical interference filter (IF) deposited at the back of the LED substrate. The GaN μ-LED array consisted of 270 individual μ-LED elements with a peak emission at 470 nm, each about 14 μm in diameter and operated as a single unit. Light was extracted through the transparent substrate material, and coupled to an optical fibre (OF, 400 μm in diameter, numerical aperture NA=0.37), to form an integrated μ-LED-IF-OF light source component. This packaged μ-LED-IF-OF light source emitted approximately 225 μW of optical power at a bias current of 20 mA. The bandpass IF filter was designed to reduce undesirable LED light emissions in the wavelength range above 490 nm. Devices with and without IF were compared in terms of the optical power output, spectral characteristics as well as LOD values. While the IF consisted of only 7.5 pairs (15 layers) of SiO2/HfO2 layers, it resulted in an improvement of the baseline noise as well as the detection limit measured using fluorescein as test analyte, both by approximately one order of magnitude, with a LOD of 1×10(-8) mol L(-1) obtained under optimised conditions. The μ-LED-IF-OF light source was then demonstrated for use in capillary electrophoresis with fluorimetric detection. The limits of detection obtained by this device were compared to those obtained with a commercial fibre coupled LED device.

  13. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    PubMed Central

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-01-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW. PMID:27485470

  14. Laser processing of SnO2 electrode materials for manufacturing of 3D micro-batteries

    NASA Astrophysics Data System (ADS)

    Kohler, R.; Proell, J.; Ulrich, S.; Przybylski, M.; Pfleging, W.

    2011-03-01

    The material development for advanced lithium-ion batteries plays an important role in future mobile applications and energy storage systems. It is assumed that electrode materials made of nano-composited materials will improve battery lifetime and will lead to an enhancement of lithium diffusion and thus improve battery capacity and cyclability. A major problem concerning thin film electrodes is, that increasing film thickness leads to an increase in lithium diffusion path lengths and thereby a decrease in power density. To overcome this problem, the investigation of a 3D-battery system with an increased surface area is necessary. UV-laser micromachining was applied to create defined line or grating structures via mask imaging. SnO2 is a highly investigated anode material for lithium-ion batteries. Yet, the enormous volume changes occurring during electrochemical cycling lead to immense loss of capacity. The formation of micropatterns via laser ablation to create structures which enable the compensation of the volume expansion was investigated in detail. Thin films of SnO2 were deposited in Ar:O2 atmosphere via r.f. magnetron sputtering on silicon and stainless steel substrates. The thin films were studied with X-ray diffraction to determine their crystallinity. The electrochemical properties of the manufactured films were investigated via electrochemical cycling against a lithium anode.

  15. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  16. Process induced transformations during tablet manufacturing: phase transition analysis of caffeine using DSC and low frequency micro-Raman spectroscopy.

    PubMed

    Hubert, Sébastien; Briancon, Stéphanie; Hedoux, Alain; Guinet, Yannick; Paccou, Laurent; Fessi, Hatem; Puel, François

    2011-11-25

    The phase transition of a model API, caffeine Form I, was studied during tableting process monitored with an instrumented press. The formulation used had a plastic flow behavior according to the Heckel model in the compression pressure range of 70-170 MPa. The quantitative methods of analysis used were Differential Scanning Calorimetry (DSC) and low frequency Micro Raman Spectroscopy (MRS) which was used for the first time for the mapping of polymorphs in tablets. They brought complementary contributions since MRS is a microscopic spectral analysis with a spatial resolution of 5 μm(3) and DSC takes into account a macroscopic fraction (10mg) of the tablet. Phase transitions were present at the surfaces, borders and center of the tablets. Whatever the pressure applied during the compression process, the transition degree of caffeine Form I toward Form II was almost constant. MRS provided higher transition degrees (50-60%) than DSC (20-35%). MRS revealed that caffeine Form I particles were partially transformed in all parts of the tablets at a microscopic scale. Moreover, tablet surfaces showed local higher transition degree compared to the other parts.

  17. UV micro-imprint patterning for tunable light trapping in p-i-n thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Zhang, Xiaodan; Han, Bing; Bai, Lisha; Zhao, Huixu; Yang, Fu; Liang, Junhui; Huang, Qian; Chen, Xinliang; Zhao, Ying

    2015-11-01

    In this paper, we used UV micro-imprint lithography periodic patterning combined with self-textured BZO films with a wide range of texture distributions for light trapping in thin-film silicon solar cells. It was found that the feature size of the periodic textures has a significant influence on the light trapping capacity of the glass substrate and the external quantum efficiency (EQE) of microcrystalline silicon (μc-Si:H) solar cells. Microcrystalline silicon solar cells, deposited on periodic textures of 5 μm, showed an improved photocurrent density without any loss in the open-circuit voltage and fill factor; hence, resulting in an overall efficiency increase of 6.28%.

  18. Inactivation of foodborne pathogenic and spoilage micro-organisms using ultraviolet-A light in combination with ferulic acid.

    PubMed

    Shirai, A; Watanabe, T; Matsuki, H

    2017-02-01

    The low energy of UV-A (315-400 nm) is insufficient for disinfection. To improve UV-A disinfection technology, we evaluated the effect of ferulic acid (FA) addition on disinfection by UV-A light-emitting diode (LED) (350-385 nm) against various food spoilers and pathogens (seven bacteria and four fungi species). Photoantimicrobial assays were performed at FA concentrations below the MIC. The MIC of the isomerized FA, consisting of 93% cis-form and 7% trans-form, was very similar to that of the commercially available FA (trans-form). Irradiation with UV-A (1·0 J cm(-2) ) in the presence of 100 mg l(-1) FA resulted in enhanced reducing of all of the tested bacterial strains. A combination of UV-A (10 J cm(-2) ) and 1000 mg l(-1) FA resulted in enhanced reducing of Saccharomyces cerevisiae and one of the tested filamentous fungi. These results demonstrated that the combination of a short-term application of UV-A and FA at a low concentration yielded synergistic enhancement of antimicrobial activity, especially against bacteria. Microbial contamination is one of the most serious problems for foods, fruit and sugar thick juices. UV light is suitable for the nonthermal decontamination of food products by inactivating the contaminating micro-organisms. However, UV-A exposure is insufficient for disinfection. This study demonstrates that the combination of UV-A LED light (350-385 nm), which is not hazardous to human eyes and skin, and ferulic acid (FA), a known phytochemical and food additive, provides synergistic antimicrobial activity against foodborne pathogenic and spoilage micro-organisms. Therefore, FA addition to UV-A light treatment may be useful for improvement of UV-A disinfection technology to prevent food deterioration. © 2016 The Society for Applied Microbiology.

  19. Effects of amount of graphene oxide and the times of LightScribe on the performance of all-solid-state flexible graphene-based micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Cai, Fenglian; Tao, Cheng-an; Li, Yujiao; Yin, Wenchang; Wang, Xueye; Wang, Jianfang

    2017-03-01

    Recently, the preparation of flexible graphene-based micro-supercapacitors has attracted considerable attention. In this paper, a flexible and all-solid-state micro-supercapacitor was fabricated by LightScribe technology. Additionally, the influences of the drop-cast amount of graphene oxide (GO) and the numbers of LightScribe times on the performance of the supercapacitor were systematically investigated by means of cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge. It was determined that the electrochemical performance of the micro-supercapacitor was optimal when the drop-cast amount was 0.38 mg cm‑2. Moreover, a positive correlation was found between the capacitance and the number of LightScribe times. The maximum capacitance was 2.9 mF cm‑2, which was reached with 20 rounds of LightScribe.

  20. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator

    PubMed Central

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-01-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells. PMID:26323524

  1. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.

    PubMed

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  2. Photocatalytic degradation efficacy of Bi4Ti3O12 micro-scale platelets over methylene blue under visible light

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Jia, Zhen; Lei, E.; Wang, Liguo; Li, Zhaoyang; Dai, Yejing

    2013-11-01

    <001> textured Bi4Ti3O12 platelets with micro scale size were synthesized by a facile molten salt method. The photocatalytic activities of the as-prepared samples were measured with the photodegradation of methylene blue at room temperature under visible light irradiation. The Bi4Ti3O12 with the aspect ratio of 35 exhibited good absorption in the visible light region and the photodegradation against methylene blue was higher than that of anatase TiO2 reference, showing that the high degree of preferred {001} facets on the plate surface benefits the electronic transmission. In addition, the layer-pervoskite structure facilitates the mobility of the photogenerated carriers and hampers their recombination. The above results indicated that the large specific surface area of the as-prepared samples could attribute to the presence of a number of oxygen vacancies and then lead to the good photo-electric property. This work proposed an alternative way to tailor the structure of micro-sized platelets to get excellent properties comparable to the nano materials.

  3. Pattern-Directed Ordering of Spin-Dewetted Liquid Crystal Micro- or Nanodroplets as Pixelated Light Reflectors and Locomotives.

    PubMed

    Ravi, Bolleddu; Chakraborty, Snigdha; Bhattacharjee, Mitradip; Mitra, Shirsendu; Ghosh, Abir; Gooh Pattader, Partho Sarathi; Bandyopadhyay, Dipankar

    2017-01-11

    Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.

  4. The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.

    PubMed

    Ip, Blanche C; Cui, Francis; Tripathi, Anubhav; Morgan, Jeffrey R

    2016-05-25

    thirty times with Q(c) corresponding to our simulation. Our bio-gripper was capable of stacking and aligning twenty microtissues. In summary, we successfully engineered a robust controllable fluid-driven bio-gripper to efficiently manipulate living microtissues and micro-objects in an aqueous environment.

  5. 2 nm continuously tunable 488nm micro-integrated diode-laser-based SHG light source for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Braune, M.; Maiwald, M.; Sumpf, B.; Tränkle, G.

    2016-04-01

    Raman spectroscopy in the visible spectral range is of great interest due to resonant Raman effects. Nevertheless, fluorescence and ambient light can mask the weak Raman lines. Shifted excitation Raman difference spectroscopy is a demonstrated tool to overcome this drawback. To apply this method, a light source with two alternating wavelengths is necessary. The spectral distance between these two wavelengths has to be adapted to the width of the Raman signal. According to the sample under investigation the width of the Raman signal could be in the range of 3 cm-1 - 12 cm-1. In this work, a micro-integrated light source emitting at 488 nm with a continuous wavelength tuning range up to 2 nm (83 cm-1) is presented. The pump source, a DFB laser emitting at 976 nm, and a periodically poled lithium niobate (PPLN) ridge waveguide crystal is used for the second harmonic generation (SHG). Both components are mounted on a μ-Peltier-element for temperature control. Here, a common wavelength tuning of the pump wavelength and the acceptance bandwidth of the SHG crystal via temperature is achieved. With the results the light source is suitable for portable Raman and SERDS experiments with a flexible spectral distance between both excitation wavelengths for SERDS with respect to the sample under investigation.

  6. Catalyzed light hydride nanomaterials embedded in a micro-channels hydrogen storage container.

    PubMed

    Dehouche, Zahir; Peretti, Hernán A; Yoo, Yeong; Belkacemi, Khaled; Goyette, Jacques

    2009-01-01

    Activated alloys synthesized by arc-melting were examined as catalysts for improving the hydrogen sorption characteristics of nanostructured magnesium hydride, proposed as a reversible hydrogen storage material. The MgH(2)-catalyst absorbing materials were prepared by ball milling of pure MgH(2) with hydrided Zr(47)Ni(53), Zr(9)Ni(11), and other alloys investigated. The nanostructured MgH(2)-intermetallic systems were tested at 250 degrees C and catalyst addition of eutectoid Zr(47)Ni(53) resulted in the fastest desorption time and highest initial desorption rate. The catalyzed Mg-hydride with activated Zr(9)Ni(11) and Zr(7)Ni(10) phases showed fast desorption kinetics. Moreover, the results demonstrated that the composition of dispersed Zr(x)Ni(y)catalysts has a strong influence on the amount of accumulated hydrogen and desorption rate of Mg-nanocomposite. Part two covers advanced micro-channels hydrogen storage module design based on the results of semi-empirical computer simulations of heat and mass transfers in the container. The micro-channels reservoir concept offers many advantages over the conventional metal hydride hydrogen storage system. It is a micro-structured system that can pack a lot of power into a small space and dissipate effectively the heat of the sorption reactions. This review summarizes recent patents related to CNTS.

  7. Use of light emitting diodes (LEDs) for enhanced lipid production in micro-algae based biofuels.

    PubMed

    Severes, Alifha; Hegde, Shashank; D'Souza, L; Hegde, Smitha

    2017-05-01

    Microalgae are an alternative source for renewable energy to overcome the energy crises caused by exhaustion of fuel reserves. Algal biofuel technology demands a cost effective strategy for net profitable productivity. Inconsistent illumination intensities hinder microalgal growth. The light-utilizing efficiency of the cells is critical. Light scarcity leads to low production and high intensities cause photo-inhibition. We report effective usage of LEDs of different band wavelengths on the growth of microalgae in a closed, controlled environment to generate biomass and lipid yields. Among the different intensity and wavelengths tested. The light intensities of 500lx of blue-red combination gave maximum biomass in terms of cell density. LED of red light 220lx wavelength doubled the lipid dry weight from 30% (w/w) in white light to 60% (w/w). Thin layer lipid chromatogram demonstrated a dense and prominent spot of triacylglycerols in the red light, 220lx grown cultures. The FTIR profile indicates that different wavelength exposure did not alter the functional groups or change the chemical composition of the extracted lipids ensuring the quality of the product. We reiterate the fact that combination of red and blue LEDs is favoured over white light illumination for generation of biomass. In addition, we report an exciting finding of exposure to LEDs of red wavelength post-biomass generation lead to enhanced lipid production. This simple process doubled the lipid content harvested in 20days culture period. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Visible Light Driven Photocatalytic Reactor Based on Micro-structured Polymer Optical Fiber Preform

    NASA Astrophysics Data System (ADS)

    Li, Dong-Dong; She, Jiang-Bo; Wang, Chang-Shun; Peng, Bo

    2014-05-01

    A novel visible light driven photocatalytic reactor with 547 pieces of Ag/AgBr-film-modified capillaries is reported and it is derived from a microstructured polymer optical fiber (MPOF) preform. The MPOF preform not only plays the role of a light-transmitting media, but it is also a Ag/AgBr supporting and waste-water pipe to supply the photocatalytic degradation of dyes solute. The photocatalytic reactor has such a large surface area for Ag/AgBr loading, which is a visible light driven photocatalyst that photodegradation efficiency is enhanced.

  9. Light emission of metal halide lamps under micro- and hypergravity conditions

    SciTech Connect

    Stoffels, W.W.; Kemps, P.C.M.; Beckers, J.; Kroesen, G.M.W.; Haverlag, M.

    2005-12-12

    The wavelength-integrated light output from a metal halide discharge lamp is measured for gravity conditions varying from 0 to 1.8 g during parabolic flights. The results show that the changing gravity affects the convection flow in the lamp, which in turn changes the total light output. For vertically burning lamps, the sign and magnitude of the effect can be predicted using the demixing parameter: the ratio of typical diffusion to convection times. In horizontally burning lamps at 0 g, the absence of convective mixing results in a reduced light emission.

  10. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    PubMed

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P < 0.05. Results . The average grade of inflammation for the nano-hybrid on the 2nd day of implantation was 3.3. The micro-hybrid resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited

  11. Enabling high volume manufacturing of double patterning immersion lithography with the XLR 600ix ArF light source

    NASA Astrophysics Data System (ADS)

    Rokitski, Rostislav; Fleurov, Vladimir; Bergstedt, Robert; Ye, Hong; Rafac, Robert; Jacques, Robert; Trintchouk, Fedor; Ishihara, Toshihiko; Rao, Rajasekhar; Cacouris, Theodore; Brown, Daniel; Partlo, William

    2009-03-01

    Deep ultraviolet (DUV) lithography improvements have been focused on two paths: further increases in the effective numerical aperture (NA) beyond 1.3, and double patterning (DP). High-index solutions for increasing the effective NA have not gained significant momentum due to several technical factors, and have been eclipsed by an aggressive push to make DP a high-volume manufacturing solution. The challenge is to develop a cost-effective solution using a process that effectively doubles the lithography steps required for critical layers, while achieving a higher degree of overlay performance. As a result, the light source requirements for DP fall into 3 main categories: (a) higher power to enable higher throughput on the scanner, (b) lower operating costs to offset the increased number of process steps, and (c) high stability of optical parameters to support more stringent process requirements. The XLR 600i (6kHz, 90W @15mJ) was introduced last year to enable DP by leveraging the higher performance and lower operating costs of the ring architecture XLR 500i (6kHz, 60W @10mJ) platform currently used for 45nm immersion lithography in production around the world. In February 2009, the XLR 600ix was introduced as a 60/90W switchable product to provide flexibility in the transition to higher power requirements as scanner capabilities are enhanced. The XLR 600ix includes improved optics materials to meet reliability requirements while operating at higher internal fluences. In this paper we will illustrate the performance characteristics during extended testing. Examples of performance include polarization stability, divergence and pointing stability, which enable consistent pupil fill under extreme illumination conditions, as well as overall thermal stability which maintains constant beam performance under large changes in laser operating modes. Furthermore, the unique beam uniformity characteristics that the ring architecture generates result in lower peak energy

  12. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with

  13. Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

    PubMed

    Zhao, Peng; Zhao, Hongping

    2012-09-10

    The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference time domain (3D-FDTD) method was used to calculate the light extraction efficiency for the InGaN QWs LEDs emitting at 460nm and 550 nm, respectively. The effects of the GaN micro-dome feature size and the p-GaN layer thickness on the light extraction efficiency were studied systematically. Studies indicate that the p-GaN layer thickness is critical for optimizing the TFFC LED light extraction efficiency. Significant enhancement of the light extraction efficiency (2.5-2.7 times for λ(peak) = 460nm and 2.7-2.8 times for λ(peak) = 550nm) is achievable from TFFC InGaN QWs LEDs with optimized GaN micro-dome diameter and height.

  14. Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units.

    PubMed

    Rueggeberg, Frederick A; Cole, Megan A; Looney, Stephen W; Vickers, Aaron; Swift, Edward J

    2009-01-01

    Manufacturer-recommended exposure durations for light-curing units are often understated and might not have true clinical relevance. To compare composite depths of cure among exposure durations provided by the manufacturer and those obtained when optimizing exposure duration for biaxial flexural strength or for composite compule-scraping tests when using different light-curing units. A hybrid composite (Prodigy, A3, Kerr, Orange, CA, USA) was exposed to different light-curing units (all manufactured by Kerr Demetron) (conventional quartz-tungsten-halogen [QTH], conventional blue light-emitting diode [LED(CONV)] or a high-intensity blue LED light [LED(HIGH)]) for various amounts of time, including that recommended by the manufacturer for the given light. A test model was designed in which 0.5-mm thick composite discs were stacked between Mylar sheets to a total composite thickness of 3.0 mm. The top of each stack was exposed to the different lights for a variety of exposures at a 2-mm distance. Twenty-four hours later, the stacks were disassembled, and the individual discs from each 0.5-mm thick increment were tested for biaxial flexure strength. Ten discs were made for each exposure duration from each light. Statistical analysis (analysis of variance, Dunnett-Hsu post hoc test, alpha = 0.05) was used to identify the exposure duration needed for the flexural strength at a 2.5-mm depth (manufacturer-recommended thickness) to be similar to that at the topmost 0.5-mm thick increment. Compules of the same composite were modified to form cylinders in which their contents were forced to one end and photopolymerized (at a 2-mm distance) for a variety of exposure durations using the same light units mentioned above (N = 5). Twenty-four hours later, compule contents were extruded, and the unpolymerized residue was removed using hand scraping with a plastic spatula. The thickness of the resulting specimen was measured, and was plotted as a function of exposure duration for

  15. Ellipsometry-like analysis of polarization state for micro cracks using stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro

    2016-03-01

    Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.

  16. Micro mirrors based coupling of light to multi-core fiber realizing in-fiber photonic neural network processor

    NASA Astrophysics Data System (ADS)

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; London, Michael; Zalevsky, Zeev

    2017-02-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a DMD based approaches to realize energetically efficient light coupling into a multi-core fiber realizing a unique design for in-fiber optical neural networks. Neurons and synapses are realized as individual cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in Erbium-doped cores mimics synaptic interactions. In order to dynamically and efficiently couple light into the multi-core fiber a DMD based micro mirror device is used to perform proper beam shaping operation. The beam shaping reshapes the light into a large set of points in space matching the positions of the required cores in the entrance plane to the multi-core fiber.

  17. Spatio-angular light control in microscopes using micro mirror arrays

    NASA Astrophysics Data System (ADS)

    Rückerl, F.; Bellow, S.; Berndt, D.; Tinevez, J.-Y.; Heber, J.; Wagner, M.; Shorte, S.

    2015-03-01

    Micromirror arrays (MMA) are spatial light modulators (SLM) used in a wide variety of applications for structured light manipulation i.e. structured illumination microscopy. In our setup, we use a combination of two micromirror arrays, which allow not only to spatially structure the light in the field of view, but also to control the direction and angle of the incident light. In order to achieve this, a first MMA is imaged in the focal plane and used as a black and white (or even greyscale) mask. With a fully illuminated objective, this image would normally be formed from the complete light cone. By imaging the second MMA onto the backfocal plane of the objective only a portion of the light cone is used to form the image. This enables avoiding the unwanted illumination of out of focus objects. The MMAs in our setup consist of an array of 256x256 micromirrors, that can each be individually and continuously tilted up to 450nm, allowing the creation of greyscale images in real time in the illumination pattern. The mirrors themselves can be tilted for times as short as 10μs up to several seconds. This gives unprecedented control over the illumination times and intensities in the sample. Furthermore, our enhanced coating technology yields a high reflectivity over a broad optical spectrum (240- 1000nm). Overall, the setup allows targetted illumination of subcellular regions enabling the precise, localized activation of optogenetic probes or the activation and deactivation of signaling cascades using photo-activated ion-channels.

  18. Thin-film solar cells with InGaAs/GaAsP multiple quantum wells and a rear surface etched with light trapping micro-hole array

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaroh; Inoue, Tomoyuki; Sodabanlu, Hassanet; Sugiyama, Masakazu; Nakano, Yoshiaki

    2015-08-01

    A light trapping effect in GaAs p-i-n solar cells with InGaAs/GaAsP multiple quantum wells (MQWs) in the i-layer was demonstrated by applying a light scattering texture to the rear surface of the cell. A thin-film MQW solar cell was successfully fabricated by metal organic vapor phase epitaxy (MOVPE) to grow an inverted n-i-p photovoltaic (PV) structure; this structure was then transferred to a Si support substrate to prevent optical loss due to free carrier absorption. For the light scattering texture, the use of both the wet-etched micro-hole arrayed SiO2 dielectric layer on the rear surface of the cell and the secondarily etched micro hole array on the GaAs layer was attempted. On the SiO2 layer, the micro hole array pattern was obtained by the radio frequency sputtering of the layer followed by wet etching with photolithographic patterning. On the GaAs layer, the micro-hole array pattern was obtained by direct etching through a SiO2 template. Compared with the light scattering effects of the micro-hole-arrayed SiO2 layer, the secondarily etched GaAs rear contact layer showed a significant improvement in external quantum efficiency (EQE) in the wavelength range from 855 to 1000 nm that corresponds to the photon absorption wavelength in MQWs.

  19. Method and apparatus for measuring micro structures, anisotropy and birefringence in polymers using laser scattered light

    DOEpatents

    Grek, Boris; Bartolick, Joseph; Kennedy, Alan D.

    2000-01-01

    A method and apparatus for measuring microstructures, anistropy and birefringence in polymers using laser scattered light includes a laser which provides a beam that can be conditioned and is directed at a fiber or film which causes the beam to scatter. Backscatter light is received and processed with detectors and beam splitters to obtain data. The data is directed to a computer where it is processed to obtain information about the fiber or film, such as the birefringence and diameter. This information provides a basis for modifications to the production process to enhance the process.

  20. Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Hua; Yu, Peichen; Hsu, Min-Hsiang; Tseng, Ping-Cheng; Chang, Wei-Lun; Sun, Wen-Ching; Hsu, Wei-Chih; Hsu, Shih-Hsin; Chang, Yia-Chung

    2011-03-01

    As silicon photovoltaics evolve towards thin-wafer technologies, efficient optical absorption for the near-infrared wavelengths has become particularly challenging. In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near-infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on micro-grooved silicon substrates using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared by functioning as impedance matching layers with effective refractive indices gradually varying from 1 to 1.3. Materials with such unique refractive index characteristics are not readily available in nature. As a result, the solar cell with combined textures achieves over 90% external quantum efficiencies for a broad wavelength range of 460-980 nm, which is crucial to the development of advanced thin-substrate silicon solar cells.

  1. Localized spin-wave modes in a triangular magnetic element studied by micro-focused Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Kwon, J.-H.; Grünberg, P.; Cho, B. K.

    2017-09-01

    Localized spin-wave modes, which were thermally excited at a specific position in a triangular magnetic element, were investigated using micro-focused Brillouin light scattering in two saturated states, the buckle and Y-states, with an applied magnetic field of 0.24 T parallel and perpendicular to the basal edge, respectively. The measured frequency spectrum at a specific beam spot position, rather than an integrated spectrum, was analyzed by comparing it with the simulation data at a precisely selected position within the beam spot area. The analyzed results were used to plot a two-dimensional intensity map and simulation spatial profile to verify the validity of the analysis. From the analysis process, two localized spin-wave modes in a triangular magnetic element were successfully identified near the apex region in the buckle state and near the basal edge region in the Y-state.

  2. Size-dependent magnetization dynamics in individual Ni80Fe20 disk using micro-focused Brillouin Light Scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Shimon, G.; Adeyeye, A. O.

    2015-09-01

    A direct and systematic investigation of the magnetization dynamics in individual circular Ni80Fe20 disk of diameter (D) in the range from 300 nm to 1 μm measured using micro-focused Brillouin Light Scattering (μ-BLS) spectroscopy is presented. At high field, when the disks are in a single domain state, the resonance frequency of the uniform center mode is observed to reduce with reducing disk's diameter. For D = 300 nm, additional edge and end-domains resonant modes are observed due to size effects. At low field, when the disks are in a vortex state, a systematic increase of resonant frequency of magnetostatic modes in a vortex state with the square root of the disks' aspect ratio (thickness divided by radius) is observed. Such dependence diminishes for disks with larger aspect ratio due to an increasing exchange energy contribution. Micromagnetic simulations are in excellent agreement with the experiments.

  3. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  4. Micro-computed tomographic analysis of the radial geometry of intrarenal artery-vein pairs in rats and rabbits: Comparison with light microscopy.

    PubMed

    Ngo, Jennifer P; Le, Bianca; Khan, Zohaib; Kett, Michelle M; Gardiner, Bruce S; Smith, David W; Melhem, Mayer M; Maksimenko, Anton; Pearson, James T; Evans, Roger G

    2017-08-10

    We assessed the utility of synchrotron-radiation micro-computed tomography (micro-CT) for quantification of the radial geometry of the renal cortical vasculature. The kidneys of nine rats and six rabbits were perfusion fixed and the renal circulation filled with Microfil. In order to assess shrinkage of Microfil, rat kidneys were imaged at the Australian Synchrotron immediately upon tissue preparation and then post fixed in paraformaldehyde and reimaged 24 hours later. The Microfil shrank only 2-5% over the 24 hour period. All subsequent micro-CT imaging was completed within 24 hours of sample preparation. After micro-CT imaging, the kidneys were processed for histological analysis. In both rat and rabbit kidneys, vascular structures identified in histological sections could be identified in two-dimensional (2D) micro-CT images from the original kidney. Vascular morphology was similar in the two sets of images. Radial geometry quantified by manual analysis of 2D images from micro-CT was consistent with corresponding data generated by light microscopy. However, due to limited spatial resolution when imaging a whole organ using contrast-enhanced micro-CT, only arteries ≥100 and ≥60 μm in diameter, for the rat and rabbit respectively, could be assessed. We conclude that it is feasible and valid to use micro-CT to quantify vascular geometry of the renal cortical circulation in both the rat and rabbit. However, a combination of light microscopic and micro-CT approaches are required to evaluate the spatial relationships between intrarenal arteries and veins over an extensive range of vessel size. © 2017 John Wiley & Sons Australia, Ltd.

  5. Large aperture micro-focus KB mirrors for spectroscopy experiments at the Advanced Light Source

    SciTech Connect

    Warwick, T.; Andresen, N.; Comins, J.; Franck, A.; Gilles, M.; Tonnessen, T.; Tyliszczak, T.

    2004-06-04

    General purpose refocus mirrors using Kirkpatrick-Baez geometry have been designed, built and installed at a new undulator beam-line facility to provide spot sizes smaller than 10 microns for specialized spectroscopy experiments at the Advanced Light Source. All the available flux is focused and the focal length is adjustable. The mirrors are fully computer controlled and can be detuned to create a spot as big as 500 microns.

  6. Micro repeating structure using etching and repeating silica crystal structure growth to improve LED light extraction efficiency

    NASA Astrophysics Data System (ADS)

    Gan, Joshua; Ramakrishnan, Sivakumar; Yeoh, Fei Yee

    2017-07-01

    Light extraction efficiency (LEE) is a very important factor for improvement in efficiency by Light Emitting Diodes (LED). As of now, most LEE improvement methods involve complex fabrication either on the finished LED chip or during the LED processing. In this study micro repeating structures (MRS) are fabricated using both etching and silica mesoporous thin film growth (SMTFG) to improve LEE. In contrast to other complex fabrication methods, the SMTFG and etching were employed after roughened and un-roughened LED was produced. The SMTFG growth method was relatively simple, using tetraethyl orthosilicate (TEOS), surfactant and solvents while the etching method employed only sodium hydroxide (NaOH). The LEE result by SMTFG showed an average of 0.6% increment in brightness for un-roughened LED. However, negative results were observed for roughened LED with 0.7% reduction in brightness. On the other hand, by using short etching time at 30 seconds for cleaning the LED surface from contaminants with NaOH, the brightness of the LED was increased by 5.0% and 1.1% for roughened and un-roughened LED respectively. This suggests that the presence of the surfactant altering the silica thin film structure into MRS and etching of the LED surface was able to improve the LEE of LEDs.

  7. Contact resistance evolution of highly cycled, lightly loaded micro-contacts

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Coutu, Ronald

    2014-03-01

    Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.

  8. A correlative method for imaging identical regions of samples by micro-CT, light microscopy, and electron microscopy: imaging adipose tissue in a model system.

    PubMed

    Sengle, Gerhard; Tufa, Sara F; Sakai, Lynn Y; Zulliger, Martin A; Keene, Douglas R

    2013-04-01

    We present a method in which a precise region of interest within an intact organism is spatially mapped in three dimensions by non-invasive micro-computed X-ray tomography (micro-CT), then further evaluated by light microscopy (LM) and transmission electron microscopy (TEM). Tissues are prepared as if for TEM including osmium fixation, which imparts soft tissue contrast in the micro-CT due to its strong X-ray attenuation. This method may therefore be applied to embedded, archived TEM samples. Upon selection of a two-dimensional (2-D) projection from a region of interest (ROI) within the three-dimensional volume, the epoxy-embedded sample is oriented for microtomy so that the sectioning plane is aligned with the micro-CT projection. Registration is verified by overlaying LM images with 2-D micro-CT projections. Structures that are poorly resolved in the micro-CT may be evaluated at TEM resolution by observing the next serial ultrathin section, thereby accessing the same ROI by all three imaging techniques. We compare white adipose tissue within the forelimbs of mice harboring a lipid-altering mutation with their littermate controls. We demonstrate that individual osmium-stained lipid droplets as small as 15 µm and separated by as little as 35 µm may be discerned as separate entities in the micro-CT, validating this to be a high-resolution, non-destructive technique for evaluation of fat content.

  9. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  10. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale

    NASA Astrophysics Data System (ADS)

    Sebastian, Thomas; Schultheiss, Katrin; Obry, Björn; Hillebrands, Burkard; Schultheiss, Helmut; Obry, Björn

    2015-06-01

    Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS) spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties. For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions. For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical technique BLS do

  11. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    PubMed

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai

    2016-04-01

    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... power train, 11 electrical system, 12 exterior lighting, 13 visibility, 14 air bags, 15 seat belts, 16 structure, 17 latch, 18 vehicle speed control, 19 tires, 20 wheels, 22 seats, 23 fire, 24 rollover, 98...

  13. The genomics of wild yeast populations sheds light on the domestication of man's best (micro) friend.

    PubMed

    Eberlein, Chris; Leducq, Jean-Baptiste; Landry, Christian R

    2015-11-01

    The domestication of plants, animals and microbes by humans are the longest artificial evolution experiments ever performed. The study of these long-term experiments can teach us about the genomics of adaptation through the identification of the genetic bases underlying the traits favoured by humans. In laboratory evolution, the characterization of the molecular changes that evolved specifically in some lineages is straightforward because the ancestors are readily available, for instance in the freezer. However, in the case of domesticated species, the ancestor is often missing, which leads to the necessity of going back to nature in order to infer the most likely ancestral state. Significant and relatively recent examples of this approach include wolves as the closest wild relative to domestic dogs (Axelsson et al. 2013) and teosinte as the closest relative to maize (reviewed in Hake & Ross-Ibarra 2015). In both cases, the joint analysis of domesticated lineages and their wild cousins has been key in reconstructing the molecular history of their domestication. While the identification of closest wild relatives has been done for many plants and animals, these comparisons represent challenges for micro-organisms. This has been the case for the budding yeast Saccharomyces cerevisiae, whose natural ecological niche is particularly challenging to define. For centuries, this unicellular fungus has been the cellular factory for wine, beer and bread crafting, and currently for bioethanol and drug production. While the recent development of genomics has lead to the identification of many genetic elements associated with important wine characteristics, the historical origin of some of the domesticated wine strains has remained elusive due to the lack of knowledge of their close wild relatives. In this issue of Molecular Ecology, Almeida et al. (2015) identified what is to date the closest known wild population of the wine yeast. This population is found associated with

  14. Light scattering studies of randomly oriented polycrystalline fayalite micro particles as interstellar dust analogues

    NASA Astrophysics Data System (ADS)

    Boruah, Manash J.; Gogoi, Ankur; Nath, Bikash C.; Ahmed, Gazi A.

    2017-07-01

    Fayalite (Fe2Si04), the iron end-member of the olivine group, is found in various extraterrestrial environments including the interstellar medium and meteorite. Since the iron rich silicates, i.e. fayalites, are not abundantly found in earth, there has been lack of sufficient experimentation and modeling leading to the unavailability of sufficient experimental data of fayalite for comparative analyses with computations and astrophysical observations. In this work interstellar fayalite dust analogues were synthesized in the laboratory using simple chemical route. Shape and size dispersed interstellar dust analogue models for laboratory synthesized fayalite particles were developed for performing theoretical computations of light scattering parameters (e.g., angular profiles of intensity and degree of linear polarization, geometric and single-scattering albedo, asymmetry parameter and cross-sections of extinction and absorption) using discrete dipole approximation (DDA). In order to demonstrate the validity of our models, phase function and degree of linear polarization were measured using a laboratory based setup and the results were compared with DDA computed theoretical values at three wavelengths 543.5 nm, 594.5 nm and 632.5 nm respectively.

  15. Mechanism of light emission and manufacturing process of vertical-type light-emitting diode grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Gang Seok; Jeon, Hunsoo; Ahn, Hyung Soo; Yang, Min; Yi, Sam Nyung; Yu, Young Moon; Lee, Sang Chil; Honda, Yoshio; Sawaki, Nobuhiko; Kim, Suck-Whan

    2017-01-01

    We developed a vertical-type light-emitting diode (LED) in which the substrate is removed using a hydride vapor phase epitaxy (HVPE) apparatus consisting of a multi-graphite boat filled with a mixed source and a high-temperature (T ≈ 900 °C) RF heating coil outside the source zone. The new chip-growth process with a significant reduction in the number of production steps is completed in only four steps, namely, photolithography, epitaxial layer growth, sorting, and metallization. We analyze the emission mechanism of these lights from measurement results to validate the characteristics of the light emitted from these vertical-type blue LEDs and white LEDs (WLEDs) without substrates, and propose that this mixed-source HVPE method may be a promising production technique for LEDs.

  16. Tunable multicolor and white-light upconversion luminescence in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 micro-crystals.

    PubMed

    Lin, Hao; Xu, Dekang; Teng, Dongdong; Yang, Shenghong; Zhang, Yueli

    2015-09-01

    NaYF4 micro-crystals with various concentrations of Yb(3+) /Tm(3+) /Ho(3+) were prepared successfully via a simple and reproducible hydrothermal route using EDTA as the chelating agent. Their phase structure and surface morphology were studied using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns revealed that all the samples were pure hexagonal phase NaYF4. SEM images showed that Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 were hexagonal micro-prisms. Upconversion photoluminescence spectra of Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 micro-crystals with various dopant concentrations under 980 nm excitation with a 665 mW pump power were studied. Tunable multicolor (purple, purplish blue, yellowish green, green) and white light were achieved by simply adjusting the Ho(3+) concentration in 20%Yb(3+)/1%Tm(3+)/xHo(3+) tri-doped NaYF4 micro-crystals. Furthermore, white-light emissions could be obtained using different pump powers in 20%Yb(3+)/1%Tm(3+)/1%Ho(3+) tri-doped NaYF4 micro-crystals at 980 nm excitation. The pump power-dependent intensity relationship was studied and relevant energy transfer processes were discussed in detail. The results suggest that Yb(3+)/Tm(3+) Ho(3+) tri-doped NaYF4 micro-crystals have potential applications in optoelectronic devices such as photovoltaic, plasma display panel and white-light-emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Manufactures and Characterizations of Photodiode Thin Film Barium Strontium Titanate (BST) Doped by Niobium and Iron as Light Sensor

    NASA Astrophysics Data System (ADS)

    Dahrul, Muhammad; Syafutra, Heriyanto; Arif, Ardian; Irzaman, Indro; Nur, Muhammad; Siswadi

    2010-12-01

    Pure Ba0,5Sr0,5TiO3 (BST) thin film, BST doped by niobium (BNST) and BST doped by iron (BFST) have been synthesized on p-type Si (100) substrates using Chemical Solution Deposition (CSD) methods followed by spin coating and annealing techniques. Current-voltage characterizations on these sample result in agreement that all of the BST, BNST, and BFST thin films have photodiode properties. Electrical conductivity values of BST, BNST, and BFST are in the range of conductivity values of semiconductor materials. Niobium or iron doping on the BST samples increase their conductivity value their dielectric constant. This conductivity values may change when a light is exposed on the film surface. Absorbance and reflectance characterizations show that the BST, BNST, and BFST thin films absorb certain range of visible and infrared light. It is convincing that the BST, BNST, and BFST thin films might be used as photodiode light sensor.

  18. Thermal management of micro-scale inorganic light-emittng diodes on an orthotropic substrate for biointegrated applications.

    PubMed

    Li, Yuhang; Chen, Jin; Xing, Yufeng; Song, Jizhou

    2017-07-26

    The orthotropic material with the in-plane thermal conductivity much larger than the off-plane one can control the heat flow direction. This feature provides unique benefits in thermal management of micro-scale inorganic light-emitting diodes (μ-ILEDs) device for biointegrated applications by helping the heat dissipation from μ-ILEDs along the in-plane directions to lower the μ-ILED temperature and prevent the heat dissipation to the tissue along the off-plane direction to ensure a low tissue temperature. Three-dimensional analytical models, accounting for the coupling between the Fourier heat conduction in the μ-ILED device and the Pennes bioheat transfer in the human skin, are established to investigate the thermal behaviors of μ-ILEDs on an orthotropic substrate integrated with the human skin. Both the operations of μ-ILEDs in a constant mode and pulsed mode are studied. The maximum temperature increases of μ-ILED and in the tissue are derived and their dependences on various parameters such as the thermal conductivities of the orthotropic substrate, substrate thickness, and loading parameters (e.g., duty cycle, pulse period) are investigated. These results pave the theoretical foundation for the thermal management of μ-ILED devices for biointegrated applications.

  19. Application of light-weight filtration media in an anoxic biofilter for nitrate removal from micro-polluted surface water.

    PubMed

    Wang, Zheng; Fei, Xiang; He, Shengbing; Huang, Jungchen; Zhou, Weili

    The research investigated nitrate removal from micro-polluted surface water by the single-stage process of anoxic biofilter using light-weight polystyrene beads as filtration media. In this study, sodium acetate was used as an external carbon source and the nitrate removal efficiency under different regimes of hydraulic loading rate (HLR), water temperature, and C/N ratio was studied. In addition, the effect of backwash on denitrification efficiency was investigated. The results show that the biofilter achieved a high nitrate removal efficiency in 2 weeks at water temperatures ranging between 22 and 25 °C at a C/N ratio (COD:NO3(-)-N) of 6:1. Besides, the average removal efficiency of nitrate at HLRs of 5.66, 7.07 and 8.49 m(3) m(-2) h(-1) were 87.5, 87.3 and 87.1%, respectively. The average removal efficiency of nitrate nitrogen was 13.9% at a HLR of 5.66 m(3) m(-2) h(-1) at water temperatures of 12-14 °C, then it increased to 93.7% when the C/N ratio increased to 10. It suggests that the optimal hydraulic retention time is at water temperatures of 8-10 °C. The water consumption rate of backwash was about 0.2-0.3%, and denitrification efficiency returned to the normal level in 12 h after backwash.

  20. InGaN based micro light emitting diodes featuring a buried GaN tunnel junction

    SciTech Connect

    Malinverni, M. Martin, D.; Grandjean, N.

    2015-08-03

    GaN tunnel junctions (TJs) are grown by ammonia molecular beam epitaxy. High doping levels are achieved with a net acceptor concentration close to ∼10{sup 20 }cm{sup −3}, thanks to the low growth temperature. This allows for the realization of p-n junctions with ultrathin depletion width enabling efficient interband tunneling. n-p-n structures featuring such a TJ exhibit low leakage current densities, e.g., <5 × 10{sup −5} A cm{sup −2} at reverse bias of 10 V. Under forward bias, the voltage is 3.3 V and 4.8 V for current densities of 20 A cm{sup −2} and 2000 A cm{sup −2}, respectively. The specific series resistance of the whole device is 3.7 × 10{sup −4} Ω cm{sup 2}. Then micro-light emitting diodes (μ-LEDs) featuring buried TJs are fabricated. Excellent current confinement is demonstrated together with homogeneous electrical injection, as seen on electroluminescence mapping. Finally, the I-V characteristics of μ-LEDs with various diameters point out the role of the access resistance at the current aperture edge.

  1. Study on the optical performance of thin-film light-emitting diodes using fractal micro-roughness surface model

    NASA Astrophysics Data System (ADS)

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Ding, Xin-Rui; Li, Zhi

    2017-07-01

    Although LEDs have been widely studied using optical simulations, there is no optical model considering the effect of micro-roughness surface (MRS) on the optical performance for packaged LEDs. In this work, we employ the finite-difference time-domain method and the direction-sensitive bidirectional scattering distribution function to characterize the optical properties of the MRS upon the n-GaN layer. The MRS is generated by the Weierstrass-Mandelbrot fractal function. Furthermore, thin-film LEDs (TFLEDs), blue TFLED devices, and white TFLED devices considering the MRS are investigated using the ray-tracing (RT) method. The results show that the MRS has different optical properties when the light propagates out and in the n-GaN layer. In turn, the difference in the scattering ability of various MRS causes a significant effect on the optical performance of packaged TFLEDs, including radiant efficacy, luminous efficacy, intensity pattern and spectrum, as well as the correlated color temperature.

  2. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package.

    PubMed

    Wallace, Jonathan; Wang, Martha O; Thompson, Paul; Busso, Mallory; Belle, Vaijayantee; Mammoser, Nicole; Kim, Kyobum; Fisher, John P; Siblani, Ali; Xu, Yueshuo; Welter, Jean F; Lennon, Donald P; Sun, Jiayang; Caplan, Arnold I; Dean, David

    2014-03-01

    This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.

  3. Study on visible-light-curable polycarprolactone and poly(ethylene glycol) diacrylate for LCD-projected maskless additive manufacturing system

    NASA Astrophysics Data System (ADS)

    Cheng, Yih-Lin; Kao, Hao-Lun

    2015-09-01

    Photopolymers have been applied in many Additive Manufacturing (AM) systems and mostly are cured by UV light. Biodegradable photo-curable polymers are very limited and are not commercially available. DLP-projected maskless AM systems become more and more popular nowadays, but its working area is limited if the part resolution is required. For larger working envelope purpose, liquid crystal display (LCD) panel has great potentials, and LCD's resolution has been improved significantly in the past few years due to the smart phone application. Therefore, in this research, LCD panel is used to replace DLP for a maskless AM system to cure biodegradable materials, Polycarprolactone (PCL) and Poly(ethylene glycol) diacrylate (PEG-DA). Due to the characteristics of LCD panel, the material systems should be sensitive and photo-polymerized in visible-light range, particularly in RGB. In this study, various percentages of visiblelight photoinitiator, Irgacure 784, in the material systems were investigated. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were utilized to characterize cured biomaterials. Because of the use of photoinitiator, the biocompatibility of the cured materials was also concerned, and hence, MTT assay tests were performed. The preliminary tests of fabrication, using the LCD-projected maskless AM system, cured grid patterns to illustrate the feasibility. The visible-light-curable PCL and PEG-DA will be able to be adopted in tissue engineering scaffold applications in the future.

  4. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    PubMed

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  5. Improving the -3 dB bandwidth of medium power GaN-based LEDs through periodic micro via-holes for visible light communications

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Yan, Bing; Teng, Dongdong; Liu, Lilin; Wang, Gang

    2017-06-01

    Medium power GaN-based light emitting diode (LED) chips with periodic micro via-holes are designed and fabricated. The active area of each chip is 200 μm×800 μm and the diameter of each micro via-hole is 50 μm. For comparison, an LED chip with only one big via-hole (Diameter=86.6 μm) is also fabricated under the same conditions as the control partner. Both kinds of LED chips have an equal effective PN junction area. Experimentally, the LED with periodic via-holes exhibits higher output optical power and the -3 dB modulation bandwidth by about 33% and 48%, respectively, than the LED with only one bigger via-hole. The method of concurrently improving modulation and optical performances of power-type LED chips through periodic micro via-holes take the advantages of easy fabrication, suitable for mass-production.

  6. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  7. Advanced Manufacturing

    DTIC Science & Technology

    2002-01-01

    manufacturing will enable the mass customization of products and create new market opportunities in the commercial sector. Flexible manufacturing ...the mass customization of products and create new market opportunities in the commercial sector. One of the most promising flexible manufacturing ... manufacturing , increase efficiency and productivity. Research in leading edge technologies continues to promise exciting new manufacturing methods

  8. Wide angle light collection with ultralow reflection and super scattering by silicon micro-nanostructures for thin crystalline silicon solar cell applications

    NASA Astrophysics Data System (ADS)

    Das, Sonali; Kundu, Avra; Saha, Hiranmay; Datta, Swapan K.

    2016-01-01

    Conventional c-Si solar cells employ micron-sized pyramids for achieving reduced reflection (˜10%) and enhanced light trapping by multiple bounces (maximum 3) of the incident light. Alternatively, bio-mimetic, moth-eye sub-wavelength nanostructures offer broadband antireflection properties (˜3%) suitable for solar cell applications in the optical regime. However, such structures do not provide any advantage in the charge carrier extraction process as radial junctions cannot be formed in such sub-wavelength dimensions and they have high surface area causing increased charged carrier recombination. The choice of the geometry for achieving optimum photon-electron harvesting for solar applications is therefore very critical. Cross-fertilization of the conventional solar cell light-trapping techniques and the sub-wavelength nanostructures results in unique micro-nanostructures (structures having sub-wavelength dimensions as well as dimensions of the order of few microns) which provide advanced light management capabilities along with the ability of realizing radial junctions. It is seen that an ultralow reflection along with wide angle light collection is obtained which enables such structures to overcome the morning, evening and winter light losses in solar cells. Further, super-scattering in the structures offer enhanced light trapping not only in the structure itself but also in the substrate housing the structure. Ray and wave optics have been used to understand the optical benefits of the structures. It is seen that the aspect ratio of the structures plays the most significant role for achieving such light management capabilities, and efficiencies as high as 12% can be attained. Experiments have been carried out to fabricate a unique micro-nanomaze-like structure instead of a periodic array of micro-nanostructures with the help of nanosphere lithography and the MacEtch technique. It is seen that randomized micro-nanomaze geometry offers very good antireflection

  9. MQWs InGaN/GaN LED with embedded micro-mirror array in the epitaxial-lateral-overgrowth gallium nitride for light extraction enhancement.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Chen-Zi; Chao, Shiuh

    2010-05-10

    Multi-quantum wells (MQWs) InGaN/GaN LEDs, 300 microm x 300 microm chip size, were fabricated with Ta(2)O(5) / SiO(2) dielectric multi-layer micro-mirror array (MMA) embedded in the epitaxiallateral- overgrowth (ELOG) gallium nitride (GaN) on the c-plane sapphire substrate. MQWs InGaN/GaN LEDs with ELOG embedded patterned SiO(2) array (P-SiO(2)) of the same dimension as the MMA were also fabricated for comparison. Dislocation density was reduced for the ELOG samples. 75.2% light extraction enhancement for P-SiO(2)-LED and 102.6% light extraction enhancement for MMA-LED were obtained over the standard LED. We showed that multiple-diffraction with high intensity from the MMA redirected the trap lights to escape from the LED causing the light extraction enhancement.

  10. Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Xiao, Yong; Li, Mingquan

    2013-07-15

    Micro-machining is the most promising method for KH(2)PO(4) crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH(2)PO(4) crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.

  11. On-chip copper-dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors.

    PubMed

    Frey, Laurent; Masarotto, Lilian; D'Aillon, Patrick Gros; Pellé, Catherine; Armand, Marilyn; Marty, Michel; Jamin-Mornet, Clémence; Lhostis, Sandrine; Le Briz, Olivier

    2014-07-10

    Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal-dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.

  12. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  13. Characterization of digital textile printing and polymer blend (PFO-DMP:P3HT) for application in manufacture of organic diodes emitting white light - WOLEDS

    NASA Astrophysics Data System (ADS)

    da Silva, Marco A. T.; Thomazini, Emanuelle F.; Albertini, Madson; Renzi, Wesley; Franchello, Flavio; Dias, Ivan F. L.; Duarte, José Leonil; Poças, Luiz C.; Lourenço, Sidney A.

    2016-12-01

    The research of materials and structures for the manufacture of organic diodes emitting white light WOLEDS has been very intense nowadays mainly due to the possibilities of its use in obtaining low-energy light consuming. The energy transfer between polymer materials has proven to be a great allied to search organic devices with emitting white light. Polymers such as PFO-DMP (donor) and P3HT (acceptor) are candidates for this application. In this work, P3HT, PFO-DMP and blends (PFO-DMP:P3HT (5%)) films were deposited by spin-coating on digital textile printing substrates. The optical properties of the digital textile printing, polymers and blend were studied by UV-VIS, steady-state photoluminescence (PL), PL quantum yield (PLQY) and Raman (all at 298 K) spectroscopy techniques. The digital textile printing were acquired from Isoliner, a Brazilian company specialized in this kind of textile. In the blend a strongly energy transfer from PFO-DMP to P3HT was observed. The PL spectrum of the PFO-DMP:P3HT (5%) covers the 430-730 nm range. From integrated PL spectra in the range of 13-643 K, it was obtained the temperature at which the phosphor loses 50% of its initial emission intensity, T1/2 = 430 K. Gaussian fits were performed, and the peaks were identified. Raman measurements were performed on substrates with and without polymers deposited and the results are in agreement with those found in the literature. Vibrational modes of textile increase the full width half maximum (FWHM), due to electron-phonons interaction. Results obtained through the coordinate calculation CIE from blend emission for various types of textile digital printing tested, showed the more appropriate combinations (substrate/blend) for emission in white.

  14. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that…

  15. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that…

  16. Micro-incubator for bacterial biosensing applications

    NASA Astrophysics Data System (ADS)

    Clasen, Estine; Land, Kevin; Joubert, Trudi-Heleen

    2016-02-01

    The presence of Escherichia coli (E. coli ) is a commonly used indicator micro-organism to determine whether water is safe for human consumption.1 This paper discusses the design of a micro-incubator that can be applied to concentrate bacteria prior to environmental water quality screening tests. High sensitivity and rapid test time is essential and there is a great need for these tests to be implemented on-site without the use of a laboratory infrastructure. In the light of these requirements, a mobile micro-incubator was designed, manufactured and characterised. A polydimethylsiloxane (PDMS) receptacle has been designed to house the 1-5 ml cell culture sample.2 A nano-silver printed electronics micro-heater has been designed to incubate the bacterial sample, with an array of temperature sensors implemented to accurately measure the sample temperature at various locations in the cell culture well. The micro-incubator limits the incubation temperature range to 37+/-3 °C in order to ensure near optimal growth of the bacteria at all times.3 The incubation time is adjustable between 30 minutes and 9 hours with a maximum rise time of 15 minutes to reach the set-point temperature. The surface area of the printed nano silver heating element is 500 mm2. Electrical and COMSOL Multiphysics simulations are included in order to give insight on micro-incubator temperature control. The design and characterization of this micro-incubator allows for further research in biosensing applications.

  17. MicroRNA408 Is Critical for the HY5-SPL7 Gene Network That Mediates the Coordinated Response to Light and Copper[C][W

    PubMed Central

    Zhang, Huiyong; Zhao, Xin; Li, Jigang; Cai, Huaqing; Deng, Xing Wang; Li, Lei

    2014-01-01

    Light and copper are important environmental determinants of plant growth and development. Despite the wealth of knowledge on both light and copper signaling, the molecular mechanisms that integrate the two pathways remain poorly understood. Here, we use Arabidopsis thaliana to demonstrate an interaction between SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) and ELONGATED HYPOCOTYL5 (HY5), which mediate copper and light signaling, respectively. Through whole-genome chromatin immunoprecipitation and RNA sequencing analyses, we elucidated the SPL7 regulon and compared it with that of HY5. We found that the two transcription factors coregulate many genes, including those involved in anthocyanin accumulation and photosynthesis. Moreover, SPL7 and HY5 act coordinately to transcriptionally regulate MIR408, which results in differential expression of microRNA408 (miR408) and its target genes in response to changing light and copper conditions. We demonstrate that this regulation is tied to copper allocation to the chloroplast and plastocyanin levels. Finally, we found that constitutively activated miR408 rescues the distinct developmental defects of the hy5, spl7, and hy5 spl7 mutants. These findings revealed the existence of crosstalk between light and copper, mediated by a HY5-SPL7 network. Furthermore, integration of transcriptional and posttranscriptional regulation is critical for governing proper metabolism and development in response to combined copper and light signaling. PMID:25516599

  18. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources

    SciTech Connect

    Wan, Yating; Li, Qiang; Lau, Kei May; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.; Hu, Evelyn L.

    2016-07-04

    Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.

  19. Development of ultrafast laser-based x-ray in-vivo phase-contrast micro-CT beamline for biomedical applications at Advanced Laser Light Source (ALLS).

    PubMed

    Kincaid, Russell; Krol, Andrzej; Fourmaux, Sylvain; Kieffer, Jean-Claude; Serbanescu, Cristina; Servol, Marina; Vogelsang, Levon; Wilkins, Steve; Stevenson, Andrew; Nesterets, Yakov; Lipson, Edward; Ye, Hongwei; Pogany, Andrew

    2008-01-01

    We are developing and exploring the imaging performance of, an in vivo, in-line holography, x-ray phase-contrast, micro-CT system with an ultrafast laser-based x-ray (ULX) source. By testing and refining our system, and by performing computer simulations, we plan to improve system performance in terms of contrast resolution and multi-energy imaging to a level beyond what can be obtained using a conventional microfocal x-ray tube. Initial CT projection sets at single energy (Mo K(alpha) and K(beta) lines) were acquired in the Fresnel regime and reconstructed for phantoms and a euthanized mouse. We also performed computer simulations of phase-contrast micro-CT scans for low-contrast, soft-tissue, tumor imaging. We determined that, in order to perform a phase-contrast, complete micro-CT scan using ULX, the following conditions must be met: (i) the x-ray source needs to be stable during the scan; (ii) the laser focal spot size needs to be less than 10 mum for source-to-object distance greater than 30 cm; (iii) the laser light intensity on the target needs to be in the range of 5 x 10(17) to 5 x 10(19) W/cm(2); (iv) the ablation protection system needs to allow uninterrupted scans; (v) the laser light focusing on the target needs to remain accurate during the entire scan; (vi) a fresh surface of the target must be exposed to consecutive laser shots during the entire scan; (vii) the effective detector element size must be less than 12 mum. Based on the results obtained in this research project, we anticipate that the new 10 Hz, 200 TW laser with 50 W average power that is being commissioned at ALLS will allow us practical implementation of in vivo x-ray phase-contrast micro-CT.

  20. Adaptive PSF fitting - a highly performing photometric method and light curves of the GLS H1413+117: time delays and micro-lensing effects

    NASA Astrophysics Data System (ADS)

    Akhunov, T. A.; Wertz, O.; Elyiv, A.; Gaisin, R.; Artamonov, B. P.; Dudinov, V. N.; Nuritdinov, S. N.; Delvaux, C.; Sergeyev, A. V.; Gusev, A. S.; Bruevich, V. V.; Burkhonov, O.; Zheleznyak, A. P.; Ezhkova, O.; Surdej, J.

    2017-03-01

    We present new photometric observations of H1413+117 acquired during seasons between 2001 and 2008 in order to estimate the time delays between the lensed quasar images and to characterize at best the on-going micro-lensing events. We propose a highly performing photometric method called the adaptive point spread function fitting and have successfully tested this method on a large number of simulated frames. This has enabled us to estimate the photometric error bars affecting our observational results. We analysed the V- and R-band light curves and V-R colour variations of the A-D components which show short- and long-term brightness variations correlated with colour variations. Using the χ2 and dispersion methods, we estimated the time delays on the basis of the R-band light curves over the seasons between 2003 and 2006. We have derived the new values: ΔtAB = -17.4 ± 2.1, ΔtAC = -18.9 ± 2.8 and ΔtAD = 28.8 ± 0.7 d using the χ2 method (B and C are leading, D is trailing) with 1σ confidence intervals. We also used available observational constraints (resp. the lensed image positions, the flux ratios in mid-IR and two sets of time delays derived in the present work) to update the lens redshift estimation. We obtained z_l = 1.95^{+0.06}_{-0.10} which is in good agreement with previous estimations. We propose to characterize two kinds of micro-lensing events: micro-lensing for the A, B, C components corresponds to typical variations of ∼10-4 mag d-1 during all the seasons, while the D component shows an unusually strong micro-lensing effect with variations of up to ∼10-3 mag d-1 during 2004 and 2005.

  1. Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries

    NASA Astrophysics Data System (ADS)

    Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2016-04-01

    Recently, three-dimensional (3D) electrode architectures have attracted great interest for the development of lithium-ion micro-batteries applicable for Micro-Electro-Mechanical Systems (MEMS), sensors, and hearing aids. Since commercial available micro-batteries are mainly limited in overall cell capacity by their electrode footprint, new processing strategies for increasing both capacity and electrochemical performance have to be developed. In case of such standard microbatteries, two-dimensional (2D) electrode arrangements are applied with thicknesses up to 200 μm. These electrode layers are composed of active material, conductive agent, graphite, and polymeric binder. Nevertheless, with respect to the type of active material, the active material to conductive agent ratio, and the film thickness, such thick-films suffer from low ionic and electronic conductivities, poor electrolyte accessibility, and finally, limited electrochemical performance under challenging conditions. In order to overcome these drawbacks, 3D electrode arrangements are under intense investigation since they allow the reduction of lithium-ion diffusion pathways in between inter-digitated electrodes, even for electrodes with enhanced mass loadings. In this paper, we present how to combine laser-printing and femtosecond laser-structuring for the development of advanced 3D electrodes composed of Li(Ni1/3Mn1/3Co1/3)O2 (NMC). In a first step, NMC thick-films were laser-printed and calendered to achieve film thicknesses in the range of 50 μm - 80 μm. In a second step, femtosecond laser-structuring was carried out in order to generate 3D architectures directly into thick-films. Finally, electrochemical cycling of laser-processed films was performed in order to evaluate the most promising 3D electrode designs suitable for application in long life-time 3D micro-batteries.

  2. Light-curing efficiency of dental adhesives by gallium nitride violet-laser diode determined in terms of ultimate micro-tensile strength.

    PubMed

    Kameyama, Atsushi; Kato, Junji; De Munck, Jan; Hatayama, Hitoshi; Haruyama, Akiko; Yoshinari, Masao; Takase, Yasuaki; Van Meerbeek, Bart; Tsunoda, Masatake

    2011-01-01

    The purpose of this study was to evaluate whether violet-laser diode (VLD) can be used as light-curing source. The ultimate (micro-)tensile strength (μTS) of three adhesives was determined when cured by VLD in comparison with curing by two different types of commercial LED light-curing units. One VLD (VLM 500) and two LED units (Curenos and G-Light Prima) were used to cure the adhesive resin of the two-step self-etch adhesives Clearfil SE Bond, Tokuso Mac Bond II, and FL-Bond II. A 0.6-mm thick acrylic mould was filled with adhesive resin and cured for 60 s. After 24-h water storage, specimens were trimmed into an hourglass shape with a width of 1.2 mm at the narrowest part, after which the μTS was determined (n=10). In addition, the light transmittance of each adhesive was characterized using a UV-vis-NIR spectrometer. No significant difference in curing efficiency between VLD and LED were observed for both Tokuso Mac Bond II and FL-Bond II (p>0.05). For Clearfil SE Bond, the μTS of VLD-cured specimens was higher than that of the specimens cured by the LED Curenos unit (p<0.05). Spectrometry revealed that this marked difference must be attributed to a different light transmittance of Clearfil SE Bond for visible blue light versus for the lower area of UV and visible violet light. In conclusion, A GaN-based violet laser diode can be used as light-curing source to initiate polymerization of dental resins.

  3. Evaluation of Manufacturing Processes for Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Laura Jáuregui, Ana; Siller, Héctor R.; Rodriguez, Ciro A.; Elías-Zúñiga, Alex

    2009-11-01

    In this paper several micro-mechanical manufacturing technologies were studied in order to characterize their performance for making miniaturized geometries known as micro-channels, which are the main geometric features of micro-fluidic devices. The technologies used were Micro-End Milling, Wire Electro Discharge Machiningesol Sandblasting and Abrasive Water Jet. Their capabilities were compared with Lithography capabilities, which is the conventional process for micro-channel manufacturing. The evaluation consists in a comprehensive study of surface quality and topography, made with the help of advanced contact and non-contact devices over each prototype made by each technology. Also economical considerations have been taken into account in order to choose the most appropriate manufacturing process for the prototyping of micro-fluidic devices. The results show that Micro-End Milling process can compete with Lithography, in terms of achieving acceptable levels of product quality and economics.

  4. Micro Injection Moulding of Polymeric Components

    NASA Astrophysics Data System (ADS)

    Trotta, G.; Surace, R.; Modica, F.; Spina, R.; Fassi, I.

    2011-01-01

    Micro components and micro devices are strongly used in several fields: IT components, biomedical and medical products, automotive industry, telecommunication area and aerospace. A micro component is characterized by small dimensions of the product itself or small dimensions of the functional features. The development of new micro parts is highly dependent on manufacturing systems that can reliably and economically produce micro components in large quantities. In this context, micro-electrical discharge machining (EDM) for mould production and micro-injection moulding of polymer materials are the key technologies for micro manufacturing. This paper will focus on the production and quality evaluation of polymeric micro components manufactured by micro injection moulding. In particular the authors want to investigate the process parameters on the overall quality of the product. The factors affecting micro flow behavior, components weights and dimension definition are experimentally studied basing on DoE approach and then discussed.

  5. Synchrotron X-ray micro-tomography at the Advanced Light Source: Developments in high-temperature in-situ mechanical testing

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Mandal, P.; Czabaj, M.; Gao, Y.; Maillet, E.; Blank, B.; Larson, N. M.; Ritchie, R. O.; Gludovatz, B.; Acevedo, C.; Liu, D.

    2017-06-01

    At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-tomography under conditions of high temperature, pressure, mechanical loading, and other realistic conditions using environmental test cells. With scan times of 10s-100s of seconds, the microstructural evolution of materials can be directly observed over multiple time steps spanning prescribed changes in the sample environment. This capability enables in-situ quasi-static mechanical testing of materials. We present an overview of our in-situ mechanical testing capabilities and recent hardware developments that enable flexural testing at high temperature and in combination with acoustic emission analysis.

  6. Metal alloys, matrix inclusions and manufacturing techniques of Moinhos de Golas collection (North Portugal): a study by micro-EDXRF, SEM-EDS, optical microscopy and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Loureiro, Joana; Figueiredo, Elin; Silva, Rui J. C.; Araújo, M. Fátima; Fonte, João; Bettencourt, Ana M. S.

    2016-09-01

    A collection of 35 metallic artefacts comprising various typologies, some of which can be attributed to the Bronze Age and others to later periods, were studied to provide detailed information on elemental composition, manufacturing techniques and preservation state. Elemental analysis by micro-EDXRF and SEM-EDS was performed to investigate the use of different alloys and to study the presence of microstructural heterogeneities, as inclusions. X-ray radiography, optical microscopy and SEM-EDS were used to investigate manufacturing techniques and degradation features. Results showed that most of the artefacts were produced in a binary bronze alloy (Cu-Sn) with 10-15 wt% Sn and a low concentration of impurities. Other artefacts were produced in copper or in brass, the latest with varying contents of Zn, Sn and Pb. A variety of inclusions in the metal matrices were also found, some related to specific types of alloys, as (Cu-Ni)S2 in coppers, or ZnS in brasses. Microstructural observations revealed that the majority of the artefacts were subjected to cycles of thermomechanical processing after casting, being evident that among some artefacts different parts were subjected to distinct treatments. The radiographic images revealed structural heterogeneities related to local corrosion processes and fissures that seem to have developed in wear-tension zones, as in the handle of some daggers. Radiographic images were also useful to detect the use of different materials in one particular brass artefact, revealing the presence of a possible Cu-Sn solder.

  7. Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion.

    PubMed

    Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2015-04-17

    The photochemical transformation of widely used cosmetic preservatives including benzoates, parabens, BHA, BHT and triclosan has been investigated in this work applying an innovative double-approach strategy: identification of transformation products in aqueous photodegradation experiments (UV-light, 254nm), followed by targeted screening analysis of such photoproducts in UV-irradiated cosmetic samples. Solid-phase microextraction (SPME) was applied, using different fiber coatings, in order to widen the range of detectable photoproducts in water, whereas UV-irradiated personal care products (PCPs) containing the target preservatives were extracted by micro-matrix solid-phase dispersion (micro-MSPD). Both SPME and micro-MSPD-based methodologies were successfully optimized and validated. Degradation kinetics of parent species, and photoformation of their transformation by-products were monitored by gas chromatography coupled to mass spectrometry (GC-MS). Thirty nine photoproducts were detected in aqueous photodegradation experiments, being tentatively identified based on their mass spectra. Transformation pathways between structurally related by-products, consistent with their kinetic behavior were postulated. The photoformation of unexpected photoproducts such as 2- and 4-hydroxybenzophenones, and 2,8-dichlorodibenzo-p-dioxin in PCPs are reported in this work for the first time.

  8. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  9. Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice

    PubMed Central

    Sun, Wei; Xu, Xiao Hui; Wu, Xiu; Wang, Yong; Lu, Xingbo; Sun, Hongwei; Xie, Xianzhi

    2015-01-01

    Phytochrome B (phyB), a member of the phytochrome family in rice, plays important roles in regulating a range of developmental processes and stress responses. However, little information about the mechanisms involved in the phyB-mediated light signaling pathway has been reported in rice. MicroRNAs (miRNAs) also perform important roles in plant development and stress responses. Thus, it is intriguing to explore the role of miRNAs in the phyB-mediated light signaling pathway in rice. In this study, comparative high-throughput sequencing and degradome analysis were used to identify candidate miRNAs and their targets that participate in the phyB-mediated light signaling pathway. A total of 720 known miRNAs, 704 novel miRNAs and 1957 target genes were identified from the fourth leaves of wild-type (WT) and phyB mutant rice at the five-leaf stage. Among them, 135 miRNAs showed differential expression, suggesting that the expression of these miRNAs is directly or indirectly under the control of phyB. In addition, 32 out of the 135 differentially expressed miRNAs were found to slice 70 genes in the rice genome. Analysis of these target genes showed that members of various transcription factor families constituted the largest proportion, indicating miRNAs are probably involved in the phyB-mediated light signaling pathway mainly by regulating the expression of transcription factors. Our results provide new clues for functional characterization of miRNAs in the phyB-mediated light signaling pathway, which should be helpful in comprehensively uncovering the molecular mechanisms of phytochrome-mediated photomorphogenesis and stress responses in plants. PMID:26074936

  10. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    NASA Astrophysics Data System (ADS)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  11. Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy

    PubMed Central

    Schaad, Laura; Hlushchuk, Ruslan; Barré, Sébastien; Gianni-Barrera, Roberto; Haberthür, David; Banfi, Andrea; Djonov, Valentin

    2017-01-01

    A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with μAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.58–0.66 μm) of the entire vasculature were acquired. Based on the microCT data, sites of interest were defined and samples further processed for correlative morphology. The solidified, autofluorescent μAngiofil® remained in the vasculature and allowed co-registering of the histological sections with the corresponding microCT-stack. The perfusion efficiency of μAngiofil® was validated based on lectin-stained histological sections: 98 ± 0.5% of the blood vessels were μAngiofil®-positive, whereas 93 ± 2.6% were lectin-positive. By applying this approach we analyzed the angiogenesis induced by the cell-based delivery of a controlled VEGF dose. Vascular density increased by 426% mainly through the augmentation of medium-sized vessels (20–40 μm). The introduced correlative and quantitative imaging approach is highly reproducible and allows a detailed 3D characterization of the vasculature and muscle tissue. Combined with histology, a broad range of complementary structural information can be obtained. PMID:28169309

  12. Novel thin-GaN LED structure adopted micro abraded surface to compare with conventional vertical LEDs in ultraviolet light

    NASA Astrophysics Data System (ADS)

    Chiang, Yen Chih; Lin, Chien Chung; Kuo, Hao Chung

    2015-04-01

    In this study, novel thin-GaN-based ultraviolet light-emitting diodes (NTG-LEDs) were fabricated using wafer bonding, laser lift-off, dry etching, textured surface, and interconnection techniques. Placing PN electrodes on the same side minimized the absorption caused by electrodes in conventional vertical injection light-emitting diodes (V-LEDs) and the current spreading was improved. The light output power (700 mA) of the NTG-LEDs was enhanced by 18.3% compared with that of the V-LEDs, and the external quantum efficiency (EQE) of the NTG-LEDs was also relatively enhanced by 20.0% compared with that of a reference device. When the current operations were 1,500 mA, the enhancements of the light output power and EQE were 27.4% and 27.2%, respectively. Additionally, the efficiency droop was improved by more than 15% at the same current level.

  13. Novel thin-GaN LED structure adopted micro abraded surface to compare with conventional vertical LEDs in ultraviolet light.

    PubMed

    Chiang, Yen Chih; Lin, Chien Chung; Kuo, Hao Chung

    2015-01-01

    In this study, novel thin-GaN-based ultraviolet light-emitting diodes (NTG-LEDs) were fabricated using wafer bonding, laser lift-off, dry etching, textured surface, and interconnection techniques. Placing PN electrodes on the same side minimized the absorption caused by electrodes in conventional vertical injection light-emitting diodes (V-LEDs) and the current spreading was improved. The light output power (700 mA) of the NTG-LEDs was enhanced by 18.3% compared with that of the V-LEDs, and the external quantum efficiency (EQE) of the NTG-LEDs was also relatively enhanced by 20.0% compared with that of a reference device. When the current operations were 1,500 mA, the enhancements of the light output power and EQE were 27.4% and 27.2%, respectively. Additionally, the efficiency droop was improved by more than 15% at the same current level.

  14. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    PubMed

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2017-03-13

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  15. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  16. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Aushev, A. A.; Barinov, S. P.; Vasin, M. G.; Drozdov, Yu M.; Ignat'ev, Yu V.; Izgorodin, V. M.; Kovshov, D. K.; Lakhtikov, A. E.; Lukovkina, D. D.; Markelov, V. V.; Morovov, A. P.; Shishlov, V. V.

    2015-06-01

    We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied by alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples.

  17. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments

    SciTech Connect

    Aushev, A A; Barinov, S P; Vasin, M G; Drozdov, Yu M; Ignat'ev, Yu V; Izgorodin, V M; Kovshov, D K; Lakhtikov, A E; Lukovkina, D D; Markelov, V V; Morovov, A P; Shishlov, V V

    2015-06-30

    We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied by alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)

  18. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  19. Design, development and use of the spectrometer for investigating coherent THz radiation produced by micro-bunching instabilities at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Finn, Aiveen; Karataev, Pavel; Rehm, Guenther

    2016-07-01

    Schottky barrier diodes (SBDs) are known for their low noise, ultra-fast response and excellent sensitivity. They are often implemented as detectors in the millimetre wavelength regime. Micro-bunch instabilities (MBI) have been detected at many light sources around the world including the Diamond Light Source, UK. These MBI can result in bursts of coherent synchrotron radiation (CSR) with millimetre wavelengths. More research needs to be carried out with regards to the dynamics of MBI in order to confirm the simulations and to eventually harness the power of the CSR bursts. A single shot spectrometer has been designed and is under operation at the Diamond Light Source (DLS). It is composed of eight SBDs ranging from 33-1000 GHz. Unlike previous measurements carried out, each of the SBDs has been individually characterised thus making the results obtained comparable to simulations. In this paper, we present the assessment of each SBD in the spectrometer and the first results of the spectrometer's use in the beam.

  20. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    PubMed Central

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467

  1. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    NASA Astrophysics Data System (ADS)

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  2. Stray light control for asteroid detection at low solar elongation for the NEOSSat micro-satellite telescope

    NASA Astrophysics Data System (ADS)

    Isbrucker, Victor; Stauder, John; Laurin, Denis; Hollinger, Allan

    2012-09-01

    The Near Earth Object Surveillance Satellite (NEOSSat) is a small satellite dedicated to finding near Earth asteroids. Its surveying strategy consists of imaging areas of the sky to low solar elongation, while in a sun synchronous polar orbit (dawn-dusk). A high performance baffle will control stray light mainly due to Earth shine. Observation scenarios require solar shielding down to 45 degree solar elongation over a wide range of ecliptic latitudes. In order to detect the faintest objects (approx 20th v mag) given a 15 cm telescope and CCD detection system, background from stray light is a critical operational concern. The required attenuation is in the order of 10-12. The requirement was verified by analyses; testing was not attempted because the level of attenuation is difficult to measure reliably. We report consistent results of stray light optical modelling from two independent analyses. Launch is expected for late 2012.

  3. Eat-by-light fiber-optic and micro-optic devices for food quality and safety assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-06-01

    A selection is presented of fiber-optic and micro-optic devices that have been designed and tested for guaranteeing the quality and safety of typical foods, such as extra virgin olive oil, beer, and milk. Scattered colorimetry is used to authenticate various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids, which are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma that is capable of distinguishing different ageing levels of extra virgin olive oil is also presented. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer for the rapid monitoring of the carcinogenic M1 aflatoxin in milk, is experimented.

  4. Eat-by-light: fiber-optic and micro-optic devices for food safety and quality assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-07-01

    A selection of fiber-optic and micro-optic devices is presented designed and tested for monitoring the quality and safety of typical foods, namely the extra virgin olive oil, the beer, and the milk. Scattered colorimetry is used for the authentication of various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids that are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra virgin olive oil. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer is experimented for the rapid monitoring of the carcinogenic M1 aflatoxin in milk.

  5. Influence of increment thickness on light transmission, degree of conversion and micro hardness of bulk fill composites.

    PubMed

    Garoushi, Sufyan; Vallittu, Pekka; Shinya, Akikazu; Lassila, Lippo

    2016-09-01

    This study evaluated characteristics of light transmission, degree of monomer conversion and surface microhardness of bulk fill, conventional and fiber-reinforced resin based composites (RBCs) through different incremental thicknesses of resin composite. Working hypotheses was that there are differences in transmission of blue light through RBCs of different kinds and that the thickness of the increments influence the degree of monomer conversion of RBCs. Six bulk fill, three conventional nanohybrid, one short fiber reinforced and one flowable RBCs were evaluated. For each material, four different incremental thicknesses (1, 2, 3 and 4 mm) were considered (n = 5). The specimens were prepared in cylindrical Teflon molds that are open at the top and the bottom sides and cured for 40 s by applying the curing unit. After curing process, the specimens were ground with a silicon carbide paper with a grit size of 1200 and 4000, and then stored dry at 37 °C for 24 h. Light transmission, degree of monomer conversion, surface microhardness were measured and data were analyzed using ANOVA (p = 0.05). There were differences in light transmission of resin composites of various types and brands. Low-viscous bulk fill and short fiber-reinforced RBCs presented higher light transmission compared to resin composites of higher viscosity. Reduced light transmission and lower surface microhardness and DC % at bottom side of the specimen suggests that more attention needs to be paid to ensure proper curing of the resin composite in deep cavities.

  6. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  7. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  8. Semi-polar {1 \\mathbf{\\bar{1}}   0 1} blue and green InGaN/GaN light-emitting diodes on micro-stripe patterned Si (1 0 0)

    NASA Astrophysics Data System (ADS)

    Reuters, B.; Strate, J.; Wille, A.; Marx, M.; Lükens, G.; Heuken, L.; Heuken, M.; Kalisch, H.; Vescan, A.

    2015-12-01

    A novel III-nitride-based light emitting diode (LED) fabrication process which is based on selective-area epitaxial growth on Si {1 1 1} facets etched into Si (1 0 0) substrates is presented. A micro-stripe pattern is formed with semi-polar {1 \\bar{1}  0 1} crystallographic planes of GaN evolving from an epitaxial lateral overgrowth (ELOG)-like process. The {1 \\bar{1}  0 1} planes of GaN serve as a template for the growth of semi-polar blue and green LED structures with InGaN/GaN multiple quantum wells (MQW). A complete fabrication chain encompassing substrate etching, metalorganic vapor phase epitaxy (MOVPE), characterization, LED processing and device manufacture has been developed. The semi-polar LED stacks are of high crystalline quality, which is manifested by homogeneous InGaN layers in the {1 \\bar{1}  0 1} MQW structure and smooth {1 \\bar{1}  0 1} LED surface planes. Although threading dislocations intersect with the semi-polar {1 \\bar{1}  0 1} MQW, V-shaped defects typically observed in polar c-plane MQW structures are not detected. The blue and green semi-polar LED show only a weak polarization-related wavelength shift at large current densities consistent with the lower built-in electric fields in the semi-polar MQW. At low current densities, the green LED exhibit a strong wavelength shift due to In clustering effects. The blue LED reveal a stable emission color, which indicates a homogeneous In distribution in the wells.

  9. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  10. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  11. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  12. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  13. Lithographic measurement of EUV flare in the 0.3-NA Micro ExposureTool optic at the Advanced Light Source

    SciTech Connect

    Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.

    2005-01-01

    The level of flare present in a 0.3-NA EUV optic (the MET optic) at the Advanced Light Source at Lawrence Berkeley National Laboratory is measured using a lithographic method. Photoresist behavior at high exposure doses makes analysis difficult. Flare measurement analysis under scanning electron microscopy (SEM) and optical microscopy is compared, and optical microscopy is found to be a more reliable technique. In addition, the measured results are compared with predictions based on surface roughness measurement of the MET optical elements. When the fields in the exposure matrix are spaced far enough apart to avoid influence from surrounding fields and the data is corrected for imperfect mask contrast and aerial image proximity effects, the results match predicted values quite well. The amount of flare present in this optic ranges from 4.7% for 2 {micro}m features to 6.8% for 500 nm features.

  14. Benchmarks of Global Clean Energy Manufacturing

    SciTech Connect

    Sandor, Debra; Chung, Donald; Keyser, David; Mann, Margaret; Engel-Cox, Jill

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  15. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  16. Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: micro lens array, V-shaped configuration, and double parabolic trapper.

    PubMed

    Cho, Changsoon; Lee, Jung-Yong

    2013-03-11

    An efficient light trapping scheme is a key to enhancing the power conversion efficiency (PCE) of thin-film photovoltaic (PV) cells by compensating for the insufficient light absorption. To handle optical components from nano-scale to micro-scale seamlessly, a multi-scale optical simulation is carefully designed in this study and is used to qualitatively analyze the light trapping performances of a micro lens array (MLA), a V-shaped configuration, and the newly proposed scheme, which is termed a double parabolic trapper (DPT) according to both daily and annual movement of the sun. DPT has the potential to enhance the PCE significantly, from 5.9% to 8.9%, for PCDTBT:PC(70)BM-based polymer solar cells by perfectly trapping the incident light between two parabolic PV cells.

  17. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins.

    PubMed

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Price, Richard B T; Sullivan, Braden; Moeginger, Bernhard

    2015-02-01

    An inhomogeneous irradiance distribution from a light-curing unit (LCU) can locally cause inhomogeneous curing with locally inadequately cured and/or over-cured areas causing e.g. monomer elution or internal shrinkage stresses, and thus reduce the lifetime of dental resin based composite (RBC) restorations. The aim of the study is to determine both the irradiance distribution of two light curing units (LCUs) and its influence on the local mechanical properties of a RBC. Specimens of Arabesk TOP OA2 were irradiated for 5, 20, and 80s using a Bluephase® 20i LCU in the Low mode (666mW/cm(2)), in the Turbo mode (2222mW/cm(2)) and a Celalux® 2 (1264mW/cm(2)). The degree of conversion (DC) was determined with an ATR-FTIR. The Knoop micro-hardness (average of five specimens) was measured on the specimen surface after 24h of dark and dry storage at room temperature. The irradiance distribution affected the hardness distribution across the surface of the specimens. The hardness distribution corresponded well to the inhomogeneous irradiance distributions of the LCU. The highest reaction rates occurred after approximately 2s light exposure. A DC of 40% was reached after 3.6 or 5.7s, depending on the LCU. The inhomogeneous hardness distribution was still evident after 80s of light exposure. The irradiance distribution from a LCU is reflected in the hardness distribution across the surface. Irradiance level of the LCU and light exposure time do not affect the pattern of the hardness distribution--only the hardness level. In areas of low irradiation this may result in inadequate resin polymerization, poor physical properties, and hence premature failure of the restorations as they are usually much smaller than the investigated specimens. It has to be stressed that inhomogeneous does not necessarily mean poor if in all areas of the restoration enough light intensity is introduced to achieve a high degree of cure. Copyright © 2014 Academy of Dental Materials. Published by

  18. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  19. Depth-resolved confocal micro-Raman spectroscopy for characterizing GaN-based light emitting diode structures

    SciTech Connect

    Chen, Wei-Liang; Lee, Yu-Yang; Chang, Yu-Ming; Chang, Chiao-Yun; Huang, Huei-Min; Lu, Tien-Chang

    2013-11-15

    In this work, we demonstrate that depth-resolved confocal micro-Raman spectroscopy can be used to characterize the active layer of GaN-based LEDs. By taking the depth compression effect due to refraction index mismatch into account, the axial profiles of Raman peak intensities from the GaN capping layer toward the sapphire substrate can correctly match the LED structural dimension and allow the identification of unique Raman feature originated from the 0.3 μm thick active layer of the studied LED. The strain variation in different sample depths can also be quantified by measuring the Raman shift of GaN A{sub 1}(LO) and E{sub 2}(high) phonon peaks. The capability of identifying the phonon structure of buried LED active layer and depth-resolving the strain distribution of LED structure makes this technique a potential optical and remote tool for in operando investigation of the electronic and structural properties of nitride-based LEDs.

  20. Applications of the BAE SYSTEMS MicroIR uncooled infrared thermal imaging cameras

    NASA Astrophysics Data System (ADS)

    Wickman, Heather A.; Henebury, John J., Jr.; Long, Dennis R.

    2003-09-01

    MicroIR uncooled infrared imaging modules (based on VOx microbolometers), developed and manufactured at BAE SYSTEMS, are integrated into ruggedized, weatherproof camera systems and are currently supporting numerous security and surveillance applications. The introduction of uncooled thermal imaging has permitted the expansion of traditional surveillance and security perimeters. MicroIR cameras go beyond the imagery limits of visible and low-light short wavelength infrared sensors, providing continual, uninterrupted, high quality imagery both day and night. Coupled with an appropriate lens assembly, MicroIR cameras offer exemplary imagery performance that lends itself to a more comprehensive level of surveillance. With the current increased emphasis on security and surveillance, MicroIR Cameras are evolving as an unquestionably beneficial instrument in the security and surveillance arenas. This paper will elaborate on the attributes of the cameras, and discuss the development and the deployment, both present and future, of BAE SYSTEMS MicroIR Cameras.

  1. Comparison of prosthetic models produced by traditional and additive manufacturing methods.

    PubMed

    Park, Jin-Young; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Jae-Hong; Kim, Woong-Chul

    2015-08-01

    The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (α=.05). The mean marginal gaps and internal gaps showed significant differences according to tooth type (P<.001 and P<.001, respectively) and manufacturing method (P<.037 and P<.001, respectively). Micro-SLA did not show any significant difference from CLWT regarding mean marginal gap compared to the WBM and MJM methods. The mean values of gaps resulting from the four different manufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing.

  2. Developments in synchrotron x-ray micro-tomography for in-situ materials analysis at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Venkatakrishnan, S. V.; Panerai, F.; Mansour, N. N.

    2016-10-01

    The Advanced Light Source (ALS) is a third-generation synchrotron X-ray source that operates as a user facility with more than 40 beamlines hosting over 2000 users per year. Synchrotron sources like the ALS provide high quality X-ray beams, with flux that is several orders of magnitude higher than lab-based sources. This is particularly advantageous for dynamic applications because it allows for high-speed, high-resolution imaging and microscale tomography. The hard X-ray beamline 8.3.2 at the Advanced Light Source enables imaging of samples at high temperatures and pressures, with mechanical loading and other realistic conditions using environmental test cells. These test cells enable experimental observation of samples undergoing dynamic microstructural changes in-situ. We present recent instrumentation developments that allow for continuous tomography with scan rates approaching 1 Hz per 3D image. In addition, our use of iterative reconstruction techniques allows for improved image quality despite fewer images and low exposure times used during fast tomography compared to traditional Fourier reconstruction methods.

  3. Stereological assessment of mouse lung parenchyma via nondestructive, multiscale micro-CT imaging validated by light microscopic histology.

    PubMed

    Vasilescu, Dragos M; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R; Ochs, Matthias; Hoffman, Eric A

    2013-03-15

    Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro-computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies.

  4. Thermal Response of an Additive Manufactured Aluminum

    SciTech Connect

    Wu, Tong; Wereszczak, Andrew A; Wang, Hsin; Ozpineci, Burak; Ayers, Curtis William

    2016-01-01

    In this paper, the impacts of abnormal thermal property introduced by additive manufacture has been analysis based on simulation and experiment of a 3D printed liquid-cooled heat sink. Comparisons to the heat sink with identical geometry and conventionally manufactured by Aluminum 6061 are presented. Micro-structure analysis is implemented and solutions to eliminate the impacts by different manufacture methods are proposed.

  5. Micro-raman assessment of the ratio of carbon-carbon double bonds of two adhesive systems cured with LED or halogen light-curing units.

    PubMed

    Miletic, Vesna; Santini, Ario

    2010-12-01

    the purpose of the study was to compare the ratio of carbon-carbon double bonds (RDB) of two adhesive systems cured by five different light-curing units (LCUs) using micro-Raman spectroscopy. materials and methods: ten samples of an etch-and-rinse (Excite), a two-step self-etching adhesive system (AdheSE) - ie, primer and bond mixed - and AdheSE Bond only were prepared and cured with one of the following LEDs: Elipar Freelight2; Bluephase; SmartLite; Coltolux, each for 10 s; or a conventional halogen Prismetics Lite for 10 s or 20 s. Micro-Raman spectra were obtained from uncured and cured samples of all three groups to calculate the RDB. Data were statistically analyzed using ANOVA. the mean RDB values were 62% to 76% (Excite), 36% to 50% (AdheSE Primer+Bond) and 58% to 63% (AdheSE Bond). At 20 s, Prismetics Lite produced significantly higher RDB in Excite than the other LCUs and Prismetics Lite at 10 s (p < 0.05). Prismetics Lite at 20 s and Elipar produced comparable RDB values of AdheSE Bond and AdheSE Primer+Bond (p > 0.05). Excite showed significantly higher RDB values than AdheSE (p < 0.05) whilst AdheSE Bond showed significantly higher RDB than AdheSE Primer+Bond (p < 0.05). the etch-and-rinse adhesive cured with the halogen LCU for 20 s gave higher conversion than LED LCUs or halogen for 10 s curing time. The highest intensity LED [Elipar] produced higher or comparable conversion compared to the lower intensity LED LCUs for the same curing time. The etch-and-rinse adhesive showed higher RDB than the self-etching adhesive system. The presence of the primer in the self-etching adhesive compromised polymerisation.

  6. InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate.

    PubMed

    Ke, Wen-Cheng; Lee, Fang-Wei; Chiang, Chih-Yung; Liang, Zhong-Yi; Chen, Wei-Kuo; Seong, Tae-Yeon

    2016-12-21

    A hybrid patterned sapphire substrate (hybrid-PSS) was prepared using an anodic aluminum oxide etching mask to transfer nanopatterns onto a conventional patterned sapphire substrate with microscale patterns (bare-PSS). The threading dislocation (TD) suppression of light-emitting diodes (LEDs) grown on a hybrid-PSS (HP-LED) exhibits a smaller reverse leakage current compared with that of LEDs grown on a bare-PSS (BP-LED). The strain-free GaN buffer layer and fully strained InGaN active layer were evidenced by cross-sectional Raman spectra and reciprocal space mapping of the X-ray diffraction intensity for both samples. The calculated piezoelectric fields for both samples are close, implying that the quantum-confined Stark effect was not a dominant mechanism influencing the electroluminescence (EL) peak wavelength under a high injection current. The bandgap shrinkage effect of the InGaN well layer was considered to explain the large red-shifted EL peak wavelength under high injection currents. The estimated LED chip temperatures rise from room temperature to 150 °C and 75 °C for BP-LED and HP-LED, respectively, at a 600-mA injection current. This smaller temperature rise of the LED chip is attributed to the increased contact area between the sapphire and the LED structural layer because of the embedded nanopattern. Although the chip generates more heat at high injection currents, the accumulated heat can be removed to outside the chip effectively. The high diffuse reflection (DR) rate of hybrid-PSS increases the escape probability of photons, resulting in an increase in the viewing angle of the LEDs from 130° to 145°. The efficiency droop was reduced from 46% to 35%, effects which can be attributed to the elimination of TDs and strain relaxation by embedded nanopatterns. In addition, the light output power of HP-LED at 360-mA injection currents exhibits a ∼ 22.3% enhancement, demonstrating that hybrid-PSSs are beneficial to apply in high-power LEDs.

  7. Manufacturing requirements

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.; Martin, Glen L.; Domack, Christopher S.

    1986-01-01

    In recent years, natural laminar flow (NLF) has been proven to be achievable on modern smooth airframe surfaces over a range of cruise flight conditions representative of most current business and commuter aircraft. Published waviness and boundary layer transition measurements on several modern metal and composite airframes have demonstrated the fact that achievable surface waviness is readily compatible with laminar flow requirements. Currently, the principal challenge to the manufacture of NLF-compatible surfaces is two-dimensional roughness in the form of steps and gaps at structural joints. Results of recent NASA investigations on manufacturing tolerances for NLF surfaces, including results of a flight experiment are given. Based on recent research, recommendations are given for conservative manufacturing tolerances for waviness and shaped steps.

  8. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  9. Advanced visible light photocatalytic properties of BiOCl micro/nanospheres synthesized via reactable ionic liquids

    NASA Astrophysics Data System (ADS)

    Xia, Jiexiang; Zhang, Jing; Yin, Sheng; Li, Huaming; Xu, Hui; Xu, Li; Zhang, Qi

    2013-02-01

    BiOCl uniform flower-like microspheres and porous nanospheres structures have been successfully synthesized through a one-pot ethylene glycol (EG)-assisted solvothermal process in the presence of reactable ionic liquid 1-hexadecy-3-methylimidazolium chloride ([C16mim]Cl) and [C16mim]Cl-PVP composite system. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV-vis diffuse reflectance spectroscopy (DRS). During the reaction process, the ionic liquid acted not only as the solvent and the template, but also as a Cl source for the fabrication of BiOCl microspheres. The effect of the cation alkyl chain length of ionic liquids on morphology and optical absorption properties was investigated and is discussed in detail. In addition, the photocatalytic activity of the BiOCl samples was evaluated by rhodamine B (RhB) dye degradation under visible-light irradiation. It was found that BiOCl porous nanospheres exhibited higher photocatalytic activity than that of the samples prepared with conventional method and TiO2 (Degussa, P25).

  10. Automated Surface Inspection of Micro Parts

    NASA Astrophysics Data System (ADS)

    Scholz-Reiter, Bernd; Thamer, Hendrik; Lütjen, Michael

    2010-10-01

    This chapter presents a machine vision system for detecting surface imperfections on micro parts. It is part of a quality control concept for micro production. Because of increasing product miniaturization, the mechanical manufacturing of micro components is becoming more and more important. The combination of high manufacturing rates and low tolerances in manufacturing processes enables the economical production of micro components. Due to the small component sizes and the difficulties associated with the handling process, the manual visual inspection retires as testing procedure. A customized surface inspection technology with an efficient image processing and classification system is needed. The objective of our concept is to identify surface imperfections such as raisings, laps and bulges on micro parts. The implementation of the system is explained by reference to a micro deep-drawn component, which is manufactured within the German Collaborative Research Center (CRC) 747.

  11. Micro/Nanomanufacturing in Support of Materials Science

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Moser, H. O.; Chen, A.; Heussler, S. P.; Liu, G.; Mahmood, Shahrain bin; Kalaiselvi, S. M. P.; Maniam, S. M.; Virasawmy, Selven; Ren, Y. P.; Barrett, M. D.; Dhanapaul, A. L.

    2009-01-01

    With its LiMiNT facility (Lithography for Micro- and Nanotechnology), Singapore Synchrotron Light Source (SSLS) provides a one-stop shop for micro/nano fabrication on large areas (typically 4" diameter). Synchrotron deep X-ray lithography, eventually enhanced by the super-resolution process, is used to simultaneously pattern large numbers of micro/nano structures into a resist. Laser direct writer or electron beam serve as primary pattern generators, in particular, for mask making. Structure heights of >1 mm, aspect ratios of >200, and minimum sizes of <200 nm have been achieved, not necessarily simultaneously. Such structures may be replicated into a variety of metals and plastics. Tilting, rotating of the mask-substrate stack during exposure enables the parallel production of nearly 3D structures. Application fields include electromagnetic metamaterials, X-ray and infrared optics, photonics, lasers, quantum technology, precision manufacturing, and fluidics. SSLS is serving a growing community of users and customers.

  12. Micro/Nanomanufacturing in Support of Materials Science

    SciTech Connect

    Jian, L. K.; Chen, A.; Heussler, S. P.; Liu, G.; Mahmood, Shahrain bin; Kalaiselvi, S. M. P.; Maniam, S. M.; Virasawmy, Selven; Ren, Y. P.; Moser, H. O.; Barrett, M. D.; Dhanapaul, A. L.

    2009-01-29

    With its LiMiNT facility (Lithography for Micro- and Nanotechnology), Singapore Synchrotron Light Source (SSLS) provides a one-stop shop for micro/nano fabrication on large areas (typically 4'' diameter). Synchrotron deep X-ray lithography, eventually enhanced by the super-resolution process, is used to simultaneously pattern large numbers of micro/nano structures into a resist. Laser direct writer or electron beam serve as primary pattern generators, in particular, for mask making. Structure heights of >1 mm, aspect ratios of >200, and minimum sizes of <200 nm have been achieved, not necessarily simultaneously. Such structures may be replicated into a variety of metals and plastics. Tilting, rotating of the mask-substrate stack during exposure enables the parallel production of nearly 3D structures. Application fields include electromagnetic metamaterials, X-ray and infrared optics, photonics, lasers, quantum technology, precision manufacturing, and fluidics. SSLS is serving a growing community of users and customers.

  13. Perfluorooctanoic acid affects endocytosis involving clathrin light chain A and microRNA-133b-3p in mouse testes.

    PubMed

    Lu, Yin; Wang, Jianshe; Guo, Xuejiang; Yan, Shengmin; Dai, Jiayin

    2017-03-01

    Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. Among its potential health hazards, testicular toxicity is of major concern. To explore the potential effect of miRNA on post-translational regulation after PFOA exposure, changes in miRNAs were detected via miRNA array. Seventeen miRNAs were differentially expressed (eight upregulated, nine downregulated) in male mouse testes after exposure to 5mg/kg/d of PFOA for 28d (>1.5-fold and P<0.05 compared with the control). Eight of these miRNAs were further selected for TaqMan qPCR analysis. Proteomic profile analysis indicated that many changed proteins after PFOA treatment, including intersectin 1 (ITSN1), serine protease inhibitor A3K (Serpina3k), and apolipoprotein a1 (APOA1), were involved in endocytosis and blood-testis barrier (BTB) processes. These changes were further verified by immunohistochemical and Western blot analyses. Endocytosis-related genes were selected for qPCR analysis, with many found to be significantly changed after PFOA treatment, including epidermal growth factor receptor pathway substrate 8 (Eps8), Eps15, cortactin, cofilin, espin, vinculin, and zyxin. We further predicted the potential interaction between changed miRNAs and proteins, which indicated that miRNAs might play a role in the post-translational regulation of gene expression after PFOA treatment in mouse testes. Among them, miR-133b-3p/clathrin light chain A (CLTA) was selected and verified in vitro by transfection and luciferase activity assay. Results showed that PFOA exposure affects endocytosis in mouse testes and that CLTA is a potential target of miR-133b-3p. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Passive solar manufactured buildings development and analyses

    NASA Astrophysics Data System (ADS)

    Dekieffer, R.

    1983-11-01

    Manufactured buildings which are cost effective residential and light commercial buildings are discussed. The solar energy research institute (SERI) and the Department of Energy (DOE) worked with building manufacturers design, develop, and build passive solar manufactured buildings. This development process lead to valuable information in design development and design options, cost analysis, and estimated and monitored thermal performance on all types of manufactured buildings. The scope and content are described.

  15. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    SciTech Connect

    Madami, M. Carlotti, G.; Gubbiotti, G.; Tacchi, S.; Siracusano, G.; Finocchio, G.; Carpentieri, M.

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.

  16. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  17. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  18. Optical design of freeform micro-optical elements and their fabrication combining maskless laser direct write lithography and replication by imprinting

    NASA Astrophysics Data System (ADS)

    Kuna, Ladislav; Leiner, Claude; Nemitz, Wolfgang; Reil, Frank; Hartmann, Paul; Wenzl, Franz-Peter; Sommer, Christian

    2017-01-01

    Today, freeform micro-optical structures are desired components in many photonic and optical applications, such as lighting and detection systems, due to their compactness, ease of system integration, and superior optical performance. The high complexity of a freeform structure's arbitrary surface profile and the need for high throughput upon fabrication require sophisticated approaches for their integration into a manufacturing process. In this paper, we discuss a smart fabrication process of freeform micro-optical elements that ranges from their design by optical simulations to their cost-efficient fabrication by maskless laser direct write lithography (MALA) and replication from the as-fabricated master by imprinting. Aided by profilometry and optical microscopy, the fidelity of the fabricated freeform micro-optical elements to the design is characterized. Finally, the light intensity distribution on a target plane affected by the freeform micro-optical element illuminated with a light-emitting diode is determined and compared with the predicted one.

  19. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  20. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  1. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  2. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2010-12-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  3. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2011-05-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  4. High-efficiency approach for fabricating MTE rotor by micro-EDM and micro-extrusion

    NASA Astrophysics Data System (ADS)

    Geng, Xuesong; Chi, Guanxin; Wang, Yukui; Wang, Zhenlong

    2014-07-01

    Micro-gas turbine engine (MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining (micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.

  5. Light-Induced Mutagenicity in Salmonella TA102 and Genotoxicity/Cytotoxicity in Human T-cells by 3,3’-Dichlorobenzidine: A Chemical Used in the Manufacture of Dyes and Pigments and in Tattoo Inks

    PubMed Central

    Wang, Lei; Yan, Jian; Hardy, William; Mosley, Charity; Wang, Shuguang; Yu, Hongtao

    2013-01-01

    3,3’-Dichlorobenzidine (DCB) is used primarily as an intermediate in the manufacture of diarylide yellow or azo red pigments for printing inks, textiles, paints, and plastics. It is also used in tattoo inks. In this article, we investigate light-induced toxicity of DCB in both bacteria and human Jurkat T-cells. DCB itself is not toxic or mutagenic to Salmonella typhimurium TA102, but is photomutagenic at concentrations as low as 2 µM and phototoxic at concentrations >100 µM when the bacteria is exposed to DCB and light at the same time (1.2 J/cm2 of UVA and 2.1 J/cm2 of visible light). Furthermore, DCB is both photocytotoxic and photogenotoxic to human Jurkat T-cells. Under a constant light irradiation dose of 2.3 J/cm2 of UVA and 4.2 J/cm2 of visible light, it causes the Jurkat T-cells to become non-viable in a DCB dose-dependent manner and only 40% viable cells remaining at DCB concentrations higher than 50 µM. At the same time, DNA fragmentation is observed for the cells exposed to both DCB and light, determined by single cell gel electrophoresis (Comet assay). As much as 8 % of the cellular DNA is fragmented when exposed to 200 µM DCB and light irradiation. This suggests that DCB can penetrate the cell membrane and enter the cell. Upon light activation, DCB in the cells can cause various cellular damages, including DNA fragmentation, leading to non-viable Jurkat T-cells. It appears, though, non-viable cells may not be caused solely by fragmentation of cellular DNA, but other damages such as to proteins and cell membranes, or other forms of DNA damage such as alkylation that does not cause DNA to fragment, may also be involved. Therefore, persons exposed to DCB through environmental contamination or through tattoo piercing using DCB-contaminated inks must not only concern about its toxicity without exposing to light, but also about its phototoxicity. PMID:15664269

  6. Enhanced optical output power by the silver localized surface plasmon coupling through side facets of micro-hole patterned InGaN/GaN light-emitting diodes.

    PubMed

    Lee, Kang Jea; Kim, Seung Hwan; Park, Ah Hyun; Lee, Seul Be; Lee, Gun Hee; Yang, Gye-Mo; Pham, Hai Dinh; Thu, Hoang Thi; Cuong, Tran Viet; Suh, Eun-Kyung

    2014-06-30

    Light extraction efficiency of GaN-based light emitting diodes were significantly enhanced using silver nanostructures incorporated in periodic micro-hole patterned multi quantum wells (MQWs). Our results show an enhancement of 60% in the wall-plug efficiency at an injection current of 100 mA when Ag nano-particles were deposited on side facet of MQWs passivated with SiO2. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between localized surface plasmons in Ag nano-particles and the excitons in MQWs.

  7. Fabric Manufacturing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    When rapid oscillation of blanket wearing looms at Chatham Manufacturing Company caused significant metal fatigue, the company turned to NC/STRC for a NASA data bank computer search. The search pinpointed tensile stress, and suggested a built-in residual compressive stress as a solution. "Shot peening," bombarding a part with a high velocity stream of very small shot to pound and compress the part's surface, was found to be the only practical method for creating compressive stress. The method has been successful and the company estimates its annual savings as a quarter million dollars.

  8. Manufacturing technology

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Floyd, H. L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high-voltage varistors. A selective laser sintering process automates wax casting pattern fabrication. Numerical modeling improves the performance of a photoresist stripper (a simulation on a Cray supercomputer reveals the path of a uniform plasma). Improved mathematical models will help make the dream of low-cost ceramic composites come true.

  9. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    SciTech Connect

    Radecsky, Kristen; Johnstone, Peter; Jacobson, Arne; Mills, Evan

    2008-12-14

    superior lighting services to low income people in off-grid areas of developing countries, many of whom currently rely on fuel based lighting sources such as kerosene. If this potential is to be achieved in the near term, however, manufacturers must produce off-grid lighting products that are inexpensive, perform well, and meet the needs of potential end users. At present, relatively few products meet all three of these goals. In this article, we report results from a detailed study of lighting use by micro-enterprises in two small towns in Kenya's Rift Valley Province. The work included a survey about lighting use by 50 small businesses, careful measurements of kerosene lighting use patterns and associated costs for 23 of these businesses, and a subsequent field trial in which 14 of the 23 businesses purchased and used low cost LED lamps over a number of months.

  10. Turbine Manufacture

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.

  11. Manufacturing R&D Initiative Lowers Costs and Boosts Quality

    SciTech Connect

    2015-06-30

    Fact sheet that provides an overview of DOE's Manufacturing R&D Initiative, which supports projects aimed at developing better-performing, lower-cost solid-state lighting while encouraging engineering and manufacturing in the United States.

  12. Safe food manufacturing.

    PubMed

    Shapiro, A; Mercier, C

    1994-03-31

    protect against possible criminal damage. In addition, the material of packaging should not allow micro-migration to the food. It should be inert against its food content. Another aspect of food packaging that has to be taken into account is its recovery and recyclability. Finally, the food manufacturer has to ensure that the nutritional value of the product does not diminish through its shelf-life. The consumer should be advised about the effects of culinary practices since some of them, such as deep frying or grilling under certain circumstances, may create undesirable substances potentially harmful to human health. The food manufacturing in the context of the environment protection requires a separate issue.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    SciTech Connect

    Love, Lonnie J.

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  14. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamlinefor photoelectron spectro-microscopies

    SciTech Connect

    Reininger R.; Hulbert L.; Johnson P.D.; Sadowski, J.T.; Starr, D.E.; Chubar, O.; Valla, T.; Vescovo, E.

    2012-02-13

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({micro}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {micro}m for ARPES and 0.5 {micro}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  15. Micro and nano patternable magnetic carbon

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Rostas, Arpad M.; Bordonali, Lorenzo; MacKinnon, Neil; Weber, Stefan; Korvink, Jan G.

    2016-12-01

    Carbon is conventionally not associated with magnetism, causing much of the discussion of its perspectives in nanotechnology to be centred on its electron-transport properties. Among the few existing examples of magnetic carbon production, none has found a direct route into scalable micro- and nanofabrication. Here we introduce a magnetic form of carbon whose precursor polymers can be lithographically patterned into micro- and nano-structures prior to pyrolysis. This unreactive and thermally robust material features a strong, room-temperature magnetism owing to a large number of unpaired electron spins with restricted mobility, which is achieved by controlling the progression of bond dissociation and formation during pyrolysis. The micro-manufacture of pyrolytic magnetic carbon, having (3.5 ±0.7 )×1015 spins/mg, can immediately benefit a number of spintronic and magnetic-microelectromechanical system applications, and the fabrication of composite magnetic materials. The material could also complement the magnetic resonance spectroscopy and imaging techniques. Additionally, this contribution sheds light on the controversial theories concerning the existence and mechanism of magnetic phenomena in carbon.

  16. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device

    NASA Astrophysics Data System (ADS)

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-01

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  17. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.

    PubMed

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-03

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  18. No-Light Light Bulbs

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    A thumbnail sketch of some of the light bulbs manufactured for a purpose other than seeing. These "dark" lamps perform varied tasks including keeping food fresh, detecting and preventing disease, spurring plant growth, heating, and copying printed material. (Author/MLF)

  19. No-Light Light Bulbs

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    A thumbnail sketch of some of the light bulbs manufactured for a purpose other than seeing. These "dark" lamps perform varied tasks including keeping food fresh, detecting and preventing disease, spurring plant growth, heating, and copying printed material. (Author/MLF)

  20. Fabrication of Micro/Nano optical Fiber by Electrospinning Direct-writing

    NASA Astrophysics Data System (ADS)

    Yifang, Liu

    2017-01-01

    Because of the excellent performance, Micro/Nano optical fiber has been more and more widely applied in passive photonic devices, micro-optical sensors, field of atomic manipulation, etc. Currently the main manufacturing mode of Micro/Nano optical fiber is the stretching method which is susceptible to air impact, vulnerable to contaminant and has poor reproducibility. In order to solve these problems, the fabrication of the Micro/Nano optical fiber by electrospinning direct-writing is researched in this article. The experimental platform is set up after the scheme of electrospinning direct-writing is designed. A series of comparative experiments are carried out with changing three experimental variables. The PMMA Micro/Nano optical fiber of controllable diameter is fabricated by regulating the distance between the sprinkler head and collecting plate, flow rate and concentration of PMMA solution. The testing results indicate that the light transmission power loss rate of the PMMA Micro/Nano optical fiberis 0.41dB/mmexcited by a 633-nm-wavelength light. The problem is expected to be solved by further optimization of the experimental process and parameters.

  1. Cloud manufacturing: a new manufacturing paradigm

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Luo, Yongliang; Tao, Fei; Li, Bo Hu; Ren, Lei; Zhang, Xuesong; Guo, Hua; Cheng, Ying; Hu, Anrui; Liu, Yongkui

    2014-03-01

    Combining with the emerged technologies such as cloud computing, the Internet of things, service-oriented technologies and high performance computing, a new manufacturing paradigm - cloud manufacturing (CMfg) - for solving the bottlenecks in the informatisation development and manufacturing applications is introduced. The concept of CMfg, including its architecture, typical characteristics and the key technologies for implementing a CMfg service platform, is discussed. Three core components for constructing a CMfg system, i.e. CMfg resources, manufacturing cloud service and manufacturing cloud are studied, and the constructing method for manufacturing cloud is investigated. Finally, a prototype of CMfg and the existing related works conducted by the authors' group on CMfg are briefly presented.

  2. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  3. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  4. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  5. Manufacturers use of business services

    SciTech Connect

    Calzonetti, F.; Allison, T.

    1992-12-31

    This paper summarized findings from a Colorado and Utah survey of manufacturing and business service establishments which provided information on the use of business services among different types of firms in this interior region of the United States. The paper provides information which helps to shed light on various areas of inquiry on the relationship between manufacturers and producer services, but certainly calls for additional investigation. Most of the findings are consistent with those found by studies in other areas. Manufacturers are not a major source of sales for business service firms and the availability of business services is not cited as an important location consideration for manufacturers. Given the strong mining and agricultural sectors in these states, the fact that so little trade was with the primary sector may have been surprising. However, most of the responses in the surveys were from the urban areas of Denver and Salt Lake City. One of the hypotheses in the literature, as defined by Perry and Goe, concerns whether the growth in business services and the decline in manufacturing employment is a result of the trend toward the use of contracted services by manufacturers. The aggregate results of the study do not provide much evidence to support the proposition that this occurs. However, the results show that the larger firms internalize certain specialized business services more so than the smaller firms. The greater use company-provided legal services by the larger manufacturers is a case in point. This finding is consistent with Scott`s finding in the printed circuits industry in which larger establishments provided more functions internally than did the smaller establishments. In the case of engineering, architectural, and business management services it appears that many smaller manufacturers do not use such services at all, but that the larger establishments have more needs for professional services.

  6. A modular assembling platform for manufacturing of microsystems by optical tweezers

    NASA Astrophysics Data System (ADS)

    Ksouri, Sarah Isabelle; Aumann, Andreas; Ghadiri, Reza; Prüfer, Michael; Baer, Sebastian; Ostendorf, Andreas

    2013-09-01

    Due to the increased complexity in terms of materials and geometries for microsystems new assembling techniques are required. Assembling techniques from the semiconductor industry are often very specific and cannot fulfill all specifications in more complex microsystems. Therefore, holographic optical tweezers are applied to manipulate structures in micrometer range with highest flexibility and precision. As is well known non-spherical assemblies can be trapped and controlled by laser light and assembled with an additional light modulator application, where the incident laser beam is rearranged into flexible light patterns in order to generate multiple spots. The complementary building blocks are generated by a two-photon-polymerization process. The possibilities of manufacturing arbitrary microstructures and the potential of optical tweezers lead to the idea of combining manufacturing techniques with manipulation processes to "microrobotic" processes. This work presents the manipulation of generated complex microstructures with optical tools as well as a storage solution for 2PP assemblies. A sample holder has been developed for the manual feeding of 2PP building blocks. Furthermore, a modular assembling platform has been constructed for an `all-in-one' 2PP manufacturing process as a dedicated storage system. The long-term objective is the automation process of feeding and storage of several different 2PP micro-assemblies to realize an automated assembly process.

  7. Phase imaging results of phase defect using micro-coherent extreme ultraviolet scatterometry microscope

    NASA Astrophysics Data System (ADS)

    Harada, Tetsuo; Hashimoto, Hiraku; Amano, Tsuyoshi; Kinoshita, Hiroo; Watanabe, Takeo

    2016-04-01

    To evaluate defects on extreme ultraviolet (EUV) masks at the blank state of manufacturing, we developed a micro-coherent EUV scatterometry microscope (micro-CSM). The illumination source is coherent EUV light with a 140 nm focus diameter on the defect using a Fresnel zone plate. This system directly observes the reflection and diffraction signals from a phase defect. The phase and the intensity image of the defect are reconstructed with the diffraction images using ptychography, which is an algorithm of the coherent diffraction imaging. We observed programmed phase defect on a blank EUV mask. Phase distributions of these programmed defects were well reconstructed quantitatively. The micro-CSM is a very powerful tool to review an EUV phase defect.

  8. [A micro-silicon multi-slit spectrophotometer based on MEMS technology].

    PubMed

    Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen

    2009-06-01

    A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.

  9. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  10. OPINION: Safe exponential manufacturing

    NASA Astrophysics Data System (ADS)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  11. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  12. Micro-optical 1 x 4 fiber switch for multimode fibers with 600-microm core diameters.

    PubMed

    Duparré, Jacques; Götz, Bernt; Göring, Rolf

    2003-12-01

    The design, manufacture, and test of a 1 x 4 micro-optical fiber switch for multimode fibers with 600-microm core diameters are described. Microlens array telescopes allow for variable and fast beam deflection when the positions of the cylindrical microlens arrays relative to each another are altered by specially designed piezomechanical actuators. Standard achromats are used for collimation of light emitted by the input multimode fiber and for focusing of the deflected light onto a linear array of output multimode fibers. Design and assembly of micro-optical as well as of optomechanical components are discussed. Insertion loss and cross talk are measured, and the results are compared with those of numerical optical simulations. Measurements of switching time and long-term stability, as well as of thermal behavior, are also presented.

  13. Exploring Manufacturing Technology.

    ERIC Educational Resources Information Center

    Iley, John; And Others

    These teacher's materials for an eight-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the manufacturing industries. The eight units include an overview of manufacturing, manufacturing enterprises and systems, manufacturing materials and selection, manufacturing…

  14. The micro spectral measurement of micro integrated filters

    NASA Astrophysics Data System (ADS)

    Ma, Xiaofeng; Zhou, Sheng; Cai, Yuan; Liu, Dingquan

    2016-10-01

    Theory of micro spectral transmittance measurement and its characteristics have been analyzed. Measurement procedures and data processing method have been introduced. Micro spectral transmittance of micro integrated filters has been measured using PerkinElmer Lambda 1050 spectrophotometer with the combination of a Schwarzschild optical system microscope accessory, and the measured quantitative analysis results have been obtained. The incidence focused light spot size is about 20*40 um2. At last, micro spectral transmittance results for micro integrated filters have been compared with the spectral transmittance for large size samples, which are fabricated under the same condition and measured at normal incidence. The focused incidence for micro spectral measurement will cause a wavelength shift towards the shorter and a deformation transmittance curve, but those changes are in agreement with their theoretical simulations.

  15. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1994-01-01

    product and process domains. The system will support Design for Manufacturing and Assembly ( DFMA ) with a set of tools to model manufacturing processes, and...concurrently in the product and process domains. The system will support DFMA with a set of tools to model manufacturing processes, and manage tradeoffs across... DFMA Design for Manufacturing and Assembly DICE DARPA Initiative In Concurrent Engineering MO Manufacturing Optimization 5 MSD Missile Systems Division

  16. Micro Bubble and Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Mitome, Hideto

    2001-05-01

    The author reviews the interaction of micro bubbles with ultrasound. First, the action of acoustic radiation pressure on bubbles is discussed in contrast with that on small particles noting the concept of Bjerknes force, resonant bubbles and nonlinear oscillation of bubbles. In the past decade, sonoluminescence, light emission from a single oscillating bubble, attracted attention of researchers because of its strange characteristics. A short history of sonoluminescence and its characteristics are summarized based on bubble motion in a sound field. Lastly, industrial and medical applications of extreme environment generated by collapsing micro bubbles are discussed as promising technology in the new century.

  17. Development of ultra-precision micro-cavity measurement technique in HIT-UOI

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Lei; Tan, Jiubin

    2010-08-01

    Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.

  18. Efficient manufacturing technology of metal optics

    NASA Astrophysics Data System (ADS)

    Zhang, Jizhen; Wu, Yanxiong; Zhang, Xin; Zhang, Liping; Wang, Lingjie; Qu, Hemeng

    2015-10-01

    The efficient manufacturing technologies greatly accelerate the development and production process. Optical components have higher precision requirements than mechanical parts. This provides great challenge for rapid manufacturing. Metallic optical system is featured high resolution, wide spectral range, light weight, compact design, low cost and short manufacturing period. Reflective mirrors and supporting structures can be made from the same material to improve athermal performance of the system. Common materials for metal mirrors in optical applications include aluminum, copper, beryllium, aluminum beryllium alloy and so on. Their physical characteristics and relative advantages are presented. Most kinds of metals have good machinability and can be manufactured by many kinds of producing methods. This makes metallic optical system saving 30%~60% cost and time than others. The manufacturing process of metal mirror is different due to its working spectral. The metal mirror can be directly manufactured by single point diamond turning. This is an outstanding technique in point of ultra-precision as well as economical manufacture of mirrors. The roughness values and form accuracy of optical surfaces after diamond turning can satisfy the quality level for applications in the near infrared and infrared range. And for visible light spectral the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Some smoothing methods to obtain visible quality metal mirrors are given in this paper. Some new manufacturing technology, such as 3D printing, can be used for metallic optical system and several promising techniques are presented.

  19. Driving platform for OLED lighting investigations

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Elgner, Andreas; Kreye, Daniel; Amelung, Jörg; Scholles, Michael

    2006-08-01

    OLED technology may be excellently suitable for lighting applications by combining high efficiency, cost effective manufacturing and the use of low cost materials. Certain issues remain to be solved so far, including OLED brightness, color, lifetime, large area uniformity and encapsulation. Another aspect, that might be capable in addressing some of the mentioned issues, is OLED lighting electrical driving. We report on the design of a driving platform for OLED lighting test panels or substrates. It is intended for being a test environment for lighting substrates as well as demonstration/presentation environment. It is based on a 128-channel passive-matrix driver/controller ASIC OC2. Its key component is an MSP430-compatible 16-bit micro-controller core including embedded Flash memory (program), EEPROM (parameter), and RAM (data memory). A significant feature of the device is an electronic approach for improving the lifetime/uniformity behavior of connected OLED. The embedded micro-controller is the key to the high versatility of OC2, since by firmware modification it can be adapted to various applications and conditions. Here its application for an OLED lighting driving platform is presented. Major features of this platform are PC-control mode (via USB interface), stand-alone mode (no external control necessary, just power supply), on-board OLED panel parameter storage, flat geometry of OLED lighting panel carrier (board), AC and DC driving regimes, adjustable reverse voltage, dedicated user SW (PC/Windows-based), sub-tile patterning and single sub-tile control, combination of multiple channels for increasing driving current. This publication contains results of the project "High Brightness OLEDs for ICT & Next Generation Lighting Applications" (OLLA), funded by the European Commission.

  20. Micro-machining.

    PubMed

    Brinksmeier, Ekkard; Preuss, Werner

    2012-08-28

    Manipulating bulk material at the atomic level is considered to be the domain of physics, chemistry and nanotechnology. However, precision engineering, especially micro-machining, has become a powerful tool for controlling the surface properties and sub-surface integrity of the optical, electronic and mechanical functional parts in a regime where continuum mechanics is left behind and the quantum nature of matter comes into play. The surprising subtlety of micro-machining results from the extraordinary precision of tools, machines and controls expanding into the nanometre range-a hundred times more precise than the wavelength of light. In this paper, we will outline the development of precision engineering, highlight modern achievements of ultra-precision machining and discuss the necessity of a deeper physical understanding of micro-machining.

  1. Micro and Macro Content Analysis of English Textbook Entitled "Mosaic One Listening and Speaking (Student's Book)" in the Light of Communicative Competence

    ERIC Educational Resources Information Center

    Al-Mashaqba, Nisreen Juma'a Hamed

    2017-01-01

    The purpose of this study is to investigate the extent to which the listening and speaking lessons which are presented in textbook entitled "Mosaic One Listening and speaking (Student's Book)" are characterized with appropriateness and meaningfulness in light of communicative competence and meet the Principles and features of…

  2. Fluorescent blue lights, injecting drug use and related health risk in public conveniences: findings from a qualitative study of micro-injecting environments.

    PubMed

    Parkin, Stephen; Coomber, Ross

    2010-07-01

    This paper presents findings relating to injecting drug users' experiences and opinions of public toilets illuminated with fluorescent blue lights and presents an empirical assessment of the intended deterrent effect of such installations. Data analysis identified that blue lights deterred less than half the sample interviewed. Furthermore over half (18/31) of the sample were prepared to inject in conditions specifically designed to deter injecting practice. Of these, 11 respondents were completely undeterred and 7 individuals were only partially deterred by blue light environments. These findings are discussed within the interpretative frameworks of Pierre Bourdieu's theory of habitus and symbolic violence. The authors conclude that fluorescent blue lights contribute towards the development of situated resistance by injecting drug users within a public injecting habitus; a resistance that produces and reproduces drug-related harm and is a behaviour that opposes the symbolic violence of harm reduction intervention. The paper concludes with suggestions for theory-driven practical intervention that may seek to disrupt the harmful elements of the public injecting habitus. 2010 Elsevier Ltd. All rights reserved.

  3. Micro-sized K2SiF6:Mn4+ red phosphors for light emitting diodes synthesized by a simple method

    NASA Astrophysics Data System (ADS)

    Shi, Yurong; Li, Wan; Wen, Yan

    Micro-sized K2SiF6:Mn4+ red phosphor was prepared by a simple method. Oleic acid (OA) was used as dispersant and reductant. In a fixed condition of the mole ratio of SiO2/KMnO4, the effects of the volume of OA on the morphology and luminescence properties were studied. X-ray diffraction (XRD) was used to characterize the phase. Scanning electron microscopy (SEM) and luminescence spectra were carried out to identify the morphology and the luminescence properties, respectively. The results show that the dispersive particles of K2SiF6:Mn4+ red phosphor ˜ 3μm larger was obtained, which is suitable for industrial applications.

  4. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies

    SciTech Connect

    Reininger, R.; Hulbert, S. L.; Chubar, O.; Vescovo, E.; Johnson, P. D.; Valla, T.; Sadowski, J. T.; Starr, D. E.

    2012-02-15

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy ({mu}-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 {mu}m for ARPES and 0.5 {mu}m for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  5. The Use of Light/Chemically Hardened Polymethylmethacrylate, Polyhydroxylethylmethacrylate, and Calcium Hydroxide Graft Material in Combination With Polyanhydride Around Implants and Extraction Sockets in Minipigs: Part II: Histologic and Micro-CT Evaluations

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Ghattas, Mazen; Dangaria, Smit J.; Abdallah, Rima; Morgan, Elise F.; Diekwisch, Thomas G.H.; Ashman, Arthur; Van Dyke, Thomas

    2015-01-01

    Background This report is the second part of the previously published study on the impact of light/chemical hardening technology and a newly formulated composite graft material for crestal augmentation during immediate implant placement. Methods A total of 48 implants were placed into the sockets of the mesial roots of freshly extracted mandibular premolar teeth in three minipigs. Crestal areas and intrabony spaces were randomly augmented with light-hardened graft materials including a composite graft consisting of polymethylmethacrylate, polyhydroxylethylmethacrylate, and calcium hydroxide (PPCH) plus polyanhydride (PA); PPCH graft; and PA graft, or left untreated. Distal sockets not receiving implants and the sockets of first molars (n = 60) were randomly treated with one of the graft materials or left empty. In addition, two molar sockets were treated with the original PPCH graft material. Quantitative microcomputed tomography (micro-CT) was used to assess alveolar bone structure and tissue compositions. Histologic evaluations included descriptive histology to assess the peri-implant wound healing, as well as histomorphometric measurements to determine bone-to-implant contact (BIC). Results Both trabecular and cortical bone measurements by micro-CT did not reveal any significant differences among the groups. Sites augmented with PPCH+PA resulted in significantly greater BIC surface than PPCH alone and no-graft-treated implants (P <0.05) histologically. Stained ground sections showed complete bone formation between bone and implant surface in the PPCH+PA group, whereas sites without augmentation showed large gaps between bone and implant surfaces, indicating a slower bone apposition and less BIC surface compared to all other groups. Similar to implant sections, all materials showed positive outcome on trabecular and cortical bone formation in extraction sockets with an intact crestal cortical bone. Conclusion Histologic evaluations supported the previous findings

  6. Energy Use in Manufacturing

    EIA Publications

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  7. WOW: light print, light propel, light point

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  8. Beryllium Manufacturing Processes

    SciTech Connect

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  9. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1993-01-01

    Manufacturing and Assembly ( DFMA ) with a set of tools to model the manufacturing processes, and manage tradeoffs across multiple processes. The subject of...in the product and process domains. The system will support DFMA with a set of tools to model the manufacturing processes, and manage tradeoffs across...concurrently in the product and process domains. The system will support Design for Manufacturing and Assembly ( DFMA ) with a set af tools to model the

  10. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1992-01-01

    Design for Manufacturing and Assembly ( DFMA ) with a set of tools to model the manufacturing processes, and manage tradeoffs across multiple processes. The...multiple manufacturing engineers, and the product/process changes are traded concurrently in the product and process domains. The system will support DFMA ...Contract Data Requirements List CM Communications Manager DARPA Defense Advanced Research Projects Agency DFMA Design for Manufacturing and Assembly

  11. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  12. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  13. Designing using manufacturing features

    NASA Astrophysics Data System (ADS)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  14. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  15. Micro Navigator

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  16. Micro Navigator

    NASA Astrophysics Data System (ADS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  17. A micro-coupling for micro mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya

    2016-05-01

    The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and

  18. The Cyclin-dependent Kinase Inhibitor p16INK4a Physically Interacts with Transcription Factor Sp1 and Cyclin-dependent Kinase 4 to Transactivate MicroRNA-141 and MicroRNA-146b-5p Spontaneously and in Response to Ultraviolet Light-induced DNA Damage*

    PubMed Central

    Al-Khalaf, Huda H.; Mohideen, Peer; Nallar, Shreeram C.; Kalvakolanu, Dhananjaya V.; Aboussekhra, Abdelilah

    2013-01-01

    p16INK4a is a tumor suppressor protein involved in several stress-related cellular responses, including apoptosis. Recent lines of evidence indicate that p16INK4a is also a modulator of gene expression. However, the molecular mechanisms underlying this novel function are still obscure. Here, we present clear evidence that p16INK4a modulates the levels of various microRNAs, with marked positive effect on miR-141 and miR-146b-5p. This effect is mediated through the formation of the p16-CDK4-Sp1 heterocomplex, which binds to Sp1 consensus-binding motifs present in the promoters of miR-141 and miR-146b-5p, and it enables their transcription. In addition, we have shown that p16INK4a interacts with Sp1 through the fourth ankyrin repeat, which is crucial for Sp1 binding to the miR-141 and miR-146b-5p promoters and their transcriptional activation. The physiological importance of this association was revealed by the inability of cancer-related p16INK4a mutants to interact with Sp1. Moreover, we have shown p16-CDK4-Sp1-dependent up-regulation of miR-141 and miR-146b-5p following UV light-induced DNA damage and the role of these two microRNAs in mediating p16-related induction of apoptosis in response to this genotoxic stress. Together, these results indicate that p16INK4a associates with CDK4 not only to inhibit the cell cycle but also to enable the transcription of two important onco-microRNAs, which act as downstream effectors. PMID:24163379

  19. Generative design drives manufacturing

    NASA Astrophysics Data System (ADS)

    Logan, Frank A.

    1989-04-01

    This paper reviews the collaboration that is being forced on Engineering and Manufacturing as they move from the manual translation of Engineering drawings toward automatic decoding of Product Data Definitions (PDDs), a pre-requisite to integrated manufacture. Based on case studies and implementation experience gained over the last decade, it defines the step-by-step evolution of a generative design capability that will drive manufacturing logic. It reviews the changing relationship of Engineering to Manufacturing and Industrial Engineering and the challenge this presents to manufacturing management in its struggle to remain competitive in both domestic and international markets.

  20. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  1. Femtosecond laser additive manufacturing of YSZ

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Bai, Shuang

    2017-04-01

    Laser additive manufacturing (LAM) of Yttria-Stabilized Zirconia (YSZ) is investigated using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. High-density (>99%) YSZ part with refined grain and increased hardness was obtained. Microstructure features of fabricated specimens were studied with SEM, EDX, the measured micro hardness is achieved as high as 18.84 GPa.

  2. Micro-optical 1 × 4 fiber switch for multimode fibers with 600-μm core diameters

    NASA Astrophysics Data System (ADS)

    Duparré, Jacques; Götz, Bernt; Göring, Rolf

    2003-12-01

    The design, manufacture, and test of a 1 × 4 micro-optical fiber switch for multimode fibers with 600-μm core diameters are described. Microlens array telescopes allow for variable and fast beam deflection when the positions of the cylindrical microlens arrays relative to each another are altered by specially designed piezomechanical actuators. Standard achromats are used for collimation of light emitted by the input multimode fiber and for focusing of the deflected light onto a linear array of output multimode fibers. Design and assembly of micro-optical as well as of optomechanical components are discussed. Insertion loss and cross talk are measured, and the results are compared with those of numerical optical simulations. Measurements of switching time and long-term stability, as well as of thermal behavior, are also presented.

  3. Ceramic components manufacturing by selective laser sintering

    NASA Astrophysics Data System (ADS)

    Bertrand, Ph.; Bayle, F.; Combe, C.; Goeuriot, P.; Smurov, I.

    2007-12-01

    In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure). The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V ( V = 1250-2000 mm/s), defocalisation (-6 to 12 mm), distance between two neighbour melted lines (so-called "vectors") (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density. Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm 3 volume cube.

  4. Blue light alters miR167 expression and microRNA-targeted auxin response factor genes in Arabidopsis thaliana plants.

    PubMed

    Pashkovskiy, Pavel P; Kartashov, Alexander V; Zlobin, Ilya E; Pogosyan, Sergei I; Kuznetsov, Vladimir V

    2016-07-01

    The effect of blue LED (450 nm) on the photomorphogenesis of Arabidopsis thaliana Col-0 plants and the transcript levels of several genes, including miRNAs, photoreceptors and auxin response factors (ARF) was investigated. It was observed that blue light accelerated the generative development, reduced the rosette leaf number, significantly reduced the leaf area, dry biomass and led to the disruption of conductive tissue formation. The blue LED differentially influenced the transcript levels of several phytochromes (PHY a, b, c, d, and e), cryptochromes (CRY 1 and 2) and phototropins (PHOT 1 and 2). At the same time, the blue LED significantly increased miR167 expression compared to a fluorescent lamp or white LEDs. This increase likely resulted in the enhanced transcription of the auxin response factor genes ARF4 and ARF8, which are regulated by this miRNA. These findings support the hypothesis that the effects of blue light on A. thaliana are mediated by auxin signalling pathway involving miRNA-dependent regulation of ARF gene expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Calibration of micro-particle analysers for ice core studies

    NASA Astrophysics Data System (ADS)

    Goto-Azuma, Kumiko; Nakazawa, Fumio; Hirabayashi, Motohiro; Ogata, Jun; Ogawa-Tsukagawa, Yoshimi; Fukuda, Kaori

    2017-04-01

    Micro-particles have been analysed for various ice cores. Temporal variations of size distribution and flux have provided valuable information on the past climatic and environmental changes. Comparison of the results obtained with different types of micro-particle analysers needs caution. First, careful calibration of each analyser is essential. Using polystyrene latex standard particles with different sizes, we have carried out extensive calibration experiments on three types of micro-particle analysers: Coulter Multsizer 4 (which measures volume of each particle and the total counts of particles in a given sample volume), Klotz Abakus (which detects shading of laser light caused by each particle), and Met One Model 211 (a laser scattering type particle analyser). The former two are most widely used analysers in the ice core community. We could obtain calibration curves much better than the ones provided by the manufactures of the three analysers. Second, we investigated how the three particle analysers define particle size. Here we report the results of the calibration experiments and compare the three analysers.

  6. Laser Material Processing in Manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Marshall

    2014-03-01

    This presentation will address some of the past, present, and potential uses of lasers for material processing in manufacturing. Laser processing includes welding, drilling, cutting, cladding, etc. The U.S. was the hot bed for initial uses of lasers for material processing in the past with Europe, especially Germany, presently leading the way. The future laser processing leader may still be Germany. Selected uses, past and present, of lasers within GE will also be highlighted as seen in such business units as Aviation, Lighting, Power and Water, Healthcare, and Transportation.

  7. Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O3 process (CF-mFe/Cu/O3) treatment of the coating wastewater from automobile manufacturing.

    PubMed

    Xiong, Zhaokun; Cao, Jinyan; Yang, Dan; Lai, Bo; Yang, Ping

    2017-01-01

    A coagulation-flocculation as pre-treatment combined with mFe/Cu/O3 (CF-mFe/Cu/O3) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al2(SO4)3·18H2O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O3 process was about 1.83 USD t(-1) for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Micro thrust and heat generator

    SciTech Connect

    Garcia, E.J.

    1995-12-31

    The present invention relates generally to micromachines such as microengines or micromotors. More specifically, the invention is directed to a micro rocket which functions as a source of heat and thrust, and utilizes chemical energy to drive or power micromechanical apparatuses. The invention is adaptable to applications involving defense, bio-medical, manufacturing, consumer product, aviation, automotive, computer, inspection, and safety systems. A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachine techniques (LIGA).

  9. Manufacturing Information System.

    DTIC Science & Technology

    1983-12-22

    university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development...PAUL R. SMITH 175 South 600 East #1 Provo, Utah 84601 (801) 377-8068 CAREER OBJECTIVE: Manufacturing Engineer using skills in development and...university classroom to aid in the education and train- ing of new manufacturing engineers. , . o i . o ., . . . . . - ,’ o . -2- 1.2. NEED There is a current

  10. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1993-01-01

    Assembly ( DFMA ) with a set of tools to model manufacturing processes, and manage tradeoffs across multiple processes. The subject of this report is the...manufacturing engineers, and product/process changes are traded concurrently in the product and process domains. The system will support DFMA with a...Requirements List DARPA Defense Advanced Research Projects Agency DFMA Design for Manufacturing and Assembly DICE DARPA Initiative In Concurrent Engineering

  11. Manufacturing with the Sun

    NASA Technical Reports Server (NTRS)

    Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.

    1991-01-01

    Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.

  12. Automation in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.

    1991-01-01

    The optics industry has not followed the lead of the machining and electronics industries in applying advances in computer aided engineering (CAE), computer assisted manufacturing (CAM), automation or quality management techniques. Automation based on computer integrated manufacturing (CIM) and flexible machining systems (FMS) has been widely implemented in these industries. Optics continues to rely on standalone equipment that preserves the highly skilled, labor intensive optical fabrication systems developed in the 1940's. This paper describes development initiatives at the Center for Optics Manufacturing that will create computer integrated manufacturing technology and support processes for the optical industry.

  13. Automation for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.

    1990-11-01

    The optics industry has not followed the lead of the machining and electronics industries in applying advances In computer aided engineering (CAE), computer assisted manufacturing (CAM), automation or quality management techniques. Automationbased on computer integrated manufacturing (CIM) and flexible machining systems (FMS) has been widely implemented In these industries. Optics continues to rely on standalone equipment that preserves the highly skilled, labor intensive optical fabrication systems developed in the 1940's. This paper describes development initiatives at the Center for Optics Manufacturing that will create computer integrated manufacturing technology and support processes for the optical industry.

  14. Plasmid DNA manufacturing technology.

    PubMed

    Carnes, Aaron E; Williams, James A

    2007-01-01

    Today, plasmid DNA is becoming increasingly important as the next generation of biotechnology products (gene medicines and DNA vaccines) make their way into clinical trials, and eventually into the pharmaceutical marketplace. This review summarizes recent patents and patent applications relating to plasmid manufacturing, in the context of a comprehensive description of the plasmid manufacturing intellectual property landscape. Strategies for plasmid manufacturers to develop or in-license key plasmid manufacturing technologies are described with the endpoint of efficiently producing kg quantities of plasmid DNA of a quality that meets anticipated European and FDA quality specifications for commercial plasmid products.

  15. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  16. Micro/nanoscale self-aligned optical couplings of the self-organized lightwave network (SOLNET) formed by excitation lights from outside

    NASA Astrophysics Data System (ADS)

    Yoshimura, Tetsuzo; Nawata, Hideyuki

    2017-01-01

    The self-organized lightwave network (SOLNET) provides "optical solder," which enables self-aligned optical couplings between misaligned optical devices with different core sizes. We propose a low-cost SOLNET formation method, in which write beams are generated within optical devices by excitation lights from outside. Simulations based on the finite-difference time-domain method reveal that the two-photon processes enhance optical-solder capabilities. In couplings between 600-nm-wide waveguides opposed with 32-μm distance a wide lateral misalignment tolerance of 2 μm to maintain <1 dB loss at 650 nm in wavelength is obtained. The coupling loss at 1-μm lateral misalignment is 0.4 dB. In couplings between 3-μm-wide and 600-nm-wide waveguides, losses at 650 nm are 0.1 dB for no misalignments and 0.9 dB for 1-μm misalignment. These results suggest that SOLNETs provide optical solder with mode size converting functions.

  17. Manufacturer Tier 3 Questions and EPA Answers

    EPA Pesticide Factsheets

    This document contains a record of EPA responses to manufacturer questions received prior to October 16, 2015 with respect to implementation of the Tier 3 final rule intended to aid regulated parties in achieving compliance with regulations for light-duty

  18. Micro-Discharge Micro-Thruster

    DTIC Science & Technology

    2005-06-01

    Approved for public release, distribution unlimited 1 American Institute of Aeronautics and Astronautics Micro -discharge Micro -thruster John...This paper summarizes the experiments and analysis of the micro -discharge micro - thruster developed jointly by Ewing Technology Associates and the...University of Washington. The key experimental result has been the demonstration of a sustained discharge in a very simple micro -discharge type of

  19. The energy transfer phenomena and colour tunability in Y2O2S:Eu(3+)/Dy(3+) micro-fibers for white emission in solid state lighting applications.

    PubMed

    Som, S; Mitra, P; Kumar, Vijay; Kumar, Vinod; Terblans, J J; Swart, H C; Sharma, S K

    2014-07-14

    This paper reports on the structural, optical and photometric characterization of an Eu(3+)/Dy(3+) doped yttrium oxysulfide phosphor (Y2O2S:Eu(3+)/Dy(3+)) for near white emission in solid state lighting. A series of Y2O2S phosphors doped with Eu(3+)/Dy(3+) were prepared by the hydrothermal method. The microstructures of the as-synthesized phosphors were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results reveal that the obtained powder phosphors have a single-phase hexagonal structure and also indicate that the incorporation of the dopants/co-dopants did not affect the crystal structure. The SEM images reveal the morphology of the prepared phosphors as an intense interpenetrating network of interconnected micro-fibers with a diameter of about 0.15 μm. The band gap of the phosphors was calculated from diffuse reflectance spectra using the Kubelka-Munk function. The Eu(3+), Dy(3+) doped and Eu(3+)/Dy(3+) co-doped phosphors illuminated with ultraviolet light showed characteristic red luminescence corresponding to the (5)D0→(7)FJ transitions of Eu(3+) and characteristic blue and yellow luminescence corresponding to the (4)F9/2→(6)H15/2 or (4)F9/2→(6)H13/2 transitions of Dy(3+). The luminescence spectra, the energy transfer efficiency and the decay curves of the phosphors indicated that there exists a strong energy transfer from Dy(3+) to Eu(3+) and this was demonstrated to be a resonant type via a dipole-quadrupole reaction. Furthermore, the critical distance of the Eu(3+) and Dy(3+) ions have also been calculated. By utilizing the principle of energy transfer it was also demonstrated that with an appropriate tuning of the activator content the Y2O2S:Eu(3+)/Dy(3+) phosphors can exhibit a great potential to act as single-emitting component phosphors for white light emission in solid state lighting technology.

  20. Manufacturers' support policies.

    PubMed

    1992-09-01

    Choosing an effective plan for supporting a medical device is critical to its safe use, cost-effectiveness, and longevity. Hospitals can choose from a variety of support providers, including manufacturers, third-party service vendors, or hospital clinical engineering (CE) departments. However, if the hospital plans to use a third-party service vendor or its own CE department to provide support, the manufacturer's cooperation or assistance will still be needed to implement the support plan effectively. Over the years, ECRI has received many comments from hospitals about the way in which manufacturers respond to their equipment support needs. We have learned that some manufacturers are not willing to assist third-party service vendors or in-house service programs or do not always deliver the support they promise. Also, hospitals do not always consider their support needs before purchase, when they have the most leverage to negotiate flexible support arrangements. To help foster better equipment support and customer satisfaction, we polled manufacturers that have participated in recent Health Devices Evaluations to obtain detailed information about their policies toward manufacturers' contract, third-party, and in-house support. Ready access to this information will help hospitals evaluate whether manufacturers' support policies will meet their needs, and it will allow them to minimize problems by working with the manufacturer to negotiate optimal support arrangements during the purchase process. In this article, we briefly discuss the factors to consider when evaluating support alternatives and manufacturers' support policies. We also present the questions posed to each manufacturer on our Manufacturers' Support Policies Questionnaire, along with a summary of the responses that we received for each question.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Manufacturing of high performance, low cost dual mirror lamp reflector modules

    NASA Astrophysics Data System (ADS)

    Shen, Li

    The Lamp Reflector Module (LRM) is a key component in every micro display projection system, which has played a dominant role in the large-screen display market today. The goal of this research is to (1) improve the Dual Mirror prototype's light output performance, (2) investigate the underlying principles of its slow output deterioration so as to help develop effective and efficient LRM thermal management for maximized lifetime performance, and (3) improve/enable low cost mass LRM manufacturing for the projection display market. The first part of this research addresses the prototype's low output problem. More sophisticated 3D Optical Ray Tracing (ORT) models were generated to provide the output prediction depending on the arc gap, system collection etendue, etc. It was concluded that upgrading the manufacturing processes, particularly the reflector shape, surface and cold mirror coating, could effectively improve the output performance. Additionally, these theoretical models are shown to be used to design a LRM with 16% output gain for the consumer Rear Projection display market. The second part of this research focuses on the issue of lifetime performance. The electrode, arc attachment and envelope evolution were monitored by camera systems. The upgraded ORT models confirmed the arc length insensitivity property of the Dual Mirror LRM being one of the major reasons for its longer native lifetime. The third part of this research focuses on issues related to the entire LRM manufacturing. A series of quality control tools were developed to help implement manufacturing process optimization. LRMs made with the upgraded manufacturing processes showed about 25% output gain over the previous prototypes. Based on the imaging property of the Dual Mirror LRM, a lower cost lamp reflector alignment method, called cold alignment, was developed. In this method, the etendue efficiency is maintained and a slower degrading and more stable lifetime output performance are achieved

  2. Nanoimprint lithography for microfluidics manufacturing

    NASA Astrophysics Data System (ADS)

    Kreindl, Gerald; Matthias, Thorsten

    2013-12-01

    The history of imprint technology as lithography method for pattern replication can be traced back to 1970's but the most significant progress has been made by the research group of S. Chou in the 1990's. Since then, it has become a popular technique with a rapidly growing interest from both research and industrial sides and a variety of new approaches have been proposed along the mainstream scientific advances. Nanoimprint lithography (NIL) is a novel method for the fabrication of micro/nanometer scale patterns with low cost, high throughput and high resolution. Unlike traditional optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques. The ability to fabricate structures from the micro- to the nanoscale with high precision in a wide variety of materials is of crucial importance to the advancement of micro- and nanotechnology and the biotech- sciences as a whole and will be discussed in this paper. Nanoimprinting can not only create resist patterns, as in lithography, but can also imprint functional device structures in various polymers, which can lead to a wide range of applications in electronics, photonics, data storage, and biotechnology.

  3. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  4. Micro-optofluidic Lenses: A review

    PubMed Central

    Nguyen, Nam-Trung

    2010-01-01

    This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field. PMID:20714369

  5. Computer Aided Manufacturing.

    ERIC Educational Resources Information Center

    Insolia, Gerard

    This document contains course outlines in computer-aided manufacturing developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The four units of the course cover the following: (1) introduction to computer-assisted design (CAD)/computer-assisted manufacturing (CAM); (2) CAM…

  6. Manufacturing Education Curriculum Project.

    ERIC Educational Resources Information Center

    Umstattd, William D.

    The Manufacturing Education Curriculum Project's feasibility study concerned with industrial arts curriculum development in manufacturing for the senior high school level is described. The need for an industrial arts curriculum which meets and reflects present and future trends is discussed in the introduction, followed by a review of the…

  7. Additive Manufactured Product Integrity

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Wells, Doug; James, Steve; Nichols, Charles

    2017-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  8. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  9. Manufacturing Education Curriculum Project.

    ERIC Educational Resources Information Center

    Umstattd, William D.

    The Manufacturing Education Curriculum Project's feasibility study concerned with industrial arts curriculum development in manufacturing for the senior high school level is described. The need for an industrial arts curriculum which meets and reflects present and future trends is discussed in the introduction, followed by a review of the…

  10. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    JOHNNIE CLARK, BRIAN WEST, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S XLINE SELECTIVE LASER MELTING SYSTEM. CURRENTLY ONE OF THE LARGEST METAL 3D PRINTERS, THE XLINE AT MARSHALL IS BEING USED TO DEVELOP AND CERTIFY NICKEL ALLOY 718 MATERIAL PROPERTIES AND LARGE MANUFACTURING TECH DEMOS FOR THE RS25 ENGINE AND THE COMMERCIAL CREWED VEHICLE PROJECTS.

  11. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  12. A summarized discussion of current good manufacturing practice regulations.

    PubMed

    Allen, Loyd V

    2013-01-01

    In light of recent events and discussions of compounding pharmacy, it is important to discuss and understand the purpose of good manufacturing practices. This article provides a summary of the current Good Manufacturing Practice Regulations which were established by the U.S. Food and Drug Administration.

  13. CNT reinforced epoxy foamed and electrospun nano-fiber interlayer systems for manufacturing lighter and stronger featherweight(TM) composites

    NASA Astrophysics Data System (ADS)

    Drakonakis, Vasileios M.

    Multiple works have been performed in improving carbon fiber reinforced polymer (CFRP) composites especially in terms of strength so delamination, which is the major defect in laminated composites, is prevented. Nevertheless, there is not much focus on improving conventional CFRP systems in terms of weight especially when these are used in primary structures. This work questions whether lighter and at the same time stronger CFRP composites can be manufactured in order to replace conventional CFRP systems in major applications. Under this perspective, this study demonstrates that inducing controlled porosity may offer a systemic approach for manufacturing light weight carbon fiber reinforced polymer (CFRP) matrix composites. Additionally, towards this scope, this work has focused on analyzing and describing the related matrix systems utilizing mostly classic viscoelastic theory. An in-depth characterization of the thermosetting matrix systems viscoelasticity kinetics as well as of the impregnation process towards its improvement in terms of lower cost is explored. Overall, this work makes an effort to establish the fundamentals for creating the next generation of light weight structural composites, the featherweight composites, by introducing porosity through several controlled reinforcements in a systemic and reproducible manner at the macro- micro- and nano- scales in the interlayer. By extensively describing the matrix system and the manufacturing processes and focusing on analytically testing the interlayer reinforcement systems, it is expected that featherweight CFRP will achieve lighter weight and at the same time higher mechanical properties.

  14. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    SciTech Connect

    Lowe, Terry C.

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  15. Fused micro-knots

    NASA Astrophysics Data System (ADS)

    Shahal, Shir; Linzon, Yoav; Fridman, Moti

    2017-02-01

    We present fusing of fiber micro-knot by CO2 laser which fixes the micro-fibers in place and stabilizing the micro-knot shape, size and orientation. This fusing enables tuning of the coupling strength, the free-spectral range and the birefringence of the fiber micro-knot. Fused micro-knots are superior over regular micro-knots and we believe that fusing of micro-knots should be a standard procedure in fabricating fiber micro-knots.

  16. An electronically controlled micro-welder.

    PubMed

    Record, P; Ahmon, M; Hitchcock, E

    1988-01-01

    An electronically controlled micro-welding apparatus has been designed and built for the manufacture of clinical electrodes. Using the principle of electrical resistance welding, the device is simple and inexpensive to construct, using readily available components. It is easy to operate and has proved to be a quick and reliable method of producing electrodes to the exact specifications of neurosurgeons.

  17. Quality management of manufacturing process based on manufacturing execution system

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Jiang, Yang; Jiang, Weizhuo

    2017-04-01

    Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.

  18. Flexible Manufacturing Systems: What's in It for the Manufacturer.

    ERIC Educational Resources Information Center

    Chowdhury, A. R.; Peckman, Donald C.

    1987-01-01

    The authors define the Flexible Manufacturing System and outline its history. They describe what the processing time includes and provide advantages and disadvantages of Flexible Manufacturing Systems compared to conventional manufacturing. (CH)

  19. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  20. Rapid small lot manufacturing

    SciTech Connect

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  1. Unison micro-optic security film

    NASA Astrophysics Data System (ADS)

    Steenblik, Richard A.; Hurt, Mark J.

    2004-06-01

    Unison is a new class of highly counterfeit and simulation resistant micro-optic security films that provide a wide range of overt, unique, and highly visible three-dimensional and fluidic motion visual effects for currency, document, and product authentication by the general public. Unlike holograms, interference films, and diffractive OVDs, Unison incorporates micron-scale geometrical optic systems to create synthetic images that exhibit striking visual effects that are independent of illumination angle and collimation. Unison presents a pattern of visually dynamic, non-holographic, colored images that are seen against either a transparent or an opaque background. These images can be designed to either float above the surface, appear beneath the surface, or appear in the plane of the surface and to move in a counter-intuitive ortho-parallactic manner. Unison can be used as a laminate over print without obscuring it; the Unison images appear to move within, under, or over the print. Unison images can be viewed under all lighting conditions from any azimuthal angle and from a wide range of elevation angles. This new material is highly resistant to counterfeiting because it is an all-polymer multi-layer film that contains no metallized layers and its non-diffractive optical elements are based on proprietary origination, tooling, and manufacturing processes.

  2. Recent developments in light alloys

    NASA Technical Reports Server (NTRS)

    Woodward, R W

    1920-01-01

    This report is intended to cover the progress that has been made in both the manufacture and utility of light alloys in the United States since the first part of 1919. Duralumin is extensively discussed both as to manufacture and durability.

  3. Chemical micro-sensor

    DOEpatents

    Ruggiero, Anthony J.

    2005-05-03

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  4. 75 FR 30781 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On March 16, 2010, the Department of Commerce's International Trade... the Manufacturing Council (Council). The March 16, 2010 notice provided that all applications must...

  5. 75 FR 80040 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On November 23, 2010, the Department of Commerce's International Trade... vacant position on the Manufacturing Council (Council). The November 23, 2010 notice provided that...

  6. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Computers in Manufacturing.

    ERIC Educational Resources Information Center

    Hudson, C. A.

    1982-01-01

    Advances in factory computerization (computer-aided design and computer-aided manufacturing) are reviewed, including discussions of robotics, human factors engineering, and the sociological impact of automation. (JN)

  8. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    ZACK JONES AND JIM LYDON OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  9. Agile manufacturing concept

    NASA Astrophysics Data System (ADS)

    Goldman, Steven L.

    1994-03-01

    The initial conceptualization of agile manufacturing was the result of a 1991 study -- chaired by Lehigh Professor Roger N. Nagel and California-based entrepreneur Rick Dove, President of Paradigm Shifts, International -- of what it would take for U.S. industry to regain global manufacturing competitiveness by the early twenty-first century. This industry-led study, reviewed by senior management at over 100 companies before its release, concluded that incremental improvement of the current system of manufacturing would not be enough to be competitive in today's global marketplace. Computer-based information and production technologies that were becoming available to industry opened up the possibility of an altogether new system of manufacturing, one that would be characterized by a distinctive integration of people and technologies; of management and labor; of customers, producers, suppliers, and society.

  10. FPGA Control System for the Automated Test of MicroShutters

    NASA Technical Reports Server (NTRS)

    Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey

    2008-01-01

    The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light from an arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.

  11. FPGA Control System for the Automated Test of MicroShutters

    NASA Technical Reports Server (NTRS)

    Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey

    2008-01-01

    The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light from an arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.

  12. Additive manufactured serialization

    DOEpatents

    Bobbitt, III, John T.

    2017-04-18

    Methods for forming an identifying mark in a structure are described. The method is used in conjunction with an additive manufacturing method and includes the alteration of a process parameter during the manufacturing process. The method can form in a unique identifying mark within or on the surface of a structure that is virtually impossible to be replicated. Methods can provide a high level of confidence that the identifying mark will remain unaltered on the formed structure.

  13. Human Issues in Manufacturing Technology

    DTIC Science & Technology

    1992-09-01

    conventional mass- production manufacturing and the benefits of lean manufacturing . The text details the results of a five-year, multi national study...data and comparisons between mass and lean manufacturing . The key objective is to "illustrate the transition from mass to lean production with...of reference for the transition from current manufacturing systems to the goal state of lean manufacturing . Manufacturing before change is referred to

  14. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  15. Hybrid additive manufacturing of 3D electronic systems

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasley, T.; Nguyen, T. T.; Ta, V. D.; Shephard, J. D.; Stringer, J.; Smith, P.; Esenturk, E.; Connaughton, C.; Kay, R.

    2016-10-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10-4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

  16. Manufacturable Tri-Stack AlSb/InAs HEMT Low-Noise Amplifiers Using Wafer-Level-Packaging Technology for Light-Weight and Ultralow-Power Applications

    DTIC Science & Technology

    2009-05-01

    operation , low knee voltage (VK), low on-resistance (RON) and high transconductance (gm), which are important for ultralow-power and high-frequency...In0.4Al0.6As barrier and gate metallization is critical for high device yield. MANUFACTURABLE TRI-STACK ALSB/INAS HEMT LOW-NOISE AMPLIFIERS USING WAFER-LEVEL...nrl.navy.mil Abstract—A wafer-level-packaging technology was used to integrate the 0.1 m AlSb/InAs HEMT low-noise amplifiers with power amplifiers

  17. Laser rapid manufacturing of Colmonoy-6 components

    NASA Astrophysics Data System (ADS)

    Paul, C. P.; Jain, A.; Ganesh, P.; Negi, J.; Nath, A. K.

    2006-10-01

    This paper introduces a new manufacturing technique for the fabrication of Colmonoy-6 components using laser rapid manufacturing (LRM). LRM is a upcoming rapid manufacturing technology, being developed at various laboratories around the world. It is similar to laser cladding at the process level with different end applications. In general, laser cladding technique is used to deposit material on the substrate either to improve the surface properties or to refurbish the worn out parts, while LRM is capable of near net shaping the components by layer-by-layer deposition of the material directly from CAD model. In the present study, a high power continuous wave (CW) CO 2 laser system, integrated with a co-axial powder-feeding system and three-axis workstation was used. The effect of processing parameters during multi-layer deposition of Colmonoy-6 has been studied and optimized to fabricate about a dozen bushes. Thus fabricated bushes were finally machined and ground to achieve the desired dimensions and surface finish. These bushes were tested for non-destructive testing (like-ultrasonic testing, Dye-penetrant testing), metallographic examinations, micro-hardness measurement, X-ray diffraction and thermal ageing. Results compared well with those fabricated by deposition of Colmonoy-6 on austenitic stainless steel rods using gas Tungsten arc welding (GTAW). Thus, the new manufacturing technique not only produced quality product, but also minimized machining of hard-faced material and brought significant saving of time and costly Colmonoy-6 material.

  18. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    SciTech Connect

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, III, Harry M.; Phelps, Tommy

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  19. 40 CFR 86.1836-01 - Manufacturer-supplied production vehicles for testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1836-01 Manufacturer-supplied...

  20. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the high altitude emission standards. (18) Proof that the manufacturer has obtained or entered an... testing, the light-duty vehicles and light-duty trucks comply with emission standards at high altitude...

  1. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the high altitude emission standards. (18) Proof that the manufacturer has obtained or entered an... testing, the light-duty vehicles and light-duty trucks comply with emission standards at high altitude...

  2. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the high altitude emission standards. (18) Proof that the manufacturer has obtained or entered an... testing, the light-duty vehicles and light-duty trucks comply with emission standards at high altitude...

  3. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the high altitude emission standards. (18) Proof that the manufacturer has obtained or entered an... testing, the light-duty vehicles and light-duty trucks comply with emission standards at high altitude...

  4. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the high altitude emission standards. (18) Proof that the manufacturer has obtained or entered an... testing, the light-duty vehicles and light-duty trucks comply with emission standards at high altitude...

  5. National Center for Manufacturing Sciences: Environmentally conscious manufacturing

    NASA Technical Reports Server (NTRS)

    Vinton, Clare

    1995-01-01

    The purpose of this presentation is to share the results and some of the thinking of the Environmentally Conscious Manufacturing - Strategic Initiative Group (ECM-SIG) at the National Center for Manufacturing Sciences (NCMS). NCMS is a consortium of more than 185 North American Manufacturing organizations comprised of about 75 percent for profit manufacturing companies and about 25 percent nonprofit organizations that support manufacturing activities. NCMS conducts collaborative R&D programs designed to improve global competitiveness of its members and other North American manufacturers to address common issues that are important to manufacturing industries. NCMS is an industry driven organization whose agenda is established by industry with input from appropriate government agencies.

  6. 40 CFR 86.1836-01 - Manufacturer-supplied production vehicles for testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Manufacturer-supplied production...-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1836-01 Manufacturer-supplied production vehicles for testing. Any manufacturer obtaining certification under this subpart...

  7. Manufacturing polymer thin films in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Vera, Ivan

    1987-01-01

    This project represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of two polymer thin films will be contained in NASA's Payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medicine, energy, and pharmaceuticals and in general fluid separation processes, such as reverse osmosis, ultrafiltration, and electrodialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the structure of these membranes.

  8. Synthesis of micro-dispersed zirconium oxide for glass manufacturing

    NASA Astrophysics Data System (ADS)

    Goncharuk, V.; Starodubtsev, P.; Maslennikova, I.

    2016-01-01

    A rather simple and original method for processing of zirconium-containing raw material form Algoma deposit (Khabarovsk region, Russia) was suggested, which comprised fluorination of the initial sample with a diluted HF solution followed by the thermal treatment of fluorination products and pyrohydrolysis of zirconium tetrafluoride. Water vapors obtained by hydrogen and oxygen burning in a hydrogen torch as well as by simple evaporation were used for pyrohydrolysis. The feed rate of the water and its temperature were regulated. The temperature of water vapors reached 800-1200 °C. Zirconium dioxide with a purity of 99.97% or more and a dispersity of 0.1 gm or less was synthesized.

  9. MEMS Based Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Joshi, Niranjan; Köhler, Elof; Enoksson, Peter

    2016-10-01

    Designing a flapping wing insect robot requires understanding of insect flight mechanisms, wing kinematics and aerodynamic forces. These subsystems are interconnected and their dependence on one another affects the overall performance. Additionally it requires an artificial muscle like actuator and transmission to power the wings. Several kinds of actuators and mechanisms are candidates for this application with their own strengths and weaknesses. This article provides an overview of the insect scaled flight mechanism along with discussion of various methods to achieve the Micro Aerial Vehicle (MAV) flight. Ongoing projects in Chalmers is aimed at developing a low cost and low manufacturing time MAV. The MAV design considerations and design specifications are mentioned. The wings are manufactured using 3D printed carbon fiber and are under experimental study.

  10. 78 FR 67117 - Manufacturing Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council.... manufacturing industry to fill five vacant positions on the Manufacturing Council (Council). The purpose of...

  11. Layered Manufacturing: Challenges and Opportunities

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014215 TITLE: Layered Manufacturing : Challenges and Opportunities ...Research Society LL1.4 Layered Manufacturing : Challenges and Opportunities Khershed P. Cooper Materials Science and Technology Division, Naval Research...Laboratory Washington, DC 20375-5343, U.S.A. ABSTRACT Layered Manufacturing (LM) refers to computer-aided manufacturing processes in which parts are made

  12. Micro-vision-based displacement measurement with high accuracy

    NASA Astrophysics Data System (ADS)

    Lu, Qinghua; Zhang, Xianmin; Fan, Yanbin

    2011-12-01

    The micro-motion stages are widely used in micro/nano manufacturing technology. In this paper, an integrated approach for measuring micro-displacement of micro-motion stage that incorporates motion estimation algorithm into the computer microvision is proposed. At first, the basic principle of the computer microvision measurement is analyzed. Then, a robust multiscale motion estimation algorithm for micro-motion measurement is proposed. Finally, the microdisplacement of the micro-motion stage based on the piezoelectric ceramic actuators and the compliant mechanisms is measured using the integrated approach. The maximal bias of the proposed approach reached 13 nm. Experimental results show that the new integrated method can measure micro-displacement with nanometer accuracy.

  13. Micro-machined resonator oscillator

    DOEpatents

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  14. Micro-machined resonator oscillator

    DOEpatents

    Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.

    1994-08-16

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.

  15. Mechanical tolerances study through simulations and experimental characterization for a 1000X micro-concentrator CPV module

    NASA Astrophysics Data System (ADS)

    Ritou, Arnaud; Voarino, Philippe; Goubault, Baptiste; David, Nadine; Bernardis, Sarah; Raccurt, Olivier; Baudrit, Mathieu

    2017-09-01

    Existing CPV technology markets are not compliant with a standard configuration. Concentrations vary from several suns to more than 1000 suns and the optical technology used could be very different. Nowadays, the market trends are moving toward more and more compact optical systems in order to exploit the Light Emitting Diode (LED) like approach. The aim is to increase the optical efficiency by using an ultra-short focal distance and to improve thermal management. Moreover the efficiency to weight ratio is increasing and the solar cell size becomes sub-millimetric. With these conditions, more stringent mechanical tolerances are essential to ensure an optimum optical alignment between cells and optics. A new process of micro-concentrator manufacturing is developed in this work. This process enables manufacturing and auto-alignment of Primary Optical Elements (POE) with Secondary Optical Elements (SOE) and solar cells with respect to certain mechanical tolerances. A 1000X micro-concentrator is manufactured with 0.6 x 0.6 mm² triple-junction cells and molded silicone optics. Mechanical alignment defects are studied by ray-tracing simulations and a prototype is characterized with respect to its mechanical behavior. An efficiency of 33.4% is measured with a Cell-to-Module ratio of 77.8%.

  16. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  17. Environmentally sound manufacturing

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1994-01-01

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  18. Environmentally sound manufacturing

    NASA Astrophysics Data System (ADS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  19. Laser polishing of additive manufactured Ti alloys

    NASA Astrophysics Data System (ADS)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  20. Computers in manufacturing.

    PubMed

    Hudson, C A

    1982-02-12

    Computers are now widely used in product design and in automation of selected areas in factories. Within the next decade, the use of computers in the entire spectrum of manufacturing applications, from computer-aided design to computer-aided manufacturing and robotics, is expected to be practical and economically justified. Such widespread use of computers on the factory floor awaits further advances in computer capabilities, the emergence of systems that are adaptive to the workplace, and the development of interfaces to link islands of automation and to allow effective user communications.

  1. ATS materials/manufacturing

    SciTech Connect

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K.

    1997-11-01

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  2. Manufacturing and producibility technology

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.; Dreshfield, R. L.

    1985-01-01

    Activities of the manufacturing/producibility working group within the Advanced High-Pressure O2/H2 Technology Program are summarized. The objectives of the M/P working group are: to develop and evaluate process and manufacturing techniques for advanced propulsion hardware design and selected materials; and to optimize the producibility of (SSME) components and assemblies by improved performance, increased life, greater reliability, and/or reduced cost. The technologies being developed include: plasma arc, laser, and inertia welding; combustion chamber and turbine blade coatings; coating processes; high performance alloy electroforming; and process control technology.

  3. Bili lights

    MedlinePlus

    Phototherapy for jaundice; Bilirubin - bili lights; Neonatal care - bili lights; Newborn care - bili lights ... Phototherapy involves shining fluorescent light from the bili lights on bare skin. A specific wavelength of light can break down bilirubin into a form that ...

  4. Expert Systems Application In Manufacturing

    NASA Astrophysics Data System (ADS)

    Som, Pradip; Chitturi, Ramesh; Babu, A. J. G.

    1987-05-01

    Expert system, a special branch of Artificial Intelligence finds its way in the domain of manufacturing. This paper presents the basic ideas and features of the expert systems, problems in manufacturing and application of expert systems in manufacturing. As the process planning is an important phase in manufacturing, the suitability of expert systems for process planning area has been highlighted. Several expert systems, developed to solve manufacturing problems are also discussed in the paper.

  5. Vacuum-compatible standard diffuse source, manufacture and calibration

    SciTech Connect

    Byrd, D.A.; Atkins, W.H.; Bender, S.C.; Christensen, R.W.; Michaud, F.D.

    1999-03-01

    Los Alamos National Laboratories has completed the design, manufacture and calibration of a vacuum-compatible, tungsten lamp, integrated sphere. The light source has been calibrated at the National Institute of Standards and Technology (NIST) and is intended for use as a calibration standard for remote sensing instrumentation. Calibration 2{sigma} uncertainty varied with wavelength from 1.21% at 400 nm and 0.73% at 900 nm, to 3.95% at 2,400 nm. The inner radius of the Spectralon-coated sphere is 21.2 cm with a 7.4 cm square exit aperture. A small satellite sphere is attached to the main sphere and its output coupled through a stepper motor driven aperture. The variable aperture allows a constant radiance without effecting the color temperature output from the main sphere. The sphere`s output is transmitted into a vacuum test environment through a fused silica window that is an integral part of the outer housing of the vacuum shell assembly. The atmosphere within this outer housing is composed of 240 K nitrogen gas, provided by a custom LN{sub 2} vaporizer unit. Use of the nitrogen gas maintains the internal temperature of the sphere at a nominal 300 K {+-}10{degree}. The calibrated spectral range of the source is 0.4 {micro}m through 2.4 {micro}m. Three, color temperature matched, 20 W bulbs together with a 10 W bulb are within the main integrating sphere. Two 20 W bulbs, also color temperature matched, reside in the satellite integrating sphere. A Silicon and a Germanium broadband detector are situated within the inner surface of the main sphere. Their purpose is for the measurement of the internal broadband irradiance. A fiber-optic-coupled spectrometer measures the internal color temperature that is maintained by current control on the lamps. Each lamp is independently operated allowing for radiances with common color temperatures ranging from near 0.026 W/cm{sup 2}/sr to about 0.1 W/cm{sup 2}/sr at a wavelength of 0.9 {micro}m (the location of the peak spectral

  6. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  7. Low-cost thermoforming of micro fluidic analysis chips

    NASA Astrophysics Data System (ADS)

    Truckenmüller, R.; Rummler, Z.; Schaller, Th; Schomburg, W. K.

    2002-07-01

    We present a new method for the low-cost manufacture of micro fluidic devices from polymers for single use. Within a one-step or two-step process inside a hot embossing press, micro channels are thermoformed into a thin plastic film and welded on to a thicker plastic film or sheet. Sterile, hermetically sealed micro fluidic structures were fabricated from polystyrene for easy opening immediately before use. It even appears to be possible to produce micro fluidic analysis chips from polymers on a coil from which single devices are cut off for use.

  8. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  9. MicroED data collection and processing

    SciTech Connect

    Hattne, Johan; Reyes, Francis E.; Nannenga, Brent L.; Shi, Dan; Cruz, M. Jason de la; Leslie, Andrew G. W.; Gonen, Tamir

    2015-07-01

    The collection and processing of MicroED data are presented. MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges.

  10. Reusing Old Manufacturing Buildings

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  11. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1992-01-01

    Package Inspection Laminate Plawlae and Drill Plate & Etch Ru and Drll L)RoutOuter Layers BareBoard Auto Insert Test Mark Board Pick and Place Manual...Second Quarterly Review Presentation Slides ............................... 38 IFigure 3-1. Printed Wiring Board Design Flow...4 Figure 3-2. Printed Wiring Board Manufacturing Flow..................................... 6 Figure11- 1. MO OOA Diagram

  12. Northwest Manufacturing Initiative

    DTIC Science & Technology

    2013-08-31

    Control Station  1 laptop to mount on battle-bot chassis with Kinect 3D cameras  3 Megapixel, HD IP camera to mount on manufacturing facility ceiling...all matrix materials the catalyst is 2 wt% methyl ethyl ketone peroxide. Table 2 Mechanical properties GFRP coupons tested with 0 degree fiber

  13. Rapid response manufacturing (RRM)

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  14. Illinois Manufacturing Technology Curriculum.

    ERIC Educational Resources Information Center

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  15. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    QUINCY BEAN, JIM LYDON, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  16. Manufacturing Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Dakota State Board for Vocational Education, Bismarck.

    This guide provides the basic foundation to develop a one-semester course based on the cluster concept, manufacturing technology. One of a set of six guides for an industrial arts curriculum at the junior high school level, it suggests activities that allow students (1) to become familiar with and use some of the tools, materials, and processes…

  17. Manufacturing and Merchandising Careers

    ERIC Educational Resources Information Center

    Ryan, Peter J.; And Others

    1977-01-01

    Anyone with a flair for business, product development, or promotion might consider a manufacturing or merchandising occupation. The music industry offers many career opportunities for administrators, salespersons, marketing specialists--the record industry offers positions from promotion manager to rack jobber. Describes instrument company…

  18. DARPA DICE Manufacturing Optimization

    DTIC Science & Technology

    1993-01-01

    Entity ................................................... 13 3.3.4 Labor Entity ....................................................... 14 3.3.5 Equipment...51 4.2.13.4 Labor Specification .................................... 52 4.2.13.5 Facility Specification .................................. 543...resources. A I resource is any facility, labor , equipment, or consumable material used in the manufacturing U UNCLASSIFIED CDRL No.0002AB-5 process. A

  19. Reusing Old Manufacturing Buildings

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  20. Manufacturing Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    North Dakota State Board for Vocational Education, Bismarck.

    This guide provides the basic foundation to develop a one-semester course based on the cluster concept, manufacturing technology. One of a set of six guides for an industrial arts curriculum at the junior high school level, it suggests activities that allow students (1) to become familiar with and use some of the tools, materials, and processes…