Science.gov

Sample records for manufacturers quarterly progress

  1. A program of direct assistance for small and medium-size manufacturers. Quarterly progress report

    SciTech Connect

    1997-03-01

    During the quarter ending March 31, 1997, the IACs in the Western Region performed a total of 97 industrial assessments under the contract continuation beginning October 1, 1996. Industrial assessments reports were issued to 43 clients for the 1995-96 program period and 57 clients for the 1996-97 program period. The attached summary shows the aggregate number of audits performed by, number of reports received from, number of critiques completed and returned to, and implementation reports completed by each of the Western Region EADCs/IACs under the 1994-95 program period through the quarter ending March 31, 1997. Also shown are the number of industrial assessments performed by, reports completed by each of the Western Region IACs under the 1994-95 program period. Also shown is the information for industrial assessments for the 1995-96 program period and the information for the 1996-97 program period.

  2. Energy Analysis and Diagnostic Centers: A program of direct energy conservation assistance for small and medium-size manufacturers. Quarterly progress report, June 1994

    SciTech Connect

    Kirsch, F.W.

    1994-08-15

    During the quarter ending June 30, 1994, the EADCs in the Western Region performed a total of 109 energy audits and six industrial assessments under the contract continuation beginning October 1, 1993. Energy audit reports were issued to 90 manufacturers during the past quarter. Industrial assessment reports were issued to three clients.

  3. Quarterly Progress Report

    SciTech Connect

    David Gray; Glen Tomlinson

    1998-11-12

    The Federal Energy Technology Center (FETC) at Pittsburgh contracted with the MJTRE Corporation to perform Research Guidance Studies that will assist the Center and other relevant offices in the Department of Energy in evaluating and prioritizing research in the areas of coal and natural gas conversion. MITRE was reorganized in December 1995, which resulted in the formation of Mitretek Systems Inc. Mitretek has been performing this work on MITRE's behalf awaiting completion of contract novation to Mitretek. The contract was novated in February 1998 to Mitretek Systems. The overall objectives of this contract are to provide support to DOE in the following areas: (1) technical and economic analyses of current and future coal-based energy conversion technologies and other similar emerging technologies such as coal-waste coprocessing, natural gas conversion, and biomass conversion technologies for the production of fuels, chemicals and electric power,(2) monitor progress in these technologies with respect to technical, economic, and environmental impact (including climate change), (3) conduct specific and generic project economic and technical feasibility studies based on these technologies, (4) identify long-range R&D areas that have the greatest potential for process improvements, and (5) investigate optimum configurations and associated costs for production of high quality energy products via refining and their performance in end-use applications.

  4. Subject Access Project. Second Quarterly Progress Report.

    ERIC Educational Resources Information Center

    Atherton, Pauline

    The Subject Access Project second quarterly report for September to December 1976 summarized in-progress work to improve subject access to monographs. Activities include: (1) analysis of book indexes and tables of contents for terms to augment MARC subject description; (2) analysis of additional book sections--e.g., maps, illustrations, charts,…

  5. LFCM vitrification technology: Quarterly progress report, July-September 1987

    SciTech Connect

    Brouns, R.A.; Allen, C.R.; Powell, J.A.; Bates, S.O.; Bray, L.A.; Budden, M.J.; Dierks, R.D.; Elliott, M.L.; Elmore, M.R.; Faletti, D.W.; Farnsworth, R.K.; Holton, L.K. Jr.; Kuhn, W.L.; Mellinger, G.B.; Nakaoka, R.K.; Peterson, M.E.; Piepel, G.F.; Powell, J.A.; Pulsipher, B.A.; Reimus, M.A.H.; Surma, J.E.; Wiemers, K.D.

    1988-09-01

    This report describes the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the fourth quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, canister filling and handling systems, and process/product modeling and control.

  6. Quarterly Technical Progress Report June 2015

    SciTech Connect

    Buchholz, Bruce A.

    2015-06-08

    The project has two main goals: 1) Identify the types of adducts naphthalene (NA) forms with DNA and 2) determine whether adduct formation correlates with site selective tumor formation in defined subcompartments of the respiratory tract (respiratory and olfactory nasal epithelium and airways of mice, rats and rhesus monkeys). Five tasks are associated with the completion of the goals. Task 1: Contracting and Animal Use Approvals. IACUC and ACURO approvals are complete, The subcontract with UC Davis (UCD) was executed in December 2014. Task 2: Perform In Vitro Study for Goal 1. Rat samples exposed and in freezer while adduct standards are being made. Mouse samples need to be exposed in next quarter. Task 3: Perform In Vitro Study for Goal 2. Mouse ex vivo samples completed. Rat and monkey samples need to be completed in the next quarter. Task 4: Sample Preparation and Analysis. Mouse Goal 2 samples completed. Other samples remain to be done. Task 5: Data Interpretation and Reporting. Need rat data to write paper on adduct formation.

  7. LFCM vitrification technology. Quarterly progress report, October-December 1985

    SciTech Connect

    Burkholder, H.C.; Jarrett, J.H.; Minor, J.E.

    1986-09-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1986 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

  8. MHD Integrated Topping Cycle Project. Eighteenth quarterly technical progress report, November 1, 1991--January 31, 1992

    SciTech Connect

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  9. Quarterly progress report, July-September 1982

    SciTech Connect

    Not Available

    1982-01-01

    Our ability to characterize fuel shells was greatly improved this quarter by the installation of the Eikonix Image Acquisition System. Linking this system to the VAX 11/750 computer permits real-time imaging of radiographic plates. Analysis of the thermal transport experimental campaign continued. We found that the mass-ablation rate was significantly higher for spherical targets than for planar targets. The ablation rate was also greater for 0.53 ..mu..m light used in similar experiments performed earlier. The analysis of the emission of light at 3/2 omego/sub 0/ and of the two-lobe feature detected in the thermal transport experiments has been examined and found to be consistent with the theory for two-plasmon decay. Further analysis of stimulated Brillouin scattering has shown the quenching of the process through a secondary process involving the decay of the primary ion acoustic wave into two secondary ion waves.

  10. Technical review of the SWELL product. Second quarterly progress report

    SciTech Connect

    Alexanian, G.

    1998-03-23

    This progress report describes design and marketing efforts made to reduce the cost of the product, and reassess its market potential in light of reduced manufacturing costs and modified design. Marketing has looked at applications in agriculture, the turf grass industry, and golf coarse applications. The new controller offers energy efficiency in control of valves and minimization of costs associated with hard wired systems.

  11. MHD Integrated Topping Cycle Project. Seventeenth quarterly technical progress report, August 1, 1991--October 31, 1991

    SciTech Connect

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  12. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Romano, A.J.

    1980-01-01

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  13. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  14. A Novel Approach to Material Development for Advanced Reactor Systems. Quarterly progress report, Year 1 - Quarter 2

    SciTech Connect

    2000-03-27

    OAK B188 A Novel Approach to Material Development for Advanced Reactor Systems. Quarterly progress report, Year 1--Quarter 2. Year one of this project had three major goals. First, to specify, order and install a new high current ion source for more rapid and stable proton irradiation. Second, to assess the use low temperature irradiation and chromium pre-enrichment in an effort to isolate a radiation damage microstructure in stainless steels without the effects of RIS. Third, to prepare for the irradiation of reactor pressure vessel steel and Zircaloy. Program goals for Second Quarter, Year One: In year 1 quarter 2, the project goal was to complete an irradiation of an RPV steel sample and begin sample characterization. We also planned to identify sources of Zircaloy for irradiation and characterization.

  15. Tribopolymerization as an anti-wear mechanism. Quarterly progress report

    SciTech Connect

    Furey, M.J.

    1996-04-01

    The primary objective of this activity is to obtain the necessary data which would enhance, promote, and encourage the introduction of advanced lubrication technology into the marketplace. This includes (a) defining specific but different applications, (b) establishing the limits or ranges of applied loads, speeds, and temperatures over which the concept of tribopolymerization would work in reducing wear and/or friction, (c) continuing in efforts to understand the film-forming process (this rates to (b) above), using this knowledge to develop new and even more effective additives, and (d) exploring possible connections with private and investment companies for the licensing and marketing of products which will reduce friction and wear in a variety of applications. Progress was made in several different but connected areas. These included (a) establishing of load/velocity limits of selected monomers for ceramic lubrication, (b) the discovery of new and effective monomers designed for higher temperature anti-wear applications, (c) improvements and modifications of the high load/high speed pin-on-disk machine, (d) the initiation of related or spin-off projects designed to get their advanced technology into the marketplace, (e) the filing of three new patent applications, and (f) collaborative research with Dr. Kajdas--the co-inventor with Dr. Furey--on tribopolymerization as a novel and effective approach to the boundary lubrication of ceramics and steel. These and other elements of progress made during the first Quarter of 1996 are discussed briefly.

  16. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention's performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  17. Advanced Cooling Technology, Inc. quarterly technical progress report

    SciTech Connect

    Myers, H.S.

    1992-07-29

    Advanced Cooling Technology (ACT), Inc., will perform the following tasks in order to develop an improved, more reliable and more marketable version of their ACT Evaporative Subcooling System: (1) Develop a more stable pump by reducing vibration levels; (2) Design and develop a drainage mechanism that will protect the coil; (3) Apply for Underwriters laboratories approval and perform follow-up and coordination work to complete task to insure product is safe, within its intended applications; (4) Test invention`s performance to demonstrate energy savings and long term resistance to scale and corrosion; (5) Contract with the American Refrigeration Institute to perform engineering tests under controlled laboratory conditions; (6) Organize data, and develop technical manual for helping purchasers determining energy savings and inventions merits, and (7) Perform a field test in a cooperative supermarket, where utility usage can be measured on a before and after basis. Tasks 1,2 are completed; task 3 was abandoned for reasons explained in the last quarterly progress report. Progress on tasks 4 and 5 is reported in this paper. (GHH)

  18. Stanford Geothermal Program [quarterly technical progress reports, July--September 1990 and October--December 1990

    SciTech Connect

    Not Available

    1991-02-18

    For the summer quarter, progress is summarized and data are presented on the following: well test analysis of finite-conductivity fractures, theoretical investigation of adsorption phenomena, and optimization of reinjection strategy. For the fall quarter, activity focused on the adsorption and well testing projects. A new project investigating reinjection at the Geysers was initiated. (MHR)

  19. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  20. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Romano, A.J.

    1980-06-01

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  1. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    SciTech Connect

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  2. Progress in organic integrated circuit manufacture

    NASA Astrophysics Data System (ADS)

    Taylor, D. Martin

    2016-02-01

    This review article focuses on the development of processes for the manufacture of organic electronic circuits. Beginning with the first report of an organic transistor it highlights the key developments leading to the successful manufacture of microprocessors and other complex circuits incorporating organic transistors. Both batch processing (based on silicon integrated circuit technology) as well as mass-printing, roll-to-roll (R2R) approaches are discussed. Currently, the best circuit performances are achieved using batch processing. It is suggested that an emerging, large mass-market for electronic tags may dictate that R2R manufacture will likely be required to meet the high throughput rates needed. However, significant improvements in resolution and registration are necessary to achieve increased circuit operating speeds.

  3. Quarterly Program Progress Report April 1, 2002-June 30, 2002

    SciTech Connect

    Palafox, Neal A., MD, MPH

    2002-07-31

    DOE B188 DOE/PHRI Special Medical Care Program in the Republic of the Marshall Islands (RMI)Quarterly Program Progress Report The DOE/PHRI Special Medical Care Program continues to provide, on a year round basis, a broad spectrum of medical care to the DOE patient population. During the fourth quarter of Year 4, the following medical services were provided: (1) Annual medical examinations for the DOE patient population (see Exhibit 1 for details). (2) Medications for the DOE patient population. (3) Preventive and primary medical care to the DOE patient population in the RMI as time and resources permit. (4) Additional manpower for the outpatient clinics at Ebeye and Majuro Hospitals (see Exhibit 2 for details). (5) Ancillary services such as labs, radiology and pharmacy in coordination with Kwajalein Hospital, Majuro Hospital and the 177 Health Care Program (177 HCP). (6) Referrals to Ebeye Hospital, Majuro Hospital and Kwajalein Hospital as necessary. (7) Referrals to Straub Clinic and Hospital in Honolulu as necessary (for details see Exhibit 1). (8) Monitored and adjusted monthly annual examination schedules based on equipment failure at Kwajalein. In addition to the above, the program was also involved in the following activities during this quarter: (1) Organized and conducted continuing medical education (CME) talks for the program's RMI staff and other RMI healthcare workers. (2) Held meetings with RMI government officials and Local Atoll government officials. (3) Input past medical records into the Electronic Medical Record (EMR) system. (4) Made adjustments to and created more templates for the EMR system. (5) Coordinated with the Public Health Departments on Majuro and Ebeye. (6) Met with PEACESAT to discuss possible collaboration on high speed Internet access. (7) Looked for opportunities to expand the program's telehealth capabilities. (8) Participated in the DOE-RMI Meeting in Honolulu. (9) Finalized the agreement with the RMI Ministry of Health and

  4. Development of a $10/kW bipolar separator plate. Technical quarterly progress report, July 1--September 30, 1998

    SciTech Connect

    1998-12-31

    The authors have identified a moldable graphite blend separator plate material, have molded complex shape bipolar separator plates, have tested the molded plate properties and function in single fuel cells, and have designed a conceptual rapid manufacturing line. In this quarter, the project received a three-month interim funding period to continue progress while the proposal is in DOE review. Thus, this fourth quarterly report is submitted in place of the originally scheduled final report for this project. All of the objectives of this project have been accomplished. Specifically, the electrical, chemical, and physical properties of the molded separator plates have met or exceeded the DOE specifications. Performance and endurance tests of the molded plates in single cells have shown comparable performance to the state-of-art machined graphite separator plates. The DOE cost target of $10 per kW appears to be achievable with the low cost composite materials.

  5. Progress update on the US photovoltaic manufacturing technology project

    SciTech Connect

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P.

    1997-10-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is helping the U.S. photovoltaic (PV) industry extend its world leadership role in manufacturing and stimulate the commercial development of PV modules and systems. Initiated in 1990, PVMaT is being carried out in several directed and staggered phases to support industry`s continued progress. Thirteen subcontracts awarded in FY 1996 under Phase 4A emphasize improvement and cost reduction in the manufacture of full-system PV products. Areas of work in Phase 4A included, but were not limited to, issues such as improving module-manufacturing processes; system and system-component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements. These Phase 4A, product-driven manufacturing research and development (R&D) activities are now completing their second phase. Progress under these Phase 4A and remaining Phase 2B subcontracts from the earlier PVMaT solicitation are summarized in this paper. Evaluations of the success of this project have been carried out in FY 1995 and late FY 1996. This paper examines the 1997 cost/capacity data that have been collected from active PVMaT manufacturers.

  6. Environmental surveillance program. Quarterly progress report, July--September, 1993

    SciTech Connect

    Walker, D.W.; Hall, L.F.; Downs, J.

    1996-02-01

    This report contains data developed from monitoring site measurements and laboratory analyses of environmental samples that were collected during the period of July-September, 1993. Because some laboratory procedures are lengthy and could adversely affect the desired timeliness of reports, results of some analyses from this time period will be included in the next quarterly report. Quarterly reports, then, will be routine periodic documents that present continually updated information concerning the potential presence of environmental contaminants in the vicinity of the Idaho National Engineering Laboratory (INEL). During the third calendar quarter of 1993, Environmental Surveillance Program (ESP) measurements did not reveal unexpected levels of contaminants in any environmental samples measured or analyzed. Most of the results reported in this document are related to off-site air and ground water measurements. Future reports will include results of monitoring at additional locations and for additional environmental materials. Annual reports from the ESP will contain data generated during the previous four calendar quarters, and will display measurement trends for various combinations of locations, contaminants and environmental media. The annual report will also include more interpretive material and discussions than will normally be found in quarterly reports.

  7. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, October-December 1986

    SciTech Connect

    Brouns, R.A.; Allen, C.R.; Powell, J.A.

    1987-09-01

    This report describes the progress in developing, testing, applying, and documenting liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1987 is discussed. Topics include melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, canister filling and handling systems, and process/product modeling.

  8. Coal Combustion Science quarterly progress report, April--June 1990

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  9. Research and Development Center in Educational Stimulation. Quarterly Progress Report.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Research and Development Center in Educational Stimulation.

    Activities in the fourth quarter of the fiscal year 1969-70 concentrated on the USOE site team visit and on implementation of the team's planning recommendations. In a background paper and a preliminary program plan submitted to USOE, the importance of continuing emphasis on developmental psychology was stressed. The center learned in December…

  10. Commercial LFCM vitrification technology. Quarterly progress report, October-December 1984

    SciTech Connect

    Burkholder, H.C.; Jarrett, J.H.

    1985-07-01

    This report is the first in a series of quarterly reports compiled by the Nuclear Waste Treatment Program Office at Pacific Northwest Laboratory to document progress on commercial liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1985 is discussed: pretreatment systems, melting process chemistry, glass development and characterization, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies. 33 figs., 12 tabs.

  11. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  12. A Novel Approach to Materials Development for Advanced Reactor Systems - Quarterly Progress Report: Year 2; Quarter 1

    SciTech Connect

    G. S. Was; M. Atzmon; L. Wang

    2002-06-25

    OAK B188 A Novel Approach to Materials Development for Advanced Reactor Systems - Quarterly Progress Report: Year 2; Quarter 1. There are three major goals for year two of the program. First, to build on the successful initial experiments on proton irradiation of pressure vessel steel to expand the irradiations to study dose rate and temperature effects, radiation effects on commercial alloys and to better characterize the precipitates. Second, we will begin irradiation and characterization of the Zircaloy alloys. Finally, we will continue low temperature irradiations and begin irradiation of chromium pre-enriched samples and cold-worked samples to assess the role of microstructure in IASCC of austenitic stainless steels. In quarter 1 of year 2, the project goal was to complete irradiation of model alloys of RPV steels for a range of doses and an initial sample characterization. We also planned to begin characterization of Zircalloy alloy samples and to make a set of cold-worked samples of 304 SS that would have a fixed hardness following subsequent irradiation to different doses.

  13. Coal combustion science. Quarterly progress report, July--September 1994

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1995-09-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. The information reported is for the period July-September 1994. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project.

  14. Damage analysis and fundamental studies. Quarterly progress report, October-December 1980

    SciTech Connect

    Not Available

    1981-02-01

    This report is the twelfth in a series of Quarterly Technical Progress Reports on Damage Analysis and Fundamental Studies (DAFS) which is one element of the Fusion Reactor Materials Program, conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The first eight reports in this series were numbered DOE/ET-0065/1 through 8.

  15. High explosive safety manual. Fifth quarterly technical progress report, October-December 1979

    SciTech Connect

    Albaugh, L.R.; McBride, D.A.

    1980-01-01

    This is the fifth quarterly technical report on a program to prepare a high explosive safety manual for the Department of Energy. The program is described and progress to date is presented. During this work period, the first draft of the manual was completed and the quantitative risk analysis begun.

  16. Projects at the Western Environmental Technology Office. Quarterly technical progress report, January 1--March 31, 1995

    SciTech Connect

    1995-06-01

    This quarterly report briefly describes recent progress in eight projects. The projects are entitled Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Spray Casting Project; and Watervliet Arsenal Project.

  17. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, March 22, 1993--June 22, 1993

    SciTech Connect

    McCormick, C.; Hester, R.

    1993-08-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress for the quarter is summarized for the following tasks: advanced copolymer syntheses; characterization of molecular structure of copolymers; and polymer solution rheology.

  18. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, January--March 1987

    SciTech Connect

    Brouns, R. A.; Allen, C. R.; Powell, J. A.

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs.

  19. Los Alamos Critical Experiments Facility. Quarterly progress report, January 1--March 31, 1993

    SciTech Connect

    Anderson, R.E.; Paternoster, R.R.; Robba, A.A.; Sanchez, R.G.; Butterfield, K.B.; Partain, B.Q.; Malenfant, R.E.

    1993-12-31

    The Los Alamos Critical Experiments Facility (LACEF) is now operating after a lengthy period of shutdown that lasted from November 1989 until June 1991. Since June 1991, the efforts of the staff have concentrated on bringing the assemblies back to operational status. The facility is fully operational and performing experiments. This progress report nominally covers the second quarter of FY93 (first quarter of calendar year 1993). It has sections on nuclear criticality safety classes, SHEBA II Project, Godiva IV activities, Skua activities, basic neutron physics measurements, etc.

  20. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  1. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  2. Performance Plan: Progress Report 2nd Quarter Fiscal Year 2000.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC. Student Financial Assistance.

    This document is progress report on the U.S. Department of Education's Student Financial Assistance (SFA) programs. Regarding its customer satisfaction objective, SFA notes that it looks to private sector leaders in e-commerce and promotes electronic services; offers electronic filing of the Free Application For Student Aid (FAFSA); offers most…

  3. Performance Plan: Progress Report, 3rd Quarter Fiscal Year 2000.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC. Student Financial Assistance.

    The U.S. Department of Education Student Financial Assistance (SFA) outlines its three major objectives for fiscal year 2000 in its progress report. The objectives are: 1)customer satisfaction; 2) reduction in the overall cost of delivering student aid; and 3) employee satisfaction. Several new capabilities were added to the Direct Loan servicing…

  4. Performance Plan: Progress Report, 1st Quarter, Fiscal Year 2000.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC. Student Financial Assistance.

    This report by the Department of Education examines the progress made by the Student Financial Assistance (SFA) program in reaching its objectives. The report notes that for objective 1, customer satisfaction, more than 4 million direct loan records have been processed and over 1 million updates applied since winter 1999; that 84 percent of school…

  5. Coal combustion science. Quarterly progress report, April 1993--June 1993

    SciTech Connect

    Hardesty, D.R.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. Mitigation of biofouling using coatings. Quarterly progress report No. 1

    SciTech Connect

    Meyer, A.E.; King, R.W.; Wilkinson, M.A.

    1980-12-15

    Progress is reported in this project to evaluate benefits associated with control of the surface energetic properties of materials used in heat exchangers; and to identify preferred ranges of these surface conditions that minimize deposits of biological fouling known to deteriorate heat exchange efficiencies in seawater, brackish water, and freshwater systems. The technical approach uses special diagnostic plates in novel flow cells where fluid flow conditions can be well-controlled, modifying the surface chemistry and surface energy of the plates with very thin coatings and examining the earliest events of biofouling caused by macromolecules and microbial organisms. A preliminary list of test surfaces is given. Initial progress was made for measuring heat exchange coefficients using germanium internal reflection plates. A coastal marine aquarium system was established to simulate real-world biofouling conditions.

  7. Nuclear waste management. Quarterly progress report, October-December 1979

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  8. Heber geothermal binary demonstration project quarterly technical progress report, October 1, 1981--December 31, 1981

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of October 1, 1981, through December 31, 1981. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  9. Electronic refrigerant leak detector. Quarterly technical progress report

    SciTech Connect

    Talamas, E. Jr.

    1998-10-15

    The project comprises three main tasks. They are (1) Develop, design, and fabricate sensors, (2) Develop, design, and fabricate test instruments, (3) Testing and data analysis. The milestone includes 17 sub-tasks for the 52-weeks project period, starting on May 1, 1998 and ending on April 30, 1999. As stated in the Application for Federal Assistance, Micronic intended to relocate to a new office by June of 1998. This decision was delayed, since the first partial payment was transferred on August 12, 1998. Micronic plans to relocate this November. A second Provisional Application for a US patent has been filed. Progress made during this period is reported.

  10. Quarterly technical progress report, April-June 1982

    SciTech Connect

    1984-04-01

    Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.

  11. Nuclear magnetic resonance studies of granular flows: Technical progress report, quarter ending 09/30/93

    SciTech Connect

    Not Available

    1993-10-27

    This Technical Progress Report for the quarter ending 09/30/93 describes work on two tasks which are part of nuclear magnetic resonance studies of granular flows. (1) Research has been directed toward improving concentration measurements under reasonably fast conditions. (2) The process continues of obtaining comprehensive velocity, concentration, and diffusion information at several angular velocities of the cylinder for seeds (mustard, sesame, and sunflower seeds) flowing in a half-filled cylinder.

  12. Short-rotation woody-crops program. Quarterly progress report for period ending August 31, 1981

    SciTech Connect

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty-one projects in the Short Rotation Woody Crops Program is summarized for the period June 1 through August 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major program activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  13. Heat Source Technology Programs. Quarterly progress report, April--June 1993

    SciTech Connect

    George, T.G.

    1993-12-01

    This quarterly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  14. Short-rotation woody-crops program. Quarterly progress report for period ending May 31, 1981

    SciTech Connect

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty projects in the Short Rotation Woody Crops Program is summarized for the period March 1 through May 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major project activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  15. Mitigation of biofouling using coatings. Quarterly progress report No. 3

    SciTech Connect

    Meyer, A. E.; King, R. W.

    1981-06-22

    Progress is reported in a project in which the objectives are to evaluate benefits associated with control of the surface energetic properties of materials used in heat exchangers, and to identify preferred ranges of these surface conditions that minimize deposits of biological fouling known to deteriorate heat exchange efficiencies in seawater, brackish water and freshwater systems. The technical approach employed uses special diagnostic plates in novel flow cells where fluid flow conditions can be well-controlled, modifying the surface chemistry and surface energy of the plates with very thin coatings and examining the earliest events of biofouling caused by macromolecules and microbial organisms. Information is included on exposure experiments and results and heat exchange experiments.

  16. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  17. Tribopolymerization as an anti-wear mechanism. Quarterly progress report

    SciTech Connect

    Furey, M.J.

    1996-04-01

    During the first three months of 1996, progress on the Energy-Related Project was made in several different but connected areas. These included (a) establishing of load/velocity limits of selected monomers for ceramic lubrication, (b) the discovery of new and effective monomers designed for higher temperature anti-wear applications, (c) improvements and modifications of the high load/high speed pin-on-disk machine, (d) the initiation of related or spin-off projects designed to get the advanced technology into the marketplace, (e) the filing of three new patent applications, and (f) collaborative research with Dr. Kajdas -- the co-inventor with Dr. Furey -- on tribopolymerization as a novel and effective approach to the boundary lubrication of ceramics and steel.

  18. Fuel cycle programs. Quarterly progress report, October-December 1982

    SciTech Connect

    Steindler, M.J.; Bates, J.K.; Cannon, T.F.; Couture, R.A.; Deeken, P.G.; Fagan, J.E.; Gerding, T.J.; Hoh, J.C.; Kincinas, J.E.; Kolba, V.M.

    1983-08-01

    An information base has been assembled for the future analysis of concepts for disposing of /sup 85/Kr, /sup 129/I, /sup 3/H, and /sup 14/C from the nuclear fuel cycle. A blanket processing program emphasizing tritium recovery and effective heat transfer is in progress. The current experiment designated TRIO-01 is designed to test the performance of a miniaturized solid breeder blanket assembly with continuous in situ recovery of tritium. The thermal-hydraulic response of solid breeder blankets and the tritium system problems associated with liquid metal blankets are being analyzed. Thermal-hydraulic analysis is also being supplied for the First Wall/Blanket/Shield Program. Tritium needs and systems required for both tokamak and mirror fusion reactors are being supplied. Work is being done on (1) the sealing properties of fresh and altered proposed backfill materials for high-level nuclear waste in the expected hydrothermal, high-radiation environments of repositories, (2) the extent to which radioactivity might move from a nuclear waste repository because of flowing groundwater, (3) the effects of dissolved organic acids on the partitioning of /sup 241/Am and /sup 237/Np between synthetic groundwater and crushed basalt, and (4) the partitioning of a small group of toxic phenol compounds between dolomite and water. Development and testing of equipment for the destructive analysis of full-length irradiated fuel rods from the Light Water Breeder Reactor are in progress. Work has been done on: (1) the full-scale shear, (2) the dual dissolver system, (3) scrap and waste disposal, (4) the process control and data management system, and (5) analytical systems. Testing of simulated nuclear waste glasses is being done by exposing preleached Savannah River Laboratory type 131 glass to a second static leach test and by hydrating tektite glass meteorites and Pacific Northwest Laboratories type 76-68 glass in water vapor at elevated temperatures.

  19. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1993-07-20

    Twelve weld overlay hardfacing alloys have been selected for preliminary erosion testing based upon a literature review. Four of the selected coatings were deposited on a 1018 steel substrate using plasma arc welding process. During the past quarter, the remaining eight coatings were deposited in the same manner. Ten samples from each coatings were prepared for erosion testing. Microstructural characterization of each coating is in progress. This progress report describes coating deposition and sample preparation procedures. Relation between coatings hardness and formation of cracks in coatings is discussed.

  20. Appalachian Clean Coal Technology Consortium. Quarterly technical progress report, 1996

    SciTech Connect

    Yoon, R.-H.; Phillips, D.I.; Luttrell, G.H.; Basim, B.; Sohn, S.; Jiang, X.; Tao, D.; Parekh, B.K.; Meloy, T.

    1996-10-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The consortium has three charter members, including Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky. The Consortium also includes industry affiliate members that form an Advisory Committee. In keeping with the recommendations of the Advisory Committee, first-year R&D activities were focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies were conducted by Virginia Tech`s Center for Coal and Minerals Processing and a spiral model was developed by West Virginia University. For the University of Kentucky the advisory board approved a project entitled: ``A Study of Novel Approaches for Destabilization of Flotation Froth``. Project management and administration will be provided by Virginia Tech., for the first year. Progress reports for coal dewatering and destabilization of flotation froth studies are presented in this report.

  1. Research guidance studies. Quarterly progress report, April--June 1996

    SciTech Connect

    Gray, D.; Tomlinson, G.

    1996-12-31

    The overall objective of this project is to provide research guidance and quantification of research progress in the areas of direct and indirect coal liquefaction, coal/waste coprocessing, refining of coal-derived liquid fuels, and natural gas conversion. Specifically, the work is divided into two subtasks that relate to whether the technology application is direct or indirect. In subtask (a), Direct Coal Liquefaction technology is the subject of the analyses, and in subtask (b), Indirect Liquefaction, technologies will be evaluated in accordance with the priorities of the COR. Mitretek Systems has been developing detailed computer simulation models of direct and indirect coal and natural gas conversion systems for several years. These models are constantly being updated and improved as more data and better cost information becomes available. These models also include detailed refinery models based on bench-scale upgrading data of coal derived liquid fuels to specification transportation fuels. In addition to the simulation models of actual conversion system configurations, Mitretek is able to simulate innovative process configurations for coal and gas conversion to fuels, power, and chemicals. To supplement these system models and to provide a context to investigate expected energy use scenarios when alternate coal and natural gas based fuels will be needed, Mitretek`s staff has also developed world and country by country energy supply and demand models. This work will be accomplished by using the existing models where appropriate and by extending and modifying the system models where necessary.

  2. (The MHD (magnetohydrodynamics) coal fired flow facility): Quarterly technical progress report, April-June 1987

    SciTech Connect

    Not Available

    1987-09-01

    In this Quarterly Technical Progress Report, UTSI reports on progress in a multitask program to develop MHD technology, currently oriented toward the steam bottoming plant and environmental considerations. Plans and preparation for resumption of testing in the DOE Coal Fired Flow Facility are summarized. The status of the new aerodynamic duct, nozzle and diffuser is reported. Plans for continued testing of tubes made of candidate materials in the superheater test module are discussed. Progress in preparing the facility for the upcoming tests are included. Plans formulated jointly with Mississippi State University for application of advanced instrumentation in future tests are detailed. Additional analyses of data from previous tests is included in particulate loading and size distribution, seed recovery and trace elements. Progress in the environmental program is reported for the water quality program, the trace element study and process gas analysis.

  3. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  4. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  5. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 10, January 1944--March 1994

    SciTech Connect

    1994-08-01

    In work related to the design and construction of the Process Development Unit (PDU) this quarter involved further detail design and a real start to the construction activities. Status updates are given below for each discipline in the Task 2.0 and 3.0 headings. This work is progressing well. with the caveat of several small slips in the scheduling. On the catalyst development front this quarter was extremely productive. Many catalyst screening experiments were completed and they showed that control of the reaction exotherm is going to be quite challenging under PDU conditions. The presence of much more efficient reactor design and the ability to maintain closer to isothermal conditions is expected to give a significant advantage in actual PDU operation. A major concern at the moment is the cost of La in the catalyst being used. An action plan to remedy this is being put together.

  6. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  7. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    SciTech Connect

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  8. Co-sponsored second quarter progress review conference on district heating

    SciTech Connect

    1980-01-01

    A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

  9. Configurational diffusion of coal macromolecules: Quarterly progress report, June 16, 1988--September 15, 1988

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.

    1988-01-01

    During this quarter, progress has been made in two areas; (1) investigation concerning the effect of pore diameter and membrane porosity on the boundary layer resistance and (2) measurement of the model compound diffusion coefficients. From the experimental results, it was found that the boundary layer resistance was not affected by the membrance porosity or pore diameter. Based on this observation, diffusion coefficients of three paraffinic hydrocarbons were measured with Nuclepore/trademark/ polycarbonate membranes having 0.01 ..mu..m nominal diameter. Diffusion coefficients calculated from experimental data show fairly good agreement with the literature values. Details of the above work have been described in the next section. Next quarter the study will be continued to investigate the diffusion coefficients of coal model compounds. 9 refs., 1 fig., 8 tabs.

  10. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  11. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    SciTech Connect

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  12. West Hackberry Tertiary Project. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    1995-10-11

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 Sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presented uneconomic. During this quarter, the West Hackberry Tertiary Project completed the first ten months of air injection operations. Plots of air injection rates and cumulative air injected are included in this report as attachments. The following events are reviewed in this quarter`s technical progress report: (1) successful workovers on the Gulf Land D Nos. 44, 45 and 51 and the Watkins No. 3; (2) the unsuccessful repair attempt on the Watkins No. 16; (3) gathering of additional bottom hole pressure data; (4) air compressor operations and repairs; and (5) technology transfer activities.

  13. Fossil-energy program. Quarterly progress report for June 30, 1983

    SciTech Connect

    McNeese, L.E.

    1983-08-01

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  14. Materials research for the clean utilization of coal. Quarterly progress report, April-June 1981

    SciTech Connect

    Not Available

    1981-01-01

    Effort this quarter has been concentrated on the book Construction Materials for Coal Conversion - Performance and Properties Data. The status of the various subsections of Section A (Materials Considerations and Performance Data) is: (1) Operating requirements - completed; (2) Performance Data and Candidate Materials - being drafted in final form. The assembling of test data for Section B is essentially complete and analysis of this data is in progress. Data was obtained on the creep of a fused cast ..cap alpha.. + ..beta.. alumina (Monofrax A) under thermal cycling conditions and on silicon nitride using both linear variable differential transformers and specimen dimension measurements.

  15. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  16. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  17. Geothermal direct-heat utilization assistance. Quarterly progress report, January--March 1993

    SciTech Connect

    Lienau, P.

    1993-03-30

    CHC (Geo-Heated Center) staff provided assistance to 103 requests from 26 states, and from Canada, Egypt, Mexico, China, Poland and Greece. A breakdown of the requests according to application include: space and district heating (19), geothermal heat pumps (24), greenhouses (10), aquaculture (4), industrial (4), equipment (3), resources (27), electric power (2) and other (20). Progress is reported on: (1) evaluation of lineshaft turbine pump problems, (2) pilot fruit drier and (3) geothermal district heating marketing tools and equipment investigation. Four presentations and two tours were conducted during the quarter, GHC Quarterly Bulletin Vol. 14, No. 4 was prepared, 14 volumes were added to the library and information was disseminated to 45 requests. Progress reports are on: (1) GHP Teleconference 93, (2) California Energy Buys Glass Mountain Prospect from Unocal and Makes Deal for Newberry Caldera, (3) New Power Plant Planned, (4) Vale to Get Power Plant, (5) BPA Approves Geothermal Project, (6) Update: San Bernardino Reservoir Study, (7) Twenty-nine Palms Geothermal Resources, (8) Geo-Ag Heat Center, Lake County, and (9) Update: Geothermal Wells at Alturas.

  18. (Operation of MHD Coal Fired Flow Facility): Quarterly technical progress report, October-December 1987

    SciTech Connect

    Not Available

    1988-05-01

    In this Progress Report UTSI summarizes the progress on a multitask research and development project encompassing the development of the steam bottoming plant technology for a Coal Fired MHD/Steam power plant. Current emphasis is on testing promising tube materials, removal of particulate from the flue gas by both electrostatic precipitator and baghouse, fouling of heat transfer surfaces, recovery of spent seed material and environmental intrusion. The results of a 65 hour test conducted during the quarter in the DOE Coal Fired Flow Facility (CFFF) are discussed. The application of advanced optical diagnostic measurement equipment by both UTSI and Mississippi State University (MSU) is summarized. Evolutionary changes to test hardware and facility equipment are reported.

  19. Brick manufacture with fly ash from Illinois coals. Quarterly technical report, September 1, 1994--November 30, 1994

    SciTech Connect

    Hughes, R.E.; Dreher, G.; Frost, J.; Moore, D.; Rostam-Abadi, M.; Fiocchi, T.; Swartz, D.

    1995-03-01

    This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by (1) one or more plant-scale, 5000-brick tests with fly ash mixed with brick clays at the 20% or higher level; (2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; (3) a technical and economic study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are an expected result of this research. If successful, this project should convert an environmental problem (fly ash) into valuable products - bricks. During this quarter, the authors set up the manufacturing run at Colonial Brick Co., provided an expanded NEPA questionnaire for DOE, made preliminary arrangements for a larger brick manufacturing run at Marseilles Brick Co., revised laboratory procedures for selective dissolution analysis, and began characterization of brick clays that could be mixed with fly ash for fired-clay products.

  20. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    SciTech Connect

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  1. Federal assistance program. Quarterly project progress report, January 1998--March 1998

    SciTech Connect

    1998-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-98-98 (January-March, 1998). It describes 268 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers and a comprehensive aquaculture developer package. The revised Geothermal Direct Use Engineering and Design Guidebooks was completed, published and is available for distribution. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 1) which was devoted entirely to geothermal equipment, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  2. PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1992-07-01

    This is the eleventh technical progress report submitted to the Department of Energy (DOE) in connection with the Cooperative Agreement between DOE and Ohio Power company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1992. Activities included: The Tidd combustor internals were modified to connect the hot gas system for slipstream operation; Various pre-operational activities were completed, including pneumatic leak testing of the HGCU system, operation of the closed cycle cooling water system, operation of the back pulse compressor and air preheater, and checkout of the back pulse skid. Initial operation of the system using the bypass cyclone occurred during May 21--23, 1992; On May 23, 1992, an expansion joint ruptured, forcing the unit to be shut down. The failure was later determined to be due to stress corrosion. Following the expansion joint failure, a complete engineering review of the system was undertaken and is continuing; Contract Modification No. 6 was issued to Westinghouse during this quarter. This modification is for APF surveillance testing services; A purchase order was issued to Battelle for ash sampling hardware and testing services.

  3. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  4. Quarterly technical progress report, October-December 1982 on Energy Conversion Research and Development Programs

    SciTech Connect

    Not Available

    1983-10-01

    In this quarterly technical progress report, UTSI reports on the continued design work for the low mass flow train superheater. The detailed design of this component continued and the overall arrangement drawing for the superheater and air heater was finalized. The air heater procurement reached the point of contract award, but the actual purchase order award was held up pending receipt of additional funding from the Department of Energy. Testing activity reported includes two additional tests in the LMF1C series, which concludes this test series. Test data are presented, along with preliminary analyses for the combustor, nozzle, diagnostic channel, diffuser, radiant furnace/secondary combustor and Materials Test Module. In addition to the nitrogen oxide test measurements, corrosion and erosion rates for the boiler tube specimens and the materials test module are reported.

  5. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the twelfth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Summaries of the final reports produced by Lehigh University, West Virginia University, and Vander Sande Associates under the Participants Program are presented. Analytical data produced by CONSOL are provided in Appendix I for all samples employed in the Participants Program and issued with the samples to research groups in the Participants Program. A paper was presented at the 1992 US Department of Energy Pittsburgh Energy Technology Center Liquefaction Contractors` Review Conference, held in Pittsburgh September 23--24, 1992, entitled ``The Chemical Nature of Coal Liquid Resids and the Implications for Process Development``. It appears as Appendix 2 in this report.

  6. Redwood Community Action Agency: Technical progress report, 3rd quarter, 1986

    SciTech Connect

    Not Available

    1986-01-01

    Since the second quarter, at which time venture feasibility activities were well underway by Redwood Community Action Agency (RCAA) to develop a shared-savings energy business plan, significant progress has been made. Nearly all consultant reports on the technical feasibility analysis have been completed, initial market research has begun and capitalization strategy has been investigated. Additionally, RCAA received an award of a substantial grant from the California Dept. of Economic Opportunity to develop a series of business ventures with a consortium of Northern California community providers. Fifteen thousand dollars of equity capital has been allocated for the energy-related business venture being investigated under this grant. If all plans go as anticipated, this money, combined with agency unrestricted funds, will provide the initial seed capital for the venture.

  7. Project LIFE--Language Improvement to Facilitate Education. (Technical Progress Report; Third Quarter; March 1, 1974-May 31, 1974).

    ERIC Educational Resources Information Center

    National Foundation for the Improvement of Education, Washington, DC.

    Reported is the third quarter, fiscal year 1974 (March 1, 1974-May 31, 1974) technical progress of Project LIFE (Language Improvement to Facilitate Education), toward developing an instructional system in which filmstrips in the areas of perceptual training, perceptual thinking, and language/reading are used to assist hearing impaired children in…

  8. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    1995-12-01

    This report is the quarterly progress report for July through September 1995 for work done by Tulane and Xavier Universities under DOE contract number DE-FG01-93-EW53023. Accomplishments for various tasks including administrative activities, collaborative cluster projects, education projects, initiation projects, coordinated instrumentation facility, and an investigators` retreat are detailed in the report.

  9. Develop apparatus and process for second-stage drying. Quarterly progress report, September 26--December 26, 1994

    SciTech Connect

    Taylor, F.

    1995-01-05

    Progress is reported on Task 1, Computer simulation refinement and extension, and its two subtasks: Verification of computer model simulation of the drying process for lumber in a superheated kiln and Establishment of energy loss predictions for specific kiln designs for the first stage kiln. A report of a trip to the Irvington Moore Corporation facility and plans for next quarter are described.

  10. The Amarillo National Resource Center for Plutonium. Quarterly progress detailed report, 1 November 1996--31 January 1997

    SciTech Connect

    1997-03-01

    Progress for this quarter is given for each of the following Center programs: (1) plutonium information resource; (2) advisory function (DOE and state support); (3) environmental, public health and safety; (3) communication, education, and training; and (4) nuclear and other material studies. Both summaries of the activities and detailed reports are included.

  11. The Structure and Dynamics of the Solar Corona and Inner Heliosphere-First Quarter First Year Progress Report

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2000-01-01

    This report details progress during the first quarter of the first year of our Sun-Earth Connections Theory Program (SECTP) contract. Science Applications International Corporation (SAIC) and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  12. Hanford Federal Facility Agreement and Consent Order quarterly progress report for the period ending June 30, 1991

    SciTech Connect

    Not Available

    1991-08-01

    This is the ninth quarterly report as required by the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1990), also known as the Tri-Party Agreement, established between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology). The Tri-Party Agreement sets the plan and schedule for achieving regulatory compliance and cleanup of waste sites at the Hanford Site. This report covers progress for the quarter that ended June 30, 1991. A total of 87 milestones have been completed to date. 39 refs., 1 fig.

  13. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    SciTech Connect

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

    1997-01-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  14. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993

    SciTech Connect

    Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

    1993-10-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  15. Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993

    SciTech Connect

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Steele, E.; Strait, R.S.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  16. MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991

    SciTech Connect

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  17. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 13, October--December 1994

    SciTech Connect

    1995-02-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate t economics of the process. Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Evaluation of catalyst samples from UCI led to the ordering of the OHC PDU catalyst batch. This catalyst batch arrived, was screened and found to be defective, and was reordered. (2) Natural gas containing higher hydrocarbons was used as a methane source. The reactant mixture formed oxygenates at temperatures lower than observed in the past. Burning at such low temperatures seems to create a product stream containing very little CH{sub 2}Cl{sub 2}. (3) Although it has not been decided if the PDU will use natural gas from the plant or methane or natural gas from cylinders as a methane feed source, it was concluded that an adsorption unit to remove sulfur and higher hydrocarbons is not necessary at this time. (4) PDU construction was completed in December. The bulk of insulation work was completed at the end of November. Much effort has been put into pressure testing the PDU`s systems. The startup team has become adept at finding and correcting such leaks. (5) SOP writing for the PDU was completed this quarter with communication with the software programmer to insure agreement between the software and SOP.

  18. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  19. Brick manufacture with fly ash from Illinois coals. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Hughes, R.E.; Dreher, G.; Frost, J.; Moore, D.; Rostam-Abadi, M.; Fiocchi, T.; Swartz, D.

    1995-12-31

    This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by (1) one or more plant-scale, 5000-brick tests with fly ash mixed with brick clays at the 20% or higher level; (2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; (3) a preliminary study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are an additional expected result of this research. If successful, this project should convert a disposal problem (fly ash) into valuable products-bricks. During this quarter we set up the manufacturing run at Colonial Brick Co., finalized arrangements for a larger brick manufacturing run at Marseilles Brick Co. in YR2, revised our laboratory procedures for selective dissolution analysis, obtained information to select three standard fly ashes, and continued our characterization of brick clays that could be mixed with fly ash for fired-clay products. Due to delays in other areas, we began construction of the optimization program for year 2. We discovered recently that fly ash dust will be an unanticipated problem at the brick plant.

  20. Western Research Institute quarterly technical progress report, July--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    Accomplishments for the quarter are described briefly for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers process studies. Tar sand research is on recycle oil pyrolysis and extraction (ROPE{sup TM}) Process. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: CROW{sup TM} field demonstration with Bell Lumber and Pole; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid state NMR analysis of Mowry formation shale from different sedimentary basins; solid state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  1. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    SciTech Connect

    Not Available

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  2. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  3. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  4. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-03-01

    This is the Sixteenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Fifty-eight process samples from HRI CTSL Bench Unit Run CC-15 (227-75) were analyzed to provide information on process performance. Run CC-15 was operated for 14 periods (days) from October 21 through November 3, 1992 in the thermal/catalytic configuration with Black Thunder Mine (Wyodak and Anderson seams) coal and Shell S-317 Ni/Mo supported extrudate catalyst. The run was made to test performance with and without a dispersed hydrous iron hydroxide catalyst precursor impregnated in the coal. Results are compared with those of previous HRI CTSL bench unit Run CC-1, which was operated in the catalytic/catalytic configuration, also with Shell S-317 catalyst. Several HRI Run CC-15 product distillate fractions prepared by the National Institute for Petroleum and Energy Research (NIPER) for petroleum inspection tests were further characterized by CONSOL. These characterization data are presented. MicroAutoclave tests and chemical analyses were performed to evaluate the solvent quality of two potential solvents for Alberta Research Council ARC. Eight product samples from catalytic dehydrogenation experiments were characterized for the University of Pittsburgh. A description is presented of the thermogravimetric analysis (TGA) method for determination of resid concentration/resid conversion, which was adapted for use in-house from HRI`s standard method. A brief summary of the status of the Participants Program is given.

  5. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  6. Tribopolymerization as an anti-wear mechanism. Quarterly progress report, July--September 1996

    SciTech Connect

    Furey, M.J.

    1996-10-09

    During this quarterly period, the author has made progress in a number of areas. He has continued to evaluate potential candidates for high load/high speed antiwear action using the approach of generating tribopolymers capable of withstanding high temperatures. Results are promising for ceramics as well as steel. The construction of a new instrument for high temperature studies of both liquid and vapor phase lubrication is almost complete. This will permit studies up to 350 C bulk temperature and considerably higher surface temperatures in controlled vapor-phase and liquid-phase studies. Selected monomers and monomer combinations found to be effective in hexadecane as a carrier fluid have also been tested in other fluids, including synthetic ester lubricant carriers. Additional studies using FTIRM for surface analysis of wear tracks have been made and are continuing. Further industrial contacts have been made to arrange for field testing of selected compounds as antiwear additives. The applications include the lubrication of 2-stroke and 4-stroke engines, machining and cutting, and fuel injector wear, particularly in gas (e.g., natural gas) engines.

  7. MHD Coal-Fired Flow Facility. Quarterly technical progress report, January-March 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R.C. Baucum, W.E.

    1980-05-30

    The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Although slowed by incessant rain during several days, work on the CFFF Bid Packages progressed to nearly 100 percent completion, excluding later punchlist items. On the quench system, the cyclone separator was delivered to UTSI, and under Downstream Components, the secondary combustor was received and the radiant slagging furnace was emplaced at the CFFF. Water quality analysis of Woods Reservoir provided the expected favorable results, quite similar to last year's. Generator experiments describing local current distribution are reported along with behavior under conditions of imposed leakage. Also, during the Quarter, the shelter for the cold flow modeling facility was constructed and circuits installation begun. A jet turbine combustor was tested for use as a vitiation burner. Samples taken from the exhaust duct, besides other applications, show that the refractories used are performing well in alleviating heat loss while exhibiting acceptable degredation. A new resistive power take-off network was designed and implemented.

  8. EDS coal liquefaction process development: Phase V. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    1984-07-01

    This report is the twenty-first Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC05-77ET10069 for EDS Coal Liquefaction Process Development Phase V. A detailed comparison of RCLU, CLPP, and ECLP yields has been initiated. This study builds off previous yield modeling results, which found that RCLU, CLPP, and ECLP yields were generally consistent given the scatter of the data, although some differences were noted. These pilot unit yield differences have now been quantified, and operating/configurational differences which account for some of them have been identified. Preliminary yield comparison results after correcting for these known process differences between the pilot plants indicate that: RCLU and CLPP yields are generally consistent; ECLP's conversion is about 5 lb/100 lb DAF coal lower than RCLU/CLPP at comparable operating conditions; and work has been initiated to define the EDS slurry preheater feed system design (based on slurry distributor manifold guidelines and coking correlation predictions, which influence furnace pass control issues such as slurry flow measurement). EDS hydrotreated naphtha showed a low level of systemic toxicity to rats exposed to the vapor six hours per day, five days per week for thirteen weeks.

  9. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 11, April--June 1994

    SciTech Connect

    1994-11-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate the economics of the process. Significant progress was made in catalyst and PDU development this quarter. The key points of these developments are: Initial discussions have taken place with a catalyst supplier. United Catalysts, Inc. UCI came up with some good catalyst development suggestions and has agreed to produce a batch of catalyst for the PDU; previous plans for supply of methane for the PDU have fallen through. New options. including getting gas from Carrollton Utilities, are being evaluated; and PDU equipment installation is completed. and piping is 40% complete. The electrical work is close to being finished, and the instrumentation is underway.

  10. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 12, July--September 1994

    SciTech Connect

    1994-11-01

    Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Mixed LnCl{sub 3} solutions were successfully tested as substitutes for LaCl{sub 3} in preparing OHC catalysts. This will dramatically lower the price of the catalyst. (2) Six catalyst samples were received from UCI. Each was made via either incipient wetness or compounded extrudate techniques. Four of the catalysts have been screened. All seem adequate. (3) Contact has opened with Calsicat as an alternate catalyst supplier to UCI. It should be valuable to draw from their catalyst expertise. (4) It has been decided to tie into the plant`s natural gas source. Methods of cleaning up this stream are being investigated. (5) PDU construction completion is expected the first week in November. Pressure testing and punchout fix-up work remain to be completed. (6) Three new engineers were hired to work on the PDU. Half of the temporary operating procedures (TOP`s) have been written. SOP completion date is targeted for the beginning of November.

  11. EDS coal liquefaction process development. Phase V. Quarterly technical progress report, July 1-September 30, 1980

    SciTech Connect

    1981-02-01

    This report is the tenth Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC01-77ET10069 (formerly EF-77-A-01-2893) for Exxon Donor Solvent (EDS) Coal Liquefaction Process Development - Phase V. The Laboratory Process Research and Development studies were conducted at various Exxon Research and Engineering Co. (ER and E) facilities: Research and Development Division at Baytown, Texas; Products Research Division at Linden, New Jersey; and the Exxon Research and Development Laboratories at Baton Rouge, Louisiana. The Engineering Research and Development studies were performed at the Synthetic Fuels Engineering and Exxon Engineering Technology Departments of ER and E at Florham Park, New Jersey. The information dealing with the Management, Detailed Engineering, and Procurement activities related to revamp of the FLEXICOKING Prototype Unit was generated at Exxon Company, USA, Houston, Texas, and Exxon Engineering - Project Management Department of ER and E, Florham Park, New Jersey. The information dealing with operation of the 250 T/D Exxon Coal Liquefaction Pilot Plant (ECLP) was generated at Exxon Company, USA, Houston, Texas.

  12. Development of the integrated environmental control model. Quarterly progress report, April 1995--June 1995

    SciTech Connect

    Kalagnanam, J.R.; Rubin, E.S.

    1995-06-01

    The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM). In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period April 1, 1995 through June 30, 1995. This report presents additional revisions to the new cost models of flue gas desulfurization (FGD) technology initially reported in our fourth quarterly report. For convenience, the complete description of the revised FGD models are presented here.

  13. Gasoline from natural gas by sulfur processing. Quarterly progress report, June--September 1993

    SciTech Connect

    Erekson, E.J.; Miao, F.Q.

    1993-10-01

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process consists of two steps that each utilize catalysts and sulfur containing intermediates: (1) to convert natural gas to CS{sub 2}, and (2) to convert CS{sub 2} to gasoline range liquids. Experimental data will be generated to demonstrate the potential of catalysts and the overall process. During this first quarter, progress in the following areas has been made. One high surface area molybdenum catalyst has been prepared. An existing unit at IGT is being modified to accommodate the sulfur feedstocks and the higher temperatures(> 1300{degrees}K) required for studying the reactions of hydrogen sulfide and methane as proposed in Tasks 2 through 5. An HP 5890 gas chromatograph with a TCD(thermal conductivity detector) for detecting fixed gases including hydrogen and an FPD(flame photometric detector) for detecting sulfur compounds was purchased using SMP funds and has been received.

  14. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  15. Advancement of flash hydrogasification. Quarterly technical progress report, January-March 1984

    SciTech Connect

    Falk, A.Y.

    1984-06-25

    This first quarterly report documents technical progress during the period 31 December 1983 through 30 March 1984. The technical effort is 17 months in duration and is divided into two major technical tasks: Task VII, Hardware Fabrication and PDU Modifications, and Task VIII, Performance Testing. The design of test hardware and process development unit modifications had been previously completed as part of Task VI of the current contract. Task VII involves the fabrication of test hardware and modification of an existing 1-ton/h hydroliquefaction PDU at Rockwell's facilities for use as a hydrogasifier test facility. During this report period, fabrication of the test hardware and modifications to the PDU were initiated. Test hardware fabrication is now approximately 80% complete and should be completed by the end of May 1984. PDU modifications are progressing well and should be completed by the end of June 1984. The completed test hardware fabrication and PDU modifications will allow the conduct of short duration (1 to 2 h) hydrogasification tests along with preburner assembly performance evaluation tests in order to fulfill the test program objectives. Separate supplies of hydrogen, oxygen, methane, carbon monoxide, and water (for steam generation) are provided for this purpose. The modified facility is designed to accommodate both 10- and 20-ft-long hydrogasifier reactors so that residence times will be in the range of 2 to 6 s when coal is fed at a nominal 1/2 ton/h into reactors at 1000 psia pressure. Provisions are being made for real-time analysis of the product gases using an on-line gas chromatograph system. Test planning was the only Task VIII effort active during this report period. An initial (preliminary) test matrix has been defined. Preparation of a data analysis plan is underway, and data reduction programs are being programmed. 17 references, 25 figures, 6 tables.

  16. Advanced alternate planar geometry solid oxide fuel cells. Interim quarterly technical progress report, November 1, 1988--January 31, 1989

    SciTech Connect

    Prouse, D.; Elangovan, S.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1989-12-31

    During this quarter, progress was made at Ceramatec in seal development and conductivity measurements of YIG compositions. A creep test was completed on the porous/dense/porous triilayer. IGT provided a discussion on possible interconnect materials. The following tasks are reported on: cell design analysis, program liaison and test facility preparation, cell component fabrication/development, out-of-cell tests. 9 figs, 2 tabs.

  17. Fischer-tropsch synthesis in supercritical fluids. Quarterly technical progress report, October 1, 1994--December 21, 1994

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1995-01-31

    Progress reports are presented for the following two tasks: (1) diffusion coefficients of F-T products in supercritical fluids; and (2) Fischer-Tropsch reaction related studies. The objectives for this quarter for task 1 were to measure molecular diffusion coefficients and effective diffusivities at the same conditions. The objectives for task 2 were to conduct two additional tests with the Ruhrchemie catalyst and a catalyst synthesized in our laboratory under supercritical conditions.

  18. Characterization and supply of coal based fuels. Quarterly technical progress report, February 1, 1987--April 30, 1987

    SciTech Connect

    Not Available

    1987-07-01

    Contract objectives are as follows: develop fuel specifications to serve combustor requirements; select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. During the second quarter of this contract effort, the primary activities were involved with: continuation of development of fuel requirements (i.e., specifications, quantities, schedule); acquisition and bench-scale characterization of candidate coal samples; selection of coal water slurry fuel manufacturer; procurement of parent coal for fuel production; deep cleaning by froth flotation of parent coal; production of solid fuel (i.e., size reduction of deep cleaned parent coal) and delivery to combustors/experimenters; production of slurry fuel and delivery to combustors/experimenters; and completion of Final Version of First Quarterly Report.

  19. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    SciTech Connect

    Not Available

    1982-04-01

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  20. Recent progress in the photovoltaic manufacturing technology project (PVMaT)

    SciTech Connect

    Witt, C.E.; Mitchell, R.L.; Thomas, H. ); Herwig, L.O. ); Ruby, D.S. ); Sellers, R.

    1994-12-09

    The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

  1. LLNL vapor phase manufacturing progress report, June--December 1995

    SciTech Connect

    Anklam, T.; Benterou, J.; Berzins, L.; Braun, D.; Haynam, C.; Heestand, G.; McClelland, M.

    1996-01-09

    This report gives progress made on the following milestones: demonstrate Ti and Nb monitoring at 3M site, demonstrate Al monitoring at LLNL, complete baseline melt and vapor plume model for the metal matrix process (3M fiber coating process), prototype a laser at LLNL to monitor Cu, ZrO{sub 2} monitoring demonstration at LLNL, Se monitoring demonstration, and process scale-up study for YBCO high-temperature superconductor.

  2. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, July 1, 1995-- September 30, 1995

    SciTech Connect

    Harb, J.N.

    1995-12-31

    Progress during the eighth quarter of a three-year study was made in three task areas: (1) analysis of coals; (3) parametric testing of the target coals, and (4) analysis of samples from the combustion tests. Routines for automated analysis of coal and mineral associations were completed and are now functional on our new ISIS system. Work on data processing which led to the development of a new means of interpreting composition information from the SEM was also completed during the quarter. This work is expected to yield substantial benefits in understanding the ash transformations during combustion. Several additional ash and deposit samples were collected this quarter. Deposition results have been explained qualitatively and samples has been mounted for quantitative analysis. A detailed characterization of mixing and coalescence was performed during the quarter. Results indicate that combustion under stage conditions does not change the chemistry of the final ash produced. Specifically, both iron and potassium distributions in long residence time ashes did not change as a function of combustion conditions. Some differences were observed in the potassium distribution at shorter residence times. There was also a difference in the size distribution of particles formed during staged combustion. The nature and significance of these differences are still under investigation.

  3. BX in situ oil shale project. Quarterly technical progress report, September 1-November 30, 1981

    SciTech Connect

    Dougan, P.M.

    1981-12-20

    September 1, 1981-November 30, 1981, was the fourth consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. During the quarter, 117,520 barrels of water as steam were injected into project injection wells at an average wellhead temperature of 715/sup 0/F and an average wellhead pressure of 1378 PSIG. During the same period, 148,516 barrels of fluid were produced from the project production wells for a produced-to-injected fluid ratio of 1.26 to 1.0. Net oil production for the quarter was 169 barrels.

  4. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    SciTech Connect

    Not Available

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  5. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 7, April--June 1993

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate the economics of the process. Several key technology areas were evaluated this quarter. The catalyst definition effort focused on the determination of the role of the Li and La promoters that have been found to be useful in enhancing Cu based oxyhydrochlorination of methane catalysts. Initial experiments show that the La acts to provide a much more active catalyst than the Cu only case. The role of the Li is ambiguous at this point. The Li enhances the stability of the La promoted catalyst, but gives only marginal improvement by itself This work will be continued, with additional emphasis on the analysis of the catalysts to determine the structural role that the promoters may play. The separation unit operation definition made significant progress by demonstrating in a laboratory system that a process solvent may be used to remove the product CH{sub 3}Cl from the reactor effluent stream. To date the data has been qualitative, but clear. Work will continue to gather the information possible in the laboratory to help with PDU design. An extensive amount of testing was performed on the chosen process solvent, Multitherm. A comprehensive review of all the thermal testing and associated FTIR, UV/VIS, and physical property testing is included in this report. This work shows that Multitherm should give the desired stability and solubility that are necessary to make the separation unit operation successful.

  6. Emerging nanomedicine applications and manufacturing: progress and challenges.

    PubMed

    Sartain, Felicity; Greco, Francesca; Hill, Kathryn; Rannard, Steve; Owen, Andrew

    2016-03-01

    APS 6th International PharmSci Conference 2015 7-9 September 2015 East Midlands Conference Centre, University of Nottingham, Nottingham, UK As part of the 6th APS International PharmSci Conference, a nanomedicine session was organised to address challenges and share experiences in this field. Topics ranged from the reporting on latest results and advances in the development of targeted therapeutics to the needs that the community faces in how to progress these exciting proof of concept results into products. Here we provide an overview of the discussion and highlight some of the initiatives that have recently been established to support the translation of nanomedicines into the clinic. PMID:26911307

  7. PFBC HGCU Test Facility. Fourth quarterly technical progress report, [October--December 1993

    SciTech Connect

    Not Available

    1994-01-01

    The APF was shut down on September 23, 1993 and no operation was performed during this quarter. This report summarizes inspection, candle reinstallation, retrofit and accelerometer testing conducted during this three month outage.

  8. Electric and Hybrid Vehicle Program: Site Operator Program. Quarterly progress report, April--June 1995

    SciTech Connect

    Kiser, D.M.; Brown, H.L.

    1995-09-01

    This quarterly report details activities of the Department of Energy (DOE) Site Operator Program for the months of April, May, and June 1995. The 12 program participants, their geographic locations, and the principal thrusts of their efforts are provided.

  9. A calcium oxide sorbent process for bulk separation of carbon dioxide. Quarterly progress report 19, January--March, 1994

    SciTech Connect

    Harrison, D.P.

    1994-04-01

    This research project is investigating the technical feasibility of a high-temperature, high-pressure (HTHP) process for the bulk separation of CO{sub 2} from coal-derived gas. Indirect evidence which suggested that the water-gas shift reaction occurred simultaneously with CO{sub 2} removal was found. Occurrence of the simultaneous reactions created the possibility of a direct one-step process for the manufacture of hydrogen from coal-gas while at the same time separating a concentrated stream of CO{sub 2}. Previous quarterly reports have described the design, construction, and commissioning of the fixed-bed reactor, development of analytical procedures, and results of a number of tests using dolomite sorbent precursor. During the current quarter, additional tests were carried out to study the effects of calcination gas composition, temperature, and space velocity using the standard dolomite sorbents. Alternate sorbents were tested to provide direct comparison of dolomite and limestone performance. Tests were performed using an empty reactor and reactor packed with commercial shift catalyst to learn more of the characteristics of the shift reaction in the absence of carbonation. Toward the end of the quarter, emphasis changed to sorbent durability and a number of multicycle tests were completed.

  10. Identification and Evaluation of Fluvial-Dominated Deltaic Reservoirs. Quarterly technical progress report, October 1-December 31, 1996

    SciTech Connect

    Banken, M.K.; Andrews, R.

    1997-09-12

    This document is provided as a Quarterly Technical Progress Report for the program entitled 'Identification and Evaluation of Fluvial- Dominated Deltaic (Class 1 Oil) Reservoirs in Oklahoma', covering the reporting period of October 1 - December 31, 1996. Work is progressing as expected for the project. The FDD computer facility is fully operational. During this quarter, there were 37 industry 'visits' to use the facility. The Cleveland and Peru Plays workshop was completed on October 17, 1996 with 85 attendees. The Red Fork Play workshop is scheduled for March 5 and 12, 1997. The Red Fork text was submitted for editing, and all figures, maps, and plates were submitted to cartography for drafting. The Tonkawa workshop is scheduled for June, 1997 although the exact time and place have yet to be determined. Regional work and field studies for that play are in progress. This project is serving an extremely valuable role in the technology transfer activities for the Oklahoma petroleum industry, with very positive industry feedback.

  11. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Harb, J.N.

    1996-02-07

    Progress during the ninth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an enhanced method for classification of CCSEM data. This classification algorithm permits grouping and comparison of particles previously labeled as ``unclassifiable.`` A second analytical advancement, also made this quarter, provides more detailed information on the distribution of minerals in the coal and the potential for coalescence. This new multiple analysis technique is also applicable to ash and will permit identification of heterogeneous ash particles. Additional analyses of ash samples were also performed and it was found that the firing of Pittsburgh {number_sign}8 under staged combustion conditions yields an ash with a significantly larger particle size distribution than that obtained under conventional firing conditions, but without a significant change in composition. the size difference was noted previously, but the new classification algorithm allowed a detailed comparison of all composition groups, including unclassifiable particles, in the ashes. A mechanistic explanation for this behavior has been developed and is provided in the report. Finally, a paper documenting the new classification algorithm has been prepared and is scheduled for presentation at the March ACS meeting in New Orleans.

  12. Bench-scale testing of the micronized magnetite process. Second quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-01-19

    This document contains the Quarterly Technical Progress Report for the Micronized Magnetite Testing Project being performed at PETC`s Process Research Facility (PRF). This second quarterly report covers the period from October, 1994 through December, 1994. The main accomplishments of Custom Coals and the project subcontractors, during this period, included: (1) Submitted all overdue project documents and kept up with routine reporting requirements; (2) Worked with CLI Corporation, the design subcontractor, and completed the circuit design and finalized all design drawings; (3) Specified and procured all of the process equipment for the circuit, as well as a number of ancillary equipment, instruments, and supplies; (4) Assisted Vangura Iron Inc. in detailing and constructing the structural and platework steel; (5) Subcontracted Rizzo & Sons to perform the circuit mechanical and electrical installation, and prepared for January 23rd installation start date; (6) Organized and prepared for coal and magnetite procurement; (7) Specified and organized an operating personnel plan for the commissioning and testing tasks in the project; (8) Assessed analytical challenges for project, and began to research problem areas. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the abovementioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  13. Energy from in situ processing of antrim oil shale. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Washington, L.J. Jr.

    1980-01-21

    Extraction trials on the new site were begun. The first trial, F80-1, was completed in Well No. 301 in October, 1979. Using a methane burner and an ignition service from TOR Developments, Inc., downhole burner ignition was readily achieved. Shale ignition occurred within two days. Combustion in the wellbore was so intense that the burner was lost, and subsequently shale combustion decreased and the trial was terminated. After some modification of equipment and procedures, the second trial, F80-2, was begun in late November, 1979. Combustion was achieved and the trial was still in progress at the end of the quarter.

  14. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    SciTech Connect

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  15. Toms Creek Integrated Gasification Combined Cycle Demonstration Project. Final quarterly technical progress report for the period ending March 31, 1993

    SciTech Connect

    Feher, G.

    1993-05-24

    This Quarterly Technical Progress Report for the period ending March 31, 1993 summarizes the work done to data by Tampella Power Corporation and Enviropower, Inc. on the integrated combined-cycle power plant project. Efforts were concentrated on the Toms Creek PDS (Preliminary Design and Studies). Tampella Power Corporation`s efforts were concentrated on the Toms Creek Preliminary Process Flow Diagram (PFD) and Piping and Instrument Diagrams (P&IDs). Tampella Power Corporation also prepared Heat and Material Balances (H&MBs) for different site-specific cases.

  16. Jointly sponsored research program. Quarterly technical progress report, October--December 1993

    SciTech Connect

    Deans, H.A.

    1994-05-01

    This is a progress report on work performed by Western Research Institute for the U.S. DOE, Morgantown Energy Technology Center in the period October- December 1993. Tasks addressed include: development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; the impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the koppelman {open_quotes}series c{close_quotes} process using a batch test unit with Powder River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with bell lumber and pole; {open_quotes}B{close_quotes} series pilot plant tests; in situ treatment of manufactured gas plant contaminated soils demonstration program.

  17. Jointly sponsored research program quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: Development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the Koppelman ``Series C`` Power River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with Bell Lumber and Pole; ``B`` series pilot plant tests; and in-situ treatment of manufactured gas plant contaminated soils demonstration program.

  18. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  19. Guam Department of Education District Action Plan Progress Report: Fiscal Year 03-04 to First Quarter FY 04-05

    ERIC Educational Resources Information Center

    Guam Public School System, 2004

    2004-01-01

    This progress report details the objectives of the Guam Department of Education's District Action Plan and progress toward achieving them in fiscal year 03-04 and the first quarter of fiscal year 04-05. Areas covered are: (1) standards and assessment; (2) personnel quality and accountability; (3) federal, state, and local programs; (4) home-school…

  20. Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

  1. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-11-01

    Preparation of the baseline economic assessment, based on Wilsonville Run {number_sign}263J, continued. This baseline study will serve as the reference against which the results of this program will be compared. During the quarter calculation of the material and energy balances for the conceptual commercial plant were completed and estimation of the investment for the main process units was begun (Wyoming plant site basis). A presentation on the technical results of the baseline study was prepared and delivered at the Quarterly Project Review Meeting in Pittsburgh.

  2. Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998

    SciTech Connect

    1999-01-19

    Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual

  3. Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Chou, M.I.M.; Rostam-Abadi, M.; Lytle, J.M.; Bruinius, J.A.; Hoeft, R.; Dewey, S.; Achorn, F.

    1995-12-31

    The overall goal of this project is to assess the technical and economic feasibility for producing feasibility-grade ammonium sulfate from gypsum produced as part of limestone flue gas desulfurization (FGD) processes. This is a cooperative effort among the ISGS, the UIUC, AlliedSignal, SE-ME, Henry Fertilizer, Illinois Power Co. (IP), and Central Illinois Public Services (CIPS). Bench-scale experiments will be conducted to obtain process engineering data for the manufacture of ammonium sulfate from FGD-gypsum and to help evaluate technical and economic feasibility of the process. Controlled greenhouse experiments will be conducted at UIUC to evaluate the chemical impact of coal-derived impurities in ammonium sulfate produced from FGD-gypsum on soil properties. A process flow sheet will be proposed and market demand for the products will be established. An engineering team at IP will provide an independent review of the economics of the process. AlliedSignal will be involved in testing and quality evaluation of ammonium sulfate samples and is interested in an agreement to market the finished product. CIPS will provide technical assistance and samples of FGD -gypsum for the project. In this quarter, with an exception of the neutron activation analysis, analyses of FGD-gypsum samples that were generated by two power stations were completed. The high quality FGD-gypsum sample produced from the Abbott power plant in Champaign, IL was 98.36% gypsum, CaSO{sub 4}{center_dot}2H{sub 2}O, and less than 0.01% calcium`` sulfite, CaSO{sub 3}. The low quality sample from CIPS`s Newton Power Plant at Jasper, Illinois, was only 7.36% of gypsum. It was 87.54% calcium sulfite. A literature search provided the information to set up a batch, bench-scale reactor system. Reactions were conducted at 70{degrees}C for a range of times which resulted in 82% conversion of calcium sulfate to ammonium sulfate.

  4. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objectives for this quarter were: (1) to install and test the temperature probe and the flammable gas detector: (2) to conduct Fischer-Tropsch synthesis experiments at baseline conditions and at a high pressure in order to test the newly constructed fixed bed reactor assembly.

  5. Children's Television Workshop Quarterly Progress Report. July 1, 1977 to Sept. 30, 1977.

    ERIC Educational Resources Information Center

    Children's Television Workshop, New York, NY.

    This report describes the major activities and accomplishments for the quarter in production and research for the Sesame Street and Electric Company programs. In addition, activities in public affairs, personnel, budget, international broadcasts, CTW products, and community education services, including services to the mentally handicapped and…

  6. Children's Television Workshop Quarterly Progress Report. October 1, 1977 to December 31, 1977.

    ERIC Educational Resources Information Center

    Children's Television Workshop, New York, NY.

    This report describes the major activities and accomplishments for the quarter in production and research for the Sesame Street and Electric Company programs. In addition, activities in public affairs, personnel, budget, international broadcasts, Children's Television Workshop products, and community education services, including services to the…

  7. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1, 1997--October 31, 1997

    SciTech Connect

    1997-12-31

    This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.

  8. The Monitoring Commission for Desegregation Implementation's Quarterly Progress Report on Monitoring Project CANAL.

    ERIC Educational Resources Information Center

    Davidson, Mary E.; And Others

    This quarterly report, covering February 1 through June 30, 1989, summarizes problems with Project Creating a New Approach to Learning (CANAL), part of a court-mandated desegregation plan to reduce inequities in predominantly Black and Hispanic American schools in Chicago (Illinois). CANAL's goal is to train the constituent representatives of the…

  9. West Hackberry Tertiary Project. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-04-10

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic. The first quarter of 1996 was outstanding both in terms of volume of air injected and low cost operations. More air was injected during this quarter than in any preceding quarter. The compressors experienced much improved run time with minimal repairs. Low operating costs resulted from no repairs required for injection or production wells. A discussion of the following topics are contained herein: (1) performance summary for the injection and production wells, (2) air compressor operations, (3) updated bottom hole pressure data, (4) technology transfer activities and (5) plans for the upcoming quarter.

  10. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  11. Oxidation of phenolics in supercritical water. Combined quarterly technical progress report, December 1, 1995--May 31, 1996

    SciTech Connect

    1996-11-01

    Over the past two quarters, our work has focused on three main areas. The first area of interest involved a reexamination of the rate laws that were formed in past quarters. A possible error was discovered for the analytical methods used in the o-cresol oxidation study and the data were corrected, yielding a new rate equation. The data for hydroxybenzaldehydes were studied again, this time as a system of parallel oxidation and thermolysis reactions. The second area in which progress was made was the study of the thermolysis of nitrophenols and dihydroxybenzenes in supercritical water. These investigations were needed to determine the effect that pyrolysis or hydrolysis had on our previous supercritical water oxidation experiments. Thirdly, we have continued to investigate the use of molecular orbital theory in the determination reactivity indices. A reactivity index, such as the enthalpy of formation, may be used in a structure-reactivity relationship to summarize the kinetics for the oxidation of phenolics in supercritical water. Progress in each of these areas is summarized.

  12. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  13. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, February 1-April 30, 1980

    SciTech Connect

    Peterson, J. R.

    1980-01-01

    Work has been initiated during this first quarter under all four program tasks and by all major participants as described. Task 1.0 activity (establish power plant reference design) concentrated upon definition of user requirements and establishment of power plant subsystem alternatives and characteristics. Task 2.0 work (stack and cell design development and verification) was initiated with a heavy emphasis upon test facilities preparation. A total of 27 laboratory cells were operated during this reporting period and a total of nine cells continued on test at the end of the quarter. Investigation of alternative anode and cathode materials proceeded; a dual-porosity anode was fabricated and tested. Over 10,000 endurance hours on a state-of-the-art cell carried-over from a previous program has been achieved and 1500 hours endurance has been obtained with sheet metal cells. Results presented for electrolyte structure development include comparative data for spray-dried and modified aqueous slurry process powders. Shake-down tests with a rotating disc electrode apparatus for fundamental measurements are described. Concept designs for both prototype and subscale stacks have been identified. Task 3.0 effort (development capability for full-scale stack tests) included preparation of an overall test plan to commercialization for molten carbonate fuel cells and of a functional specification for the tenth-scale stack test facility; drafts of both documents were completed for internal review. Cost-effective manufacturing assessment of available designs and processes was initiated. Task 4.0 work (develop capabilities for operation of stacks on coal-derived gas) included gathering of available contaminants concentration and effects information and preparation of initial projections of contaminant ranges and concentrations. Accomplishments to date and activities planned for the next quarter are described.

  14. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC. Quarterly report January through March 2011. Year 1 Quarter 2 progress report.

    SciTech Connect

    Lottes, S. A.; Kulak, R. F.; Bojanowski, C.

    2011-05-19

    This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.

  15. Anaerobic bioprocessing of low-rank coals. Quarterly progress report, January 1--March 31, 1992

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-04-15

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (1) continuation of microbial consortia development and maintenance, (2) crude enzyme study using best decarboxylating organisms, (3) decarboxylation of lignite, demineralized Wyodak coal and model polymers, and (4) characterization of biotreated coals.

  16. [Establishment and support of the International Power Institute]. Quarterly technical progress report, October--December, 1997

    SciTech Connect

    Coles, J.E.

    1998-04-02

    This is the quarterly report of the International Power Institute for October--December 1997. The topics of the report include pre-cooperative agreement activities, a discussion of the deputy director position, the IPI brochure, exploration of collaborative arrangements, formation of the IPI advisory board, a review of the advisory board meeting, report of a meeting with African electric utility executives, report of a visit to South Africa to explore a collaborative relationship.

  17. Enforcement actions: Significant actions resolved; Quarterly progress report, October--December 1993: Volume 12, No. 4

    SciTech Connect

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  18. Coal precursors for carbon molecular seives. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Kopp, O.C.

    1995-09-29

    Shortly after our Quarterly Report for the period April 1, 1995 - June 30, 1995 was submitted, we completed the last two thermogravimetric-mass spectrographic (TG/MS) analyses of our samples. The results of these analyses will be included in the Final Report with the TG/MS data accumulated for the other coal samples. We then turned our attention to activating each of the coals using air activation. The results of the activation study are reported below.

  19. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994

    SciTech Connect

    Not Available

    1994-10-01

    This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

  20. Anaerobic bioprocessing of low-rank coals. Quarterly progress report, October 1--December 31, 1991

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1992-01-30

    The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. The main objectives of this quarter were: (1) continuation of microbial consortia development, (2) evaluation of the isolated organisms for decarboxylation, (3) selection of best performing culture (known cultures vs. new isolates), and (4) coal decarboxylation using activated carbon as blanks. The project began on September 12, 1990.

  1. Energy efficient louver and blind. Technical progress report for Quarter 2, 1996

    SciTech Connect

    Khajavi, S.

    1996-07-26

    In this quarter we jumped ahead and performed Task 5 which is testing to get empirical energy saving data. One 4` X 3` horizontal Incredibling prototype and one black and one white conventional control blinds with the same size were delivered to the Lawrence Berekely Laboratories Mobile Test Facility in Reno. The blinds are still in testing since we had only two sunny days in the month of June and we encountered some hardware problem with the computers at the lab.

  2. Lincoln County nuclear waste project. Quarterly progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    1996-03-01

    This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.

  3. Geothermal direct-heat utilization assistance. Quarterly progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-08-01

    Progress is reported on the following R&D activities: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Other activities are reported on technical assistance, technology transfer, and the geothermal progress monitor.

  4. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  5. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  6. Development of the integrated environmental control model: Performance and cost models for the NOXSO process. Quarterly progress report

    SciTech Connect

    Kalagnanam, J.R.; Rubin, E.S.

    1995-12-01

    This Quarterly Report documents research efforts carried out under Contract No. DE-AC22-92PC91346 from the US Department of Energy. lie purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM) created and enhanced by Carnegie Mellon University (CMU) for the US Department of Energy`s Pittsburgh Energy Technology Center (DOE/PETC) under contract Numbers DE-FG2283PC60271 and DE-AC22-87PC79864. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase II deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period July 1, 1995 through September 30, 1995. This report presents additional details on the new performance models of the NOXSO process. For convenience, the complete description of the NOXSO performance model is presented here, including information previously presented in the Quarterly Report submitted in April 1995. Also included in this report is a newly developed cost model for the NOXSO process. Illustrative results are presented using the new performance and cost models as implemented in the IECM.

  7. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, 1 April--30 June 1994

    SciTech Connect

    Chen, J.P.; Li, W.B.; Hausladen, M.C.; Kikkinides, E.S.; Yang, R.T.

    1994-09-01

    In the last Quarterly Technical Progress Report the authors reported the synthesis and (partial characterization) and SCR (Selective Catalytic Reduction of NO) activity for a delaminated Fe{sub 2}O{sub 3}-pillared clay (Fe{sub 2}O{sub 3}-PILC). The SCR activity for this PILC was substantially higher than that of the commercial-type V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst. During the past quarter, the authors first completed the characterization of the delaminated Fe{sub 2}O{sub 3}-PILC catalyst. Both physical characterization (micropore probing by adsorption and Moessbauer spectroscopy) and chemical characterization (by IR spectroscopy) were performed. Since the synthesis of this PILC sample was undertaken under a specific set of conditions and it is known that the PILC properties depend strongly on the synthesis conditions, they then proceeded to examine in a systematic manner the dependence of the catalytic properties of the PILC on its synthesis conditions. Four parameters in the synthesis were studied: Fe precursors, pH of the pillaring solution, concentration of the pillaring solution, and the starting clay. Finally, the effect of the Cr{sub 2}O{sub 3} promoter on the SCR activity of the pillar clay was studied. Results are reported.

  8. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000

    SciTech Connect

    Moore, J.P.

    2000-08-18

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

  9. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000

    SciTech Connect

    Moore, J.P.

    2000-10-23

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-05-01

    The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

  11. Modeling, design, and life performance prediction for energy production from geothermal reservoirs. First quarter progress report

    SciTech Connect

    Swenson, D.

    1997-08-15

    The objective of this project is to both transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. In this quarter, the primary focus has been on interaction with industry, development of the Geocrack3D model, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on flow in fractured rock and on the coupled effect of thermal cooling, while a primary focus of current modeling technology is multi-phase flow.

  12. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  13. Magnetohydrodynamic projects at the CDIF. Quarterly technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The Component Development and Integration Facility (CDIF) is a major US Department of Energy magnetohydrodynamic (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the first quarter of FY92, MHD testing was initiated. Off-line and on-line calibration tests were completed for the Endress+Hauser flowmeter, and thermal, conductivity, and electrical testing was initiated.

  14. Magnetohydrodynamic projects at the CDIF. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-08-01

    The Component Development and Integration Facility (CDIF) is a major U.S. Department of Energy magnetohydrodynamics (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the second quarter of FY92, a second external water leak on the iron-core magnet was repaired, and MHD testing was completed on February 11; this was the final testing of the workhorse hardware. Workhorse hardware was removed, and installation of the proof-of-concept (POC) combustor began.

  15. Enforcement actions: Significant actions resolved material licensees. Quarterly progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1995) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to material licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  16. Enforcement actions: Significant actions resolved. Quarterly progress report, April--June 1993: Volume 12, No. 2

    SciTech Connect

    Not Available

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  17. Novel concepts in electrochemical solar cells. Quarterly technical progress report, December 15, 1980-March 15, 1981

    SciTech Connect

    Not Available

    1981-01-01

    During the past quarter, the following areas were emphasized: (a) characterization of redox couples with very positive potentials in room-temperature AlCl/sub 3/-BPC electrolytes and comparison of the electrochemical behavior of decamethyl ferrocene in these electrolytes with the previously-studied ferrocene/ferricenium ion couple, (b) photoelectrochemical characterization of CdSe thin-film anodes in aqueous polysulfide electrolytes and (c) refinement of the admittance measurement technique for extraction of Mott-Schottky parameters. The results of research in these areas are detailed in turn below.

  18. Cuprous oxide photovoltaic cells. Third quarterly technical progress report, October 9, 1979 to January 8, 1980

    SciTech Connect

    Trivich, D.

    1980-01-08

    Previous work in this laboratory on cuprous oxide Schottky barrier photovoltaic cells showed that some potential improvements were limited by chemical degradations at the junction (1), e.g., in Al/Cu/sub 2/O cells, the aluminum reduced the surface of the Cu/sub 2/O to metallic Cu. The present project is being devoted to a study of methods to avoid this problem and also to the development of other methods of improving the efficiency of Cu/sub 2/O cells. The first quarterly report was devoted to a study of thin oxide interlayers between the metal and the Cu/sub 2/O which gives MIS structures. The most stable interlayers were obtained with SiO/sub 2/. The second quarterly report covered some initial work on heterojunctions with other oxides on Cu/sub 2/O. The most stable heterojunctions were obtained with CdO on Cu/sub 2/O. The present report presents some results on Auger studies of the oxide heterojunctions, the preparation of doped Cu/sub 2/O by introduction of impurities in the starting copper, the exploration of several method for the study of diffusion length, and some initial attempts on the laser annealing of Cu/sub 2/O.

  19. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  20. Quarterly technical progress report, July-September 1982 on Energy Conversion Research and Development Programs

    SciTech Connect

    Not Available

    1983-12-01

    Detail design work was resumed on the superheater. Satisfactory bids were received for the air heater and lowest price responsive bidder was chosen. The conduct of three tests in the LMF1C series is reported. The status of the environmental monitoring program is reviewed. Preliminary analyses of the test data from the three tests conducted during the quarter are included. The heat fluxes, combustor pressure and combustor efficiencies are reported. The performance of the nozzle, diagnostic (Hall) channel and diffuser is compared with an analytical model for each test run. The performance of the new diffuser which was installed during the quarter is discussed. The test results from the downstream components; i.e. slag screen, radiant furnace, secondary combustor and materials test module, are discussed. Slag removal from the radiant furnace, refractory performance and metals performance is covered. A summary report is included on the results of the cold flow modeling of the secondary combustor, which involved variations in relative velocity of the secondary air, the angle of injection and the flow constriction. Diagnostic support of testing activities is described, including the use of the laser doppler velocimeter (LDV) for the secondary combustor modeling. Luminosity and line reversal temperature measurements were made in support of the CFFF tests. A photodiode line reversal system has been designed which has the promise of being more reliable, easier to install on operational equipment and cheaper.

  1. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, September--November 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number_sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal`s inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  2. Photochemical coal dissolution. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Doetschman, D.C.

    1995-12-31

    Examination of the photochemical extractions of the four Argonne Premium Coal Residues has been under way in a routine manner during this last quarter. An unexpectedly great effort last quarter had been necessary to find extraction solvents and photochemical reagents that were photochemically stable and inert. While it is a rather poor thermal extraction solvent, acetonitrile has proven to be the best solvent the authors have examined. In addition to runs with only the acetonitrile solvent present, experiments were performed with the photochemical reagents, benzophenone and pyridine. Both ketone and pyridine triplet states are well-known for their hydrogen abstraction and electron transfer capabilities. The photochemical reagents were used at concentrations resulting in 50% transmission of the light across the reactor pathlength at 320 nm. Experiments with the quartz cutoff filter remain to be completed at concentrations resulting in 50% transmittance at lower wavelengths. Changes in the transmission of light by the column effluent were monitored continuously and the extraction yield by weight was measured by evaporation of the solvent and subtraction of reagent weight. Thermal extraction yields without light under otherwise identical conditions were measured for comparison. As a check on undesirable effects, such as solvent photochemical degradation, otherwise identical light and dark experiments were also done without the coal on the column.

  3. Selenium fractionation and cycling in the intertidal zone of the Carquinez Strait. Quarterly progress report, January 1996--March 1996

    SciTech Connect

    Zawislanski, P.T.; Benson, S.M.; Brownfield, A.A.

    1996-04-01

    This quarterly report describes research on selenium (Se) cycling in the marshes and mudflats of the Carquinez Strait between January 1, 1996 and March 31, 1996. Chapter 2 contains descriptions of results of extractions and analyses of sediment cores from the intertidal zone of the Martinez and Benicia field sites, including some x-ray spectroscopy data related to the characterization of the sediment Eh-pH regime. Chapter 3 contains a summary of work in progress on the extraction of various Se species from sediment/soil samples, and efforts in measuring suspended sediment Se. Chapter 4 is an update on stable Se isotope research and Se purification techniques. Chapter 5 describes the rationale, design, and preliminary results of a plant-Se study. Chapter 6 presents the design of a recently initiated sediment dynamics study. The leader is referred to the 1995 Annual Report for details on the project design, site selection, and methodology.

  4. Selenium fractionation and cycling in the intertidal zone of Carquinez Strait. Quarterly progress report, April 1996--June 1996

    SciTech Connect

    Zawislanski, P.T.; Benson, S.M.; Brownfield, A.A.; Chau, S.

    1996-07-01

    This quarterly report describes research on selenium (Se) cycling in the marshes and mudflats of the Carquinez Strait between 4/1/96 and 6/30/96. Chapter 2 contains descriptions of results of extractions and analyses of sediment cores from the intertidal zone of the Martinez and Benicia field sites, including Se fractionation data from Martinez Regional Park. Chapter 3 contains a summary of work in progress on the extraction of various Se species from sediment/soil samples, and efforts in measuring suspended sediment Se. Chapter 4 is an update on stable Se isotope research and Se purification techniques. Chapter 5 describes the recent developments in low-level Se analytical methods. Chapter 6 presents preliminary sedimentation rate data from the Martinez field site. Exciting new developments in x-ray spectroscopy of clams are presented in Chapter 7. The reader is referred to the 1995 Annual Report for details on the project design, site selection, and methodology.

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-11-04

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

  6. Selenium fractionation and cycling in the intertidal zone of the Carquinez Strait. Quarterly progress report, October 1995--December 1995

    SciTech Connect

    Zawislanski, P.T.; McGrath, A.E.; Benson, S.M.

    1996-01-01

    This quarterly report describes the research on selenium (Se) cycling in the marshes and mudflats of the Carquinez Strait between October 1, 1995 and December 31, 1995. Chapter 2 contains descriptions of field activities and laboratory work related to chemical characterization of sediments and soils. Eh and pH data are presented. Chapter 3 contains a summary of work in progress on the extraction of various Se species from sediment/soil samples, and efforts in measuring suspended sediment Se. Chapter 4 describes advances made in the analysis of parts-per-trillion level Se, using a lanthanum hydroxide co-precipitation method, and the determination of matrix effects. Chapter 5 is an update on stable Se isotope research and Se purification techniques. The reader is referred to the 1995 Annual Report for details on the project design, site selection, and methodology.

  7. Rock matrix and fracture analysis of flow in western tight gas sands. Quarterly technical progress report, January-March 1986

    SciTech Connect

    Morrow, N.R.; Ward, J.S.; Brower, K.R.; Cather, S.

    1986-01-01

    The overall objective of this project is to show how gas can flow from the rock matrix to natural or induced fracures and be commercially produced. Flow of gas within the rock matrix has been shown to be largely controlled by sheet-like pores at grain boundaries, which are pressure sensitive. In this quarterly report, progress is reported in the following areas of advanced core analysis of low permeability gas sands: (1) surface area measurements; (2) helium porosimetry; (3) comparison of permeabilities for preserved cores and for cores subjected to drying; (4) pore space and fractures as related to diagenesis of multiwell sandstones; and (5) imbibition behavior of tight sands. 5 refs., 8 figs.

  8. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Li, W.B.; Yang, R.T.

    1994-12-31

    During the past quarter, progress was made in three tasks. The poisoning effects of alkali metals (as Na{sub 2}O, K{sub 2}0 and Cs{sub 2}O) on iron oxide pillared clay (Fe-Bentonite) catalyst for selective catalytic reduction (SCR) of NO with NH{sub 3} were investigated. The effects of sulfur dioxide and water vapor on the performance of the high activity catalyst, that is, Ce-doped Fe-Bentonite pillared clay (Ce-Fe-Bentonite) were examined. In addition, an iron ion-exchanged titania pillared clay (Ti-PILC) was prepared and its catalytic activity for the SCR of NO with NH{sub 3} was studied, which showed a high activity and a high S0{sub 2} and H{sub 2}0 resistance at high temperatures (i.e., above 400{degree}C).

  9. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    SciTech Connect

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  10. Characterization of air toxics from a laboratory coal-fired combustor and utility scale power plants. Quarterly progress report No. 14, January--March, 1995

    SciTech Connect

    1995-05-01

    This report summarized progress on Task 3, Power Plant Studies, and Task 4, Technical Management and Reporting. Task 3 this quarter involved sampling of flue gas from Units 6 and 7 of the host power plant. The operating parameters during the sampling period are given. Laboratory analyses are in progress. Under Task 4, internal and external QA/QC audits were conducted. A data base management system was prepared. An appendix contains a data compilation of plant operating data.

  11. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, July-September 1986

    SciTech Connect

    Burkholder, H.C.; Allen, C.R.; Andersen, C.M.; Bates, S.O.; Dierks, R.D.; Faletti, D.W.; Farnsworth, R.K.; Goles, R.W.; Kuhn, W.L.; Nakaoka, R.K.: Perez, J.M Jr.; Peters, R.D.; Peterson, M.E.; Pulsipher, B.A.; Reimus, P.W.

    1987-06-01

    Individual papers are processed separately for the data bases. This report documents progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, and process/product modeling and control is discussed.

  12. OTEC support services. Quarterly technical progress report No. 16, 15 February 1982-14 May 1982

    SciTech Connect

    Not Available

    1982-05-01

    Technical progress is reported in the area of OTEC program survey, analysis, evaluation, and recommendation concerning program performance, including OTEC commercialization support and program technical engineering and instrumentation analysis. Progress is also reported in the areas of program technical monitoring, OTEC system integration, and transmission subsystem considerations. Participation in meetings, conferences, etc. is also reported. (LEW)

  13. Cuprous oxide photovoltaic cells. Fourth quarterly technical progress report, January 9-April 8, 1980

    SciTech Connect

    Trivich, D.

    1980-01-01

    The previous work on this project was devoted to a study of MIS cells and heterojunction cells with Cu/sub 2/O. In particular the junctions were studied by Auger techniques to detect possible chemical changes at the interface. It was found that some preparation conditions could produce heterojunctions without chemical degradation. In the last quarter, work was initiated on the effect of impurities in the starting Cu on the properties of the Cu/sub 2/O and Cu/sub 2/O solar cells. Methods of measuring diffusion length were explored. In this report a further examination of impurities in the Cu is presented. Some additional details on the CdO/Cu/sub 2/O heterojunction are given. The measurement of diffusion length by a photocurrent method is described and some results are given.

  14. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objective for this quarter was to study the effect of co-feeding a 1-olefin on the Ruhrchemie catalyst activity and selectivity, during-both conventional Fisher-Tropsch synthesis (FTS) and FTS under supercritical conditions. We used propane as the supercritical fluid and 1-dodecene (1-C{sub 12}H{sub 24}) in this test. Motivation for this study was the work of Fujimoto and co-workers who reported that suppression of methane and enhancement of high molecular weight hydrocarbons selectivities occurs with co-feeding of 1-olefins (1-heptene, 1-tetradecene, or 1-hexadecene) during FTS under supercritical conditions, but not during the conventional FTS (Co-La catalyst supported on silica in supercritical n-pentane).The diffusion coefficients of products in supercritical fluids is discussed.

  15. Anaerobic bioprocessing of low-rank coals. Quarterly progress report, January 1--March 31, 1991

    SciTech Connect

    Jain, M.K.; Narayan, R.; Han, O.

    1991-12-31

    The objective of this project is to find biological methods to remove carboxylic functionalities from low rank coals under ambient conditions and to assess the properties of these modified coals towards coal decarboxylation. The microbial consortia will be developed using a fermentor system first under batch and then in a continuous system. The main objectives for this quarter were to develop microbial consortia that would decarboxylate coal and isolate potential anaerobic microorganisms with decarboxylating, ability from these enriched microbial consortia, to continue to compare the known cultures with reward to their ability to decarboxylate coal, and to characterize the anaerobically biotreated coal using FTIR to confirm decarboxylation of coal. Significant achievements during the period include: coal decarboxylation was possible only under anaerobic conditions. microbial consortia that can anaerobically decarboxylate coal have been developed using anaerobic vials and batch fermentor system, and loss of carboxyl groups in biotreated coal has been confirmed by FT-IR.

  16. Molecular biology of coal bio-desulfurization; Quarterly technical progress report, October 1--December 31, 1990

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1991-01-25

    The aim of this project is to use the techniques of molecular genetics to identify, clone, sequence, and enhance the expression of proteins which remove sulfur covalently bound to coal. This includes the movement and expression of these proteins into bacterial species which may be more useful in the industrial application of a biological desulfurization process. This quarter we finalized the initial cloning and sequencing of the dibenzothiophene (DBT) metabolic (``dox``) genes from strain C18. In addition, we constructed several mutations in single dox genes and have begun to dissect the contribution of each gene product in the DBT degradation pathway. Using a probe derived from DNA adjacent to a transposon which inactivated DBT metabolism, the DBT active genes from A15 have been cloned and identified on cosmids. We have also electroporated Thiobacillus ferrooxidans with a plasmid containing a chloramphenicol resistant transposon. Colonies of T. ferrooxidans resistant to chloramphenicol were obtained.

  17. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  18. Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

  19. Methane coupling by membrane reactor. Quarterly technical progress report, June 25, 1994--September 24, 1994

    SciTech Connect

    Ma, Yi Hua

    1995-01-04

    This quarterly report describes results from the experimental studies on oxidative coupling of methane, oxygen conducting perovskite dense membrane synthesis and modeling studies of the methane coupling reaction. The focus of the experimental study is to explore the effects of varying catalyst loading, varying methane to oxygen ratios and feed conditions when the oxygen conversion is much less than 100%. Results from these studies help in understanding the effects of various parameters controlling methane coupling. Dense membrane synthesis and characterization results are presented which describe new approaches to the synthesis and characterization of these membranes. The modeling results described in this report present a theoretical fit to the experimental data on oxidative coupling of methane in fixed bed reactors. The parameters from the fit are used to predict the trends in experimental data obtained from VYCOR membrane reactors. The predicted trends are based on a theoretical model employing simplified methane coupling kinetics.

  20. Direct liquefaction of low-rank coal. Quarterly technical progress report, January 1--March 31, 1995

    SciTech Connect

    Hetland, M.D.

    1995-04-01

    A multistep direct liquefaction process specifically aimed at low-rank coals (LRCs) has been developed at the Energy & Environmental Research Center (EERC). The process consists of a preconversion treatment to prepare the coal for solubilization, solubilization of the coal in the solvent, and polishing using a phenolic solvent or solvent blend to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrogenation step. This project addresses two research questions necessary for the further development and scaleup of this process: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for effective hydrotreatment of the liquid product. The project involves two tasks, the first consisting of ten recycle tests and the second consisting of twelve hydrotreatment tests performed at various conditions. Activities performed during this quarter are discussed.

  1. Development of analytical procedures for coprocessing. Quarterly technical progress report, April 1, 1991--June 30, 1991

    SciTech Connect

    Green, J.B.; Anderson, R.P.

    1991-07-01

    The overall objective of the contract is to improve understanding of the fundamental chemistry of coprocessing. A primary objective is to evaluate methods to distinguish between compound classes originating from coal versus those originating from petroleum resid while a corollary objective is to provide detailed knowledge on the composition of coprocessing products. This and the prior quarterly report summarize work conducted in support of the latter objective in which process development unit samples produced by HRI, Inc. were subjected to detailed analysis. Coprocessing resid samples selected for detailed analysis were made under constant conditions except for variations in coal concentration or in the coal (New Mexico subbituminous or Texas lignite). Separation of the resids into acid, base, saturate, and neutral-aromatic subtractions, separation of the neutral-aromatics by ring number and high temperature gas chromatography were discussed in the previous quarterly. This report includes results of nonaqueous titrations, elemental analyses and infrared spectroscopy. The hydrocarbon skeletons of saturated hydrocarbons in the coprocessing resids appear to be fundamentally different than those of aromatic species. Neutral-aromatic fractions contain minor levels of sulfur compounds, an unknown proportion of ether or other oxygen-containing species, and major concentrations of aromatic hydrocarbons containing from 3 to 7 aromatic rings. Base fractions contain predominantly single nitrogen compounds of azaarene or aminoaromatic type. Aminoaromatics (compounds analogous to aniline) are present in significant amounts in products made from New Mexico subbituminous coal but are nearly absent in the Texas lignite product. Acid fractions contain appreciable quantities of pyrrolic benzologs, but surprisingly low concentrations of compounds with a free OH group.

  2. OTEC support services. Quarterly technical progress report No. 11, 15 November 1980-14 February 1981

    SciTech Connect

    1981-02-01

    Technical engineering and management support services for the Ocean Thermal Energy Conversion Program are listed along with their objectives. Progress is reported on the following: technical assessments, OTEC system integration, environment and siting considerations, and transmission subsystem considerations. (MHR)

  3. OTEC support services. Quarterly technical progress report No. 17, 15 May 1982-14 August 1982

    SciTech Connect

    1982-08-01

    Progress relative to accomplishments and relative to meetings, conferences, etc. are reported in the areas of OTEC commercialization support, program technical engineering and instrumentation analysis, technical and management services, OTEC system integration, and transmission subsystem considerations. (LEW)

  4. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    SciTech Connect

    1997-09-01

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  5. Tunable composite membranes for gas separations. Quarterly technical progress report, May--July 1996

    SciTech Connect

    Ferraris, J.P.; Balkus, K.J. Jr.; Musselman, I.H.

    1996-08-05

    Significant progress has been made in the synthesis and characterization of conducting polymer composite membranes for gas separations. Zeolite/polyalkylthiophene composite membranes have been prepared and characterized for zeolite NaY.

  6. Light-water-reactor safety research program. Quarterly progress report, January-March 1980

    SciTech Connect

    Massey, W.E.; Kyger, J.A.

    1980-08-01

    This progress report summarizes the Argonne National Laboratory work performed during January, February, and March 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-Product Release.

  7. Damage analysis and fundamental studies. Quarterly progress report, October-December 1979

    SciTech Connect

    Doran, D. G.

    1980-02-01

    Progress on each of the following topics is outlined: (1) rotating target neutron source, (2) fusion materials irradiation test facility, (3) environmental characterization, (4) damage production, and (5) damage microstructure evolution and mechanical behavior. (MOW)

  8. ERIP invention 637. Technical progress report 2nd quarter, April 1997--June 1997

    SciTech Connect

    Thacker, G.W.

    1997-07-22

    This technical report describes progress in the development of the Pegasus plow, a stalk and root embedding apparatus. Prototype testing is reported, and includes the addition of precision tillage. Disease data, organic matter, and nitrogen levels results are very briefly described. Progress in marketing is also reported. Current marketing issues include test use by cotton and wheat growers, establishment of dealer relationships, incorporation of design modifications, expansion of marketing activities, and expansion of loan and lease program.

  9. Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993

    SciTech Connect

    Lienau, P.

    1993-06-01

    Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

  10. Short Rotation Woody Crops Program. Quarterly progress report, March 1-May 31, 1985. [Sycamore, alders, black locust, larch, poplars, saltbush

    SciTech Connect

    Wright, L.L.; Perlack, R.D.; Wenzel, C.R.; Trimble, J.L.; Ranney, J.W.

    1985-08-01

    This report covers the progress of the Short Rotation Woody Crops Program (SRWCP) during the third quarter of fiscal year 1985. This report summarizes ORNL management activities, technical activities at ORNL and subcontract institutions, and the technology transfer that is occurring as a result of subcontractor and ORNL activities. Third-year results of a nutrient utilization study confirmed that there were no benefits to quarterly fertilization with urea nitrogen. Testing of one prototype short-rotation intensive culture harvester was conducted on a sycamore plantation on Scott Paper Company land in southern Alabama. Coppice yields of European black alder reported by Iowa State University indicate potential productivity of about 7.2 dry Mg . ha/sup -1/ . year/sup -1/ if the best trees are selected. Coppice yields were more than double first-rotation yields. About 31,000 black locust and larch trees were established in 12 genetic tests at 4 sites in Michigan. Seedling rotation productivity rates of 4-year-old hybrid poplar, based on harvest data, were reported by Pennsylvania State University. Rates varied from 4.8 dry Mg . ha/sup -1/ . year/sup -1/ to 10.7 dry Mg . ha/sup -1/ . year/sup -1/, depending on site, management strategy, and planting year. An efficient method for in vitro micropropagation of elite genotypes of fourwing saltbush was developed by Plant Resources Institute. A new study to evaluate yield/density relationships was established by the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Dissertation research on the crown geometry of plantation-grown American sycamore was completed.

  11. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  12. Mechanical design and construction new transport reactor system. Second quarterly progress report, January--March 1995

    SciTech Connect

    1995-04-01

    During the last quarter, the detailed mechanical design of the new reactor system was completed and construction of the unit was well underway. The new design includes a mixing zone, riser reactor, cyclone, and downcomer as well as instrumentation, heating elements, insulation, and a structural system for supporting the unit. Design modifications were also made to the hydrocarbon feed system. There were no changes required for the downstream sections which cool and condition the reactor product gas, recover liquid products (if any), and measure product gas make. Construction of the unit is expected to be completed by early May, with shakedown runs beginning immediately after. Installation of the electrical windings, insulation of the unit, erection, hook-up, and checkout are the main items yet to be completed. It is expected that the unit will be ready for test work in the latter part of May. The initial tests planned are both pyrolysis runs and partial oxidation runs using a simulated aromatic naphtha feed. Later this year, heavier hydrocarbon feeds will be tested.

  13. Low-cost-silicon-process development. Phase IV: process improvement. Second quarterly technical progress report

    SciTech Connect

    Giraudi, R. V.; Newman, C. G.

    1981-04-01

    A number of promising techniques for improving the overall yield and economics of the tribromosilane based process to produce solar cell grade silicon is investigated. The current work is aimed at the identification of an optimum process and the characterization of that process through mini-plant operation and analysis. The three project tasks include process improvement studies, kinetic studies, and process economic studies. During this second quarter reporting period process improvement studies continued in the mini-plant, focusing on the correlation of current mini-plant yield results with prior laboratory scale work. Silicon bromination in the synthesis unit and tribromosilane purification in the distillation unit proceeded efficiently and without complication during this reporting period. Tribromosilane yields in the synthesis unit were low due to unobtainable higher reaction temperatures. Initial polycrystalline silicon production studies have indicated consistent yields of 85%. The laboratory scale static bulb reactor system was calibrated by observing the decomposition of t-butyl chloride. These results compared very well to results obtained by previous investigators for the same decomposition. Upon the conclusion of the calibration tests, the tribromosilane decomposition rate study was initiated. Two decompositions were completed and it was concluded that the reaction order can not be determined at this time. A free space reactor apparatus was assembled and tribromosilane decompositions, as a function of dilution in argon, was studied.

  14. Oxidation of phenolics in supercritical water. Quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Savage, P.E.

    1993-12-31

    Oxidation reactions are accomplished in an isothermal, high-pressure, flow reactor designed specifically for operation at supercritical water conditions. The reactor feed stream is prepared by mixing two separate streams. One stream is an aqueous solution of the phenolic reactant and the second stream is water with dissolved oxygen. Controlling the flow rates of these two streams allows us to control the reactor residence time and the relative amounts of the phenol and oxygen fed to the reactor. The reactor effluent is cooled and depressorized and then collected for analysis. The gaseous products are analyzed by gas chromatography (GC). The liquid-phase products are analyzed by GC, high-performance liquid chromatography, and GC-mass spectrometry. Our work to date has focused on the oxidation of cresols in SCW. We have explored the effects of temperature, pressure, and the concentrations of o-cresol, oxygen, and water. Table I gives these experimental conditions and the resulting ocresol conversions. We reported a portion of this data in our previous quarterly report. New information is given in the last three columns where we report the molar yields of phenol, CO{sub 2}, and CO. Molar yields were calculated as the molar flow rate of a given product divided by the initial molar flow rate of o-cresol and normalized by the stoichiometric coefficient. Earlier, we used the o-cresol conversion data to determine the parameters in a global reaction rate law for o-cresol disappearance.

  15. Robotic weld overlay coatings for erosion control. Quarterly progress report, October 1993--December 1993

    SciTech Connect

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1994-01-20

    Research is being conducted to develop criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. Twelve weld overlay alloys were deposited on 1018 steel substrates using plasma arc welding. Ten samples from each coating were prepared for erosion testing. All selected coatings were erosion tested at 400C and their erosion resistance and microstructure evaluated. Steady state erosion rates were similar for several weld overlay coatings (Ultimet, Inconel-625, Iron-Aluminide, 316L SS, and High Chromium Cast Iron) and were considerably lower than the remaining coating evaluated. These coatings had different base (Co, Fe, Ni-base). No correlations were found between room temperature microhardness of the weld overlay coatings and their erosion resistance at elevated temperature, although this criteria is often thought to be an indicator of erosion resistance. It was suggested that the coatings that showed similar erosion rates may have similar mechanical properties such as fracture strength, toughness and work hardening rates at this temperature. During the past quarter, Iron-Aluminide, Inconel-625, and 316L SS coatings were selected for more detailed investigations based upon the preliminary erosion test results. Microhardness tests were performed on eroded samples to determine the size of the work hardened zone and change in coatings hardness due to erosion. The work hardened zone was to correlated with erosion resistance of the coatings. Additional Iron-Aluminide, Inconel-625, and 316L SS coatings were deposited on 1018 steel substrates.

  16. Peat biogasification development program. Quarterly progress report No. 4, July 1-September 30, 1980

    SciTech Connect

    Not Available

    1980-10-15

    During this reporting period preliminary data were taken for the kinetic models necessary for a peat biogasification process. A limited number of batch experiments were conducted to obtain rate data for the solubilization kinetic model. The analysis of the pretreatment batch tests was slowed down this quarter because the High Pressure Liquid Chromatography (HPLC) solvent system was altered. This was done because a mass balance around the HPLC with the solvent system (85% H/sub 2/O/15% acetonitrile) was incomplete. The preliminary data indicate that the new solvent system developed seems to be acceptable. Pretreated peat, both oxidized and unoxidized, has been fermented to fuel gas with conversions up to 20%. The fermentation experiments show that oxidation temperature has little effect on anaerobic digestion. Continuous digesters were set up to obtain rate data for the fermentation model. Preliminary process models were developed for the three phases of peat biogasification, namely, solubilization, oxidation, and fermentation. Rate data for the solubilization phase were taken, but more is needed to develop the model further.

  17. Quarterly Technical Progress Report - Investigation of Syngas Interaction in Alcohol Synthesis Catalysts

    SciTech Connect

    Murty A. Akundi

    1998-11-10

    This report presents the work done on " Investigation of Syngas Interaction in Alcohol Synthesis Catalysts" during the last quarter. The major activity during this period is on FTIR absorption studies of Co/Cr catalysts using CO as a probe molecule. Transition metals cobalt and copper play significant roles in the conversion of syngas (CO + H2 ) to liquid fuels. With a view to examine the nature of interaction between CO and metal, the FTIR spectra of CO adsorbed on Co-Cr2 O3 composites were investigated. The results indicate that as cobalt loading increases, the intensity of the CO adsorption bands increase and several vibrational modes seem to be promoted. Heat treatment of the sample revealed two distinct processes of adsorption. Bands due to physisorption disappeared while bands due to chemisorption not only increased in intensity but persisted even after desorption. It seems that the physisorption process is more active when the catalyst is fresh and is hindered when carbidic/carbonyl formations occur on the metal surfaces.

  18. Appalachian clean coal technology consortium. Technical quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Yoon, R.H.; Basim, B.; Luttrell, G.H.; Phillips, D.I.

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. These included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. The tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0.5 inches of cake thickness, the improvement was limited to 8% at the same reagent dosage. The results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering. The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  19. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1993-10-01

    The Research and Development Department of CONSOL Inc. is conducted a program to characterize process and product streams from direct coal liquefaction process development projects sponsored by the Department of Energy. In this program, CONSOL obtains samples from current process development activities in coal liquefaction and coal-oil coprocessing, and characterizes them using established analytical techniques. In addition, selected samples are characterized by other analytical techniques to evaluate their potential for aiding process development. These analyses and interpretation of the results in relation to process operations are provided by the subcontractor. Major topics reported in this thirteenth quarterly report are the following: (1) Analyses were performed on three coals and eleven process oils from HRI, Inc. process development unit Run 260--03, which was the first process development unit test of Black Thunder Mine subbituminous coal, significant operating problems were encountered, and sample properties are discussed in context to the operational problems; (2) a summary of the status of the Participants Program is given; (3) summaries of the final reports produced by the University of Chicago, the University of Utah, Iowa State University, and the University of Kentucky under the Participants Program, are presented.

  20. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    SciTech Connect

    Stephens, D.R.; Clements, W.

    1981-11-09

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  1. Metal boride catalysts for indirect liquefaction. Quarterly technical progress report, December 1, 1983-February 29, 1984

    SciTech Connect

    Bartholomew, C.H.

    1984-04-12

    During the sixth quarter four boron-promoted cobalt catalysts were prepared by a new boriding process using diborane gas as the boriding agent. These catalysts were characterized by chemical analysis, BET, H/sub 2/ chemisorption, and x-ray diffraction. Temperature-programmed desorption spectra of H/sub 2/ were obtained for a sodium-promoted cobalt boride and a sodium-promoted Co/SiO/sub 2/. Four cobalt catalysts (unsupported, boron-promoted, sodium-promoted, and doubly-promoted) were tested for CO hydrogenation activity and selectivity at 1 atm and 3 to 4 temperatures in the range of 190 to 240/sup 0/C. About 10% of the surface of cobalt boride consists of reduced metallic cobalt. The addition of sodium to cobalt increases its binding energy with H/sub 2/ and its activation energy for H/sub 2/ adsorption. Boron does not affect the activity of cobalt; sodium decreases it by a factor of 10. Cobalt boride produces lighter hydrocarbon products relative to cobalt; sodium-promoted cobalt produces heavier products, more alcohols, and more CO/sub 2/. 29 references, 10 figures, 4 tables.

  2. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, November 1, 1997--January 31, 1998

    SciTech Connect

    1998-03-01

    This report provides information on projects conducted by the Amarillo National Resource Center for Plutonium, a consortium of Texas A&M University, Texas Tech University, and the University of Texas. Progress is reported for four major areas: (1) plutonium information resource; (2) environmental, safety, and health; (3) communication, education, training, and community involvement; and (4) nuclear and other material studies. Environmental, safety, and health projects reported include a number of studies on high explosives. Progress reported for nuclear material studies includes storage and waste disposal investigations.

  3. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

  4. Separation of flue-gas scrubber sludge into marketable products. Third year, second quarterly technical progress report, December 1, 1995--February 29, 1996 (Quarter {number_sign}10)

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1996-03-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product. In the current quarter, research was focused on two different areas. The first part of this quarter the optimization of the feed slurry percent solids for the two inch water-only cyclone was completed. The optimization of the vortex finder, spigot diameter and inlet feed pressure was completed in the previous quarter. The second part of this quarter began the investigation of why water-only cycloning helps froth flotation performance. The hypothesis is that water-only cycloning scrubs the surface of the unreacted limestone. This scrubbing effect provides a clean calcium carbonate surface, which results in better flotation reagent adsorption. This study used the scanning electron microscope to investigate the surface of the unreacted limestone particles.

  5. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1--July 31, 1998

    SciTech Connect

    1998-09-01

    Progress is reported on research projects related to the following: Electronic resource library; Environment, safety, and health; Communication, education, training, and community involvement; Nuclear and other materials; and Reporting, evaluation, monitoring, and administration. Technical studies investigate remedial action of high explosives-contaminated lands, radioactive waste management, nondestructive assay methods, and plutonium processing, handling, and storage.

  6. OTEC support services. Quarterly technical progress report No. 21, 15 May-15 August 1983

    SciTech Connect

    Not Available

    1983-09-01

    Progress is reported on the system integration, system engineering, and management services for the OTEC program under the following tasks: (1) survey, analysis, and evaluation; (2) program technical monitoring; (3) development and implementation of methodology; (4) technical assessments; (5) OTEC systems integration; (6) environment and siting considerations; and (7) transmission subsystem considerations.

  7. OTEC support services. Quarterly technical progress report No. 18, 15 August 1982-14 November 1982

    SciTech Connect

    Not Available

    1982-11-01

    After a brief description of the technical engineering and management support services for the OTEC Program and of the task objectives, technical progress is reported in the areas of: survey, analysis, and evaluation; program technical monitoring; and transmission subsystem subsytem considerations. (LEW)

  8. OTEC support services quarterly technical progress report No. 14, 15 August 1981-14 November 1981

    SciTech Connect

    1981-11-01

    The progress in the areas of system integration, system engineering, and management services is reported. The effort is divided into seven tasks: survey, analysis, and evaluation of technical program status; program technical monitoring; development and implementation of methodology for identification, evaluation, and trade-off for major subsystem configurations; technical assessments; OTEC system integration; environment and siting considerations; and transmission subsystem considerations. (LEW)

  9. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  10. Electrostatic beneficiation of coal. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-07-01

    Progress reports are presented for the following: modification to the electrostatic separator; review of DOE specifications for minimum beneficiation and calculations of grinding requirements based on washability; two-pass beneficiation; analysis of different sieve fractions; measurement of charge to mass ratio as a function of height of deposition; and charging of coal against different materials.

  11. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981

    SciTech Connect

    Kelsey, J.R.

    1981-06-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

  12. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1979

    SciTech Connect

    Ashdown, B.G.

    1980-04-01

    Progress is reported concerning preparation of a materials handbook for fusion, creep-fatigue of first-wall structural materials, test results on miniature compact tension fracture toughness specimens, austenitic stainless steels, Fe-Ni-Cr alloys, iron-base alloys with long-range crystal structure, ferritic steels, irradiation experiments, corrosion testing, and hydrogen permeation studies. (FS)

  13. Interim Performance Objectives. Progress Report, 3rd Quarter Fiscal Year 1999.

    ERIC Educational Resources Information Center

    Office of Student Financial Assistance (ED), Washington, DC.

    This document contains a progress report on three categories of interim performance objectives outlined by the Office of Student Financial Assistance (OSFA) in winter 1999. These objectives were to: (1) improve customer service; (2) reduce the overall cost of delivering student aid; and (3) transform the OSFA into a performance-based organization.…

  14. Performance Plan: Progress Report 4th Quarter Fiscal Year 2000. Student Financial Assistance.

    ERIC Educational Resources Information Center

    Office of Student Financial Assistance (ED), Washington, DC.

    This is the final report on the fiscal year of Student Financial Assistance (SFA). It reports on progress toward three objectives: (1) customer satisfaction; (2) reducing the overall cost of delivering student aid; and (3) employee satisfaction. Of the planned projects, SFA completed all but three. One was postponed, one was dropped as not cost…

  15. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect

    Kelsey, J.R.

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  16. Great Basin paleoenvironmental studies project; Technical progress report: First quarter (January--August 1993)

    SciTech Connect

    1993-12-31

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project.

  17. Evaluation of geothermal energy in Arizona. Quarterly topical progress report, July 1-September 30, 1981

    SciTech Connect

    White, D.H.

    1981-01-01

    Progress is reported on the following: the legislative and institutional program, cities program, outreach, the integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, and area development plans. (MHR)

  18. Evaluation of geothermal energy in Arizona. Quarterly progress report, July 1-September 30, 1981

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1981-01-01

    Progress is reported on the following: legislative and institutional program, cities program, geothermal applications utilization technology, integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, area development plans, and outreach. (MHR)

  19. Use of gamma radiation as a form of preservation of sweet potatoes. Quarterly progress report

    SciTech Connect

    Not Available

    1985-01-01

    This progress report covers: harvest and conditioning following harvest; effects of ..gamma.. radiation on the sweet potato weevil, organoleptic properties of sweet potatoes, protein content of same, and sweet potato quality (vitamins, color, texture, and carbohydrates). Evaluation of preliminary results indicate that changes should be made in irradiation procedures/conditions and analyses. (DLC)

  20. DOE Waste Package Project. Quarterly progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Ladkany, S.G.

    1995-05-01

    Research progress is reported on the design of containers for high-level radioactive wastes to be emplaced at the Yucca Mountain underground repository. Tasks included: temperature distribution and heat flow around the containers; failure possibility due to mechanical stresses and pitting corrosion; robotic manipulation of the containers; and design requirements of rock tunnel drift for long term storage.

  1. Quarterly technical progress report for the period ending June 30, 1984

    SciTech Connect

    Not Available

    1984-10-01

    The Magnetohydrodynamics Program (Component Development and Integration Facility) in Butte, Montana, continued its site preparation for the TRW first-stage combustor installation. In the area of flue gas cleanup, our in-house research program is continuing its investigation into the causes of sorbent attrition in PETC's fluidized-bed copper oxide process for simultaneous SO/sub 2//NO/sub x/ removal. Interwoven with these tests is a series of spray dryer/electrostatic precipitator tests that are being conducted with the cooperation of Wheelabrator-Frye, Inc. This test series was completed this quarter, and the data show that when using a Kentucky coal, Wheelabrator-Frye's electrostatic precipitator provides excellent particulate control efficiency while using a spray dryer for sulfur dioxide removal. A unique project at Carnegie-Mellon University is looking at the concept of integrated environmental control for coal-fired power plants making use of precombustion, combustion, and postcombustion control, including systems for the simultaneous removal of more than one pollutant. The objective of this research is to develop a computer model and assessment for integrated environmental control systems that utilize conventional or advanced systems. The Liquid Phase Methanol Project Development Unit in LaPorte, Texas, was restarted after a successful shakedown run was completed. PETC has recently begun an in-house research project aimed at exploring the basic chemistry of liquefying coal in the presence of water under supercritical conditions. In the Alternative Fuels Technology Program, the Gulf Research and Development Company has completed the preliminary testing phase of its erosion test loop. Their results indicate that when pumping a coal-water slurry fuel through a flow loop, the erosion rate increases as velocity increases, suggesting a well-defined relationship between these two parameters.

  2. Electrochemical photovoltaic cells. Project 65021 quarterly technical progress report, October 15, 1979-January 15, 1980

    SciTech Connect

    Ang, P.G.P.; Remick, R.J.; Sammells, A.F.

    1980-03-01

    During the third quarter of this program, liquid junction devices based upon the semiconductors MoSe/sub 2/, MoS/sub 2/, GaAs, and CdSe have been evaluated. Lifetime testing of MoSe/sub 2/ and MoS/sub 2/ materials in acidic halogen electrolytes at constant current densities of 5 mA/cm/sup 2/ have shown excellent stability to date. For MoSe/sub 2/ single crystals in the electrolyte 1M HBr + 1M Br/sub 2/, short-circuit currents of 63 mA/cm/sup 2/ were achieved with a power conversion efficiency of 6.7% for 200 mW/cm/sup 2/ xenon light illumination. Transient potentiostatic measurements made on MoSe/sub 2/ in this electrolyte indicated little diffusion control, with exchange currents being of the order of 1 to 10 mA/cm/sup 2/. Good photoresponse of MoS/sub 2/ has been observed in 1M HBr + 1M Br/sub 2/. The performance of the natural crystal is comparable to the performance of a single-crystal MoS/sub 2/ in this electrolyte. CdSe thermally evaporated onto porous titanium gave efficiencies of about 4% with 100 mW/cm/sup 2/ xenon illumination. Experimental work was initiated on the dye sensitization of Fe/sub 2/O/sub 3/ and TiO/sub 2/ materials. Of the twelve dyes evaluated, little enhancement of the photoresponse of these materials was noted. Solid-state photoelectrochemical cells have been fabricated, based upon LiI. Cells of the configuration - cond. glass CdSe/LiI + PbI/sub 2//LiI/LiI + C + PbI/sub 2//cond. glass - were fabricated. Photoresponses up to 150 mV were observed.

  3. Flash hydroliquefaction of coal. Quarterly technical progress report No. 3, April 4, 1981-July 3, 1981

    SciTech Connect

    Falk, A.Y.

    1982-05-24

    Rockwell has developed a reactor which allows rapid and uniform mixing of pulverized coal with heated hydrogen through the use of a rocket-engine-type injector. The hydrogen is partially heated by indirect heating and further heated by partial combustion with oxygen to supply the required process heat. The amount of hydrogen fed is being kept as low as practicable because of the recycle implication for a complete process. Successful operation of a water-cooled heat-exchange quench unit without plugging or degradation has been demonstrated. Char is separated from the vapor-phase material in a separator which is maintained at a sufficiently high temperature to allow vapor-phase removal of the liquid products. The effectiveness of the concept has been demonstrated in a series of tests. Substantial liquid yields and high overall conversions are possible. A high-pressure product recovery system contains two condensers which split the liquid product into heavy and light oil fractions. In addition, an adsorber bed BTX recovery system was installed. The new system functioned well after an initial shakedown, and they allow for better separation and recovery of the products. Evaluation showed a very high thermal efficiency and favorable economics compared with other liquefaction processes. Many potential advantages of the process were noted; however, most of these advantages remain to be demonstrated. During the first two quarters of the Phase IV effort modifications were made to the PDU to improve material balances; the PDU was activated and six successful tests were conducted; and supporting dense-phase flow, product refining and utilization, and material studies were initiated. The PDU facility modifications made to improve material balances were quite beneficial. Material and major elemental balances for the Phase IV tests are within 5% of closure, a contract target value.

  4. Development of analytical procedures for coprocessing. Quarterly technical progress report, January 1, 1991--March 31, 1991

    SciTech Connect

    Anderson, R.P.

    1991-06-01

    This is the tenth quarterly report under DOE Contract No. DE-AC22-88PC88810, Development of Analytical Procedures for Coprocessing. The overall objective of the contract is to improve understanding of the fundamental chemistry of coprocessing. A primary objective is to evaluate methods to distinguish between compound classes originating from coal versus those originating from petroleum resid while a corollary objective is to provide detailed knowledge on the composition of coprocessing products. This report summarizes work conducted in support of the latter objective in which process development unit samples produced by HRI, Inc. are being subjected to detailed analysis. Coprocessing resid samples selected for detailed analysis were made under constant conditions except for variations in coal concentration or in the coal (New Mexico subbituminous or Texas lignite). The soluble material was separated into strong and weak acids, strong and weak bases, and neutrals. The predominant fraction from the ABN separations was the neutral fraction (67-81%). All of the polar fractions increase with increasing coal concentration. The concentration of saturates in the neutrals is high in a run with 33% subbituminous coal but drops substantially with either increasing coal concentration or the substitution of lignite for subbituminous coal. High temperature gas chromatography showed that both the neutral aromatics fractions and saturates fractions from all of the runs are extremely similar regardless of the coal concentration or coal type. The neutral aromatics fractions were further separated by ring number separation. Chromatograms were again very similar regardless of the initial coal concentration or coal type with most material eluting in the 3-ring to 6-ring region.

  5. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    Not Available

    1994-02-01

    Several promising leads that have developed during the course of this program are being evaluated in this phase of the study. These have been selected from those that can be economically evaluated within the time constraints of the program schedule. A detailed plan for evaluating these approaches was formulated. The individual steps that will be evaluated are: (1) Dewaxing of the distillate recycle solvent stream treating either 25% or 100% of the stream. (2) Hydrotreating the dewaxed distillate streams in a downflow fixed bed reactor. (3) Agglomerating the coal using both the 25% and 100% dewaxed-hydrotreated distillate streams. (4) Liquefying the as-received coal and the agglomerated coals using two different Mo-promoted hematite particulate catalysts. (5) Liquefying two different Mo-Fe impregnated coals. (6) Liquefying the two off-agglomerated, Mo-Fe impregnated coals. The effect of the presence of molybdenum in the 1050{degrees}F{sup +} will be determined by making comparisons in both Mo-containing and Mo-free full range V-131B process solvent. The solvents that will be used in this study are the full-range reconstituted Mo-containing V-131B from Run 262E and a Mo-free V-131B made up of 1050{degrees}F{sup +} bottoms from Run 258K V-131B and V-1074 distillate from Run 262E. The series of experiments are described and a chart has been prepared summarizing this series of runs. The plan requires significant exchange of samples between the different participants in the program with the schedule timed for providing the data for economic evaluation within the next quarterly reporting period.

  6. Confined vortex scrubber. Quarterly technical progress report, April 1, 1990--June 30, 1990

    SciTech Connect

    Not Available

    1990-07-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double_prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double_prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

  7. Methane coupling by membrane reactor. Quarterly technical progress report, September 25, 1995--December 24, 1995

    SciTech Connect

    1996-03-15

    The performance of the third type of catalytic membrane reactor configuration, with catalyst deposited in the membrane and no catalyst or inert materials in the tube side, was evaluated. The C{sub 2} selectivity obtained was about 10% due to the gas phase reaction in the empty tube side of the reactor. The membrane reactor with an oxygen-permeable dense membrane has been built. The use of a dense membrane will eliminate the loss of hydrocarbon from the tube side to the shell side, as observed in the Vycor glass membrane reactor. Also, air can be used as the oxygen source without contaminating the product. La/MgO was synthesized and will be used as the catalyst for the dense membrane reactor. This catalyst was reported in the literature to show significant improvement of C{sub 2} selectivity and yield for oxidative coupling of methane in a packed-bed reactor by using the operation mode of staged-feed of oxygen. A reactor mode for methane oxidative coupling in reactors with both distributed oxygen feed and C{sub 2} product removal was developed based on the general model of cross-flow reactors reported in the last quarterly report. A distributed oxygen feed could give rise to much higher C{sub 2} yield than the co-feed reactor as long as the space time is long enough. In the case of a two-membrane reactor, where oxygen is supplied by one membrane and products are removed through the other membrane, a high separation factor of C{sub 2} product to methane for the product-removal membrane is critical to achieve high C{sub 2} yield.

  8. Photochemical coal dissolution. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Doetschman, D.C.

    1996-07-01

    As mentioned in the report on the previous quarter, the authors have turned their attention to studies of photochemically-induced-charge-transfer phenomena involving aromatic electron donors. Coal is a porous material and it has been demonstrated that there are ground-state charge-transfer-interactions between imbibed TCNE or TCNQ and the automatic systems in bituminous coals. The authors aim to develop a preliminary understanding of the ground and excited state donor-acceptor interactions and the charge-transfer phenomena in porous materials that are better-defined than coals. They are performing background examinations of a set of donors and acceptors in solution by cyclic voltammetry and uv-visible spectroscopy. These preliminary experiments are being followed by systematic studies of the adsorption of the donors and acceptors, individually and together into adjacent supercages of a series of cation-exchanged X- and Y-type faujasite zeolites. Ultraviolet-irradiation of these systems are being performed and electron paramagnetic resonance examination of the samples is being made for the presence of paramagnetic, one-electron, charge-transfer products. In related work performed by students supported by this contract, the authors have reached a good understanding of the interactions and molecular motions of free radical {pi} electron systems in the X- and Y-type faujasite zeolites. Luminescence spectroscopy may also be used to examine the doped zeolite samples in future experiments. The authors have begun to examine the donor-acceptor pairs: diphenylamine-benzophenone, nitroxyl and substituted nitroxyl radical-benzophenone, and aromatic hydrocarbon-unsaturated tetracyano hydrocarbon. The oxidation and reduction potentials and excitation energies of these systems are given. The aromatic hydrocarbon donors span the range of typical aromatic ring sizes found in bituminous, subbituminous and lignite coals.

  9. Fundamental mechanisms in flue gas conditioning. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Snyder, T.R.; Bush, P.V.

    1995-07-11

    This project is divided into four tasks. We developed our Management Plan in Task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focused on characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, was designed to examine effects of various conditioning agents on fine ash particles to determine mechanisms by which these agents alter physical properties of ash. We began Tasks 2 and 3 with an extensive literature search and assembly of existing theories. We completed this phase of the project with publication of two special Topical Reports. In our literature reviews reported in Topical Reports 1 and 2, we emphasized the roles adsorbed water can have in controlling bulk properties of powders. During the next phase of the project we analyzed a variety of fly ashes and fine powders in the laboratory. The experiments we performed were primarily designed to define the extent to which water affects key properties of ashes, powders, and mixtures of sorbents and ashes. We have recently completed a series of pilot-scale tests designed to determine the effects that adsorbed water has on fabric filtration and electrostatic precipitation of entrained fly ash particles in actual flue gas environments. Under Task 4 we will issue our Final Report that will summarize the results of our laboratory and pilot-scale work and will also include a model of flue gas conditioning. Our efforts during this reporting quarter have been directed toward production of the Draft Final Report and the Flue Gas Conditioning Model. In addition to these efforts, we have prepared a paper for presentation at the Eleventh Annual Coal Preparation, Utilization, and Environmental Control Contractor`s Conference to be held in Pittsburgh in July, 1995.

  10. MHD Integrated Topping Cycle Project. Fifteenth quarterly technical progress report, February 1991--April 1991

    SciTech Connect

    Not Available

    1992-02-01

    A summary of the work is excerpted here. Final design of an MHD channel for the ITC program POC test has been completed. The channel was designed to be capable of 1.5 MW {sub e} power output and a lifetime of 2000 hours. Emphasis was placed upon durability and reliability. Hence, specific measures were taken to design against channel damage due to electric faults. The life-limiting issues associated with electrochemical corrosion and erosion of gas-side surfaces were addressed by the use of various materials with proven wear characteristics in a coal-fired MHD channel environment. Pitting of prototypical sidewall coupons was observed in the CDIF workhorse testing. The most likely cause of the observed pitting, water leaks resulting from cooling water tube braze failures, has been remedied. New brazing procedures and isolation of the sidebar gas-side material from water contact will prevent sidebar pitting in the prototypical channel. Water-side corrosion tests reported in this quarterly report include the latest results of tungsten-copper elements at controlled pH, heat flux and voltage levels. In the combustion subsystem, efforts continued to focus on understanding and improving the current levels of slag recovery and seed utilization achieved by the combustor. Analytical support was also provided in the areas of slag rejection system operation, precombustor operation, and oil burner design modification. Channel data analysis activities continued in support of prototypical coupon testing at the CDIF. Analyses are presented on channel wall slagging behavior and sidewall voltage distributions.

  11. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending December 31, 1985

    SciTech Connect

    Not Available

    1986-10-01

    Microbial desulfurization is the use of ''bugs'' to remove sulfur from coal. Four projects illustrate the variety of ways in which microbes can be used to desulfurize coal. In the liquefaction program area, a joint effort between PETC and Catalytic, Inc., was established for process-modeling studies of two-stage coal liquefaction experiments at Wilsonville. Researchers at PETC have developed a process model for Integrated Two-Stage Liquefaction and are currently focusing on characterization of an engineering (ASPEN Public) simulator. The goal of this work is to establish realistic process performance indices for different reactor configurations and coal feedstocks based on heat and material balance calculations. In another liquefaction research effort this quarter, Hydrocarbon Research, Inc., started the first bench run under its new contract for research on low-severity, two-stage liquefaction. The run is planned for 29 days and will test nine separate operating conditions. Research in the field of magnetohydrodynamics (MHD) continued at the Avco Everett Research Laboratory (AERL). A significant achievement fiscal year was the first-time operation of the Avco MK VIII channel with the total power controlled and/or consolidated using nonresistive circuitry. An electrostatic precipitator (ESP) was delivered, installed, and tested at the DOE's MHD Coal-Fired Flow Facility at the University of Tennessee Space Institute. Shakedown tests of PETC's Continuous Life-Cycle Copper Oxide Test Facility are complete. This PETC facility will be used to conduct the first integrated process tests of the Fluidized-Bed Copper Oxide Process unit for the control of SO/sub 2/ and NO/sub x/. PETC has recently initiated a project to study the fundamental properties of coal surfaces by measuring the heat of immersion of coal and its associated mineral matter using a Setaram C-80 heat flow calorimeter.

  12. Direct catalytic decomposition of nitric oxide. Quarterly technical progress report No. 10, January--March 1994

    SciTech Connect

    Flytzani-Stephanopoulos, M.; Sarofim, A.F.; Zhang, Y.; Sun, T.

    1994-06-01

    This project investigates a suitable catalyst system for the direct nitric oxide decomposition in post-combustion gas streams. This process does not use a reductant, such as the ammonia used in the Selective Catalytic Reduction (SCR) of NO{sub x} to nitrogen. Therefore, it is a greatly simplified process basically involving passing the flue gas through a catalytic converter. Catalysts are prepared by incorporating metal cations into zeolite supports according to ion exchange procedures widely used in preparation of metal/zeolite catalysts. Particular emphasis is given in this work on promoted Cu-exchanged zeolites, especially the catalyst systems Mg/Cu-ZSM-5 and Ce/Cu-ZSM-5, which are promising for NO conversion to nitrogen at typical flue gas O{sub 2} and NO levels and over the temperature range of 673--873{degrees}C. The effect of zeolite modification, copper exchange level and catalyst preparation conditions on the catalytic activity are studied in O{sub 2}-free, O{sub 2}-rich gases, as well as wet (2--20% H{sub 2}O) gas streams in a packed-bed microreactor. Characterization of catalysts is performed by XRD, STEM, TEM and ESR. During this quarter it was found that severe steaming (20% H{sub 2}O) of Na-ZSM-5 at temperatures above 600{degrees}C caused partial vitreous glass formation and dealumination. Unpromoted Cu-ZSM-5 catalysts suffer drastic loss of NO decomposition activity in wet gas streams at 500{degrees}C. Activity is partially recovered in dry gas. Copper migration out of the zeolite channels leading to CuO formation has been identified by STEM/EDX. In Ce/Cu-ZSM-5 catalysts the wet gas activity i`s greatly improved. CuO particle formation is less extensive and the dry gas activity is largely recovered upon removal of the water vapor.

  13. Low cost solar array project. Quarterly progress report, January-March, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are presented. The civil construction work was completed and the mechanical bid package is in preparation. The electrical design effort is in progress. Parallel efforts which complement the mechanical design are the process flow diagrams and control instrumentation logic for startup operation and shutdown. These are in progress and will identify all process and utility streams, control systems, and flow logic. The data collection system takes the signals from the instrumentation, translates them into engineering units and finally develops a data report which summarizes all key performance parameters. Cleaning procedures have been established to assure a contamination-free product and inspection visits have been made to the fabricators of specialty equipment.

  14. NF-κB, the first quarter-century: remarkable progress and outstanding questions

    PubMed Central

    Hayden, Matthew S.; Ghosh, Sankar

    2012-01-01

    The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study. PMID:22302935

  15. Salton Sea Scientific Drilling Program: Seventh quarterly progress report, April-June 1986

    SciTech Connect

    Not Available

    1986-09-01

    The progress and direction of the Salton Sea Scientific Drilling Program (SSSDP) is outlined. This reporting period, from April 1 through June 30, 1986, began with initiation of the 6-month shut-in period. Emphasis was placed upon conducting experiments such as downhole temperature and pressure surveys, distribution of samples to researchers, reporting and disseminating data thus far analyzed, and planning future operations in the SSSDP well.

  16. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  17. Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980

    SciTech Connect

    Varnado, S.G.

    1980-04-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  18. Shale oil value enhancement research. First quarterly technical progress report, March 1, 1993--May 31, 1993

    SciTech Connect

    Bunger, J.W.; Russell, C.P.; Devineni, P.A.V.; Cogswell, D.E.; Wiser, J.W.

    1993-06-25

    Concurrent progress is being made in all key areas, namely, separation, characterization and market assessment. The market area, not one of our traditionally strong areas, has been going better than expected. We believe this is due mainly to the emerging interest in new and unconventional materials. The characterization work has been progressing solidly with the fundamental Z-BASIC correlations providing information not heretofore available in the chemical literature. Our agreement with Hewlett-Packard regarding the purchase of equipment at a reduced price is complete and the gc-ms will be ordered shortly. The separation work has progressed satisfactorily although an unexpected amount of time has been required for ``facilities`` and ``equipment`` related issues. Some of these issues have dealt with safety and regulatory compliance when storing larger quantities of samples. These now seem to be solved. We have a lot of direct experience in shale oil separations dating back to the OXY project and before. Also, we will streamline our work by going to prepacked micro-separation tools for some of our separation characterization work. This will allow us to stay on schedule. Overall, we are on schedule with the project. All administration requirements are in place and the accounting and financial records are current.

  19. Advanced coal liquefaction research. Quarterly technical progress report, July 1, 1983-September 30, 1983

    SciTech Connect

    1984-04-01

    Work this quarter focused on staged liquefaction. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material is quite high and the limit of conversion is approached in only a few minutes. With a subbituminous coal, however, conversion is much lower and the limit of conversion is approached much more slowly. Short contact time (SCT) dissolution of Belle Ayr coal was studied as a possible first stage in a two-stage process. Conversion, hydrocarbon gas yield and hydrogen consumption were increased as residence time or temperature were increased. Conversion was also significantly increased by partial slurry recycle. Pyrite was found to be the most effective slurry catalyst for increasing conversion, followed by ammonium molybdate emulsion and finally nickel-molybdenum on alumina. Illinois No. 6 coal was liquefied in two stages. Conditions in the first stage dissolution were varied to determine the effect on upgradability in the second stage. An SCT (6 minute) coal dissolution stage is preferred over one at 30 minutes because hydrocarbon gas yield was much lower while overall oil yields for the combined dissolution and upgrading stages were nearly the same. Use of a NiMo/Al/sub 2/O/sub 3/ catalyst in a trickle-bed second stage resulted in a higher oil yield and lower product heteroatom content than use of the same catalyst in the slurry phase. The total oil yield was lower with a pyrite slurry catalyst than with a NiMo/Al/sub 2/O/sub 3/ slurry catalyst. With Belle Ayr coal and added pyrite, there was no change in total oil yield, conversion or product quality brought about by adding an 8-minute first stage at 450/sup 0/C (842/sup 0/F) to a 2-hour second stage operated at 420/sup 0/C (788/sup 0/F). 39 figures, 12 tables.

  20. Electric and hybrid vehicle program: Site operator program. Quarterly progress report, April--June, 1994 (3rd quarter of FY-1994)

    SciTech Connect

    Kiser, D.M.; Brown, H.L.

    1994-10-01

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three major activity categories; advancement of Electric Vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use, and increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of each participant are summarized. This third quarter report (FY-94) will include a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now included.

  1. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy, quarter ending March 31, 1993

    SciTech Connect

    Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

    1993-04-01

    This quarterly report discusses activities in the Safeguards Technology Program (STP) which is a program in LLNL`s Nuclear Chemistry Division that develop advanced, nondestructive-analysis (NDA) technology for measurement of special nuclear materials. The work focuses on R&D relating to x{minus} and gamma-ray spectrometry techniques and to the development of computer codes for interpreting the spectral data obtained by these techniques.

  2. Investigation of proposed process sequence for the array automated assembly task: Phase II. Quarterly technical progress report for quarter ending December 29, 1979

    SciTech Connect

    Mardesich, N.; Bunyan, S.; Sipperly, B.

    1980-02-01

    A sulfur hexaflouride plasma etch was investigated as a possible surface treatment to improve the performance of the cell, the Radiation Technology Infrared Furnace was qualified for use in the process sequence, and work was initiated on junction clean up by laser scribing through the junction. An evaluation of the minority carrier diffusion length of silicon crystals received from various vendors was also included in this quarters activities. Results are presented and discussed.

  3. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, October--December 1995 (first quarter of fiscal year 1996)

    SciTech Connect

    Francfort, J.E.; Bassett, R.R.; Briasco, S.

    1996-03-01

    This is the Site Operator Program quarterly report for USDOE electric and hybrid vehicle research. Its mission now includes the three major activity categories of advancement of electric vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use and increasing public awareness and acceptance of EVs. The 11 Site Operator Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of the site operators totals about 250 vehicles. The individual fleets are summarized.

  4. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy. Quarter ending June 30, 1996

    SciTech Connect

    Davis, B.; Davis, G.; Johnson, D; Mansur, D.L.; Ruhter, W.D.; Strait, R.S.

    1996-07-01

    LLNL carries out safeguards and security activities for DOE Office of Safeguards and Security (OSS) and other organizations, both within and outside DOE. This document summarizes activities conducted for OSS during this quarter. LLNL is supporting OSS in six areas: safeguards technology, safeguards and materials accountability, computer security/distributed system, complex-wide access control, standardization of security systems, and information technology & security center. This document describes the activities in each of these six areas.

  5. Development of molten carbonate fuel cell power plant. Quarterly progress report, February 1, 1982-April 30, 1982

    SciTech Connect

    Not Available

    1982-06-16

    Work proceeded this quarter mainly under three program tasks. Under Task 1.0, work was started on preparing a description of the reference Steam Injection System. It is planned to lay out the plant in power unit trains rated at a nominal 100 MW(e). Under Task 2.0, work continued on anode, cathode, current collector, and electrolyte tile develoment and stack design and analysis. Corrosion test results of various current collector materials after 3500 hours exposure are reported. Sintering data at 6000 hours were obtained on twelve different material samples tested to evaluate the effects of chromium and ceramic addition to state-of-the-art and in-house fabricated electrodes. The 6000 hour data showed no change in porosity or pore distribution from the 5000 hour data. The electroless-plated ceramic plaques demonstrated good stability and porosities. Two cells containing dual porosity anodes using all metal-plated-ceramic material, were tested. Although testing was terminated due to cracked tiles, the cell results are encouraging for the experimental anodes. Under Task 4.0, work continued on installation and debugging of the atmospheric bench scale single cell test facility, and operation of a cell started on April 20, 1982. Progress is detailed. (WHK)

  6. Development of the selective hydrophobic coagulation process. Tenth quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1994-08-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied since 1986. The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (1) induced the coagulation of coal particles, and (2) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the past quarter, calculations were carried out under Subtask 2.3 (Predicting Optimum Conditions Using the Extended DLVO Equation) to explain the selectivity window that occurs between pH 7--9 in the SHC process. These calculations suggest that particle interactions involving the edge surfaces of clay are the most important, while interactions involving silica and face surfaces of clay are not as important. Experiments were also continued under Subtask 3.3 (Advanced Separation Methods) to investigate the performance of a centrifuge for separating hydrophobic coagula from dispersed mineral matter. These tests show that coagula recovery increases with centrifugal field strength and decreases with solids content and feed flow rate. Work is now in progress to evaluate the performance of a vacuum filter for coagula recovery.

  7. Stability, rheology and flow of coal-water mixtures. Quarterly progress report, September 1-November 30, 1984

    SciTech Connect

    Turian, R.M.

    1984-01-01

    This is the first quarterly progress report on the subject DOE grant since the starting date of September 1, 1984. During the present reporting period we have been occupied with the details of starting up of the project. Activities during this period have included hiring graduate research assistants for the project, providing them with full details of the research and its objectives, design and construction of research equipment, purchase and installation of coal slurry preparation equipment, setting up of newly purchased research instruments, and testing and calibration of instruments and equipment. Our objective is to test and hopefully establish a definitive method for measurement of yield stress as an intrinsic property (as contrasted to a rheological model parameter) which will then be related to the microstructure of the coal suspension. We have also calibrated the new capillary tubes using Newtonian standards, and tested them extensively using stabilized titanium dioxide dispersions and the laterite slurries discussed above. Among major new instruments that are being set up are the mercury porosimeter and the BET adsorption apparatus. We hope to start preliminary tests on concentrated coal suspensions during the coming period.

  8. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    SciTech Connect

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  9. Decontamination Systems Information and Research Program. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-10-01

    Progress reports are presented for the following projects: systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies--drain-enhanced soil flushing (DESF) for organic contaminants removal; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors--monolayer and multilayer self-assembled films for chemical sensors; Winfield Lock and Dam remediation; Winfield cleanup survey; assessment of technologies for hazardous waste site remediation--non-treatment technologies and pilot scale test facility implementation; assessment of environmental remediation storage technology; assessment of environmental remediation excavation technology; assessment of environmental remediation monitoring technology; and remediation of hazardous sites with steam reforming.

  10. Base program on energy related research. Quarterly technical progress report, February--April 1993

    SciTech Connect

    Not Available

    1993-10-01

    Progress reports are briefly described for the following areas of research: oil and gas; advanced systems applications; environmental technologies; and applied energy science. Oil and gas research includes: CROW {sup TM} process modeling; and miscible-immiscible gas injection processes. Advanced systems applications covers: development and optimization of a process for the production of a premium sold fuel from western US coals; development of an on-line alkali monitoring probe; optimization of the recycle oil process for eastern oil shale; and process support and development. Environmental technologies has solid waste management; and remediation of contaminated soils.

  11. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-01

    This reports reports the progress/efforts performed on six technical projects: 1. systematic assessment of the state of hazardous waste clean-up technologies; 2. site remediation technologies (SRT):drain- enhanced soil flushing for organic contaminants removal; 3. SRT: in situ bio-remediation of organic contaminants; 4. excavation systems for hazardous waste sites: dust control methods for in-situ nuclear waste handling; 5. chemical destruction of polychlorinated biphenyls; and 6. development of organic sensors: monolayer and multilayer self-assembled films for chemical sensors.

  12. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  13. Controlling incipient oxidation of pyrite for improved rejection. Technical progress report for the ninth quarter, October 1--December 31, 1994

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1995-07-01

    The major objectives of this work are (1) to determine the Eh-pH conditions under which pyrite is stable, (2) to determine the mechanism of the initial stages of pyrite oxidation, and (3) to determine if the semi-conducting properties of pyrite effects its oxidation behavior. It is known that moderate oxidation of pyrite produces a hydrophobic surface product. This hydrophobic product makes it extremely difficult to depress pyrite in coal flotation circuits. The eventual objective of this work is to prevent pyrite oxidation in order to better depress pyrite in coal flotation circuits. It has been shown that by holding the potential of pyrite at its stable potential during fracture, pyrite undergoes neither oxidation nor reduction. It has also been found that fresh pyrite surfaces created by fracture in an electrochemical begin to oxidize at potentials that are about 200 mV more negative than the potentials reported in the literature for pyrite oxidation. This report period, electrochemical impedance spectroscopy (EIS) studies were continued. As discussed in the seventh quarterly progress report, the impedance of pyrite does not show the characteristics expected for either semi-conducting or metallic electrodes. Additional studies were conducted to confirm the anomalous impedance behavior. For this purpose, freshly fractured surfaces were progressively polished on 600 and 1,200 grit silicon carbide paper, and with 0.3 {micro} {alpha}-alumina and 0.05 {micro} {gamma}-alumina micropolish. Polishing is known to introduce defects in the lattice structure of semi-conducting electrodes and it was anticipated that the defects would effect the interfacial capacitance.

  14. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, 1996

    SciTech Connect

    1996-12-31

    Shake flask tests were completed of microbial pyrite and HAP precursor removal from Rosebud subbituminous coal. Significant amounts of Ni, F, Mn, Cd, Co and Be were removed from this coal. Analyses in connection with leach column tests of Pittsburgh coal were completed and confirmed significant removal of Ni, F, Mn, Cd, Co and As from this coal. Although Hg was not removed from Pittsburgh coal by microbial attack, there was a correlation between HCl leaching of Hg from this coal and the extent of depyritization. Since HgS is soluble in HCl, the results suggest HgS is exposed by chemical and microbial dissolution of coal pyrite. Column tests with cleaned Indiana No. 5 coal are in progress and show significant early dissolution of Ni, Mn, Cd, Co and As. A final shake flask test with Kentucky No. 9 coal was begun. Pittsburgh coal with a low content of fines was shipped to the Idaho National Engineering Laboratory (INEL) in preparation for slurry column tests of HAP precursor removal. Project results were presented at the PETC contractor`s conference held in Pittsburgh. A project progress review meeting was also held with the PETC technical project monitor.

  15. Quarterly progress report for Q1 FY06 for Complex Transient Events in Materials Studied Using Ultrafast Electron Probes and Terascale Simulation (FWP SCW0289)

    SciTech Connect

    Campbell, G

    2005-12-27

    This quarter (Q1 FY06) marked the first time that the LLNL dynamic transmission electron microscope (DTEM) configuration had advanced to the point whereby it was possible to conduct in-situ experiments on specimens. DTEM improvements continue to progress at a rapid pace. We summarize important achievements in the following list: (1) Instrument performance and design improvements - (a) Reproducibly achieving >1 x 10{sup 7} e{sup -} per pulse. Adjustments in the cathode laser system design led to an improved quantum efficiency and electron yield per pulse. The current number of electrons in the pulse is sufficient for acquiring high quality, single-shot electron diffraction patterns. (b) Implementation of computer interface and Labview{reg_sign} programs for cathode and specimen drive alignment and cathode and pump laser trigger and delay settings. These controls provide a user friendly interface and ease in the experimental setup and implementation. (c) Cathode test chamber (offline test apparatus to asses photocathode design and laser induced photoemission) construction has been completed. (2) Notable instrument features brought into service - (a) Drive laser system was enhanced to improve beam shape and uniformity and to include continuous laser energy monitoring. The drive laser spot size on the specimen was also reduced from 70 {mu}m x 110 {mu}m to 50 {mu}m x 75 {mu}m. (b) New phosphor coated face plate manufactured by TVIPS was installed. The sensitivity and signal noise ratio improved by factor 2 (sensitivity {approx}110 CCD counts/e{sup -} and signal to noise ratio {approx}5). (3) Experimental Progress - (a) First time-resolved experiment: observation of the {alpha} (hcp) to {beta} (bcc) phase transition in pure Ti films via single shot electron diffraction. Results of this experiment were published in the MRS Fall 2005 proceedings and are under review for article in the FEMMS proceedings, which will to be published in Journal of Material Science. See

  16. Decontamination systems information and research program. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1993-01-01

    It is estimated that over 3700 hazardous waste sites are under the jurisdiction of the Department of Energy (DOE). These sites were primarily generated from 45 years worth of environmental pollution from the design and manufacture of nuclear materials and weapons, and contain numerous types of wastes including: (1) volatile, low-volatile and nonvolatile organics, (2) radionuclides (e.g., uranium, plutonium and cesium), (3) nonradioactive heavy metals (e.g., chromium, nickel, and lead), and (4) toxic chemicals. These contaminants affect several media including soils (saturated and unsaturated), groundwater, vegetation, and air. Numerous and diverse DOE hazardous waste sites can be enumerated from soils contaminated by organics such as trichloroethylene (TCE) and perchloroethylene (PCE) at the Savannah River site to biota and vegetation contaminated by radionuclides such as radiocesium and radiostrontium at the Oak Ridge site. Over the next 30 years, the Department of Energy (DOE) is committed to bringing all its facilities into compliance with applicable Federal, State, and local environmental laws and regulations. This clean-up task is quite complex involving numerous sites containing various radioactive, organic and inorganic contaminants. To perform this clean-up effort in the most efficient manner at each site will require that DOE managers have access to all available information on pertinent technologies; i.e., to aid in maximum technology transfer. The purpose of this effort is to systematically develop a databast of those currently available and emerging clean-up technologies.

  17. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry.

    PubMed

    Thilak, V M M; Devadasan, S R; Sivaram, N M

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps.

  18. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry

    PubMed Central

    Devadasan, S. R.; Sivaram, N. M.

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps. PMID:26065016

  19. Electrostatic beneficiation of coal. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1995-07-01

    A chamber has been set up for exposing ground coal to controlled relative humidities. Four levels in the range of 10% to 95% are planned. The change in moisture content of the coal powders will be determined after exposure. Charge to mass ratio acquired in tribocharging and the degree of electrostatic beneficiation will be determined as a function of the relative humidity used for each of the exposures. The authors also discuss their progress in grinding of the coal; the low percentage of coal recovered after separation and the possibility that these losses were a result of holdup in the expansion cone; the design and modeling of the electric curtain; particle size measurement using image processing; and the petrographic analyses of finely and coarsely ground Illinois No. 6 coal.

  20. Molecular biology of coal bio-desulfurization. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1992-04-30

    Genes cloned from Rhodococcus rhodochrous IGTS8 can transfer the DBT desulfurization phenotype to a different species (R. Fascians). The product was identified as 2-phenylphenol by gas chromatography. This result parallels the results we have previously reported for the activity of these genes in a DBT-negative mutant of IGTS8. Thus, the evidence is strong that we have identified and cloned the entire set of genes that are responsible for this very specific desulfurization reaction. Sequencing of these genes has commenced. A genomic library was constructed from the bacterium, Besulfovibrio desulfuricans. Screening has not yet identified a clone that carries the desulfurization genes from that organism. Two open reading frames, doxH and doxJ, in the C18 DBT degradation pathway were mutated and are now believed to be dispensable to that pathway. Finally, progress was made toward beginning to sequence the DBT dixoygenase genes from strain A15.

  1. Volatiles combustion in fluidized beds. [Quarterly] technical progress report, 4 March 1994--3 June 1994

    SciTech Connect

    Pendergrass, R.A. II; Hesketh, R.P.

    1994-08-01

    The goal of this project is to investigate the conditions in which volatiles will bum within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the, inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1994 through 3 June, 1994 is reported in this technical progress report. The experimental work during this time period consists primarily of data collection. Gas composition results using two sand particle diameters of 0.531 and 0.126 mm. Three graphs at equivalence ratios of 0.5, 1.0 and 2.0 for propane in air are reported for the 0.531 mm sand size. For the 0.126 nun sand size stoichiometric propane and air are results are reported.

  2. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, June 23--September 21, 1994

    SciTech Connect

    McCormick, C.; Hester, R.

    1994-12-31

    Summaries are given on the technical progress on three tasks of this project. Monomer and polymer synthesis discusses the preparation of 1(7-aminoheptyloxymethyl)naphthalene and poly(maleic anhydride-alt-ethyl vinyl ether). Task 2, Characterization of molecular structure, discusses terpolymer solution preparation, UV analysis, fluorescence analysis, low angle laser light scattering, and viscometry. The paper discusses the effects of hydrophobic groups, the effect of pH, the effect of electrolyte addition, and photophysical studies. Task 3, Solution properties, describes the factorial experimental design for characterizing polymer solutions by light scattering, the light scattering test model, orthogonal factorial test design, linear regression in coded space, confidence level for coded space test mode coefficients, coefficients of the real space test model, and surface analysis of the model equations.

  3. Base program on energy related research. Quarterly technical progress report, August--October 1993

    SciTech Connect

    Not Available

    1993-12-31

    Progress reports are presented for the following area of studies: oil and gas; advanced systems applications; environmental technologies; and applied energy science. Oil and gas includes the following tasks: CROW{sup TM} process modeling; and miscible-immiscible gas injection processes. Advanced systems applications covers: development and optimization of a process for the production of a premium solid fuel from Western U.S. coals; development of an on-line alkali monitoring probe; optimization of the recycle oil process for Eastern oil shale; and process support and development. Tasks in the environmental technologies are: solid waste management; and remediation of contaminated soils. Applied energy science covers heavy oil/plastics co-processing.

  4. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect

    Eby, R.J.

    1980-12-01

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  5. Electrostatic precipitation of condensed acid mist: Third quarterly technical progress report, March 1--May 31, 1989

    SciTech Connect

    Not Available

    1989-01-01

    Acid mists can sometimes constitute a significant portion of the total particulate emissions from power plants burning high-sulfur coals. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attack glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. The project is organized in two phases. Phase I, which is scheduled for September 1988 to September 1989, involves the WESP fabrication, laboratory and pilot combustor testing, and computer modeling. Phase II, which is scheduled for September 1989 to September 1990, involves the solicitation of a utility demonstration site, preliminary site measurements, and planning for the demonstration test program. Progress on Phase I work is addressed in this discussion. 5 refs., 4 figs.

  6. Great basin paleoenvironmental studies project; Technical progress report first quarter (year 2), June--August 1994

    SciTech Connect

    1994-10-01

    The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal Progress reports are presented for: Paleobotenical studies in the Great Basin; Paleofaunas studies in the Great Basin; Geomorphology studies in the Great Basin; and Transportation. The goal of the transportation project is to compare the results from three models (FESWMS-2DH, DAMBRK, and FLO-2D) that have been suggested as appropriate for evaluating flood flows on alluvial fans with the results obtained from the traditional one-dimensional, stochastic model used in previous research performed by DRI for the Yucca Mountain Project.

  7. Coal transformation chemistry. First quarterly progress report, March 1, 1980-May 31, 1980

    SciTech Connect

    Stock, Leon M.; Alemany, L. B.; Handy, C. I.; King, H. -H.

    1980-01-01

    Considerable progress has been made on the development of a convenient procedure for the alkylation of Illinois No. 6 coal in liquid ammonia. The results are presented in summary in Section IIIB, Task 1 and in more detail in Section IVB. Work on the chemistry of the liquefaction reaction has led to the conclusion that phenolic compounds participate in free radical reactions in hydrogen donor solvents. Phenolic compounds and benzoic acid derivatives do not function as acid catalysts in their reactions with tetralin and other representative compounds. In addition, the reaction of styrene with tetralin at 400/sup 0/C has been shown to be a complex process involving rather deepseated chemical transformations. The results are presented in summary in Section IIIB, Task 3 and in more detail in Section IVC.

  8. Innovative hybrid gas/electric chiller cogeneration. Quarterly technical progress report, April--June, 2000

    SciTech Connect

    Nowakowski, G.

    2000-07-01

    A meeting was held at Alturdyne's facility in San Diego to discuss project progress. Cliff Carpenter, the NETL Program Manager, attended the meeting. As a result of the meeting, several decisions were made: (1) A General Motors engine would be specified as the prime mover; (2) A Carrier reciprocating compressor would be specified, however a Hitachi screw compressor with an integral oil sump was an interesting candidate if it was available in the right size and for the right price; (3) The motor/generator would provide two functions: as an induction motor and as a synchronous generator. The variable speed, constant frequency feature will not be included in the first generation product; and (4) The refrigerant will be R134-A.

  9. DC CICC retrofit magnet preliminary design, software development and analysis report. Quarterly progress report

    SciTech Connect

    Myatt, R.L.; Marston, P.G.

    1992-01-01

    The proposed retrofit coil is made of superconducting Cable-in-Conduit Conductor (CICC). The coils are designed to produce a nominal vertical field of 4.5 tesla within the MHD channel based on a nominal current density of 13.05 MA/m{sup 2}. The coils are supported within a case, or so-called constant tension strap. When the magnet is energized, the electromagnetic J x B body forces push the winding pack laterally outward and vertically towards the machine`s midplane, thus putting the strap in tension. The end turns add axial tension to the conductor (a condition which is not simulated by this 2-D model of the midlength cross section). A sketch of the magnet system and structure is shown in Fig. 1.0--1. The purpose of this report is to describe the progress made in the design and analysis of the DC CICC retrofit magnet.

  10. Configurational diffusion of coal macromolecules: Quarterly progress report, September 16, 1988--December 15, 1988

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.

    1988-01-01

    Progress has been made in two areas; (1) investigation of the diffusion phenomena with alumina membranes; and (2) measurement of the diffusion coefficients of coal model compounds. In diffusion experiments with alumina membranes, the total transfer resistance from the experiments shows some degree of deviation from the estimated values. Two approaches have been made to elucidate the differences. One is introducing a tortuosity factor in the alumina membranes, and the other is developing another empirical equation for the boundary layer resistance. Second, diffusion coefficients of five polycyclic aromatic hydrocarbons were measured with Nuclepore/sup TM/ polycarbonate membranes having 0.15 m nominal pore diameter. Diffusion coefficients calculated from experimental data show fairly good agreement with the values estimated using several estimation methods. 20 refs., 2 figs., 9 tabs.

  11. Coal-gasification instrumentation program (PR 11734). Quarterly progress report, January 1, 1981-March 31, 1981

    SciTech Connect

    Not Available

    1981-03-30

    In the experimental effort to define the capabilities of infrared absorption spectroscopy for the analysis of coal gasifier product gases, we have continued spectral observations on minority species in the gas phase, and are proceeding with spectroscopic studies of the same materials in cryogenic solution. The progress reported has to do primarily with the characteristics of N/sub 2/O and NO/sub 2/. Coherent anti-Stokes Raman spectroscopy (CARS) is a promising spectroscopic technique for on-line, real-time diagnostics of species concentrations and temperature in the gas streams of coal gasifiers. Our present work is directed toward the development of an appropriate data base for CARS of several constituents of coal-gasifier streams, both separately and mixed, under laboratory conditions of pressures up to 1000 psi and temperatures up to 500 K, with emphasis upon detection of trace concentrations of certain minority species. During this reporting period, we have continued measurements of CARS signals from mixtures containing H/sub 2/S and have completed modification of our experimental configuration to permit normalized CARS and Coherent Stimulated Raman Spectroscopy (CSRS). The aim of our measurements of CARS signals from mixtures containing H/sub 2/S is to determine the detection sensitivity for a field-worthy CARS diagnostic system, with an ultimate goal of 1 ppM. Preparations have been made for the upcoming quantification experiments for LIBS. These are still in progress, since we continued preparatory work by studying time-resolved LIBS, or TRELIBS. This modification of the basic spectral detection technique offers great advantages in sensitivity and diagnostic simplicity.

  12. Nuclear Medicine Program progress report for quarter ending June 30, 1993

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Beets, A.L.; Callahan, A.P.; Hsieh, B.T.; McPherson, D.W.; Mirzadeh, S.; Lambert, C.R.

    1993-07-01

    The ``IQNP`` agent is an antagonist for the cholinergic-muscarinic receptor. Since the IQNP molecule has two asymmetric centers and either cis or trans isomerism of the vinyl iodide, there are eight possible isomeric combinations. In this report, the systematic synthesis, purification and animal testing of several isomers of radioiodinated ``IQNP`` are reported. A dramatic and unexpected relation between the absolute configuration at the two asymmetric centers and the stereochemistry of the vinyl iodide on receptor specificity was observed. The E-(R)(R) isomer shows specific and significant localization (per cent dose/gram at 6 hours) in receptor-rich cerebral structures (i.e. Cortex = 1.38 + 0.31; Striatum = 1.22 + 0.20) and low uptake in tissues rich in the M{sub 2} subtype (Heart = 0.10; Cerebellum = 0.04). In contrast, the E-(R)(S) isomer shows very low receptor-specific uptake (Cortex = 0.04; Striatum = 0.02), demonstrating the importance of absolute configuration at the acetate center. An unexpected and important observation is that the stereochemistry of the vinyl iodine appears to affect receptor subtype specificity, since the Z-(R,S)(R) isomer shows much higher uptake in the heart (0.56 + 0.12) and cerebellum (0.17 + 0.04). Studies are now in progress to confirm these exciting results in vitro. Progress has also continued during this period with several collaborative programs. The first large-scale clinical tungsten-188/rhenium-188 generator prototype (500 mCi) was fabricated and supplied to the Center for Molecular Medicine and Immunology (CMMI), in Newark, New Jersey, for Phase I clinical trials of rhenium-188-labeled anti CEA antibodies for patient treatment. Collaborative studies are also continuing in conjunction with the Nuclear Medicine Department at the University of Massachusetts where a generator is in use to compare the biological properties of {open_quotes}direct{close_quotes} and {open_quotes}indirect{close_quotes} labeled antibodies.

  13. Short contact time direct coal liquefaction using a novel batch reactor. Quarterly technical progress report, September 15, 1995--January 15, 1996

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, He

    1996-01-26

    The objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) f or coal liquefaction at short contact times (0.01 to 10 minutes or longer). Additional objectives are to study the kinetics of direct coal liquefaction particularly at short reaction times, and to investigate the role of the organic oxygen components of coal and their reaction pathways during liquefaction. Many of those objectives have already been achieved and others are still in progress. This quarterly report covers further progress toward those objectives.

  14. Low cost solar array project. Quarterly progress report, January-March 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and rice commensurate with the production goals of the LSA project for solar-cell modules. As part of -- overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/Yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capably of producing 1000 MT/Yr. Progress is repoted in detail. (WHK)

  15. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  16. Tidd PFBC Demonstration Project fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the 23rd technical progress report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from October 1, 1992 to December 31, 1992. Major activities during this period involve: (1) The unit was operated for a total of 714 hours (including gas turbine air prewarming). There were seven gas turbine starts, seven bed preheater starts, and seven operating periods with coal fire. The peak gross output of 64 MWH was achieved for the period of 1000 to 1100 hours on November 23, 1992. The longest coal fire was 285 hours beginning at 1211 hours on November 25, 1992. (2) Total gross generation was 24,643, and coal consumption was 11,900 tons. (3) The hot gas clean up system was commissioned. (4) Active end fluidization system to address sparge duct cracking and deformation problem was jointly initiated by ABB carbon, B&W and AEPSC. (5) All testing continued using Plum Run dolomite. This approach was taken as a conservative means to avoid sintering and unit trips which were encountered during the previous two start-ups in September using limestone and (6) monitoring of solid, liquid and gaseous waste streams, as detailed in the operations phase monitoring requirements in the EMP, were performed.

  17. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 16, July 1995--September 1995

    SciTech Connect

    1996-03-01

    Continuous progress is being made toward the contract objectives in our attempt to produce {open_quotes}Methyl Chloride via Oxyhydrochlorination of Methane.{close_quotes} Specifically, gains have been achieved in Task 1.0 Catalyst Development and Separation Unit Operation Development and Task 4.0 PDU Startup. Catalyst development continued forward to examine the copper, lanthanum, and lithium loadings as well as support surface area in four factor, two level, fully crossed design experiments carried out at five temperatures between 290{degrees}C and 310{degrees}C. Eight of the sixteen runs have been completed. Evaluation of these runs as a three factor, two level, fully crossed experiment has yielded some useful information. The choice of the Cu/La/Li metals system has been confirmed, and the high Cu, low La, low Li system hasn`t proven itself to be the most active at this point. Chemical feeds were brought on-line to the PDU. Small amounts of methyl chloride were made before the system was shut down due to equipment failure. Glass-lined equipment was found to be failing due to chemical etching. Replacement equipment with other materials of construction have been ordered. In addition, the FTIR windows clouded soon after chemical feeds were started. This materials problem is also being investigated.

  18. Proton resonance spectroscopy. Quarterly technical progress report, December 1992--November 1995

    SciTech Connect

    Shriner, J.F. Jr.

    1995-11-01

    Work on chaos in the low-lying levels of nuclei has continued on several fronts. The major effort has been study of the {sup 29}Si(p,{gamma}) reaction with the goal of establishing a complete level scheme for {sup 30}P and analyzing the eigenvalue fluctuations for evidence of chaos. These measurements are in progress, and the current status is described. A related topic is the search for different signatures of chaos which do not require the extremely high degree of completeness and purity necessary for eigenvalue analyses; those efforts are discussed in Sections 2 and 3. The possibility of studying both parity violation and time-reversal invariance violation with charged particle resonances has been explored by performing calculations using experimentally measured resonance parameters. Large enhancements are indeed available; the results are discussed in Sections 4 and 5. Preparations for an experimental study of parity violation using these techniques are ongoing. An undergraduate project searching for experimental evidence of a parity dependence of level density is discussed in Section 6. A number of improvements to the operation of the TUNL KN accelerator have been implemented in the past three years. These are described in Section 7.

  19. Base program on energy related research. Quarterly progress report, August--October 1995

    SciTech Connect

    1995-12-31

    Brief progress reports are presented for the following tasks: oil and gas; advanced systems applications; environmental technologies; applied energy science; and remediation. Oil and gas includes the following subtasks: CROW{trademark} process modeling; miscible/immiscible gas injection processes; development of a portable data acquisition system and coalbed methane simulator; and tank bottom waste processing using the TaBooRR{trademark} process. Advanced systems applications include; development and optimization of a process for the production of a premium solid fuel from Western U.S. coals; process support and development; and Easter shale oil residue as an asphalt additive. Environmental technologies include: Conditioning and hydration reactions associated with Clean Coal Technology ash disposal/utilization; remediation of contaminated soil; Syn-Ag{trademark} Process--Coal combustion ash management option; Maxi-Acid{trademark} Process--in-situ amelioration of acid mine drainage; and spill test facility data base; Applied energy science includes: heavy/oil plastics co-processing; and fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas. Remediation covers North site remediation.

  20. Advanced coal liquefaction research. Quarterly technical progress report, January 1-March 31, 1983

    SciTech Connect

    Not Available

    1983-12-01

    This report describes progress on the Advanced Coal Liquefaction project by the Gulf Research and Development Company's Merriam Laboratory during the months of January through March 1983. The liquefaction behavior of Illinois No. 6 coal beneficiated in various ways was studied in both single-stage recycle (SRC II) and short contact time (SCT) modes of operation. The distillate yield increased as the iron level in the feed slurry increased in both modes of operation. In the SCT mode, the conversion increased at greater depths of cleaning. In the SRC II mode, the distillate yield and conversion were much higher with deep cleaning and add-back of pyrite than with conventional cleaning. Pyrite addition resulted in a significant increase in short contact time conversion of subbituminous Belle Ayr coal in both high and low quality solvents. Solvent quality itself, however, had little effect on conversion. With Loveridge coal, the hydrocarbon gas yield and conversion decreased as the residence time was reduced in the range of 3 to 8 minutes. The bottoms product was filterable only at residence times of 6 minutes or greater. Addition of a small amount of nickel to a molybdenum emulsion catalyst improved yields slightly with Belle Ayr coal in the SRC II mode. Higher levels of nickel resulted in the same oil yield as with none at all.

  1. Solvent Refined Coal (SRC) process. Quarterly technical progress report, January 1979-March 1979

    SciTech Connect

    Not Available

    1980-02-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) Project by the Pittsburg and Midway Coal Mining Co. for the Department of Energy for the period January 1, 1979 to March 31, 1979. Activities included the operation and modification of the Solvent Refined Coal Pilot Plant at Fort Lewis, Washington; the Process Development Unit P-99 at Harmarville, Pennsylvania; and research at Merriam Laboratory in Merriam, Kansas. The Pilot Plant processed Powhatan No. 5 Coal in the SRC-II mode of operation studying the effect of coal particle size and system temperature on coal slurry blending and the effect of carbon monoxide concentration in the reaction feed gas on process yields. January and February were spent completing installation of a fourth High Pressure Separator on Process Development Unit P-99 to better simulate operating conditions for the proposed Demonstration Plant. During March, one run was completed at P-99 feeding Pittsburgh Seam Coal from the Powhatan No. 5 Mine. Merriam investigations included a study of the effect of iron containing additives on SRC-I operation, the addition of carbon monoxide to the feed gas, utilization of a hydrogenated solvent (Cresap process solvent) in the SRC-I mode under both normal and short residence time operating conditions, and development of a simulated distillation technique to determine the entire boiling range distribution of product oils.

  2. Peat biogasification development program. Quarterly progress report No. 5, for period October 1 - December 31, 1980

    SciTech Connect

    Wise, Dr., Donald L.

    1981-01-15

    Progress is reported in the peat biogasification development program. The objective of the research is to compile the necessary data for the design and operation of a peat anaerobic digestion process development unit. Five areas are addressed: pretreatment information; anaerobic digestion; evaluation of waste streams; process model development and economic analysis; and planning for the process development unit. During the reporting period extensive data was taken for the development of the predictive process model. A number of batch and continuous pretreatment experiments were completed and analyzed. The four samples being analyzed through solvent extration were completed, and the results are presented. Work on High Pressure Liquid Chromatography continued, and the development of the gradient elution solvent system was completed with encouraging results. Pretreated peat has been batch fermented; the continuously oxidized peat has shown conversions of close to 30%. This is significantly higher than the conversions for the batch oxidized peat. Continuous digesters have been in operation for approximately one month. Development of a predictive process model for the three phases of peat biogasification, solubilization, oxidation, and fermentation, continued with very good results. The models for solubilization and oxidation were developed and experimental data are being gathered for the fermentation phase of the process model. (DMC)

  3. Great Basin paleoenvironmental studies project; Technical progress report: Fourth quarter, March--May, 1994

    SciTech Connect

    1994-07-01

    Examination of the paleoenvironmental and geomorphic records to determine the local and regional impact of past climates will advance the assessment of Yucca Mountain`s suitability as a high-level nuclear waste repository. Paleobotanical studies will reconstruct the response of vegetation to climate change at the community and the organismal levels in order to identify periods of mesic climate at Yucca Mountain and the adjacent region during the last 20,000 to 50,000 years. Constructing a history of Great Basin vertebrates, particularly mammals, will provide empirical evidence of past environmental and climatic conditions within the Great Basin. The objective of the geomorphology component of the program is to document the responses of surficial processes and landforms to the climatic changes documented by studies of packrat middens, pollens, and faunal distributions. The goal of the transportation component is to compare the results from three models (FESWMS-2DH, DAMBRK, and FLO-2D) that have been suggested as appropriate for evaluating flood flows on alluvial fans with the results obtained from the traditional one-dimensional, stochastic model used in previous research for the Yucca Mountain Project. Progress on all these tasks is described.

  4. Great Basin paleoenvironmental studies project; Technical progress report, second quarter, September--November, 1993

    SciTech Connect

    1993-12-31

    Progress is described in the four tasks associated with this project. Task 1, Paleobotanical studies in the Great Basin, has as its objective the reconstruction of the response of vegetation to climate in order to identify periods of mesic climate at Yucca Mountain during the last 20,000 to 50,000 years. Past extremes in infiltration rates are expected to serve as estimates of climate that may be expected during the next 10,000 years at Yucca Mtn. Task 2, Paleofaunas, will construct a history of Great Basin vertebrates that will provide empirical evidence of past environmental and climatic conditions. The objective of Task 3, Geomorphology, is to document the responses of surficial processes and landforms to the climatic changes documented by studies of packrat middens, pollen, and faunal distributions. The goal of Task 4, Transportation, is to compare the results from three models that have been suggested as appropriate for evaluating flood flows on alluvial fans with the results obtained from the traditional one-dimensional, stochastic model used in previous research for Yucca Mountain. This research looked at three alluvial fans with rail transportation alignments crossing them.

  5. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    SciTech Connect

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  6. Nuclear-waste-management. Quarterly progress report, July-September 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  7. Nuclear-medicine progress report for quarter ending June 30, 1983

    SciTech Connect

    Knapp, F.F. Jr.; Ambrose, K.R.; Butler, T.A.; Goodman, M.M.; Srivastava, P.C.

    1983-10-01

    Studies with several recently developed /sup 123/-I-labeled fatty acids are described. Well defined planar images have been obtained in a dog study utilizing (E)-18-(/sup 123/I)iodo-17-octadecenoic acid, a new alkenoic fatty acid containing the radioiodide stabilized as a vinyl iodide. Studies are now in progress to prepare (E)-18-borono-17-octadecenoic acid as a kit for rapid iodination to prepare the /sup 123/I-labeled fatty acid which will allow investigators to radiolabel this agent on site for further preclinical studies. The first single photon tomographic images have been obtained with 15-(/sup 123/I)iodophenyl-3-(R,S)-methylpentadecanoic acid. This agent was readily obtained from a new kit involving the H/sup 123/I decomposition of the piperidinyl triazene derivative of 15-(p-aminophenyl)-3-(R,S)-methyl-pentadecanoic acid. The evaluation of this agent and several radioiodinated fatty acids in the in vitro beating rat heart cell system is described. The recent evaluation of radioiodinated phosphonium cations has now been extended to the preparation and testing of (E)-(-1-(/sup 125/I)iodo-1-penten-5-yl)triphenylarsonium iodide. Several shipments of raidolabeled agents were made to Medical Cooperative investigators, including three shipments of /sup 191/Os for further developing and clinical testing of the /sup 191/Os//sup 191m/Ir radionuclide generator. In addition, two shipments of cis-dichlorodiammine (/sup 195m/Pt)platinum(II) were made to participants in collaborative programs. Several radiolabeled fatty acids including 15-(p-(/sup 131/I)iodophenyl-3-(R,S)-methylpentadecanoic acid and 15-(p-(/sup 131/I)-iodophenyl)-6-tellurapentadecanoic acid were made for collaborative studies investigating the properties of these new agents.

  8. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1978

    SciTech Connect

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-01-01

    Fuel cycle work included hydraulic performance and extraction efficiency of eight-stage centrifugal contactors, flowsheet for the Aralex process, Ru and Zr extraction in a miniature centrifugal contactor, study of Zr aging in the organic phase and its effect on Zr extraction and hydraulic testing of the 9-cm-ID contactor. Work for predicting accident consequences in LWR fuel processing covered the relation between energy input (to subdivide a solid) and the modes of particle size frequency distribution. In the pyrochemical and dry processing program corrosion-testing materials for containment vessels and equipment for studying carbide reactions in bismuth is under way. Analytical studies have been made of salt-transport processes; efforts to spin tungsten crucibles 13 cm dia continue, and other information on tungsten fabrication is being assembled; the process steps of the chloride volatility process have been demonstrated and the thoria powder product used to produce oxide pellets; solubility of UO/sub 2/, PuO/sub 2/, and fission products in molten alkali nitrates is being investigated; work was continued on reprocessing actinide oxides by extracting the actinides into ammonium chloroaluminate from bismuth; the preparation of thorium-uranium carbide from the oxide is being studied as a means of improving the oxide reactivity; studies are in progress on producing uranium metal and decontaminated ThO/sub 2/ by the reaction of (Th,U)O/sub 2/ solid solution in molten salts containing ThCl/sub 4/ and thorium metal chips. In the molten tin process, no basic thermodynamic or kinetic factors have been found that may limit process development.

  9. Low-Cost Solar-Array Project. Quarterly progress report, April-June 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III Program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capable of producing 1000 MT/yr. This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast to polycrystalline for subsequent use in fabricating solar cells. Progress is reported in detail. (WHK)

  10. Development of the integrated environmental control model: Performance model for the NOXSO process. Quarterly progress report

    SciTech Connect

    Kalagnanam, J.R.; Rubin, E.S.

    1995-04-01

    In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The most recent version of the IECM, implemented on a MacIntosh II computer, was delivered to DOE/PETC at the end of the last contract in May 1991. The current contract will continue the model development effort to provide DOE/PETC with improved model capabilities, including new software developments to facilitate model use and new technical capabilities for analysis of environmental control technologies. Integrated environmental control systems involving pre-combustion, combustion, and post-combustion control methods will be considered. Phase I involves developing the existing modules of the IECM. Phase II deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the use of the updated models. The present report summarizes recent progress on the Phase I effort during the period January 1 - March 31, 1995. A preliminary summary is given of the new performance model developed for the NOXSO process. The performance model is developed from first principles and parametrized based on experimental data from pilot plants.

  11. Instrumentation of dynamic gas pulse loading system. Technical progress report, first quarter 1992

    SciTech Connect

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  12. Low cost solar array project. Quarterly progress report, July-September 1980

    SciTech Connect

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast into polycrystalline silicon for subsequent use in fabricating solar cells. Progress is reported on the following tasks: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/Yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform supporting research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the product of semiconductor-grade silicon in a facility capable of producing 1000 MT/Yr. (WHK)

  13. Build, install and demonstrate a variable stroke pump control and windmill system: 2nd quarterly technical progress report

    SciTech Connect

    Not Available

    1986-12-30

    Most of the time during the second quarter has been spent on the new gear drive. At the end of the 1st quarter the VSM (Variable Stroke Mechanism) was approximately 50% complete. Some work was done the second quarter on the VSM. An all steel mount was nearly completed for the hydraulic cyclinder. The purchased parts to finish the plumbing are on hand, the feedback control chain purchased, and one of the two pulleys was made. A safety device, that could be optional, is being designed and constructed. This addition would prevent damage to the equipment if all of the hydraulic fluid were lost for some reason.

  14. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report for July through September 1994 (Fourth quarter of fiscal year 1994)

    SciTech Connect

    Kiser, D.M.; Brown, H.L.

    1995-03-01

    The Site Operator Program was initially established by the Department of Energy (DOE) to incorporate the electric vehicle activities dictated by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976. In the ensuing years, the Program has evolved in response to new legislation and interests. The Program currently includes twelve sites located in diverse geographic, metrologic, and metropolitan areas across the US. Information is shared reciprocally with a thirteenth site, not under Program contract. The vehicles are operator-owned, except for two Griffon vans. The Mission Statement of the Site Operator Program includes three major activities: advancement of electric vehicle technologies; development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles (EVs) by the public. The current participants in the Site Operator Program are shown. The ultimate thrust of program activities varies among sites, reflecting not only the Operator`s business interests but also geographic and climate-related operating conditions. This fourth quarter report (FY-94) includes a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now found in Appendix A.

  15. Magnetic relaxation -- coal swelling, extraction, pore size. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Doetschman, D.C.

    1993-12-31

    During this quarter, the CW (continuous wave) and pulsed EPR (electron paramagnetic resonance) have been examined of the swelled Argonne Premium whole coals and the swelled residues of these coals. The CW EPR spectra will not be of high quality due to the unexpectedly microwave-lossy character of the pyridine used for swelling. Being relatively unaffected by this characteristic, the pulsed EPR measurements of the spin relaxation times of the broad (non-inertinite) and narrow (inertinite) macerals have been completed. Although detailed analyses of these results have not yet been done, marked differences have been found between the relaxation times of the swelled and unswelled coals and residues. The most startling are the less than 200 nsec times T{sub 1} of the spin-lattice relaxation of the inertinite radicals in the swelled samples. The T{sub 1} of this maceral in the unswelled coal were approaching 1 millisecond. The T{sub 1} contrast was much less pronounced between the swelled and non-swelled non-inertinite macerals. The prospects of significant progress in coal pore size measurements with xenon and NMR (nuclear magnetic resonance) have dimmed since the beginning of this project. This assessment is based on the dearth of these types of studies, a paper at a contractors` meeting on this subject that did not materialize, and discussions with colleagues with experience with the technique in coals. Instead, the authors have been developing a pulsed EPR technique for the spin probing of molecular motion to be applied to pores in carbonaceous materials. This report contains a copy of a nearly final draft of a paper being prepared on the development of this technique, entitled {open_quotes}Physical Characterization of the State of Motion of the Phenalenyl Spin Probe in Cation-Exchanged Faujasite Zeolite Supercages with Pulsed EPR.{close_quotes}

  16. Charge distribution analysis of catalysts under simulated reaction conditions. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Freund, F.

    1993-11-01

    New furnaces were built based on fused silica with NiChrome heating elements custom-wound on alumina ceramic to self-compensate for induced magnetic fields during operation. During tests these furnaces failed due to thermal stresses caused by the high temperature cement used to hold the alumina ceramic in place. As a third solution pieces of boron nitride have been procured from which new furnace bodies will be machined during the third quarter. In order to increase the in-house capacity for machining ceramic parts a small lathe was ordered. The implementation of the LabView data acquisition software from National Instruments, Inc. took more time than anticipated and is still not completed. Major difficulties had to be overcome during the integration of the separate positive and negative high voltage supplies ({plus_minus}1000V). It became apparent that a custom-designed switch had to be installed to safeguard the data acquisition modules and the Apple Macintosh Quadra 700 computer again inadvertent exposure to the high voltages during switching operations. Martin Vasey, the software consultant, has made significant progress but the task is far from complete. Major time was spent on integrating the National Instruments GPIB Board with the Omega Temperature Controller via an the RS 232 port and to overcome compatibility problems. Because the Omega Temperature Controller failed catastrophically during tests completion of this task has been put on hold. To proceed with the work one of the PERKIN-ELMER Pt-wound furnaces which is available in the P.I.`s laboratory has been installed for the initial runs.

  17. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.

    SciTech Connect

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y.

    2012-04-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December

  18. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, 1 January 1994--31 March 1994

    SciTech Connect

    Chen, J.P.; Cheng, L.S.; Hausladen, M.C.; Kikkinides, E.S.; Yang, R.T.

    1994-05-01

    During the past quarter, progress has been made in four tasks as summarized below: Task 1: A delaminated Fe{sub 2}O{sub 3} pillared clay was synthesized and carefully characterized. The chemical composition was measured by ICP atomic emission spectrometry. The structural changes in the clay as well as the iron oxide particle sizes were characterized by X-ray diffraction techniques. Task 2: The Selective Catalytic Reduction (SCR, i.e., NO reduction with NH{sub 3}) activities of the delaminated pillared clay were tested and compared with four other most active SCR catalysts: a commercial V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst, a Fe{sub 2}O{sub 3}-pillared clay, and two supported Fe{sub 2}O{sub 3} catalysts (on Al{sub 2}O{sub 3} and TiO{sub 2}). The delaminated Fe{sub 2}O{sub 3} pillared clay exhibited the highest SCR activities. Catalyst stability test showed that the delaminated sample was also stable. Task 3: To further increase the SCR activity of the delaminated pillared clay, Cr{sub 2}O{sub 3} was doped as a promoter by incipient wetness. Task 4: Deactivation effects of SO{sub 2} and H{sub 2}O on the SCR activities of the delaminated Fe{sub 2}O{sub 3} pillared clay were studied, and compared with other SCR catalysts. The delaminated clay catalyst showed the least deactivation.

  19. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  20. Coal-fired high performance power generating system. Quarterly progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    1995-08-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign and if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.

  1. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report

    SciTech Connect

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y.

    2012-06-28

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March

  2. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.

    SciTech Connect

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-08-26

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks

  3. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.

    SciTech Connect

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-12-09

    high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.

  4. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Bai, T.

    1997-01-01

    This quarterly technical progress report describes work performed under DOE Grant No. DE-FG22-94MT94011 during the period September 1, 1996 to December 31, 1996 which covers the nineth quarter of the project. The objective of this investigation is to characterize the operation of a fan powered infrared burner (IR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. As the environmental regulations become more stringent, infrared burners are receiving increasing interests.

  5. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, November 1991--January 1992

    SciTech Connect

    Not Available

    1992-08-01

    The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Accomplishments for this past quarter are as follows: The 9th quarterly measurements at the Colorado site took place in December, 1991. Permeability and neutron absorption moisture content measurements were made and on site data was collected from the data logger; The 9th quarterly sampling at the Ohio site took place in November 1991. Permeability and moisture content measurements were made, and water samples were collected from the wells and lysimeters; The second quarterly core and water samples from the first Illinois test case were collected in mid November, and field data were collected from the data logger; Chemical analysis of all core and water samples continued; all chemical analyses except for some tests on Illinois second quarter cores are now complete.

  6. Quarterly Technical Progress Report

    SciTech Connect

    Yi Hua Ma

    1998-03-16

    The temperature dependence of the oxygen flux across the BaCe0G03 dense membrane (BCG membrane) tube was investigated. In the temperature range of 688C to 955C, the increase in the oxygen flux with temperature obeyed the Arrhenius law. An increase in the helium sweep flow membrane tube. rate in the tube side resulted in an increase in the oxygen flux through the The oxygen fluxes through the BCG dense membrane tube were measured at different oxygen partial pressures in the shell side. The oxygen flux increased with the oxygen partial pressure in the shell side. The BCG dense membrane was tested in a membrane reactor for the catalytic oxidative coupling of methane. The BCG membrane is not a complete combustion catalyst, and the catalytic activity of the BCG membrane was found to be much higher than the Argonne dense membrane. As the oxygen partial pressure in the shell side increased, the C2 decreased while the C2 yield remained unchanged, indicating that non-selective, reactions still played a significant role in the membrane reactor.

  7. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 7, April 1, 1994--June 30, 1994

    SciTech Connect

    Singleton, A.H.

    1995-05-31

    This project`s goal is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column (SBC) reactor. During the seventh quarter, significant progress in several areas has enabled us to make a number of important conclusions. Preliminary catalyst preparation of 3 batches of a Ru-promoted 20% Co/Al{sub 2}O{sub 3} has confirmed the similarity in catalysts prepared by Energy International and by Calsicat using the same procedure. This similarity was evident in both fixed and SBC reactor studies. All TiO{sub 2}-supported Co catalysts have been found to have poor F-T properties in both the fixed-bed and SBC reactors. These catalysts had been prepared following exactly the procedures given in the Exxon patents. One of the main problems in using TiO{sub 2} as a support is the fact that it has low surface area for supporting a 20 wt % Co catalyst. Another problem is that it does not seem to be robust enough for use in a SBC reactor. Ru promotion of Co/SiO{sub 2} does not have as dramatic an effect on catalyst activity as seen for Co/Al{sub 2}O{sub 3}. However, it does play a major role in maintaining higher activity (factor of 2 in the SBCR) when K is added to Co/Sr/SiO{sub 2}. Zr has been clearly shown by us to significantly enhance the F-T activity of Co/SiO{sub 2}. Such promotion is a basis for many of the Shell cobalt F-T patents. Latest results indicate that Zr also improves the activity of Co/Al{sub 2}O{sub 3}, although the methane selectivity is also slightly elevated. Finally, for our design of a ``benchmark`` Co F- T catalyst, research has now shown using both fixed-bed and SBC reactors that 0.3 wt % K is the optimum amount to use with Ru- promoted 20 wt % Co/Al{sub 2}O{sub 3}. This amount of K greatly improves higher hydrocarbon selectivity without causing an unacceptable loss of activity.

  8. Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fourth quarterly technical progress report, Second quarter, 1993

    SciTech Connect

    Eggington, W.J.

    1993-09-01

    The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the second quarter of 1993 was focussed on completion of Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. Also during the report period, Task 6, Ground Support, was completed and a report containing the results was submitted to DOE. This task addressed the complete H.1 Cyclocraft system, i.e. it included the need personnel, facilities and equipment to support cyclocraft operations in wetland areas.

  9. Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fifth quarterly technical progress report, Third quarter, 1993

    SciTech Connect

    Eggington, W.J.

    1993-12-31

    The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. In 1992, Task 1, Environmental Considerations, and Task 2, Transport Requirements, were completed. In the first two quarters of 1993, Task 3, Parametric Analysis, Task 4, Preliminary Design, and Task 6, Ground Support, were completed. Individual reports containing results obtained from each of these tasks were submitted to DOE. In addition, through June 30, 1993, a Subscale Test Plan was prepared under Task 5, Subscale Tests, and work was initiated on Task 7, Environmental Impacts, Task 8, Development Plan, Task 9, Operating Costs, and Task 10, Technology Transfer.

  10. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Third quarterly technical progress report, March 16--June 15, 1994

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1994-09-21

    The threat of global warming, mounting concerns about air and water pollution, prospective food shortages, and declining reserves of low-cost fossil fuels, have spawned a burgeoning interest in photobiological processes using microalgae as a method of large-scale utilization of CO{sub 2} for the production of fuels, food, and waste treatment. Background to this technology can be found in prior progress reports. During this quarterly period, the following main subjects were investigated: (1) Wastewater treatment with microalgae as a sink for CO{sub 2} derived from power plants. (2) Exploration of a method to increase in photosynthetic efficiencies by a factor of two to three fold with microalgae cultures. This quarterly report reflects this work only partially, as some of it is still in progress. In addition to the specific work reported on here, work also progressed on several other areas, in particular the economics of the construction of a large-scale pond system and the review of prior efforts in this area. These will be reported on in later reports.

  11. Combustion of pulverized coal in vortex structures. Quarterly progress report No. 6, January 1, 1995--March 31, 1995

    SciTech Connect

    Gollahalli, S.R.

    1995-03-01

    This sixth quarterly report describes the activities and accomplishments of the research team at the University of Oklahoma, Norman, Oklahoma, related to the project entitled ``Combustion of Pulverized Coal in Vortex Structures`` during the period January 1, 1995 to March 31, 1995. The work performed in this quarter consisted of the following four tasks: (1) design and fabrication of a computer-driven traversing mechanism for traversing LDV transmitter and receiving optics, (2) color schlieren photography, (3) presenting a report in the panel-review meeting in Pittsburgh, (4) installation of additional safety devices in response to the letter of Dr. Sean Plasynski, and (5) streamwise velocity measurement in the isothermal heterogeneous shear layer with nonreacting particles using LDV. In the next quarter, we plan to continue this work with heated shear layers in which particles undergo pyrolysis. Flow visualization and mean velocity field measurement instrumentation will continue as the major experimental techniques.

  12. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

  13. State of Georgia`s environmental and emergency preparedness activities for the Savannah River Site. Quarterly progress report, July 1, 1993--December 31, 1993

    SciTech Connect

    McConnell, G.W.

    1994-05-01

    This quarterly report discusses activities and accomplishments of the EPD as part of Georgia`s environmental and emergency preparedness activities for the Savannah River Site. The EPD has assisted the Georgia Emergency Management Authority (GEMA) in accomplishing a number of ongoing tasks such as annual reviews, training, response capability, and radiation assessment capability. The report also outlines EPD progress and activities in the area of environmental monitoring including; surface water discharges, public drinking water, ground water monitoring, air monitoring, crops and milk, and direct radiation on soil and vegetation.

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  15. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1-July 31, 1980

    SciTech Connect

    Peterson, J. R.

    1980-09-04

    The major objective of this program for development of a molten carbonate fuel cell power plant is to establish and demonstrate readiness for fabrication and test of full-scale prototype stacks. This will be accomplished by a heavy emphasis upon resolution of remaining technology problems, including materials, processes and contaminant effects research, development and testing of cell components to 10,000 hours endurance life and scaleup of laboratory hardware to commercial size. A detailed design for a prototype stack will be defined and a tenth-size of full-scale cells will be tested. Component and manufacturing processes will be developed based upon commercial cost goals. Coal-fired utility central station and industrial cogeneration power plant requirements will be defined and plant options evaluated, leading to selection of a single reference design. Cell and stack design and development will be guided by requirements based upon the reference plant design. The specific program objectives derived from the contract work statement are as follows: (1) to define a reference power plant design for a coal-fired molten carbonate power plant; (2) to develop and verify cell and stack design based upon the requirements of the reference power plant design; (3) to establish and demonstrate readiness to fabricate and test full-length stacks of full-scale cells, hereafter called prototype stacks; and (4) to quantify contaminant effects and establish a program to verify performance of molten carbonate fuel cells operating on products of coal gasification. Progress is reported.

  16. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-07-23

    During this last quarter, evaluations were complete on the motor materials after 500-hr exposures to refrigerants CFC-123, HFC-134a and HCFC-22 at 90{degrees}C. Materials were also evaluated after exposure to nitrogen at 127{degrees}C to determine effect of the thermal exposure. Other exposures were started during this quarter with refrigerants HCFC-124, HFC-125, HFC-143a, HFC-32 and HFC-152a. One 500 hr exposure is set up per week and one is analyzed the same week. This will enable Trane to complete the 500 hour exposures by the end of the year.

  17. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    SciTech Connect

    Not Available

    1994-12-31

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  18. A 1987 progress report of manufacturing techniques for Gravity Probe B gyroscope rotors

    NASA Technical Reports Server (NTRS)

    Taylor, Roy A.; White, ED; Reed, William J.

    1987-01-01

    The significant improvements in the manufacture of Gravity Probe B gyroscope rotors developed since the publication of the last report on this project are presented. The improvements include the polishing machine structure, rough laps, finishing/polishing laps, lapping procedure, measurement techniques, and a summary of the manufacturing status. These six areas represent significant improvements in the manufacture of the gyroscope rotors to meet flight requirements.

  19. Electric and hybrid vehicle program; Site Operator Program. Quarterly progress report, January--March 1992 (Second quarter of fiscal year 1992)

    SciTech Connect

    Warren, J.F.

    1992-05-01

    Activities during the second quarter included the second meeting of the Site Operators in Phoenix, AZ in late April. The meeting was held in conjunction with the Solar and Electric 500 Race activities. Delivery of vehicles ordered previously has begun, although two of the operators are experiencing some delays in receiving their vehicles. Public demonstration activities continue, with an apparent increasing level of awareness and interest being displayed by the public. Initial problems with the Site Operator Database have been corrected and revised copies of the program have been supplied to the Program participants. Operating and Maintenance data is being supplied and submitted to INEL on a monthly basis. Interest in the Site Operator Program is being reflected in requests for information from several organizations from across the country, representing a wide diversity of interests. These organizations have been referred to existing Site Operators with the explanation that the program will not be adding new participants, but that most of the existing organizations are willing to work with other groups. The exception to this was the addition of Potomac Electric Power Company (PEPCO) to the program. PEPCO has been awarded a subcontract to operate and maintain the DOE owned G-Van and Escort located in Washington, DC. They will provide data on these vehicles, as well as a Solectria Force which PEPCO has purchased. The Task Force intends to be actively involved in the infrastructure development in a wide range of areas. These include, among others, personnel development, safety, charging, and servicing. Work continues in these areas. York Technical College (YORK) has completed the draft outline for the EV Technician course. This is being circulated to organizations around the country for comments. Kansas State University (KSU) is working with a private sector company to develop a energy dispensing meter for opportunity charging in public areas.

  20. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  1. Configurational diffusion of asphaltenes in fresh and aged catalyst extrudates. Quarterly progress report, June 20, 1995--September 20, 1995

    SciTech Connect

    Guin, J.A.

    1996-01-01

    The objective of this research is to determine the relationship between the size and shape of coal and petroleum macromolecules and their diffusion rates i.e., effective diffusivities, in catalyst pore structures. This quarter, three petroleum and two coal asphaltenes were prepared from petroleum asphalts and coal derived solids separately by solvent extraction.

  2. Underground gasification for steeply dipping coal beds: Phase III. Quarterly progress report, April 1-June 30, 1981. [Rawlins Test 2

    SciTech Connect

    Not Available

    1981-12-01

    Preparations are being made for the August start-up of Rawlins Test 2. Site construction activities began May 4 with the mobilization of the construction subcontractor. The drilling program was completed this quarter with the installation of instrumentation wells. The Experimental Basis Document, PGA Operating Manual, and DAS Operating Manual have also been completed.

  3. Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 74, Quarter ending March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    Accomplishments for the past quarter are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; field demonstrations in high-priority reservoir classes; and novel technology. A list of available publication is also provided.

  4. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  6. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect

    Clarke, D.; Ershaghi, I.; Davies, D.; Phillips, C.; Mondragon, J.

    1995-07-28

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  7. Bench-scale testing of on-line control of column flotation using a novel analyzer. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-16

    This document contains the second quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTE{trademark} Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). The project schedule timeline by task series for the twelve month project, as it was laid out in the initial Project Work Plan. At the present time, all tasks are progressing according to schedule with the exception of the Task 800 Circuit Testing and Sample Prep and Task 1000 Circuit Decommissioning, which have slipped approximately five weeks due to delays incurred within in the project.

  8. Separation of flue-gas scrubber sludge into marketable products. Second quarterly technical progress report, December 1, 1993--February 28, 1994 (Quarter No. 2)

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1994-03-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{lg_bullet}0.5H{sub 2}0), gypsum (CaSO{sub 4}{lg_bullet}2H{sub 2}0), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides; silica; and magnesium, sodium, and potassium oxides or salts. Currently, the only market for scrubber sludge is for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. This project is developing a process that can produce a high-quality calcium sulfite or gypsum product while keeping process costs low enough that the material produced will be competitive with that from other, more conventional sources. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified gypsum or calcium sulfite product. The separated limestone will be a useful by-product, as it can be recycled to the scrubber, thus boosting the limestone utilization and improving process efficiency. Calcium sulfite will then be oxidized to gypsum, or separated as a salable product in its own right from sludges where it is present in sufficient quantity. The main product of the process will be either gypsum or calcium sulfite, depending on the characteristics of the sludge being processed. These products will be sufficiently pure to be easily marketed, rather that being landfilled.

  9. High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams. Quarterly progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Winnick, J.

    1995-12-31

    An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is made economically attractive by the lack of need for a Claus process for sulfur recovery. Membrane manufacturing coupled with full-cell experimentation was the primary focus this quarter. A tape-casted zirconia membrane was developed and utilized in one full-cell experiment (run 25); run 24 utilized a fabricated membrane purchased from Zircar Corporation. Results are discussed.

  10. Study of the effects of ambient conditions upon the performance of fan powdered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1996-04-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PER) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PER burners for satisfactory performance. During this past quarter, a porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Various gas mixtures were tested. Results indicated that the stability limits of the burner and emissions vary with fuel gas composition and air/fuel ratio. However, the maximum radiant efficiency of the burner remained constant. Results obtained from this study can be useful to develop optimum design guidelines for PER burner manufacturers.

  11. High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams: Quarterly progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Winnick, J.

    1994-12-31

    A high temperature electrochemical cell capable of polishing hydrogen sulfide from fuel gas streams is being perfected. The operation, to be used in compliance with high efficiency energy conversion systems, takes advantage of an electrochemical potential gradient instead of typical separation techniques to separate hydrogen sulfide from the fuel gas stream leaving hydrogen to enrich the exiting gases. Vaporous sulfur is the by-product carried downstream by a separate inert sweep gas and condensed. Work continued this quarter to improve experimental conditions (laboratory and equipment enhancement). The oven containing the Electrochemical Membrane Separator (EMS) is the main focus of improvement readjusting spatial requirements conforming to the controlled environmental emissions equipment while creating a controlled atmosphere gauntlet to unfavorable reactions with electrolytic species. Manufacturing of yttria-stabilized zirconia matrices was the primary focus of laboratory experimentation while full-cell testing is not possible.

  12. 49 CFR 573.7 - Quarterly reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Quarterly reports. 573.7 Section 573.7... § 573.7 Quarterly reports. (a) Each manufacturer who is conducting a defect or noncompliance... accordance with the manufacturer's plan provided to NHTSA pursuant to § 573.6(c)(9); (ii) The...

  13. 49 CFR 573.7 - Quarterly reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Quarterly reports. 573.7 Section 573.7... § 573.7 Quarterly reports. (a) Each manufacturer who is conducting a defect or noncompliance... accordance with the manufacturer's plan provided to NHTSA pursuant to § 573.6(c)(9); (ii) The...

  14. Strategic Petroleum Reserve quarterly report

    SciTech Connect

    Not Available

    1993-08-15

    This Quarterly Report highlights activities undertaken during the second quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the current quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated.

  15. Surfactant studies for bench-scale operation. Fifth quarterly technical progress report: July 1, 1993--September 30, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-10-22

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the fifth quarter of work. The major accomplishments were: (1) Completion of coal liquefaction autoclave reactor runs and related analysis with Illinois no. 6 coal at 400{degrees}C with and without surfactant and/or catalyst at pressures of 1700 psig; (2) A literature search into the effect that lignin has in the coprocessing of coal; and (3) Presentation of a report summarizing the first year of work on this task at the Annual Liquefaction Contractors Review Conference. Results from this quarter show that lignosulfonate surfactant continues to increase overall MAF conversion of Illinois no. 6 coal at temperatures up to 400{degrees}C and produces an improvement in light boiling fraction distillate over the base case of no surfactant addition.

  16. Enforcement actions: Significant actions resolved. Volume 14, No. 2, Part 1: Individual actions. Quarterly progress report, April--June 1995

    SciTech Connect

    1995-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1995) and includes copies of Orders sent by the Nuclear Regulatory Commission to individuals with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC. The Commission believes this information may be useful to licensees in making employment decisions.

  17. [Design of gas and electric rotary furnaces for the glass industry]. Quarterly progress report, September 20--December 20, 1997

    SciTech Connect

    Pochan, D.

    1997-12-31

    The authors have continually stressed that the two most critical material parameters for the success of the rotary furnace are the hearth plate and the molding release powder. Both of these issues have been solidly addressed in this quarter. They have tested the three best candidates for hearth plate material this quarter. Although they had to use the in-house gas furnaces for the testing, one of the materials combines the best heating efficiency with the least sticking tendency. This material will be used for the electric prototype. The molding release powder is mainly used for preventing the glass from adhering to the hearth plate while the glass is softening for pressing. They recently visited several companies in Japan who also repress glass. The release agent that they use is Boron Nitride. They have identified a supplier within New York state, but their concern is the very high price of this material. They are bringing in samples of different grades for experimentation, but the focus continues to be to eliminate the need for any powder. An additional area for material testing was addressed during this quarter. Once the glass is in the tool (mold) for pressing, the glass has the potential to adhere to the metal that the tool and die are made from (usually steel). Both the powder and a spraying of a carbon product are currently used to reduce this problem. Alternate materials for the tooling and/or surface coatings of the steel need to be identified and tested. During this quarter, they conducted some off-site test runs on two candidate coating materials: platinum and titanium.

  18. Development of a coal quality expert. [Fourth quarterly] technical progress report No. 15, [October 1--December 31, 1993

    SciTech Connect

    Not Available

    1994-02-14

    During the past quarter, tasks 4, 5, and 6 were active. Under Task 4, work continued on the King, Gaston, and Brayton Point field test reports with completion and release expected in the Spring of 1994. Tasks 5 and 6 activities were directed at design and development of CQE base classes and objects, continued formulation, testing, and integration of CQE algorithms and submodels, and the development of the user interface prototype.

  19. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  20. Enforcement actions: Significant actions resolved medical licensees. Quarterly progress report, January 1995--March 1995. Volume 14, No. 1, Part 2

    SciTech Connect

    1995-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January-March 1995) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to medical licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  1. Enforcement actions: Significant actions resolved reactor licensees. Quarterly progress report, October--December 1994, Volume 13, No. 4, Part 1

    SciTech Connect

    1995-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1994) and includes copies of letters Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  2. Enforcement actions: Significant actions resolved material licensees (non-medical). Quarterly progress report, October 1994--December 1994

    SciTech Connect

    1995-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1994) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to material licensees (non-medical) with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  3. Enforcement actions: Significant actions resolved reactor licensees. Volume 14, No. 2, Part 2, Quarterly progress report, April--June 1995

    SciTech Connect

    1995-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1995) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to reactor licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication.

  4. Energy from in situ processing of antrim oil shale. Quarterly technical progress report, April-June 1980

    SciTech Connect

    Young, D.C.

    1980-07-01

    Processing of data from the F80 extraction trials continued for much of this quarter. Several computer programs were written so the data could be evaluated or accessed for plotting. Numerous computer generated plots were made for use in the topical reports which are in preparation. Activity at the experimental site has been directed toward an orderly shutdown and dismantling of equipment. All but nine of the wells were filled with cement and capped in accordance with th requirements of the Michigan Department of Natural Resources. Shale characterization work was continued at four universities in Michigan under subcontracts. Work on final reports of several of these projects has begun.

  5. Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Zondlo, J.; Stiller, A.

    1996-10-25

    This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

  6. Novel catalysts for upgrading coal-derived liquids. Quarterly technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1993-12-31

    The principal objective of this research is to evaluate the hydrotreatment properties of {gamma}-Al{sub 2}O{sub 3} supported Mo oxynitride and oxycarbide catalysts. This information will be used to assess the potential of these materials for use as commercial catalysts for hydrotreating coal-derived liquids. During this quarter, the authors evaluated the catalytic properties of a series of supported molybdenum nitride catalysts. These catalysts were prepared in the laboratory for comparison with the supported molybdenum oxynitrides. Pyridine hydrodenitrogenation (HDN) was used as the test reaction.

  7. Modeling, design, and life performance prediction for energy production from geothermal reservoirs. Quarterly progress report, October--December, 1997

    SciTech Connect

    Swenson, D.

    1997-01-01

    The objective of this project is to maintain and transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. In this quarter, the primary focus has been on interaction with industry, development of the Geocrack3D model, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that the authors focus on flow in fractured rock and on the coupled effect of thermal cooling.

  8. Configurational diffusion of asphaltenes in fresh and aged catalysts extrudates. Quarterly progress report, December 20, 1992--March 20, 1993

    SciTech Connect

    Guin, J.A.; Tarrer, A.R.

    1993-07-01

    The objective of this research is to determine the relationship between the size and shape of coal and petroleum macromolecules and their diffusion rates i.e., effective diffusivities, in catalyst pore structures. That is, how do the effective intrapore diffusivities depend on molecule configuration and pore geometry. This quarter, the investigators several approaches to check the effect of external mass transfer on the diffusion rate. Theoretical analyses and experimental results showed that the external mass transfer effect can be neglected for our experimental conditions.

  9. Configurational diffusion of asphaltenes in fresh and aged catalysts extrudates. Quarterly progress report, March 20, 1992--June 20, 1992

    SciTech Connect

    Guin, J.A.; Tarrer, A.R.

    1992-09-01

    The objective of this research is to determine the relationship between the size and shape of coal and petroleum macromolecules and their diffusion rates i.e., effective diffusivities, in catalyst pore structures. That is, how do the effective intrapore diffusivities depend on molecule configuration and pore geometry. This quarter we made a more comprehensive literature survey concerning configurational diffusion in porous catalysts or catalyst supports. A detailed literature review is reported. Also, a mathematical configurational diffusion model was developed. By using this model, the effective diffusivity for model compounds diffusing in porous media and a linear adsorption constant can be determined by fitting experimental data.

  10. Advanced coal gasification system for electric power generation. Third quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    1980-07-25

    The operation, maintenance and modifications to the Westinghouse gasification process development unit during the quarter are reviewed. The tests of the gasifier-agglomerator included direct coal feed as well as oxygen-blown gasification of a char or coal bed. Then the whole system was tested in single and double stage operation. Laboratory support involved fluidized bed test facilities at ambient temperature and at design temperature for devolatilization and gasification studies. Other laboratory systems were related to thermal analysis and pressurized high temperature studies of gasification and gas cleaning. (LTN)

  11. Development of tailored ceramics for geologic storage of nuclear wastes. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Not Available

    1980-05-15

    In the second quarter of activities on developing Tailored Ceramic waste forms for SRP waste compositions, emphasis was on the chemistry controlling the incorporation of the waste elements into the crystalline phases of the high-alumina content ceramic and the major factors affecting the consolidation process. Research on the design and synthesis of oxide and phosphate ceramic waste forms has continued with emphasis on fluorite-structure oxides and on rare earth phosphates with the monazite structure. Dissolution studies to date indicate that monazite is very stable.

  12. Industrial Assessment Centers: A program of direct assistance for small and medium-size manufacturers. Quarterly progres report, October 1, 1995--September 30, 1996

    SciTech Connect

    1998-06-17

    During the quarter ending March 31, 1998, the IACs in the Western Region issued assessment reports to 16 clients for the 1996-97 program period. The attached summary shows the aggregate numbers of industrial assessments performed by, reports received from, critiques completed and returned to, and implementation reports completed by each of the Western Region IACs under the 1995-96 program period through the quarter ending March 31, 1998. Table 2 shows the numbers of industrial assessments performed by, reports received from, critiques completed and returned to, and implementation reports completed by each of the Western Region IACs under the 1996-97 program period.

  13. Hydrogen manufacturing using plasma reformers. [Annual progress report], May 1, 1995--December 31, 1995

    SciTech Connect

    Cohn, D.R.; Bromberg, L.; Hochgreb, S.; O`Brien, C.; Rabinovich, A.

    1995-12-31

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes in particular the possibility of virtual elimination Of C0{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  14. The AMTEX Partnership{trademark}. Fourth quarter FY95 report

    SciTech Connect

    1995-09-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operations and program management of the AMTEX Partnership{trademark} is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership. Progress is reported on the following projects: computer-aided fabric evaluation; cotton biotechnology; demand activated manufacturing architecture; electronic embedded fingerprints; on-line process control for flexible fiber manufacturing; rapid cutting; sensors for agile manufacturing; and textile resource conservation.

  15. Advanced photovoltaic concentrator cells. Quarterly technical progress report No. 2, 1 December 1979-29 February 1980

    SciTech Connect

    Zehr, S.W.; Yang, H.T.; Yang, J.J.; Harris, J.S. Jr.

    1980-01-01

    This report describes second quarter activities for a project aimed at demonstrating the technical feasibility of advanced high efficiency concentrator solar converters. The goal of the program is to achieve 30% conversion efficiency with a converter operating at 30/sup 0/C under 500 to 1000 SUN AM2 illumination and 25% conversion efficiency with a converter operating at 150/sup 0/C under 500 to 1000 SUN AM2 illumination. The approach is to fabricate two cell, non-lattice matched, monolithic stacked converters using optimum pairs of cells having bandgaps in the range of 1.6 to 1.7 eV and 0.95 to 1.1 eV. The high bandgap cells are to be fabricated using MOCVD or LPE to produce the needed AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap cells are to be similarly fabricated from AlGaSb(As) compositions by LPE. These subcells are then to be joined into a monolithic structure by an appropriate thermal bonding technique which will also form the needed transparent intercell ohmic contact (IOC) between the two subcells. The activities this quarter have been largely focused on the development and study of low bandgap cell structures and attempts to develop suitable techniques for the thermal bonding operation.

  16. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, July 1996--September 1996

    SciTech Connect

    Anderson, S.A.; Hatcher, P.G.; Radovic, L.R.

    1996-10-01

    The primary objective of this project is to use {sup 129}Xe NMR to characterize the microporous structure of coals. We will use direct information on pore size, as well as indirect information from adsorption rates and evidence for intra/extraparticle diffusion, to characterize the connectivity of the micropore network. A second objective is to use {sup 129}Xe NMR to describe the effect of controlled opening of the micropores in a microporous carbon by oxygen chemi-sorption/desorption. Our experimental focus in this quarter has been the low power presaturation of the NMR signal of {sup 129}Xe adsorbed in coal. Preliminary work on this experiment was reported in the last quarter. Low power presaturation of {sup 129}Xe adsorbed in two coals produces a hole-burning effect in the adsorbed xenon NMR signals, indicating that these signals are broad due to overlap of a series of chemical shifts. Saturation transfer to the entire adsorbed xenon signal and to the extraparticle gas is observed with increasing presaturation time. Differences in timing of saturation transfer to the external gas have implications for the nature of the connectivity of the pore structures in coal.

  17. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly progress report], December 1, 1994--February 28, 1995

    SciTech Connect

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun; Shi, Feng; Gholson, K.L.; Ho, K.K.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During this second quarter working with IBC-108 coal (2.3% organic S. 0.4% pyrite S), the effects of different ratios of oil:coal, different extraction solvents, and different temperatures were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 1OO{degree}C. BTU loses can be kept to a minimum of 3% with proper use of solvents.

  18. Combustion of pulverized coal in vortex structures. Quarterly progress report No. 2, January 1, 1994--March 31, 1994

    SciTech Connect

    Gollahalli, S.R.

    1994-04-01

    This second quarterly report describes the activities and accomplishments of the research team at the University of Oklahoma, Norman, Oklahoma, related to the project entitled ``Combustion of Pulverized Coal in Vortex Structures`` during the period January 1, 1994 to March 31, 1994. The construction of the experimental facility for generating two-dimensional shear layers containing vortex structures has been completed. Preliminary shake-down test of the test facility were conducted for debugging and fine-tuning. A smoke generator was constructed for smoke-visualization of shear layers. Direct photographs of smoke flow patterns of the interfacial region of the mixing layers have been taken. Mean velocity profiles in the direction normal to the tunnel stream direction have been measured with a hot-wire anemometer for different ratios of the initial velocities of the mixing streams. In the next quarter, we plan to conduct schlieren flow visualization of the shear layer, fabricate the particulate feeding system, and measure the velocity field as a function of the particulate concentration in one of the streams.

  19. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Morgan, C.D.

    1995-09-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.

  20. High temperature membranes for H{sub 2}S and SO{sub 2} separations. Quarterly progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Winnick, J.

    1991-12-31

    High temperature membrane separation techniques have been applied to gas mixtures involved in coal utilization. For coal gasification, H{sub 2}S has been removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. For coal combustion, SO{sub 2} has been separated from the flue gas, with concentrated SO{sub 3} produced as a by-product. Both processes appear economically viable but each requires fundamental improvements: both the H{sub 2}S cell and the SO{sub 2} cell require more efficient membranes and the H{sub 2}S cell needs a more efficient anode. Membranes will be fabricated by either hot-pressing, impregnation of sintered bodies or tape casting. Research conducted during the present quarter is highlighted, with an emphasis on progress towards these goals.

  1. Improving the stability of coal slurries: Quarterly progress report for the period Sep. 15, 1986-Dec. 15, 1986. [Adsorption of gum tragacanth on coal particles

    SciTech Connect

    Fogler, H.S.

    1986-01-01

    The last quarterly progress report focused on the adsorption study of the polystyrene latex spheres with gum tragacanth (GT), and the adsorption mechanism was found to be hydrophobic rather than electrostatic. Also, the effect of the amount of GT adsorbed, the bulk concentration of GT, incubation time and pH on the stability factor was examined, and the results indicated that the conformation of GT on the surface of latex spheres plays an important role in the stabilization. This report presents the results of the coal-water slurries, mainly focusing on the adsorption study of GT by changing pH and ionic strength. It was found from the experiment in which the ionic strength was changed that the adsorption of GT on the coal particles is hindered by the coulombic repulsion between GT and coal. In addition, the experiment in which pH was changed also indicated that the adsorption mechanism is electrostatic in nature. 7 refs., 2 figs.

  2. Improving the stability of coal slurries: Quarterly progress report for the period December 15, 1986-March 15, 1987. [Adsorption of gum tragacanth on polystyrene latex spheres

    SciTech Connect

    Fogler, H.S.

    1987-01-01

    The previous quarterly progress report focusing on the adsorption study of the polystyrene latex spheres with gum tragacanth (GT) indicated that the conformation of GT on the surface of latex spheres plays an important role in the stabilization. To prove this, photon correlation spectroscopy was undertaken, and the steric layer thickness was measured as a function of pH. The results showed that the thickness increases as pH decreases. It is possible that at lower pH the ionization of carboxylic groups is repressed so that GT molecules no longer repel each other and become extended. In addition, the experiments in which pH was lowered showed that the particles which flocculated in the GT solution at higher pH can be deflocculated owing to the increase in the steric layer thickness. 5 refs., 5 figs., 1 tab.

  3. High temperature membranes for H{sub 2}S and SO{sub 2} separations. Quarterly progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Winnick, J.

    1992-12-31

    High temperature membrane separation techniques have been applied to gas mixtures involved in coal utilization. For coal gasification, H{sub 2}S has been removed from the syn-gas stream, split into hydrogen which enriches the syn-gas, and sulfur which can be condensed from an inert gas sweep stream. For coal combustion, SO{sub 2} has been separated from the flue gas, with concentrated SO{sub 3} produced as a by-product. Both processes appear economically viable but each requires fundamental improvements: both the H{sub 2}S cell and the SO{sub 2} cell require more efficient membranes and the H{sub 2}S cell needs a more efficient anode. Membranes will be fabricated by either hot-pressing, impregnation of sintered bodies, or tape casting. Research conducted during the present quarter is highlighted, with an emphasis on progress towards these goals.

  4. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report

    SciTech Connect

    Murphy, M.B.

    1996-04-22

    The overall objective of this project is to demonstrate that development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. specific goals to attain the objective are (1) to demonstrate that development drilling program and pressure maintenance program, based on advanced reservoir management methods , can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. This is the second quarterly progress report on the project. Results obtained to date are summarized.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  6. Bench-scale testing of on-line control of column flotation using a novel analyzer. Third quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-08-24

    This document contains the third quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale flotation circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan, as well as the approach to completing the major tasks within the twelve-month project schedule. The project is broken down into three phases, which include: Phase I -- Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing; Phase II -- ET Circuit Installation and Testing: This installation and testing phase of the project was performed at PETC`s CPPRF from January through June, 1993, and was the major focus of the project. It involved testing of the continuous 200--300 lb/hr. circuit; and Phase III -- Project Finalization: The project finalization phase is occurring from July through September, 1993, at PTI`s Calumet offices and involves finalizing analytical work and data evaluation, as well as final project reporting. This Third Quarterly Technical Progress Report principally summarizes the results from the benchscale testing with the second coal (Pittsburgh No. 8 Seam Coal), which occurred in April through June, 1993. It also contains preliminary economic evaluations that will go into the Final Report, as well as the plan for the final reporting task.

  7. Bench-scale testing of on-line control of column flotation using a novel analyzer. Quarterly technical progress report, September 21, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-01-22

    This document contains the first quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor Control System. The twelve-month project will involve installation of a 300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) and testing of two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan as well as the approach to completing the major tasks within the twelvemonth project. The project is broken down into three phases, which include: Phase I - Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing. Phase II - ET Circuit Installation and Testing: This installation and testing phase of the project will be performed at PETC`s CPPRF from January through May, 1993, and will be the major focus of the project. It will involve testing of the continuous 300 lb/hr. circuit. Phase II - Project Finalization: The project finalization phase will occur from June through September, 1993, at PTI`s Calumet offices and will involve finalizing analytical work and data evaluation, as well as final project reporting. This quarterly progress report principally summarizes the results from the Phase I preparation work and the plan for the early portions of the Phase 11 installation and commissioning, which will occur in January and the first week of February, 1993.

  8. Research and development of a Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 8 of the Phase II effort, July 1, 1996--September 30, 1996

    SciTech Connect

    1996-11-08

    This eighth quarterly report summarizes activity from July 1, 1996 through September 30, 1996. The report is organized in sections describing background information and work performed under the main work breakdown structure (WBS) categories. The WBS categories included are fuel processor, fuel cell stack, and system integration and controls. Program scheduling and task progress are presented in the appendix.

  9. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly technical progress report, July--September 1995

    SciTech Connect

    Harrison, D.P.

    1995-10-01

    Both the Antek total sulfur analyzer and the modifications to the Shimadzu GC-14A gas chromatograph to be used for analysis for SO{sub 2} and H{sub 2}S were delivered during the quarter. Problems were faced during the installation and calibration phases of both instruments. By the end of the quarter we believe that the GC problems have been solved, but problems remain with the Antek analyzer. It appears that too much sulfur (as SO{sub 2}) reaches the UV detector and causes it to become saturated. This shows up as a maximum in the instrument calibration curve. At 200 psia, the capillary flow restrictor allows a total flow rate of about 180 sccm, and the maximum occurs at about 1 % H{sub 2}S in the calibration gas. Reducing the pressure so that the total flow is reduced to about 25 sccm shifts the calibration curve maximum to about 5.7% H{sub 2}S. It appears that we must reduce the total flow rate to the detector or provide additional dilution. This may be accomplished by increasing the resistance of the capillary restrictor, by diverting a portion of the flow leaving the pyrotube to vent, or adding an inert such as N{sub 2} to the gases exiting the pyrotube. We are in contact with Antek representatives about the problem. Both the atmospheric pressure and high pressure electrobalances were used during the quarter to study the regeneration of FeS in atmospheres of O{sub 2}/N{sub 2} or H{sub 2}O/N{sub 2}. In the atmospheric pressure unit the effects of temperature (600 - 800{degrees}C), flow rate (130 - 500 sccm), and reactive gas mol fraction (0.005 to 0.03 O{sub 2} and 0.1 to 0.5 H{sub 2}O) are being studied. Regeneration tests completed to date in the high pressure unit have utilized only O{sub 2}/N. and the parameters studied include temperature (600 - 800{degrees}C), flow rate (500 - 1000 sccm), pressure (1 - 15 atm) ad O{sub 2} mol fraction (0.005 - 0.03).

  10. Real-time control for manufacturing space shuttle main engines: Work in progress

    NASA Technical Reports Server (NTRS)

    Ruokangas, Corinne C.

    1988-01-01

    During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.

  11. Biodegradation and bioconversion of coals by fungi. Quarterly progress report No. 3, April 1-June 30, 1986

    SciTech Connect

    Ward, B.

    1986-01-01

    We continued to screen lignite-derived fungal isolates for lignite bioconversion activity as described in the previous quarterly reports. We now have about 24 new and different strains, representing diverse taxa, which exhibit some degree of lignite biosolubilization. Each new active strain derived from weathered lignites has been tested on three different lignites under our standardized assay conditions. Data on extent and rate of solubilization activity were collected for each fungal isolate challenged with each of the three lignites. We began testing new fungal isolates derived from weathered bituminous coals collected from sites in Alabama. These isolates, along with several of the lignite-solubilizing strains, are being tested for biosolubilization of bituminous coals. The bituminous-derived isolates also are being tested for lignite solubilization. Taxonomic studies on all isolates are underway and we have made tentative identifications of several of the lignite-active strains. 1 fig., 2 tabs.

  12. Rhelogical properties essential for the atomization of coal water slurries (CWS). Quarterly progress report, June 15, 1992--September 15, 1992

    SciTech Connect

    Ohene, F.

    1992-12-31

    The overall objective of this project is to perform experiments to understand the effect of high shear and extensional properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the extensional and high shear properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. During the past quarter, several experimental studies on pressure dependent atomization of Coal-water slurries and simulated fluids were performed. Also surface tension, elastic, high and low shear viscosities were performed. These tests were performed to initiate the understanding of the fundamental parameters that govern the atomization process of CWS.

  13. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper. Quarterly technical progress report, July 1992

    SciTech Connect

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-09-01

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. In the seventh quarter, the screening of the promoted sorbents in the packed bed reactor was continued. The results of this work were presented at the 1992 University Coal Research Contractors, Review Conference at Pittsburgh, PA.

  14. Surfactant studies for bench-scale operation; Sixth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1994-01-21

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the sixth quarter of work. The major accomplishments were (1) Completion of the distillation of the liquid product from coal liquefaction autoclave reactor runs with Illinois No. 6 coal at 400{degree}C, with and without surfactant and/or catalyst at pressures of 1700 psig, (2) Batch autoclave runs at 375 and 400{degree}C with 1 wt % lignin to Illinois No. 6 coal to further define the surfactant effect of sodium lignosulfonate, and (3) a preliminary economic evaluation of the application of the lignosulfonate surfactant in an industrial liquefaction process and a proposed conceptual plant design.

  15. Surfactant studies for bench-scale operation. Fourth quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-07-23

    A phase 2 study has been initiated to investigate surfactant- assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the fourth quarter of work. The major accomplishments were (1) Completion of coal liquefaction autoclave reactor runs and related analysis with Illinois {number_sign}6 coal with time as a variable at 375{degree}C, and pressures of 1800 psig; (2) an investigation into the mechanism of the effect that the lignosulfonate surfactant has in enhancing liquefaction yields; and (3) completion of a bench-scale test with the surfactant in the continuous flow Catalytic Two Stage Liquefaction Process (CTSL) reactor at HRI.

  16. Surfactant studies for bench-scale operation. First quarterly technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1992-12-30

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: (1) the refurbishment of the high-pressure, high-temperature reactor autoclave, (2) the completion of four coal liquefaction runs with Pittsburgh {number_sign}8 coal, two each with and without sodium lignosulfonate surfactant, and (3) the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  17. Surfactant studies for bench-scale operation. Third quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-04-20

    A phase 11 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of, quantifying the enhancement in liquid yields and product quality. This report covers the third quarter of work. The major accomplishments were (1) completion of coal liquefaction autoclave reactor runs and related analysis with Illinois {number_sign}6 coal at a processing temperature of 375{degree}C, and pressures of 1800 and 1500 psig, (2) completion and analysis of two autoclave reactor runs to observe the synergistic effect of the surfactant and an iron catalyst, and (3) setting up a subcontract with HRI Inc. to test the surfactant enhanced liquefaction process in a continuous flow reactor.

  18. Oxygen electrode in molten carbonate fuel cells. Ninth quarterly technical progress report, August 1, 1989--October 31, 1989

    SciTech Connect

    Dave, B.B.; Srinivasan, S.; White, R.E.; Appleby, A.J.

    1989-12-31

    The oxygen reduction reaction on a gold electrode in lithium carbonate melt was investigated to determine the influence of partial pressure of carbon dioxide and temperature on electrode kinetics and oxygen solubility by using cyclic Voltammetry and impedance analysis techniques. During this quarter, the impedance data were analyzed by a Complex Nonlinear Least Square (CNLS) Parameter estimation program to determine the kinetic and the mass transfer related parameters such as charge transfer resistance, double layer capacitance, solution resistance, and Warburg coefficient. The estimated parameters were used to obtain the C0{sub 2} reaction orders and apparent activation energies for the exchange current density and the mass transfer parameter (D{sub o}{sup {1/2}}C{sub o}*).

  19. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Not Available

    1992-12-31

    The specific objectives for the reporting period of October, 1992 to December, 1992 were as follows: (1) Finish analyzing leachates from the third annual core samples from the Ohio site, collected in August 1992; (2) Collect and analyze the sixth quarterly water samples from the first Illinois test case in August, 1992. Make field measurements and collect data from the data logger; (3) Begin construction of the second Illinois test case; (4) Continue production of a video presentation on the project; (5) Load all remaining EERC data on the Colorado and Ohio sites into the project database; (6) Finalize plans with METC for continued monitoring at the Colorado and Ohio sites beyond the initial three year period, and (7) Submit and the Final Case Report on the Colorado site to the DOE and EPRI.

  20. Surfactant studies for bench-scale operation. Quarterly technical progress report No. 1, 1 July-30 September 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1992-12-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh No. 8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  1. Surfactant studies for bench-scale operation. Second quarterly technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-01-15

    A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were (1) completion of coal liquefaction autoclave reactor runs with Illinois No. 6 coal at processing temperatures of 300, 325, and 350{degrees}C, and pressures of 1800 psig, (2) analysis of the filter cake and the filtrate obtained from the treated slurry in each run, and (3) correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  2. Surfactant studies for bench-scale operation. Quarterly technical progress report No. 2, 1 October-31 December 1992

    SciTech Connect

    Hickey, G.S.; Sharma, P.K.

    1993-03-01

    A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.

  3. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Harb, J.N.

    1997-02-13

    The key issues addressed this quarter were related to operational problems in the coal feed system, namely, the inability to accurately measure all of air entering the system, and plugging of coal in the feed lines due to poor entrainment. Both of these problems caused unacceptable uncertainty and/or fluctuations in the operating conditions and therefore required solutions. The coal entrainment problem was solved by installing a new educator designed for entraining solids in gas streams. All of the air entering the reactor now flows through the educator, either as motive air or through the suction air inlet. This ensures that the coal is entrained at relatively high velocity, so that it will flow to the reactor without forming slugs in the lines. A new feeder shroud was also installed with an air jet directed towards the auger to sweep off the tip in order to reduce pulsations when feeding coal. The problems associated with accurately metering the air have been somewhat more difficult to resolve. New strategies for completely closing the system have been tested and look promising. A new flowmeter was also purchased with cost sharing funds to directly measure the air flow rate of the two phase stream (after the coal injection point). If the system can be operated without leaks, then the changes will provide two independent measurements of the air flow to ensure accuracy. If the system cannot be sealed, the new flowmeter will still provide reliable measurement of the air flow and permit proper operation of the combustor. Consequently, we feel that the problems have been resolved and we look forward to a productive next quarter.

  4. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1992--February 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The mixed iron/alumina pillared clay catalysts and clay-supported iron catalysts have been shown in previous reports of this project to significantly improve yields of heptane-soluble products obtained in the liquefaction of both as received and acid-exchanged Wyodak subbituminous coal and Blind Canyon bituminous coal. In this quarter, the soluble product (LSW) obtained from the noncatalytic low-severity liquefaction of Wyodak coal was used as a feed to determine the activity of iron based catalysts for the hydrogenation and depolymerization steps. Comparison data for liquefaction of the soluble LSW with other catalysts were desired, and these data were obtained for a dispersed form of iron sulfide, prepared via iron hydroxyoxide (PETC method). The iron oxyhydroxide catalyst was directly precipitated on LSW product using either water or ethanol as the solvent. An insight into the functioning of the mixed iron/alumina pillared clay in coal liquefaction was investigated by preparing and studying an iron oxoaluminate structure. An investigation of new methods for the production of tetralin soluble iron oxometallate catalysts and the determination of their catalytic activities was continued in this quarter. The hydrogenation activity of iron oxoaluminate was investigated using pyrene and 1-methylnaphthalene as the test compounds, and results were compared with thermal reactions. In order to determine the loss of activity, recovered catalyst was recycled a second time for the hydrotreating of pyrene. Reaction of 1-methylnaphthalene with iron oxoaluminate also gave very high conversion to 1- and 5-methyltetralins and small amount of 2- and 6-methyltetralins. Liquefaction of Wyodak subbituminous and Blind Canyon bituminous coal was investigated using an in situ sulfided soluble iron oxoaluminate catalyst.

  5. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1993--May 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production and utilization of tetralin-soluble iron oxometallate precursors for coal liquefaction catalysts was continued in this quarter. Further descriptions of the catalytic activities of the sulfided forms were obtained. The hydrogenation activities of catalysts derived from iron oxotitanate and cobalt oxoaluminate were investigated using pyrene as a the test compound, and results were compared with thermal reactions. The hydrogenation activity of iron oxotitanate was superior to other catalysts including iron oxoaluminate. The hydrogenation activity of cobalt oxoaluminate was similar to that of iron oxoaluminate reported in previous quarterly report. The liquefaction of Wyodak subbituminous coal was investigated using in situ sulfided iron oxotitanate catalyst. In order to improve the usefulness of iron oxoaluminate as a liquefaction catalyst, iron oxoaluminate was supported on acid-treated montmorillonite (K-10). Supporting the iron oxoaluminate on an acidic support significantly improved the hydrogenation activity of iron oxoaluminate. The hydrocracking activity was increased by a large factor. Thus the aluminate and titanate structures surrounding the pyrrhotite that forms during sulfidation have a beneficial effect in preventing deactivation of the iron sites, and the presence of the acidic sites in the clay results in effective catalytic synergism between catalyst and support. These clay-supported iron oxometallates are highly promising catalysts for coal liquefaction. Iron oxyhydroxide and triiron supported on acid-treated montmorillonite (K-10) were tested for the liquefaction of ion-exchanged Wyodak (IEW) to minimize effects of the coal mineral matter. Both sulfided catalysts gave very high conversions of coal to THF-soluble and heptane-soluble (oils) products.

  6. Investigate the effectivness of calcium-treated coals in the capture of sulfur gases generated in staged fired combustors. Third quarterly technical progress report, May 1-July 31, 1983

    SciTech Connect

    Porter, J. H.; Manning, M. P.; Benedek, K. R.; Sharma, P. K.

    1983-09-01

    In this quarter's work, a new procedure was developed to add calcium to pulverized coal. The method has been found to increase the calcium content of bituminous coal to 12% calcium by weight, which corresponds to a Ca/S ratio of greater than 2. Progress was also made on the combustion test facility this quarter. A new modification of the low-flow coal feeder has made that system steady and reliable. With the furnace wired and plumbed, and the other subsystems complete, the facility is almost ready to burn the treated coals.

  7. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, October--December 1997

    SciTech Connect

    1998-03-30

    General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART{reg_sign} is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.

  8. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, July--September 1996

    SciTech Connect

    1996-10-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations to develop the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.

  9. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, October--December 1996

    SciTech Connect

    1997-01-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.

  10. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, April--June 1997

    SciTech Connect

    1997-08-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.

  11. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, July--September 1997

    SciTech Connect

    1997-12-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART{reg_sign} is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.

  12. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, January--March 1997

    SciTech Connect

    1997-05-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.

  13. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    SciTech Connect

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-07-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

  14. Progress in EUV lithography towards manufacturing from an exposure tool perspective

    NASA Astrophysics Data System (ADS)

    Hermans, Jan V.; Laidler, David; Foubert, Philippe; D'havé, Koen; Cheng, Shaunee; Dusa, Mircea; Hendrickx, Eric

    2012-03-01

    EUV lithography is a candidate for device manufacturing for the 16nm node and beyond. To prepare for insertion into manufacturing, the challenges of this new technology need to be addressed. Therefore, the ASML NXE:3100 preproduction tool was installed at imec replacing the ASML EUV Alpha Demo Tool (ADT). Since the technology has moved to a pre-production phase, EUV technology has to mature and it needs to meet the strong requirements of sub 16nm devices. We discuss the CD uniformity and overlay performance of the NXE:3100. We focus on EUV specific contributions to CD and overlay control, that were identified in earlier work on the ADT. The contributions to overlay originate from the use of vacuum technology and reflective optics inside the scanner, which are needed for EUV light transmission and throughput. Because the optical column is in vacuum, both wafer and reticle are held by electrostatic chucks instead of vacuum chucks and this can affect overlay. Because the reticle is reflective, any reticle (clamp) unflatness directly translates into a distortion error on wafer (non-telecentricity). For overlay, the wafer clamping performance is not only determined by the exposure chuck, but also by the wafer type that is used. We will show wafer clamping repeatability with different wafer types and discuss the thermal stability of the wafer during exposure.

  15. Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base

    SciTech Connect

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-01-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

  16. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Fourth quarterly technical progress report, June 16, 1994--September 15, 1994

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1994-12-28

    The threat of global warming, mounting concerns about air and water pollution, prospective food shortages, and declining reserves of low-cost fossil fuels, have spawned a burgeoning interest in photobiological processes using microalgae as a method of large-scale utilization of CO{sub 2} for the production of fuels, food, and waste treatment. The major activity during this quarter was the development of cost data for the algal production system, including alternatives to the basic design previously used. The results of this work are still being developed and will be reported in the Final Report. This progress report summarizes a study of a production processes for one specific alga, Botryococcus braunii. This alga is of particular interest in this project as it produces an almost pure hydrocarbon fuel, and does so in rather large amounts. Technology for the production of this organism has, however, not yet been developed. This progress report reviews the literature on this interesting alga and suggests potential methods for its production. 62 refs.

  17. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 4, January--March, 1995

    SciTech Connect

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.

  18. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane: Quarterly technical progress report 15, October 1-December 31, 1996

    SciTech Connect

    McCormick, R.L., Alptekin, G.O.

    1997-04-02

    This document is the fifteenth quarterly technical progress report under Contract No. DE-AC22-92PC921 `Development of Vanadium- Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane` and covers the period October-December, 1996. Vanadium phosphate, vanadyl pyrophosphate specifically, is used commercially to oxidize butane to maleic anhydride and is one of the few examples of an active and selective oxidation catalyst for alkanes. In this project we are examining this catalyst for the methane oxidation reaction. Initial process variable and kinetic studies indicated that vanadyl pyrophosphate is a reasonably active catalyst below 5000{degrees}C but produces CO as the primary product, no formaldehyde or methanol were observed. A number of approaches for modification of the phosphate catalyst to improve selectivity have been tried during this project. During this quarter we have obtained surface areas of catalysts prepared with modified surface acidity. The results confirm the enhanced activity of two of the modified preparations in methanol conversion (a test reaction for surface acid sites). In previous work we noted no improvement in methane oxidation selectivity for these catalysts. Surface areas, surface analysis by XPS, and bulk analysis by ICP-AA have been obtained for vanadyl pyrophosphate promoted by Cr, Cu, and Fe. These data indicate that roughly one tenth of the surface metal atoms are promoter. A similar analysis was obtained for the bulk. Preliminary examination of binding energies suggests a slightly more reduced surface for the Cr and Fe promoted catalysts which exhibit a significant selectivity to formaldehyde in methane oxidation. A more detailed kinetic model has also been developed to aid in comparing the promoted catalysts and is discussed. Plans for the coming months are outlined.

  19. Development of a polysilicon process based on chemical vapor deposition. Phase 1. Fourth quarterly progress report, 1 July-30 September 1980

    SciTech Connect

    Sharp, K.; Arvidson, A.; Sawyer, D.

    1980-12-01

    The goal of this program is to demonstrate that a dichlorosilane-based reductive chemical vapor deposition (CVD) process is capable of producing, at low cost, high quality polycrystalline silicon for use in the manufacture of high efficiency solar cells. The feasibility of silicon generation from dichlorosilane (DCS) has been well established. The feasibility and optimization portions of the experimental reactor program have been completed, with a number of runs having been conducted over a broad range of conditions in an experimental CVD reactor. Activities relating to feed of commercially purchased DCS to an intermediate sized reactor and to construction of a Process Development Unit (PDU) to generate and feed DCS to one or more production scale reactors were suspended during the previous quarter because of the receipt of new safety-related information about DCS from Hazards Research Corp. Experimental data generated by Hazards Research Corp. indicate that DCS/air mixtures possess about four times the explosive severity potential as hydrogen/air mixtures, and that DCS/air mixtures are very readily ignited. As a consequence of this new information, designs and procedures for the intermediate reactor feed and PDU tasks were deemed inadequate and new designs incorporating new safety-related elements are being formulated. A preliminary economic evaluation of the Hemlock Semiconductor process has been completed. The analysis for a plant to generate 1000 metric tonne of silicon indicates a plant investment of $21.9 M, and a product selling price of $19.85/kg.

  20. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  1. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  2. Biodegradation and bioconversion of coals by fungi. Quarterly progress report No. 2, January 1-March 31, 1986

    SciTech Connect

    Ward, B

    1986-01-01

    The following activities were carried out during the 2nd quarter of the project. We tested the effects of freeze-thaw cycles and leaching on the biosolubilization of unweathered Antioch Claiborne lignite. One goal of the tests was to establish a pretreatment method by which biosolubilization could be enhanced. We have not yet been able to increase the rate of degree of biosolubilization by any single pretreatment method applied to unweathered Claiborne Antioch lignite, a type which is more resistant to bioactivity compared to weathered samples of the same coal. We continued to refine our techniques for screening fungal isolates for biosolubilization activity. Our goal is to establish a standard method which will optimize bioactivity, minimize variability, and yield reliable results for screening tests. We compared activity of different fungal isolates at 25/sup 0/ or 30/sup 0/C and tested the effects of different mycological media on degree of biosolubilization. We continued to screen approximately 120 fungal isolates for activity on three different types of lignite. We now have in unifungal culture about 25 new fungal isolates which exhibit different degees of lignite biosolubilization. Among the lignites tested, we have observed marked differences in rate and degree of biosolubilization. We have begun identification studies of the new isolates. 1 fig., 2 tabs.

  3. (Study of the behavioral and biological effects of high intensity 60 Hz electric fields): Quarterly technical progress report No. 29

    SciTech Connect

    Orr, J.L.

    1989-07-14

    Activities this quarter involved all phases of the project plus a meeting of the Joint Committee in Tokyo. Detailed mapping of the exposure facility is scheduled to be completed during the week of August 14, 1989. Both electric and magnetic fields should be available for tests of the components of the tether and blood sampling system for the neuroendocrine pilot study in September 1989. The groups for the social behavior study are stabilizing appropriately. Details on the formation of the groups and their status has been provided. Dr. Coelho has included information related to aspects of the social experiment ranging from age estimation in baboons through the cardiovascular consequences of psychosocial stress. In addition, a draft manuscript is included on the data from the previous experiments which describes the effects of 30 and 60 kV/m electric fields on the social behavior of baboons. Tests of the blood handling procedures and analysis methods have been completed. With the exception of the catecholamine analyses, the handling procedures and variability in replicate measurements are satisfactory. Logistic and practical considerations now weigh strongly against including the analysis of the blood samples for catecholamines. Preliminary tests indicate that a sampling procedure which will work for the other compounds is probably not satisfactory for the catecholamines.

  4. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, November 1, 1981-January 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Mazandarany, F.N.; Marianowski, L.G.

    1982-02-26

    Work proceeded this quarter mainly under three program tasks. Under Task 1.0, the four candidate power plant configurations were ranked and the Steam Injection System was recommended as the reference plant design. The Steam Injection System was chosen based on its overall simplicity, high performance level, balance of plant state-of-technology readiness and economic attractiveness. Work was initiated on refinement of fuel cell piping costs. Under Task 2.0, work continued on cell component (anode, cathode, current collector and electrolyte) development and stack design and analysis. Corrosion test results after 1000 hours in fuel gas and 3000 hours in cathode gas are reported for 310SS, 316SS, 446SS, chromium, IN690, and GE2541. In the cathode environment, 310SS and GE2541 show good thermal cycling properties, whereas the other alloys show scale spalling during thermal cycling. Examination of a Ni-clad 316SS anode current collector tested in a cell for 2000 hours shows second phase precipitates along the grain boundaries of the nickel. Experiments with different grades of nickel in an anode atmosphere were started in order to evaluate the effects of impurities present in the metals. Under Task 4.0, work continued on installation of the bench scale single cell test facilities, one atmospheric and one pressurized (up to 10 atm), which will be used in cell testing with contaminants in the fuel and oxidant. (WHK)

  5. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, August 1, 1982-October 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1983-02-24

    Work proceeded this quarter under three program tasks. Under Task 1.0, work was completed on the reference power plant design description. Under Task 2.0, work continued on the development of materials, anode, cathode and electrolyte, and on stack design and analysis. Long term corrosion tests of current collector alloy specimens continued, with 310SS, GE2541 and Aggalloy showing adherent scale formation in the cathode gas atmosphere after 7000 hours. A number of alternate cathode materials were fabricated and tested for conductivity, solubility and stability. A new conductivity measurement device has been partially constructed. Under Task 4.0, testing of the effects of hydrocarbons in the fuel on the operation of carbonate fuel cells was completed. This series of tests has shown that small amounts of organic compounds do not adversely affect fuel cell operation. Testing of a cell with H/sub 2/S contamination in the fuel has proceeded for over 1700 hours. Cell performance decreased with increasing concentrations of H/sub 2/S, as would be expected, but also recovered substantially when clean fuel gas was introduced for a period of 378 hours. (WHK)

  6. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, May 1, 1982-July 31, 1982

    SciTech Connect

    Barta, R.W.; Osthoff, R.C.; Reinstrom, R.M.; Harrison, J.W.; Browall, K.W.; Marianowski, L.G.

    1982-12-17

    Work proceeded this quarter under three program tasks. Under Task 1.0, work continued on the preparation of the reference power plant design description with Pacific Gas and Electric being one of the major contributors to the effort. Work also continued to further define the power conditioning equipment. Under Task 2.0, work continued on alternate cathode material identification, anode, cathode and electrolyte tile development, and stack design and analysis. A number of candidate cathode materials were fabricated and preliminary conductivity, solubility and stability tests performed. The chemistry of the degradation process of state-of-the-art NiO cathodes was also addressed. Under Task 4.0, studies continued to identify chemical reactions that might occur between fuel cell anode material and a number of organic compounds which could occur in fuel gases. The addition of several substances showed little effect on catalytic activity in a tube furnace or cell performance except for carbon plugging of a fuel line following ethanol addition. In addition, two cells were run this period to determine the effects of H/sub 2/S contamination on cell performance. Both tests were terminated (after 480 hours and 1450 hours of testing) due to test equipment operational problems. (WHK)

  7. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 8, 1993--August 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    High hydrocracking and liquefaction activity can be achieved with 10 wt.% of sulfided clay-supported iron catalysts. Further tests and demonstrations of this activity were required. Iron hydroxyoxide was generated on acid-treated montmorillonite. The new batch of catalyst exhibited high hydrocracking activity, Three hour tests with the solubilized intermediate from low-severity treatment of Wyodak coal (LSW) gave a high conversion (45%) of the heptane-insoluble LSW intermediate to heptane-soluble products. An investigation of new methods for the production of catalysts from tetralin-soluble iron oxometallates and the determination of their catalytic activities was continued in this quarter. Iron oxotitanate and iron oxoaluminate gave very high conversions of LSW to heptane solubles (61% and 54%, respectively). The high yields of heptane soluble products obtained with these catalysts offers a potential for use in liquefaction stages with solubilized coal, or at least serve as a model for producing active catalysts via mixed metal oxides. Methods for successfully testing dispersed iron catalysts with the low-severity intermediate were also devised. Catalyst recovered from the dispersed iron hydroxyoxide-catalyzed reaction of ion-exchanged Wyodak gave a high conversion (47%) of LSW to heptane solubles.

  8. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  9. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    1994-01-30

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing the system modification installation designs, completing the TSCA ash testing, and conducting additional industry funded testing. Final detailed installation designs for the integrated test system configuration are being completed.

  10. Development of the Selective Hydrophobic Coagulation process. Fifth quarterly technical progress report, October 1, 1992--December 30, 1992

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-12-31

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy (Contracts AC22-86PC91221 and AC22-90PC90174). The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (1) induce the coagulation of coal particles and (2) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. During the quarter, the Anutech Mark IV surface force apparatus was used to generate surface force-distance data for the mica/dodecylamine hydrochloride system (Task 2.1.1). Work to characterize the hydrophobicity of this system and the mica/DDOA{sup {minus}} system was also initiated (Task 2.1.2). In Task 3, the mixing/coagulation characteristics of a small Kenics static mixer/agitation system have been investigated (Task 3.2.1), a lamella thickener for the recovery of coagula has been built (Task 3.3.1), and the test program for the recovery of coagula by column flotation has been initiated (Task 3.3.4).

  11. Quarterly progress report on configurational diffusion of asphaltenes in fresh and aged catalyst extrudates, September 20, 1995--December 20, 1995

    SciTech Connect

    Guin, J.A.

    1995-12-31

    The objective of this research is to determine the relationship between the size and shape of coal and petroleum macromolecules and their diffusion rates i.e., effective diffusivities, in catalyst pore structures. That is, how do the effective intrapore diffusivities depend on molecule configuration and pore geometry. The research is divided into the following tasks: (1) relationship between effective intrapore diffusion coefficients, molecular size and pore geometry; (2) effects of solvent composition, solute concentration, and temperature on the molecular configuration and diffusion rate of coal and petroleum asphaltenes in catalysts pore; and (3) assessment of diffusional limitations in aged catalysts. This quarter, the GPC column efficiency was rechecked by using acetone injection. The calibration curve for the GPC was rechecked through polystyrene standards with narrow molecular weight distributions. Some experiments on adsorption and diffusion of coal asphaltenes through porous catalysts were performed. The asphaltenes were grouped into nine fractions with the concentration being determined via GPC. It was found that the uptake rate for one asphaltene fraction is different from those for other fractions. Comparison of experimental uptake data shows a difference in hindered diffusion behavior between petroleum asphaltenes and coal asphaltenes.

  12. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  13. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, through March 31, 1995

    SciTech Connect

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Accomplishments for this quarter are described.

  14. Superior catalysts for selective catalytic reduction of nitric oxides; Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Chen, J.P.; Cheng, L.S.; Kikkinides, E.S.; Yang, R.T.

    1993-12-31

    Work was done in three tasks during the first quarter. In Task 1, a new SCR reactor system has been built, complete with on-line GC and MS analyses. The GC is used to monitor the N{sub 2} product so the NO{sub x} > N{sub 2} conversion can be calculated. The MS is used to analyze the N{sub 2}0 concentration. In addition, a wet analytical technique has been established for SO{sub 3} analysis. The new SCR system and the SO{sub 3} analytical technique have been subjected to shakedown tests with success. Along with the existing SCR reactor system, there are now two systems that are being run independently. In Task 2, a procedure for the synthesis of stable Fe{sub 2}O{sub 3} Pillared clay has been established. Inductive coupled plasma spectrometric analysis (ICP) has been used to analyze the chemical composition of the Fe{sub 2}O{sub 3} Pillared clay. Preliminary results for the SCR activities of the Fe{sub 2}O{sub 3} pillared clay are obtained in Task 3. The results show that the activities are near that of the commercial V{sub 2}O{sub 5}/TiO{sub 2} catalysts. However, the SO{sub 2}-to-SO{sub 3} conversion is substantially lower with the pillared clay catalyst, which could be an important advantage.

  15. Bench-scale testing of the micronized magnetite process. Third quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-29

    The major focus of the project, which is scheduled to occur through December 1995, will be to install and test a 500{number_sign}/hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The overall objectives of the project are to: Determine the effects of operating time on the characteristics of the recirculating medium in a continuous integrated processing circuit, and subsequently, the sensitivity of cyclone separation performance to the quality of the recirculating medium; and determine the technical and economic feasibility of various unit operations and systems in optimizing the separation and recovery of the micronized magnetite from the coal products. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  16. Bench-scale testing of the micronized magnetite process. Sixth quarterly technical progress report, October--December, 1995

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  17. Bench-scale testing of the micronized magnetite process. Eighth quarterly technical progress report, April--June, 1996

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  18. Bench-scale testing of the micronized magnetite process. Fourth quarterly technical progress report, April--June 1995

    SciTech Connect

    1995-08-10

    The main accomplishments of Custom Coals and the project subcontractors, during this period, included: continued purchase of small equipment and supplies for the circuit; completed the circuit commissioning task; procured one lot of PennMag Grade-K and one lot Grade-L magnetite; completed work on analytical investigations; completed Classifying Circuit Component Testing on Pittsburgh No. 8 coal; completed the final Heavy-Media cyclone component testing on the Pittsburgh No. 8 seam using Grade-K and Grade-L magnetites; continued QA/QC tests on wet screening, wet splitting, Marcy Balance, and reproducibility checks on component tests and component test samples; and completed the magnetite recovery circuit component testing with and without screens using the Grade-K magnetite and the Pittsburgh No. 8 coal seam. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  19. Bench-scale testing of the micronized magnetite process. Seventh quarterly technical progress report, January--March, 1996

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  20. Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 2, January 1-March 31, 1980

    SciTech Connect

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, Jr., J. L.; Louis, G. A.; Abrams, M. L.; Bushnell, C. L.; Nickols, R. C.; Gelting, R. L.; Katz, M.; Stewart, R. C.; Kunz, H. R.; Gruver, G. A.; Bregoli, L. J.; Steuernagel, W. H.; Smith, R.; Smith, S. W.; Szymanski, S. T.

    1980-08-01

    The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, effort was continued in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - developing the capability for operation of stacks on coal-derived gas. In the system study activity of Task 1, preliminary module and cell stack design requirements were completed. Fuel processor characterization has been completed by Bechtel National, Inc. Work under Task 2 defined design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication has been made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated under Task 3. In Task 4, theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects. Components for the mobile test facility are being ordered.

  1. Development of the selective hydrophobic coagulation process. Fourth quarterly technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-12-31

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy. The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (i) induce the coagulation of coal particles and (ii) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. The technical work program was initiated on July 1, 1992. Force-distance curves were generated for DDOA Br-coated mica surfaces in water and used to calculate hydrophobicity constants and decay lengths for this system; and a new device for the measurement of water contact angles, similar to the Wilhelmy plate balance, has been built 225 kg samples of Pittsburgh No. 8 and Elkhom No. 3 seam coals were obtained; a static mixer test facility for the study of coagula growth was set up and was undergoing shakedown tests at the end of the quarter; a bench-scale lamella thickener was being constructed; and preliminary coagula/ mineral separation tests were being conducted in a bench-scale continuous drum filter.

  2. Development of the Selective Hydrophobic Coagulation process. Seventh quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1993-11-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied under the sponsorship of the US Department of Energy since 1986 (Contracts DE-AC22-86PC91221 and DE-AC22-90PC90174). The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (i) induce the coagulation of coal particles, and (ii) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the quarter, work was completed on the development of the hydrophobic interaction energy function (Subtask 2.1) and the extended DLVO equation (Subtask 2.2.). Work to predict optimum operating conditions using the extended DLVO equation (Subtask 2.3) is underway. In Task 3 -- Process Development, work was completed on the study to determine the effect of mixing on coagula growth (Subtask 3.2) and on the use of column flotation for the recovery of coal coagula (subtask 3.3.4). Work is underway on the use of the lamella thickener and filter for the recovery of coagula (Subtasks 3.3.1 and 3.3.2).

  3. Production of reactive sintered nickel aluminide. Fifth quarterly technical progress report, February 22, 1993--May 22, 1993

    SciTech Connect

    Cooper, R.M.

    1993-06-01

    Effort over the past 3 months was directed at increasing manufacturing capacity (ball milling) and improving product quality. Orders for the powder have increased, mainly for plasma spray powders. NiAl is an excellent coat between a metal and a ceramic, and its use instead of cobalt should extending operating range for carbide tools. The feather phase in the sintered Ni{sub 3}Al was identified to be a Ni-rich phase nucleated on the grain boundaries with 10 wt % Al composition. The ductile to brittle temperature of powder extruded NiAl was found to be between 500 and 600 C, and shows a 50% elongation at 600 C.

  4. Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, 1 April 1996--30 June 1996

    SciTech Connect

    Bukur, D.B.; Lang, X.; Ding, Y.; Chokkaram, S.

    1996-09-02

    The overall contract objectives are to: (1) demonstrate repeatability of performance and preparation procedure of two high activity, high alpha iron Fischer-Tropsch catalysts synthesized at Texas A&M University (TAMU) during the DOE Contract DE-AC22-89PC89868; (2) seek potential improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst synthesis; (3) investigate performance of catalysts in a small scale bubble column slurry reactor, and (4) investigate feasibility of producing catalysts on a large scale in collaboration with a catalyst manufacturer. The performance of an iron, and iron-copper-silica catalyst are described.

  5. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, 1 October 1992--31 December 1992

    SciTech Connect

    Doerr, R.; Kujak, S.; Waite, T.

    1993-01-01

    Equipment manufacturers are challenged to replace CFC-based refrigerants and their lubricants with environmentally acceptable alternatives. Information on the compatibility of motor materials with these alternative refrigerants and lubricants is a basic requirement for reliable performance. This report presents compatibility data for 24 commercially used motor materials exposed to 17 refrigerant/lubricant combinations. This compatibility data will enable the phase out of CFC`s to continue at its current fast pace and insure the continued reliable performance of refrigerant-based equipment.

  6. Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

  7. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 71, quarter ending June 30, 1992

    SciTech Connect

    Not Available

    1993-06-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  8. Twenty-Seventh Quarterly Progress Report of the Research Coordinating Unit (RCU) in Wisconsin. October 1, 1972-December 31, 1972.

    ERIC Educational Resources Information Center

    Wisconsin State Board of Vocational, Technical, and Adult Education, Madison. Research Coordinating Unit.

    A progress report (covering the period October 1, 1972--December 31, 1972) of the Research Coordinating Unit (RCU) of the Wisconsin Board of Vocational, Technical and Adult Education, the report briefly describes activities relating to the accomplishment of objectives and lists research activities. Objectives relate to the stimulation,…

  9. Quarterly progress report on tribopolymerization as an anti-wear mechanism for the period January--March 1997

    SciTech Connect

    Furey, M.J.

    1997-04-01

    Progress was made in several areas including (1) a new Pin-on Disk machine was obtained, (2) ISATA Paper ``Tribopolymerization: An Advanced Lubrication Concept for Automotive Engines and Systems of the Future`` was accepted for presentation, (3) three new disclosures have been made on patent antiwear compounds and classes of compounds designed for high frictional energy, higher temperature use.

  10. Evaluation of hyperbaric filtration for fine coal dewatering. Third quarterly technical progress report, March 1, 1993--May 31, 1993

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1993-09-01

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. Progress is described.

  11. DOE Waste Package Project. Quarterly progress report, April 1, 1993--June 30, 1993 and end of year summary report

    SciTech Connect

    Ladkany, S.G.

    1993-08-01

    Contents of this report are as follows: Overview and progress of waste package project and container design; waste container alternate design considerations; structural analysis and design of nuclear waste package canister; manipulation of the nuclear waste container; design requirements of various rock tunnel shapes for long term storage of high level waste; and transport phenomena in the near field.

  12. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  13. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, July-September 1983

    SciTech Connect

    Wiltsee, G.A. Jr.

    1983-01-01

    Two long gasification tests were accomplished (66 and 72 hours of slagging operation) this quarter, and the balance of the wastewater needed for the second cooling tower (CT) test (approx. 11,000 gallons) was generated. Eleven thousand gallons of slagging fixed-bed gasifier (SFBG) wastewater were solvent extracted and ammonia stripped (AS) to nominal levels of 160 mg/1 phenol and 600 mg/1 NH/sub 3/. This wastewater is being further treated by activated sludge (AS) and granular activated carbon (GAC) processing to prepare a high quality makeup for the second CT test. Phenol mass balances indicated that > 90 pct of the phenol was stripped from the tower, indicating that previous assumptions of high levels of biodegradation were erroneous. Over 80 pct of the ammonia and about 25 pct of the methanol were also stripped. Data collected during steady state operation of the bench-scale rotating biological contractor indicate complete removal of phenolics and alcohols, and 94 pct removal of BOD. Nitrification also occurred in this unit, with over 30 pct removal of ammonia. Problems due to individual bacteria, present in the biotreated wastewater, passing through the multi-media filter and thus decreasing the carbon adsorption efficiency of the GAC system, have resulted in lower treatment rates than originally anticipated. As a result, to achieve the desired treatment, the contact time of the wastewater with the carbon in the granular activated carbon system has been increased. Since this has decreased the treatment rate, a larger carbon adsorption system has been designed and is presently being constructed.

  14. Reactivity of young chars via energetic distribution measurement. Quarterly technical progress report, 1 October 1992--31 December 1992

    SciTech Connect

    Calo, J.M.; Mackinnon, J.A.; Zhang, L.H.

    1992-12-31

    The correlation and prediction of kinetic rates and mechanisms of the reactions of gas phase species with coal chars represent a difficulty undertaking under the best of circumstances. Solid phase heterogeneity and impurities, complex pore structure, transport limitation, and evolution of active surface represent just a few of the well known problems. Temperature programmed desorption (TPD) has become a standard technique for investigating the physics-chemical state of adsorbed species on surfaces. The predecessor of TPD-type methods was the flash filament technique, whereby gases adsorbed on wire filaments are rapidly desorbed upon rapid heating in an ultrahigh vacuum. This technique was subsequently adapted to catalytic surfaces. Experimental methods and interpretation of TPD spectra for well defined crystalline surfaces have been well established. However, corresponding techniques for polycrystalline, amorphous, and heterogeneous materials are not as well developed. TPD spectra usually consist of one or more peaks. The shapes of the peaks and the position of the peak maxima with respect to temperature are related in a fundamental manner to the desorption process, and, therefore, provide basic information regarding the energetics of the desorbed species. The current project is directed at developing related techniques for the characterization and prediction/correlation of the reactivity of ``young`` chars to steam and oxygen. Of particular interest is mapping of the reactivity behavior of the resultant chars, as revealed by the energetic heterogeneity of the complexes with char preparation conditions; i.e., heating rate and ultimate temperature. In this quarterly report, TPD results on two CO{sub 2}-gasified chars are summarized.

  15. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1991--February 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The investigation of methods for the production and testing of iron-pillared clay catalysts was continued in this quarter. The surface area of the mixed alumina/iron pillared clay catalyst decreased to 51 m{sup 2}/g on sulfidation. Thus the stability of the alumina pillars during the sulfidation and thermal treatments prevented the total collapse that occurred in the case of the iron-pillared clays. Previously the mixed alumina/iron pillared clays were tested for hydrocracking activities with bibenzyl. This testing was extended to a determination of activity with a second model compound substrate (pyrene), representative of the polynuclear aromatic systems present in coal. Testing of the mixed alumina/iron-pillared catalysts with 1-methylnaphthalene gave interesting results that demonstrate shape selectivity. The clay-supported iron hydroxyoxide catalysts prepared by impregnation of iron species on acidic clays were further investigated. Sulfidation of these catalysts using the carbon disulfide in situ method gave hydrocracking activities with bibenzyl that were somewhat less than those obtained by presulfidation with H{sub 2}/H{sub 2}S mixtures. Liquefaction of Wyodak subbituminous coal was very successful with the iron impregnated clay catalyst, giving a highly soluble product. High conversions were also obtained with the mixed alumina/iron-pillared clay catalyst, but the yield of oil-solubles was considerably lower. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. These catalysts were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars. Finally the iron component was added either before or after thermal removal of organic pillars.

  16. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase 3 research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing some of the system modification installation designs, completing industry funded testing, developing a surrogate TSCA ash composition, and completing the TSCA ash Test Plan. The installation designs will be used for the equipment modifications planned for the end of CY 93. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe, recyclable glass product. Some results from this testing are provided in Section 2.2.1. The surrogate TSCA ash composition was developed with input from various DOE laboratories and subcontractors. The surrogate ash consists of a mixture of MSW fly ash and bottom ash spiked with heavy metal contaminants. The levels of metal additives are sufficient to ascertain the partitioning of the contaminants between the glass and effluent flow streams. Details of the surrogate composition and the planned testing is provided in Section 4.2.2.

  17. Studies of incipient oxidation of pyrite for improved rejection. Fifth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1993-12-31

    Oxidation of fresh surfaces of coal- and mineral-pyrite has been studied using electrochemical and photoelectrochemical techniques. This work was undertaken to better understand the oxidation processes that cause self-induced flotation of pyrite. Fresh surfaces were created by fracturing pyrite in situ, i.e., in solution. Chronoamperometry was used to determine the potential at which a newly created surface does not show oxidation or reduction currents. The ``stable`` potentials for pyrite are {minus}0.28 V (SHE) at pH 9.2 and 0 V at pH 4.6. Subsequent cyclic voltammograms show the incipient oxidation mechanism that involves the formation of sulfur products, which are believed to be hydrophobic. It is shown that the lower flotation edge of pyrite coincides with its incipient oxidation potential. The photocurrent generated at fractured pyrite surfaces by chopped illumination was used to determine the semiconducting characteristics of the electrodes. The results indicate that a spontaneous depletion layer is formed on the fresh surfaces of n-type pyrite. The depletion layer is attributed to an intrinsic, acceptor-like surface state. Charge storage in this surface state pins the band edges over a wide potential range, accounting for the metallic-like electrochemical behavior that has been reported for pyrite. The existence of an intrinsic surface state is consistent with XPS studies on pyrite surfaces prepared in vacuum, which reveal an FeS-like species in the surface region. During this report period, all of the data previously obtained has been analyzed in an attempt to better understand the mechanism of pyrite flotation with respect to its oxidation. The results of this analysis are included in this quarterly report. In addition, samples of pyrite from seven different sources were obtained. In situ fracture, photoelectrochemical and cyclic voltammetry studies have been conducted on electrodes made from these pyrites.

  18. Direct liquefaction of low-rank coal. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Hetland, M.D.

    1995-11-01

    A multistep direct liquefaction process specifically aimed at low-rank coals (LRCs) has been developed at the Energy & Environmental Research Center (EERC). The process consists of a preconversion treatment to prepare the coal for solubilization, solubilization of the coal in the solvent, and polishing using a phenolic solvent or solvent blend to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrogenation step. This project addresses two research questions necessary for the further development and scaleup of this process: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for effective hydrotreatment of the liquid product. The project is being performed as two tasks, the first consisting of ten recycle tests and the second consisting of twelve hydrotreatment tests performed at various conditions. Several activities were performed during this quarter. (1) A paper entitled {open_quotes}Solvent Recyclability in a Multistep Direct Liquefaction Process{close_quotes} was presented at the 1995 Coal Liquefaction and Gas Conversion Contractors{close_quote} Review Conference that was held in Pittsburgh, PA, August 29-31, 1995. (2) The Task 1 solvent recyclability tests were completed. (3) The Task 1 quality assurance/quality control checks were performed. (4) The first seven Task 2 hydrotreatability tests were completed. Analysis of the Task 1 data indicates that (1) the multistep process produces adequate quantities of excess solvent for recycle and (2) the product slates of all of the tests were fairly consistent.

  19. Organic complexant-enhanced mobility of toxic elements in low-level wastes. Quarterly progress report, January-March 1984

    SciTech Connect

    Swanson, J.L.

    1984-06-01

    The results obtained during the third quarter's activities of a project whose objective is to determine how and to what extent organic complexants affect the mobility of toxic elements in subsurface groundwaters at commercial low-level waste disposal sites are described. This project will study nonradioactive toxic elements as well as elements having radioactive isotopes of importance (e.g. /sup 63/Ni, /sup 239/Pu, /sup 241/Am). Organic complexants used in the nuclear industry are being emphasized, but others are being examined. Generic soil components (e.g. hydrous oxides, silica, clays) are being used so that the results will be broadly applicable. Substantiation of the previously indicated sorption of a Pu(IV)-EDTA complex by hydrous ferric oxide (Fe/sub 2/O/sub 3/.xH/sub 2/O) was obtained by comparing the sorption of EDTA in the presence and absence of Pu. Additional data on the sorption of a Ni-EDTA complex by Fe/sub 2/O/sub 3/.xH/sub 2/O were also obtained. Preliminary Ni sorption data were obtained with other complexants (picolinic acid and citric acid), and another generic soil component (TiO/sub 2/). Sorption of a Ni-EDTA complex by an anion exchange resin was observed. Complexed species are thus likely to be present in the resin wastes from certain reactor decontamination solution clean-up operations. An experimental problem that caused some erroneous results for uncomplexed Ni was discovered and corrected. The filters being used to assure good separation of solid and liquid phases were removing Ni from solution, which skewed some earlier results. 11 references, 13 figures, 2 tables.

  20. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1992--May 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of iron-pillared clay catalysts and clay-supported iron hydroxyoxide catalysts and the determination of their catalytic activities was continued in this quarter. Previous work in this project showed that a catalyst prepared by adding ferric nitrate and ammonia to an acid-washed clay gave an active catalyst following sulfidation. Further testing of this catalyst with a model compound showed that its hydrocracking activity was considerably lower when used in 10% concentration rather than 50%. In contrast, the mixed iron/alumina pillared clay catalysts were still highly effective at 10% concentration and gave good conversions at one and two hour reaction times. An investigation of preparation methods demonstrated that calcination of both the iron hydroxyoxide-impregnated clay and the mixed iron/alumina pillared clays is essential for activity. High activity was obtained for these catalysts only when they were removed from the aqueous media rapidly, dried, and calcined. The use of ferric sulfate to prepare a clay-supported sulfated iron catalyst was attempted, the resulting catalyst was relatively inactive for hydrocracking. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. A zirconia-pillared clay with low pillar density was prepared and intercalated with triiron complex. The hydrocracking activity of this catalyst was somewhat lower than that of the mixed alumina/iron-pillared catalyst. Other new catalysts, that were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars, and finally the iron component, were also tested. The mixed alumina/iron-pillared catalysts was further tested at low concentration for pyrene hydrogenating and hydrocracking activities.

  1. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 9, 1992--August 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of mixed pillared clay catalysts and clay-supported catalysts and determination of their catalytic activities were continued in this quarter. To demonstrate the reproducibility of the preparative method for high activity iron/alumina-pillared montmorillonite catalysts, a new batch of the catalyst was prepared and tested for hydrocracking activity with bibenzyl. This preparation gave conversion and product distribution similar to that reported previously. The mixed iron/alumina-pillared clay was also prepared using a pillaring solution that was aged for longer period of time. To determine the importance of the type of pillaring support in hydrocracking activity, iron/zirconia-pillared montmorillonite was prepared using the same technique as that for iron/alumina-pillared montmorillonite. The reaction of bibenzyl with the sulfided iron/zirconia-pillared catalyst gave a lower hydrocracking conversion than the iron/alumina-pillared catalyst. Addition of a second catalytic metal to the clay support was attempted to determine if a synergistic effect could improve liquefaction. Ferric nitrate and stannous chloride were added to the clay, but the resulting catalyst was relatively poor for hydrocracking and hydrogenation compared with ferric nitrate supported on the clay. New disposable iron catalysts with high acidity and surface area are desired for coal liquefaction. Synthetic iron aluminosilicates were prepared by methods similar to those used for the nickel-substituted synthetic mica montmorillonite (NiSMM) catalysts, which are very effective for hydrogenation and reforming of hydrocarbons. The iron aluminosilicate catalysts were tested for hydrocracking and hydrogenation of bibenzyl, naphthalene and pyrene. Pyrene hydrogenation was effectively catalyzed by the sulfided synthetic iron catalyst.

  2. Transition metal catalysis of hydrogen shuttling in coal liquefaction. Quarterly technical progress report, September 1, 1985-November 30, 1985

    SciTech Connect

    Eisch, J.J.

    1986-01-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines and ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes under moderate conditions of temperature and pressure. During the fifth quarter of this three-year grant the following phases of this study received particular attention: (a) the principal investigator completed his three-month period as visiting scientist at Cornell University, October 1 to December 31, 1985, with Professor Roald Hoffmann on the topic of Extended Hueckel Molecular Orbital calculations of organometallic structure; (b) final gas evolution studies between LiAlH/sub 4/ and bipyridyl(1,5-cyclooctadiene) nickel have been made and the related manuscript written for publication; (c) gas evolution studies between diisobutylaluminum hydride and phosphine complexes of Pt(0) and Ni(0) have been undertaken, as part of our trying to understand how powerful reducing agents can be generated from such combinations; (d) hydrogen shuttling studies continue between dihydroaromatic hydrocarbons and Ni(0) complexes; (e) studies on the cleavage of benzylic C-C bonds by Ni(0) and Cr(0) complexes are being intensified; and (f) attempts are being made to isolate crystalline samples of several organonickel intermediates in the foregoing cleavage reactions, so that x-ray structure determinations can be carried out.

  3. Development of the selective hydrophobic coagulation process. Technical progress report for the ninth quarter, October 1--December 31, 1993

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1994-07-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied under the sponsorship of the U.S. Department of Energy since 1986 (Contracts DE-AC22-86PC91221 & DE-AC22- 9OPC90174). The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (i) induce the coagulation of coal particles, and (ii) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the past quarter, stability calculations were carried out to develop a better understanding of the selective coagulation of fine coal and associated mineral matter. The calculations were performed for interactions involving coal, silica and clay particles. The analyses suggest that the heterocoagulation of the edges of clay particles with coal particles controls the overall selectivity of the SHC process. In Subtask 3.3, froth flotation was explored as a possible technique for recovering hydrophobic coagula. Experimental test data obtained using this technique were analyzed using a statistical regression program. The analyses indicate that froth flotation can be used to successfully recover hydrophobic coagula provided that adequate precautions are taken to minimize coagula breakage due to turbulence. Recommendations include the use of low aeration rates and little or no additions of wash water.

  4. Fossil Energy Program quarterly progress report for the period ending June 30, 1985. [Ni-Fe aluminides

    SciTech Connect

    Bradley, R.A.

    1985-09-01

    This report covers progress made during the period April 1 through June 30, 1985, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by DOE Office of Fossil Energy, DOE Office of Basic Energy Sciences, the Electric Power Research Institute, and the Tennessee Valley Authority. The Fossil Energy Program organization chart is shown in Appendix A. Summaries and progress reports are presented for the following: (1) materials research and development; (2) fossil energy enviromental programs; (3) coal conversion development; (4) process analysis and development; (5) generalized equilibrium models of liquids and gaseous fuels supply; (6) fluidized bed combustion joint program; and (7) coal chemistry.

  5. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, January 1--March 31, 1996

    SciTech Connect

    Ahmadi, G.

    1996-07-01

    During this report period, additional progress was made in accomplishing the tasks of the project. In particular, the computational model for simulating particle motions in turbulent flows was further developed. The model was applied to the dispersion analysis of particles in a circular duct and the transport and deposition of particles in a recirculating region. A model for resuspension of particles from various surfaces in a gas flow is also being developed. The new model accounts for the surface adhesion, as well as the hydrodynamic forces and torques. In addition, the model includes the effect of surface roughness and the structure of near wall turbulent flow. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  6. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-10-01

    The general goal of this project is to provide a fundamental understanding of deposition processes of flyash and pulverized coal particles in coal combustors and coal gasifiers. In the period of April 1 to June 30, 1996, further research progress was made. The computational model for simulating particle motions in turbulent flows was applied to the dispersion and deposition analysis. The study of particle transport and deposition in a circular duct was completed and the major findings are summarized. A detailed model for particle resuspension process in a gas flow is developed. The new model accounts for the surface adhesion, surface roughness, as well as the structure of near wall turbulent flows. The model also accounts for all the relevant hydrodynamic forces and torques exerted on the particle attached to a surface. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  7. The ANL electrochemical program for DOE on electric vehicle R&D. Quarterly progress report, January--March 1991

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  8. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    SciTech Connect

    1996-08-01

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  9. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems; NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) QUARTERLY PROGRESS REPORT

    SciTech Connect

    Pavel Hejzlar, Peter Yarsky, Mike Driscoll, Dan Wachs, Kevan Weaver, Ken Czerwinski, Mike Pope, James Parry, Theron D. Marshall, Cliff B. Davis, Dustin Crawford, Thomas Hartmann, Pradip Saha; Hejzlar, Pavel; Yarsky, Peter; Driscoll, Mike; Wachs, Dan; Weaver, Kevan; Czerwinski, Ken; Pope, Mike; Parry, James; Marshall, Theron D.; Davis, Cliff B.; Crawford, Dustin; Hartmann, Thomas; Saha, Pradip

    2005-01-31

    This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.

  10. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  11. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--July 1, 1998

    SciTech Connect

    Arnold, F.H.

    1998-07-08

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. Progress on three tasks are described: Random mutagenesis of pNB esterase--improved activity and stability; Directed evolution of subtilisin E to enhance thermostability; and Methods for invitro recombination.

  12. Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, January-March 1984

    SciTech Connect

    Foley, M.G.; Opitz, B.E.; Deutsch, W.J.; Peterson, S.R.; Gee, G.W.; Serne, R.J.; Hartley, J.N.; Thomas, V.W.; Kalkwarf, D.R.; Walters, W.H.; Fayer, M.J.; Wogman, N.A.; Nelson, R.W.

    1984-05-01

    Progress is reported on the following studies dealing with mill tailings: long-term stabilizaton; interim stabilization of mill tailings piles; tailings dewatering techniques; tailings neutralization and other alternatives in immobilizing toxic materials in tailings; evaluation of seepage and leachate transport from tailings disposal facilities; effluent and environmental monitoring methods and equipment and instrument testing; attenuation of radon emissions; assessment of leachate movement from uranium mill tailings; and methods of minimizing ground water contamination in in-situ leach uranium mining.

  13. Advanced water-cooled phosphoric acid fuel cell development. Quarterly technical progress report No. 20, October, November, December, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Fabrication of repeat parts for small area short stack is underway: 100 electrode substrates and 150 ERP substrates were graphitized, and 30 electrode substrates were run through each manufacturing step. Teflon content and compaction pressure of shop-made electrodes for the small area short stack was optimized based on single cell tests. A single cell with GSB-18P catalyst and 1 mg/cm{sup 2} loading is performing very well; performance is 0.66 V per cell after 1200 h at 300 ASF. 3 integral separator plate configurations have been selected for verification in the upcoming short stack. Bubble pressures over 7 psid have been demonstrated in filler bands applied with a production curtain and coating process. 5 full-size (small area) coolers were molded, and encapsulation development for molded and commercial graphite coolers continued.

  14. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    SciTech Connect

    Jubin, R.T.

    2001-04-16

    quarter, MSRE Remediation Studies focused on recovery of {sup 233}U and its conversion to a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. Investigation of options for final disposition of the {sup 233}U inventory represents a new initiative within this area. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids.

  15. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  16. Effect of pretreating of host oil on coprocessing. Quarterly progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Wender, I.; Tierney, J.W.

    1994-02-13

    In the last quarterly report we presented results of coprocessing runs made with an Illinois No. 6 coal and an AMOCO VTR (as received) and after the heavy oil had been pretreated a number of different ways. Coal conversions and product yields were presented for each coprocessing experiment. We have now further analyzed results from coprocessing experiments in order to estimate the yields of coal-derived gas, asphaltenes and oil products. Although coal-derived products can not be measured directly from the coprocessing experiments, since coal and petroleum products are commingled, they can be estimated based on repeat reactions with the petroleum solvent alone. This technique assumes that the petroleum solvent reacts to yield the same products whether coal is present or not. When the coal was coprocessed with untreated heavy oil 58% of coal (MAF) was converted to gas and liquid products. We estimated that 7% of coal was converted to oils (n-pentane solubles), 28% to asphaltenes (n-pentane insolubles) and 24% to hydrocarbon gases, mostly methane. When the same coal was coprocessed with AMOCO oil that had been pretreated with 1000 ppM (metal concentration) of Mo naphthenate, 81% of coal was converted; this is an average of two runs. Coal-derived oil yield remained nearly the same at 8% and gas yield remained at 23%. However, the asphaltene yield increased from 28% to 50%. The increase in asphaltenes accounted for the increase in coal conversion. Table 4 shows yields for the case where Illinois No. 6 coal was coprocessed with AMOCO oil that was first pretreated in two steps; step one with 1000 ppM of Mo naphthenate, step two with the catalyst Ni/Mo/Al{sub 2}O{sub 3}. As a result of this reaction, 85% of coal was converted to gas and liquids. Gas yield was 19%, oil yield was 10% and asphaltene yield was 56%. As in the previous run, most of the coal was converted to asphaltenes.

  17. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  18. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 13, April 1996--June 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-07-30

    This document is the thirteenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes} and covers the period April-June 1996. The basic premise of this project is that vanadyl pyrophosphate (VPO), a catalyst used commercially in the selective oxidation of butane to maleic anhydride, can be developed as a catalyst for selective methane oxidation. Data supporting this idea include published reports indicating moderate to high selectivity in oxidation of ethane, propane, and pentane, as well as butane. Methane oxidation is a much more difficult reaction to catalyze than that of other alkanes and it is expected that considerable modification of vanadyl pyrophosphate will be required for this application. It is well known that VPO can be modified extensively with a large number of different promoters and in particular that promoters can enhance selectivity and lower the temperature required for butane conversion.

  19. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit. Quarterly technical progress report, October 1-December 21, 1981

    SciTech Connect

    Not Available

    1982-01-01

    This report provides a summary of the work performed on the Prototype Culm Combustion Boiler/Heater Unit, Phase I - Engineering Design and Analysis, Phase II - Prototype Plant Construction and Phase III - Start-Up and Operation during the period October 1, 1981 through December 31, 1981. The objectives of the program as well as the technical progress and problem areas encountered during the reporting period are presented. Seven shakedown tests were run. Start-up and shakedown testing was completed. Four parametric tests were run. Performance data are presented with the exception of boiler efficiency which will be reported once chemical analyses are completed. Total boiler operation time through the end of this quarter - 1225 h, 50 min; operating time on culm and culm/limestone - 682 h, 43 min. Inspection revealed no problems with boiler tube wear. Sulfur capture greater than 94% was demonstrated (design is 88%). A turndown of better than 4 to 1 was shown (design is 2.5 to 1). Computer control of most of the loops has been successful and manual control was also demonstrated.

  20. Novel microorganism for selective separation of coal from ash and pyrite. Fourth quarterly technical progress report, July 1, 1994--September 30, 1994

    SciTech Connect

    Misra, M.; Smith, R.W.

    1995-12-31

    This report summarizes the progress made during the fourth quarter of the research 9 project entitled {open_quotes}A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite{close_quotes}. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash forming minerals. During the reporting period, the adhesion of M phlei on the surface of quartz was investigated as a function of pH and conditioning time. Results showed that the little adhesion of M phlei onto quartz occurred. The amount of M phlei adsorbed onto the surface of quartz was less compared to coal. These results suggest that it would be possible to flocculate coal selectively from ash forming minerals. Flocculation tests conducted with Illinois No. 6 coal showed that rapid flocculation takes place in the pH range of 3-4. Flocculation efficiency is highly dependent upon the M. phlei concentration.

  1. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 25, October 1, 1994--December 31, 1994

    SciTech Connect

    1994-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  3. Surface magnetic enhancement for coal cleaning. Quarterly technical progress report no. 6, May 1--July 31, 1989

    SciTech Connect

    Hwang, J.Y.

    1989-12-31

    The fundamental chemistry for selective adsorption of magnetizing reagent on coal-associated minerals to enhance the magnetic susceptibility of minerals have been established in Phase I study. The application of the results on coal cleaning is in progress in the Phase II study. The task in Phase II study for coal selection, preparation, and characterization is completed in this reporting period. The optimization of adsorption conditions for {minus}48 mesh ROM coals and flotation concentrates is about completed. Experiments have shown that successful coal cleaning can be obtained with this magnetizing reagent approach. The task to adapt the approach to various processing schemes is just initiated.

  4. AFBC co-firing of coal and hospital waste. Quarterly progress report, November 1, 1994--January 31, 1995

    SciTech Connect

    Stuart, J.M.

    1995-10-01

    The project objective is to design, construct, install, and start-up a circulating fluidized bed combustion system at the Lebanon, Pennsylvania Veteran`s Affairs Medical Center. The unit will co-fire coal and hospital waste providing inexpensive and efficient destruction of both general and infectious medical waste and steam generation. Progress to date on several tasks is described. These are: Task 1.A-1.D, Design; Equipment purchase and fabrication; Installation; and Shredder system verification. Other tasks to be undertaken are: Start-up; Obtaining permits; Procuring coal, limestone and ash disposal contracts; and Conducting on-year test program. Project costs are enumerated.

  5. Development of the integrated environmental control model: Performance and cost models for fabric filters. Quarterly progress report, January--March 1994

    SciTech Connect

    Kalagnanam, J.R.; Rubin, E.S.

    1994-04-27

    The present report summarizes recent progress on the Phase I effort during the period January 1, 1994 through March 30, 1994. This report summarizes progress to date in refining the existing analytical models implemented in the IECM. In this report, the authors described the development of analytical models for the performance and costs of high-performance particulate control technologies, focusing on fabric filters. They pay special attention to developing models which can be used to estimate costs for systems whose performance is up to a factor of three below the present NSPS standards of 0.03 lb/MMBtu. Typically, the cost models relate the capital costs and the operating and maintenance (O&M) costs to process parameters and the costs of labor and materials. The capital cost models are anchored to a base capital cost for a specific size unit and adjusted according to the actual or design parameters. The performance models are constructed to estimate the process parameters for a desired level of emission control. The primary motivation for these models is to estimate the costs of complying with environmental standards on a basis which reflects recent advances in control technology. Finally, the authors incorporate the uncertainties in various process parameters and inputs costs so as to allow a more rational and robust basis for comparing different technologies. In the following sections the authors discuss the initial development of the performance and cost models for fabric filters followed by a numerical example which illustrates the use of these new models. The next quarterly report will provide a similar update of the IECM electrostatic precipitator models, plus a brief discussion of the comparative advantages of different particulate control.

  6. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-06-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. UTSI has completed the batch mode experiments to locate the position of the CO{sub 3}{sup 2} and SO{sub 4}{sup 2} ions in the affinity chart. Also, the reviews of the ASPEN Code`s capabilities and EPRI-TAG document`s methodology are in progress for developing the Best Process Schematic and related economics. The fixed-bed experiments are also in progress to evaluate the cycle efficiency of the candidate resins. So far we have completed ten consecutive cycles of exhaustion/carbonation and regeneration for IRA-35 resin. Because of the past problems (now resolved) with the fixed-bed system, the addition of batch mode screening experiments, Christmas holidays and spring break, and the moving of UTSI`s Chemistry Laboratory to a new location, the program is about 6--8 weeks behind schedule, but well within the budget.

  7. Process feasibility study in support of silicon material Task I. Quarterly technical progress report (XIX), March 1-May 31, 1980

    SciTech Connect

    Yaws, C.L.; Li, K.Y.

    1980-06-01

    Analyses of process system properties were continued for chemical materials important in the production of silicon. Major physical, thermodynamic and transport property data are reported for silicon including critical constants, vapor pressure, heat of vaporization, heat of sublimation, heat capacity, density, surface tension, viscosity and thermal conductivity. The property data covers both liquid and solid phases and are reported as a function of temperature for rapid engineering usage. Major efforts in chemical engineering analysis centered on the HSC process (Hemlock Semiconductor Corporation). The approach for the process involves performing initial analysis for DCS production (dichlorosilane) and then perorming analysis of polysilicon production from the DCS. For the DCS production, status and progress are reported for primary activities of base case conditions (65%), reaction chemistry (65%), process flowsheet (60%), material balance (50%) and energy balance (40%). Two key features - redistribution reactor relocation and final distillation - are introduced to increase yield of DCS by about 10 to 20%, help insure purity and reduce potential dust (fine particle nucleation) components in the polysilicon feed material. The preliminary flowsheet for DCS production was forwarded to Hemlock Semiconductor Corporation for initial screening and review. Hemlock Semiconductor is in agreement in regards to relocation of the redistribution reactor to increase yield. Additional follow-up review is in progress including boron removal options identified by Hemlock Semiconductor. 166 references.

  8. Enhanced oil recovery utilizing high-angle wells in the Frontier Formation, Badger Basin Field, Park County, Wyoming. Quarterly technical progress report, 1 March 1993--30 June 1993

    SciTech Connect

    Fortmann, R.G.; Walker, J.P.

    1993-07-10

    Sierra Energy Company`s targeted goals during the third quarter of this Cooperative Agreement included the following objectives from the Statement of Work: in Phase 2A, completion of subtask 2.1.2--acquire best possible field data in the 3-D seismic program; and initiation of Subtask 2.1.3--process acquired 3-D seismic data. Technical progress is described for these tasks.

  9. Studies of granular flow down an inclined chute. Quarterly technical progress report, 13 June 1992--12 September 1992

    SciTech Connect

    Hanes, D.M.

    1992-12-01

    The driving force for the granular flow in the experimental region is gravity. The vehicle which re-circulates this flow is an 46 cm Corra-Trough belt conveyor manufactured by Buck-El, Inc. A drawing of this conveyor is shown in Figure 3. Entrance and exit chambers were designed to route the flow between the chute and the conveyor. Both devices had to be flexible because the position of the chute relative to the conveyor changes each time the angle of the chute is changed. Finally, to control the entering flow more accurately, an adjustable gate apparatus was constructed. The first step in setting up the chute is angle adjustment. The granular material used in the experiments described in this report are technical quality glass spheres, three millimeters in diameter. These beads are produced by Cataphote, Inc. Cataphote lists the tolerances for the 3mm spheres at {plus_minus}0.2 mm. The average mass of a single bead was measured to be 0.034 g which gives an average measured specific gravity of the glass at 2.42 g/cm{sup 3}.

  10. Advance concepts for conversion of syngas to liquids. Quarterly progress report No. 4, July 30, 1995--October 29, 1995

    SciTech Connect

    Pei-Shing Eugene Dai; Petty, R.H.; Ingram, C.; Szostak, R.

    1996-02-01

    Substitution of transition metals for either aluminum and/or phosphorus in the AlPO{sub 4}-11 framework is found to afford novel heterogeneous catalysts for liquid phase hydroxylation of phenol with hydrogen peroxide. AlPO{sub 4}-11 is more active than SAPO-11 and MgAPO-11 for phenol conversion to hydroquinone. The Bronsted acid sites of SAPO-11 and MgAPO-11 may promote the decomposition of hydrogen peroxide to water and oxygen, thus leading to lower phenol conversions. Substitution of divalent and trivalent metal cations, such as Fe, Co and Mn appears to significantly improve the conversion of phenol. The activity follows the order of FeAPO-11>FeMnAPO-11>CoAPO-11>MnAPO-11{much_gt}ALPO{sub 4}-11. FeAPO-11, FeMnAPO-11 and AlPO{sub 4}-11 give similar product selectivities of about 1:1 hydroquitione (HQ) to catechol (CT). MnAPO-11 and CoAPO-11 favor the production of catechol, particularly at low conversions. FeAPO-11 and TS-1 (titanium silicate with MFI topology) are comparable for the phenol conversions with TS-1 giving higher selectivities toward hydroquinone. The external surfaces of the catalysts plays a significant role in these oxidation reactions. MeAPO molecular sieves may be complementary to the metal silicalite catalysts for the catalytic oxidations in the manufacture of fine chemicals.

  11. Replacing Chemicals in Recycle Mills with Mechanical Alternatives. Quarterly progress report covering period October 1, 1999 to December 31, 1999

    SciTech Connect

    Sujit Banerjee

    2000-01-13

    The objective of this project is to explore potential applications of underwater pulsed power technology to the paper industry. These included fiber refining, disinfection, stickies dispersion, and stickies control. In pulsed power a spark is discharged underwater. Present commercial applications of the technology include the detonation of land mines, zebra mussel control, and water disinfection. In preliminary work the authors have found that stickies are rapidly dispersed under the influence of pulsed power. The purpose of this project is to explore other applications of the technology in the recycle paper industry, especially in applications where the technology can replace potentially expensive chemical use. The authors have found that sparking improves the screenability of stickies in the presence of pulp. Sparking is also able to detackify pitch coated on metal surfaces. This is potentially a major finding since it extends the range of the application from recycle to virgin mills. They need to determine if the effect also occurs for pitch particles suspended in whitewater. Some stickies such as Robond, a PSA used in the paint industry, are relatively unaffected by spark treatment. They find that this polymer is oxidized to a lower extent. A sparker unit has been purchased and installed at IPST. A licensing agreement with Sparktec Environmental, Stoney Creek, Canada, the manufacturer of the device, has been negotiated. It was found that sparking improves the screenability of stickies in the presence of pulp. Sparking is also able to detackify pitch coated on metal surfaces.

  12. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly MCLR Program technical progress report, July 1--September 30, 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. This report summarizes the research conducted during the third quarter of calendar year 1995 on the following projects: Thermophysical properties of HCFC alternatives; Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants; Compatibility of motor materials used in air-conditioning for retrofits with alternative refrigerants and lubricants; Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants; Products of motor burnouts; Accelerated test methods for predicting the life of motor materials exposed to refrigerant-lubricant mixtures; Investigation of flushing and clean-out methods; Investigation into the fractionation of refrigerant blends; Lean flammability limits as a fundamental refrigerant property; Effect of selected contaminants in AC and R equipment; Study of foaming characteristics; Study of lubricant circulation in systems; Evaluation of HFC-245ca for commercial use in low pressure chillers; Infrared analysis of refrigerant mixtures; Refrigerant database; Refrigerant toxicity survey; Thermophysical properties of HFC-32, HFC-123, HCFC-124 and HFC-125; Thermophysical properties of HFC-143a and HFC-152a; Theoretical evaluations of R-22 alternative fluids; Chemical and thermal stability of refrigerant-lubricant mixtures with metals; Miscibility of lubricants with refrigerants; Viscosity, solubility and density measurements of refrigerant-lubricant mixtures; Electrohydrodynamic enhancement of pool and in-tube boiling of alternative refrigerants; Accelerated screening methods; and more.

  13. Strategic petroleum reserve. Quarterly report

    SciTech Connect

    Not Available

    1994-05-15

    The Strategic Petroleum Reserve serves as one of our most important investments in reducing the Nation`s vulnerability to oil supply disruptions. Its existence provides an effective response mechanism should a disruption occur and a formidable deterrent to the use of oil as a political instrument. The Strategic Petroleum Reserve was created pursuant to the Energy Policy and Conservation Act of December 22, 1975, (Public Law 94-163) as amended, to reduce the impact of disruptions in supplies of petroleum products and to carry out obligations of the United States under the Agreement on an International Energy Program. Section 165(a) of the Act requires the submission of Annual Reports and Section 165(b)(1) requires the submission of Quarterly Reports. This Quarterly Report highlights activities undertaken during the first quarter of calendar year 1994, including: (1) inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; (2) fill rate for the current quarter and projected fill rate for the next calendar quarter; (3) average price of the petroleum products acquired during the calendar quarter; (4) current and projected storage capacity; (5) analysis of existing or anticipated problems with the acquisition and storage of petroleum products, and future expansion of storage capacity; (6) funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and (7) major environmental actions completed, in progress, or anticipated.

  14. Geothermal resource assessment in the Aleutian Islands and Alaska peninsula: Quarterly progress report, January 1--March 30, 1989

    SciTech Connect

    Turner, D.L.; Nye, C.J.

    1989-03-30

    In this report the authors have now completed dating work on 20 rock samples. Analytical results for the dated samples are given in the enclosed table. The results are generally in good agreement with observed stratigraphic relationships and provide a well-constrained time framework for the eruptive history of this volcanic area. The argon extraction and potassium analyses are completed and the argon sample is awaiting mass spectrometry. In addition to documenting the eruptive history of Umnak volcanoes, the K-Ar ages will provide a time framework for the chemical evolution of the magmatic system, when combined with the rock chemistry analyses presently in progress at U.C., Santa Cruz. 1 tab.

  15. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-12-31

    The computational model for simulating particle motions in turbulent flows was further developed and used to analyze the transport and dispersion of particles in a recirculating flow region. The model for resuspension of particles from surfaces in a gas flow is also further developed; it accounts for the surface adhesion as well as hydrodynamic forces and torques. It includes effects of the structure of near wall turbulent flows as well as surface roughness. In addition, a direct numerical simulation procedure for analyzing the particle removal process in turbulent gas flows is also developed. The sublayer model for evaluating the particle deposition in turbulent flows is being extended to include the effect of particle rebound. Further progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  16. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  17. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    SciTech Connect

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  18. Coal-fired high performance power generating system. Quarterly progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This report covers work carried out under Task 3, Preliminary Research and Development, and Task 4, Commercial Generating Plant Design, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x}, and particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. The report discusses progress in cycle analysis, chemical reactor modeling, ash deposition rate calculations for HITAF (high temperature advanced furnace) convective air heater, air heater materials, and deposit initiation and growth on ceramic substrates.

  19. Exploratory research on solvent refined coal liquefaction. Quarterly technical progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1982-01-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory for the period January 1, 1980 through March 31, 1980. A series of experiments was conducted with three western coals to study the relationship between coal properties and liquefaction behavior. All three coals were low in iron (0.2 to 0.4%, dry coal basis) and processing in both the SRC I and SRC II modes does not appear to be feasible at normal conditions without added catalyst. Adding 1 to 2% pyrite to the feed slurry increased oil yields considerably while reducing SRC and IOM yields and improved operability. Product quality was also generally improved by the catalyst. Operability and oil yields were generally found to be better at 450/sup 0/C than at 465/sup 0/C.

  20. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly progress report, 1 July 1992--30 September 1992

    SciTech Connect

    Hourahan, G.C.; Szymurski, S.R.

    1992-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR pregrain the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing several research projects and a data collection and dissemination effort. Preliminary results is from these projects are reported in technical progress reports prepared by each researcher.