Science.gov

Sample records for manufacturing ceramic products

  1. Ceramic transactions: Case studies in ceramic product development, manufacturing, and commercialization. Volume 75

    SciTech Connect

    Ghosh, A.; Barks, R.E.; Hiremath, B.

    1997-12-31

    This document presents studies on ceramic development and manufacturing. Topics include general manufacturing, the manufacture of electronic optical components, and bioceramic components. Individual reports have been processed separately for the United States Department of Energy databases.

  2. Final Regulations to Reduce Toxic Air Pollutant Emissions from Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Fact Sheets

    EPA Pesticide Factsheets

    This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing

  3. A new Energy Saving method of manufacturing ceramic products from waste glass

    SciTech Connect

    Haun Labs

    2002-07-05

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an unglazed appearance

  4. Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production.

    PubMed

    Vichaphund, S; Intiya, W; Kongkaew, A; Loykulnant, S; Thavorniti, P

    2012-12-01

    The possibility of utilization of the sludge waste obtained from the natural rubber manufacturing process as a raw material for producing clay ceramics was investigated. To prepared clay-based ceramic, the mixtures of traditional clay and sludge waste (10-30 wt%) were milled, uniaxilly pressed and sintered at a temperature between 1000 and 1200 degrees C. The effect of sludge waste on the properties of clay-based ceramic products was examined. The results showed that the amount of sludge waste addition had an effect on both sinterability and properties of the clay ceramics. Up to 30 wt% of sludge waste can be added into the clay ceramics, and the sintered samples showed good properties.

  5. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    SciTech Connect

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, green handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.

  6. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  7. Agile manufacturing concepts and opportunities in ceramics

    SciTech Connect

    Booth, C.L.; Harmer, M.P.

    1995-08-01

    In 1991 Lehigh University facilitated seminars over a period of 8 months to define manufacturing needs for the 21st century. They concluded that the future will be characterized by rapid changes in technology advances, customer demands, and shifts in market dynamics and coined the term {open_quotes}Agile Manufacturing{close_quotes}. Agile manufacturing refers to the ability to thrive in an environment of constant unpredictable change. Market opportunities are attacked by partnering to form virtual firms to dynamically obtain the required skills for each product opportunity. This paper will describe and compare agile vs. traditional concepts of organization & structure, management policy and ethics, employee environment, product focus, information, and paradigm shift. Examples of agile manufacturing applied to ceramic materials will be presented.

  8. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    2016-07-01

    Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.

  9. Method of manufacturing ceramic shaped articles

    NASA Technical Reports Server (NTRS)

    Inoue, K.

    1983-01-01

    A method of manufacturing ceramic shaped articles, wherein tapes of ceramic powder material in mixture with a binder material and special additives are shaped and then articles are stamped out from said tapes and sintered in a sintering furnace is described.

  10. Method of manufacturing ceramic shaped articles

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    1983-05-01

    A method of manufacturing ceramic shaped articles, wherein tapes of ceramic powder material in mixture with a binder material and special additives are shaped and then articles are stamped out from said tapes and sintered in a sintering furnace is described.

  11. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  12. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  13. Additive manufacturing of polymer-derived ceramics

    NASA Astrophysics Data System (ADS)

    Eckel, Zak C.; Zhou, Chaoyin; Martin, John H.; Jacobsen, Alan J.; Carter, William B.; Schaedler, Tobias A.

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  14. Additive manufacturing of polymer-derived ceramics.

    PubMed

    Eckel, Zak C; Zhou, Chaoyin; Martin, John H; Jacobsen, Alan J; Carter, William B; Schaedler, Tobias A

    2016-01-01

    The extremely high melting point of many ceramics adds challenges to additive manufacturing as compared with metals and polymers. Because ceramics cannot be cast or machined easily, three-dimensional (3D) printing enables a big leap in geometrical flexibility. We report preceramic monomers that are cured with ultraviolet light in a stereolithography 3D printer or through a patterned mask, forming 3D polymer structures that can have complex shape and cellular architecture. These polymer structures can be pyrolyzed to a ceramic with uniform shrinkage and virtually no porosity. Silicon oxycarbide microlattice and honeycomb cellular materials fabricated with this approach exhibit higher strength than ceramic foams of similar density. Additive manufacturing of such materials is of interest for propulsion components, thermal protection systems, porous burners, microelectromechanical systems, and electronic device packaging.

  15. Defect production in ceramics

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  16. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  17. Ceramic components manufacturing by selective laser sintering

    NASA Astrophysics Data System (ADS)

    Bertrand, Ph.; Bayle, F.; Combe, C.; Goeuriot, P.; Smurov, I.

    2007-12-01

    In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure). The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V ( V = 1250-2000 mm/s), defocalisation (-6 to 12 mm), distance between two neighbour melted lines (so-called "vectors") (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density. Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm 3 volume cube.

  18. Mixed technologies of artistic ceramics processing for the jewelery manufacture

    NASA Astrophysics Data System (ADS)

    Kutsenko, L. E.; Arventyeva, N. A.

    2017-01-01

    The need for the study of different technologies of the jewellery manufacture is due to the demand of the modern world in a variety of high-quality environmentally friendly products. While working with ceramics, it is possible to get the product, which is unique in its form, a wide range of colors, possibility of harmoniously combining it with a number of other modern materials. Images of ancient birds are used, stages of technology, which allow connecting the ceramics and metal, the technology for working with underglaze paints are represented, application limits associated with a particular operation of the product (fragility) are analyzed in the research. The society need for exclusive products determines the relevance of different materials connection, the characteristics research of their compounds, while working with them. The research objective is a bird image stylized design for a piece of jewellery, different materials compounds, the substantiation of technology of its manufacturing “narikomi” technique. Also, the research objective includes the development of the technology stages, allowing the connection of ceramic and metal to get jewellery that is unique in its form, a wide range of colors, a possibility of harmonious combination of it with a number of other modern materials.

  19. Joined ceramic product

    DOEpatents

    Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L [West Richland, WA

    2001-08-21

    According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.

  20. Investigation of the usage of centrifuging waste of mineral wool melt (CMWW), contaminated with phenol and formaldehyde, in manufacturing of ceramic products.

    PubMed

    Kizinievič, Olga; Balkevičius, Valdas; Pranckevičienė, Jolanta; Kizinievič, Viktor

    2014-08-01

    Large amounts of centrifuging waste of mineral wool melt (CMWW) are created during the production of mineral wool. CMWW is technogenic aluminum silicate raw material, formed from the particles of undefibred melt (60-70%) and mineral wool fibers (30-40%). 0.3-0.6% of organic binder with phenol and formaldehyde in its composition exists in this material. Objective of the research is to investigate the possibility to use CMWW as an additive for the production of ceramic products, by neutralising phenol and formaldehyde existing in CMWW. Formation masses were prepared by incorporating 10%, 20% and 30% of CMWW additive and burned at various temperatures. It was identified that the amount of 10-30% of CMWW additive influences the following physical and mechanical properties of the ceramic body: lowers drying and firing shrinkage, density, increases compressive strength and water absorption. Investigations carried out show that CMWW waste can be used for the production of ceramic products of various purposes.

  1. Ceramic heat exchangers: Manufacturing techniques and performance

    NASA Astrophysics Data System (ADS)

    Merrigan, M. A.; Sandstrom, D. J.

    1981-05-01

    The objective of the ceramic heat pipe program being conducted at Los Alamos is demonstration of the practical feasibility of this technology for the solution of severe high temperature recuperation functions. Ceramic heat pipe recuperators were theoretically shown to offer distinct advantages over conventional ceramic heat exchangers from the standpoint of efficiency of heat recuperation and economics. The main stumbling block to their widespread utilization is related to the problems of materials for construction and the details of fabrication and assembly. The performance objectives of ceramic heat pipes and some aspects of the materials technology program aimed at solving the problem of economic ceramic heat pipe fabrication are described.

  2. The Ceramic Manufacturability Center: A new partnership with US industry

    SciTech Connect

    Tennery, V.J.; Morris, T.O.

    1993-12-01

    The Ceramic Manufacturability Center (CMC) is a new facility at the Oak Ridge National Laboratory (ORNL) established as a direct response to current US industry needs. It was created as part of a highly integrated program jointly funded by the US Department of Energy Defense Programs, Energy Efficiency and Renewable Energy, and Energy Research divisions. The CMC is staffed by personnel from ORNL and the Y-12 Plant, both managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Its mission is to improve the technology needed to manufacture high-precision ceramic components inexpensively and reliably. This mission can be accomplished by strengthening the US machine tool industry and by joining with ceramic material suppliers and end users to provide a path to commercialization of these ceramic components.

  3. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  4. Needs assessment for manufacturing ceramic gas turbine components

    SciTech Connect

    Johnson, D.R.; McSpadden, S.B.; Morris, T.O.; Pasto, A.E.

    1995-11-01

    An assessment of needs for the manufacturing of ceramic gas turbine components was undertaken to provide a technical basis for planning R&D activities to support DOE`s gas turbine programs. The manufacturing processes for ceramic turbine engine components were examined from design through final inspection and testing. The following technology needs were identified: Concurrent engineering early in the design phase to develop ceramic components that are more readily manufacturable. Additional effort in determining the boundaries of acceptable design dimensions and tolerances through experimental and/or analytical means. Provision, by the designer, of a CAD based model of the component early in the design cycle. Standardization in the way turbine components are dimensioned and toleranced, and in the way component datum features are defined. Rapid means of fabricating hard tooling, including intelligent systems for design of tooling and rapid prototyping of tooling. Determination of process capabilities by manufacturing significant numbers of parts. Development of more robust ceramic manufacturing processes which are tolerant of process variations. Development of intelligent processing as a means of controlling yield and quality of components. Development of computer models of key manufacturing steps, such as green forming to reduce the number of iterations required to manufacture intolerance components. Development of creep feed or other low-damage precision grinding for finish machining of components. Improved means of fixturing components for finish machining. Fewer and lower-cost final inspection requirements. Standard procedures, including consistent terminology and analytical software for dimensional inspection of components. Uniform data requirements from the US turbine engine companies. An agreed-upon system of naming ceramic materials and updating the name when changes have been made.

  5. Novel Nanotube Manufacturing Streamlines Production

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.

  6. Application of manufactured products

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  7. Ceramic component manufacturing process development. Final report

    SciTech Connect

    Robinson, S.

    1996-09-30

    Ceramic materials are well suited for applications where temperature, wear, and corrosion resistance are necessary. The toughness and wear resistance properties that make ceramics desirable, also make fabrication of parts difficult. The objective of this CRADA was to increase the grinding efficiency on Ceradyne Incorporated silicon nitride. This was to be accomplished through optimization of grinding wheel life and increasing silicon nitride material removal rates. Experiments were conducted to determine the relationship between grinding parameters, wheel wear, and material removal rates. Due to excessive, unexplained variation in the experimental results, a consistent relationship between the selected grinding parameters and wheel wear could not be established. Maximum material removal rates were limited by spindle and table drive power. Additional experiments were conducted to evaluate high speed grinding. When compared to conventional grinding speeds, the material removal rates using high speed grinding (13,000 SFM) increased by a factor of five to ten with no degradation of fracture strength.

  8. MM&T Manufacturing Methods for Gradient Furnace Processing of Ceramic Armor and Structural Ceramics

    DTIC Science & Technology

    1980-08-01

    designated by other authorized documents. Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an...single crystal materials opens up many possi- bilities for new applications of ceramics, such as in the case of trans- parent armor, lasers, and...possibilities for new applications of ceramics such as in the case of transparent armor, lasers, and laser windows. With the increase in size of single

  9. Additive Manufactured Product Integrity

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Wells, Doug; James, Steve; Nichols, Charles

    2017-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  10. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Y.D.; Johnson, S.M.; Gusman, M.I.

    1997-06-03

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  11. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    EPA Pesticide Factsheets

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  12. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  13. Solder technology in the manufacturing of electronic products

    SciTech Connect

    Vianco, P.T.

    1993-08-01

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  14. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  15. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  16. Manufacturing and characterization of a ceramic single-use microvalve

    NASA Astrophysics Data System (ADS)

    Khaji, Z.; Klintberg, L.; Thornell, G.

    2016-09-01

    We present the manufacturing and characterization of a ceramic single-use microvalve with the potential to be integrated in lab-on-a-chip devices, and forsee its utilization in space and other demanding applications. A 3 mm diameter membrane was used as the flow barrier, and the opening mechanism was based on cracking the membrane by inducing thermal stresses on it with fast and localized resistive heating. Four manufacturing schemes based on high-temperature co-fired ceramic technology were studied. Three designs for the integrated heaters and two thicknesses of 40 and 120 μm for the membranes were considered, and the heat distribution over their membranes, the required heating energies, their opening mode, and the flows admitted through were compared. Furthermore, the effect of applying  +1 and  -1 bar pressure difference on the membrane during cracking was investigated. Thick membranes demonstrated unpromising results for low-pressure applications since the heating either resulted in microcracks or cracking of the whole chip. Because of the higher pressure tolerance of the thick membranes, the design with microcracks can be considered for high-pressure applications where flow is facilitated anyway. Thin membranes, on the other hand, showed different opening sizes depending on heater design and, consequently, heat distribution over the membranes, from microcracks to holes with sizes of 3-100% of the membrane area. For all the designs, applying  +1 bar over pressure contributed to bigger openings, whereas  -1 bar pressure difference only did so for one of the designs, resulting in smaller openings for the other two. The energy required for breaking these membranes was a few hundred mJ with no significant dependence on design and applied pressure. The maximum sustainable pressure of the valve for the current design and thin membranes was 7 bar.

  17. Development of manufacturing technologies for hard optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  18. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  19. Plastics and Rubber Products Manufacturing (NAICS 326)

    EPA Pesticide Factsheets

    Find environmental regulatory and compliance information for plastics and rubber products manufacturing (which includes the manufacture of cellulose and other fibers) including information about NESHAPs and effluent guidelines for wastewater discharges

  20. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  1. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    NASA Astrophysics Data System (ADS)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  2. Critical Needs for Robust and Reliable Database for Design and Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic matrix composite (CMC) components are being designed, fabricated, and tested for a number of high temperature, high performance applications in aerospace and ground based systems. The critical need for and the role of reliable and robust databases for the design and manufacturing of ceramic matrix composites are presented. A number of issues related to engineering design, manufacturing technologies, joining, and attachment technologies, are also discussed. Examples of various ongoing activities in the area of composite databases. designing to codes and standards, and design for manufacturing are given.

  3. Production Process for Strong, Light Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Holmquist, G. R.; Cordia, E. R.; Tomer, R. S.

    1985-01-01

    Proportions of ingredients and sintering time/temperature schedule changed. Production process for lightweight, high-strength ceramic insulating tiles for Space Shuttle more than just scaled-up version of laboratory process for making small tiles. Boron in aluminum borosilicate fibers allows fusion at points where fibers contact each other during sintering, thereby greatly strengthening tiles structure.

  4. Method of manufacture of single phase ceramic superconductors

    DOEpatents

    Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

    1995-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

  5. Method of manufacture of single phase ceramic superconductors

    DOEpatents

    Singh, J.P.; Poeppel, R.B.; Goretta, K.C.; Chen, N.

    1995-03-28

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of about 4 {mu}m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity. 25 figures.

  6. Ceramic Hosts for Fission Products Immobilization

    SciTech Connect

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  7. PC25{trademark} product and manufacturing experience

    SciTech Connect

    Hall, E.W.; Riley, W.C.; Sandelli, G.J.

    1996-12-31

    Product and manufacturing experience accumulated since the beginning of PC25. A production in 1991 provides a strong base of demonstration and experience for establishing future improvements to the PC25 power plant.

  8. Productivity Growth Average in Farm Machinery Manufacturing.

    ERIC Educational Resources Information Center

    Herman, Arthur S.; Ferris, John W.

    1982-01-01

    Productivity in farm machinery manufacturing is examined. The authors discuss how the national economy affects productivity, how the growth of agriculture and technology has changed the industry, and how future trends may cause change in the industry. (CT)

  9. Ceramic tipped pivot rod and method for its manufacture

    SciTech Connect

    Gill, D.E.

    1989-01-03

    A pivot rod is described comprising: a mounting shaft having an interior receiving space at at least one end thereof; a pivot insert formed of a ceramic material having a maximum tensile principle stress, the pivot insert being positioned with a first portion thereof disposed within the receiving space and a second portion thereof projecting axially beyond the end of the mounting shaft; an interference fit securement between the first portion of the pivot insert and a peripheral wall of the mounting shaft circumscribing the receiving space, the interference fit securement being constructed as a means for preventing the maximum tensile principle stress of the ceramic material from being exceeded.

  10. Arsenic speciation in manufactured seafood products.

    PubMed

    Vélez, D; Montoro, R

    1998-09-01

    The literature on the speciation of arsenic (As) in seafoods was critically reviewed. Most research has been directed toward fresh seafood products with few papers dealing with As speciation in manufactured seafoods. Predictions concerning As species made on the basis of fresh seafood products cannot be extrapolated to manufactured seafoods. Therefore, due to the numerous species of As, the scarcity of data concerning their presence in foods, the transformations each species may undergo during industrial processing and cooking, and the lack of legislation on permitted As levels in seafood products, As species in manufactured seafood products need to be determined and quantified.

  11. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  12. Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Díaz Lantada, Andrés; de Blas Romero, Adrián; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes

    2016-05-01

    Auxetic metamaterials are known for having a negative Poisson’s ratio (NPR) and for displaying the unexpected properties of lateral expansion when stretched and densification when compressed. Even though a wide set of micro-manufacturing resources have been used for the development of auxetic metamaterials and related devices, additional precision and an extension to other families of materials is needed for their industrial expansion. In addition, their manufacture using ceramic materials is still challenging. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of lithography-based ceramic manufacturing. The process stands out for its precision and complex three-dimensional geometries attainable, without the need of supporting structures, and for enabling the manufacture of ceramic auxetics with their geometry controlled from the design stage with micrometric precision. To our knowledge it represents the first example of application of this technology to the manufacture of auxetic geometries using ceramic materials. We have used a special three-dimensional auxetic design whose remarkable NPR has been previously highlighted.

  13. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  14. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  15. Study of the respiratory health of employees in seven European plants that manufacture ceramic fibres.

    PubMed Central

    Trethowan, W N; Burge, P S; Rossiter, C E; Harrington, J M; Calvert, I A

    1995-01-01

    OBJECTIVES--To study the relation between occupational exposure to ceramic fibres during manufacture and respiratory health. METHODS--The respiratory health of 628 current employees in the manufacture of ceramic fibres in seven European plants in three countries was studied with a respiratory questionnaire, lung function tests, and chest radiography. Simultaneous plant hygiene surveys measured subjects' current exposure to airborne ceramic fibres from personal samples with optical microscopy fibre counts. The measured exposures were combined with occupational histories to derive estimates of each subject's cumulative exposure to respirable fibres. Symptoms were related to current and cumulative exposure to ceramic fibres and lung function and findings from chest radiographs were related to cumulative exposure. RESULTS--The mean duration of employment was 10.2 years and mean (range) cumulative exposure was 3.84 (0-22.94) (f.ml-1.y). Eye and skin symptoms were frequent in all plants and increased significantly, as did breathlessness and wheeze, with increasing current exposure. Dry cough and stuffy nose were less common in the least exposed group but did not increase with increasing exposure. After adjustment for the effects of age, sex, height, smoking, and past occupational exposures to respiratory hazards, there was a significant decrease in both forced expiratory volume in one second (FEV1) and forced midexpiratory flow related to cumulative exposure in current smokers (P < 0.05) and in FEV1 in ex-smokers (P < 0.05). Small opacities were found in 13% of the chest radiographs; their prevalence was not related to cumulative exposure to ceramic fibres. CONCLUSIONS--It is concluded that exposure to ceramic fibres is associated with irritant symptoms similar to those seen in other exposures to man made mineral fibres (MMMFs) and that cumulative exposure to respirable ceramic fibres may cause airways obstruction by promoting the effects of cigarette smoke. PMID:7757174

  16. Glass-ceramic frits from fly ash in terracotta production.

    PubMed

    Karamanova, Emilia; Karamanov, Alexander

    2009-02-01

    Preliminary results of an investigation into the possible use of glass-ceramic frits from fly ash and glass cullet in terracotta (stoneware) tile manufacture are reported. Two new ceramics were studied and compared with a plant composition, containing 45 wt.% sodium feldspar. In the first ceramic batch 20% of the feldspar was substituted by frits and in the second the whole amount of feldspar was eliminated and replaced by 35% frits and 10% refractory waste. It was found that the addition of low viscous glass-ceramic frits decreased the sintering temperature by 50-100 degrees C. At the same time, due to formation of an additional crystal phase (i.e. pyroxene or anorthite) the new ceramics showed an improvement of 25-50% in bending strength.

  17. Haptics for Product Design and Manufacturing Simulation.

    PubMed

    Xia, Pingjun

    2016-01-01

    Product design and manufacturing simulation is a promising research and application area for haptics. By benefiting from its natural human-computer interaction and realistic force/torque feedback, haptics can change the traditional design and manufacturing approaches which are mainly based on physical mock-ups or CAD (Computer Aided Design) modes. This paper provides a detailed and comprehensive survey of haptics for product design and manufacturing simulation in the past 10 years, mainly from 2004-2014, including haptics for product design and shape modelling, haptics for machining simulation, and haptics for virtual assembly and maintenance simulation. The new haptic devices and rendering algorithms involved in this area are introduced, the major research efforts and the typical systems are discussed, and the new ideas and research progresses are investigated. Then, conclusions and future trends are summarized.

  18. AFFORDABLE MULTI-LAYER CERAMIC (MLC) MANUFACTURING FOR POWER SYSTEMS (AMPS)

    SciTech Connect

    E.A. Barringer, Ph.D.

    2002-11-27

    McDermott Technology, Inc. (MTI) is attempting to develop high-performance, cost-competitive solid oxide fuel cell (SOFC) power systems. Recognizing the challenges and limitations facing the development of SOFC stacks comprised of electrode-supported cells and metallic interconnects, McDermott Technology, Inc. (MTI) has chosen to pursue an alternate path to commercialization. MTI is developing a multi-layer, co-fired, planar SOFC stack that will provide superior performance and reliability at reduced costs relative to competing designs. The MTI approach combines state-of-the-art SOFC materials with the manufacturing technology and infrastructure established for multi-layer ceramic (MLC) packages for the microelectronics industry. The rationale for using MLC packaging technology is that high quality, low-cost manufacturing has been demonstrated at high volumes. With the proper selection of SOFC materials, implementation of MLC fabrication methods offers unique designs for stacks (cells and interconnects) that are not possible through traditional fabrication methods. The MTI approach eliminates use of metal interconnects and ceramic-metal seals, which are primary sources of stack performance degradation. Co-fired cells are less susceptible to thermal cycling stresses by using material compositions that have closely matched coefficients of thermal expansion between the cell and the interconnect. The development of this SOFC stack technology was initiated in October 1999 under the DOE cosponsored program entitled ''Affordable Multi-layer Ceramic Manufacturing for Power Systems (AMPS)''. The AMPS Program was conducted as a two-phase program: Phase I--Feasibility Assessment (10/99--9/00); and Phase II--Process Development for Co-fired Stacks (10/00-3/02). This report provides a summary of the results from Phase I and a more detailed review of the results for Phase II. Phase I demonstrated the feasibility for fabricating multi-layer, co-fired cells and interconnects and

  19. Development of Cost-Effective Manufacturing Process for Producing Ceramic Turbocharger Rotors. Volume 1.

    DTIC Science & Technology

    1987-08-14

    41.. 5.3.1. Phase One (Metal Blade Tooling )............41 5.3.2. Phase Two (Modified Metal Blade Tooling )........440 5.3.3. Phase Three (Ceramic...Rotor Tooling ).........46 5.3.4. Phase Four (Alternate Process).............46 5.3.5. Analysis/Conclusion.................49 5.4. Ceramic Rotor...development (Phase Two) was scheduled to begin initially using the existing TV8117 production metal rotor tooling . This was . to provide the experience

  20. Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.

    PubMed

    Pendola, Martin; Saha, Subrata

    2015-01-01

    Because of their favorable mechanical properties and natural esthetics, ceramics are widely used in restorative dentistry. The conventional ceramic sintering process required for their use is usually slow, however, and the equipment has an elevated energy consumption. Sintering processes that use microwaves have several advantages compared to regular sintering: shorter processing times, lower energy consumption, and the capacity for volumetric heating. The objective of this study was to test the mechanical properties of a dental ceramic used in computer-aided design/computer-aided manufacturing (CAD/CAM) after the specimens were processed with microwave hybrid sintering. Density, hardness, and bending strength were measured. When ceramic specimens were sintered with microwaves, the processing times were reduced and protocols were simplified. Hardness was improved almost 20% compared to regular sintering, and flexural strength measurements suggested that specimens were approximately 50% stronger than specimens sintered in a conventional system. Microwave hybrid sintering may preserve or improve the mechanical properties of dental ceramics designed for CAD/CAM processing systems, reducing processing and waiting times.

  1. Interactive design and presentation of ceramic sanitary products

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Yin, Guofu; Pan, Zhigeng

    2003-04-01

    Contemporary demands on ceramic sanitary products tend more and more to emphasize diversification and individuation. How to provide effective techniques to support interactive design and presentation of ceramic sanitary products has become a great challenge for vendors. This paper presents a general framework for ceramic sanitary products design. Some dynamic adjustment algorithms of curves to support surface parameterized modeling of toilet bowl, which is one of the most complex ceramic products, are proposed. Furthermore, the VR-based display and customization environment is also illustrated. With the VRML and Java, our system not only offers users different products, but also allows users to reset selected bathroom scene through replacing products from modeling database and modifying attributes of different products, such as colors, positions, etc. Then a brief discussion and future research directions are put forward in the last part of this paper.

  2. Ceramics manufacturing contributes to ambient silica air pollution and burden of lung disease.

    PubMed

    Liao, Chung-Min; Wu, Bo-Chun; Cheng, Yi-Hsien; You, Shu-Han; Lin, Yi-Jun; Hsieh, Nan-Hung

    2015-10-01

    Inhalation of silica (SiO2) in occupational exposures can cause pulmonary fibrosis (silicosis), lung function deficits, pulmonary inflammation, and lung cancer. Current risk assessment models, however, cannot fully explain the magnitude of silica-induced pulmonary disease risk. The purpose of this study was to assess human health risk exposed to airborne silica dust in Taiwan ceramics manufacturing. We conducted measurements to characterize workplace-specific airborne silica dust in tile and commodity ceramic factories and used physiologically based alveolar exposure model to estimate exposure dose. We constructed dose-response models for describing relationships between exposure dose and inflammatory responses, by which health risks among workers can be assessed. We found that silica contents were 0.22-33.04 % with mean concentration ranges of 0.11-5.48 and 0.46-1763.30 μg m(-3), respectively, in commodity and tile ceramic factories. We showed that granulation workers in tile ceramic factory had the highest total SiO2 lung burden (∼1000 mg) with cumulative SiO2 lung burden of ∼4 × 10(4) mg-year. The threshold estimates with an effect on human lung inflammation and fibrosis are 407.31 ± 277.10 (mean ± sd) and 505.91 ± 231.69 mg, respectively. For granulation workers, long-term exposure to airborne silica dust for 30-45 years was likely to pose severe adverse health risks of inflammation and fibrosis. We provide integrated assessment algorithms required to implement the analyses and maintain resulting concentration of silica dust at safety threshold level in the hope that they will stimulate further analyses and interpretation. We suggest that decision-makers take action to implement platforms for effective risk management to prevent the related long-term occupational disease in ceramics manufacturing.

  3. Nanomaterial Drug Products: Manufacturing and Analytical Perspectives.

    PubMed

    Sayes, Christie M; Aquino, Grace V; Hickey, Anthony J

    2017-01-01

    The increasing use of nanotechnology, including nanoparticles, in the preparation of drug products requires both manufacturing and analytical considerations in order to establish the quality metrics suitable for performance and risk assessment. A range of different nanoparticle systems exists including (but not limited to) nano-drugs, nano-additives, and nano-carriers. These systems generally require more complex production and characterization strategies than conventional pharmaceutical dosage forms. The advantage of using nanoparticle systems in pharmaceutical science is that the effective and desired function of the material can be designed through modern manufacturing processes. This paper offers a systematic nomenclature which allows for greater understanding of the drug product under evaluation based on available data from other nanoparticle reports. Analytical considerations of nano-drugs, nano-additives, and nano-carriers and the way in which they are measured are directly connected to quality control. Ultimately, the objective is to consider the entire nano-drug, nano-additive, and nano-carrier product life cycle with respect to its manufacture, use, and eventual fate. The tools and approaches to address the needs of these products exist; it should be the task of the pharmaceutical scientists and those in related disciplines to increase their understanding of nanomedicine and its novel products.

  4. Ceramic Processing

    SciTech Connect

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  5. DLP-based light engines for additive manufacturing of ceramic parts

    NASA Astrophysics Data System (ADS)

    Hatzenbichler, M.; Geppert, M.; Gruber, S.; Ipp, E.; Almedal, R.; Stampfl, J.

    2012-03-01

    In the framework of the European research project PHOCAM (http://www.phocam.eu) the involved partners are developing systems and materials for lithography-based additive manufacturing technologies (AMT) which are used for shaping advanced ceramic materials. In this approach a ceramic-filled photosensitive resin is selectively exposed layer by layer. By stacking up the individual layers with a typical layer thickness between 25 and 50μm, a three-dimensional part is built up. After structuring, a solid part consisting of a ceramic filled polymer is obtained. The polymer is afterwards burnt off and in a last step the part is sintered to obtain a fully dense ceramic part. The developed systems are based on selective exposure with DLP projection (Digital Light Processing). A key element of the developed systems is a light engine which uses digital mirror devices (DMD) in combination light emitting diodes (460nm) as light source. In the current setup DMDs with 1920x1080 pixels are used. The use of LEDs in combination with a customized optical projection system ensures a spatial and temporal homogeneity of the intensity at the build platform which is significantly better than with traditionally used light engines. The system has a resolution of 40μm and a build size of 79x43x100mm. It could be shown that this system can fabricate dense ceramic parts with excellent strength. In the case of alumina densities up to 99.6% of the theoretical density were achieved, yielding a biaxial strength of 510MPa. Besides technical ceramics like alumina it is also possible to structure bioceramics, e.g. tricalcium phosphate.

  6. [Exposure to ceramic fibers in the occupational environment. I. Production, kinds of ceramic fibers, changes in structure of these fibers, preliminary studies in the working environment].

    PubMed

    Wojtczak, J

    1994-01-01

    The production of fireproof SiO2/Al2O3 ceramic fibres started in the late forties. Primarily, the production was designed entirely for the aircraft industry. In the sixties the application of ceramic fibres became more wider. The first ceramic fibrous materials were characterised by thermal resistance reaching 1200 degrees C. Certain kinds of materials produced currently can be used in the temperature accounting for 1600 degrees C. Aluminosiliceous ceramic fibres recrystallise at high temperature (above 1000 degrees C) and produce mullite and crostobalite. Ceramic fibrous material may become hazardous to workers as a source of respirable fibres. Studies, carried out in plants which manufacture products from aluminosiliceous ceramic fibres, indicated that mean concentrations of respirable fibres ranged from 0.14 to 1.13 f/cm3 while the levels of mean concentrations of total dust accounted for 0.4-13.6 mg/m3. At working posts of plants producing china, where heat-insulating materials were changed mean level of respirable fibre concentration was 0.28-1.65 f/cm3 and concentration of total dust ranged from 7.0 to 17.7 mg/m3.

  7. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  8. Manufacturing aspheric mirrors made of zero thermal expansion cordierite ceramics using Magnetorheological Finishing (MRF)

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Maloney, Chris

    2016-07-01

    NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.

  9. Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant.

    PubMed

    da Silva, E M; Morita, D M; Lima, A C M; Teixeira, L Girard

    2015-01-01

    The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge.

  10. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, M.C.; Bloom, I.D.

    1992-10-13

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800--1200 C), for example 1000 C, than are typically required (1400 C) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250 C with conductivity values of 2.5 to 4[times]10[sup [minus]2](ohm-cm)[sup [minus]1]. The matrix exhibits chemical stability against sodium for 100 hours at 250 to 300 C. 1 figure.

  11. Additive manufacturing techniques for the production of tissue engineering constructs.

    PubMed

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions.

  12. Manufacturing DNA microarrays from unpurified PCR products

    PubMed Central

    Diehl, Frank; Beckmann, Boris; Kellner, Nadine; Hauser, Nicole C.; Diehl, Susanne; Hoheisel, Jörg D.

    2002-01-01

    For the production of DNA microarrays from PCR products, purification of the the DNA fragments prior to spotting is a major expense in cost and time. Also, a considerable amount of material is lost during this process and contamination might occur. Here, a protocol is presented that permits the manufacture of microarrays from unpurified PCR products on aminated surfaces such as glass slides coated with the widely used poly(l-lysine) or aminosilane. The presence of primer molecules in the PCR sample does not increase the non-specific signal upon hybridisation. Overall, signal intensity on arrays made of unpurified PCR products is 94% of the intensity obtained with the respective purified molecules. This slight loss in signal, however, is offset by a reduced variation in the amount of DNA present at the individual spot positions across an array, apart from the considerable savings in time and cost. In addition, a larger number of arrays can be made from one batch of amplification products. PMID:12177307

  13. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... HUMAN SERVICES Food and Drug Administration Tobacco Product Manufacturing Facility Visits AGENCY: Food... Manufacturing Facility Visits. This program is intended to give FDA staff an opportunity to visit facilities involved in the manufacturing of tobacco products, including any related laboratory testing, and...

  14. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  15. Kaolin processing waste applied in the manufacturing of ceramic tiles and mullite bodies.

    PubMed

    Menezes, Romualdo R; Farias, Felipe F; Oliveira, Maurício F; Santana, Lisiane N L; Neves, Gelmires A; Lira, Helio L; Ferreira, Heber C

    2009-02-01

    In the last few years, mineral extraction and processing industries have been identified as sources of environmental contamination and pollution. The kaolin processing industry around the world generates large amounts of waste materials. The present study evaluated the suitability of kaolin processing waste as an alternative source of ceramic raw material for the production of ceramic tiles and dense mullite bodies. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. The fired samples were microstructurally analysed by X-ray diffraction. The results indicated that ceramic tile formulations containing up to 60% of waste could be used for the production of tiles with low water absorption (approximately 0.5%) and low sintering temperature (1150 degrees C). Mullite formulations with more than 40% of kaolin waste could be used in the production of bodies with high strength, of about 75 MPa, which can be used as refractory materials.

  16. Neutron activation analysis and numerical taxonomy of thin orange ceramics from the manufacturing site of Rio Carnero, Puebla, Mexico

    SciTech Connect

    Rattray, E. . Inst. de Investigaciones Antropologicas); Harbottle, G. )

    1991-04-01

    Examples of different types of Thin Orange ceramics found at the recently-discovered manufacturing sites in the state of Puebla have been analyzed by neutron activation. A full multivariate numerical analysis indicates that this material is chemically identical with the well-known Thin Orange of Teotihuacan.'' 33 refs., 2 figs., 2 tabs.

  17. Manufacturing and characterization of a ceramic microcombustor with integrated oxygen storage and release element

    NASA Astrophysics Data System (ADS)

    Khaji, Z.; Sturesson, P.; Klintberg, L.; Hjort, K.; Thornell, G.

    2015-10-01

    A microscale ceramic high-temperature combustor with a built-in temperature sensor and source of oxygen has been designed, manufactured and characterized. The successful in situ electroplating and oxidation of copper, and the use of copper oxide as the source of oxygen were demonstrated. It was shown that residual stresses from electroplating, copper oxidation and oxide decomposition did not cause much deformation of the substrate but influenced mainly the integrity and adhesion of the metal films. The process had influence on the electrical resistances, however. Calibration of the temperature sensor and correlation with IR thermography up to 1000 °C revealed a nearly linear sensor behavior. Demonstration of combustion in a vacuum chamber proved that no combustion had occurred before release of oxygen from the metal oxide resource.

  18. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, Mark C.; Bloom, Ira D.

    1992-01-01

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800.degree. C.-1200.degree. C.), for example 1000.degree. C., than are typically required (1400.degree. C.) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250.degree. C. with conductivity values of 2.5 to 4.times.10.sup.-2 (ohm-cm).sup.-1. The matrix exhibits chemical stability against sodium for 100 hours at 250.degree. to 300.degree. C.

  19. 76 FR 23837 - Certain Ceramic Capacitors and Products Containing Same; Notice of the Commission's Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Ceramic Capacitors and Products Containing Same; Notice of the Commission's Final... importation of certain ceramic capacitors and products containing the same by reason of infringement...

  20. Microstructural characterization and influence of manufacturing parameters on technological properties of vitreous ceramic materials

    SciTech Connect

    Njoya, D.; Hajjaji, M.; Bacaoui, A.; Njopwouo, D.

    2010-03-15

    Microstructure of vitreous ceramic samples manufactured from kaolinitic-clay and feldspars raw materials from Cameroon was investigated in the range 1150-1250 deg. C by X-ray diffraction and scanning electron microscopy and by measuring some technological properties. Moreover, the simultaneous influence of feldspars content, heating temperature and soaking time on water absorption and firing shrinkage was evaluated by adopting the response surface methodology (Doehlert matrix), using the New Efficient Methodology for Research using Optimal Design (NEMROD) software. The results show that a spinel phase, mullite, glassy phase and some amount of hematite were formed. However, the spinel phase and potassic feldspar, as compared to the sodic one, disappeared at moderate firing temperature and soaking time. Apparently, mullite developed from spinel phase, which is formed from the demixion of metakaolin. On the other hand, it is found that the effects of fluxing content and firing temperature on the measured properties were almost similar and more influent than soaking time. Antagonistic and synergetic interactions existed between the considered parameters, and their importance differed for the considered properties. By using this mathematical tool, suitable operating conditions for manufacturing vitreous bodies were determined.

  1. Electricity and catholyte production from ceramic MFCs treating urine.

    PubMed

    Merino Jimenez, Irene; Greenman, John; Ieropoulos, Ioannis

    2017-01-19

    The use of ceramics as low cost membrane materials for Microbial Fuel Cells (MFCs) has gained increasing interest, due to improved performance levels in terms of power and catholyte production. The catholyte production in ceramic MFCs can be attributed to a combination of water or hydrogen peroxide formation from the oxygen reduction reaction in the cathode, water diffusion and electroosmotic drag through the ion exchange membrane. This study aims to evaluate, for the first time, the effect of ceramic wall/membrane thickness, in terms of power, as well as catholyte production from MFCs using urine as a feedstock. Cylindrical MFCs were assembled with fine fire clay of different thicknesses (2.5, 5 and 10 mm) as structural and membrane materials. The power generated increased when the membrane thickness decreased, reaching 2.1 ± 0.19 mW per single MFC (2.5 mm), which was 50% higher than that from the MFCs with the thickest membrane (10 mm). The amount of catholyte collected also decreased with the wall thickness, whereas the pH increased. Evidence shows that the catholyte composition varies with the wall thickness of the ceramic membrane. The possibility of producing different quality of catholyte from urine opens a new field of study in water reuse and resource recovery for practical implementation.

  2. Increasing productivity during grinding of high-alumina ceramics

    SciTech Connect

    Belous, K.P.; Leptukha, V.P.

    1984-01-01

    The grinding of high-alumina ceramics involves specific problems as the effectiveness of the grinding is affected by the rate of material removal to ensure high productivity, the surface roughness, and the wear of the diamond tool. This study of the cutting processes in cylindrical and internal grinding was done to determine the optimum cutting parameters and specifications of the diamond grinding wheels, and the results helped increase productivity and reduce wheel consumption.

  3. Cost effective production techniques for continuous fiber reinforced ceramic matrix composites

    SciTech Connect

    Vogel, W.D.; Spelz, U.

    1995-09-01

    Cost effective techniques for fabrication of continuous fibre reinforced ceramic matrix composites like filament winding, prepreg technique and resin transfer moulding are reported. The advantages and disadvantages of the three different manufacture routes are given and examples are shown.

  4. Manufacturing techniques studies of ceramics by neutron and γ-ray radiography

    NASA Astrophysics Data System (ADS)

    Latini, R. M.; Souza, M. I. S.; Almeida, G. L.; Bellido, A. V. B.

    2014-11-01

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 105n.cm-2.s-1 for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using γ-rays from 165Dy (95 keV) and 198Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy γ-rays from 165Dy rather than neutrongraphy or γ-rays from 198Au . Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  5. Manufacturing techniques studies of ceramics by neutron and γ-ray radiography

    SciTech Connect

    Latini, R. M.; Bellido, A. V. B.; Souza, M. I. S.; Almeida, G. L.

    2014-11-11

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 10{sup 5}n.cm{sup −2}.s{sup −1} for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using γ-rays from {sup 165}Dy (95 keV) and {sup 198}Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy γ-rays from {sup 165}Dy rather than neutrongraphy or γ-rays from {sup 198}Au. Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  6. Lean manufacturing: A better way for enhancement in productivity

    NASA Astrophysics Data System (ADS)

    Kumar Ahir, Pankaj; Kumar Yadav, Lalit; Singh Chandrawat, Saurabh

    2012-03-01

    Productivity is the impact of peoples working together. Machines are merely an extended way of collective imagination and energy. Lean Manufacturing is the most used method for continues improvement of business. Organization management philosophy focusing on the reduction of wastage to improve overall customer value. "Lean" operating principles began in manufacturing environments and are known by a variety of synonyms; Lean Manufacturing, Lean Production, Toyota Production System, etc. It is commonly believed that Lean started in Japan "The notable activities in keeping the price of Ford products low is the steady restriction of the production cycle. The longer an article is in the process of manufacture and the more it is moved about, the greater is its ultimate cost." "A systematic approach to identifying and eliminating waste through continuous improvement, flowing the product at the pull of the customer in pursuit of perfection."

  7. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  8. An integrated approach to product development and manufacturing

    SciTech Connect

    Readey, M.J.

    1995-12-31

    A new approach to product development is described that integrates various unit operations into a unified ``knowledge-base``. This knowledge-base is easily accessible to all members of the design team due to the advent of high performance and networking capabilities of today`s desktop computers. This permits rapid optimization of the product`s material, shape, and manufacturing processes that satisfy the customer`s performance requirements while maximizing economic return for the manufacturer.

  9. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2016-07-12

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  10. 7 CFR 987.157 - Approved date product manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reporting requirements. (c) The committee shall approve each such application on the basis of information... County. (d) If an application is disapproved, the committee shall notify the applicant in writing of the... product manufacturer list, the committee shall notify such manufacturer in writing of its intention...

  11. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  12. Ceramic production during changing environmental/climatic conditions

    NASA Astrophysics Data System (ADS)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  13. 27 CFR 19.344 - Manufacture of nonbeverage products, intermediate products, or eligible flavors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... products, intermediate products, or eligible flavors. 19.344 Section 19.344 Alcohol, Tobacco Products and... Flavoring Materials § 19.344 Manufacture of nonbeverage products, intermediate products, or eligible flavors. (a) Distilled spirits and wine may be used for the manufacture of flavors or flavoring extracts of...

  14. Manufacturing Natural Killer Cells as Medicinal Products

    PubMed Central

    Chabannon, Christian; Mfarrej, Bechara; Guia, Sophie; Ugolini, Sophie; Devillier, Raynier; Blaise, Didier; Vivier, Eric; Calmels, Boris

    2016-01-01

    Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic. PMID:27895646

  15. Manufacturing Natural Killer Cells as Medicinal Products.

    PubMed

    Chabannon, Christian; Mfarrej, Bechara; Guia, Sophie; Ugolini, Sophie; Devillier, Raynier; Blaise, Didier; Vivier, Eric; Calmels, Boris

    2016-01-01

    Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic.

  16. A manufacturer's perspective on selected palm-based products.

    PubMed

    Carr, Neil O; Hogg, W Fraser

    2005-01-01

    An overview from the perspective of one manufacturer is provided on products that utilise either palm oil or palm kernel oil. The manufacturer is Macphie of Glenbervie while the products are of a wide-ranging nature for use in bakery, food service and food-manufacturing. Much of the discussion concerns cream alternatives on the grounds that this product-category places great demand on the type of fat needed and, to Macphie of Glenbervie, is responsible for most of the oil from oil palm used. However, other products are also touched on. The overview considers key product attributes the function that fat has within these products, together with research requirements and future opportunity.

  17. Manufacturing Processes for Various Shaped Consumable Ordnance Products

    DTIC Science & Technology

    1982-10-01

    Spacers Spiral wrapping Felting...manufacture of a variety of different shaped combustible ordnance products. Matched metal molding and spiral wrapping processes were utilized...higher product off-press weight and slick feeling of the product’s outer surface. The process of spiral wrapping with nitro- cellulose paper was

  18. The Impact of Housing on the Characteristics of Ceramic Pressure Sensors--An Issue of Design for Manufacturability.

    PubMed

    Santo Zarnik, Marina; Belavic, Darko; Novak, Franc

    2015-12-14

    An exploratory study of the impact of housing on the characteristics of a low-temperature co-fired ceramic (LTCC) pressure sensor is presented. The ceramic sensor structure is sealed in a plastic housing. This may have non-negligible effect on the final characteristics and should be considered in the early design phase. The manufacturability issue mainly concerning the selection of available housing and the most appropriate materials was considered with respect to different requirements for low and high pressure ranges of operation. Numerical predictions showed the trends and helped reveal the critical design parameters. Proper selection of the adhesive material remains an essential issue. Curing of the epoxy adhesive may introduce non-negligible residual stresses, which considerably influence the sensor's characteristics.

  19. The Impact of Housing on the Characteristics of Ceramic Pressure Sensors—An Issue of Design for Manufacturability

    PubMed Central

    Santo Zarnik, Marina; Belavic, Darko; Novak, Franc

    2015-01-01

    An exploratory study of the impact of housing on the characteristics of a low-temperature co-fired ceramic (LTCC) pressure sensor is presented. The ceramic sensor structure is sealed in a plastic housing. This may have non-negligible effect on the final characteristics and should be considered in the early design phase. The manufacturability issue mainly concerning the selection of available housing and the most appropriate materials was considered with respect to different requirements for low and high pressure ranges of operation. Numerical predictions showed the trends and helped reveal the critical design parameters. Proper selection of the adhesive material remains an essential issue. Curing of the epoxy adhesive may introduce non-negligible residual stresses, which considerably influence the sensor’s characteristics. PMID:26694386

  20. 25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products? 309.19 Section 309.19 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR PROTECTION OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by...

  1. 25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products? 309.19 Section 309.19 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR PROTECTION OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by...

  2. 25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... products? 309.19 Section 309.19 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR PROTECTION OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by...

  3. 25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products? 309.19 Section 309.19 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR PROTECTION OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by...

  4. 25 CFR 309.19 - What are examples of pottery and ceramics that are Indian products?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... products? 309.19 Section 309.19 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR PROTECTION OF INDIAN ARTS AND CRAFTS PRODUCTS § 309.19 What are examples of pottery and ceramics that are Indian products? (a) Pottery, ceramics, and related arts and crafts items made or significantly decorated by...

  5. Electro-optic product design for manufacture: where next?

    NASA Astrophysics Data System (ADS)

    Barr, John R. M.; MacDonald, M.; Jeffery, G.; Troughton, M.

    2016-10-01

    Manufacturing of electro-optic products for military environments poses a large number of apparently intractable and mutually contradictory problems. The ability to successfully engage in this area presents an intellectual challenge of a high order. The Advanced Targeting Sector of Leonardo's Airborne and Space Systems Division, based in Edinburgh, has developed a successful range of electro-optic products and transitioned these into a volume, and high value, manufacturing environment. As products cycle through the design process, there has been strong feedback from users, suppliers, and most importantly from our manufacturing organization, that has driven evolution of our design practices. It is fair to say that recent pointer trackers and lasers bear little resemblance to those designed and built 10 years ago. Looking ahead, this process will only continue. There are interesting technologies that will drive improvements in manufacturability, reliability and usability of electro-optic products. Examples might include freeform optics, additive manufacture of metal components, and laser welding of optics to metals, to name but a few. These have uses across our product portfolio and, when sufficiently matured, will have a major impact on the product quality and reliability

  6. Continuity and change in ceramic manufacture: Archaeometric study of Late Byzantine-Early Islamic transition in Jordan

    NASA Astrophysics Data System (ADS)

    Alawneh, Firas Mohamad

    This thesis investigates continuity and change of ceramics from Late Byzantine-Early Islamic transition period Jordan. The transition period has been characterized largely by an overlap of two ceramic traditions. The material culture of this period has been primarily viewed through formal and stylistic changes. However, ceramic technology and distribution have never been subjected to rigorous analytical study. In order to explain continuity and change in ceramic tradition the undertaken study has focused on the provenance and technology, using multifaceted analytical approach. This study of the transition period pottery has focused on the classification and technological features of potsherds from selected sites in Jordan (Amman, Aqaba, Beit Ras, Khirbet el-Nawafleh, Jarash, Jericho, Pella, Madaba, Gharndal, Humaimah, Um er-Rassas and Um el-Waleed). Samples were studied by particle-induced X-ray emission spectroscopy, X-ray powder diffraction, and optical microscopy to analyze their chemical, mineralogical and textural features in the aim of determining their possible provenance and production technology. Compositional data were statistically processed with multivariate analysis using SYSTAT II software 2006. To obtain further information about possible source areas of raw materials used in ceramic production, clays were also sampled in the studied areas. Firing experiments were conducted for clays with compositions comparable with those of ceramic sherds, to better understand the firing technology of the pottery. The multifaceted analytical approach has revealed important information on ceramic production in Transjordan. Khirbet el-Nawafleh and Aqaba in the south, Jarash and Pella in the north, Amman and Madaba in the middle are possibly just a few important production centers during this period. The study shows a multidirectional socio-cultural exchange and economic trade patterns within each region and between adjacent regions, as well. Also, importation from

  7. Production planning tools and techniques for agile manufacturing

    SciTech Connect

    Kjeldgaard, E.A.; Jones, D.A.; List, G.F.; Turnquist, M.A.

    1996-10-01

    Effective use of resources shared among multiple products or processes is critical for agile manufacturing. This paper describes development and implementation of a computerized model to support production planning in a complex manufacturing system at Pantex Plant. The model integrates two different production processes (nuclear weapon dismantlement and stockpile evaluation) which use common facilities and personnel, and reflects the interactions of scheduling constraints, material flow constraints, and resource availability. These two processes reflect characteristics of flow-shop and job-shop operations in a single facility. Operational results from using the model are also discussed.

  8. International Comparison of Labor Productivity Distribution for Manufacturing and Non-Manufacturing Firms

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Souma, W.

    Labor productivity was studied at the microscopic level in terms of distributions based on individual firm financial data from Japan and the US. A power-law distribution in terms of firms and sector productivity was found in both countries' data. The labor productivities were not equal for nation and sectors, in contrast to the prevailing view in the field of economics. It was found that the low productivity of the Japanese non-manufacturing sector reported in macro-economic studies was due to the low productivity of small firms.

  9. Manufacturing of tattoo ink products today and in future: Europe.

    PubMed

    Michel, Ralf

    2015-01-01

    The article describes the European market situation and the legal framework in Europe. It shows the state-of-the-art production under ISO 9001:2008 quality management and describes the future of tattoo ink production based on good manufacturing practice guidelines for tattoo inks.

  10. YBa2Cu3O7-δ-based ceramic materials manufactured from nanopowders

    NASA Astrophysics Data System (ADS)

    Gadzhimagomedov, S. Kh.; Palchaev, D. K.; Rabadanov, M. Kh.; Murlieva, Zh. Kh.; Shabanov, N. S.; Palchaev, N. A.; Murliev, E. K.; Emirov, R. M.

    2016-01-01

    The results of studying the structure and electrical resistance of nanostructured YBa2Cu3O7-δ-based superconducting ceramics of various density optimally saturated by oxygen and fabricated from nanopowders are given.

  11. Accurate manufacturing and production of optoelectronic parts and modules

    NASA Astrophysics Data System (ADS)

    Hannula, Tapio; Karioja, Pentti; Keraenen, Kimmo; Kopola, Harri K.; Malinen, Jouko; Ollila, Jyrki

    1998-12-01

    The trends in optoelectronic products are towards higher integration level of optics, electronics and mechanics. It means smaller dimensions and tighter packaging density. The precisions in component manufacturing and accuracies in module assemblings typically are in 10 to 50 micrometer range. Due to demands of the production in series of tens of thousands it means new type of know-how in production and assembling technologies.

  12. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    NASA Astrophysics Data System (ADS)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  13. 27 CFR 17.155 - Spirits consumed in manufacturing intermediate products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufacturing intermediate products. 17.155 Section 17.155 Alcohol, Tobacco Products and Firearms ALCOHOL AND... USED IN MANUFACTURING NONBEVERAGE PRODUCTS Claims for Drawback Spirits Subject to Drawback § 17.155 Spirits consumed in manufacturing intermediate products. Spirits consumed in the manufacture of...

  14. 27 CFR 17.155 - Spirits consumed in manufacturing intermediate products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufacturing intermediate products. 17.155 Section 17.155 Alcohol, Tobacco Products and Firearms ALCOHOL AND... USED IN MANUFACTURING NONBEVERAGE PRODUCTS Claims for Drawback Spirits Subject to Drawback § 17.155 Spirits consumed in manufacturing intermediate products. Spirits consumed in the manufacture of...

  15. 27 CFR 17.155 - Spirits consumed in manufacturing intermediate products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacturing intermediate products. 17.155 Section 17.155 Alcohol, Tobacco Products and Firearms ALCOHOL AND... USED IN MANUFACTURING NONBEVERAGE PRODUCTS Claims for Drawback Spirits Subject to Drawback § 17.155 Spirits consumed in manufacturing intermediate products. Spirits consumed in the manufacture of...

  16. 27 CFR 17.155 - Spirits consumed in manufacturing intermediate products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturing intermediate products. 17.155 Section 17.155 Alcohol, Tobacco Products and Firearms ALCOHOL AND... USED IN MANUFACTURING NONBEVERAGE PRODUCTS Claims for Drawback Spirits Subject to Drawback § 17.155 Spirits consumed in manufacturing intermediate products. Spirits consumed in the manufacture of...

  17. 27 CFR 17.155 - Spirits consumed in manufacturing intermediate products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacturing intermediate products. 17.155 Section 17.155 Alcohol, Tobacco Products and Firearms ALCOHOL AND... USED IN MANUFACTURING NONBEVERAGE PRODUCTS Claims for Drawback Spirits Subject to Drawback § 17.155 Spirits consumed in manufacturing intermediate products. Spirits consumed in the manufacture of...

  18. Good manufacturing practices for medicinal products for human use

    PubMed Central

    Gouveia, Bruno G.; Rijo, Patrícia; Gonçalo, Tânia S.; Reis, Catarina P.

    2015-01-01

    At international and national levels, there are public and private organizations, institutions and regulatory authorities, who work and cooperate between them and with Pharmaceutical Industry, in order to achieve a consensus of the guidelines and laws of the manufacturing of medicinal products for human use. This article includes an explanation of how operate and cooperate these participants, between them and expose the current regulations, following the line of European Community/European Economic Area, referencing, wherever appropriate, the practiced guidelines, outside of regulatory action of space mentioned. In this way, it is intended to achieve quality, security and effectiveness exceptional levels in the manufacturing of health products. Good Manufacturing Practice aim the promotion of the human health and consequently, to the improvement of quality of life. For achieve the proposed objectives, it is necessary to ensure the applicability of the presented concepts and show the benefits arising from this applicability. PMID:25883511

  19. Good manufacturing practices for medicinal products for human use.

    PubMed

    Gouveia, Bruno G; Rijo, Patrícia; Gonçalo, Tânia S; Reis, Catarina P

    2015-01-01

    At international and national levels, there are public and private organizations, institutions and regulatory authorities, who work and cooperate between them and with Pharmaceutical Industry, in order to achieve a consensus of the guidelines and laws of the manufacturing of medicinal products for human use. This article includes an explanation of how operate and cooperate these participants, between them and expose the current regulations, following the line of European Community/European Economic Area, referencing, wherever appropriate, the practiced guidelines, outside of regulatory action of space mentioned. In this way, it is intended to achieve quality, security and effectiveness exceptional levels in the manufacturing of health products. Good Manufacturing Practice aim the promotion of the human health and consequently, to the improvement of quality of life. For achieve the proposed objectives, it is necessary to ensure the applicability of the presented concepts and show the benefits arising from this applicability.

  20. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    SciTech Connect

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin

  1. Manufacturing Production: An Evaluation Report for the Occupational Exploration Program.

    ERIC Educational Resources Information Center

    Altschuld, James W.; And Others

    The evaluation report is one of seven produced for the Occupational Exploration Program (OEP), a series of simulated occupational experiences designed for junior high school students. Describing the pilot testing of the simulation dealing with manufacturing production, the report contains sections describing the simulation context, evaluation…

  2. Ceramic membrane development in NGK

    NASA Astrophysics Data System (ADS)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  3. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    SciTech Connect

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W; Jolly, Brian C; Hunt, Rodney Dale; Trammell, Michael P; Snead, Lance Lewis

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhance heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.

  4. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  5. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  6. Raw materials in the manufacture of biotechnology products: regulatory considerations.

    PubMed

    Cordoba-Rodriguez, Ruth

    2010-01-01

    The Food and Drug Administration's Pharmaceutical cGMPs for the 21st Century initiative emphasizes science and risk-based approaches in the manufacture of drugs. These approaches are reflected in the International Conference on Harmonization (ICH) guidances ICH Q8, Q9, and Q10 and encourage a comprehensive assessment of the manufacture of a biologic, including all aspects of manufacture that have the potential to affect the finished drug product. Appropriate assessment and management of raw materials are an important part of this initiative. Ideally, a raw materials program should strive to assess and minimize the risk to product quality. With this in mind, risk-assessment concepts and control strategies will be discussed and illustrated by examples, with an emphasis on the impact of raw materials on cell substrates. Finally, the life cycle of the raw material will be considered, including its potential to affect the drug product life cycle. In this framework, the supply chain and the vendor-manufacturer relationship will be explored as important parts of an adequate raw materials control strategy.

  7. Increase Productivity and Cost Optimization in CNC Manufacturing

    NASA Astrophysics Data System (ADS)

    Musca, Gavril; Mihalache, Andrei; Tabacaru, Lucian

    2016-11-01

    The advantage of the technological assisted design consists in easy modification of the machining technologies for obtaining machine alternation, tool changing, working parameters variation or the modification of loads to which the tools are subjected. By determining tool movement inside machining and by using tool related moving speeds needed for both positioning and manufacturing we are able to compute the required machining time for each component of the machining operation in progress. The present study describes a cost optimization model for machining operations which uses the following components: machine and its operator related cost, set-up and adjustment, unproductive costs (idle state), direct and indirect costs. By using manufacturing technologies assisted design procedures we may obtain various variants for the technological model by modifying the machining strategy, tooling, working regimes or the machine-tool that are used. Simulating those variants allows us to compare and establish the optimal manufacturing variant as well as the most productive one.

  8. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    SciTech Connect

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  9. 27 CFR 19.5 - Manufacturing products unfit for beverage use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Manufacturing products....5 Manufacturing products unfit for beverage use. (a) General. Except as provided in paragraph (b) of... to stop manufacturing the product until the formula is changed to make the product unfit for...

  10. 27 CFR 19.5 - Manufacturing products unfit for beverage use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Manufacturing products....5 Manufacturing products unfit for beverage use. (a) General. Except as provided in paragraph (b) of... to stop manufacturing the product until the formula is changed to make the product unfit for...

  11. 27 CFR 19.5 - Manufacturing products unfit for beverage use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Manufacturing products....5 Manufacturing products unfit for beverage use. (a) General. Except as provided in paragraph (b) of... to stop manufacturing the product until the formula is changed to make the product unfit for...

  12. 27 CFR 19.5 - Manufacturing products unfit for beverage use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Manufacturing products....5 Manufacturing products unfit for beverage use. (a) General. Except as provided in paragraph (b) of... to stop manufacturing the product until the formula is changed to make the product unfit for...

  13. Annual Conference on Composites and Advanced Ceramic Materials, 9th, Cocoa Beach, FL, January 20-23, 1985, Proceedings

    SciTech Connect

    Not Available

    1985-08-01

    The present conference discusses testing methods for ceramic matrix composites, developments in ceramic fibers, space transportation systems thermal protection materials, ceramics for heat engines and other severe environments, thermal sprayed coatings, the development status of ceramic tribology, and the fabrication of ceramics and hard metals. Specific attention is given to the mechanical characterization of ceramic and glass matrix composites, the application of fracture mechanics to fiber composites, the degradation properties of Nicalon SiC fibers, ceramic matrix toughening, SiC/glass composite phases, ceramic composite manufacture by infiltration, and ceramic coatings for the Space Shuttle's surface insulation. Also treated are design principles for anisotropic brittle materials, ceramics for intense radiant heat applications, ceramic-coated tip seals for turbojet engines, composite production by low pressure plasma deposition, tribology in military systems, lubrication for ceramics, a systems approach to the grinding of structural ceramics, and the fabrication of inorganic foams by microwave irradiation.

  14. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  15. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  16. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  17. Design Exploration of Engineered Materials, Products, and Associated Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Shukla, Rishabh; Kulkarni, Nagesh H.; Gautham, B. P.; Singh, Amarendra K.; Mistree, Farrokh; Allen, Janet K.; Panchal, Jitesh H.

    2015-01-01

    In the past few years, ICME-related research has been directed towards the study of multi-scale materials design. However, relatively little has been reported on model-based methods that are of relevance to industry for the realization of engineered materials, products, and associated industrial manufacturing processes. Computational models used in the realization of engineered materials and products are fraught with uncertainty, have different levels of fidelity, are incomplete and are even likely to be inaccurate. In light of this, we adopt a robust design strategy that facilitates the exploration of the solution space thereby providing decision support to a design engineer. In this paper, we describe a foundational construct embodied in our method for design exploration, namely, the compromise Decision Support Problem. We introduce a problem that we are using to establish the efficacy of our method. It involves the integrated design of steel and gears, traversing the chain of steel making, mill production, and evolution of the material during these processes, and linking this to the mechanical design and manufacture of the gear. We provide an overview of our method to determine the operating set points for the ladle, tundish and caster operations necessary to manufacture steel of a desired set of properties. Finally, we highlight the efficacy of our method.

  18. 40 CFR 90.703 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Production line testing by the... Manufacturer Production Line Testing Program § 90.703 Production line testing by the manufacturer. (a) Manufacturers of small SI engines shall test production line engines from each engine family according to...

  19. 40 CFR 90.703 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Production line testing by the... Manufacturer Production Line Testing Program § 90.703 Production line testing by the manufacturer. (a) Manufacturers of small SI engines shall test production line engines from each engine family according to...

  20. 40 CFR 90.703 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Production line testing by the... Manufacturer Production Line Testing Program § 90.703 Production line testing by the manufacturer. (a) Manufacturers of small SI engines shall test production line engines from each engine family according to...

  1. 40 CFR 90.703 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Production line testing by the... Manufacturer Production Line Testing Program § 90.703 Production line testing by the manufacturer. (a) Manufacturers of small SI engines shall test production line engines from each engine family according to...

  2. 40 CFR 90.703 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production line testing by the... Manufacturer Production Line Testing Program § 90.703 Production line testing by the manufacturer. (a) Manufacturers of small SI engines shall test production line engines from each engine family according to...

  3. [Xeroradiography and digital luminescence radiography in the study of the technics of manufacturing ancient ceramics. The advantages and limits].

    PubMed

    Meduri, A; Pirronti, T; Calicchio, D; Rispoli, F; Vidale, M; Marano, P

    1993-01-01

    This paper reports on the cooperative work of the Department of Radiology of the Catholic University, Rome, and of the Italian Institute for Middle and Far East. The study was aimed at using xeroradiography and digital luminescence radiography for the archeometric evaluation of ancient ceramics and at assessing the imaging potentials of the two techniques. Some manufacturing techniques are reported which were used in the ancient world and societies for pottery making--i.e., coil building (the superimposition of clay rings), paddle and anvil beating and throwing of the wheel. Such techniques leave, on the vessel's wall, clear traces which can be detected by X-ray imaging. After discussing the main semiologic features, we present 4 case studies from the project archive. Each vase underwent xeroradiography and digital luminescence radiography. The former technique was useful in detailing minor phase transitions--e.g., pores and inclusions--while the latter, thanks to both its wide dynamic range and its image processing potentials, was optimal in defining very gradual thickness transitions due to the different techniques used to join the clay parts. By combining the two techniques, the manufacturing technology of the artifacts could be defined. The interactive processing of radiographic images at the system console was seen to be of major importance: it allowed the best results to be obtained thanks to the integration of the radiologists' and archeologists' know-how during the actual analytical stages.

  4. Hydrogen production from methane using oxygen-permeable ceramic membranes

    NASA Astrophysics Data System (ADS)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  5. Manufacturing Ultra-Precision Meso-scale Products by Coining

    SciTech Connect

    Seugling, R M; Davis, P J; Rickens, K; Osmer, J; Brinksmeier, E

    2010-02-18

    A method for replicating ultra-precision, meso-scale features onto a near-net-shape metallic blank has been demonstrated. The 'coining' technology can be used to imprint a wide range of features and/or profiles into two opposing surfaces. The instrumented system provides the ability to measure and control the product thickness and total thickness variation (TTV). The coining mechanism relies on kinematic principles to accurately and efficiently produce ultra-precision work pieces without the production of by products such as machining chips, or grinding swarf while preserving surface finish, material structure and overall form. Coining has been developed as a niche process for manufacturing difficult to machine, millimeter size components made from materials that may present hazardous conditions. In the case described in this paper a refractory metal part, tantalum (Ta) was produced with 4 {micro}m peak to valley 50 {micro}m special wavelength sine wave coined into the surface of 50 {micro}m blank. This technique shows promise for use on ductile materials that cannot be precision machined with conventional single crystal diamond tooling and/or has strict requirements on subsurface damage, surface impurities and grain structure. As a production process, it can be used to reduce manufacturing costs where large numbers of ultra-precision, repetitive designs are required and produce parts out of hazardous materials without generating added waste.

  6. The development of a modified composition of ceramic mass for the production of bricks

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Yakutova, V. A.; Antyufeev, V. K.

    2016-04-01

    The need to improve the technical level of production of construction materials, their product range, to improve product quality and reduce its cost requires the expansion of the raw material base, the use of resource and energy saving technology and design solutions. To implement all these it is necessary to conduct a more detailed study of the properties of ceramic materials and to investigate the behavior-modifying components of their formulations. This paper presents the development of the composition of ceramic mass for the production of bricks, a modified silicon-waste production of ferrosilicon.

  7. Application of chemical trated illite clay for development of ceramics products

    NASA Astrophysics Data System (ADS)

    Sedmale, G.; Korovkins, A.; Seglins, V.; Lindina, L.

    2013-12-01

    The chemically treatment by alkali solutions of illite clay, so-called geopolymer method, were studied to show the impact on changes of structure and crystalline phases composition of treated not dehydroxylated illite Quarternary clay, as well as ceramic properties and compressive strength of sintered respective ceramic samples. The degree of activating process were followed by FTIR-spectra, X-ray diffraction and differencial thermal analysis. The low temperature ceramic product was achieved by sintering of alkali solution (KOH or NaOH 1M, 3M, 4M and 6M) activated clay samples in temperature range from 100°C to 700°C . Sintered ceramic samples were characterized by compressive strength, total porosity, bulk density and shrinkage. It is shown that treatment of the illite Quarternary clay by KOH changes illite structure, but not destroyed. Main changes could be connected with changes of O-Al-OH grouping where O is associated with neighbour Si- layer That results into lowering of sintering temperature and development of amorphous (glassy) phase of sintered at 600-700 °C ceramic samples together with growing of total porosity. Consolidated at 600°C ceramic samples have the compressive strength ranged from 16-23 N.mm2. These values increases with growing of concentration of used alkali solution as well as with temperature for NaOH treated samples and is comparable with compressive strength for the respective ceramic products sintered at 900 °C.

  8. 40 CFR Figure E-2 to Subpart E of... - Product Manufacturing Checklist

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Product Manufacturing Checklist E Figure E-2 to Subpart E of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...—Product Manufacturing Checklist PRODUCT MANUFACTURING CHECKLIST AuditeeAuditor signatureDate...

  9. 40 CFR 91.503 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Production line testing by the... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.503 Production line testing by the manufacturer. (a) Manufacturers of marine...

  10. 40 CFR 91.503 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Production line testing by the... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.503 Production line testing by the manufacturer. (a) Manufacturers of marine...

  11. 40 CFR 91.503 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Production line testing by the... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.503 Production line testing by the manufacturer. (a) Manufacturers of marine...

  12. 40 CFR 91.503 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Production line testing by the... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.503 Production line testing by the manufacturer. (a) Manufacturers of marine...

  13. 40 CFR 91.503 - Production line testing by the manufacturer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Production line testing by the... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.503 Production line testing by the manufacturer. (a) Manufacturers of marine...

  14. Utilization of kaolin processing waste for the production of porous ceramic bodies.

    PubMed

    Menezes, Romualdo R; Brasileiro, Maria I; Santana, Lisiane N L; Neves, Gelmires A; Lira, Helio L; Ferreira, Heber C

    2008-08-01

    The kaolin processing industry generates large amounts of waste in producing countries such as Brazil. The aim of this study was to characterize kaolin processing waste and evaluate its suitability as an alternative ceramic raw material for the production of porous technical ceramic bodies. The waste material was physically and chemically characterized and its thermal behaviour is described. Several formulations were prepared and sintered at different temperatures. The sintered samples were characterized to determine their porosity, water absorption, firing shrinkage and mechanical strength. Fired samples were microstructurally analysed by X-ray diffraction and scanning electron microscopy. The results indicated that the waste consisted of quartz, kaolinite, and mica, and that ceramic formulations containing up to 66% of waste can be used for the production of ceramics with porosities higher than 40% and strength of about 70 MPa.

  15. Studies of the Inverted Meniscus Deposition of Silicon on Ceramic

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Grung, B.; Schuldt, S. B.; Schmit, F. M.; Heaps, J. D.

    1983-01-01

    Controlled temperature profiles essential to production of solar cells. Studies of inverted meniscus process for depositing silicon coatings on ceramic substrates described in new report. When fully developed, processed used to manufacture low-cost solar photovoltaic cells.

  16. Study on Ceramic Interconnect Manufactured by Slurry Dip Coating and Plasma Spray Coating Processes

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Kim, Jong-Hee; Ryoo, Sung-Nam; Peck, Dong-Hyun; Jung, Doo-Hwan; Shul, Yong-Gun; Shin, Dong-Ryul; Song, Rak-Hyun

    To get a stable and dense interconnect layer of anode-supported flat tubular solid oxide fuel cell stack, we have studied on the synthesis of precursors with a fine particle size and the ceramic interconnect coating technology. Coated interconnects by slurry dipping and air plasma spray processes were sintered by 2-step sintering method. Ca-doped LaCrO3 perovskites such as La0.75Ca0.27CrO3(LCC27), La0.6Ca0.41CrO3(LCC41), and La0.8Sr0.05Ca0.15CrO3(LSCC), were synthesized by Pechini process and their average particle sizes were about 1 μm. LSCC layer is a functional layer to prevent Ca migration and then LCC41 layer is coated onto it. The Ca migration in the LSCC layer did not occur. The LCC41 was coated on the air plasma spray-coated LCC27 layer by slurry dip coating process and sintered at 1200°C for 20hr. Its electrical conductivity indicated about 27 S/cm at 800°C and the bubble test showed that there is no gas permeation at pressure difference of 0.4 kgf/cm2 at room temperature.

  17. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries.

    PubMed

    Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H

    2015-06-01

    The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.

  18. Evaluation of product design in environmentally conscious manufacturing

    NASA Astrophysics Data System (ADS)

    Rivera-Becerra, Alejandro; Lin, Li

    2001-02-01

    This research presents an evaluation method to support design decision-making early in the design stage. The method is aimed at solid consumer products, and incorporates our previous work on Environmental Consciousness Criteria (ECC). A framework is defined as the foundation for the problem analysis, consisting of four mapping schemas connecting the product to the natural environment. We approach the problem of designing an environmentally conscious product as that of making decisions to incorporate the ECC as design progresses from the conceptual to the preliminary to the parametric design phases. A methodology is developed whose focus is on both the material properties and the geometric features of the product, and on how these impact the product's disposal stage. The method uses fuzzy methods and Multi Attribute Utility Analysis (MAUA). It is able to accommodate the varying degrees of uncertainty and availability of information, as well as other criteria such as cost. An analysis of cost implications from recovery is presented also. Application of this decision-making method will assist designers in maintaining environmental leadership in product development beyond the manufacturing stage.

  19. Ceramic Production and Craft Specialization in the Prehispanic Philippines, A.D. 500 to 1600

    NASA Astrophysics Data System (ADS)

    Niziolek, Lisa Christine

    In the millennium prior to Spanish contact, the political economies of lowland societies in the Philippines, such as Tanjay (A.D. 500-1600) on southeastern Negros Island in the central Philippines, underwent significant social, political, and economic changes. Foreign trade with China increased, the circulation of wealth through events such as ritual feasting and bridewealth exchanges expanded, inter-polity competition through slave-raiding and warfare heightened, and agriculture intensified. It also has been hypothesized that the production of craft goods such as pottery and metal implements became increasingly specialized and centralized at polity centers. Tanjay, a historically-known chiefdom, was among them. This dissertation examines changes in the organization of ceramic production using the results of laser ablation-inductively coupled plasma-mass spectrometry analysis of close to 300 ceramic samples. In addition to geochemical analysis, this research draws on Chinese accounts of trade from the late first millennium and early second millennium A.D.; Spanish colonial accounts of exploration and conquest from the sixteenth and seventeenth centuries; ethnographic research on traditional Philippine societies and ceramic production; ethnoarchaeological investigations of pottery production, exchange, and use; and archaeological work that has taken place in the Bais-Tanjay region of Negros Island for more than 30 years. Rather than finding clear evidence that ceramics became more compositionally standardized or homogeneous over time, this analysis reveals that a dynamic and complex pattern of local, dispersed pottery production existed alongside increasingly centralized and specialized production of ceramic materials.

  20. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 3: Product data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The feasibility of commercial manufacturing of pharmaceuticals in space is analyzed and the study results are presented. The chronology of the study process is discussed. The separation of serum proteins by the continuous flow electrophoresis process is investigated. The production requirements of twelve candidate products including antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin, and interferon are evaluated.

  1. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment.

  2. Recent developments in manufacturing emulsions and particulate products using membranes.

    PubMed

    Vladisavljević, Goran T; Williams, Richard A

    2005-03-17

    Membrane emulsification (ME) is a relatively new technique for the highly controlled production of particulates. This review focuses on the recent developments in this area, ranging from the production of simple oil-in-water (O/W) or water-in-oil (W/O) emulsions to multiple emulsions of different types, solid-in-oil-in-water (S/O/W) dispersions, coherent solids (silica particles, solid lipid microspheres, solder metal powder) and structured solids (solid lipid microcarriers, gel microbeads, polymeric microspheres, core-shell microcapsules and hollow polymeric microparticles). Other emerging technologies that extend the capabilities into different membrane materials and operation methods (such as rotating membranes, repeated membrane extrusion of coarsely pre-emulsified feeds) are introduced. The results of experimental work carried out by cited researchers in the field together with those of the current authors are presented in a tabular form in a rigorous and systematic manner. These demonstrate a wide range of products that can be manufactured using different membrane approaches. Opportunities for creation of new and novel entities are highlighted for low throughput applications (medical diagnostics, healthcare) and for large-scale productions (consumer and personal products).

  3. Radioactivity and associated radiation hazards in ceramic raw materials and end products.

    PubMed

    Viruthagiri, G; Rajamannan, B; Suresh Jawahar, K

    2013-12-01

    Studies have been planned to obtain activity and associated radiation hazards in ceramic raw materials (quartz, feldspar, clay, zircon, kaolin, grog, alumina bauxite, baddeleyite, masse, dolomite and red mud) and end products (ceramic brick, glazed ceramic wall and floor tiles) as the activity concentrations of uranium, thorium and potassium vary from material to material. The primordial radionuclides in ceramic raw materials and end products are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the activity level in these materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the activity concentration of (226)Ra, (232)Th and (40)K in ceramic raw materials and end products. The activity of these materials has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyser (MCA). Radium equivalent activity, alpha-gamma indices and radiation hazard indices associated with the natural radionuclides are calculated to assess the radiological aspects of the use of the ceramic end products as decorative or covering materials in construction sector. Results obtained were examined in the light of the relevant international legislation and guidance and compared with the results of similar studies reported in different countries. The results suggest that the use of ceramic end product samples examined in the construction of dwellings, workplace and industrial buildings is unlikely to give rise to any significant radiation exposure to the occupants.

  4. Design and research on the platform of network manufacture product electronic trading

    NASA Astrophysics Data System (ADS)

    Zhou, Zude; Liu, Quan; Jiang, Xuemei

    2003-09-01

    With the rapid globalization of market and business, E-trading affects every manufacture enterprise. However, the security of network manufacturing products of transmission on Internet is very important. In this paper we discussed the protocol of fair exchange and platform for network manufacture products E-trading based on fair exchange protocol and digital watermarking techniques. The platform realized reliable and copyright protection.

  5. 40 CFR 86.1836-01 - Manufacturer-supplied production vehicles for testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Manufacturer-supplied production...-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1836-01 Manufacturer-supplied production vehicles for testing. Any manufacturer obtaining certification under this subpart...

  6. 7 CFR 760.20 - Payments to manufacturers of dairy products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Payments to manufacturers of dairy products. 760.20..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Dairy Indemnity Payment Program Payments to Manufacturers Affected by Pesticides § 760.20 Payments to manufacturers of dairy products....

  7. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  8. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  9. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  10. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Manufacturing and... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  11. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    PubMed

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  12. Application of ceramic fibers to the manufacture of reinforced metal-matrix composites

    SciTech Connect

    Wielage, B.; Rahm, J.; Steinhaeuser, S.

    1995-12-31

    The application of the thermal spraying process is a new way to produce carbon fiber or Tyranno fiber reinforced aluminum matrix composites. Spreaded fiber rovings are enveloped in the matrix material with wire flame spraying. The advantage of the thermal spraying process is based in the low times for contacting between the fibers and the liquid matrix material. Chemical reactions on the interface fiber/matrix, which are caused by the decreasing of the fiber tensile strength, can be excluded. The thermal sprayed prepregs can be compressed to MMC by hot pressing process. This longfiber reinforced composites are used to increase f.e. casted components of motors. The aim of this research is the estimation of possibilities to applicate the wire flame spray process for prepreg manufacturing.

  13. DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    M. M. Wu

    2005-02-01

    Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

  14. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment.

    PubMed

    Kim, Jeonghwan; Van der Bruggen, Bart

    2010-07-01

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment.

  15. Sintering of corundum ceramics based on aluminum hydroxide

    SciTech Connect

    Afoninia, G.A.; Leonov, V.G.

    1995-09-01

    The possibility of using aluminum hydroxide obtained by the precipitation method for synthesis of corundum ceramics with additives forming a liquid phase during firing and without additives, is investigated. The optimum parameters of the manufacturing process and the main properties of the material recommended for testing in the production of glass ceramic substrates for integrated circuits are investigated.

  16. Additive manufacturing of Ti-Si-N ceramic coatings on titanium

    NASA Astrophysics Data System (ADS)

    Zhang, Yanning; Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2015-08-01

    In this study, Laser Engineered Net Shaping (LENSTM) was employed towards Additive Manufacturing/3D Printing of Ti-Si-N coatings with three different Ti-Si ratios on commercially pure titanium (cp-Ti) substrate. Microstructural analysis, phase analysis using X-ray diffraction, wear resistance and hardness measurements were done on LENS™ processed 3D printed coatings. Coatings showed graded microstructures and in situ formed phases. Results showed that microstructural variations and phase changes influence coating's hardness and wear resistance directly. High hardness values were obtained from all samples' top surface where the hardness of coatings can be ranked as 90% Ti-10% Si-N coating (2093.67 ± 144 HV0.2) > 100% Ti-N coating (1846 ± 68.5 HV0.2) > 75% Ti-25% Si-N coating (1375.3 ± 61.4 HV0.2). However, wear resistance was more dependent on inherent Si content, and samples with higher Si content showed better wear resistance.

  17. Additive manufacturing. Continuous liquid interface production of 3D objects.

    PubMed

    Tumbleston, John R; Shirvanyants, David; Ermoshkin, Nikita; Janusziewicz, Rima; Johnson, Ashley R; Kelly, David; Chen, Kai; Pinschmidt, Robert; Rolland, Jason P; Ermoshkin, Alexander; Samulski, Edward T; DeSimone, Joseph M

    2015-03-20

    Additive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a "dead zone" (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part. We delineate critical control parameters and show that complex solid parts can be drawn out of the resin at rates of hundreds of millimeters per hour. These print speeds allow parts to be produced in minutes instead of hours.

  18. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  19. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  20. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  1. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  2. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  3. Enhanced Production of Epothilone by Immobilized Sorangium cellulosum in Porous Ceramics.

    PubMed

    Gong, Guo-Li; Huang, Yu-Ying; Liu, Li-Li; Chen, Xue-Feng; Liu, Huan

    2015-10-01

    Epothilone, which is produced by the myxobacterium Sorangium cellulosum, contributes significant value in medicinal development. However, under submerged culture conditions, S. cellulosum will accumulate to form bacterial clumps, which hinder nutrient and metabolite transportation. Therefore, the production of epothilone by liquid fermentation is limited. In this study, diatomite-based porous ceramics were made from diatomite, paraffin, and poremaking agent (saw dust). Appropriate methods to modify the porous ceramics were also identified. After optimizing the preparation and modification conditions, we determined the optimal prescription to prepare high-performance porous ceramics. The structure of porous ceramics can provide a solid surface area where S. cellulosum can grow and metabolize to prevent the formation of bacterial clumps. S. cellulosum cells that do not form clumps will change their erratic metabolic behavior under submerged culture conditions. As a result, the unstable production of epothilone by this strain can be changed in the fermentation process, and the purpose of increasing epothilone production can be achieved. After 8 days of fermentation under optimized conditions, the epothilone yield reached 90.2 mg/l, which was increased four times compared with the fermentation without porous ceramics.

  4. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Simonis, J. J.; Basson, A. K.

    Africa is one of the most water-scarce continents in the world but it is the lack of potable water which results in diarrhoea being the leading cause of death amongst children under the age of five in Africa (696 million children under 5 years old in Africa contract diarrhoea resulting in 2000 deaths per day: WHO and UNICEF, 2009). Most potable water treatment methods use bulk water treatment not suitable or available to the majority of rural poor in Sub-Saharan Africa. One simple but effective way of making sure that water is of good quality is by purifying it by means of a household ceramic water filter. The making and supply of water filters suitable for the removal of suspended solids, pathogenic bacteria and other toxins from drinking water is therefore critical. A micro-porous ceramic water filter with micron-sized pores was developed using the traditional slip casting process. This locally produced filter has the advantage of making use of less raw materials, cost, labour, energy and expertise and being more effective and efficient than other low cost produced filters. The filter is fitted with a silicone tube inserted into a collapsible bag that acts as container and protection for the filter. Enhanced flow is obtained through this filter system. The product was tested using water inoculated with high concentrations of different bacterial cultures as well as with locally polluted stream water. The filter is highly effective (log10 > 4 with 99.99% reduction efficiency) in providing protection from bacteria and suspended solids found in natural water. With correct cleaning and basic maintenance this filter technology can effectively provide drinking water to rural families affected by polluted surface water sources. This is an African solution for the more than 340 million people in Africa without access to clean drinking water (WHO and UNICEF, 2008).

  5. Microwave sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  6. 21 CFR 606.171 - Reporting of product deviations by licensed manufacturers, unlicensed registered blood...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacturers, unlicensed registered blood establishments, and transfusion services. 606.171 Section 606.171...) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Records and Reports § 606.171 Reporting of product deviations by licensed manufacturers, unlicensed registered blood establishments,...

  7. 21 CFR 606.171 - Reporting of product deviations by licensed manufacturers, unlicensed registered blood...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacturers, unlicensed registered blood establishments, and transfusion services. 606.171 Section 606.171...) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Records and Reports § 606.171 Reporting of product deviations by licensed manufacturers, unlicensed registered blood establishments,...

  8. 21 CFR 606.171 - Reporting of product deviations by licensed manufacturers, unlicensed registered blood...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturers, unlicensed registered blood establishments, and transfusion services. 606.171 Section 606.171...) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Records and Reports § 606.171 Reporting of product deviations by licensed manufacturers, unlicensed registered blood establishments,...

  9. 21 CFR 20.115 - Product codes for manufacturing or sales dates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Product codes for manufacturing or sales dates. 20... for manufacturing or sales dates. Data or information in Food and Drug Administration files which provide a means for deciphering or decoding a manufacturing date or sales date or use date contained...

  10. 21 CFR 20.115 - Product codes for manufacturing or sales dates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Product codes for manufacturing or sales dates. 20... for manufacturing or sales dates. Data or information in Food and Drug Administration files which provide a means for deciphering or decoding a manufacturing date or sales date or use date contained...

  11. 21 CFR 20.115 - Product codes for manufacturing or sales dates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Product codes for manufacturing or sales dates. 20... for manufacturing or sales dates. Data or information in Food and Drug Administration files which provide a means for deciphering or decoding a manufacturing date or sales date or use date contained...

  12. 21 CFR 20.115 - Product codes for manufacturing or sales dates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Product codes for manufacturing or sales dates. 20... for manufacturing or sales dates. Data or information in Food and Drug Administration files which provide a means for deciphering or decoding a manufacturing date or sales date or use date contained...

  13. 21 CFR 20.115 - Product codes for manufacturing or sales dates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Product codes for manufacturing or sales dates. 20... for manufacturing or sales dates. Data or information in Food and Drug Administration files which provide a means for deciphering or decoding a manufacturing date or sales date or use date contained...

  14. Determining the date of manufacture of drug products from lot numbers.

    PubMed

    Feldman, M J; Souney, P F; Kaul, A F

    1979-11-01

    Information necessary to determine the date of manufacture of many drug products from assigned lot numbers is presented. Eighty-four U.S. drug manufacturers were surveyed by mail. Response was received from 71 (85%) of the companies contacted, but only 34 provided the information necessary to determine the date of manufacture of their drug products from assigned lot numbers. Pharmacists can use this information to remove potentially deteriorated drug products from inventory.

  15. Production of manufactured aggregates from flue gas desulfurization by-products

    SciTech Connect

    Wu, M.M.; McCoy, D.C.; Fenger, M.L.; Scandrol, R.O.; Winschel, R.A.; Withum, J.A.; Statnick, R.M.

    1999-07-01

    CONSOL R and D has developed a disk pelletization process to produce manufactured aggregates from the by-products of various technologies designed to reduce sulfur emissions produced from coal utilization. Aggregates have been produced from the by-products of the Coolside and LIMB sorbent injection, the fluidized-bed combustion (FBC), spray dryer absorption (SDA), and lime and limestone wet flue gas desulfurization (FGD) processes. The aggregates produced meet the general specifications for use as road aggregate in road construction and for use as lightweight aggregate in concrete masonry units. Small field demonstrations with 1200 lb to 5000 lb of manufactured aggregates were conducted using aggregates produced from FBC ash and lime wet FGD sludge in road construction and using aggregates made from SDA ash and lime wet FGD sludge to manufacture concrete blocks. The aggregates for this work were produced with a bench-scale (200--400 lb batch) unit. In 1999, CONSOL R and D constructed and operated a 500 lb/hr integrated, continuous pilot plant. A variety of aggregate products were produced from lime wet FGD sludge. The pilot plant test successfully demonstrated the continuous, integrated operation of the process. The pilot plant demonstration was a major step toward commercialization of manufactured aggregate production from FGD by-products. In this paper, progress made in the production of aggregates from dry FGD (Coolside, LIMB, SDA) and FBC by-products, and lime wet FGD sludge is discussed. The discussion covers bench-scale and pilot plant aggregate production and aggregate field demonstrations.

  16. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable:...

  17. Effects of Leadership Training on the Manufacturing Productivity of Informal Leaders.

    ERIC Educational Resources Information Center

    Knox, Donald W., Jr.; Walker, Michelle

    2003-01-01

    Nonmanagerial manufacturing workers were placed in four groups (n=10, 11, 5, 11) using Solomon four-group experimental design; two groups received leadership training. Productivity in mold production was measured for all groups. Leadership training appeared to increase the manufacturing productivity of informal leaders. (Contains 19 references.)…

  18. 76 FR 36079 - Foreign-Trade Subzone 38A; Application for Expansion of Manufacturing Authority (Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... (Production Capacity); BMW Manufacturing Co., LLC; (Motor Vehicles) A request has been submitted to the... additional production capacity. The application was submitted pursuant to the provisions of the Foreign-Trade... applicant now requests that the production capacity under its existing scope of FTZ manufacturing...

  19. Fact Sheet - Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants NESHAP

    EPA Pesticide Factsheets

    Fact sheet summarizing National Emission Standards for Hazardous Air Pollutants (NESHAP) for Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants (40 CFR 63 Subparts AA and BB).

  20. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  1. Boron-carbon-silicon polymers and ceramic and a process for the production thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1992-01-01

    The present invention relates to a process for the production of an organoborosilicon preceramic polymer. The polymer is prepared by the reaction of vinylsilane or vinlymethylsilanes (acetylene)silane or acetylene alkyl silanes and borane or borane derivatives. The prepolymer form is pyrolyzed to produce a ceramic article useful in high temperature (e.g., aerospace) or extreme environmental applications.

  2. Production of Metallic and Ceramic Parts with the Optoform Process

    DTIC Science & Technology

    2006-05-01

    Manufacture via Net Shape Processing (Rentabilite de fabrication par un traitement de finition immediate), The original document contains color images. 14...not deposit sediment •No UV absorbtion by the filler ↔ Layer thickness •Support removal & cleaning: not always easy (isopropanol, water ,…). CRIF

  3. Manufacturing economic outlook for production of electric vehicle

    SciTech Connect

    Patten, J.A.; Murthy, M.; Cheung, N.N.Y.; Hartgen, D.T.

    1994-12-31

    Results of a study on the manufacturing of components of electric vehicles (EVs) in North Carolina are reported. Data are obtained from a consumer survey to ascertain the level of customer interest in EVs, coupled with data related to automobile manufacturing. The model uses input/output analysis for the EV manufacturing sector. An estimate is also made of the value of the potential economic impact (salaries of employees) of NC`s share of the total US manufacturing of EVs. The total US manufacturing effort for EVs was evaluated at the present California mandated levels of 2, 5 and 10% levels. This analysis indicates the NC manufacturing economic impact to be $8.6--$86 million annually, over the range of number of vehicles and vehicle cost. The range of the NC economic impacts went from a loss of $2--$10 million in carburators, pistons and rings to a gain of $19--$95 million for electric motors/generators. The above points out significant and potentially negative impact of EVs for certain automobile component industries. This suggests that in regions not participating in the development of EV manufacturing, the potential loss of manufacturing (due to the replacement of internal combustion engine vehicles by EVs) could be substantial. Suggestions are made to reduce this impact.

  4. Computer integrated manufacturing and technology transfer for improving aerospace productivity

    NASA Astrophysics Data System (ADS)

    Farrington, P. A.; Sica, J.

    1992-03-01

    This paper reviews a cooperative effort, between the Alabama Industial Development Training Institute and the University of Alabama in Huntsville, to implement a prototype computer integrated manufacturing system. The primary use of this system will be to educate Alabama companies on the organizational and technological issues involved in the implementation of advanced manufacturing systems.

  5. Development of an inert ceramic anode to reduce energy consumption in magnesium production. Final Report

    SciTech Connect

    1997-06-01

    The objective of this work is to develop a dimensionally stable ceramic anode for production of magnesium metal in electrolytic cells, replacing the graphite anodes currently used by The Dow Chemical Company magnesium business. The work is based on compositional and design technology for a ceramic anode developed in the former Central Research Inorganic Laboratory. The approach selected is to use a ceramic semiconductor tube as the material to interface with the bath and gaseous atmosphere in the cell. The testing goal was to demonstrate six anodes surviving a 30 day test lifetime with acceptable wear rates and electrical performance in a laboratory scale magnesium cell test. State of the art slip casting techniques were used and advanced in the pursuit of a virtually flaw free ceramic anode shell. Novel core materials were also invented to allow for the complete, crack free fabrication of the laboratory scale anode. Two successive anodes were tested and exceeded the 30 day cell lifetime goal with excellent wear characteristics. More aggressive testing of the ceramic anode revealed that the anode had a rather narrow operating region.

  6. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  7. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  8. Relationship between meanings, emotions, product preferences and personal values. Application to ceramic tile floorings.

    PubMed

    Agost, María-Jesús; Vergara, Margarita

    2014-07-01

    This work aims to validate a conceptual framework which establishes the main relationships between subjective elements in human-product interaction, such as meanings, emotions, product preferences, and personal values. The study analyzes the relationships between meanings and emotions, and between these and preferences, as well as the influence of personal values on such relationships. The study was applied to ceramic tile floorings. A questionnaire with images of a neutral room with different ceramic tile floorings was designed and distributed via the web. Results from the study suggest that both meanings and emotions must be taken into account in the generation of product preferences. The meanings given to the product can cause the generation of emotions, and both types of subjective impressions give rise to product preferences. Personal reference values influence these relationships between subjective impressions and product preferences. As a consequence, not only target customers' demographic data but specifically their values and criteria must be taken into account from the beginning of the development process. The specific results of this paper can be used directly by ceramic tile designers, who can better adjust product design (and the subjective impressions elicited) to the target market. Consequently, the chance of product success is reinforced.

  9. Advanced Manufacturing

    DTIC Science & Technology

    2002-01-01

    manufacturing will enable the mass customization of products and create new market opportunities in the commercial sector. Flexible manufacturing ...the mass customization of products and create new market opportunities in the commercial sector. One of the most promising flexible manufacturing ... manufacturing , increase efficiency and productivity. Research in leading edge technologies continues to promise exciting new manufacturing methods

  10. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  11. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  12. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

    1993-11-16

    A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

  13. Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels.

    PubMed

    Zupke, Craig; Brady, Lowell J; Slade, Peter G; Clark, Philip; Caspary, R Guy; Livingston, Brittney; Taylor, Lisa; Bigham, Kyle; Morris, Arvia E; Bailey, Robert W

    2015-01-01

    Pressures for cost-effective new therapies and an increased emphasis on emerging markets require technological advancements and a flexible future manufacturing network for the production of biologic medicines. The safety and efficacy of a product is crucial, and consistent product quality is an essential feature of any therapeutic manufacturing process. The active control of product quality in a typical biologic process is challenging because of measurement lags and nonlinearities present in the system. The current study uses nonlinear model predictive control to maintain a critical product quality attribute at a predetermined value during pilot scale manufacturing operations. This approach to product quality control ensures a more consistent product for patients, enables greater manufacturing efficiency, and eliminates the need for extensive process characterization by providing direct measures of critical product quality attributes for real time release of drug product.

  14. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  15. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  16. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  17. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  18. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities...

  19. 49 CFR 661.6 - Certification requirements for procurement of steel or manufactured products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Certification requirements for procurement of steel or manufactured products. 661.6 Section 661.6 Transportation Other Regulations Relating to... § 661.6 Certification requirements for procurement of steel or manufactured products. If steel, iron,...

  20. 49 CFR 661.6 - Certification requirements for procurement of steel or manufactured products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Certification requirements for procurement of steel or manufactured products. 661.6 Section 661.6 Transportation Other Regulations Relating to... § 661.6 Certification requirements for procurement of steel or manufactured products. If steel, iron,...

  1. 49 CFR 661.6 - Certification requirements for procurement of steel or manufactured products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Certification requirements for procurement of steel or manufactured products. 661.6 Section 661.6 Transportation Other Regulations Relating to... § 661.6 Certification requirements for procurement of steel or manufactured products. If steel, iron,...

  2. 49 CFR 661.6 - Certification requirements for procurement of steel or manufactured products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Certification requirements for procurement of steel or manufactured products. 661.6 Section 661.6 Transportation Other Regulations Relating to... § 661.6 Certification requirements for procurement of steel or manufactured products. If steel, iron,...

  3. 49 CFR 661.6 - Certification requirements for procurement of steel or manufactured products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Certification requirements for procurement of steel or manufactured products. 661.6 Section 661.6 Transportation Other Regulations Relating to... § 661.6 Certification requirements for procurement of steel or manufactured products. If steel, iron,...

  4. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  5. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  6. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  7. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  8. 21 CFR 680.2 - Manufacture of Allergenic Products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Cultures derived from microorganisms. Culture media into which organisms are inoculated for the manufacture... requirement. Neither horse protein nor any allergenic derivative of horse protein shall be used in...

  9. Production of pyroxene ceramics from the fine fraction of incinerator bottom ash.

    PubMed

    Bourtsalas, A; Vandeperre, L J; Grimes, S M; Themelis, N; Cheeseman, C R

    2015-11-01

    Incinerator bottom ash (IBA) is normally processed to extract metals and the coarse mineral fraction is used as secondary aggregate. This leaves significant quantities of fine material, typically less than 4mm, that is problematic as reuse options are limited. This work demonstrates that fine IBA can be mixed with glass and transformed by milling, calcining, pressing and sintering into high density ceramics. The addition of glass aids liquid phase sintering, milling increases sintering reactivity and calcining reduces volatile loss during firing. Calcining also changes the crystalline phases present from quartz (SiO2), calcite (CaCO3), gehlenite (Ca2Al2SiO7) and hematite (Fe2O3) to diopside (CaMgSi2O6), clinoenstatite (MgSiO3) and andradite (Ca3Fe2Si3O12). Calcined powders fired at 1080°C have high green density, low shrinkage (<7%) and produce dense (2.78 g/cm(3)) ceramics that have negligible water absorption. The transformation of the problematic fraction of IBA into a raw material suitable for the manufacture of ceramic tiles for use in urban paving and other applications is demonstrated.

  10. Fact Sheet: Proposed Hazardous Air Pollutant Regulation for the Miscellaneous Cellulose Products Manufacturing

    EPA Pesticide Factsheets

    This August 2000 document contains information regarding the National Emissions Standards for Hazardous Air Pollutants for Cellulose Products Manufacturing. Some of the products of this industry are: cellulose, cellophane, and rayon.

  11. Additive Manufacturing in Production: A Study Case Applying Technical Requirements

    NASA Astrophysics Data System (ADS)

    Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni

    Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.

  12. Review of laser micromachining in contract manufacturing

    NASA Astrophysics Data System (ADS)

    Ogura, Glenn; Gu, Bo

    1998-06-01

    This paper explores the wide range of laser micromachining applications used in contract manufacturing. Contract manufacturing is used in several key industries such as microelectronics packaging, semiconductor, data storage, medical devices, communications, peripherals, automobiles and aerospace. Material types includes plastics, metals, ceramics, inorganics and composites. However laser micromachining is just one available technology for micromachining and other methods will be reviewed. Contract manufacturing offers two important glimpses of the future. Firstly prototype work for new applications often beings in contract manufacturing. Secondly, contract manufacturing can be an economic springboard to allow laser systems to be installed in a production environment.

  13. A normative price for a manufactured product: The SAMICS methodology. Volume 2: Analysis

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    The Solar Array Manufacturing Industry Costing Standards provide standard formats, data, assumptions, and procedures for determining the price a hypothetical solar array manufacturer would have to be able to obtain in the market to realize a specified after-tax rate of return on equity for a specified level of production. The methodology and its theoretical background are presented. The model is sufficiently general to be used in any production-line manufacturing environment. Implementation of this methodology by the Solar Array Manufacturing Industry Simultation computer program is discussed.

  14. Fatigue analysis of computer-aided design/computer-aided manufacturing resin-based composite vs. lithium disilicate glass-ceramic.

    PubMed

    Ankyu, Shuhei; Nakamura, Keisuke; Harada, Akio; Hong, Guang; Kanno, Taro; Niwano, Yoshimi; Örtengren, Ulf; Egusa, Hiroshi

    2016-08-01

    Resin-based composite molar crowns made by computer-aided design/computer-aided manufacturing (CAD/CAM) systems have been proposed as an inexpensive alternative to metal-ceramic or all-ceramic crowns. However, there is a lack of scientific information regarding fatigue resistance. This study aimed to analyze the fatigue behavior of CAD/CAM resin-based composite compared with lithium disilicate glass-ceramic. One-hundred and sixty bar-shaped specimens were fabricated using resin-based composite blocks [Lava Ultimate (LU); 3M/ESPE] and lithium disilicate glass-ceramic [IPS e.max press (EMP); Ivoclar/Vivadent]. The specimens were divided into four groups: no treatment (NT); thermal cycling (TC); mechanical cycling (MC); and thermal cycling followed by mechanical cycling (TCMC). Thermal cycling was performed by alternate immersion in water baths of 5°C and 55°C for 5 × 10(4) cycles. Mechanical cycling was performed in a three-point bending test, with a maximum load of 40 N, for 1.2 × 10(6) cycles. In addition, LU and EMP molar crowns were fabricated and subjected to fatigue treatments followed by load-to-failure testing. The flexural strength of LU was not severely reduced by the fatigue treatments. The fatigue treatments did not significantly affect the fracture resistance of LU molar crowns. The results demonstrate the potential of clinical application of CAD/CAM-generated resin-based composite molar crowns in terms of fatigue resistance.

  15. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  16. Three-dimensional ceramic molding process based on microstereolithography for the production of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Maruo, Shoji; Sugiyama, Kenji; Daicho, Yuya; Monri, Kensaku

    2014-03-01

    A three-dimensional (3-D) molding process using a master polymer mold produced by microstereolithography has been developed for the production of piezoelectric ceramic elements. In this method, ceramic slurry is injected into a 3-D polymer mold via a centrifugal casting process. The polymer master mold is thermally decomposed so that complex 3-D piezoelectric ceramic elements can be produced. As an example of 3-D piezoelectric ceramic elements, we produced a spiral piezoelectric element that can convert multidirectional loads into a voltage. It was confirmed that a prototype of the spiral piezoelectric element could generate a voltage by applying a load in both parallel and lateral directions in relation to the helical axis. The power output of 123 pW was obtained by applying the maximum load of 2.8N at 2 Hz along the helical axis. In addition, to improve the performance of power generation, we utilized a two-step sintering process to obtain dense piezoelectric elements. As a result, we obtained a sintering body with relative density of 92.8%. Piezoelectric constant d31 of the sintered body attained to -40.0 pC/N. Furthermore we analyzed the open-circuit voltage of the spiral piezoelectric element using COMSOL multiphysics. As a result, it was found that use of patterned electrodes according to the surface potential distribution of the spiral piezoelectric element had a potential to provide high output voltage that was 20 times larger than that of uniform electrodes.

  17. Manufacture of gluten-free specialty breads and confectionery products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    People suffering from celiac disease, wheat allergies or wheat intolerances require breads not containing any wheat or related cereals like rye and barley. The manufacture of these so-called gluten-free breads is not well understood and much less literature is available than on wheat breads. On the ...

  18. Human Capital Linkages to Labour Productivity: Implications from Thai Manufacturers

    ERIC Educational Resources Information Center

    Rukumnuaykit, Pungpond; Pholphirul, Piriya

    2016-01-01

    Human capital investment is a necessary condition for improving labour market outcomes in most countries. Empirical studies to investigate human capital and its linkages on the labour demand side are, however, relatively scarce due to limitations of firm-level data-sets. Using firm-level data from the Thai manufacturing sector, this paper aims to…

  19. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    NASA Astrophysics Data System (ADS)

    Ilyas, Ismet P.

    2013-06-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  20. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies.

  1. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    SciTech Connect

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance

  2. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  3. Impact of information technology on productivity and efficiency in Iranian manufacturing industries

    NASA Astrophysics Data System (ADS)

    Abri, Amir Gholam; Mahmoudzadeh, Mahmoud

    2015-12-01

    The aim of this paper is to assess the impact of information technology (IT) on the productivity and efficiency of manufacturing industries in Iran. So, the data will be collected from 23 Iranian manufacturing industries during "2002-2006" and the methods such as DEA and panel data used to study the subject. Results obtained by the above two methods represent that IT has a positive and statistically significant effect on the productivity of manufacturing industries. It will be more in high IT-intensive industries than the other industries. But, there is no significant difference between the growth of labor productivity in IT-producing and IT-using industries.

  4. Licorice Production and Manufacturing: All-Sorts of Practical Applications for Statistics

    ERIC Educational Resources Information Center

    Watson, Jane; Skalicky, Jane; Fitzallen, Noleine; Wright, Suzie

    2009-01-01

    Among the practical applications of statistics is the collection of data from manufacturing processes. Often collected in the form of a time series, data collected from a series of measurements show the variation in those measurements, such as mass of a product manufactured. Limits are set for quality control and if these are exceeded then a…

  5. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  6. Ceramic tubesheet design analysis

    SciTech Connect

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  7. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.

    SciTech Connect

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2009-03-25

    The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  8. Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2009.

    SciTech Connect

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2010-04-20

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  9. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    SciTech Connect

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  10. 78 FR 36786 - Linking Marketplace Heparin Product Attributes and Manufacturing Processes to Bioactivity and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Keire, Center for Drug Evaluation and Research, Food and Drug Administration, 1114 Market St., rm. 1002... HUMAN SERVICES Food and Drug Administration Linking Marketplace Heparin Product Attributes and Manufacturing Processes to Bioactivity and Immunogenicity AGENCY: Food and Drug Administration, HHS....

  11. PIXE and IL analysis of an archeologically problematic XIII century ceramic production

    NASA Astrophysics Data System (ADS)

    Zucchiatti, Alessandro; Jiménez-Rey, David; Climent-Font, Aurelio; Martina, Silvia; Faieta, Rosangela; Maggi, Marco; Giuntini, Lorenzo; Calusi, Silvia

    2015-11-01

    At the beginning of the XIII century the archaeologists have found evidence of a singular, transitional, pottery technique limited to a small area around western Liguria (Northwest of Italy). Known as Ligurian Protomajolica (PML), it shows in the same ceramic body and on the same surface white slip and enamel together, addressing questions about the technical reasons of this unusual combination, its origin and evolution. To integrate previous morphological and mineralogical studies, we have analysed by particle induced X-ray emission (also with mapping) and ionoluminescence (IL) the ceramic body, slip and glaze composition of 56 samples, of which 25 PML's. We have identified some PML's compositional features which are distinct from those of other coeval or later productions from the same area. A few PML imitations are described. A plausible explanation of the origin of the PML's, based both on the archaeometric results and the archaeological and historical knowledge, is presented.

  12. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-03-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  13. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    NASA Technical Reports Server (NTRS)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  14. Influence of surface roughness on mechanical properties of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials.

    PubMed

    Flury, S; Peutzfeldt, A; Lussi, A

    2012-01-01

    The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.

  15. 16 CFR 303.33 - Country where textile fiber products are processed or manufactured.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Country where textile fiber products are... UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.33 Country where textile fiber products are processed or manufactured. (a) In addition...

  16. Are the respiratory health effects found in manufacturers of ceramic fibres due to the dust rather than the exposure to fibres?

    PubMed Central

    Burge, P S; Calvert, I A; Trethowan, W N; Harrington, J M

    1995-01-01

    OBJECTIVES--To determine whether the respiratory symptoms and decrements in lung function found in manufacturers of ceramic fibres are related to exposure to the respirable fibre or inspirable mass constituents of the air in the working environment. METHODS--Cross sectional survey of all current European primary producers of ceramic fibre was carried out, with measurement of exposure to respiratory fibres by personal samplers that measured inspirable and total mass, together with a health survey with an expanded respiratory questionnaire and standardised measurement of lung function. Odds ratios were calculated for symptoms and current exposure by multiple logistic regression, and multiple linear regression coefficients for lung function related to cumulative exposures controlled for the effects of respirable fibre and inspirable mass separately and together. RESULTS--Significant effects of current exposure to both inspirable dust and respirable fibres were related to dry cough, stuffy nose, eye and skin irritation and breathlessness. The decrements found in smokers and to some extent in ex-smokers in forced expiratory volume in one second and forced expiratory flow from 25% to 75% of expiratory volume, seem to be related to the respirable fibres rather than the inspirable mass constituents of the environment. CONCLUSIONS--Current symptoms were related to both current exposure to inspirable dust and respirable fibre. The decrements in lung function were related to the fibre constituent of the exposure. PMID:7757162

  17. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.

    PubMed

    Norman, James; Madurawe, Rapti D; Moore, Christine M V; Khan, Mansoor A; Khairuzzaman, Akm

    2017-01-01

    FDA recently approved a 3D-printed drug product in August 2015, which is indicative of a new chapter for pharmaceutical manufacturing. This review article summarizes progress with 3D printed drug products and discusses process development for solid oral dosage forms. 3D printing is a layer-by-layer process capable of producing 3D drug products from digital designs. Traditional pharmaceutical processes, such as tablet compression, have been used for decades with established regulatory pathways. These processes are well understood, but antiquated in terms of process capability and manufacturing flexibility. 3D printing, as a platform technology, has competitive advantages for complex products, personalized products, and products made on-demand. These advantages create opportunities for improving the safety, efficacy, and accessibility of medicines. Although 3D printing differs from traditional manufacturing processes for solid oral dosage forms, risk-based process development is feasible. This review highlights how product and process understanding can facilitate the development of a control strategy for different 3D printing methods. Overall, the authors believe that the recent approval of a 3D printed drug product will stimulate continual innovation in pharmaceutical manufacturing technology. FDA encourages the development of advanced manufacturing technologies, including 3D-printing, using science- and risk-based approaches.

  18. Identified research directions for using manufacturing knowledge earlier in the product lifecycle.

    PubMed

    Hedberg, Thomas D; Hartman, Nathan W; Rosche, Phil; Fischer, Kevin

    2017-01-01

    Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle.

  19. Optimization of the preparation conditions of ceramic products using drinking water treatment sludges.

    PubMed

    Zamora, R M Ramirez; Ayala, F Espesel; Garcia, L Chavez; Moreno, A Duran; Schouwenaars, R

    2008-11-01

    The aim of this work is to optimize, via Response Surface Methodology, the values of the main process parameters for the production of ceramic products using sludges obtained from drinking water treatment in order to valorise them. In the first experimental stage, sludges were collected from a drinking water treatment plant for characterization. In the second stage, trials were carried out to elaborate thin cross-section specimens and fired bricks following an orthogonal central composite design of experiments with three factors (sludge composition, grain size and firing temperature) and five levels. The optimization parameters (Y(1)=shrinking by firing (%), Y(2)=water absorption (%), Y(3)=density (g/cm(3)) and Y(4)=compressive strength (kg/cm(2))) were determined according to standardized analytical methods. Two distinct physicochemical processes were active during firing at different conditions in the experimental design, preventing the determination of a full response surface, which would allow direct optimization of production parameters. Nevertheless, the temperature range for the production of classical red brick was closely delimitated by the results; above this temperature, a lightweight ceramic with surprisingly high strength was produced, opening possibilities for the valorisation of a product with considerably higher added value than what was originally envisioned.

  20. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  1. Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1997-01-01

    Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.

  2. Microstructure-controllable Laser Additive Manufacturing Process for Metal Products

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chuang, Chuan-Sheng; Lin, Ching-Chih; Wu, Chih-Hsien; Lin, De-Yau; Liu, Sung-Ho; Tseng, Wen-Peng; Horng, Ji-Bin

    Controlling the cooling rate of alloy during solidification is the most commonly used method for varying the material microstructure. However, the cooling rate of selective laser melting (SLM) production is constrained by the optimal parameter settings for a dense product. This study proposes a method for forming metal products via the SLM process with electromagnetic vibrations. The electromagnetic vibrations change the solidification process for a given set of SLM parameters, allowing the microstructure to be varied via magnetic flux density. This proposed method can be used for creating microstructure-controllable bio-implant products with complex shapes.

  3. Microstructural and thermal characterization of neolithic ceramics

    NASA Astrophysics Data System (ADS)

    Fermo, Paola; Ischia, Gloria; Di Maggio, Rosa; Pedrotti, Annaluisa; Zanoni, Eleonora; Gialanella, Stefano

    2013-12-01

    The aim of this research was to characterize some Neolithic ceramic finds collected during an excavation carried out at Lugo di Grezzana (Verona, Italy). Pottery shards with different paste and tempers were analyzed to better understand the manufacturing and firing technologies used for their production. Another task of the study was to determine whether highly refined artefacts, found in the site and resembling figulina-type ceramics, were of local production or imported from other places in the north of Italy, where the production of this sort of product has already been unambiguously assessed. Several results emerged from this investigation, providing indications on the finds from this Neolithic settlement and, therefore, on the technological expertise achieved by the primitive community. Moreover, a comparative study carried out on refined ceramic products found in Lugo and genuine figulina items from other northern Italian sites suggests that no trading exchange and commercial routes existed among those primitive communities.

  4. Relationship Between Lean Production and Operational Performance in the Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Rasi, Raja Zuraidah R. M.; Syamsyul Rakiman, Umol; Ahmad, Md Fauzi Bin

    2015-05-01

    Nowadays, more and more manufacturing firms have started to implement lean production system in their operations. Lean production viewed as one of the mechanism to maintain the organisation's position and to compete globally. However, many fail to apply the lean concepts successfully in their operations. Based on previous studies, implementation of lean production in the manufacturing industry is more focused on the relationship between Lean and Operational Performance of one dimension only. Therefore, this study attempted to examine the relationship between Lean Production (LP) and Operational Performance in 4 dimensions which are quality, delivery, cost and flexibility. This study employed quantitative study using questionnaires. Data was collected from 50 manufacturing industries. The data was analysed using Statistical Package for Social Science (SPSS) 22.0. This study is hoped to shed new understanding on the concept of Lean Production (LP) in regards of Operational Performance covering the 4 dimensions.

  5. Wages and Productivity in Mexican Manufacturing. Policy Research Working Paper.

    ERIC Educational Resources Information Center

    Lopez-Acevedo, Gladys

    A study examined determinants of wages and productivity in Mexico from 1993 and 1999 using two national surveys. In 1993, 7,619 employees from 575 firms were interviewed. In 1999, 6,259 employees from 722 firms were interviewed. Findings indicate that wage premiums and productivity increased with years of schooling, but workers had higher benefits…

  6. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  7. Polymer Coating for Immobilizing Soluble Ions in a Phosphate Ceramic Product

    SciTech Connect

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    1999-05-05

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  8. In-use product stocks link manufactured capital to natural capital

    PubMed Central

    Chen, Wei-Qiang; Graedel, T. E.

    2015-01-01

    In-use stock of a product is the amount of the product in active use. In-use product stocks provide various functions or services on which we rely in our daily work and lives, and the concept of in-use product stock for industrial ecologists is similar to the concept of net manufactured capital stock for economists. This study estimates historical physical in-use stocks of 91 products and 9 product groups and uses monetary data on net capital stocks of 56 products to either approximate or compare with in-use stocks of the corresponding products in the United States. Findings include the following: (i) The development of new products and the buildup of their in-use stocks result in the increase in variety of in-use product stocks and of manufactured capital; (ii) substitution among products providing similar or identical functions reflects the improvement in quality of in-use product stocks and of manufactured capital; and (iii) the historical evolution of stocks of the 156 products or product groups in absolute, per capita, or per-household terms shows that stocks of most products have reached or are approaching an upper limit. Because the buildup, renewal, renovation, maintenance, and operation of in-use product stocks drive the anthropogenic cycles of materials that are used to produce products and that originate from natural capital, the determination of in-use product stocks together with modeling of anthropogenic material cycles provides an analytic perspective on the material linkage between manufactured capital and natural capital. PMID:25733904

  9. In-use product stocks link manufactured capital to natural capital.

    PubMed

    Chen, Wei-Qiang; Graedel, T E

    2015-05-19

    In-use stock of a product is the amount of the product in active use. In-use product stocks provide various functions or services on which we rely in our daily work and lives, and the concept of in-use product stock for industrial ecologists is similar to the concept of net manufactured capital stock for economists. This study estimates historical physical in-use stocks of 91 products and 9 product groups and uses monetary data on net capital stocks of 56 products to either approximate or compare with in-use stocks of the corresponding products in the United States. Findings include the following: (i) The development of new products and the buildup of their in-use stocks result in the increase in variety of in-use product stocks and of manufactured capital; (ii) substitution among products providing similar or identical functions reflects the improvement in quality of in-use product stocks and of manufactured capital; and (iii) the historical evolution of stocks of the 156 products or product groups in absolute, per capita, or per-household terms shows that stocks of most products have reached or are approaching an upper limit. Because the buildup, renewal, renovation, maintenance, and operation of in-use product stocks drive the anthropogenic cycles of materials that are used to produce products and that originate from natural capital, the determination of in-use product stocks together with modeling of anthropogenic material cycles provides an analytic perspective on the material linkage between manufactured capital and natural capital.

  10. Novel fermentation processes for manufacturing plant natural products.

    PubMed

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed.

  11. Recipes for Men: Manufacturing Makeup and the Politics of Production in 1910s China.

    PubMed

    Lean, Eugenia

    2015-01-01

    In the first decade of Republican China (1911-49), masculinity was explored in writings on how to manufacture makeup that appeared in women's magazines. Male authors and editors of these writings--some of whom were connoisseurs of technology, some of whom were would-be manufacturers--appropriated the tropes of the domestic and feminine to elevate hands-on work and explore industry and manufacturing as legitimate masculine pursuits. Tapping into time-honored discourses of virtuous productivity in the inner chambers and employing practices of appropriating the woman's voice to promote unorthodox sentiment, these recipes "feminized" production to valorize a new masculine agenda, which included chemistry and manufacturing, for building a new China.

  12. Superplastic deformation in carbonate apatite ceramics under constant compressive loading for near-net-shape production of bioresorbable bone substitutes.

    PubMed

    Adachi, Masanori; Wakamatsu, Nobukazu; Doi, Yutaka

    2008-01-01

    To produce carbonate apatite (CAP) ceramics with the desired complex shapes using superplastic deformation, deformation behavior of CAP ceramics under constant loading as well as physical properties after deformation were evaluated. Sintered CAP ceramics were plastically deformed in an electric furnace attached to a universal hydraulic testing machine under a constant load. CAP ceramics subjected to an initial compressive pressure of 10 MPa showed an appreciable amount of plastic deformation at temperatures ranging from 720 to 800 degrees C. Plastic deformation increased with increasing temperature from about 10% to 70% after two hours of loading. X-ray diffraction analysis and SEM observation further revealed that some CAP crystals were elongated and aligned with the c-axis normal to the loading direction during superplastic deformation. It was thus concluded that a marked plastic deformation of about 70% at 800 degrees C would be sufficient for near-net-shape production of bioresorbable CAP bone substitutes with complex shapes.

  13. New ceramics incorporated with industrial by-products as pore formers for sorption of toxic chromium from aqueous media

    NASA Astrophysics Data System (ADS)

    Domopoulou, Artemi

    2015-04-01

    The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore-former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.

  14. New ceramics incorporated with industrial by-products as pore formers for sorption of toxic chromium from aqueous media

    NASA Astrophysics Data System (ADS)

    Domopoulou, Asimina; Spiliotis, Xenofon; Baklavaridis, Apostolos; Papapolymerou, George; Karayannis, Vayos

    2015-04-01

    The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.

  15. Control of the process of cooling of ceramic products with allowance for the constraints on thermal stresses

    NASA Astrophysics Data System (ADS)

    Morozkin, N. D.; Tkachev, V. I.

    2016-05-01

    A three-dimensional problem on the control of furnace temperature during cooling of ceramic products of arbitrary shape with allowance for the constraints on thermal stresses is analyzed. An algorithm for calculating a temperature regime making it possible to avoid the occurrence of fracture and irreversible deformation in the products being cooled is proposed. With the example of cooling of a ceramic holder for a spiral wire, a computational experiment is performed. A temperature regime in which the cooling of the product accomplishes in a certain time without exceeding the admissible values of thermal stresses is identified.

  16. Possible production of ceramic tiles from marine dredging spoils alone and mixed with other waste materials.

    PubMed

    Baruzzo, Daniela; Minichelli, Dino; Bruckner, Sergio; Fedrizzi, Lorenzo; Bachiorrini, Alessandro; Maschio, Stefano

    2006-06-30

    Dredging spoils, due to their composition could be considered a new potential source for the production of monolithic ceramics. Nevertheless, abundance of coloured oxides in these materials preclude the possibility of obtaining white products, but not that of producing ceramics with a good mechanical behaviour. As goal of the present research we have produced and studied samples using not only dredging spoils alone, but also mixtures with other waste materials such as bottom ashes from an incinerator of municipal solid waste, incinerated seawage sludge from a municipal seawage treatment plant and steelworks slag. Blending of different components was done by attrition milling. Powders were pressed into specimens which were air sintered in a muffle furnace and their shrinkage on firing was determined. Water absorption, density, strength, hardness, fracture toughness, thermal expansion coefficient of the fired bodies were measured; XRD and SEM images were also examined. The fired samples were finally tested in acidic environment in order to evaluate their elution behaviour and consequently their environmental compatibility. It is observed that, although the shrinkage on firing is too high for the production of tiles, in all the compositions studied the sintering procedure leads to fine microstructures, good mechanical properties and to a limitation of the release of many of the most hazardous metals contained in the starting powders.

  17. Advanced Manufacturing and Value-added Products from US Agriculture

    NASA Technical Reports Server (NTRS)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  18. 16 CFR 300.25 - Country where wool products are processed or manufactured.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Country where wool products are processed or manufactured. 300.25 Section 300.25 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling §...

  19. Academic Research and Canadian Manufacturing Productivity since the Formation of NAFTA

    ERIC Educational Resources Information Center

    Brox, James

    2007-01-01

    Does academic research have a positive impact on productivity? To examine this question, the paper focuses on national Canadian manufacturing data, using a variable-cost CES-translog cost system. Changes in the elasticities calculated from the estimation results allow the study of the impact of the free-trade agreements on Canadian production and…

  20. 16 CFR 1009.3 - Policy on imported products, importers, and foreign manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Policy on imported products, importers, and... GENERAL GENERAL STATEMENTS OF POLICY OR INTERPRETATION § 1009.3 Policy on imported products, importers, and foreign manufacturers. (a) This policy states the Commission's views as to imported...

  1. 16 CFR 1009.3 - Policy on imported products, importers, and foreign manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Policy on imported products, importers, and... GENERAL GENERAL STATEMENTS OF POLICY OR INTERPRETATION § 1009.3 Policy on imported products, importers, and foreign manufacturers. (a) This policy states the Commission's views as to imported...

  2. 16 CFR 1009.3 - Policy on imported products, importers, and foreign manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Policy on imported products, importers, and... GENERAL GENERAL STATEMENTS OF POLICY OR INTERPRETATION § 1009.3 Policy on imported products, importers, and foreign manufacturers. (a) This policy states the Commission's views as to imported...

  3. 21 CFR 801.433 - Warning statements for prescription and restricted device products containing or manufactured...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... device products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances... chlorofluorocarbons or other ozone-depleting substances. (a)(1) All prescription and restricted device products... substance which harms public health and environment by destroying ozone in the upper atmosphere. (2)...

  4. 21 CFR 801.433 - Warning statements for prescription and restricted device products containing or manufactured...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... device products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances... chlorofluorocarbons or other ozone-depleting substances. (a)(1) All prescription and restricted device products... substance which harms public health and environment by destroying ozone in the upper atmosphere. (2)...

  5. 21 CFR 801.433 - Warning statements for prescription and restricted device products containing or manufactured...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances... chlorofluorocarbons or other ozone-depleting substances. (a)(1) All prescription and restricted device products... substance which harms public health and environment by destroying ozone in the upper atmosphere. (2)...

  6. 21 CFR 801.433 - Warning statements for prescription and restricted device products containing or manufactured...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances... chlorofluorocarbons or other ozone-depleting substances. (a)(1) All prescription and restricted device products... substance which harms public health and environment by destroying ozone in the upper atmosphere. (2)...

  7. 21 CFR 801.433 - Warning statements for prescription and restricted device products containing or manufactured...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... device products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances... chlorofluorocarbons or other ozone-depleting substances. (a)(1) All prescription and restricted device products... substance which harms public health and environment by destroying ozone in the upper atmosphere. (2)...

  8. POLLUTION BALANCE: A NEW METHODOLOGY FOR MINIMIZING WASTE PRODUCTION IN MANUFACTURING PROCESSES.

    EPA Science Inventory

    A new methodolgy based on a generic pollution balance equation, has been developed for minimizing waste production in manufacturing processes. A "pollution index," defined as the mass of waste produced per unit mass of a product, has been introduced to provide a quantitative meas...

  9. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms.

    PubMed

    Içten, Elçin; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2015-05-01

    The US Food and Drug Administration introduced the quality by design approach and process analytical technology guidance to encourage innovation and efficiency in pharmaceutical development, manufacturing, and quality assurance. As part of this renewed emphasis on the improvement of manufacturing, the pharmaceutical industry has begun to develop more efficient production processes with more intensive use of online measurement and sensing, real-time quality control, and process control tools. Here, we present dropwise additive manufacturing of pharmaceutical products (DAMPP) as an alternative to conventional pharmaceutical manufacturing methods. This mini-manufacturing process for the production of pharmaceuticals utilizes drop on demand printing technology for automated and controlled deposition of melt-based formulations onto edible substrates. The advantages of drop-on-demand technology, including reproducible production of small droplets, adjustable drop sizing, high placement accuracy, and flexible use of different formulations, enable production of individualized dosing even for low-dose and high-potency drugs. In this work, DAMPP is used to produce solid oral dosage forms from hot melts of an active pharmaceutical ingredient and a polymer. The dosage forms are analyzed to show the reproducibility of dosing and the dissolution behavior of different formulations.

  10. 21 CFR 607.7 - Establishment registration and product listing of blood banks and other firms manufacturing human...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... blood banks and other firms manufacturing human blood and blood products. 607.7 Section 607.7 Food and... ESTABLISHMENT REGISTRATION AND PRODUCT LISTING FOR MANUFACTURERS OF HUMAN BLOOD AND BLOOD PRODUCTS General Provisions § 607.7 Establishment registration and product listing of blood banks and other...

  11. 21 CFR 607.7 - Establishment registration and product listing of blood banks and other firms manufacturing human...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... blood banks and other firms manufacturing human blood and blood products. 607.7 Section 607.7 Food and... ESTABLISHMENT REGISTRATION AND PRODUCT LISTING FOR MANUFACTURERS OF HUMAN BLOOD AND BLOOD PRODUCTS General Provisions § 607.7 Establishment registration and product listing of blood banks and other...

  12. 21 CFR 607.7 - Establishment registration and product listing of blood banks and other firms manufacturing human...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blood banks and other firms manufacturing human blood and blood products. 607.7 Section 607.7 Food and... ESTABLISHMENT REGISTRATION AND PRODUCT LISTING FOR MANUFACTURERS OF HUMAN BLOOD AND BLOOD PRODUCTS General Provisions § 607.7 Establishment registration and product listing of blood banks and other...

  13. 21 CFR 607.7 - Establishment registration and product listing of blood banks and other firms manufacturing human...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... blood banks and other firms manufacturing human blood and blood products. 607.7 Section 607.7 Food and... ESTABLISHMENT REGISTRATION AND PRODUCT LISTING FOR MANUFACTURERS OF HUMAN BLOOD AND BLOOD PRODUCTS General Provisions § 607.7 Establishment registration and product listing of blood banks and other...

  14. 21 CFR 607.7 - Establishment registration and product listing of blood banks and other firms manufacturing human...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood banks and other firms manufacturing human blood and blood products. 607.7 Section 607.7 Food and... ESTABLISHMENT REGISTRATION AND PRODUCT LISTING FOR MANUFACTURERS OF HUMAN BLOOD AND BLOOD PRODUCTS General Provisions § 607.7 Establishment registration and product listing of blood banks and other...

  15. Porcelain enameling furnaces retrofitted with ceramic fiber to increase fuel savings and production

    SciTech Connect

    Not Available

    1984-07-01

    Appliance manufacturers and companies supplying porcelainized parts have done considerable revamping and modernizing of their furnaces. As a result, economy of production has been improved through either substantial fuel savings or increased productivity or both. Coinciding with this industry furnace upgrading, a refractory engineering and contracting firm, Ronalco Inc., Louisville, KY has emerged, within a few years, as experts in porcelain enameling furnace renovations devising their own innovative methodology for lining and heating these units.

  16. Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: application to algal solution concentration.

    PubMed

    Issaoui, Mansour; Limousy, Lionel; Lebeau, Bénédicte; Bouaziz, Jamel; Fourati, Mohieddine

    2017-01-05

    Low-cost tubular macroporous supports for ceramic membranes were elaborated using the extrusion method, followed by curing, debinding, and sintering processes, from a powder mixture containing kaolin, starch, and sand. The obtained substrates were characterized using mercury intrusion porosimetry, water absorption test, water permeability, scanning electron microscopy, and three-point bending test to evaluate the effects of the additives on the relevant characteristics. According to experimental results, adding the starch ratio to the kaolin powder shows a notable impact on the membrane porosity and consequently on the water permeability of the tubular supports, whereas their mechanical strength decreased compared to those prepared from kaolin alone. It has been shown that the addition of an appropriate amount of starch to the ceramic paste leads to obtaining membrane supports with the desired porosity. Indeed, the water permeability increased significantly from 20 to 612 L h(-1) m(-2) bar(-1) for samples without and with 20 wt% of starch, respectively, as well as the open porosity, the apparent porosity, and the pore size distribution. The bending strength decreased slightly and reached about 4 MPa for samples with the highest starch amounts. On the other hand, the incorporation of sand in a mixture of kaolin + 10 wt% starch increased the mechanical strength and the water permeability. The samples containing 3 wt% of sand exhibited a bending strength four times higher than the supports without sand; the water permeability measured was about 221 L h(-1) m(-2) bar(-1). These elaborated tubular supports for membrane are found to be suitable for solution concentration; they were applied for algal solution and are also easily cleaned by water.

  17. Dropwise Additive Manufacturing of Pharmaceutical Products for Amorphous and Self Emulsifying Drug Delivery Systems.

    PubMed

    Içten, Elçin; Purohit, Hitesh S; Wallace, Chelsey; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2017-04-02

    The improvements in healthcare systems and the advent of the precision medicine initiative have created the need to develop more innovative manufacturing methods for the delivery and production of individualized dosing and personalized treatments. In accordance with the changes observed in healthcare systems towards more innovative therapies, this paper presents dropwise additive manufacturing of pharmaceutical products (DAMPP) for small scale, distributed manufacturing of individualized dosing as an alternative to conventional manufacturing methods A dropwise additive manufacturing process for amorphous and self-emulsifying drug delivery systems is reported, which utilizes drop-on-demand printing technology for automated and controlled deposition of melt-based formulations onto inert tablets. The advantages of drop on demand technology include reproducible production of droplets with adjustable sizing and high placement accuracy, which enable production of individualized dosing even for low dose and high potency drugs. Flexible use of different formulations, such as lipid-based formulations, allows enhancement of the solubility of poorly water soluble and highly lipophilic drugs with DAMPP. Here, DAMPP is used to produce solid oral dosage forms from melts of an active pharmaceutical ingredient and a surfactant. The dosage forms are analyzed to show the amorphous nature, self-emulsifying drug delivery system characteristics and dissolution behavior of these formulations.

  18. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  19. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    PubMed

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh(-1)/NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure.

  20. Perception of the HACCP system operators on livestock product manufacturers.

    PubMed

    Kim, Jung-Hyun; Nam, Ki-Chang; Jo, Cheorun; Lim, Dong-Gyun

    2014-01-01

    The purpose of this study was to investigate crucial factors on HACCP system implementation in domestic livestock product plants, and to offer job satisfaction and the career prospect of HACCP system operators. The survey was carried out by selecting 150 HACCP system operators who implemented HACCP system. The respondents claimed that the most important contents in HACCP system operation were to assemble HACCP team (21.8%), and the second was to monitoring (20.0%). Documentation and recording (16.9%) and verification (11.1%) were followed. The respondents answered the major factor in sanitation management was cleaning/washing/disinfection (18.9%) and inspection (18.4%). The results showed that there were significant differences in the prospect of occupation in HACCP system operator by the gender (p < 0.015), age, livestock product facilities, service period, and position (p < 0.001). The respondents from HACCP system operator were satisfied with their job (73%) and also showed optimistic prospect of occupation (82%).

  1. 27 CFR 19.374 - Manufacture of nonbeverage products, intermediate products, or eligible flavors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Processing Operations Other Than Denaturation and Manufacture of Articles Receipt and Use...

  2. Fibrous ceramic insulation

    SciTech Connect

    Goldstein, H.E.

    1982-11-01

    Some of the reusable heat shielding materials used to protect the Space Shuttles, their manufacturing processes, properties, and applications are discussed. Emphasis is upon ceramic materials. Space Shuttle Orbiter tiles are discussed.

  3. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/industry project designated Intergrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies.

  4. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The feasibility of the commercial manufacturing of pharmaceuticals in space is examined. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is presented. Antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon were studied. Production mass balances for antihemophilic factor, beta cells, and erythropoietin were compared for space verus ground operation.

  5. Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.

    SciTech Connect

    Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

    2008-03-04

    The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  6. Product manufacturing, quality, and reliability initiatives to maintain a competitive advantage and meet customer expectations in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Capps, Gregory

    Semiconductor products are manufactured and consumed across the world. The semiconductor industry is constantly striving to manufacture products with greater performance, improved efficiency, less energy consumption, smaller feature sizes, thinner gate oxides, and faster speeds. Customers have pushed towards zero defects and require a more reliable, higher quality product than ever before. Manufacturers are required to improve yields, reduce operating costs, and increase revenue to maintain a competitive advantage. Opportunities exist for integrated circuit (IC) customers and manufacturers to work together and independently to reduce costs, eliminate waste, reduce defects, reduce warranty returns, and improve quality. This project focuses on electrical over-stress (EOS) and re-test okay (RTOK), two top failure return mechanisms, which both make great defect reduction opportunities in customer-manufacturer relationship. Proactive continuous improvement initiatives and methodologies are addressed with emphasis on product life cycle, manufacturing processes, test, statistical process control (SPC), industry best practices, customer education, and customer-manufacturer interaction.

  7. A new integrated lean manufacturing model for magnesium products

    NASA Astrophysics Data System (ADS)

    D'Errico, F.; Perricone, G.; Oppio, R.

    2009-04-01

    From an environmental point of view, lighter metals like aluminum and magnesium are unclean products to make; they require energy-intensive methods and increased greenhouse gas emissions as compared with steels. They are, however, clean to use, in particular in the transportation sector, if adequate weight savings and consequent fuel consumption reduction and CO2 reduction can be achieved to offset the initial higher energy need. In order to reduce CO2 emissions, better energy efficiency and substitution of low-carbon technologies are going to play a key role in future technical options. Modern research and development should be focused on promoting the efficient use of metallic materials according to the “dematerialization” concept design.

  8. Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.

    PubMed

    Hirshfield, Laura; Giridhar, Arun; Taylor, Lynne S; Harris, Michael T; Reklaitis, Gintaras V

    2014-02-01

    In recent years, the US Food and Drug Administration has encouraged pharmaceutical companies to develop more innovative and efficient manufacturing methods with improved online monitoring and control. Mini-manufacturing of medicine is one such method enabling the creation of individualized product forms for each patient. This work presents dropwise additive manufacturing of pharmaceutical products (DAMPP), an automated, controlled mini-manufacturing method that deposits active pharmaceutical ingredients (APIs) directly onto edible substrates using drop-on-demand (DoD) inkjet printing technology. The use of DoD technology allows for precise control over the material properties, drug solid state form, drop size, and drop dynamics and can be beneficial in the creation of high-potency drug forms, combination drugs with multiple APIs or individualized medicine products tailored to a specific patient. In this work, DAMPP was used to create dosage forms from solvent-based formulations consisting of API, polymer, and solvent carrier. The forms were then analyzed to determine the reproducibility of creating an on-target dosage form, the morphology of the API of the final form and the dissolution behavior of the drug over time. DAMPP is found to be a viable alternative to traditional mass-manufacturing methods for solvent-based oral dosage forms.

  9. An Inverse Method of Teaching Specialised Manufacturing Subjects: Decomposing a Focal Representative Product to Sustain Analysis and Interaction of Details

    ERIC Educational Resources Information Center

    Axinte, D. A.

    2008-01-01

    The paper presents an "inverse" method to teach specialist manufacturing processes by identifying a focal representative product (RP) from which, key specialist manufacturing (KSM) processes are analysed and interrelated to assess the capability of integrated manufacturing routes. In this approach, RP should: comprise KSM processes; involve…

  10. Applying Value Stream Mapping Technique for Production Improvement in a Manufacturing Company: A Case Study

    NASA Astrophysics Data System (ADS)

    Jeyaraj, K. L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S. G.

    2013-01-01

    The purpose of this paper is to explain how value stream mapping (VSM) is helpful in lean implementation and to develop the road map to tackle improvement areas to bridge the gap between the existing state and the proposed state of a manufacturing firm. Through this case study, the existing stage of manufacturing is mapped with the help of VSM process symbols and the biggest improvement areas like excessive TAKT time, production, and lead time are identified. Some modifications in current state map are suggested and with these modifications future state map is prepared. Further TAKT time is calculated to set the pace of production processes. This paper compares the current state and future state of a manufacturing firm and witnessed 20 % reduction in TAKT time, 22.5 % reduction in processing time, 4.8 % reduction in lead time, 20 % improvement in production, 9 % improvement in machine utilization, 7 % improvement in man power utilization, objective improvement in workers skill level, and no change in the product and semi finished product inventory level. The findings are limited due to the focused nature of the case study. This case study shows that VSM is a powerful tool for lean implementation and allows the industry to understand and continuously improve towards lean manufacturing.

  11. Product pricing in the Solar Array Manufacturing Industry - An executive summary of SAMICS

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1978-01-01

    Capabilities, methodology, and a description of input data to the Solar Array Manufacturing Industry Costing Standards (SAMICS) are presented. SAMICS were developed to provide a standardized procedure and data base for comparing manufacturing processes of Low-cost Solar Array (LSA) subcontractors, guide the setting of research priorities, and assess the progress of LSA toward its hundred-fold cost reduction goal. SAMICS can be used to estimate the manufacturing costs and product prices and determine the impact of inflation, taxes, and interest rates, but it is limited by its ignoring the effects of the market supply and demand and an assumption that all factories operate in a production line mode. The SAMICS methodology defines the industry structure, hypothetical supplier companies, and manufacturing processes and maintains a body of standardized data which is used to compute the final product price. The input data includes the product description, the process characteristics, the equipment cost factors, and production data for the preparation of detailed cost estimates. Activities validating that SAMICS produced realistic price estimates and cost breakdowns are described.

  12. A Quality by Design Approach to Developing and Manufacturing Polymeric Nanoparticle Drug Products.

    PubMed

    Troiano, Greg; Nolan, Jim; Parsons, Donald; Van Geen Hoven, Christina; Zale, Stephen

    2016-11-01

    The translation of nanomedicines from concepts to commercial products has not reached its full potential, in part because of the technical and regulatory challenges associated with chemistry, manufacturing, and controls (CMC) development of such complex products. It is critical to take a quality by design (QbD) approach to developing nanomedicines-using a risk-based approach to identifying and classifying product attributes and process parameters and ultimately developing a deep understanding of the products, processes, and platform. This article exemplifies a QbD approach used by BIND Therapeutics, Inc., to industrialize a polymeric targeted nanoparticle drug delivery platform. The focus of the approach is on CMC affairs but consideration is also given to preclinical, clinical, and regulatory aspects of pharmaceutical development. Processes are described for developing a quality target product profile and designing supporting preclinical studies, defining critical quality attributes and process parameters, building a process knowledge map, and employing QbD to support outsourced manufacturing.

  13. Manufacturing technology

    NASA Astrophysics Data System (ADS)

    Leonard, J. A.; Floyd, H. L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high-voltage varistors. A selective laser sintering process automates wax casting pattern fabrication. Numerical modeling improves the performance of a photoresist stripper (a simulation on a Cray supercomputer reveals the path of a uniform plasma). Improved mathematical models will help make the dream of low-cost ceramic composites come true.

  14. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  15. [Changes in the norms governing practices for the manufacture of pharmaceutical products: implications for the MERCOSUR].

    PubMed

    Temprano, G; Prats, S; Bregni, C

    1998-11-01

    It is done a comparative study between the "Recommended rules for drug products manufacturing and inspection", approved in 1975 by the World Health Organization (and still in force in the MERCOSUR); and the standards published in 1992 by the WHO Expert Committee on Specifications for Pharmaceutical Preparations 32nd Report, named "Good Manufacturing Practices for pharmaceutical products". The correspondence between the regulation in force in the MERCOSUR and the Good Manufacturing Practices Inspection Guide for pharmaceutical industry, used by Health Authorities in the Common Market Member States, is analysed. It is noticed a disagreement between the rule in force and the instrument for verifying its fulfillment. The proposal of this article is the adoption by the Common Market Group, of the rules published by the WHO in 1992, and the establishment of an inspection guide which absolute agrees with it.

  16. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 2: Technical analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.

  17. Plant Utility Improvements Increase Profits and Productivity at a Clothing Manufacturing Complex (MJ Soffee's Wastewater Heat Recovery System)

    SciTech Connect

    2000-11-01

    In response to increased marketplace competition and the need for expanded production capacity, MJ Soffee's manufacturing facility in Fayetteville, North Carolina implemented several energy improvement projects,

  18. 21 CFR 606.171 - Reporting of product deviations by licensed manufacturers, unlicensed registered blood...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reporting of product deviations by licensed manufacturers, unlicensed registered blood establishments, and transfusion services. 606.171 Section 606.171 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  19. 21 CFR 606.171 - Reporting of product deviations by licensed manufacturers, unlicensed registered blood...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Reporting of product deviations by licensed... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Records and Reports §...

  20. 78 FR 16824 - Tobacco Product Manufacturing Practice; Establishment of a Public Docket

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Chapter I Tobacco Product Manufacturing Practice; Establishment of a Public Docket AGENCY: Food and Drug Administration, HHS. ACTION: Establishment of a public docket; request for comments. SUMMARY: The Food and Drug Administration (FDA) is establishing a...

  1. 21 CFR 601.22 - Products in short supply; initial manufacturing at other than licensed location.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Products in short supply; initial manufacturing at other than licensed location. 601.22 Section 601.22 Food and Drugs FOOD AND DRUG ADMINISTRATION... are registered with the Commissioner of Food and Drugs and it is found upon application of...

  2. Stimulating the Manufacturing and Distribution of Rehabilitation Products: Economic and Policy Incentives and Disincentives.

    ERIC Educational Resources Information Center

    Scadden, Lawrence A.

    Personal interviews and written correspondence were used to obtain information from 39 officers of companies involved in the manufacture and distribution of rehabilitation-related products, regarding their perceptions of the potential effects of various economic factors and governmental policies. An attempt was made to identify disincentives to…

  3. 78 FR 58273 - Approval for Manufacturing (Production) Authority, Foreign-Trade Zone 284, Liberty Pumps, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Approval for Manufacturing (Production) Authority, Foreign-Trade Zone 284, Liberty Pumps, Inc. (Submersible and Water Pumps), Bergen, New York Pursuant to its authority under...

  4. [Methods of identification and assessment of safety of genetically modified microorganisms in manufacture food production].

    PubMed

    Khovaev, A A; Nesterenko, L N; Naroditskiĭ, B S

    2011-01-01

    Methods of identification of genetically modified microorganisms (GMM), used in manufacture food on control probes are presented. Results of microbiological and molecular and genetic analyses of food products and their components important in microbiological and genetic expert examination of GMM in foods are considered. Examination of biosafety of GMM are indicated.

  5. Does Lean Production Sacrifice Learning in a Manufacturing Environment? An Action Learning Case Study.

    ERIC Educational Resources Information Center

    Scott, Fiona M.; Butler, Jim; Edwards, John

    2001-01-01

    An action learning program was implemented by a manufacturer using lean production practices. Action learning practices were accommodated during times of stability, but abandoned in times of crisis. The meaning of work in this organizational culture excluded all practices, such as reflection, that were not visible and targeted at immediate…

  6. 78 FR 76594 - Approval for Restricted Manufacturing (Production) Authority; Foreign-Trade Zone 109; North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... Foreign-Trade Zones Board Approval for Restricted Manufacturing (Production) Authority; Foreign-Trade Zone 109; North American Tapes, LLC (Textile Athletic Tape); Watertown, New York Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U.S.C. 81a-81u), the...

  7. 21 CFR 600.14 - Reporting of biological product deviations by licensed manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Reporting of biological product deviations by licensed manufacturers. 600.14 Section 600.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... addresses in § 600.2), or an electronic filing through CBER's Web site at...

  8. 21 CFR 600.14 - Reporting of biological product deviations by licensed manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Reporting of biological product deviations by licensed manufacturers. 600.14 Section 600.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... addresses in § 600.2), or an electronic filing through CBER's Web site at...

  9. 21 CFR 600.14 - Reporting of biological product deviations by licensed manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Reporting of biological product deviations by licensed manufacturers. 600.14 Section 600.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... addresses in § 600.2), or an electronic filing through CBER's Web site at...

  10. 21 CFR 600.14 - Reporting of biological product deviations by licensed manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reporting of biological product deviations by licensed manufacturers. 600.14 Section 600.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... addresses in § 600.2), or an electronic filing through CBER's Web site at...

  11. 75 FR 4973 - Registration Requirements for Importers and Manufacturers of Prescription Drug Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ...The Drug Enforcement Administration (DEA) is amending its registration regulations to ensure that a registration is obtained for every location where ephedrine, pseudoephedrine, or phenylpropanolamine, or drug products containing one of these chemicals, are imported or manufactured. These amendments will make it possible to establish the system of quotas and assessment of annual needs for the......

  12. 40 CFR 721.10670 - Bromine, manufacture of, by-products from, distillation residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from, distillation residues. 721.10670 Section 721.10670 Protection of Environment ENVIRONMENTAL..., distillation residues. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bromine, manufacture of, by-products from, distillation residues (PMN...

  13. 40 CFR 721.10670 - Bromine, manufacture of, by-products from, distillation residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from, distillation residues. 721.10670 Section 721.10670 Protection of Environment ENVIRONMENTAL..., distillation residues. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as bromine, manufacture of, by-products from, distillation residues (PMN...

  14. 7 CFR 760.20 - Payments to manufacturers of dairy products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Payments to manufacturers of dairy products. 760.20 Section 760.20 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Dairy Indemnity Payment...

  15. 7 CFR 760.20 - Payments to manufacturers of dairy products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Payments to manufacturers of dairy products. 760.20 Section 760.20 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Dairy Indemnity Payment...

  16. 7 CFR 760.20 - Payments to manufacturers of dairy products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Payments to manufacturers of dairy products. 760.20 Section 760.20 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Dairy Indemnity Payment...

  17. 7 CFR 760.20 - Payments to manufacturers of dairy products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Payments to manufacturers of dairy products. 760.20 Section 760.20 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Dairy Indemnity Payment...

  18. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  19. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  20. Study on the Key Factor Parameters to Increase Productivity in Construction and Manufacturing Industries.

    NASA Astrophysics Data System (ADS)

    Almazyed, K.; Alaswad, A.; Olabi, A. G.

    2016-02-01

    Proper management of human and non-human resources in construction and manufacturing projects can give-in considerable savings in time and cost. Construction and Manufacturing industry faces issues in connection with problems related with productivity and the problems are usually connected with performance of employees. The performance of employees is affected by many factors. In this paper a survey was made on respondents who are employed various projects of Saudi Arabia. The researcher developed a theoretical framework from the existing research which was used as a Model to collect and analyze the field data to test the hypothesis. In this research activity three predictors (commitment, job satisfaction and job performance) for determining the change in productivity. The results highlight that commitment and job performance (respectively) are the two predictors which are explaining 37% of variation in the productivity of the companies. The results also show that Job Satisfaction has no role in the prediction of productivity.

  1. Pollution balance. A new methodology for minimizing waste production in manufacturing processes

    SciTech Connect

    Hilaly, A.K.; Sikdar, S.K.

    1994-11-01

    A new methodology based on a generic pollution balance equation has been developed for minimizing waste production in manufacturing processes. A `pollution index,` defined as the mass of waste produced per unit mass of a product, has been introduced to provide a quantitative measure of waste generation in a process. A waste reduction algorithm also has been developed from the pollution balance equation. This paper explains this methodology and demonstrates the applicability of the method by a case study. 8 refs., 7 figs.

  2. Space system production cost benefits from contemporary philosophies in management and manufacturing

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1991-01-01

    The cost of manufacturing space system hardware has always been expensive. The Engineering Cost Group of the Program Planning office at Marshall is attempting to account for cost savings that result from new technologies in manufacturing and management. The objective is to identify and define contemporary philosophies in manufacturing and management. The seven broad categories that make up the areas where technological advances can assist in reducing space system costs are illustrated. Included within these broad categories is a list of the processes or techniques that specifically provide the cost savings within todays design, test, production and operations environments. The processes and techniques listed achieve savings in the following manner: increased productivity; reduced down time; reduced scrap; reduced rework; reduced man hours; and reduced material costs. In addition, it should be noted that cost savings from production and processing improvements effect 20 to 40 pct. of production costs whereas savings from management improvements effects 60 to 80 of production cost. This is important because most efforts in reducing costs are spent trying to reduce cost in the production.

  3. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  4. Free and bound fatty acid oxidation products in archaeological ceramic vessels

    PubMed Central

    Regert, M.; Bland, H. A.; Dudd, S. N.; Bergen, P. F. van; Evershed, R. P.

    1998-01-01

    While oxidation products of unsaturated fatty acids, for example dicarboxylic acids (hereafter diacids), must form during the use of unglazed ceramic vessels for the processing of animal and plant products, such components have never been observed during studies of absorbed lipids. Their absence from the extractable lipid fraction is presumed to be the result of their loss from potsherds through groundwater leaching. Lipid oxidation products including short-chain dicarboxylic acids, ω-hydroxy acids and longer-chain hydroxy and dihydroxy acids have now been observed as components probably covalently bound into solvent insoluble residues of potsherds recovered from waterlogged deposits. These components were only revealed following alkaline treatment of the insoluble residues. A similar mixture of diacids was observed in high abundance in the free lipid fraction of vessels recovered from an exceptionally arid deposit where groundwater leaching would never have occurred. These results confirm the formation of oxidation and probable polymerization products of unsaturated fatty acids during vessel use and burial.

  5. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*

    PubMed Central

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-01-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson’s disease treatment. PMID:25471830

  6. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor.

    PubMed

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-12-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson's disease treatment.

  7. 40 CFR Table 1 to Subpart Ccccccc... - Applicability of General Provisions to Paints and Allied Products Manufacturing Area Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Paints and Allied Products Manufacturing Area Sources 1 Table 1 to Subpart CCCCCCC of Part 63 Protection... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Pt. 63, Subpt. CCCCCCC, Table 1 Table 1 to Subpart CCCCCCC of Part 63—Applicability of General Provisions to Paints and...

  8. 40 CFR Table 1 to Subpart Ccccccc... - Applicability of General Provisions to Paints and Allied Products Manufacturing Area Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Paints and Allied Products Manufacturing Area Sources 1 Table 1 to Subpart CCCCCCC of Part 63 Protection... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Pt. 63, Subpt. CCCCCCC, Table 1 Table 1 to Subpart CCCCCCC of Part 63—Applicability of General Provisions to Paints and...

  9. 40 CFR Table 1 to Subpart Ccccccc... - Applicability of General Provisions to Paints and Allied Products Manufacturing Area Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Paints and Allied Products Manufacturing Area Sources 1 Table 1 to Subpart CCCCCCC of Part 63 Protection... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Pt. 63, Subpt. CCCCCCC, Table 1 Table 1 to Subpart CCCCCCC of Part 63—Applicability of General Provisions to Paints and...

  10. 40 CFR 63.11601 - What are the standards for new and existing paints and allied products manufacturing facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... existing paints and allied products manufacturing facilities? 63.11601 Section 63.11601 Protection of... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Standards, Monitoring, and Compliance Requirements § 63.11601 What are the standards for new and existing paints and...

  11. 40 CFR Table 1 to Subpart Ccccccc... - Applicability of General Provisions to Paints and Allied Products Manufacturing Area Sources

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Paints and Allied Products Manufacturing Area Sources 1 Table 1 to Subpart CCCCCCC of Part 63 Protection... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Pt. 63, Subpt. CCCCCCC, Table 1 Table 1 to Subpart CCCCCCC of Part 63—Applicability of General Provisions to Paints and...

  12. 40 CFR Table 1 to Subpart Ccccccc... - Applicability of General Provisions to Paints and Allied Products Manufacturing Area Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Paints and Allied Products Manufacturing Area Sources 1 Table 1 to Subpart CCCCCCC of Part 63 Protection... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Pt. 63, Subpt. CCCCCCC, Table 1 Table 1 to Subpart CCCCCCC of Part 63—Applicability of General Provisions to Paints and...

  13. 40 CFR 63.11601 - What are the standards for new and existing paints and allied products manufacturing facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing paints and allied products manufacturing facilities? 63.11601 Section 63.11601 Protection of... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Standards, Monitoring, and Compliance Requirements § 63.11601 What are the standards for new and existing paints and...

  14. Ceramic glass from flying-ash

    SciTech Connect

    Chiang, J.F.; Xu, You-Wu; Chen, Pinzhen

    1996-10-01

    A ceramic glass composition compromises of mainly SiO{sub 2}, Al{sub 2}O{sub 3}, MgO and with small percent of CaO, TiO{sub 2}, B{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}/FeO, K{sub 2}O, Na{sub 2}O, and P{sub 2}O{sub 5} has been produced. A convenient source of raw materials is a mixture of flying-ash from power plant, borax manufacturing plant waste, and titanium pigment waste. The ceramic glass is formed from an intermediate ceramic mixture which is subjected to heat treatment. The solid is annealed at another temperature for several hours, and then is reduced to a lower temperature at a rate of 20-30{degrees}C/hour. The final product, the ceramic glass possesses many useful mechanical and chemical properties, such as high compressive strength, high bending strength, high hardness, high impact resistance, acid and alkaline resistance, etc. The ceramic glass can be used as laboratory counter-top, reaction still, manufacture of fluid transfer tubing, sandpaper/grit, and many other industrial applications.

  15. Environment for thin-film manufacturing process development for product engineering of micro and nano devices

    NASA Astrophysics Data System (ADS)

    Ortloff, Dirk; Hahn, Kai; Popp, Jens; Schmidt, Thilo; Brück, Rainer

    2009-08-01

    Product engineering of micro and nano technology (MNT) devices differs substantially from product engineering in more traditional industries. The general development approach is mostly bottom up, as it centers around the available fabrication techniques and is characterised by application specific fabrication flows, i.e. fabrication processes depending on the later product. In the first part of this paper we introduce a comprehensive customer-oriented product engineering methodology for MNT products that regards the customer as the driving force behind new product developments. The MNT product engineering process is analyzed with regard to application-specific procedures and interfaces. An environment for the development of MNT manufacturing processes has been identified as a technical foundation for the methodology and will be described in the second part of this paper.

  16. A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms.

    PubMed

    Leane, Michael; Pitt, Kendal; Reynolds, Gavin

    2015-01-01

    This paper proposes the development of a drug product Manufacturing Classification System (MCS) based on processing route. It summarizes conclusions from a dedicated APS conference and subsequent discussion within APS focus groups and the MCS working party. The MCS is intended as a tool for pharmaceutical scientists to rank the feasibility of different processing routes for the manufacture of oral solid dosage forms, based on selected properties of the API and the needs of the formulation. It has many applications in pharmaceutical development, in particular, it will provide a common understanding of risk by defining what the "right particles" are, enable the selection of the best process, and aid subsequent transfer to manufacturing. The ultimate aim is one of prediction of product developability and processability based upon previous experience. This paper is intended to stimulate contribution from a broad range of stakeholders to develop the MCS concept further and apply it to practice. In particular, opinions are sought on what API properties are important when selecting or modifying materials to enable an efficient and robust pharmaceutical manufacturing process. Feedback can be given by replying to our dedicated e-mail address (mcs@apsgb.org); completing the survey on our LinkedIn site; or by attending one of our planned conference roundtable sessions.

  17. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    NASA Astrophysics Data System (ADS)

    Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda

    2016-10-01

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.

  18. Innovative Approach for Identifying Root Causes of Glass Defects in Sterile Drug Product Manufacturing.

    PubMed

    Eberle, Lukas; Svensson, Alexander; Graser, Andreas; Luemkemann, Joerg; Sugiyama, Hirokazu; Schmidt, Rainer; Hungerbuehler, Konrad

    2017-03-14

    In sterile drug product manufacturing, scratched and broken glass containers (i.e., vials) cause product losses, glass particles, equipment contamination and additional cleaning efforts. However, mechanical resistance and exposure of vials to mechanical stress are not sufficiently understood, and no systematic approach for reducing glass-related losses is established. Manufacturers may tackle glass-related losses more rationally if (i) frequencies for inflicting disqualifying damages to drug product containers are known for given forces, (ii) actual exposure in industrial filling lines is quantified and (iii) process enhancements are derived based on collected information. In this work, an innovative approach for exploiting these opportunities, identifying glass defect root causes and reducing glass defects is provided. Devices for quantifying (i) damaging frequencies and (ii) actual exposure are presented and then applied in an industrial case study on sterile drug product manufacturing; finally, (iii) process enhancements are derived and implemented. In the case study, frequencies for scratching vials at given forces as well as breaking forces have been determined. Peak exposure in the investigated filling line was detected at 6 Newton. As a result of the case study, key machine parts were identified and adjusted.

  19. [Drug development from natural fermentation products: establishing a manufacturing process which maximizes the potential of microorganisms].

    PubMed

    Nagao, Koji; Ueda, Satoshi; Kanda, Munekazu; Oohata, Nobutaka; Yamashita, Michio; Hino, Motohiro

    2010-11-01

    Natural fermentation products have long been studied as attractive targets for drug discovery due to their amazing diverse, complex chemical structures and biological activities. As such, a number of revolutionary drugs developed from natural fermentation products have contributed to global human health. To commercialize a drug derived from natural fermentation products, an effective chemical entity must be identified and thoroughly researched, and an effective manufacturing process to prepare a commercial supply must be developed. To construct such a manufacturing process for tacrolimus and micafungin, the following studies were conducted: first, we focused on controlling the production of the tacrolimus-related compound FR900525, a fermentation by-product of tacrolimus which was critical for quality assurance of the drug substance. FR900525 production was reduced by using a mutant strain which produced more pipecolic acid, the biosynthesis material of tacrolimus, than the original strain. Then, to optimize the fermentation process of FR901379, an intermediate of micafungin, a fed-batch culture was adopted to increase FR901379 productivity. Additionally, FULLZONE(TM) impeller was installed into the scaled-up fermenter, reducing the agitation-induced damage to the mycelium. As a result, the mycelial form changed from filamentous to pellet-shaped, and the air uptake rate during fermentation was drastically improved. Finally, we conducted screening for FR901379 acylase-producing microorganisms, as FR901379 acylase is necessary to manufacture micafungin. We were able to easily discover FR901379 acylase-producing microorganisms in soil samples using our novel, convenient screening method, which involves comparing the difference in antibiotic activity between FR901379 and its deacylated product.

  20. Practical application of game theory based production flow planning method in virtual manufacturing networks

    NASA Astrophysics Data System (ADS)

    Olender, M.; Krenczyk, D.

    2016-08-01

    Modern enterprises have to react quickly to dynamic changes in the market, due to changing customer requirements and expectations. One of the key area of production management, that must continuously evolve by searching for new methods and tools for increasing the efficiency of manufacturing systems is the area of production flow planning and control. These aspects are closely connected with the ability to implement the concept of Virtual Enterprises (VE) and Virtual Manufacturing Network (VMN) in which integrated infrastructure of flexible resources are created. In the proposed approach, the players role perform the objects associated with the objective functions, allowing to solve the multiobjective production flow planning problems based on the game theory, which is based on the theory of the strategic situation. For defined production system and production order models ways of solving the problem of production route planning in VMN on computational examples for different variants of production flow is presented. Possible decision strategy to use together with an analysis of calculation results is shown.

  1. Effect of production variables on microbiological removal in locally-produced ceramic filters for household water treatment.

    PubMed

    Lantagne, Daniele; Klarman, Molly; Mayer, Ally; Preston, Kelsey; Napotnik, Julie; Jellison, Kristen

    2010-06-01

    Diarrhoeal diseases cause an estimated 1.87 million child deaths per year. Point-of-use filtration using locally made ceramic filters improves microbiological quality of stored drinking water and prevents diarrhoeal disease. Scaling-up ceramic filtration is inhibited by lack of universal quality control standards. We investigated filter production variables to determine their affect on microbiological removal during 5-6 weeks of simulated normal use. Decreases in the clay:sawdust ratio and changes in the burnable decreased effectiveness of the filter. Method of silver application and shape of filter did not impact filter effectiveness. A maximum flow rate of 1.7 l(-hr) was established as a potential quality control measure for one particular filter to ensure 99% (2- log(10)) removal of total coliforms. Further research is indicated to determine additional production variables associated with filter effectiveness and develop standardized filter production procedures prior to scaling-up.

  2. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  3. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  4. SiC Design Guide: Manufacture of Silicon Carbide Products (Briefing charts)

    DTIC Science & Technology

    2010-06-08

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at Mirror Technology Days, Boulder...coatings. 15. SUBJECT TERMS Mirrors , structures, silicon carbide, design, inserts, coatings, pockets, ribs, bonding, threads 16. SECURITY...Prescribed by ANSI Std. 239.18 purify protect transport SiC Design Guide Manufacture of Silicon Carbide Products Mirror Technology Days June 7 to 9, 2010

  5. Establishment of Production Line for Manufacture of 40-mm HEDP M430 Body Assembly.

    DTIC Science & Technology

    1986-05-01

    MAY 3 PROJECT ENGINEER ARDC MAY 1986 SU. S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER AR T CLOSE COMBAT ARMAMENT CENTER MUNmONS &*CHEMICA. COMMANO O...production manufacturing process development , equipment and tooling -: selections. Paul R. Sherman - Quality Control Engineer Overall quality assurance...Ray Foat, Amron Corporation DAAKlO-82-C-0257 Anthony Martuccio, Project Engineer , ARDC C 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM

  6. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    NASA Astrophysics Data System (ADS)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  7. The global decentralization of commercial aircraft production: Implications for United States-based manufacturing activity

    NASA Astrophysics Data System (ADS)

    Pritchard, David John

    This research explores the role of industrial offset agreements and international subcontracting patterns in the global decentralization of US commercial aircraft production. Particular attention is given to the manufacturing processes involved in the design and assembly of large passenger jets (100 seats or more). It is argued that the current geography of aircraft production at the global level has been shaped by a new international distribution of input costs and technological capability. Specifically, low-cost producers within several of the newly emerging markets (NEMs) have acquired front-end manufacturing expertise as a direct result of industrial offset contracts and/or other forms of technology transfer (e.g. international joint-ventures, imports of advanced machine tools). The economic and technological implications of industrial offset (compensatory trade) are examined with reference to the commercial future of US aircraft production. Evidence gathered via personal interviews with both US and foreign producers suggests that the current Western duopoly (Boeing and Airbus) faces a rather uncertain future. In particular, the dissertation shows that the growth of subcontracting and industrial offset portends the transformation of Boeing from an aircraft manufacturer to a systems integrator. The economic implications of this potential reconfiguration of the US aircraft industry are discussed in the context of several techno-market futures, some of which look rather bleak for US workers in this industry.

  8. Product stewardship and science: safe manufacture and use of fiber glass.

    PubMed

    Hesterberg, Thomas W; Anderson, Robert; Bernstein, David M; Bunn, William B; Chase, Gerald A; Jankousky, Angela Libby; Marsh, Gary M; McClellan, Roger O

    2012-03-01

    This paper describes a proactive product stewardship program for glass fibers. That effort included epidemiological studies of workers, establishment of stringent workplace exposure limits, liaison with customers on safe use of products and, most importantly, a research program to evaluate the safety of existing glass fiber products and guide development of new even safer products. Chronic inhalation exposure bioassays were conducted with rodents and hamsters. Amosite and crocidolite asbestos produced respiratory tract cancers as did exposure to "biopersistent" synthetic vitreous fibers. "less biopersistent" glass fibers did not cause respiratory tract cancers. Corollary studies demonstrated the role of slow fiber dissolution rates and biopersistence in cancer induction. These results guided development of safer glass fiber products and have been used in Europe to regulate fibers and by IARC and NTP in classifying fibers. IARC concluded special purpose fibers and refractory ceramic fibers are "possibly carcinogenic to humans" and insulation glass wool, continuous glass filament, rock wool and slag wool are "not classifiable as to their carcinogenicity to human." The NTP's 12th report on carcinogens lists "Certain Glass Wool Fibers (Inhalable)" as "reasonably anticipated to be a human carcinogen." "Certain" in the descriptor refers to "biopersistent" glass fibers and excludes "less biopersistent" glass fibers.

  9. Continuous processing and the applications of online tools in pharmaceutical product manufacture: developments and examples.

    PubMed

    Ooi, Shing Ming; Sarkar, Srimanta; van Varenbergh, Griet; Schoeters, Kris; Heng, Paul Wan Sia

    2013-04-01

    Continuous processing and production in pharmaceutical manufacturing has received increased attention in recent years mainly due to the industries' pressing needs for more efficient, cost-effective processes and production, as well as regulatory facilitation. To achieve optimum product quality, the traditional trial-and-error method for the optimization of different process and formulation parameters is expensive and time consuming. Real-time evaluation and the control of product quality using an online process analyzer in continuous processing can provide high-quality production with very high-throughput at low unit cost. This review focuses on continuous processing and the application of different real-time monitoring tools used in the pharmaceutical industry for continuous processing from powder to tablets.

  10. Product Lifecycle Management Support: A Challenge in Supporting Product Design and Manufacturing in a Networked Economy

    DTIC Science & Technology

    2005-04-18

    Sudarsan Rachuri is with George Washington University, DC. He is currently guest researcher at the MSID Division, NIST, Gaithersburg, MD 20899, Email...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Raj Iyer; Ram Siriam; Sebti Foufou; Steven Fenves; Sudarsan Rachuri 5d. PROJECT NUMBER 5e. TASK... Sudarsan Rachure, Steven J. Fenves3, Sebti Foufou4, Ram D. Sriram5, Raj G. lyer6 Manufacturing Systems Integration Division, National Institute of

  11. Mammalian Toxicity of Munitions Compounds Identification of Waste Products from RDX and HMX Manufacture

    DTIC Science & Technology

    1979-04-01

    COMPOUNDS IDENTIFICATION OF WASTE PRODUCTS FROM L , I RDX AND HMX MANUFACTURE L PROGRESS REORT NO. 10 April 24, 1979 1ly Danny U. Helton William Burton...BEOR ~ COMLETIG OR1 1.REOR NUOBE ANESON 3.R tPENT’S CATALOG NUNGEtR tRProgreussRepr No.* 10 /OYA~ 4. TITLE (and 1ubAA159) S. TYPE O~F REPORT a PERIOD...COVERED Mammalian Toxicity of Munitions Compounds ?rogress Report No. 10 Identification of Waste Products from RDX / MAN 13-. 1976 - Nov- a1. 1978 S_

  12. [Ceramic couplings in orthopedic surgery].

    PubMed

    Thomsen, M; Willmann, G

    2003-01-01

    Ceramic materials have been used as a coupling in total hip arthroplasty since the 1970s to solve the problem of polyethylene particle disease. Several problems with the material and the design have been identified and solved. Using inlays and ceramic heads of the latest generation offers the possibility of reducing the wear rate to as low as 0.001 mm per year. The problem of ceramic fractures is rare. Recently due to the manufacturing process some zirconia ceramic heads have been problematic. New developments with other ceramics are discussed.

  13. An exploratory assessment of the attitudes of Chinese wood products manufacturers towards forest certification.

    PubMed

    Chen, Juan; Innes, John L; Kozak, Robert A

    2011-11-01

    Interviews with Chinese forest products manufacturers were conducted to explore their attitudes towards forest certification and related issues. Participants comprised owners, CEOs, and managers in 20 Chinese wood products companies, including producers of furniture, doors, flooring, and various engineered wood products. The interviews were used to analyze the extent to which participants were considering adopting forest certification and what might motivate such a decision. This was done by assessing their awareness and knowledge of certification. The results indicated that participants' understanding of forest certification was extremely low, despite major efforts in China to raise awareness of the issue. Potential economic benefits were the most frequently cited reason to adopt certification, including gaining or maintaining competitive advantage over their industry counterparts, improved access to both domestic and export markets, better customer recognition, and enhanced corporate responsibility practices. Some interviewees (3 out of 20) considered that certification would become a mandatory requirement or industry standard, and that this would be the only viable motivation for certification given that the financial benefits were potentially limited. According to the participants, the main differences between certified and uncertified wood products operations related to improved market access and public image. Interviewees felt that cooperation between and support from governments and the forest industry would enable the enhanced awareness of certification amongst manufacturers and the general public. This, in turn, could serve to stimulate demand for certified products.

  14. The effect of globalization of drug manufacturing, production, and sourcing and challenges for American drug safety.

    PubMed

    Woo, J; Wolfgang, S; Batista, H

    2008-03-01

    Americans benefit from one of the safest drug supplies and one of the highest standards of consumer protection in the world. Over the past decade, though, a general trend toward globalization of the supply chains for finished pharmaceutical products and active pharmaceutical ingredients has created new challenges for the Food and Drug Administration (FDA) in ensuring the safety and quality of the drug supply. Explosive growth in pharmaceutical manufacturing for the US market is particularly evident in the developing regions of Asia. Manufacturing sites in China and India now comprise approximately 40% of all FDA-registered foreign sites, having increased from 30% in 2002. (In 2001, when legislation first went into effect requiring registration of all foreign drug manufacturing sites, 140 registered sites in China listed 797 drug items for potential importation; as of 1 October 2007, that number had grown to 815 registered sites and well over 3,000 listed items.) In total in 2006, the United States received >145,000 line entries of imported drug products from >160 countries, up from only 1,300 line entries in 2000. FDA regulatory oversight resources (e.g., those allocated to inspection and testing of imports) are being challenged to keep up with the explosive growth of imported drugs. (In 2006, the FDA performed inspections at 212 foreign drug firms. This number has remained relatively consistent over the past 6 years, starting at 249 in 2001 and ranging from 190 to 260 on an annual basis.)

  15. 21 CFR 201.320 - Warning statements for drug products containing or manufactured with chlorofluorocarbons or other...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufactured with chlorofluorocarbons or other ozone-depleting substances. 201.320 Section 201.320 Food and... products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances. (a)(1...: Warning: Contains , a substance which harms public health and the environment by destroying ozone in...

  16. 21 CFR 201.320 - Warning statements for drug products containing or manufactured with chlorofluorocarbons or other...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufactured with chlorofluorocarbons or other ozone-depleting substances. 201.320 Section 201.320 Food and... products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances. (a)(1...: Warning: Contains , a substance which harms public health and the environment by destroying ozone in...

  17. 21 CFR 201.320 - Warning statements for drug products containing or manufactured with chlorofluorocarbons or other...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufactured with chlorofluorocarbons or other ozone-depleting substances. 201.320 Section 201.320 Food and... products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances. (a)(1...: Warning: Contains , a substance which harms public health and the environment by destroying ozone in...

  18. 21 CFR 201.320 - Warning statements for drug products containing or manufactured with chlorofluorocarbons or other...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufactured with chlorofluorocarbons or other ozone-depleting substances. 201.320 Section 201.320 Food and... products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances. (a)(1...: Warning: Contains , a substance which harms public health and the environment by destroying ozone in...

  19. 21 CFR 201.320 - Warning statements for drug products containing or manufactured with chlorofluorocarbons or other...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufactured with chlorofluorocarbons or other ozone-depleting substances. 201.320 Section 201.320 Food and... products containing or manufactured with chlorofluorocarbons or other ozone-depleting substances. (a)(1...: Warning: Contains , a substance which harms public health and the environment by destroying ozone in...

  20. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-clay construction products such as sand-lime brick, glass brick, or non-clay refractories. (2) The term... 29 Labor 3 2012-07-01 2012-07-01 false Occupations involved in the manufacture of brick, tile, and... Detrimental to Their Health or Well-Being § 570.64 Occupations involved in the manufacture of brick, tile,...

  1. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-clay construction products such as sand-lime brick, glass brick, or non-clay refractories. (2) The term... 29 Labor 3 2014-07-01 2014-07-01 false Occupations involved in the manufacture of brick, tile, and... Detrimental to Their Health or Well-Being § 570.64 Occupations involved in the manufacture of brick, tile,...

  2. 29 CFR 570.64 - Occupations involved in the manufacture of brick, tile, and kindred products (Order 13).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-clay construction products such as sand-lime brick, glass brick, or non-clay refractories. (2) The term... 29 Labor 3 2013-07-01 2013-07-01 false Occupations involved in the manufacture of brick, tile, and... Detrimental to Their Health or Well-Being § 570.64 Occupations involved in the manufacture of brick, tile,...

  3. The Establishment of a Production-ready Manufacturing Process Utilizing Thin Silicon Substrates for Solar Cells

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1979-01-01

    During the months of February and March, work towards the goals of the contract were started as scheduled. The first shipment of thin substrates were received and wafer processing was initiated. The objective of the contract is to investigate, develop and characterize the methods for establishing a production-ready manufacturing process which utilizes thin silicon substrates for solar cells. The thin substrates to be manufactured are three inches diameter, p-type Czochralski wafers of approximately 1 Omega cm resistivity. The wafers are prepared by sawing directly to thickness of 8 mils and 5 mils. To ensure removal of residual saw damage, most substrates are chemically etched to final thicknesses of 7 mils and 4 mils. The thin substrates are used to fabricate solar cells by standard processing techniques.

  4. An experimental investigation of the thermal/fluid properties of the nitrate to ammonia and ceramic (NAC) product slurry

    SciTech Connect

    Muguercia, I.; Lagos, L.; Yang, G.; Li, W.; Ebadian, M.A.; Mattus, A.J.; Lee, D.D.; Walker, J.W.; Hunt, R.D.

    1994-12-31

    Recently, a new immobilization technique for LLW, the Nitrate to Ammonia and Ceramic (NAC) process, has been developed. Instead of mixing the liquid waste form directly with the cement to make concrete blocks, the NAC process eliminates the nitrate from the LLW by converting it to ammonia gas. Aluminum particles are used as a reductant to complete this conversion. The final product of the NAC process is gibbsite, which can be further sintered to a ceramic waste form. Experimental tests are conducted to measure the apparent viscosity, the pressure drop, and the heat transfer coefficient of the pipe flow of the Nitrate to Ammonia and Ceramic (NAC) process product slurry. The tests indicate that the NAC product slurry exhibits a typical pseudoplastic fluid behavior. The pressure drop in the pipe flow is a function of the Reynolds number and the slurry temperature. The results also indicate that at a low slurry temperature, the slurry is uniformly heated peripherally. At a high slurry temperature, however, the slurry may be thermally stratified. In a straight pipe, the Nusselt number is reduced as the slurry temperature increases.

  5. The Production and Characterization of Ceramic Carbon Electrode Materials for CuCl-HCl Electrolysis

    NASA Astrophysics Data System (ADS)

    Edge, Patrick

    Current H2 gas supplies are primarily produced through steam methane reforming and other fossil fuel based processes. This lack of viable large scale and environmentally friendly H2 gas production has hindered the wide spread adoption of H2 fuel cells. A potential solution to this problem is the Cu-Cl hybrid thermochemical cycle. The cycle captures waste heat to drive two thermochemical steps creating CuCl as well as O2 gas and HCl from CuCl2 and water. The CuCl is oxidized in HCl to produce H2 gas and regenerate CuCl2, this process occurs at potentials well below those required for water electrolysis. The electrolysis process occurs in a traditional PEM fuel-cell. In the aqueous anolyte media Cu(I) will form anionic complexes such as CuCl 2 - or CuCl32-. The slow transport of these species to the anode surface limits the overall electrolysis process. To improve this transport process we have produced ceramic carbon electrode (CCE) materials through a sol-gel method incorporating a selection of amine containing silanes with increasing numbers of primary and secondary amines. When protonated these amines allow for improved transport of anionic copper complexes. The electrochemical and physical characterization of these CCE materials in a half and full-cell electrolysis environment will be presented. Electrochemical analysis was performed using cell polarization, cyclic voltammetry, and electrochemical impedance spectroscopy.

  6. Production of continuous piezoelectric ceramic fibers for smart materials and active control devices

    NASA Astrophysics Data System (ADS)

    French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad

    1997-05-01

    Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.

  7. Effects of clinically relevant alumina ceramic wear particles on TNF-alpha production by human peripheral blood mononuclear phagocytes.

    PubMed

    Hatton, A; Nevelos, J E; Matthews, J B; Fisher, J; Ingham, E

    2003-03-01

    ) for macrophage activation compared to the alumina powder. It can be concluded that alumina ceramic wear particles generated under microseparation conditions are capable of inducing osteolytic cytokine production by human mononuclear phagocytes. However, the volumetric concentration of the particles needed to generate this response is extremely high and given the low wear rates (<4mm(3) per million cycles) of ceramic-on-ceramic bearings, even under severe microseparation conditions, it is unlikely that this concentration threshold will be achieved in vivo.

  8. Reduction of wastewaters and valorisation of by-products from "Serpa" cheese manufacture using nanofiltration.

    PubMed

    Magueijo, V; Minhalma, M; Queiroz, D; Geraldes, V; Macedo, A; de Pinho, M N

    2005-01-01

    Second cheese whey (SCW) is a by-product of cheese and curd cheese production that is usually not recovered and therefore contributes substantially to the negative environmental impact of the cheese manufacture plants. Membrane technology, namely nanofiltration (NF), is used in this work for the recovery of SCW organic nutrients, resulting from "Serpa" cheese and curd production. The SCW is processed by NF to recover a rich lactose fraction in the concentrate and a process water with a high salt content in the permeate. The permeation experiments were carried out in a plate and frame NF unit, where two NF membranes (NFT50 and HR-95-PP) were characterized and tested. The NF permeation experiments were performed accordingly with two different operation modes: total recirculation and concentration. In order to select the best membrane and operating pressure for the SCW fractionation, total recirculation experiments were carried out. After the membrane selection, the concentration experiments showed that the selected membrane (NFT50) at 30 bar allows a water recovery of approximately 80%, concentrating the second cheese whey nutrients approximately 5 times. Therefore, the NF operation can successfully reduce the wastewater organic load and simultaneously contribute to the valorisation of the cheese and curd cheese manufacture by-products.

  9. A Dilatometric Study of Sintering of Composite Ceramics Manufactured from Ultrafine Zro2(Y)-Al2O3 Powders Under Different Thermal-Temporal Firing Conditions

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Frangulyan, T. S.; Ghyngazov, S. A.; Vasiliev, I. P.

    2014-07-01

    Using dilatometry, kinetic principles of sintering of composite ZrO2(Y)-Al2O3 ceramic material made from ultrafine powders synthesized at the Siberian Chemical Integrated Works are investigated. It is shown that under heating conditions, sintering of the composite ceramics under study occurs within a few stages that are closely related to the structural-phase transformations taking place in the composite powder mixture. At the firing temperatures Т > 1500 С and during long isothermal times, negative phenomena develop in the ceramic material, which give rise to its undesired dilatation and cracking in the course of cooling.

  10. Development of service-oriented products based on the inverse manufacturing concept.

    PubMed

    Fujimoto, Jun; Umeda, Yasushi; Tamura, Tetsuya; Tomiyama, Tetsuo; Kimura, Fumihiko

    2003-12-01

    To achieve sustainability, resource consumption and waste generation must be drastically decreased. For societal acceptance, preservation of both quality of life and corporate profits are essential. One promising approach is to shift the source of value from the amount of product sold to the quality of services the product provides. This paper describes the need for redesigning recycling systems from a manufacturing perspective and then discusses the possibility of this "servicification" of products, describing our experience with prototype development. We discuss development of product prototypes and their business, using consumer facsimile machines as an example of "service-oriented products". Traditional thought presumes that only products comprising new materials and components are valuable. Consideration of a service-oriented product can serve as a stimulus to revise this mode of thought and to control delivery and quality of disposed products. This paper also provides a life cycle simulation of the developed service-oriented business. Simulation results indicate that service-oriented business can potentially reduce environmental impact while extending business opportunities from the viewpoint of whole product life cycles.

  11. Investigation and research on classification of productive skills (2): Cluster structure of productive skills in the car manufacturing industry.

    PubMed

    Mori, K; Kikuchi, Y

    1993-12-01

    A survey was conducted at a production facility to study the categories of productive skills. In August 1991, a questionnaire survey was given to skilled workers of a car manufacturing company. The number of valid responses was 1,215. The survey items included 133 items in the following three areas: nature of productive skills, human functions and vocational ability necessary for the work, and working conditions. The survey results were analyzed by cluster analysis to verify the hypothesis that skills can be classified based on two axes--sensory motor and intellectual management. Moreover, the analysis results clarify that the structure of "nature of productive skills" in car manufacturing can be divided into maintenance, processing, information analysis and transmission, and parts assembly. The results also show that the internal structure of intellectual management skills, which had been unknown up to this point, consists of five skill clusters: field of technical knowledge, operation of controlling equipment, preparation abilities, analysis and judgment abilities, and measurement.

  12. 76 FR 77251 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Manufacturers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ...--Manufacturers Standardization Society Notice is hereby given that, on November 7, 2011, pursuant to Section 6(a...''), Manufacturers Standardization Society (``MSS'') has filed written notifications simultaneously with the Attorney... principal place of business of the standards development organization is: Manufacturers...

  13. Fact Sheet: Final Rule to Reduce Air Toxics Emissions from Area Source Paints and Allied Products Manufacturing Facilities

    EPA Pesticide Factsheets

    This page contains a November 2009 fact sheet with information regarding the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Area Sources of Paints and Allied Products Manufacturing.

  14. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    PubMed

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment.

  15. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  16. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  17. Industrial Ceramics: Secondary Schools.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  18. Automated fiber placement composite manufacturing: The mission at MSFC's Productivity Enhancement Complex

    NASA Technical Reports Server (NTRS)

    Vickers, John H.; Pelham, Larry I.

    1993-01-01

    Automated fiber placement is a manufacturing process used for producing complex composite structures. It is a notable leap to the state-of-the-art in technology for automated composite manufacturing. The fiber placement capability was established at the Marshall Space Flight Center's (MSFC) Productivity Enhancement Complex in 1992 in collaboration with Thiokol Corporation to provide materials and processes research and development, and to fabricate components for many of the Center's Programs. The Fiber Placement System (FPX) was developed as a distinct solution to problems inherent to other automated composite manufacturing systems. This equipment provides unique capabilities to build composite parts in complex 3-D shapes with concave and other asymmetrical configurations. Components with complex geometries and localized reinforcements usually require labor intensive efforts resulting in expensive, less reproducible components; the fiber placement system has the features necessary to overcome these conditions. The mechanical systems of the equipment have the motion characteristics of a filament winder and the fiber lay-up attributes of a tape laying machine, with the additional capabilities of differential tow payout speeds, compaction and cut-restart to selectively place the correct number of fibers where the design dictates. This capability will produce a repeatable process resulting in lower cost and improved quality and reliability.

  19. Manufacturing of Plasma-Derived Medicinal Products: Qualification Process of Plasma Suppliers.

    PubMed

    Parés, Carles; Martínez, Manuel; Messeguer, Joaquim; Rodríguez, Esteban

    2015-01-01

    Manufacturers of human plasma-derived products ensure, through their qualification departments, the quality and safety of human plasma-the biological starting material of the industrial fractionation process. The qualification department has established written procedures to approve the plasma supplier (i.e., initial qualification) according to current regulations and to the manufacturer's plasma specifications. Once the plasma supplier is approved, a periodical assessment is necessary (i.e., continuous qualification) to guarantee the level of compliance. In addition, a signed quality agreement between the plasma supplier and the manufacturer defines the duties and the responsibilities of both parties. The qualification department implements the following requirements to ensure the quality of plasma from suppliers: (i) a regular audit program to confirm the satisfactory initiation of the quality arrangements and (ii) monitoring of the quality and safety of plasma including critical quality parameters. For several years, the Grifols Qualification Department has worked with several plasma suppliers of the European Union (EU) and has performed a detailed, continuous assessment of the audits, deviations, operational incidences, epidemiological data, and quality controls. In this article, we will report data from this Grifols assessment from 2010 through 2013 on plasma suppliers from four EU countries. In the future, additional data will be collected and studied to confirm and verify the conclusions and trends observed in this study.

  20. Exploring barriers and opportunities in adopting crowdsourcing based new product development in manufacturing SMEs

    NASA Astrophysics Data System (ADS)

    Qin, Shengfeng; Van der Velde, David; Chatzakis, Emmanouil; McStea, Terry; Smith, Neil

    2016-10-01

    Crowdsourcing is an innovative business practice of obtaining needed services, ideas, or content or even funds by soliciting contributions from a large group of people (the `Crowd'). The potential benefits of utilizing crowdsourcing in product design are well-documented, but little research exists on what are the barriers and opportunities in adopting crowdsourcing in new product development (NPD) of manufacturing SMEs. In order to answer the above questions, a Proof of Market study is carried out on crowdsourcing-based product design under an Innovate UK funded Smart project, which aims at identifying the needs, challenges and future development opportunities associated with adopting crowdsourcing strategies for NPD. The research findings from this study are reported here and can be used to guide future development of crowdsourcing-based collaborative design methods and tools and provide some practical references for industry to adopt this new and emerging collaborative design method in their business.

  1. One manufacturer's approach to using nucleic acid testing for enhanced plasma-product safety.

    PubMed

    Liss, A

    2001-04-01

    Source plasma must contain the lowest possible pathogen bioburden so as to minimize the stress placed on subsequent viral reduction steps. Differences exist between European and US criteria for developing assays used to detect these viral pathogens. The approach used by 1 plasma-product manufacturer is described here. By adding polymerase chain reaction (PCR) detection techniques for various viral pathogens (including human immunodeficiency virus-1, hepatitis C virus, and hepatitis B virus) to the plasma screening process, this manufacturer maximizes the use of cutting-edge technology for plasma product safety while satisfying both European and US criteria and requirements for this process. The protocol begins with maxipool testing and eventually identifies any specific donor plasma that might be positive in the contributing minipools. The goal is to identify reactive donors for possible periodic monitoring and to use only nonreactive donations to continue producing a particular plasma product. Controversy surrounding the use of PCR to screen emerging organisms of questionable pathogenicity or known organisms that are of minimal pathogenicity for most of the population is also discussed, and possible solutions to this debate are provided.

  2. Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art.

    PubMed

    Ilgin, Mehmet Ali; Gupta, Surendra M

    2010-01-01

    Gungor and Gupta [1999, Issues in environmentally conscious manufacturing and product recovery: a survey. Computers and Industrial Engineering, 36(4), 811-853] presented an important review of the development of research in Environmentally Conscious Manufacturing and Product Recovery (ECMPRO) and provided a state of the art survey of published work. However, that survey covered most papers published through 1998. Since then, a lot of activity has taken place in EMCPRO and several areas have become richer. Many new areas also have emerged. In this paper we primarily discuss the evolution of ECMPRO that has taken place in the last decade and discuss the new areas that have come into focus during this time. After presenting some background information, the paper systematically investigates the literature by classifying over 540 published references into four major categories, viz., environmentally conscious product design, reverse and closed-loop supply chains, remanufacturing, and disassembly. Finally, we conclude by summarizing the evolution of ECMPRO over the past decade together with the avenues for future research.

  3. Five-year results of a prospective randomised controlled clinical trial of posterior computer-aided design-computer-aided manufacturing ZrSiO4 -ceramic crowns.

    PubMed

    Passia, N; Stampf, S; Strub, J R

    2013-08-01

    The aim of this prospective randomised controlled clinical trial was to evaluate the clinical outcome of shrinkage-free ZrSiO4 -ceramic full-coverage crowns on premolars and molars in comparison with conventional gold crowns over a 5-year period. Two hundred and twenty-three patients were included and randomly divided into two treatment groups. One hundred and twenty-three patients were restored with 123 ZrSiO4 -ceramic crowns, and 100 patients received 100 gold crowns, which served as the control. All crowns were conventionally cemented with glass-ionomer cement. After an observation period of 6, 12, 24, 36, 48 and 60 months, the survival probability (Kaplan-Meier) for the shrinkage-free ZrSiO4 -ceramic crowns was 98·3%, 92·0%, 84·7%, 79% and 73·2% and for the gold crowns, 99%, 97·9%, 95·7%, 94·6% and 92·3%, respectively. The difference between the test and control group was statistically significant (P = 0·0027). The gold crowns showed a better marginal integrity with less marginal discoloration than the ceramic crowns. The most common failure in the ceramic crown group was fracture of the crown. The 60-month results of this prospective randomised controlled clinical trial suggest that the use of these shrinkage-free ZrSiO4 -ceramic crowns in posterior tooth restorations cannot be recommended.

  4. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  5. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  6. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  7. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  8. Particle shedding from peristaltic pump tubing in biopharmaceutical drug product manufacturing.

    PubMed

    Saller, Verena; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-04-01

    In a typical manufacturing setup for biopharmaceutical drug products, the fill and dosing pump is placed after the final sterile filtration unit in order to ensure adequate dispensing accuracy and avoid backpressure peaks. Given the sensitivity of protein molecules, peristaltic pumps are often preferred over piston pumps. However, particles may be shed from the silicone tubing employed. In this study, particle shedding and a potential turbidity increase during peristaltic pumping of water and buffer were investigated using three types of commercially available silicone tubing. In the recirculates, mainly particles of around 200 nm next to a very small fraction of particles in the lower micrometer range were found. Using 3D laser scanning microscopy, surface roughness of the inner tubing surface was found to be a determining factor for particle shedding from silicone tubing. As the propensity toward particle shedding varied between tubing types and also cannot be concluded from manufacturer's specifications, individual testing with the presented methods is recommended during tubing qualification. Choosing low abrasive tubing can help to further minimize the very low particle counts to be expected in pharmaceutical drug products.

  9. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/Industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 repesentatives from aerospace and computer companies. The IPAD accomplishments to date in development of requirements and prototype software for various levels of company-wide CAD/CAM data management are summarized and plans for development of technology for management of distributed CAD/CAM data and information required to control future knowledge-based CAD/CAM systems are discussed.

  10. Integrating Hazardous Materials Characterization and Assessment Tools to Guide Pollution Prevention in Electronic Products and Manufacturing

    NASA Astrophysics Data System (ADS)

    Lam, Carl

    Due to technology proliferation, the environmental burden attributed to the production, use, and disposal of hazardous materials in electronics have become a worldwide concern. The major theme of this dissertation is to develop and apply hazardous materials assessment tools to systematically guide pollution prevention opportunities in the context of electronic product design, manufacturing and end-of-life waste management. To this extent, a comprehensive review is first provided on describing hazard traits and current assessment methods to evaluate hazardous materials. As a case study at the manufacturing level, life cycle impact assessment (LCIA)-based and risk-based screening methods are used to quantify chemical and geographic environmental impacts in the U.S. printed wiring board (PWB) industry. Results from this industrial assessment clarify priority waste streams and States to most effectively mitigate impact. With further knowledge of PWB manufacturing processes, select alternative chemical processes (e.g., spent copper etchant recovery) and material options (e.g., lead-free etch resist) are discussed. In addition, an investigation on technology transition effects for computers and televisions in the U.S. market is performed by linking dynamic materials flow and environmental assessment models. The analysis forecasts quantities of waste units generated and maps shifts in environmental impact potentials associated with metal composition changes due to product substitutions. This insight is important to understand the timing and waste quantities expected and the emerging toxic elements needed to be addressed as a consequence of technology transition. At the product level, electronic utility meter devices are evaluated to eliminate hazardous materials within product components. Development and application of a component Toxic Potential Indicator (TPI) assessment methodology highlights priority components requiring material alternatives. Alternative

  11. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    SciTech Connect

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  12. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  13. Ceramic fiber insulation impregnated with an infra-red retardant coating and method for production thereof

    NASA Technical Reports Server (NTRS)

    Zinn, Alfred A. (Inventor); Tarkanian, Ryan Jeffrey (Inventor)

    2007-01-01

    The invented insulation is a ceramic fiber insulation wherein the ceramic fibers are treated with a coating which contains transition metal oxides. The invented process for coating the insulation is a process of applying the transition metal oxide coating to the fibers of the insulation after the fibers have been formed into a tile or other porous body. The coating of transition metal oxide lowers the transmittance of radiation through the insulation thereby lowering the temperature of the backface of the insulation and better protecting the structure that underlies the insulation.

  14. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  15. Asphalt fume exposure levels in North American asphalt production and roofing manufacturing operations.

    PubMed

    Axten, Charles W; Fayerweather, William E; Trumbore, David C; Mueller, Dennis J; Sampson, Arthur F

    2012-01-01

    This study extends by 8 years (1998-2005) a previous survey of asphalt fume exposures within North American asphalt processing and roofing product manufacturing workers. It focuses on characterizing personal, full-shift samples and seeks to address several limitations of the previous survey. Five major roofing manufacturers with established occupational health programs submitted workplace asphalt fume sampling results to a central repository for review and analysis. A certified industrial hygienist-led quality assurance team oversaw the data collection, consolidation, and analysis efforts. The analysis dataset consisted of 1261 personal exposure samples analyzed for total particulate (TP) and benzene soluble fraction (BSF) using existing NIOSH methods. For BSF, the survey's arithmetic (0.25 mg/m(3), SD = 0.62) and geometric (0.12 mg/m(3), GSD = 2.88) means indicate that the industry has sustained the control levels achieved in the late 1980s, early 1990s. Similar results were found for TP. The survey-wide summary statistics are consistent with other post-1990 multi-company exposure studies. Although these findings indicate that currently available controls are capable of achieving substantial (95%) compliance with the current threshold limit value in asphalt processing and inorganic shingle and roll plants, they also show that the majority of plants are not achieving this level of exposure control, and that exposures are significantly higher in plants making other product lines, particularly organic felt products. The current retrospective survey of existing company exposure data, like its predecessor, has several important limitations. These include lack of data on smaller manufacturers and on several commercially important product lines; insufficient information on the prevalence and effectiveness of engineering controls; no standard criteria by which to define and assess exposures in non-routine operations; and a paucity of exposure data collected as part of a

  16. [Refractory ceramic fibers, kinds, health effects after exposure, TLVs].

    PubMed

    Woźniak, H; Wiecek, E

    1996-01-01

    Ceramic fibres are amorphous or crystalline synthetic mineral fibres which are characterised by refractory properties (i.c. stability in temperature above 1000 degrees C). In general, ceramic fibres are produced from aluminium oxide, silicon oxide and other metal oxides and less frequently from non-oxide materials such as silicon carbide, silicon nitride and boron nitride. In Poland, the production of ceramic fibres was begun in the Refractory Materials Plant, Skawina, during mid-eighties. The production capacity accounts for about 600 tons annually. It is estimated that approximately 3000 persons are exposed to the effect of ceramic fibres in Poland. During the production of ceramic fibres, concentrations of respiral fibres in the air at work places range from 0.07 to 0.27 f/cm3; during the manufacture of ceramic fibre products from 0.23 to 0.71 f/cm3 and during the application of ceramic fibre products from 0.07 to 1.67 f/cm3. As published data depict, fibres longer than 5 microns are most common in the work environment, and the proportion of fibres with diameters below 1 micron accounts for 40-50%. Bearing in mind the present situation in Poland, namely combined exposure to asbestos (during removal of worn out heat-insulating materials) and ceramic fibres (during installation of new insulation), as well as in view of own investigations and literature data which evidence a strong carcinogenic effect of certain fibres, the following MAC values have been adopted: Dusts of refractory ceramic fibres: total dust-2 mg/m3; respirable fibres-1 f/cm3 (L > 5 microns; D < 3 microns; L: D < 3:1) Dusts of reflactory ceramic fibres mixed with asbestos: total dust-1 mg/m3; respirable fibres-1 f/m3. Dusts of refractory ceramic fibres mixed with other man-made mineral fibres (MMMF): total dust-2 mg/m3; respirable fibres-1 f/m3. According to the IARC, ceramic fibres have been included into group 2B-suspected human carcinogen.

  17. Current Good Manufacturing Practice Production of an Oncolytic Recombinant Vesicular Stomatitis Viral Vector for Cancer Treatment

    PubMed Central

    Meseck, M.; Derecho, I.; Lopez, P.; Knoblauch, C.; McMahon, R.; Anderson, J.; Dunphy, N.; Quezada, V.; Khan, R.; Huang, P.; Dang, W.; Luo, M.; Hsu, D.; Woo, S.L.C.; Couture, L.

    2011-01-01

    Abstract Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 109 plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 1010 PFU/ml (total yield, 1 × 1013 PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC. PMID:21083425

  18. Detection of electrical defects with SEMVision in semiconductor production mode manufacturing

    NASA Astrophysics Data System (ADS)

    Newell, Travis; Tillotson, Brock; Pearl, Haim; Miller, Andrei

    2016-03-01

    In the semiconductor manufacturing process, defects often occur due to a marginal process window that affects the lithography and etch processes. These defects can result in bridging patterns and overlay issues, which consequently cause electrical shorts and partially etched vias producing electrical opens. SEM tools are used to find electrical failures through voltage contrast techniques. Manufacturers who fabricate with older process technology nodes often need to use their tool set more efficiently. This paper demonstrates an application of conventional SEM review with image to golden reference image inspection capabilities in Automatic Process Inspection (API ) mode to perform electrical inspections of die features. This paper details how to use a SEM review tool to detect systematic electrical defects. This methodology can prove beneficial while monitoring and developing patterning techniques for a specific design rule by catching electrical shorts and opens that are more visible at a lower resolution inspection used in process monitoring. Outcomes of this effort show that conventional review SEM techniques, using known areas prone to process inconsistencies derived from features pushing the design rule, have the capability to effectively and efficiently monitor fabrication process while implemented in a production setting at process nodes between 100 to 200 nm. Using e-beam review tools offers several advantages and disadvantages. This paper demonstrates that by using a SEM review tool and selecting die locations for imaging that are more likely to fail electrically, manufacturers can use SEM automatic review capabilities more effectively and efficiently. The application developed may also be applied in fabrication facilities that have limited yield monitoring capacity. This paper is a result of collaboration between Applied Materials and Microchip Technology Inc.

  19. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    PubMed

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  20. Emerging Ceramic-based Materials for Dentistry

    PubMed Central

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  1. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  2. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  3. An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Hill, R. M.

    1978-01-01

    A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.

  4. On the use of slag from silicomanganese production for welding flux manufacturing

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Kryukov, R. E.; Lipatova, U. I.; Kozyreva, O. E.

    2016-09-01

    The technologies for manufacturing of welding fluxes with the use of slag from silicomanganese production and dust of gas purification from aluminum production are developed. The new compositions and production technology of welding fluxes are offered. The comparative evaluation of the new compositions and widely used AN-348 flux is provided. It is shown that the quality of submerged arc welding with the use of the developed flux composition is significantly better than the submerged arc welding with AN-348 flux. The effect of fractional composition on high-quality performance of the weld is investigated. The macro- and microstructures, nonmetallic inclusions and the mechanical properties of the weld are examined. It is shown that the introduction of carbon-fluorine containing additive into the flux, based on the dust of gas purification from aluminum production, can significantly improve the whole complex of mechanical properties of the weld, especially characteristics of impact hardness at low temperatures. The conducted research served as a basis for development of submerged arc welding technologies protected by the patents of the Russian Federation.

  5. Air quality comparison between two European ceramic tile clusters

    NASA Astrophysics Data System (ADS)

    Minguillón, M. C.; Monfort, E.; Escrig, A.; Celades, I.; Guerra, L.; Busani, G.; Sterni, A.; Querol, X.

    2013-08-01

    The European ceramic tile industry is mostly concentrated in two clusters, one in Castelló (Spain) and another one in Modena (Italy). Industrial clusters may have problems to accomplish the EU air quality regulations because of the concentration of some specific pollutants and, hence, the feasibility of the industrial clusters can be jeopardised. The present work assesses the air quality in these ceramic clusters in 2008, when the new EU emission regulations where put into force. PM10 samples were collected at two sampling sites in the Modena ceramic cluster and one sampling site in the Castelló ceramic cluster. PM10 annual average concentrations were 12-14 μg m-3 higher in Modena than in Castelló, and were close to or exceeded the European limit. Air quality in Modena was mainly influenced by road traffic and, in a lower degree, the metalmechanical industry, as evidenced by the high concentrations of Mn, Cu, Zn, Sn and Sb registered. The stagnant weather conditions from Modena hindering dispersion of pollutants also contributed to the relatively high pollution levels. In Castelló, the influence of the ceramic industry is evidenced by the high concentrations of Ti, Se, Tl and Pb, whereas this influence is not seen in Modena. The difference in the impact of the ceramic industry on the air quality in the two areas was attributed to: better abatement systems in the spray-drier facilities in Modena, higher coverage of the areas for storage and handling of dusty raw materials in Modena, presence of two open air quarries in the Castelló region, low degree of abatement systems in the ceramic tile kilns in Castelló, and abundance of ceramic frit, glaze and pigment manufacture in Castelló as opposed to scarce manufacture of these products in Modena. The necessity of additional measures to fulfil the EU air quality requirements in the Modena region is evidenced, despite the high degree of environmental measures implemented in the ceramic industry. The Principal

  6. 27 CFR 19.58 - Use of taxpaid distilled spirits to manufacture products unfit for beverage use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... alcoholic beverages. Bitters, patent medicines, and similar alcoholic preparations which are fit for beverage purposes, although held out as having certain medicinal properties, are also alcoholic beverages... spirits to manufacture products unfit for beverage use. 19.58 Section 19.58 Alcohol, Tobacco Products...

  7. Effect of silane pretreatment on the immediate bonding of universal adhesives to computer-aided design/computer-aided manufacturing lithium disilicate glass ceramics.

    PubMed

    Yao, Chenmin; Zhou, Liqun; Yang, Hongye; Wang, Yake; Sun, Hualing; Guo, Jingmei; Huang, Cui

    2017-04-01

    The aim of this study was to investigate the effect of silane pretreatment on the universal adhesive bonding between lithium disilicate glass ceramic and composite resin. IPS e.max ceramic blocks etched with hydrofluoric acid were randomly assigned to one of eight groups treated with one of four universal adhesives (two silane-free adhesives and two silane-containing adhesives), each with or without silane pretreatment. Bonded specimens were stored in water for 24 h. The shear bond strength (SBS) of the ceramic-resin interface was measured to evaluate bond strength, and the debonded interface after the SBS test was analysed using field-emission scanning electron microscopy to determine failure mode. Light microscopy was performed to analyse microleakage and marginal sealing ability. Silane pretreatment significantly and positively influenced SBS and marginal sealing ability. For all the universal adhesive groups, SBS increased and the percentage of microleakage decreased after the pretreatment. Without the pretreatment, SBS and the percentage of microleakage were not significantly different between the silane-containing universal adhesive groups and the silane-free groups. Cohesive failure was the main fracture pattern. The results suggest that additional silane pretreatment can effectively improve the bonding strength and marginal sealing of adhesives to lithium disilicate glass ceramics. The bonding performance of silane-containing universal adhesives without pretreatment is similar to that of silane-free adhesives.

  8. 78 FR 52759 - Foreign-Trade Zone 265-Conroe, Texas: Authorization of Production Activity; Bauer Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ...; Bauer Manufacturing Inc. (Foundation Casings and Tools/Accessories for Pile Drivers and Boring Machinery... Manufacturing Inc., within FTZ 265--Site 1, in Conroe, Texas. The notification was processed in accordance...

  9. Manufacturing microstructured tool inserts for the production of polymeric microfluidic devices

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Srivastava, Amit; Kirwan, Brendan; Byrne, Richard; Fang, Fengzhou; Browne, David J.; Gilchrist, Michael D.

    2015-09-01

    Tooling is critical in defining multi-scale patterns for mass production of polymeric microfluidic devices using the microinjection molding process. In the present work, fabrication of various microstructured tool inserts using stainless steel, nickel and bulk metallic glasses (BMGs) is discussed based on die-sinking EDM (electrical discharge machining), electroforming, focused ion beam milling and thermoplastic forming processes. Tool performance is evaluated in terms of surface roughness, hardness and tool life. Compared to stainless steel, nickel and BMGs are capable of integrating length scales from 100 to 10-8 m and are good candidates for producing polymeric microfluidics. Selection of tool materials and manufacturing technologies should consider the end-user requirements of actual applications.

  10. Capacity optimization and scheduling of a multiproduct manufacturing facility for biotech products.

    PubMed

    Shaik, Munawar A; Dhakre, Ankita; Rathore, Anurag S; Patil, Nitin

    2014-01-01

    A general mathematical framework has been proposed in this work for scheduling of a multiproduct and multipurpose facility involving manufacturing of biotech products. The specific problem involves several batch operations occurring in multiple units involving fixed processing time, unlimited storage policy, transition times, shared units, and deterministic and fixed data in the given time horizon. The different batch operations are modeled using state-task network representation. Two different mathematical formulations are proposed based on discrete- and continuous-time representations leading to a mixed-integer linear programming model which is solved using General Algebraic Modeling System software. A case study based on a real facility is presented to illustrate the potential and applicability of the proposed models. The continuous-time model required less number of events and has a smaller problem size compared to the discrete-time model.

  11. 21 CFR 600.14 - Reporting of biological product deviations by licensed manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 803 of this chapter; (ii) Persons who manufacture blood and blood components, including licensed manufacturers, unlicensed registered blood establishments, and transfusion services, do not report biological...; (iii) Persons who manufacture Source Plasma or any other blood component and use that Source Plasma...

  12. ESEEM of industrial silica-bearing powders: reactivity of defects during wet processing in the ceramics production

    NASA Astrophysics Data System (ADS)

    Romanelli, Maurizio; Di Benedetto, Francesco; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio

    2015-05-01

    A study is undertaken to ascertain whether changes in the speciation of inorganic radicals are occurring during the ceramic industrial production that involves abundant silica powders as raw material. Industrial dusts were sampled in two ceramic firms, immediately after the wet mixing stage, performed with the aid of a relevant pressure. The dusts were then characterised by means of X-ray diffraction, analysis of the trace elements through chemical methods, granulometry, continuous-wave electron paramagnetic resonance (EPR) and pulsed electron spin echo envelope modulation (ESEEM) spectroscopies. The results of the characterisation point to a relevant change in the speciation of the two samples; namely, a prevailing contribution due to an inorganic radical different from that pertaining to pure quartz is pointed out. The combined interpretation of EPR and ESEEM data suggests the attribution of the main paramagnetic contribution to the A-centre in kaolinite, a constituent that is added to pure quartz at the initial stage of the ceramic production. In one of the two samples, a second weak EPR signal is attributed to the quartz's hAl species. By taking into account the relative quantities of quartz and kaolinite mixed in the two samples, and the relative abundances of the two radical species, we propose that the partial or complete suppression of the hAl species in favour of the A-centre of kaolinite has occurred. Although this change is apparently fostered by the mixture between quartz and another radical-bearing raw material, kaolinite, the suppression of the hAl centre of quartz is ascribed to the role played by the pressure and the wet environment during the industrial mixing procedure. This suppression provides a net change of radical speciation associated with quartz, when this phase is in contact with workers' respiratory system.

  13. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes

    PubMed Central

    Kon, Theone C.; Onu, Adrian; Berbecila, Laurentiu; Lupulescu, Emilia; Ghiorgisor, Alina; Kersten, Gideon F.; Cui, Yi-Qing; Amorij, Jean-Pierre; Van der Pol, Leo

    2016-01-01

    The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months. PMID:26959983

  14. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes.

    PubMed

    Kon, Theone C; Onu, Adrian; Berbecila, Laurentiu; Lupulescu, Emilia; Ghiorgisor, Alina; Kersten, Gideon F; Cui, Yi-Qing; Amorij, Jean-Pierre; Van der Pol, Leo

    2016-01-01

    The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months.

  15. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  16. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  17. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  18. Analysis of Garment Production Methods. Part 2: Comparison of Cost and Production between a Traditional Bundle System and Modular Manufacturing

    DTIC Science & Technology

    1992-02-01

    also saw this project as an opportunity for our manufacturing management students to see first hand how companies respond to changes in their economic...Modular Manufacturing . We wanted to see if it was just a fad or a new business strategy that could be added to a manufacturer’s arsenal in the master...Fashion Industries 227 West 27 Street 000301 New York, NY 10001 Defense Logistics Agency DLA Manufacturing Engineering Branch Cameron Station (DLA

  19. Ceramic membranes for generation of partial-oxidation products from methane

    SciTech Connect

    Balachandran, U.; Dusek, J.T.; Sweeney, S.M.; Mieville, R.L.; Maiya, P.S.; Kleefisch, M.S.; Pei, S.; Kobylinski, T.P. Bose, A.C.

    1994-05-01

    The most significant cost associated with partial oxidation of methane to syngas is that of the oxygen plant. In this paper, we offer a technology, based on dense ceramic membranes, that uses air as the oxidant for methane-conversion reactions and eliminates the need for an oxygen plant. Certain ceramic materials exhibit both electronic and ionic conductivities (of particular interest is oxygen-ion conductivity). These materials transport not only oxygen ions (functioning as selective oxygen separators) but also electrons back from the reactor side to the oxygen-reduction interface. As such, no external electrodes are required and if the driving potential of transport is sufficient, the partial oxidation reactions should be spontaneous. Such a system will operate without an externally applied potential. Oxygen is transported across the ceramic material in the form of oxygen anions and not oxygen molecules. Recent reports in the literature suggest that ceramic membranes made of these mixed conductors can successfully separate oxygen and nitrogen at flux rates that could be considered commercially feasible [1--8]. Long tubes of La-Sr-Fe-Co-O (SFC) membrane have been fabricated by plastic extrusion. Thermodynamic stability of the tubes was studied as a function of oxygen partial pressure by high-temperature XRD. Mechanical properties were measured and found to be adequate for a reactor material. Performance of the membrane strongly depended on the stoichiometry of the material. Fracture of certain SFC tubes was the consequence of an oxygen gradient that introduced a volumetric lattice difference between the inner and outer walls. However, tubes made with a particular stoichiometry (SFC-2) provided methane-conversion efficiencies of >99% in a reactor. Some of these reactor tubes have operated for up to {approx}500 h.

  20. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  1. Title III section 313 release reporting guidance: Estimating chemical releases from presswood and laminated wood products manufacturing

    SciTech Connect

    Not Available

    1988-03-01

    Facilities engaged in the manufacture of presswood and laminated wood products may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist those who manufacture presswood and laminated wood products in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  2. Structural ceramics

    SciTech Connect

    Wachtman, J.B. Jr.

    1989-01-01

    The present work discusses opportunities for application of structural ceramics in heat engines, industrial-wear parts, prosthetics and bearings; conceptual and detailed design principles for structural ceramics; the processing, consolidation, and properties of members of the SiC family of structural ceramics; and the silicon nitride and sialon families of hot-pressed, sintered, and reaction-bonded, structural ceramics. Also discussed are partially-stabilized zirconia and zirconia-toughened ceramics for structural applications, the processing methods and mechanisms of fiber-reinforcement in ceramic-matrix fiber-reinforced composites, and the tribological properties of structural ceramics.

  3. Production of fiberglass/metal composite material suitable for building habitat and manufacturing facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The production of a fiberglass/metal composite material suitable for building habitats and manufacturing facilities was the project for Clemson. The concept and development of the knowledge necessary to produce glass fibers originated in the spring semester. During the summer, while at Johnson Space Center, fiberglass from a rock composition similar to ones found at the Apollo 16 site on the moon was successfully produced. The project this year was a continuation of last year's studies. We addressed the following problems which emerged as the work progressed: (1) Methods for coating the fibers with a metal were explored. We manufactured composites in two stages: Glass fibers without any coating on them; and fibers coated with metals as they were made. This proved to be a difficult process. Future activities include using a chemical vapor deposition process on fibers which have been made. (2) A glass furnace was developed which relies primarily on solar energy for melting the glass. The temperature of the melted glass is maintained by electrical means. The design is for 250 kg of glass per day. An electrical engineering student developed a scheme for controlling the melting and manufacturing process from the earth. This was done to minimize the human risk. Graphite refractories are relied on to contain the melt. (3) The glass composition chosen for the project is a relatively pure anorthite which is available in the highland regions of the lunar surface. A major problems with this material is that it melts at a comparatively high temperature. This problem will be solved by using graphite refractory materials for the furnace. The advantage of this glass composition is that it is very stable and does not tend to crystallize. (4) We have also refined the experimental furnace and fiber making machinery which we will be using at Johnson Space Center this summer. We believe that we will be able to draw and coat glass fibers in a vacuum for use in composites. We intend to

  4. Process for the preparation of an intermediate pitch for manufacturing carbon products

    SciTech Connect

    Tsuchitani, M.; Nakajima, R.

    1987-11-10

    A process for the continuous preparation of an almost optically isotropic and substantially homogeneous intermediate pitch with a benzene insoluble fraction content of more than 50 wt %, a quinoline insoluble fraction content of less than 30 wt % and a beta-resins content of more than 40 wt % for manufacturing a mesophase pitch for preparing carbon fibers is described which comprises heating a heavy oil having a quinoline insoluble fraction content of less than 5 wt % selected from the group consisting of coal tars, coal tar pitches tar by-products from naptha cracking, tar by-products from gas oil cracking and decant oils, in a tubular heater under a pressure of 4 to 50 Kg/cm/sup 2/.G at a temperature of 400/sup 0/ to 520/sup 0/C with a residence time of 30 to 1000 sec. Transfer the heater effluent to a flash distillation column and conduct flash distillation under a pressure of 0.3 to 1.5 Kg/cm/sup 2/.A at a temperature of 430/sup 0/ to 500/sup 0/C so as to separate lighter fractions as the overhead of the column from a heavy fraction and recovering the heavy fraction from the bottom of the column as the intermediate pitch.

  5. Animal use in the chemical and product manufacturing sectors - can the downtrend continue?

    PubMed

    Curren, Rodger

    2009-12-01

    During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available.

  6. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    SciTech Connect

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  7. New Product Development for Green and Low-Carbon Products—A Case Study of Taiwan's TFT-LCD Manufacturer

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Yu; Lee, Amy H. I.

    2011-11-01

    Green supply chain has become an important topic these days due to pollution, global warming, extreme climatic events, etc. A green product is manufactured with the goal of reducing the damage to the environment and limiting the use of energy and other resources at any stage of its life, including raw materials, manufacture, use, and disposal. Carbon footprint is a good measure of the impact that a product has on the environment, especially in climate change, in the entire lifetime of the product. Carbon footprint is directly linked to CO2 emission; thus, the reduction of CO2 emission must be considered in the product life cycle. Although more and more researchers are working on the green supply chain management in the past few years, few have incorporated CO2 emission or carbon footprint into the green supply chain system. Therefore, this research aims to propose an integrated model for facilitating the new product development (NPD) for green and low-carbon products. In this research, a systematic model based on quality function deployment (QFD) is constructed for developing green and low-carbon products in a TFT-LCD manufacturer. Literature review and interviews with experts are done first to collect the factors for developing and manufacturing green and low-carbon products. Fuzzy Delphi method (FDM) is applied next to extract the important factors, and fuzzy interpretive structural modeling (FISM) is used subsequently to understand the relationships among factors. A house of quality (HOQ) for product planning is built last. The results shall provide important information for a TFT-LCD firm in designing a new product.

  8. 16 CFR 1211.24 - Product certification and labeling by manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... certification. Manufacturers (including importers) shall issue certificates of compliance for automatic... ultimate purchaser of the garage door operator prior to purchase because of packaging or other...

  9. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.

    PubMed

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-01

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic

  10. Applications of on-product diffraction-based focus metrology in logic high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Noyes, Ben F.; Mokaberi, Babak; Bolton, David; Li, Chen; Palande, Ashwin; Park, Kevin; Noot, Marc; Kea, Marc

    2016-03-01

    The integration of on-product diffraction-based focus (DBF) capability into the majority of immersion lithography layers in leading edge logic manufacturing has enabled new applications targeted towards improving cycle time and yield. A CD-based detection method is the process of record (POR) for excursion detection. The drawback of this method is increased cycle time and limited sampling due to CD-SEM metrology capacity constraints. The DBFbased method allows the addition of focus metrology samples to the existing overlay measurements on the integrated metrology (IM) system. The result enables the addition of measured focus to the SPC system, allowing a faster excursion detection method. For focus targeting, the current method involves using a dedicated focus-exposure matrix (FEM) on all scanners, resulting in lengthy analysis times and uncertainty in the best focus. The DBF method allows the measurement to occur on the IM system, on a regular production wafer, and at the same time as the exposure. This results in a cycle time gain as well as a less subjective determination of best focus. A third application aims to use the novel onproduct focus metrology data in order to apply per-exposure focus corrections to the scanner. These corrections are particularly effective at the edge of the wafer, where systematic layer-dependent effects can be removed using DBFbased scanner feedback. This paper will discuss the development of a methodology to accomplish each of these applications in a high-volume production environment. The new focus metrology method, sampling schemes, feedback mechanisms and analysis methods lead to improved focus control, as well as earlier detection of failures.

  11. Combinatorial Production and Processing of Oxide Nanopowders for Transparent, Ceramic Lasers

    DTIC Science & Technology

    2007-06-01

    and blue light in an "inverse planetarium " format to pro- vide 3-D images. To realize such a display, one of the key steps must be the ability to...e.g. 662 nm for Er doped material) and offer the potential to serve as pixel materials for the proposed "inverted planetarium " 3-D display. [*]Dr...achieved with very fine-grained ceramics, the potential exists to create three-dimensional emissive displays[ II] using the "inverted planetarium

  12. Task 6.4 - the use of coal ash in ceramics. Topical report, July--December 1995

    SciTech Connect

    1996-03-01

    Previous empirical tests at the Energy & Environmental Research Center (EERC) have indicated that coal combustion by-products are a viable starting material for the production of a variety of ceramic products, including brick, tile, and high-flexural-strength ceramics. The EERC has focused on high-temperature properties of coal ashes and has provided valuable insight into ash transformations, fouling, and stagging for the utility industry. It is proposed to utilize the information generated in these past projects to develop material selection criteria and product manufacturing techniques based on scientific and engineering characteristics of the ash. Commercialization of the use of coal combustion by-products in ceramics is more likely to become viable if a quality-assured product can be made, and predictive materials selection is a key component of a quality-assured product. The objective of this work was to demonstrate the development and production of a ceramic material utilizing coal ash as a key component. Chemical and high-temperature properties of ash were carefully determined with the objective of identifying criteria for materials selection and manufacturing options for ceramic production.

  13. The Effect of Adopting New Storage Methods for Extending Product Validity Periods on Manufacturers Expected Inventory Costs

    PubMed Central

    Chen, Po-Yu

    2014-01-01

    The validness of the expiration dates (validity period) that manufacturers provide on food product labels is a crucial food safety problem. Governments must study how to use their authority by implementing fair awards and punishments to prompt manufacturers into adopting rigorous considerations, such as the effect of adopting new storage methods for extending product validity periods on expected costs. Assuming that a manufacturer sells fresh food or drugs, this manufacturer must respond to current stochastic demands at each unit of time to determine the purchase amount of products for sale. If this decision maker is capable and an opportunity arises, new packaging methods (e.g., aluminum foil packaging, vacuum packaging, high-temperature sterilization after glass packaging, or packaging with various degrees of dryness) or storage methods (i.e., adding desiccants or various antioxidants) can be chosen to extend the validity periods of products. To minimize expected costs, this decision maker must be aware of the processing costs of new storage methods, inventory standards, inventory cycle lengths, and changes in relationships between factors such as stochastic demand functions in a cycle. Based on these changes in relationships, this study established a mathematical model as a basis for discussing the aforementioned topics. PMID:25302332

  14. Identifying Effective Pedagogical Approaches for Online Workplace Training: A Case Study of the South African Wood Products Manufacturing Sector

    ERIC Educational Resources Information Center

    Macdonald, Ian S.; Bullen, Mark; Kozak, R. A.

    2007-01-01

    This study investigated appropriate pedagogical techniques for workplace e-learning programs in the South African wood products (furniture) manufacturing sector. The study found that learners responded favourably to constructivist teaching approaches, such as asynchronous discussions, open-ended task-based activities, and assignments incorporating…

  15. NDE of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1991-01-01

    Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.

  16. Environment Conscious Ceramics (Ecoceramics)

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. These carbonaceous preforms have been fabricated by pyrolysis of solid wood bodies at 1000 C. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches.

  17. 7 CFR 947.134 - Establishment of list of manufacturers of potato products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Establishment of list of manufacturers of potato... AGRICULTURE IRISH POTATOES GROWN IN MODOC AND SISKIYOU COUNTIES, CALIF., AND IN ALL COUNTIES IN OREGON, EXCEPT MALHEUR COUNTY Rules and Regulations Safeguards § 947.134 Establishment of list of manufacturers of...

  18. 7 CFR 947.134 - Establishment of list of manufacturers of potato products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Establishment of list of manufacturers of potato... AGRICULTURE IRISH POTATOES GROWN IN MODOC AND SISKIYOU COUNTIES, CALIF., AND IN ALL COUNTIES IN OREGON, EXCEPT MALHEUR COUNTY Rules and Regulations Safeguards § 947.134 Establishment of list of manufacturers of...

  19. 7 CFR 947.134 - Establishment of list of manufacturers of potato products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Establishment of list of manufacturers of potato... AGRICULTURE IRISH POTATOES GROWN IN MODOC AND SISKIYOU COUNTIES, CALIF., AND IN ALL COUNTIES IN OREGON, EXCEPT MALHEUR COUNTY Rules and Regulations Safeguards § 947.134 Establishment of list of manufacturers of...

  20. 7 CFR 947.134 - Establishment of list of manufacturers of potato products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Establishment of list of manufacturers of potato... AGRICULTURE IRISH POTATOES GROWN IN MODOC AND SISKIYOU COUNTIES, CALIF., AND IN ALL COUNTIES IN OREGON, EXCEPT MALHEUR COUNTY Rules and Regulations Safeguards § 947.134 Establishment of list of manufacturers of...

  1. 7 CFR 947.134 - Establishment of list of manufacturers of potato products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Establishment of list of manufacturers of potato... AGRICULTURE IRISH POTATOES GROWN IN MODOC AND SISKIYOU COUNTIES, CALIF., AND IN ALL COUNTIES IN OREGON, EXCEPT MALHEUR COUNTY Rules and Regulations Safeguards § 947.134 Establishment of list of manufacturers of...

  2. Waste-minimization assessment for a manufacturer producing treated wood products. Environmental research brief

    SciTech Connect

    Kirsch, F.W.; Maginn, J.C.

    1992-05-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual (EPA/625/7-88/003, July 1988). The WMAC team at Colorado State University performed an assessment at a plant producing treated wood products--approximately 1,700,000 cu.ft./yr. Railroad crossties and poles are treated with creosote in pressure cylinders to increase their serviceability under conditions that promote decay, weathering, insect destruction, or exposure to fire. Lumber is treated by Wolmanizing, a closed loop process in which a 2% chromated copper arsenate solution is used for treatment in a pressure cylinder. The team's report, detailing findings and recommendations, indicated that most waste was generated in the creosote treatment process, and also that cost savings could be obtained by arranging an exchange of accumulated bark and wood chips with others who use wood scrap as a raw material.

  3. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    SciTech Connect

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  4. The production of corporate research to manufacture doubt about the health hazards of products: an overview of the Exponent Bakelite™ simulation study.

    PubMed

    Egilman, David S

    2016-01-01

    Although corporate sponsorship of research does not necessarily lead to biased results, in some industries it has resulted in the publication of inaccurate and misleading information. Some companies have hired scientific consulting firms to retrospectively calculate exposures to products that are no longer manufactured or sold. As an example, this paper reviews one such study - a litigation-engendered study of Union Carbide Corporation's asbestos-containing product, Bakelite™. This analysis is based on previously secret documents produced as a result of litigation. The study published asbestos fiber exposure measurements that underestimated actual exposures to create doubt about the hazards associated with the manufacture and manipulation of Bakelite™.

  5. The production of corporate research to manufacture doubt about the health hazards of products: an overview of the Exponent Bakelite™ simulation study

    PubMed Central

    2016-01-01

    Although corporate sponsorship of research does not necessarily lead to biased results, in some industries it has resulted in the publication of inaccurate and misleading information. Some companies have hired scientific consulting firms to retrospectively calculate exposures to products that are no longer manufactured or sold. As an example, this paper reviews one such study – a litigation-engendered study of Union Carbide Corporation’s asbestos-containing product, Bakelite™. This analysis is based on previously secret documents produced as a result of litigation. The study published asbestos fiber exposure measurements that underestimated actual exposures to create doubt about the hazards associated with the manufacture and manipulation of Bakelite™. PMID:27128626

  6. Nano-manufactured catalyst for the production of hydrogen via solar thermal water splitting

    NASA Astrophysics Data System (ADS)

    Clower, William; Wilson, Chester G.

    2016-05-01

    This paper reports on the creation of nano-manufactured catalyst for the production of hydrogen fuel via the solar thermal water splitting process. The solar thermal water splitting process is considered the holy grail of green energy as the process produces zero carbon emissions. This is made possible by focusing solar energy as the heating source, while the only reactant consumed in the process is water. For this work we are investigating the reaction dynamics of cobalt ferrite catalyst supported on an aluminum oxide support. Solar thermal water splitting occurs in two steps: reduction and oxidation reactions. The reduction step occurs by heating the catalyst, which produces oxygen and converts the cobalt ferrite/aluminum oxide to metal aluminates. The oxidation step begins by flowing water over the newly created metal aluminates. The metal aluminates react with the oxygen creating the original cobalt ferrite/aluminum oxide catalyst as well as hydrogen gas. The catalyst created for this work was done utilizing an electrospinning technique. In a one-step process the aluminum oxide support material can be incorporated with cobalt ferrite catalyst into a single nanofiber. With this technique nanofiber catalyst can be created with diameters ranging from 20 to 80 nm. Nanostructured materials allow for large surface areas >50 m2/g and surface area to volume ratios >9e7/m. The large surface area creates the opportunity for more active sites where the reactions can occur. An increase in reactivity has the potential to move fuel production rate for solar thermal water splitting closer to large-scale commercialization.

  7. Airborne manufactured nano-objects released from commercially available spray products: temporal and spatial influences.

    PubMed

    Bekker, Cindy; Brouwer, Derk H; van Duuren-Stuurman, Birgit; Tuinman, Ilse L; Tromp, Peter; Fransman, Wouter

    2014-01-01

    This paper reports a study of the dispersion of manufactured nano-objects (MNOs) through the air, both in time and space, during the use of two commercially available nano-spray products and comparable products without MNOs. The main objective was to identify whether personal exposure can occur at a greater distance than the immediate proximity of the source (>1 m from the source), that is, in the "far field" (bystanders), or at a period after the emission occurred (re-entry). The spray experiments were conducted in an experimental room with well-controlled environmental and ventilation conditions (19.5 m(3)). The concentration of MNOs was investigated by measuring real-time size distribution, number, and active surface area concentration. For off-line analysis of the particles in the air, samples for scanning/transmission electron microscopy and elemental analysis were collected. The release of MNOs was measured at ∼30 and 290 cm from the source ("near field" and "far field", respectively). For all four spray products, the maximum number and surface area concentrations in the "near field" exceeded the maximum concentrations reached in the "far field". At 2 min after the emission occurred, the concentration in both the "near field" and "far field" reached a comparable steady-state level above background level. These steady-state concentrations remained elevated above background concentration throughout the entire measurement period (12 min). The results of the real-time measurement devices mainly reflect the liquid aerosols emitted by the spray process itself rather than only the MNO, which hampers the interpretation of the results. However, the combination of the off-line analysis and the results of the real-time devices indicates that after the use of nano-spray products, personal exposure to MNOs can occur not only in the near field, but also at a greater distance than the immediate proximity of the source and at a period after emission occurred.

  8. Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass

    SciTech Connect

    Biddy, Mary J.; Davis, Ryan; Humbird, David; Tao, Ling; Dowe, Nancy; Guarnieri, Michael T.; Linger, Jeffrey G.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.; Beckham, Gregg T.

    2016-06-06

    coproducts, recovery and purification of fuels and coproducts, and coproduct selection and price. Overall, this analysis documents potential economics for both a hydrocarbon fuel and bioproduct process pathway and highlights prioritized research directions beyond the current benchmark to enable hydrocarbon fuel production via an oleaginous microbial platform with simultaneous coproduct manufacturing from lignocellulosic biomass.

  9. Analyzing the Technology of Using Ash and Slag Waste from Thermal Power Plants in the Production of Building Ceramics

    NASA Astrophysics Data System (ADS)

    Malchik, A. G.; Litovkin, S. V.; Rodionov, P. V.; Kozik, V. V.; Gaydamak, M. A.

    2016-04-01

    The work describes the problem of impounding and storing ash and slag waste at coal thermal power plants in Russia. Recovery and recycling of ash and slag waste are analyzed. Activity of radionuclides, the chemical composition and particle sizes of ash and slag waste were determined; the acidity index, the basicity and the class of material were defined. The technology for making ceramic products with the addition of ash and slag waste was proposed. The dependencies relative to the percentage of ash and slag waste and the optimal parameters for baking were established. The obtained materials were tested for physical and mechanical properties, namely for water absorption, thermal conductivity and compression strength. Based on the findings, future prospects for use of ash and slag waste were identified.

  10. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-12-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper.

  11. Ceramic component development analysis -- Volume 1. Final report

    SciTech Connect

    Boss, D.E.

    1998-06-09

    The development of advanced filtration media for advanced fossil-fueled power generating systems is a critical step in meeting the performance and emissions requirements for these systems. While porous metal and ceramic candle-filters have been available for some time, the next generation of filters will include ceramic-matrix composites (CMCs) (Techniweave/Westinghouse, Babcock and Wilcox (B and W), DuPont Lanxide Composites), intermetallic alloys (Pall Corporation), and alternate filter geometries (CeraMem Separations). The goal of this effort was to perform a cursory review of the manufacturing processes used by 5 companies developing advanced filters from the perspective of process repeatability and the ability for their processes to be scale-up to produce volumes. Given the brief nature of the on-site reviews, only an overview of the processes and systems could be obtained. Each of the 5 companies had developed some level of manufacturing and quality assurance documentation, with most of the companies leveraging the procedures from other products they manufacture. It was found that all of the filter manufacturers had a solid understanding of the product development path. Given that these filters are largely developmental, significant additional work is necessary to understand the process-performance relationships and projecting manufacturing costs.

  12. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  13. The National Shipbuilding Research Program. 1989 Ship Production Symposium, Paper No. AP: Design Through Manufacture: A Computer Aided Advisor for the Manufacture of Submarine Hulls

    DTIC Science & Technology

    1989-09-01

    and manufacture of submarine hulls. The design and manufacture advisor incorporates models of the materials ( steel ) and processes (bump forming, roll...manufacturing process for a submarine hull is shown in Figure 1. The process can be divided into the following stages: Select steel Cut steel plate to...variances in the manufacture of the steel . Localized stress can result from the rolling mills and heat treatment of the plate. Flame and plasma cutting

  14. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    SciTech Connect

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  15. Lean manufacturing and Toyota Production System terminology applied to the procurement of vascular stents in interventional radiology.

    PubMed

    de Bucourt, Maximilian; Busse, Reinhard; Güttler, Felix; Wintzer, Christian; Collettini, Federico; Kloeters, Christian; Hamm, Bernd; Teichgräber, Ulf K

    2011-08-01

    OBJECTIVES: To apply the economic terminology of lean manufacturing and the Toyota Production System to the procurement of vascular stents in interventional radiology. METHODS: The economic- and process-driven terminology of lean manufacturing and the Toyota Production System is first presented, including information and product flow as well as value stream mapping (VSM), and then applied to an interdisciplinary setting of physicians, nurses and technicians from different medical departments to identify wastes in the process of endovascular stent procurement in interventional radiology. RESULTS: Using the so-called seven wastes approach of the Toyota Production System (waste of overproducing, waiting, transport, processing, inventory, motion and waste of defects and spoilage) as well as further waste characteristics (gross waste, process and method waste, and micro waste), wastes in the process of endovascular stent procurement in interventional radiology were identified and eliminated to create an overall smoother process from the procurement as well as from the medical perspective. CONCLUSION: Economic terminology of lean manufacturing and the Toyota Production System, especially VSM, can be used to visualise and better understand processes in the procurement of vascular stents in interventional radiology from an economic point of view.

  16. Ceramic Material.

    DTIC Science & Technology

    1990-05-02

    A ceramic material which is (1) ceramics based on monoclinic BaO.Al2O3.2SiO2; (2) ceramics based on monoclinic SrO.Al2O3.2SiO2; or (3) ceramics based on monoclinic solid solution of BaO.Al2O3.2SiO2 and SrO.Al2O3.2SiO2.

  17. Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review.

    PubMed

    Jenke, Dennis R; Stults, Cheryl L M; Paskiet, Diane M; Ball, Douglas J; Nagao, Lee M

    Elemental impurities in drug products can arise from a number of different sources and via a number of different means, including the active pharmaceutical ingredient, excipients, the vehicle, and leaching of elemental entities that are present in the drug product's manufacturing or packaging systems. Thus, knowledge about the presence, level, and likelihood of leaching of elemental entities in manufacturing and packaging systems is relevant to understanding how these systems contribute to a drug product's total elemental impurity burden. To that end, a joint team from the Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) has conducted a review of the available literature on elemental entities in pharmaceutically relevant polymers and the presence of these elemental entities in material extracts and/or drug products. This review article contains the information compiled from the available body of literature and considers two questions: (1) What elemental entities are present in the relevant polymers and materials and at what levels are they present? (2) To what extent are these elemental entities leached from these materials under conditions relevant to the manufacturing and storage/distribution of solution drug products? Conclusions drawn from the compiled data are as follows: (1) Elemental entities are present in the materials used to construct packaging and manufacturing systems as these materials either contain these elemental entities as additives or are exposed to elemental entities during their production. (2) Unless the elemental entities are parts of the materials themselves (for example, SiO2 in glass) or intentionally added to the materials (for example, metal stearates in polymers), their incidental amounts in the materials are generally low. (3) When elemental entities are present in materials and systems, generally only a very small

  18. Structural Ceramics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  19. Quantification of Bufadienolides in Bryophyllum pinnatum Leaves and Manufactured Products by UHPLC-ESIMS/MS.

    PubMed

    Oufir, Mouhssin; Seiler, Christina; Gerodetti, Manon; Gerber, Julia; Fürer, Karin; Mennet-von Eiff, Monica; Elsas, Siegward-M; Brenneisen, Rudolf; von Mandach, Ursula; Hamburger, Matthias; Potterat, Olivier

    2015-08-01

    A quantitative assay for determination of the main bufadienolides bersaldegenin-1-acetate (1), bersaldegenin-3-acetate (2), bryophyllin A (3), and bersaldegenin-1,3,5-orthoacetate (4) in Bryophyllum pinnatum leaves and manufactured products was developed and validated. The assay involved extraction by pressurised liquid extraction, followed by quantification by ultrahigh performance liquid chromatography-tandem mass spectroscopy. The ultrahigh performance liquid chromatography-tandem mass spectroscopy method was applied to various batches of leaves harvested on several dates from plants grown at two locations (Brazil and Germany). In addition, press juices prepared from plants cultivated in Germany and Brazil were analysed. The total bufadienolide content ranged from 16.28 to 40.50 mg/100 g dry weight in leaves from plants grown in Brazil. The total content of these four bufadienolides was significantly lower in plants cultivated in Germany (3.78-12.49 mg/100 g dry weight, resp.). The total amounts of bufadienolides were 0.091-0.163 mg/100 mL and 0.89-1.16 mg/100 mL in press juices obtained from plants cultivated in Germany and Brazil, respectively. When analysing single leaves from individual plants, the content of bufadienolides was markedly higher in young leaves. For comparative purposes, the content of these bufadienolides was also determined in Bryophyllum daigremontianum and Bryophyllum tubiflorum. Bersaldegenin-1,3,5-orthoacetate (4) was predominant in the leaves of B. daigremontianum and in the stems of B. tubiflorum, while the leaves of B. tubiflorum contained very low amounts of 1-4.

  20. Coal fly ash as raw material for the manufacture of geopolymer-based products.

    PubMed

    Andini, S; Cioffi, R; Colangelo, F; Grieco, T; Montagnaro, F; Santoro, L

    2008-01-01

    In this work coal fly ash has been employed for the synthesis of geopolymers. Two different systems with silica/alumina ratios stoichiometric for the formation of polysialatesiloxo (PSS, SiO2/Al2O3=4) and polysialatedisiloxo (PSDS, SiO2/Al2O3=6) have been prepared. The alkali metal hydroxide (NaOH or KOH) necessary to start polycondensation has been added in the right amount as concentrated aqueous solution to each of the two systems. The concentration of each alkali metal solution has been adjusted in order to have the right liquid volume to ensure constant workability. The systems have been cured at four different temperatures (25, 40, 60, and 85 degrees C) for several different times depending on the temperature (16-672 h at 25 degrees C; 72-336 h at 40 degrees C; 16-120 h at 60 degrees C and 1-6h at 85 degrees C). The products obtained in the different experimental conditions have been submitted to the quantitative determination of the extent of polycondensation through mass increase and loss on ignition, as well as to qualitative characterization by means of FT-IR spectroscopy. Furthermore, physico-structural and mechanical characterization has been carried out through microscopic observations and the determination of unconfined compressive strength, elasticity modulus, apparent density, porosity and specific surface area. The results have indicated that the systems under investigation are suited for the manufacture of pre-formed building blocks at room temperature.

  1. Manufacture of Immunoglobulin Products for Patients with Primary Antibody Deficiencies – The Effect of Processing Conditions on Product Safety and Efficacy

    PubMed Central

    Farrugia, Albert; Quinti, Isabella

    2014-01-01

    Early preparations of immunoglobulin (Ig) manufactured from human plasma by ethanol (Cohn) fractionation were limited in their usefulness for substitution therapy in patients with primary antibody deficiencies (PAD), as Ig aggregates formed during manufacture resulted in severe systemic reactions in patients when given intravenously. Developments in manufacturing technology obviated this problem through the capacity to produce concentrated solutions of intact monomeric Ig, revolutionizing PAD treatment and improving patient life expectancy and quality of life. As the need for Ig has grown, manufacturers have refined further manufacturing technologies to improve yield from plasma and produce therapies, which are easier and less expensive to deliver. This has led to the substitution, partly or wholly, of ethanol precipitation by other techniques such as chromatography, and has also stimulated the production of highly concentrated solutions capable of rapid infusion. Ig products have been associated, since their inception, with certain adverse events, including infectious disease transmission, hemolysis, and thromboembolism. The introduction of standardized manufacturing processes and dedicated pathogen elimination steps has removed the risk of infectious disease, and the focus of attention has shifted to other problems, which appear to have increased over the past 5 years. These include hemolysis and thromboembolism, both the cause for substantial concern and the subject of recent regulatory scrutiny and actions. We review the development of manufacturing technology and the emerging evidence that changes for the optimization of yield and convenience has contributed to the recent incidents in certain adverse events. Industry measures under development will be discussed in terms of their potential to improve safety and optimize care for patients with PAD. PMID:25566269

  2. Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study.

    PubMed

    Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2009-08-01

    This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.

  3. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  4. A new classification system for all-ceramic and ceramic-like restorative materials.

    PubMed

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  5. METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products

    SciTech Connect

    Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

    1982-05-01

    The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

  6. Compressed Air System Overhaul Improves Production at a Powdered Metal Manufacturing Plant (GKN Sinter Metals in Salem, IN)

    SciTech Connect

    2000-11-01

    In 1998, GKN Sinter Metals completed a successful compressed air system improvement project at its Salem, Indiana manufacturing facility. The project was performed after GKN undertook a survey of its system in order to solve air quality problems and to evaluate whether the capacity of their compressed air system would meet their anticipated plant expansion. Once the project was implemented, the plant was able to increase production by 31% without having to add any additional compressor capacity.

  7. The Modelling Of Basing Holes Machining Of Automatically Replaceable Cubical Units For Reconfigurable Manufacturing Systems With Low-Waste Production

    NASA Astrophysics Data System (ADS)

    Bobrovskij, N. M.; Levashkin, D. G.; Bobrovskij, I. N.; Melnikov, P. A.; Lukyanov, A. A.

    2017-01-01

    Article is devoted the decision of basing holes machining accuracy problems of automatically replaceable cubical units (carriers) for reconfigurable manufacturing systems with low-waste production (RMS). Results of automatically replaceable units basing holes machining modeling on the basis of the dimensional chains analysis are presented. Influence of machining parameters processing on accuracy spacings on centers between basing apertures is shown. The mathematical model of carriers basing holes machining accuracy is offered.

  8. Production of Ultrafine, High-purity Ceramic Powders Using the US Bureau of Mines Developed Turbomill

    NASA Technical Reports Server (NTRS)

    Hoyer, Jesse L.

    1993-01-01

    Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.

  9. Production technology and provenance study of archaeological ceramics from relevant sites in the Alcantara River Valley (North-eastern Sicily, Italy)

    SciTech Connect

    Belfiore, Cristina Maria; Di Bella, Marcella; Triscari, Maurizio; Viccaro, Marco

    2010-04-15

    In this paper, volcanic-rich ceramic remains from the archaeological sites of Francavilla, Naxos and Taormina (Province of Messina, North-eastern Sicily) were studied by using inclusions as main provenance marker. Technological features, such as temper choice, vitrification degree and firing temperatures, were investigated by polarizing microscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Information on the production centres was obtained through the identification of the source area of raw materials used as temper. Indeed, petrochemical analysis of the volcanic inclusions within the examined ceramics displayed strong affinities with structures/textures and compositions of the locally outcropping mugearitic products, probably ascribed to the eruptive activity of an eccentric vent of Mt. Etna (Mt. Mojo). A local production for the studied pottery samples has been therefore advanced, assuming that the used volcanic temper was easily available from the alluvial deposits along the Alcantara River stream, which is connected to the lava flow of Mt. Mojo.

  10. Evaluation of silicon-nitride ceramic valves.

    SciTech Connect

    Sun, J. G.; Zhang, J. M.; Andrews, M. J.; Tretheway, J. S.; Phillips, N. S .L.; Jensen, J. A.; Nuclear Engineering Division; Univ. of Texas; Caterpillar, Inc.

    2008-01-01

    Silicon-nitride ceramic valves can improve the performance of both light- and heavy-duty automotive engines because of the superior material properties of silicon nitrides over current metal alloys. However, ceramics are brittle materials that may introduce uncertainties in the reliability and durability of ceramic valves. As a result, the lifetime of ceramic valves are difficult to predict theoretically due to wide variations in the type and distribution of microstructural flaws in the material. Nondestructive evaluation (NDE) methods are therefore required to assess the quality and reliability of these valves. Because ceramic materials are optically translucent and the strength-limiting flaws are normally located near the valve surface, a laser-scatter method can be used for NDE evaluation of ceramic valves. This paper reviews the progress in the development of this NDE method and its application to inspect silicon-nitride ceramic valves at various stages of manufacturing and bench and engine tests.

  11. From e-manufacturing to Internet Product Process Development (IPPD) through remote - labs

    NASA Astrophysics Data System (ADS)

    Córdoba Nieto, Ernesto; Andres Cifuentes Parra, Paulo; Camilo Parra Díaz, Juan

    2014-07-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as "Laboratorio Fabrica Experimental"). This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A.

  12. Integrated Computer-Aided Manufacturing (ICAM) Architecture. Part 3. Volume 6. Composite Information Model of ’Manufacture Product’ (MFG1)

    DTIC Science & Technology

    1983-09-08

    Y WOAOS ( Continue on revert• .1 1de il nec••••ry and rdenrlfy by blo number’) Manufacturing Architecture ICAM MFGl Model of Manufacturing IDEF ...the success of the !CAM program. A key to the achievement of this goal is the development of the !CAM Definition ( IDEF ) Methods and the !CAM...manufacturing environments. There are three !CAM Definition Methods: IDEF ~ - Function Modeling; IDEFl - Information Modeling; and IDEF2 - Dynamics

  13. An analysis of preferences for hazardous substances free products: manufacturing, use and end of life of mobile phones.

    PubMed

    Kaushal, Rajendra Kumar; Nema, Arvind K

    2012-11-01

    Electronic communication devices such as mobile phones pose significant environmental risks when disposed of after the end of their useful life. Mobile communication devices are one of the fastest growing contributors to the electronic waste (e-waste) stream. Recent legislative pressure and increasing awareness about the environmental risk associated with the hazardous components of the electronic products warrants the manufacturers to reduce or replace the hazardous materials with alternatives. The present study analyses the economic consequences of reducing or replacing these hazardous materials and the possible response of the consumers. A strategic game theory model has been applied in this paper for manufacturer and consumers considering the cost difference between hazardous substances free (HSF) and hazardous substance (HS) mobile. Results suggest that the HSF mobiles can be a preferred choice of the manufacturers as well as consumers if the cost of disposal of HS mobiles can be internalized and a marginal incentive (e.g. 0.9% for a cost difference to 5%, and 5.3% for a cost difference to 10%) is given. The study further highlights the need for realizing the fact that passing on the incentives to the consumers in order to promote schemes for return back to manufacturer at its end of life for effective reuse and recycling gives higher returns.

  14. Introduction of a method for presenting health-based impacts of the emission from products, based on emission measurements of materials used in manufacturing of the products

    SciTech Connect

    Jørgensen, Rikke Bramming

    2013-11-15

    A method for presenting the health impact of emissions from furniture is introduced, which could be used in the context of environmental product declarations. The health impact is described by the negative indoor air quality potential, the carcinogenic potential, the mutagenic and reprotoxic potential, the allergenic potential, and the toxicological potential. An experimental study of emissions from four pieces of furniture is performed by testing both the materials used for production of the furniture and the complete piece of furniture, in order to compare the results gained by adding emissions of material with results gained from testing the finished piece of furniture. Calculating the emission from a product based on the emission from materials used in the manufacture of the product is a new idea. The relation between calculated results and measured results from the same products differ between the four pieces of furniture tested. Large differences between measured and calculated values are seen for leather products. More knowledge is needed to understand why these differences arise. Testing materials allows us to compare different suppliers of the same material. Four different foams and three different timber materials are tested, and the results vary between materials of the same type. If the manufacturer possesses this type of knowledge of the materials from the subcontractors it could be used as a selection criterion according to production of low emission products. -- Highlights: • A method for presenting health impact of emissions is introduced. • An experimental study of emissions from four pieces of furniture is performed. • Health impact is calculated based on sum of contribution from the materials used. • Calculated health impact is compared to health impact of the manufactured product. • The results show that health impact could be useful in product development and for presentation in EPDs.

  15. Fabrication of porous silicon nitride ceramics using binder jetting technology

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  16. Occupational ceramic fibres dermatitis in Poland.

    PubMed

    Kieć-Swierczyńska, M; Wojtczak, J

    2000-07-01

    Recently, the use of asbestos has been considerably limited in Poland, with the simultaneous increase in the manufacture, processing and application of man-made mineral fibres, which includes ceramic fibres. The aims of this study were (1) to assess the type and frequency of dermal changes caused by the irritant activity of ceramic fibres among workers at the plants that manufacture packing and insulation products; and (2) to compare the irritant activity of Polish-made L-2 and L-3 ceramic fibres with that of the Thermowool ceramic fibres made in England. Workers (n = 226) who were exposed to ceramic fibres underwent dermatological examination. Patch tests with the standard allergen set, together with samples of the fibres L-2, L-3, and Thermowool fibres, were applied to all the workers. It has been shown that the Polish-made L-2 and L-3 fibres differed from Thermowool fibres in that the L-2 and L-3 fibres contained zirconium and were coarser. The proportion of filaments with diameters above 3 microns was 11.1% in the L-3 fibre and 6.3% in the L-2 fibre samples. The Thermowool fibre did not contain filaments thicker than 3 microns. Evident dermal changes, resulting from strong irritant activity of the fibres, were detected in 109 (48.2%) of the workers examined. Irritant contact dermatitis acuta (maculae, sometimes papulae and small crusts on the upper extremities, trunk, and lower extremities), disappearing after 2-3 days, was found in 50 (22.1%) workers. Irritant contact dermatitis chronica (diffuse permanent erythema with numerous telangiectasiae on the lateral portions of the face and neck, on the trunk, behind the auricles) was detected in 40 (17.7%) workers. The remaining 19 (8.4%) workers had both types of dermal change. All examined workers complained of very strong itching. The results of the patch tests confirmed the irritant activity of the ceramic fibres. Erythema without oedema, persisting for up to 96 h, appeared at the places where the fibres had

  17. Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization

    DTIC Science & Technology

    2015-05-01

    1 Make or Buy: Cost Impacts of Additive Manufacturing , 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: Cost Impacts of Additive Manufacturing , 3D Laser Scanning Technology...management during operations 4 Potential Technology 3: Additive Manufacturing (“3D Printing”) 5 • 3D design/image (e.g. from 3D LS) of final part

  18. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  19. Dentin bond strength of two resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials and five cements after six months storage.

    PubMed

    Flury, Simon; Schmidt, Stefanie Zita; Peutzfeldt, Anne; Lussi, Adrian

    2016-10-01

    The aim was to investigate dentin bond strength of two resin-ceramic materials and five cements after 24 h and six months storage. Cylinders (n=15/group) of Lava Ultimate (3M ESPE) and VITA ENAMIC (VITA Zahnfabrik) were cemented to mid-coronal dentin of 300 extracted human molars with RelyX Ultimate (3M ESPE), PANAVIA F2.0 (Kuraray), Variolink II (Ivoclar Vivadent), els cem (Saremco Dental), or Ketac Cem Plus (3M ESPE). Shear bond strength (SBS) was measured after 24 h or six months storage (37°C, 100% humidity) and statistically analyzed (significance level: α=0.05). SBS varied markedly between Lava Ultimate and VITA ENAMIC, between the five cements, and between storage of either 24 h or six months. After six months, SBS was highest when Lava Ultimate was cemented with RelyX Ultimate and when VITA ENAMIC was cemented with RelyX Ultimate or with Variolink II. Lava Ultimate was somewhat more sensitive to storage than was VITA ENAMIC.

  20. Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.

    PubMed

    Cimini, Alessio; Moresi, Mauro

    2016-10-01

    In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, vS = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J(*) ) of 32 or 37 L/m(2) /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity <1 EBC unit, but a significant reduction in density, viscosity, color, extract, and foam half-life with respect to their corresponding retentates. The 0.8-μm asymmetric membrane module might be selected, its corresponding permeate having quite a good turbidity and medium reduction in the aforementioned beer quality parameters. Moreover, it exhibited J(*) values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m(2) /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined.