Sample records for manufacturing challenges implementing

  1. Supply Chain Management on IBS Implementation in Klang Valley Construction Industry: Challenges and Issues

    NASA Astrophysics Data System (ADS)

    Azrizal Fauzi, Mohd; Hasim, Sulaiman; Awang, Anizah; Ridzuan, Ahmad Ruslan Mohd; Nur Yunus, Juzailah

    2017-12-01

    Industrialized Building System (IBS) is a system where the components of the building are manufactured in a factory and it will be transported to the site to form the structures. The supply chain management (SCM) is a system where the delivery flows of the IBS products from manufacturers to the site. The aim of this research is to identify the major challenges and to analyze the issues on IBS implementation in SCM in Klang Valley from the manufacturers perspective. The methodology used in this paper is based on primary data through questionnaire and interview. Questionnaires were sent to the Manufacturers. It can be concluded that this paper attempts to present more on the challenges and issues that those companies of manufacturers faced during their success journey in finding integration in their supply chain. The main contributions of this paper are integrating all the supply chain integration challenges and issues on IBS. Therefore, these contributions will be helpful for the organization of manufacturers and IBS players that establish the integration in their SCM.

  2. Manufacturing Challenges Implementing Material Changes for the Super Light Weight External Tank: A Welding Process Perspective

    NASA Technical Reports Server (NTRS)

    Lawless, K.; Jones, C.

    2001-01-01

    A viewgraph presentation gives an overview of the manufacturing challenges in implementing welding material changes for the super lightweight external tank. Details are given on the external tank configuration, the weld purging equipment used, planning the selection of weld filler wire alloy, the initial weld microstructure, the wide panel tensile testing, and the dome cap welding.

  3. Marshall Space Flight Center Digital Manufacturing

    NASA Technical Reports Server (NTRS)

    Arays, Edward; Phillips, Steven

    2008-01-01

    This presentation highlights the history of DELMIA at MSFC; provides an overview of the Constellation Program; examines the manufacturing of Ares 1 Upper Stage; explains the digital manufacturing implementation for Ares 1 Upper Stage; and, discusses manufacturing and development problems and challenges.

  4. IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING.

    PubMed

    Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee

    2015-10-01

    Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly.

  5. IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING

    PubMed Central

    Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee

    2015-01-01

    Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly. PMID:26783512

  6. Challenges with the introduction of radio-frequency identification systems into a manufacturer's supply chain - a pilot study

    NASA Astrophysics Data System (ADS)

    Kumar, Sameer; Kadow, Brooke B.; Lamkin, Melissa K.

    2011-05-01

    As radio-frequency identification (RFID) implementation becomes more widespread it is important for managers to consider if this technology is right for their businesses. This study examines challenges of RFID implementation along with a cost-benefit analysis of a pharmaceuticals manufacturer's supply chain. Research was gathered from a variety of sources on the topic of RFID to provide an in-depth analysis of challenges and benefits found with RFID systems. Furthermore, the study reviews the real case applications of the RFID technology in healthcare and customer services. Many of the challenges with RFID stem from improper planning of the synchronisation of the supply chain and the integration of RFID technology into facilities and software systems. Customer privacy, excess information and obsolete technology are also of concern to companies considering RFID. Benefits such as increased information sharing, product visibility and real-time information help to offset these challenges. In addition, pharmaceuticals manufacturer real case application showed cost savings from reducing labour and decreased opportunities for lost product counteract the expense to implement an RFID system. This study will be of value to managers who are attempting to implement RFID technology in their companies. It is intended that readers, both academics and practitioners, will be able to identify possible challenges and mitigate them as the RFID technology is put into practice.

  7. Development of the supply chain oriented quality assurance system for aerospace manufacturing SMEs and its implementation perspectives

    NASA Astrophysics Data System (ADS)

    Hussein, Abdullahi; Cheng, Kai

    2016-10-01

    Aerospace manufacturing SMEs are continuously facing the challenge on managing their supply chain and complying with the aerospace manufacturing quality standard requirement due to their lack of resources and the nature of business. In this paper, the ERP system based approach is presented to quality control and assurance work in light of seamless integration of in-process production data and information internally and therefore managing suppliers more effectively and efficiently. The Aerospace Manufacturing Quality Assurance Standard (BS/EN9100) is one of the most recognised and essential protocols for developing the industry-operated-and-driven quality assurance systems. The research investigates using the ERP based system as an enabler to implement BS/EN9100 quality management system at manufacturing SMEs and the associated implementation and application perspectives. An application case study on a manufacturing SME is presented by using the SAP based implementation, which helps further evaluate and validate the approach and application system development.

  8. Challenges in teaching modern manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-07-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.

  9. The challenges of lean manufacturing implementation in kitting assembly

    NASA Astrophysics Data System (ADS)

    Fansuri, A. F. H.; Rose, A. N. M.; Nik Mohamed, N. M. Z.; Ahmad, H.

    2017-10-01

    Literature studies shows that lean manufacturing goes way back with the original founder Eli Whitney in year 1799. The main purpose of lean manufacturing is to identify and eliminate waste in production. The application of lean manufacturing can be carried out in any industrial processes with regards to the understanding of lean principles, theories and practices. Kitting is one of the important aspects in a successful production. The continuous supply of materials from store to production has to be systematic and able to achieve lean standard for it to be successful. The objective of this paper is to review the implementation of lean manufacturing in kitting assembly. Previous papers show that, the implementation of lean manufacturing in kitting assembly may be beneficial to the organization such as reduce in space occupancy, part shortages, lead time and manpower. Based on previous research, some industries may tend to change between kitting and line stocking which are due to lack of understanding when implementing kitting and causes longer lead time and materials overflow in store. With a proper understanding on what to kit, where to kit, how to kit, why to kit and who kits the material with a standardised process flow may ensure the success of kitting.

  10. Regulatory and quality considerations for continuous manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Allison, Gretchen; Cain, Yanxi Tan; Cooney, Charles; Garcia, Tom; Bizjak, Tara Gooen; Holte, Oyvind; Jagota, Nirdosh; Komas, Bekki; Korakianiti, Evdokia; Kourti, Dora; Madurawe, Rapti; Morefield, Elaine; Montgomery, Frank; Nasr, Moheb; Randolph, William; Robert, Jean-Louis; Rudd, Dave; Zezza, Diane

    2015-03-01

    This paper assesses the current regulatory environment, relevant regulations and guidelines, and their impact on continuous manufacturing. It summarizes current regulatory experience and learning from both review and inspection perspectives. It outlines key regulatory aspects, including continuous manufacturing process description and control strategy in regulatory files, process validation, and key Good Manufacturing Practice (GMP) requirements. In addition, the paper identifies regulatory gaps and challenges and proposes a way forward to facilitate implementation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. A methodology for Manufacturing Execution Systems (MES) implementation

    NASA Astrophysics Data System (ADS)

    Govindaraju, Rajesri; Putra, Krisna

    2016-02-01

    Manufacturing execution system is information systems (IS) application that bridges the gap between IS at the top level, namely enterprise resource planning (ERP), and IS at the lower levels, namely the automation systems. MES provides a media for optimizing the manufacturing process as a whole in a real time basis. By the use of MES in combination with the implementation of ERP and other automation systems, a manufacturing company is expected to have high competitiveness. In implementing MES, functional integration -making all the components of the manufacturing system able to work well together, is the most difficult challenge. For this, there has been an industry standard that specifies the sub-systems of a manufacturing execution systems and defines the boundaries between ERP systems, MES, and other automation systems. The standard is known as ISA-95. Although the advantages from the use of MES have been stated in some studies, not much research being done on how to implement MES effectively. The purpose of this study is to develop a methodology describing how MES implementation project should be managed, utilising the support of ISA- 95 reference model in the system development process. A proposed methodology was developed based on a general IS development methodology. The developed methodology were then revisited based on the understanding about the specific charateristics of MES implementation project found in an Indonesian steel manufacturing company implementation case. The case study highlighted the importance of applying an effective requirement elicitation method during innitial system assessment process, managing system interfaces and labor division in the design process, and performing a pilot deployment before putting the whole system into operation.

  12. The Future of Pharmaceutical Manufacturing Sciences

    PubMed Central

    2015-01-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993

  13. The Future of Pharmaceutical Manufacturing Sciences.

    PubMed

    Rantanen, Jukka; Khinast, Johannes

    2015-11-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Regulatory and Quality Considerations for Continuous Manufacturing May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Allison, Gretchen; Cain, Yanxi Tan; Cooney, Charles; Garcia, Tom; Bizjak, Tara Gooen; Holte, Oyvind; Jagota, Nirdosh; Komas, Bekki; Korakianiti, Evdokia; Kourti, Dora; Madurawe, Rapti; Morefield, Elaine; Montgomery, Frank; Nasr, Moheb; Randolph, William; Robert, Jean-Louis; Rudd, Dave; Zezza, Diane

    2015-03-01

    This paper assesses the current regulatory environment, relevant regulations and guidelines, and their impact on continuous manufacturing. It summarizes current regulatory experience and learning from both review and inspection perspectives. It outlines key regulatory aspects, including continuous manufacturing process description and control strategy in regulatory files, process validation, and key Good Manufacturing Practice (GMP) requirements. In addition, the paper identifies regulatory gaps and challenges and proposes a way forward to facilitate implementation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J

    2015-03-01

    This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as crystallization. Involve all parts of the organization from discovery, research and development, and manufacturing in the implementation of CM. Engage with academia to develop the training provision to support the skills base for CM, particularly in flow chemistry, physical chemistry, and chemical engineering skills at the chemistry-process interface. Promote and encourage publication and dissemination of examples of CM across the sector to demonstrate capability, engage with regulatory comment, and establish benchmarks for performance and highlight challenges. Develop the economic case for CM of drug substance. This will involve various stakeholders at project and business level, however establishing the critical economic drivers is critical to driving the transformation in manufacturing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Measurement of sustainability index among paper manufacturing plants

    NASA Astrophysics Data System (ADS)

    Sharathkumar Reddy, V.; Jayakrishna, K.; Lal, Babu

    2017-11-01

    The paper manufacturing companies are facing challenges to implement sustainable manufacturing into their products and processes. Paper manufacturing has remarked as an intensive consumer of natural raw materials, energy and a major source of multiple pollutants. Thus, evaluating the sustainable manufacturing in these companies has become a necessity. This paper proposes a set of Performance Indicators (PIs) for evaluating the sustainable manufacturing appropriate to the paper manufacturing companies based on the triple bottom line of sustainability. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), a multi-criteria decision analysis method is applied to prioritize the performance indicators by summarizing the opinions of stakeholders. It is hoped that the proposed PIs enables and assists the paper manufacturing companies to achieve the higher performance in sustainable manufacturing and so as to increase their competitiveness.

  17. Analysis on critical success factors for agile manufacturing evaluation in original equipment manufacturing industry-an AHP approach

    NASA Astrophysics Data System (ADS)

    Ajay Guru Dev, C.; Senthil Kumar, V. S.

    2016-09-01

    Manufacturing industries are facing challenges in the implementation of agile manufacturing in their products and processes. Agility is widely accepted as a new competitive concept in the manufacturing sector in fulfilling varying customer demand. Thus, evaluation of agile manufacturing in industries has become a necessity. The success of an organisation depends on its ability to manage finding the critical success factors and give them special and continued attention in order to bring about high performance. This paper proposes a set of critical success factors (CSFs) for evaluating agile manufacturing considered appropriate for the manufacturing sector. The analytical hierarchy process (AHP) method is applied for prioritizing the success factors, by summarizing the opinions of experts. It is believed that the proposed CSFs enable and assist manufacturing industries to achieve a higher performance in agile manufacturing so as to increase competitiveness.

  18. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  19. Optimization of the Manufacturing Process of Conical Shell Structures Using Prepreg Laminatees

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Zimmermann, Rolf; Burau, Florian; Siebert, Marc; Arbelo, Mariano; Castro, Saullo; Degenhardt, Richard

    2014-06-01

    The design and manufacture of an unstiffened composite conical structure which is a scaled-down version of the Ariane 5 Midlife Evolution Equipment Bay Structure is presented. For such benchmarking structures the fiber orientation error is critical and then the manufacturing process becomes a big challenge. The paper therefore is focused on the implementation of a tailoring study and on the manufacturing process. The conical structure will be tested to validate a new design approach.This study contributes to the European Union (EU) project DESICOS, whose aim is to develop less conservative design guidelines for imperfection sensitive thin-walled structures.

  20. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, F.; Lahoda, E.; Wenner, M.

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principlemore » be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)« less

  1. Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop

    PubMed Central

    Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand

    2017-01-01

    The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163

  2. Design and manufacturing challenges of optogenetic neural interfaces: a review

    NASA Astrophysics Data System (ADS)

    Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Costa, R. M.; Correia, J. H.

    2017-08-01

    Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. Significance: Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.

  3. Virtual aluminum castings: An industrial application of ICME

    NASA Astrophysics Data System (ADS)

    Allison, John; Li, Mei; Wolverton, C.; Su, Xuming

    2006-11-01

    The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing engine performance requirements coupled with stringent weight and packaging constraints are pushing aluminum alloys to the limits of their capabilities. To provide high-quality blocks and heads at the lowest possible cost, manufacturing process engineers are required to find increasingly innovative ways to cast and heat treat components. Additionally, to remain competitive, products and manufacturing methods must be developed and implemented in record time. To bridge the gaps between program needs and engineering reality, the use of robust computational models in up-front analysis will take on an increasingly important role. This article describes just such a computational approach, the Virtual Aluminum Castings methodology, which was developed and implemented at Ford Motor Company and demonstrates the feasibility and benefits of integrated computational materials engineering.

  4. Manufacturing of Wearable Sensors for Human Health and Performance Monitoring

    NASA Astrophysics Data System (ADS)

    Alizadeh, Azar

    2015-03-01

    Continuous monitoring of physiological and biological parameters is expected to improve performance and medical outcomes by assessing overall health status and alerting for life-saving interventions. Continuous monitoring of these parameters requires wearable devices with an appropriate form factor (lightweight, comfortable, low energy consuming and even single-use) to avoid disrupting daily activities thus ensuring operation relevance and user acceptance. Many previous efforts to implement remote and wearable sensors have suffered from high cost and poor performance, as well as low clinical and end-use acceptance. New manufacturing and system level design approaches are needed to make the performance and clinical benefits of these sensors possible while satisfying challenging economic, regulatory, clinical, and user-acceptance criteria. In this talk we will review several recent design and manufacturing efforts aimed at designing and building prototype wearable sensors. We will discuss unique opportunities and challenges provided by additive manufacturing, including 3D printing, to drive innovation through new designs, faster prototyping and manufacturing, distributed networks, and new ecosystems. We will also show alternative hybrid self-assembly based integration techniques for low cost large scale manufacturing of single use wearable devices. Coauthors: Prabhjot Singh and Jeffrey Ashe.

  5. Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds.

    PubMed

    Cole, Kevin P; Johnson, Martin D

    2018-01-01

    For the manufacture of small molecule drugs, many pharmaceutical innovator companies have recently invested in continuous processing, which can offer significant technical and economic advantages over traditional batch methodology. This Expert Review will describe the reasons for this interest as well as many considerations and challenges that exist today concerning continuous manufacturing. Areas covered: Continuous processing is defined and many reasons for its adoption are described. The current state of continuous drug substance manufacturing within the pharmaceutical industry is summarized. Current key challenges to implementation of continuous manufacturing are highlighted, and an outlook provided regarding the prospects for continuous within the industry. Expert commentary: Continuous processing at Lilly has been a journey that started with the need for increased safety and capability. Over twelve years the original small, dedicated group has grown to more than 100 Lilly employees in discovery, development, quality, manufacturing, and regulatory designing in continuous drug substance processing. Recently we have focused on linked continuous unit operations for the purpose of all-at-once pharmaceutical manufacturing, but the technical and business drivers that existed in the very beginning for stand-alone continuous unit operations in hybrid processes have persisted, which merits investment in both approaches.

  6. The effect of lean manufacturing (LM) on environmental performance: A review study

    NASA Astrophysics Data System (ADS)

    Alaa, A. S.; Shaiful, A. I. M.; Zuraidah, M. Z.; Khalaf, A. M.

    2017-09-01

    Nowadays, lean manufacturing strategy is very much used to eliminate waste on the manufacturing shop floor. Lean manufacturing has been formulated in response to the fluctuating and competitive business environment. Although it first started in the automotive industry, many organizations in different sectors are enthusiastic to adopt it in order to improve their performance in this competitive globalized market. The aim of this paper is to review the current level of implementation of lean manufacturing practices and the affects of these practices on organizational performances in a multitude of sectors in Malaysian industries. The study is carried out through a thorough review of the literature. It is observed that lean manufacturing is increasingly getting the appropriate attention in Malaysian industries. There are also many challenges in the way, of which numerous attempts are undertaken to overcome them.

  7. FPGA chip performance improvement with gate shrink through alternating PSM 90nm process

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Chi; Shieh, Ming-Feng; Liu, Erick; Lin, Benjamin; Ho, Jonathan; Wu, Xin; Panaite, Petrisor; Chacko, Manoj; Zhang, Yunqiang; Lei, Wen-Kang

    2005-11-01

    In the post-physical verification space called 'Mask Synthesis' a key component of design-for-manufacturing (DFM), double-exposure based, dark-field, alternating PSM (Alt-PSM) is being increasingly applied at the 90nm node in addition with other mature resolution enhancement techniques (RETs) such as optical proximity correction (OPC) and sub-resolution assist features (SRAF). Several high-performance IC manufacturers already use alt-PSM technology in 65nm production. At 90nm having strong control over the lithography process is a critical component in meeting targeted yield goals. However, implementing alt-PSM in production has been challenging due to several factors such as phase conflict errors, mask manufacturing, and the increased production cost due to the need for two masks in the process. Implementation of Alt-PSM generally requires phase compliance rules and proper phase topology in the layout and this has been successful for the technology node with these rules implemented. However, this may not be true for a mature, production process technology, in this case 90 nm. Especially, in the foundry-fabless business model where the foundry provides a standard set of design rules to its customers for a given process technology, and where not all the foundry customers require Alt-PSM in their tapeout flow. With minimum design changes, design houses usually are motivated by higher product performance for the existing designs. What follows is an in-depth review of the motivation to apply alt-PSM on a production FPGA, the DFM challenges to each partner faced, its effect on the tapeout flow, and how design, manufacturing, and EDA teams worked together to resolve phase conflicts, tapeout the chip, and finally verify the silicon results in production.

  8. Printed polymer photonic devices for optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  9. Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan.

    PubMed

    Qureshi, Muhammad Imran; Iftikhar, Mehwish; Bhatti, Mansoor Nazir; Shams, Tauqeer; Zaman, Khalid

    2013-01-01

    In recent years, inventory management is continuous challenge for all organizations not only due to heavy cost associated with inventory holding, but also it has a great deal to do with the organizations production process. Cement industry is a growing sector of Pakistan's economy which is now facing problems in capacity utilization of their plants. This study attempts to identify the key strategies for successful implementation of just-in-time (JIT) management philosophy on the cement industry of Pakistan. The study uses survey responses from four hundred operations' managers of cement industry in order to know about the advantages and benefits that cement industry have experienced by Just in time (JIT) adoption. The results show that implementing the quality, product design, inventory management, supply chain and production plans embodied through the JIT philosophy which infect enhances cement industry competitiveness in Pakistan. JIT implementation increases performance by lower level of inventory, reduced operations & inventory costs was reduced eliminates wastage from the processes and reduced unnecessary production which is a big challenge for the manufacturer who are trying to maintain the continuous flow processes. JIT implementation is a vital manufacturing strategy that reaches capacity utilization and minimizes the rate of defect in continuous flow processes. The study emphasize the need for top management commitment in order to incorporate the necessary changes that need to take place in cement industry so that JIT implementation can take place in an effective manner.

  10. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.

    PubMed

    Helu, Moneer; Hedberg, Thomas

    2015-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.

  11. Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed

    PubMed Central

    Helu, Moneer; Hedberg, Thomas

    2017-01-01

    Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167

  12. Quality cell therapy manufacturing by design.

    PubMed

    Lipsitz, Yonatan Y; Timmins, Nicholas E; Zandstra, Peter W

    2016-04-01

    Transplantation of live cells as therapeutic agents is poised to offer new treatment options for a wide range of acute and chronic diseases. However, the biological complexity of cells has hampered the translation of laboratory-scale experiments into industrial processes for reliable, cost-effective manufacturing of cell-based therapies. We argue here that a solution to this challenge is to design cell manufacturing processes according to quality-by-design (QbD) principles. QbD integrates scientific knowledge and risk analysis into manufacturing process development and is already being adopted by the biopharmaceutical industry. Many opportunities to incorporate QbD into cell therapy manufacturing exist, although further technology development is required for full implementation. Linking measurable molecular and cellular characteristics of a cell population to final product quality through QbD is a crucial step in realizing the potential for cell therapies to transform healthcare.

  13. Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives

    NASA Astrophysics Data System (ADS)

    Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun

    2018-06-01

    Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

  14. Additive manufacturing for steels: a review

    NASA Astrophysics Data System (ADS)

    Zadi-Maad, A.; Rohib, R.; Irawan, A.

    2018-01-01

    Additive manufacturing (AM) of steels involves the layer by layer consolidation of powder or wire feedstock using a heating beam to form near net shape products. For the past decades, the AM technique reaches the maturation of both research grade and commercial production due to significant research work from academic, government and industrial research organization worldwide. AM process has been implemented to replace the conventional process of steel fabrication due to its potentially lower cost and flexibility manufacturing. This paper provides a review of previous research related to the AM methods followed by current challenges issues. The relationship between microstructure, mechanical properties, and process parameters will be discussed. Future trends and recommendation for further works are also provided.

  15. Tobacco Control Policies in Vietnam: Review on MPOWER Implementation Progress and Challenges.

    PubMed

    Minh, Hoang Van; Ngan, Tran Thu; Mai, Vu Quynh; My, Nguyen Thi Tuyet; Chung, Le Hong; Kien, Vu Duy; Anh, Tran Tuan; Ngoc, Nguyen Bao; Giap, Vu Van; Cuong, Nguyen Manh; Manh, Pham Duc; Giang, Kim Bao

    2016-01-01

    In Vietnam, the WHO Framework Convention on Tobacco Control (WHO FCTC) took effect in March 2005 while MPOWER has been implemented since 2008. This paper describes the progress and challenges of implementation of the MPOWER package in Vietnam. We can report that, in term of monitoring, Vietnam is very active in the Global Tobacco Surveillance System, completing two rounds of the Global Adult Tobacco Survey (GATS) and three rounds of the Global Youth Tobacco Survey (GYTS). To protect people from tobacco smoke, Vietnam has issued and enforced a law requiring comprehensive smoking bans at workplaces and public places since 2013. Tobacco advertising and promotion are also prohibited with the exception of points of sale displays of tobacco products. Violations come in the form of promotion girls, corporate social responsibility activities from tobacco manufacturers and packages displayed by retail vendors. Vietnam is one of the 77 countries that require pictorial health warnings to be printed on cigarette packages to warn about the danger of tobacco and the warnings have been implemented effectively. Cigarette tax is 70% of factory price which is equal to less than 45% of retail price and much lower than the recommendation of WHO. However, Vietnam is one of the very few countries that require manufacturers and importers to make "compulsory contributions" at 1-2% of the factory price of cigarettes sold in Vietnam for the establishment of a Tobacco Control Fund (TCF). The TCF is being operated well. In 2015, 67 units of 63 provinces/cities, 22 ministries and political-social organizations and 6 hospitals received funding from TCF to implement a wide range of tobacco control activities. Cessation services have been starting with a a toll-free quit-line but need to be further strengthened. In conclusion, Vietnam has constantly put efforts into the tobacco control field with high commitment from the government, scientists and activists. Though several remarkable achievements have been gained, many challenges remain. To overcome those challenges, implementation strategies that take into account the contextual factors and social determinants of tobacco use in Vietnam are needed.

  16. Social aspects in additive manufacturing of pharmaceutical products.

    PubMed

    Lind, Johanna; Kälvemark Sporrong, Sofia; Kaae, Susanne; Rantanen, Jukka; Genina, Natalja

    2017-08-01

    Additive manufacturing (AM) techniques, such as drug printing, represent a new engineering approach that can implement the concept of personalized medicine via on-demand manufacturing of dosage forms with individually adjusted doses. Implementation of AM principles, such as pharmacoprinting, will challenge the entire drug distribution chain and affect the society at different levels. Areas covered: This work summarizes the concept of personalized medicine and gives an overview of possibilities for monitoring patients' health. The most recent activities in the field of printing technologies for fabrication of dosage forms and 'polypills' with flexible doses and tailored release profiles are reviewed. Different scenarios for the drug distribution chain with the required adjustments in drug logistics, quality systems and environmental safety are discussed, as well as whether AM will be used for production of on-demand medicine. The impact of such changes in the distribution chain on regulation, healthcare professionals and patients are highlighted. Expert opinion: Drug manufacturing by traditional methods is well-established, but it lacks the possibility for on-demand personalized drug production. With the recent approval of the first printed medicine, society should be prepared for the changes that will follow the introduction of printed pharmaceuticals.

  17. Present capabilities and future requirements for computer-aided geometric modeling in the design and manufacture of gas turbine

    NASA Technical Reports Server (NTRS)

    Caille, E.; Propen, M.; Hoffman, A.

    1984-01-01

    Gas turbine engine design requires the ability to rapidly develop complex structures which are subject to severe thermal and mechanical operating loads. As in all facets of the aerospace industry, engine designs are constantly driving towards increased performance, higher temperatures, higher speeds, and lower weight. The ability to address such requirements in a relatively short time frame has resulted in a major thrust towards integrated design/analysis/manufacturing systems. These computer driven graphics systems represent a unique challenge, with major payback opportunities if properly conceived, implemented, and applied.

  18. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    NASA Astrophysics Data System (ADS)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  19. The development of additive manufacturing technique for nickel-base alloys: A review

    NASA Astrophysics Data System (ADS)

    Zadi-Maad, Ahmad; Basuki, Arif

    2018-04-01

    Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.

  20. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  1. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  2. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses.

    PubMed

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  3. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses

    PubMed Central

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention. PMID:27088104

  4. Food safety systems in a small dairy factory: implementation, major challenges, and assessment of systems' performances.

    PubMed

    Cusato, Sueli; Gameiro, Augusto H; Corassin, Carlos H; Sant'ana, Anderson S; Cruz, Adriano G; Faria, José de Assis F; de Oliveira, Carlos Augusto F

    2013-01-01

    The present study describes the implementation of a food safety system in a dairy processing plant located in the State of São Paulo, Brazil, and the challenges found during the process. In addition, microbiological indicators have been used to assess system's implementation performance. The steps involved in the implementation of a food safety system included a diagnosis of the prerequisites, implementation of the good manufacturing practices (GMPs), sanitation standard operating procedures (SSOPs), training of the food handlers, and hazard analysis and critical control point (HACCP). In the initial diagnosis, conformity with 70.7% (n=106) of the items analyzed was observed. A total of 12 critical control points (CCPs) were identified: (1) reception of the raw milk, (2) storage of the raw milk, (3 and 4) reception of the ingredients and packaging, (5) milk pasteurization, (6 and 7) fermentation and cooling, (8) addition of ingredients, (9) filling, (10) storage of the finished product, (11) dispatching of the product, and (12) sanitization of the equipment. After implementation of the food safety system, a significant reduction in the yeast and mold count was observed (p<0.05). The main difficulties encountered for the implementation of food safety system were related to the implementation of actions established in the flow chart and to the need for constant training/adherence of the workers to the system. Despite this, the implementation of the food safety system was shown to be challenging, but feasible to be reached by small-scale food industries.

  5. Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology.

    PubMed

    Krujatz, Felix; Lode, Anja; Seidel, Julia; Bley, Thomas; Gelinsky, Michael; Steingroewer, Juliane

    2017-10-25

    The diversity and complexity of biotechnological applications are constantly increasing, with ever expanding ranges of production hosts, cultivation conditions and measurement tasks. Consequently, many analytical and cultivation systems for biotechnology and bioprocess engineering, such as microfluidic devices or bioreactors, are tailor-made to precisely satisfy the requirements of specific measurements or cultivation tasks. Additive manufacturing (AM) technologies offer the possibility of fabricating tailor-made 3D laboratory equipment directly from CAD designs with previously inaccessible levels of freedom in terms of structural complexity. This review discusses the historical background of these technologies, their most promising current implementations and the associated workflows, fabrication processes and material specifications, together with some of the major challenges associated with using AM in biotechnology/bioprocess engineering. To illustrate the great potential of AM, selected examples in microfluidic devices, 3D-bioprinting/biofabrication and bioprocess engineering are highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reduced hazard chemicals for solid rocket motor production

    NASA Technical Reports Server (NTRS)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1995-01-01

    During the last three years. the NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. NASA Marshall Space Flight Center (MSFC) and Thiokol Corporation have worked with other industry representatives and the U.S. Environmental Protection Agency (EPA) to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem-solving combined with a creative synthesis of new approaches to attack this challenge.

  7. Preface to the special volume on the second Sandia Fracture Challenge

    DOE PAGES

    Kramer, Sharlotte Lorraine Bolyard; Boyce, Brad

    2016-01-01

    In this study, ductile failure of structural metals is a pervasive issue for applications such as automotive manufacturing, transportation infrastructures, munitions and armor, and energy generation. Experimental investigation of all relevant failure scenarios is intractable, requiring reliance on computation models. Our confidence in model predictions rests on unbiased assessments of the entire predictive capability, including the mathematical formulation, numerical implementation, calibration, and execution.

  8. Lost in translation: The challenge of adapting integrated approaches for worker health and safety for low- and middle-income countries.

    PubMed

    Sorensen, Glorian; Nagler, Eve M; Pawar, Pratibha; Gupta, Prakash C; Pednekar, Mangesh S; Wagner, Gregory R

    2017-01-01

    To describe the process of adapting an intervention integrating occupational safety and health (OSH) and health promotion for manufacturing worksites in India and the challenges faced in implementing it; and explore how globalization trends may influence the implementation of these integrated approaches in India and other low- and middle-income countries (LMICs). This study-conducted in 22 manufacturing worksites in Mumbai, India-adapted and implemented an evidence-based intervention tested in the U.S. that integrated OSH and tobacco control. The systematic adaptation process included formative research and pilot testing, to ensure that the tested intervention was tailored to the local setting. We used qualitative methods and process evaluation to assess the extent to which this intervention was implemented, and to explore barriers to implementation. While participating worksites agreed to implement this intervention, not all components of the adapted intervention were implemented fully in the 10 worksites assigned to the intervention condition. We found that the OSH infrastructure in India focused predominantly on regulatory compliance, medical screening (secondary prevention) and the treatment of injuries. We observed generally low levels of leadership support and commitment to OSH, evidenced by minimal management participation in the intervention, reluctance to discuss OSH issues with the study team or workers, and little receptivity to recommendations resulting from the industrial hygienist's reports. India presents one example of a LMIC with a rising burden of non-communicable diseases and intensified exposures to both physical and organizational hazards on the job. Our experiences highlight the importance of national and global trends that shape workers' experiences on the job and their related health outcomes. Beyond a singular focus on prevention of non-communicable diseases, coordinated national and international efforts are needed to address worker health outcomes in the context of the conditions of work that clearly shape them.

  9. Lost in translation: The challenge of adapting integrated approaches for worker health and safety for low- and middle-income countries

    PubMed Central

    Nagler, Eve M.; Pawar, Pratibha; Gupta, Prakash C.; Pednekar, Mangesh S.; Wagner, Gregory R.

    2017-01-01

    Objectives To describe the process of adapting an intervention integrating occupational safety and health (OSH) and health promotion for manufacturing worksites in India and the challenges faced in implementing it; and explore how globalization trends may influence the implementation of these integrated approaches in India and other low- and middle-income countries (LMICs). Methods This study—conducted in 22 manufacturing worksites in Mumbai, India—adapted and implemented an evidence-based intervention tested in the U.S. that integrated OSH and tobacco control. The systematic adaptation process included formative research and pilot testing, to ensure that the tested intervention was tailored to the local setting. We used qualitative methods and process evaluation to assess the extent to which this intervention was implemented, and to explore barriers to implementation. Results While participating worksites agreed to implement this intervention, not all components of the adapted intervention were implemented fully in the 10 worksites assigned to the intervention condition. We found that the OSH infrastructure in India focused predominantly on regulatory compliance, medical screening (secondary prevention) and the treatment of injuries. We observed generally low levels of leadership support and commitment to OSH, evidenced by minimal management participation in the intervention, reluctance to discuss OSH issues with the study team or workers, and little receptivity to recommendations resulting from the industrial hygienist’s reports. Conclusion India presents one example of a LMIC with a rising burden of non-communicable diseases and intensified exposures to both physical and organizational hazards on the job. Our experiences highlight the importance of national and global trends that shape workers’ experiences on the job and their related health outcomes. Beyond a singular focus on prevention of non-communicable diseases, coordinated national and international efforts are needed to address worker health outcomes in the context of the conditions of work that clearly shape them. PMID:28837688

  10. Challenges of standardized continuous quality improvement programs in community pharmacies: the case of SafetyNET-Rx.

    PubMed

    Boyle, Todd A; MacKinnon, Neil J; Mahaffey, Thomas; Duggan, Kellie; Dow, Natalie

    2012-01-01

    Research on continuous quality improvement (CQI) in community pharmacies lags in comparison to service, manufacturing, and various health care sectors. As a result, very little is known about the challenges community pharmacies face when implementing CQI programs in general, let alone the challenges of implementing a standardized and technologically sophisticated one. This research identifies the initial challenges of implementing a standardized CQI program in community pharmacies and how such challenges were addressed by pharmacy staff. Through qualitative interviews, a multisite study of the SafetyNET-Rx CQI program involving community pharmacies in Nova Scotia, Canada, was performed to identify such challenges. Interviews were conducted with the CQI facilitator (ie, staff pharmacist or technician) in 55 community pharmacies that adopted the SafetyNET-Rx program. Of these 55 pharmacies, 25 were part of large national corporate chains, 22 were part of banner chains, and 8 were independent pharmacies. A total of 10 different corporate chains and banners were represented among the 55 pharmacies. Thematic content analysis using well-established coding procedures was used to explore the interview data and elicit the key challenges faced. Six major challenges were identified, specifically finding time to report, having all pharmacy staff involved in quality-related event (QRE) reporting, reporting apprehensiveness, changing staff relationships, meeting to discuss QREs, and accepting the online technology. Challenges were addressed in a number of ways including developing a manual-online hybrid reporting system, managers paying staff to meet after hours, and pharmacy managers showing visible commitment to QRE reporting and learning. This research identifies key challenges to implementing CQI programs in community pharmacies and also provides a starting point for future research relating to how the challenges of QRE reporting and learning in community pharmacies change over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A new large-scale manufacturing platform for complex biopharmaceuticals.

    PubMed

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals. Copyright © 2012 Wiley Periodicals, Inc.

  12. Trust in Vaccines: Why It Takes More than Good Faith.

    PubMed

    Begg, Norman

    2013-08-12

    This Vaccines issue on "Confidence in Vaccines" provides sound evidence through multiple perspectives of life-saving impacts when vaccination programs are effectively implemented in a population. Yet there remain challenges to achieving this impact, including scientific, medical, manufacturing, policy-related and logistical issues. Additionally, socio-cultural, religious and political agendas can come into play, taking public health hostage and sometimes allowing the circulation of myths regarding vaccination. All of these challenges play a role in public confidence in vaccines and vaccination. What we trust, we embrace. What we do not trust, we do not embrace.

  13. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  15. The scope of additive manufacturing in cryogenics, component design, and applications

    NASA Astrophysics Data System (ADS)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  16. Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.

    2018-04-01

    Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.

  17. Freeform object design and simultaneous manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Weihan; Lin, Heng; Leu, Ming C.

    2003-04-01

    Today's product design, especially the consuming product design, focuses more and more on individuation, originality, and the time to market. One way to meet these challenges is using the interactive and creationary product design methods and rapid prototyping/rapid tooling. This paper presents a novel Freeform Object Design and Simultaneous Manufacturing (FODSM) method that combines the natural interaction feature in the design phase and simultaneous manufacturing feature in the prototyping phase. The natural interactive three-dimensional design environment is achieved by adopting virtual reality technology. The geometry of the designed object is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object and can hear the virtual manufacturing environment noise. During the designing process, the computer records the sculpting trajectories and automatically translates them into NC codes so as to simultaneously machine the designed part. The paper introduced the principle, implementation process, and key techniques of the new method, and compared it with other popular rapid prototyping methods.

  18. Labview Implementation of Image Processing and Phasing Control for the SIBOA Segmented Mirror Testbed

    NASA Technical Reports Server (NTRS)

    Partridge, James D.

    2002-01-01

    'NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges.' This effort addresses the challenge of implementing an algorithm for aligning the segments of the primary mirror during the initial deployment that was designed by Philip Olivier and members of SOMTC (Space Optics Manufacturing Technology Center). The implementation was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately, hardware/software aspect concerning SIBOA and an extended time period for algorithm development prevented testing before the end of the study period. Properties of the digital camera were studied and understood, resulting in the current ability of selecting optimal settings regarding saturation. The study was successful in manually capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. Currently the system is ready for testing.

  19. Manufacturing data analytics using a virtual factory representation.

    PubMed

    Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun

    2017-01-01

    Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.

  20. Electronic Systems for Spacecraft Vehicles: Required EDA Tools

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic

    1999-01-01

    The continuous increase in complexity of electronic systems is making the design and manufacturing of such systems more challenging than ever before. As a result, designers are finding it impossible to design efficient systems without the use of sophisticated Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and lead to a correct by design methodology. This report identifies the EDA tools that would be needed to design, analyze, simulate, and evaluate electronic systems for spacecraft vehicles. In addition, the report presents recommendations to enhance the current JSC electronic design capabilities. This includes cost information and a discussion as to the impact, both positive and negative, of implementing the recommendations.

  1. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Elizabeth

    This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companiesmore » interact and use their machines to reduce energy consumption.« less

  2. APhA 2011 REMS white paper: Summary of the REMS stakeholder meeting on improving program design and implementation.

    PubMed

    American Pharmacists Association; Bough, Marcie

    2011-01-01

    To develop an improved risk evaluation and mitigation strategies (REMS) system for maximizing effective and safe patient medication use while minimizing burden on the health care delivery system. 34 stakeholders gathered October 6-7, 2010, in Arlington, VA, for the REMS Stakeholder Meeting, convened by the American Pharmacists Association (APhA). Participants included national health care provider associations, including representatives for physicians, physician assistants, nurses, nurse practitioners, and pharmacists, as well as representatives for patient advocates, drug distributors, community pharmacists (chain and independent), drug manufacturer associations (brand, generic, and biologic organizations), and health information technology, standards, and safety organizations. Staff from the Food and Drug Administration (FDA) Center for Drug Evaluation and Research participated as observers. The meeting built on themes from the APhA's 2009 REMS white paper. The current REMS environment presents many challenges for health care providers due to the growing number of REMS programs and the lack of standardization or similarities among various REMS programs. A standardized REMS process that focuses on maximizing patient safety and minimizing impacts on patient access and provider implementation could offset these challenges. A new process that includes effective provider interventions and standardized tools and systems for implementing REMS programs may improve patient care and overcome some of the communication issues providers and patients currently face. Metrics could be put in place to evaluate the effectiveness of REMS elements. By incorporating REMS program components into existing technologies and data infrastructures, achieving REMS implementation that is workflow neutral and minimizes administrative burden may be possible. An appropriate compensation model could ensure providers have adequate resources for patient care and REMS implementation. Overall, stakeholders should continue to work collaboratively with FDA and manufacturers to improve REMS program design and implementation issues. A workable REMS system will require effective patient interventions, standardized elements that limit barriers to implementation for both patients and providers, standardized yet flexible implementation strategies, use of existing technologies in practice settings, increased opportunities for provider input early in REMS design processes, improved communication strategies and awareness of program requirements, and viable provider compensation models needed to offset costs to implement and comply with REMS program requirements.

  3. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook.

    PubMed

    Pimenta, Soraia; Pinho, Silvestre T

    2011-02-01

    Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Review of Potential Wind Tunnel Balance Technologies

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  5. Alternative Approach to Vehicle Element Processing

    NASA Technical Reports Server (NTRS)

    Huether, Jacob E.; Otto, Albert E.

    1995-01-01

    The National Space Transportation Policy (NSTP), describes the challenge facing today's aerospace industry. 'Assuring reliable and affordable access to space through U.S. space transportation capabilities is a fundamental goal of the U.S. space program'. Experience from the Space Shuttle Program (SSP) tells us that launch and mission operations are responsible for approximately 45 % of the cost of each shuttle mission. Reducing these costs is critical to NSTP goals in the next generation launch vehicle. Based on this, an innovative alternative approach to vehicle element processing was developed with an emphasis on reduced launch costs. State-of-the-art upgrades to the launch processing system (LPS) will enhance vehicle ground operations. To carry this one step further, these upgrade could be implemented at various vehicle element manufacturing sites to ensure system compatibility between the manufacturing facility and the launch site. Design center vehicle stand alone testing will ensure system integrity resulting in minimized checkout and testing at the launch site. This paper will addresses vehicle test requirements, timelines and ground checkout procedures which enable concept implementation.

  6. Creating Pathways to Success for Supersized Wind Turbine Blades: 2018 Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton

    A workshop on Pathways to Success for Supersized Wind Turbine Blades was conducted by the U.S. Department of Energy’s (DOE’s) office of Energy Efficiency and Renewable Energy (EERE) at the Kimpton Hotel Palomar in Washington D.C., on March 6-7, 2018. Approximately 40-50 experts and industry stakeholders came together for the event, including manufacturers, transportation specialists, project developers, operators, engineering firms, consultants, and university researchers. Technical experts from the national laboratories and WETO were also present to engage in discussions about solving the challenges faced by supersized wind turbine blades. The workshop attendees participated in evaluating the current status of windmore » turbine blade design, manufacture, transportation, erection and operation, identifying constraints to cost-effective application of current technologies and methods for blades of increasing size, and discussing needs and opportunities for research, development and deployment of materials, manufacturing, structural configuration, and transportation. The workshop was one step within a larger initiative to identify specific R&D opportunities DOE could pursue to address technical barriers or implementation challenges faced by the U.S. wind energy industry to achieve continued decreases in LCOE. Following a plenary session, the 2-day workshop featured three group discussion sessions, with each session focusing on a specific “pathway” to enabling LCOE reductions for rotor blades of increasing size. The three pathways considered were “on-site manufacture,” “transport,” and “hybrid and alternative,” which included various options involving central manufacturing of sub-elements following on-site assembly. Each of the pathway group discussions was opened with a short presentation from one or more invited speakers, followed by an open discussion with balanced input from stakeholder groups and individuals. Participation among the workshop attendees was considered highly productive. Experts and stakeholders were engaged throughout the sessions and offered significant insights into the challenges and potential enabling technologies for supersized blades. Discussion highlights and take-aways for the three pathways are described.« less

  7. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  8. Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation.

    PubMed

    Patino, Manuel; Fuentes, Jorge M; Singh, Sarabjeet; Hahn, Peter F; Sahani, Dushyant V

    2015-07-01

    This article discusses the clinical challenge of low-radiation-dose examinations, the commonly used approaches for dose optimization, and their effect on image quality. We emphasize practical aspects of the different iterative reconstruction techniques, along with their benefits, pitfalls, and clinical implementation. The widespread use of CT has raised concerns about potential radiation risks, motivating diverse strategies to reduce the radiation dose associated with CT. CT manufacturers have developed alternative reconstruction algorithms intended to improve image quality on dose-optimized CT studies, mainly through noise and artifact reduction. Iterative reconstruction techniques take unique approaches to noise reduction and provide distinct strength levels or settings.

  9. Towards co-packaging of photonics and microelectronics in existing manufacturing facilities

    NASA Astrophysics Data System (ADS)

    Janta-Polczynski, Alexander; Cyr, Elaine; Bougie, Jerome; Drouin, Alain; Langlois, Richard; Childers, Darrell; Takenobu, Shotaro; Taira, Yoichi; Lichoulas, Ted W.; Kamlapurkar, Swetha; Engelmann, Sebastian; Fortier, Paul; Boyer, Nicolas; Barwicz, Tymon

    2018-02-01

    The impact of integrated photonics on optical interconnects is currently muted by challenges in photonic packaging and in the dense integration of photonic modules with microelectronic components on printed circuit boards. Single mode optics requires tight alignment tolerance for optical coupling and maintaining this alignment in a cost-efficient package can be challenging during thermal excursions arising from downstream microelectronic assembly processes. In addition, the form factor of typical fiber connectors is incompatible with the dense module integration expected on printed circuit boards. We have implemented novel approaches to interfacing photonic chips to standard optical fibers. These leverage standard high throughput microelectronic assembly tooling and self-alignment techniques resulting in photonic packaging that is scalable in manufacturing volume and in the number of optical IOs per chip. In addition, using dense optical fiber connectors with space-efficient latching of fiber patch cables results in compact module size and efficient board integration, bringing the optics closer to the logic chip to alleviate bandwidth bottlenecks. This packaging direction is also well suited for embedding optics in multi-chip modules, including both photonic and microelectronic chips. We discuss the challenges and rewards in this type of configuration such as thermal management and signal integrity.

  10. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  11. Surface texture and hardness of dental alloys processed by alternative technologies

    NASA Astrophysics Data System (ADS)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  12. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing.

    PubMed

    Jiang, Mo; Severson, Kristen A; Love, John Christopher; Madden, Helena; Swann, Patrick; Zang, Li; Braatz, Richard D

    2017-11-01

    Real-time release testing (RTRT) is defined as "the ability to evaluate and ensure the quality of in-process and/or final drug product based on process data, which typically includes a valid combination of measured material attributes and process controls" (ICH Q8[R2]). This article discusses sensors (process analytical technology, PAT) and control strategies that enable RTRT for the spectrum of critical quality attributes (CQAs) in biopharmaceutical manufacturing. Case studies from the small-molecule and biologic pharmaceutical industry are described to demonstrate how RTRT can be facilitated by integrated manufacturing and multivariable control strategies to ensure the quality of products. RTRT can enable increased assurance of product safety, efficacy, and quality-with improved productivity including faster release and potentially decreased costs-all of which improve the value to patients. To implement a complete RTRT solution, biologic drug manufacturers need to consider the special attributes of their industry, particularly sterility and the measurement of viral and microbial contamination. Continued advances in on-line and in-line sensor technologies are key for the biopharmaceutical manufacturing industry to achieve the potential of RTRT. Related article: http://onlinelibrary.wiley.com/doi/10.1002/bit.26378/full. © 2017 Wiley Periodicals, Inc.

  13. Using organization theory to understand the determinants of effective implementation of worksite health promotion programs.

    PubMed

    Weiner, Bryan J; Lewis, Megan A; Linnan, Laura A

    2009-04-01

    The field of worksite health promotion has moved toward the development and testing of comprehensive programs that target health behaviors with interventions operating at multiple levels of influence. Yet, observational and process evaluation studies indicate that such programs are challenging for worksites to implement effectively. Research has identified several organizational factors that promote or inhibit effective implementation of comprehensive worksite health promotion programs. However, no integrated theory of implementation has emerged from this research. This article describes a theory of the organizational determinants of effective implementation of comprehensive worksite health promotion programs. The model is adapted from theory and research on the implementation of complex innovations in manufacturing, education and health care settings. The article uses the Working Well Trial to illustrate the model's theoretical constructs. Although the article focuses on comprehensive worksite health promotion programs, the conceptual model may also apply to other types of complex health promotion programs. An organization-level theory of the determinants of effective implementation of worksite health promotion programs.

  14. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences

    NASA Astrophysics Data System (ADS)

    Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina

    2014-10-01

    Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.

  15. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components.

  16. Initiatives and outcomes of green supply chain management implementation by Chinese manufacturers.

    PubMed

    Zhu, Qinghua; Sarkis, Joseph; Lai, Kee-hung

    2007-10-01

    This paper aims to explore the green supply chain management (GSCM) initiatives (implementation) of various manufacturing industrial sectors in China and examine the links between GSCM initiatives and performance outcomes. We conducted a survey to collect data from four typical manufacturing industrial sectors in China, namely, power generating, chemical/petroleum, electrical/electronic and automobile, and received 171 valid organizational responses for data analysis. Analysis of variance (ANOVA) was used to analyze the data. The results are consistent with our prediction that the different manufacturing industry types display different levels of GSCM implementation and outcomes. We specifically found that the electrical/electronic industry has relatively higher levels of GSCM implementation and achieves better performance outcomes than the other three manufacturer types. Implications of the results are discussed and suggestions for further research on the implementation of GSCM are offered.

  17. Rapid diagnostic tests for malaria

    PubMed Central

    Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-01-01

    Abstract Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them. PMID:26668438

  18. The impact of parallel regulatory-health technology assessment scientific advice on clinical development. Assessing the uptake of regulatory and health technology assessment recommendations.

    PubMed

    Tafuri, Giovanni; Lucas, Inês; Estevão, Steve; Moseley, Jane; d'Andon, Anne; Bruehl, Hannah; Gajraj, Elangovan; Garcia, Sonia; Hedberg, Niklas; Massari, Marco; Molina, Andrea; Obach, Mercè; Osipenko, Leeza; Petavy, Frank; Petschulies, Marco; Pontes, Caridad; Russo, Pierluigi; Schiel, Anja; Van de Casteele, Marc; Zebedin-Brandl, Eva-Maria; Rasi, Guido; Vamvakas, Spiros

    2018-05-01

    The parallel regulatory-health technology assessment scientific advice (PSA) procedure allows manufacturers to receive simultaneous feedback from both EU regulators and health technology assessment (HTA) bodies on development plans for new medicines. The primary objective of the present study is to investigate whether PSA is integrated in the clinical development programmes for which advice was sought. Contents of PSA provided by regulators and HTA bodies for each procedure between 2010 and 2015 were analysed. The development of all clinical studies for which PSA had been sought was tracked using three different databases. The rate of uptake of the advice provided by regulators and HTA bodies was assessed on two key variables: comparator/s and primary endpoint. In terms of uptake of comparator recommendations at the time of PSA in the actual development, our analysis showed that manufacturers implemented comparators to address both the needs of regulators and of at least one HTA body in 12 of 21 studies. For primary endpoints, in all included studies manufacturers addressed both the needs of the regulators and at least one HTA body. One of the key findings of this analysis is that manufacturers tend to implement changes to the development programme based on both regulatory and HTA advice with regards to the choice of primary endpoint and comparator. It also confirms the challenging choice of the study comparator, for which manufacturers seem to be more inclined to satisfy the regulatory advice. Continuous research efforts in this area are of paramount importance from a public health perspective. © 2018 The British Pharmacological Society.

  19. Strategic research on the sustainable development cost of manufacturing industry under the background of carbon allowance and trade policy

    NASA Astrophysics Data System (ADS)

    Ma, Zhongmin; Cheng, Mengting; Wang, Mei

    2017-08-01

    The important subjects of energy consumption and carbon emission are manufacturing enterprises, with the deepening of international cooperation, and the implementation of carbon limit and trade policy, costs of manufacturing industry will rise sharply. How can the manufacturing industry survive in this reform, and it has to be a problem that the managers of the manufacturing industry need to solve. This paper analyses sustainable development cost connotation and value basis on the basis of sustainable development concept, discusses the influence of carbon allowance and trade policy for cost strategy of manufacturing industry, thinks that manufacturing industry should highlight social responsibility and realize maximization of social value, implement cost strategy the sustainable development, and pointed out the implementation way.

  20. Radiation Shielding for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.

    2016-01-01

    Design and analysis of radiation shielding for nuclear thermal propulsion has continued at Marshall Space Flight Center. A set of optimization tools are in development, and strategies for shielding optimization will be discussed. Considerations for the concurrent design of internal and external shielding are likely required for a mass optimal shield design. The task of reducing radiation dose to crew from a nuclear engine is considered to be less challenging than the task of thermal mitigation for cryogenic propellant, especially considering the likely implementation of additional crew shielding for protection from solar particles and cosmic rays. Further consideration is thus made for the thermal effects of radiation absorption in cryogenic propellant. Materials challenges and possible methods of manufacturing are also discussed.

  1. Optical design for consumer products

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag

    2014-10-01

    Optical engineers often limit their focus on meeting the provided targets on performance and geometry and assume that the specifications are largely non-negotiable. Such approach ignores the value proposition behind the product and the challenges associated with overall product design, manufacturing, business development and legal issues. As a result, the design effort can be expensive, time consuming and can result in product failure. We discuss a product based systems engineering approach that leads to an application specific optical design that is more effective and efficient to implement.

  2. A Roundtable Discussion: Combination Products: Twice the Challenge?

    PubMed

    Baird, Nolan; Binion, Steven B; Cammack, Jon; Paine, Stephanie Del; Gonzales, Rosemary; Passut, Jena; Weiner, John Barlow Barr

    2015-01-01

    Combination products are therapeutic or diagnostic medical products that combine drugs, devices, and/or biological products with one another. FDA developed a regulation (final rule) on Current Good Manufacturing Practices (CGMP) for combination products that became effective July 22, 2013 (21 CFR Part 4). AAMI recently developed a technical information report (TIR) that provides information on how to effectively implement FDA's regulation. The overall goal of the TIR is to aid informed, risk-based decisions in establishing CGMP operating systems that support development, manufacture, premarket regulatory evaluation, and ultimately commercialization of combination products. This article, a result of an discussion with industry and FDA representatives, explores the landscape of combination products, highlights important considerations in developing and seeking marketing clearance for these innovative products, and provides insight on trends in the area.

  3. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  4. White paper on continuous bioprocessing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Konstantinov, Konstantin B; Cooney, Charles L

    2015-03-01

    There is a growing interest in realizing the benefits of continuous processing in biologics manufacturing, which is reflected by the significant number of industrial and academic researchers who are actively involved in the development of continuous bioprocessing systems. These efforts are further encouraged by guidance expressed in recent US FDA conference presentations. The advantages of continuous manufacturing include sustained operation with consistent product quality, reduced equipment size, high-volumetric productivity, streamlined process flow, low-process cycle times, and reduced capital and operating cost. This technology, however, poses challenges, which need to be addressed before routine implementation is considered. This paper, which is based on the available literature and input from a large number of reviewers, is intended to provide a consensus of the opportunities, technical needs, and strategic directions for continuous bioprocessing. The discussion is supported by several examples illustrating various architectures of continuous bioprocessing systems. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Metrology for the manufacturing of freeform optics

    NASA Astrophysics Data System (ADS)

    Blalock, Todd; Myer, Brian; Ferralli, Ian; Brunelle, Matt; Lynch, Tim

    2017-10-01

    Recently the use of freeform surfaces have become a realization for optical designers. These non-symmetrical optical surfaces have allowed unique solutions to optical design problems. The implementation of freeform optical surfaces has been limited by manufacturing capabilities and quality. However over the past several years freeform fabrication processes have improved in capability and precision. But as with any manufacturing, proper metrology is required to monitor and verify the process. Typical optics metrology such as interferometry has its challenges and limitations with the unique shapes of freeform optics. Two contact metrology methods for freeform metrology are presented; a Leitz coordinate measurement machine (CMM) with an uncertainty of +/- 0.5 μm and a high resolution profilometer (Panasonic UA3P) with a measurement uncertainty of +/- 0.05 μm. We are also developing a non-contact high resolution technique based on the fringe reflection technique known as deflectometry. This fast non-contact metrology has the potential to compete with accuracies of the contact methods but also can acquire data in seconds rather than minutes or hours.

  6. Taiwan: improving radiography through application of Six Sigma techniques.

    PubMed

    Chen, Yan-Kwang; Lin, Jerry; Chang, Cheng-Chang

    2005-01-01

    The healthcare industry has shown significant recent growth potential in Taiwan. Associated financial problems have grown considerably since 1995, when national health insurance was implemented. Taiwan's healthcare bureau began to change the primary quantity-based healthcare expense payment method to a case-based payment model. Hospitals are now challenged to minimize healthcare waste. This article examines the application of manufacturing-based Six Sigma methods to an X-ray radiography improvement project to reduce the defect ratio of films for a teaching hospital in Taiwan. It was determined that (1) analysis of customer satisfaction data helped the Six Sigma improvement team identify critical quality elements; (2) the Six Sigma Level in this healthcare project is Lower than that in the manufacturing industry; (3) the improvement opportunity and the time required for the project had a direct correlation to the importance ascribed to the project and the cooperation received; and (4) process change can be made more quickly in the healthcare industry than in the manufacturing industry.

  7. Challenges in Teaching Modern Manufacturing Technologies

    ERIC Educational Resources Information Center

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-01-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in…

  8. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    NASA Astrophysics Data System (ADS)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.

  9. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    NASA Astrophysics Data System (ADS)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  10. System-level protection and hardware Trojan detection using weighted voting.

    PubMed

    Amin, Hany A M; Alkabani, Yousra; Selim, Gamal M I

    2014-07-01

    The problem of hardware Trojans is becoming more serious especially with the widespread of fabless design houses and design reuse. Hardware Trojans can be embedded on chip during manufacturing or in third party intellectual property cores (IPs) during the design process. Recent research is performed to detect Trojans embedded at manufacturing time by comparing the suspected chip with a golden chip that is fully trusted. However, Trojan detection in third party IP cores is more challenging than other logic modules especially that there is no golden chip. This paper proposes a new methodology to detect/prevent hardware Trojans in third party IP cores. The method works by gradually building trust in suspected IP cores by comparing the outputs of different untrusted implementations of the same IP core. Simulation results show that our method achieves higher probability of Trojan detection over a naive implementation of simple voting on the output of different IP cores. In addition, experimental results show that the proposed method requires less hardware overhead when compared with a simple voting technique achieving the same degree of security.

  11. Implementing Lean Manufacturing in Malaysian Small and Medium Startup Pharmaceutical Company

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wan Mohd Khairi bin Wan; Rahman, Mohamed Abdul; Abu Bakar, Mohd Rushdi bin

    2017-03-01

    Domestic pharmaceutical industry has been identified by the Malaysian government as an industry to be developed under its 11th economic development plan. Most homegrown pharmaceutical companies fall under the category of small and medium enterprises (SME) and therefore need to be highly efficient in their operations to compete with the multinationals. Though lean manufacturing is a well-known methodology to achieve an efficient operation, only a small percentage of the local SMEs implement it. The study aims to determine the real success factors in lean implementation through systematic review of relevant literature on lean manufacturing implementation in local companies, onsite observation of a selected SME company, Global Factor Sdn. Bhd. (GFSB), that successfully implemented lean manufacturing followed by actual implementation of lean project at IKOP Sdn. Bhd., a small startup pharmaceutical company. Lean tools like Gemba, value stream map (VSM) and spaghetti diagram were used to analyze and improve a process at IKOP Sdn. Bhd. The literature review showed that the implementation of lean manufacturing at Malaysian SMEs involved in pharmaceutical industry is at its infancy. Study at GFSB indicated that successful implementation of lean manufacturing stems from management support, employee’s commitment, government support and knowledge on lean among employees. Application of lean tools in IKOP Sdn. Bhd. to improve the process cycle efficiency of hand sanitizer, i-Hand 4.0, has shown that the GMP guidelines are not jeopardized. The Kaizen improvement project resulted in 46.3% reduction in lead time. It may be concluded that implementing lean manufacturing in any small local startup pharmaceutical company is beneficial in reducing operational costs and increasing the efficiency and effectiveness and does not conflict with the existing GMP guidelines.

  12. Biosimilars advancements: Moving on to the future.

    PubMed

    Tsuruta, Lilian Rumi; Lopes dos Santos, Mariana; Moro, Ana Maria

    2015-01-01

    Many patents for the first biologicals derived from recombinant technology and, more recently, monoclonal antibodies (mAbs) are expiring. Naturally, biosimilars are becoming an increasingly important area of interest for the pharmaceutical industry worldwide, not only for emergent countries that need to import biologic products. This review shows the evolution of biosimilar development regarding regulatory, manufacturing bioprocess, comparability, and marketing. The regulatory landscape is evolving globally, whereas analytical structure and functional analyses provide the foundation of a biosimilar development program. The challenges to develop and demonstrate biosimilarity should overcome the inherent differences in the bioprocess manufacturing and physicochemical and biological characterization of a biosimilar compared to several lots of the reference product. The implementation of approaches, such as Quality by Design (QbD), will provide products with defined specifications in relation to quality, purity, safety, and efficacy that were not possible when the reference product was developed. Actually, the need to prove comparability to the reference product by the biosimilar industry has increased the knowledge about the product and the production-process associated by the use of powerful analytical tools. The technological challenges to make copies of biologic products while attending regulatory and market demands are expected to help innovation in the direction of attaining more productive manufacturing processes. © 2015 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  13. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  14. Fabrication methods for mesoscopic flying vehicle

    NASA Astrophysics Data System (ADS)

    Cheng, Yih-Lin

    2001-10-01

    Small-scale flying vehicles are attractive tools for atmospheric science research. A centimeter-size mesoscopic electric helicopter, the mesicopter, has been developed at Stanford University for these applications. The mesoscopic scale implies a design with critical features between tens of microns and several millimeters. Three major parts in the mesicopter are challenging to manufacture. Rotors require smooth 3D surfaces and a blade thickness of less than 100 mum. Components in the DC micro-motor must be made of engineering materials, which is difficult on the mesoscopic scale. Airframe fabrication has to integrate complex 3D geometry into one single structure at this scale. In this research, material selection and manufacturing approaches have been investigated and implemented. In rotor fabrication, high-strength polymers manufactured by the Shape Deposition Manufacturing (SDM) technique were the top choice. Aluminum alloys were only considered as the second choice because the fabrication process is more involved. Lift tests showed that the 4-blade polymer and aluminum rotors could deliver about 90% of the expected lift (4g). To explain the rotor performance, structural analyses of spinning rotors were performed and the fabricated geometry was investigated. The bending deflections and the torsional twists were found to be too small to degrade aerodynamic performance. The rotor geometry was verified by laser scanning and by cross-section observations. Commercially available motors are used in the prototypes but a smaller DC micro-motor was designed for future use. Components of the DC micro-motors were fabricated by the Mesoscopic Additive/Subtractive Material Processing technique, which is capable of shaping engineering materials on the mesoscopic scale. The approaches are described in this thesis. The airframe was manufactured using the SDM process, which is capable of building complex parts without assembly. Castable polymers were chosen and mixed with glass microspheres to reduce their density. The finished airframe (65.5 mm x 65.5 mm) weighed only 1.5g. Two mesicopter prototypes, weighing 3g and 17g, have illustrated that powered flight at this scale is feasible. This research provides solutions to manufacture the challenging parts for the mesicopter. The manufacturing approaches discussed here are applicable to other small flying vehicles in similar and even smaller size regimes.

  15. Laboratory automation —some perspectives on the challenges in the implementation of the technology in pharmaceutical development

    PubMed Central

    North, Nigel; Smith, Simon

    1998-01-01

    The intensifying pressure on reducing the development time for new pharmaceutical products is resulting in an increasing need for laboratory automation. A key element for the successful implementation of robotics for drug product analysis is the establishment of a reliable process for interaction of the automation team with its various customers, for example development product team and manufacturing group. The reduction of cycle time for product development appears to be resulting in more stability studies to support NDA/MAA filings for several reasons. Key clinical information may not be available before initiation of the stability studies and simultaneous world-wide development may result in an increase in the number of product strength and pack options. PMID:18924828

  16. A fuzzy model for achieving lean attributes for competitive advantages development using AHP-QFD-PROMETHEE

    NASA Astrophysics Data System (ADS)

    Roghanian, E.; Alipour, Mohammad

    2014-06-01

    Lean production has become an integral part of the manufacturing landscape as its link with superior performance and its ability to provide competitive advantage is well accepted among academics and practitioners. Lean production helps producers in overcoming the challenges organizations face through using powerful tools and enablers. However, most companies are faced with restricted resources such as financial and human resources, time, etc., in using these enablers, and are not capable of implementing all these techniques. Therefore, identifying and selecting the most appropriate and efficient tool can be a significant challenge for many companies. Hence, this literature seeks to combine competitive advantages, lean attributes, and lean enablers to determine the most appropriate enablers for improvement of lean attributes. Quality function deployment in fuzzy environment and house of quality matrix are implemented. Throughout the methodology, fuzzy logic is the basis for translating linguistic judgments required for the relationships and correlation matrix to numerical values. Moreover, for final ranking of lean enablers, a multi-criteria decision-making method (PROMETHEE) is adopted. Finally, a case study in automotive industry is presented to illustrate the implementation of the proposed methodology.

  17. On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Donald; Horowitz, Kelsey; Kurup, Parthiv

    This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations.more » However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.« less

  18. Advanced manufacturing: Technology and international competitiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforcemore » requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.« less

  19. Challenges in conducting post-authorisation safety studies (PASS): A vaccine manufacturer's view.

    PubMed

    Cohet, Catherine; Rosillon, Dominique; Willame, Corinne; Haguinet, Francois; Marenne, Marie-Noëlle; Fontaine, Sandrine; Buyse, Hubert; Bauchau, Vincent; Baril, Laurence

    2017-05-25

    Post-authorisation safety studies (PASS) of vaccines assess or quantify the risk of adverse events following immunisation that were not identified or could not be estimated pre-licensure. The aim of this perspective paper is to describe the authors' experience in the design and conduct of twelve PASS that contributed to the evaluation of the benefit-risk of vaccines in real-world settings. We describe challenges and learnings from selected PASS of rotavirus, malaria, influenza, human papillomavirus and measles-mumps-rubella-varicella vaccines that assessed or identified potential or theoretical risks, which may lead to changes to risk management plans and/or to label updates. Study settings include the use of large healthcare databases and de novo data collection. PASS methodology is influenced by the background incidence of the outcome of interest, vaccine uptake, availability and quality of data sources, identification of the at-risk population and of suitable comparators, availability of validated case definitions, and the frequent need for case ascertainment in large databases. Challenges include the requirement for valid exposure and outcome data, identification of, and access to, adequate data sources, and mitigating limitations including bias and confounding. Assessing feasibility is becoming a key step to confirm that study objectives can be met in a timely manner. PASS provide critical information for regulators, public health agencies, vaccine manufacturers and ultimately, individuals. Collaborative approaches and synergistic efforts between vaccine manufacturers and key stakeholders, such as regulatory and public health agencies, are needed to facilitate access to data, and to drive optimal study design and implementation, with the aim of generating robust evidence. Copyright © 2017 GSK Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  20. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    PubMed

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  1. Deploying a Route Optimization EFB Application for Commercial Airline Operational Trials

    NASA Technical Reports Server (NTRS)

    Roscoe, David A.; Vivona, Robert A.; Woods, Sharon E.; Karr, David A.; Wing, David J.

    2016-01-01

    The Traffic Aware Planner (TAP), developed for NASA Langley Research Center to support the Traffic Aware Strategic Aircrew Requests (TASAR) project, is a flight-efficiency software application developed for an Electronic Flight Bag (EFB). Tested in two flight trials and planned for operational testing by two commercial airlines, TAP is a real-time trajectory optimization application that leverages connectivity with onboard avionics and broadband Internet sources to compute and recommend route modifications to flight crews to improve fuel and time performance. The application utilizes a wide range of data, including Automatic Dependent Surveillance Broadcast (ADS-B) traffic, Flight Management System (FMS) guidance and intent, on-board sensors, published winds and weather, and Special Use Airspace (SUA) schedules. This paper discusses the challenges of developing and deploying TAP to various EFB platforms, our solutions to some of these challenges, and lessons learned, to assist commercial software developers and hardware manufacturers in their efforts to implement and extend TAP functionality in their environments. EFB applications (such as TAP) typically access avionics data via an ARINC 834 Simple Text Avionics Protocol (STAP) server hosted by an Aircraft Interface Device (AID) or other installed hardware. While the protocol is standardized, the data sources, content, and transmission rates can vary from aircraft to aircraft. Additionally, the method of communicating with the AID may vary depending on EFB hardware and/or the availability of onboard networking services, such as Ethernet, WIFI, Bluetooth, or other mechanisms. EFBs with portable and installed components can be implemented using a variety of operating systems, and cockpits are increasingly incorporating tablet-based technologies, further expanding the number of platforms the application may need to support. Supporting multiple EFB platforms, AIDs, avionics datasets, and user interfaces presents a challenge for software developers and the management of their code baselines. Maintaining multiple baselines to support all deployment targets can be extremely cumbersome and expensive. Certification also needs to be considered when developing the application. Regardless of whether the software is itself destined to be certified, data requirements in support of the application and user interface elements may introduce certification requirements for EFB manufacturers and the airlines. The example of TAP, the challenges faced, solutions implemented, and lessons learned will give EFB application and hardware developers insight into future potential requirements in deploying TAP or similar flight-deck EFB applications.

  2. Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Romig, Kris A.; Larson, William E.; Johnson, Robert; Rapp, Don; Johnson, Ken R.; Sacksteder, Kurt; Linne, Diane; Curreri, Peter; Duke, Michael; hide

    2005-01-01

    On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of ISRU for future human Moon and Mars exploration. This presentation will provide an overview of the ISRU capability, architecture, and implementation strategy examined by the ISRU Capability Roadmap team, along with a top-level review of ISRU benefits, resources and products of interest, and the current SOA in ISRU processes and systems. The presentation will also highlight the challenges of incorporating ISRU into future missions and the gaps in technologies and capabilities that need to be filled to enable ISRU.

  3. 32 CFR 250.8 - Pertinent portions of International Traffic in Arms Regulations (ITAR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... details of development, engineering, design, production, or manufacture of any arms, ammunition, or... the details of design, production, or manufacture of any arms, ammunition, or implements of war on the..., production, or manufacturing of any arms, ammunition, or implements of war on the U.S. Munitions List. (3) If...

  4. Additive manufacturing in production: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  5. Decentralized manufacturing of cell and gene therapies: Overcoming challenges and identifying opportunities.

    PubMed

    Harrison, Richard P; Ruck, Steven; Medcalf, Nicholas; Rafiq, Qasim A

    2017-10-01

    Decentralized or "redistributed" manufacturing has the potential to revolutionize the manufacturing approach for cell and gene therapies (CGTs), moving away from the "Fordist" paradigm, delivering health care locally, customized to the end user and, by its very nature, overcoming many of the challenges associated with manufacturing and distribution of high volume goods. In departing from the traditional centralized model of manufacturing, decentralized manufacturing divides production across sites or geographic regions. This paradigm shift imposes significant structural and organisational changes on a business presenting both hidden challenges that must be addressed and opportunities to be embraced. By profoundly adapting business practices, significant advantages can be realized through a democratized value chain, creation of professional-level jobs without geographic restriction to the central hub and a flexibility in response to external pressures and demands. To realize these potential opportunities, however, advances in manufacturing technology and support systems are required, as well as significant changes in the way CGTs are regulated to facilitate multi-site manufacturing. Decentralized manufacturing is likely to be the manufacturing platform of choice for advanced health care therapies-in particular, those with a high degree of personalization. The future success of these promising products will be enhanced by adopting sound business strategies early in development. To realize the benefits that decentralized manufacturing of CGTs has to offer, it is important to examine both the risks and the substantial opportunities present. In this research, we examine both the challenges and the opportunities this shift in business strategy represents in an effort to maximize the success of adoption. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing

    NASA Astrophysics Data System (ADS)

    Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis

    1999-07-01

    While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.

  7. Design and implementation of a Windows NT network to support CNC activities

    NASA Technical Reports Server (NTRS)

    Shearrow, C. A.

    1996-01-01

    The Manufacturing, Materials, & Processes Technology Division is undergoing dramatic changes to bring it's manufacturing practices current with today's technological revolution. The Division is developing Computer Automated Design and Computer Automated Manufacturing (CAD/CAM) abilities. The development of resource tracking is underway in the form of an accounting software package called Infisy. These two efforts will bring the division into the 1980's in relationship to manufacturing processes. Computer Integrated Manufacturing (CIM) is the final phase of change to be implemented. This document is a qualitative study and application of a CIM application capable of finishing the changes necessary to bring the manufacturing practices into the 1990's. The documentation provided in this qualitative research effort includes discovery of the current status of manufacturing in the Manufacturing, Materials, & Processes Technology Division including the software, hardware, network and mode of operation. The proposed direction of research included a network design, computers to be used, software to be used, machine to computer connections, estimate a timeline for implementation, and a cost estimate. Recommendation for the division's improvement include action to be taken, software to utilize, and computer configurations.

  8. Achieving Continuous Manufacturing for Final Dosage Formation: Challenges and How to Meet Them May 20-21 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Tools and Strategies for Product Life Cycle Management ñ A Case Study in Foundry

    NASA Astrophysics Data System (ADS)

    Patil, Rajashekar; Kumar, S. Mohan; Abhilash, E.

    2012-08-01

    Advances in information and communication technology (ICT) have opened new possibilities of collaborations among the customers, suppliers, manufactures and partners to effectively tackle various business challenges. Product Life Cycle Management(PLM) has been a proven approach for Original Equipment Manufacturers (OEMs) to increase their productivity, improve their product quality, speed up delivery, and increase their profit and to become more efficient. However, their Tier 2 and Tier 3 suppliers like foundry industries are still in their infancy without adopting PLM. Hence to enhance their understanding, the basic concepts, the tools and strategies for PLM are presented is this paper. By selecting and implementing appropriate PLM strategies in a small foundry, an attempt was also made to understand the immediate benefits of using PLM tools (commercial PLM software and digital manufacturing tools). This study indicated a reduction in lead time and improved utilization of organizational resources in the production of automobile impeller. These observations may be further extrapolated to other multiproduct, multi-discipline and multi-customer companies to realize the advantages of using PLM technology

  10. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    NASA Astrophysics Data System (ADS)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  11. Investigation of the prominent barriers to lean manufacturing implementation in Malaysian food and beverages industry using Rasch Model

    NASA Astrophysics Data System (ADS)

    Khusaini, N. S.; Ismail, A.; Rashid, A. A.

    2016-02-01

    This paper presents a preliminary study on the prominent barriers to lean manufacturing implementation in Malaysian Food and Beverages Industry. A survey was carried out to determine the most prominent barriers of lean manufacturing implementation that are currently being faced in this industry. The amount of barriers identified for this study is twenty seven. Out of 1309 available organizations, a total of 300 organizations have been randomly selected as respondents, and 53 organizations responded. From the variable map, the analysis shows that, the negative perception towards lean manufacturing top the list as the most agreeable barrier, while the technical barriers came after it. It can also be seen from the variable map that averagely, lack of vision and direction is the barrier that is being faced. Finally, this is perhaps the first attempt in investigating the prominent barriers to Lean Manufacturing implementation in Malaysian food and beverages industry using Rasch Model.

  12. A practical discussion of risk management for manufacturing of pharmaceutical products.

    PubMed

    Mollah, A Hamid; Baseman, Harold S; Long, Mike; Rathore, Anurag S

    2014-01-01

    Quality risk management (QRM) is now a regulatory expectation, and it makes good business sense. The goal of the risk assessment is to increase process understanding and deliver safe and effective product to the patients. Risk analysis and management is an acceptable and effective way to minimize patient risk and determine the appropriate level of controls in manufacturing. While understanding the elements of QRM is important, knowing how to apply them in the manufacturing environment is essential for effective process performance and control. This article will preview application of QRM in pharmaceutical and biopharmaceutical manufacturing to illustrate how QRM can help the reader achieve that objective. There are several areas of risk that a drug company may encounter in pharmaceutical manufacturing, specifically addressing oral solid and liquid formulations. QRM tools can be used effectively to identify the risks and develop strategy to minimize or control them. Risks are associated throughout the biopharmaceutical manufacturing process-from raw material supply through manufacturing and filling operations to final distribution via a controlled cold chain process. Assessing relevant attributes and risks for biotechnology-derived products is more complicated and challenging for complex pharmaceuticals. This paper discusses key risk factors in biopharmaceutical manufacturing. Successful development and commercialization of pharmaceutical products is all about managing risks. If a company was to take zero risk, most likely the path to commercialization would not be commercially viable. On the other hand, if the risk taken was too much, the product is likely to have a suboptimal safety and efficacy profile and thus is unlikely to be a successful product. This article addresses the topic of quality risk management with the key objective of minimizing patient risk while creating an optimal process and product. Various tools are presented to aid implementation of these concepts. © PDA, Inc. 2014.

  13. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis.

    PubMed

    Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy

    2017-09-11

    Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Assessment of good manufacturing practice for small scale food industry in Malang region, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Purwantiningrum, I.; Widyhastuty, W.; Christian, J.; Sari, N.

    2018-03-01

    Enhancing food safety in developing countries, such as Indonesia, poses more challenges, especially those of the small- and medium-scale. Various food safety systems are available and readily implemented in the food industry. However, to ensure the effectiveness of such systems, pre-requisite programs should be applied prior to the implementation of food safety system. One of the most acknowledged pre-requisite program is Good Manufacturing Practices (GMP). The aim of this study is to assess the GMP compliance of some small-scale food companies in East Java. Three types of traditional food product were selected, include tempe chips, palm sugar, and instant herbal drink. A survey involving three companies for each type of traditional food was conducted. Data was obtained through observation and assessment based on tabulated criteria in GMP criteria. In essential, the result revealed the compliment level of the food companies being surveyed. There was different level of compliment between each type of the food industry, where the palm sugar industry had the lowest level of compliment compared to the other two. This difference is due to the food safety awareness, social and cultural influences, and also knowledge on food safety and hygiene practice.

  15. OPC for curved designs in application to photonics on silicon

    NASA Astrophysics Data System (ADS)

    Orlando, Bastien; Farys, Vincent; Schneider, Loïc.; Cremer, Sébastien; Postnikov, Sergei V.; Millequant, Matthieu; Dirrenberger, Mathieu; Tiphine, Charles; Bayle, Sébastian; Tranquillin, Céline; Schiavone, Patrick

    2016-03-01

    Today's design for photonics devices on silicon relies on non-Manhattan features such as curves and a wide variety of angles with minimum feature size below 100nm. Industrial manufacturing of such devices requires optimized process window with 193nm lithography. Therefore, Resolution Enhancement Techniques (RET) that are commonly used for CMOS manufacturing are required. However, most RET algorithms are based on Manhattan fragmentation (0°, 45° and 90°) which can generate large CD dispersion on masks for photonic designs. Industrial implementation of RET solutions to photonic designs is challenging as most currently available OPC tools are CMOS-oriented. Discrepancy from design to final results induced by RET techniques can lead to lower photonic device performance. We propose a novel sizing algorithm allowing adjustment of design edge fragments while preserving the topology of the original structures. The results of the algorithm implementation in the rule based sizing, SRAF placement and model based correction will be discussed in this paper. Corrections based on this novel algorithm were applied and characterized on real photonics devices. The obtained results demonstrate the validity of the proposed correction method integrated in Inscale software of Aselta Nanographics.

  16. High Efficiency Wideband Refractive Optics for ALMA Band-1 (35-52 GHz). Design, Implementation, and Measurement Results

    NASA Astrophysics Data System (ADS)

    Tapia, V.; González, A.; Finger, R.; Mena, F. P.; Monasterio, D.; Reyes, N.; Sánchez, M.; Bronfman, L.

    2017-03-01

    We present the design, implementation, and characterization of the optics of ALMA Band 1, the lowest frequency band in the most advanced radio astronomical telescope. Band 1 covers the broad frequency range from 35 to 50 GHz, with the goal of minor degradation up to 52 GHz. This is, up to now, the largest fractional bandwidth of all ALMA bands. Since the optics is the first subsystem of any receiver, low noise figure and maximum aperture efficiency are fundamental for best sensitivity. However, a conjunction of several factors (small cryostat apertures, mechanical constraints, and cost limitations) makes extremely challenging to achieve these goals. To overcome these problems, the optics presented here includes two innovative solutions, a compact optimized-profile corrugated horn and a modified Fresnel lens. The horn profile was optimized for optimum performance and easy fabrication by a single-piece manufacturing process in a lathe. In this way, manufacturability is eased when compared with traditional fabrication methods. To minimize the noise contribution of the optics, a one-step zoned lens was designed. Its parameters were carefully optimized to maximize the frequency coverage and reduce losses. The optical assembly reported here fully complies with ALMA specifications.

  17. Succesful Lean Manufacturing Implementation: Internal Key Influencing Factors

    NASA Astrophysics Data System (ADS)

    Virginia, Iuga; Claudiu, Kifor

    2015-09-01

    Manufacturing sectors and companies all over the world are successfully implementing lean principles within their processes. Nowadays, lean has become an indispensable part of global players. Companies worldwide need to be aware of multiple factors which weigh heavily on the success or failure of lean implementation. This paper focuses on giving a brief and structured overview over the fundamental organizational factors which play a substantial role for the lean manufacturing (LM) implementation process. The study below focuses on internal factors which are indispensable for a successful LM implementation within organizations. It is imperative that these internal factors are known, recognized and taken into consideration during the whole LM implementation process. Ignoring their influence on the process's implementation may lead to endangering the expected results or to making the process more difficult which could result in much higher human resource consumption.

  18. Leveraging pattern matching to solve SRAM verification challenges at advanced nodes

    NASA Astrophysics Data System (ADS)

    Kan, Huan; Huang, Lucas; Yang, Legender; Zou, Elaine; Wan, Qijian; Du, Chunshan; Hu, Xinyi; Liu, Zhengfang; Zhu, Yu; Zhang, Recoo; Huang, Elven; Muirhead, Jonathan

    2018-03-01

    Memory is a critical component in today's system-on-chip (SoC) designs. Static random-access memory (SRAM) blocks are assembled by combining intellectual property (IP) blocks that come from SRAM libraries developed and certified by the foundries for both functionality and a specific process node. Customers place these SRAM IP in their designs, adjusting as necessary to achieve DRC-clean results. However, any changes a customer makes to these SRAM IP during implementation, whether intentionally or in error, can impact yield and functionality. Physical verification of SRAM has always been a challenge, because these blocks usually contain smaller feature sizes and spacing constraints compared to traditional logic or other layout structures. At advanced nodes, critical dimension becomes smaller and smaller, until there is almost no opportunity to use optical proximity correction (OPC) and lithography to adjust the manufacturing process to mitigate the effects of any changes. The smaller process geometries, reduced supply voltages, increasing process variation, and manufacturing uncertainty mean accurate SRAM physical verification results are not only reaching new levels of difficulty, but also new levels of criticality for design success. In this paper, we explore the use of pattern matching to create an SRAM verification flow that provides both accurate, comprehensive coverage of the required checks and visual output to enable faster, more accurate error debugging. Our results indicate that pattern matching can enable foundries to improve SRAM manufacturing yield, while allowing designers to benefit from SRAM verification kits that can shorten the time to market.

  19. Manufacturing and Security Challenges in 3D Printing

    NASA Astrophysics Data System (ADS)

    Zeltmann, Steven Eric; Gupta, Nikhil; Tsoutsos, Nektarios Georgios; Maniatakos, Michail; Rajendran, Jeyavijayan; Karri, Ramesh

    2016-07-01

    As the manufacturing time, quality, and cost associated with additive manufacturing (AM) continue to improve, more and more businesses and consumers are adopting this technology. Some of the key benefits of AM include customizing products, localizing production and reducing logistics. Due to these and numerous other benefits, AM is enabling a globally distributed manufacturing process and supply chain spanning multiple parties, and hence raises concerns about the reliability of the manufactured product. In this work, we first present a brief overview of the potential risks that exist in the cyber-physical environment of additive manufacturing. We then evaluate the risks posed by two different classes of modifications to the AM process which are representative of the challenges that are unique to AM. The risks posed are examined through mechanical testing of objects with altered printing orientation and fine internal defects. Finite element analysis and ultrasonic inspection are also used to demonstrate the potential for decreased performance and for evading detection. The results highlight several scenarios, intentional or unintentional, that can affect the product quality and pose security challenges for the additive manufacturing supply chain.

  20. Towards a Graphene-Based Low Intensity Photon Counting Photodetector

    PubMed Central

    Williams, Jamie O. D.; Alexander-Webber, Jack A.; Lapington, Jon S.; Roy, Mervyn; Hutchinson, Ian B.; Sagade, Abhay A.; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-01-01

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies. PMID:27563903

  1. Case Studies in Modelling, Control in Food Processes.

    PubMed

    Glassey, J; Barone, A; Montague, G A; Sabou, V

    This chapter discusses the importance of modelling and control in increasing food process efficiency and ensuring product quality. Various approaches to both modelling and control in food processing are set in the context of the specific challenges in this industrial sector and latest developments in each area are discussed. Three industrial case studies are used to demonstrate the benefits of advanced measurement, modelling and control in food processes. The first case study illustrates the use of knowledge elicitation from expert operators in the process for the manufacture of potato chips (French fries) and the consequent improvements in process control to increase the consistency of the resulting product. The second case study highlights the economic benefits of tighter control of an important process parameter, moisture content, in potato crisp (chips) manufacture. The final case study describes the use of NIR spectroscopy in ensuring effective mixing of dry multicomponent mixtures and pastes. Practical implementation tips and infrastructure requirements are also discussed.

  2. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    DOE PAGES

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-06-09

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawlessmore » diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.« less

  3. Electronic health records and cardiac implantable electronic devices: new paradigms and efficiencies.

    PubMed

    Slotwiner, David J

    2016-10-01

    The anticipated advantages of electronic health records (EHRs)-improved efficiency and the ability to share information across the healthcare enterprise-have so far failed to materialize. There is growing recognition that interoperability holds the key to unlocking the greatest value of EHRs. Health information technology (HIT) systems including EHRs must be able to share data and be able to interpret the shared data. This requires a controlled vocabulary with explicit definitions (data elements) as well as protocols to communicate the context in which each data element is being used (syntactic structure). Cardiac implantable electronic devices (CIEDs) provide a clear example of the challenges faced by clinicians when data is not interoperable. The proprietary data formats created by each CIED manufacturer, as well as the multiple sources of data generated by CIEDs (hospital, office, remote monitoring, acute care setting), make it challenging to aggregate even a single patient's data into an EHR. The Heart Rhythm Society and CIED manufacturers have collaborated to develop and implement international standard-based specifications for interoperability that provide an end-to-end solution, enabling structured data to be communicated from CIED to a report generation system, EHR, research database, referring physician, registry, patient portal, and beyond. EHR and other health information technology vendors have been slow to implement these tools, in large part, because there have been no financial incentives for them to do so. It is incumbent upon us, as clinicians, to insist that the tools of interoperability be a prerequisite for the purchase of any and all health information technology systems.

  4. Impact of Company Size on Manufacturing Improvement Practices: An empirical study

    NASA Astrophysics Data System (ADS)

    Syan, C. S.; Ramoutar, K.

    2014-07-01

    There is a constant search for ways to achieve a competitive advantage through new manufacturing techniques. Best performing manufacturing companies tend to use world-class manufacturing (WCM) practices. Although the last few years have witnessed phenomenal growth in the use of WCM techniques, their effectiveness is not well understood specifically in the context of less developed countries. This paper presents an empirical study to investigate the impact of company size on improving manufacturing performance in manufacturing organizations based in Trinidad and Tobago (T&T). Empirical data were collected via a questionnaire survey which was send to 218 manufacturing firms in T&T. Five different company sizes and seven different industry sectors were studied. The analysis of survey data was performed with the aid of Statistical Package for Social Sciences (SPSS) software. The study signified facilitating and impeding factors towards improving manufacturing performance. Their relative impact/importance is dependent on varying company size and industry sectors. Findings indicate that T&T manufacturers are still practicing traditional approaches, when compared with world class manufacturers. In the majority of organizations, these practices were not 100% implemented even though they started the implementation process more than 5 years ago. The findings provided some insights in formulating more optimal operational strategies, and later develop action plans towards more effective implementation of WCM in T&T manufacturers.

  5. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-01-01

    This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.

  6. RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.

    PubMed

    Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O

    2018-06-06

    Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.

  7. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.

    PubMed

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G; Orji, Ndubuisi G; Fu, Joseph; Vorburger, Theodore V

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  8. Toward Higher QA: From Parametric Release of Sterile Parenteral Products to PAT for Other Pharmaceutical Dosage Forms.

    PubMed

    Hock, Sia Chong; Constance, Neo Xue Rui; Wah, Chan Lai

    2012-01-01

    Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most ideal approach for determining the pharmaceutical quality of the finished dosage form. In the case of terminally sterilized parenteral products, the limitations of conventional batch testing have been successfully addressed with the application of parametric release (the release of a product based on control of process parameters instead of batch sterility testing at the end of the manufacturing process). Consequently, there has been an increasing interest in applying parametric release to other pharmaceutical dosage forms, beyond terminally sterilized parenteral products. For parametric release to be possible, manufacturers must be capable of designing quality into the product, monitoring the manufacturing processes, and controlling the quality of intermediates and finished products in real-time. Process analytical technology (PAT) has been thought to be capable of contributing to these prerequisites. It is believed that the appropriate use of PAT tools can eventually lead to the possibility of real-time release of other pharmaceutical dosage forms, by-passing the need for end-product batch testing. Hence, this literature review attempts to present the basic principles of PAT, introduce the various PAT tools that are currently available, present their recent applications to pharmaceutical processing, and explain the potential benefits that PAT can bring to conventional ways of processing and quality assurance of pharmaceutical products. Last but not least, current regulations governing the use of PAT and the manufacturing challenges associated with PAT implementation are also discussed. Pharmaceutical products are generally subjected to end-product batch testing as a means of quality control. Due to the inherent limitations of conventional batch testing, this is not the most ideal approach. In the case of terminally sterilized parenteral products, these limitations have been successfully addressed with the application of parametric release (the release of a product based on control of process parameters instead of batch sterility testing at the end of the manufacturing process). Consequently, there has been an increasing interest in applying parametric release to other pharmaceutical dosage forms. With the advancement of process analytical technology (PAT), it is possible to monitor the manufacturing processes closely. This will eventually enable quality control of the intermediates and finished products, and thus their release in real-time. Hence, this literature review attempts to present the basic principles of PAT, introduce the various PAT tools that are currently available, present their recent applications to pharmaceutical processing, and explain the potential benefits that PAT can bring to conventional ways of processing and quality assurance of pharmaceutical products. It will also discuss the current regulations governing the use of PAT and the manufacturing challenges associated with the implementation of PAT.

  9. An appeal for large scale production of antiretroviral drugs in Africa

    PubMed Central

    Martial, Nkamedjie Pete Patrick; Sieleunou, Isidore

    2016-01-01

    The Acquired Immuno Deficiency Syndrome (AIDS) remains a major global public health challenge especially in Africa. The deadline set for the Millennium Development Goals (MDGs) has elapsed, meanwhile most low and middle income countries did not reach the targets. With regards to the fight against HIV / AIDS, many African countries show slow progress in implementing efficient and effective strategies to counter this pandemic. The fact that most HIV/AIDS programs in Sub-Saharan African countries are still very dependent on external funding to carry out their activities, including the supply of Antiretroviral Treatment (ART), highlights the concern of sustainability. So far, solutions that have been proposed are mainly symptomatic, claiming more budget commitment from government. Without rejecting this view, we call for the implementation of sustainable solutions to deal with the long term ART challenges. A way forward is to promote the establishment of an effective machinery for the manufacturing and large scale distribution of ART. In addition to the health gains, we argue that such an initiative would have a three-dimensional impact: (i) political, (ii) economic and (iii) social. PMID:28154710

  10. Seal Apparatus and Methods to Manufacture Thereof

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2013-01-01

    In some implementations, apparatus and methods are provided through which a dynamic cryogenic seal is manufactured. In some implementations, the seal includes a retainer and a spring-seal assembly, the assembly being comprised of a main spring housing and fluorine-containing polymer seals. In some implementations, either a radial seal, or an axial (or "piston seal") is provided. In some implementations, methods of manufacturing the dynamic cryogenic seal are also provided. In some implementations, the methods include assembling the components while either heated or cooled, taking advantage of thermal expansion and contraction, such that there is a strong interference fit between the components at room temperature. In some implementations, this process ensures that the weaker fluorine-containing polymer seal is forced to expand and contract with the stronger retainer and spring and is under constant preload. In some implementations, the fluorine-containing polymer is therefore fluidized and retained, and can not lift off.

  11. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    NASA Astrophysics Data System (ADS)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  12. The Development of Model for Measuring Railway Wheels Manufacturing Readiness Level

    NASA Astrophysics Data System (ADS)

    Inrawan Wiratmadja, Iwan; Mufid, Anas

    2016-02-01

    In an effort to grow the railway wheel industry in Indonesia and reduce the dependence on imports, Metal Industries Development Center (MIDC) makes the implementation of the railway wheel manufacturing technology in Indonesia. MIDC is an institution based on research and development having a task to research the production of railway wheels prototype and acts as a supervisor to the industry in Indonesia, for implementing the railway wheel manufacturing technology. The process of implementing manufacturing technology requires a lot of resources. Therefore it is necessary to measure the manufacturing readiness process. Measurement of railway wheels manufacturing readiness was in this study done using the manufacturing readiness level (MRL) model from the United States Department of Defense. MRL consists of 10 manufacturing readiness levels described by 90 criteria and 184 sub-criteria. To get a manufacturing readiness measurement instrument that is good and accurate, the development process involved experts through expert judgment method and validated with a content validity ratio (CVR). Measurement instrument developed in this study consist of 448 indicators. The measurement results show that MIDC's railway wheels manufacturing readiness is at the level 4. This shows that there is a gap between the current level of manufacturing readiness owned by MIDC and manufacturing readiness levels required to achieve the program objectives, which is level 5. To achieve the program objectives at level 5, a number of actions were required to be done by MIDC. Indicators that must be improved to be able to achieve level 5 are indicators related to the cost and financing, process capability and control, quality management, workers, and manufacturing management criteria.

  13. Implementation and benefits of advanced process control for lithography CD and overlay

    NASA Astrophysics Data System (ADS)

    Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor

    2003-05-01

    Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.

  14. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies.

    PubMed

    Abbasalizadeh, Saeed; Baharvand, Hossein

    2013-12-01

    Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.

  15. Ensuring the Enduring Viability of the Space Science Enterprise: New Questions, New Thinking, New Paradigms

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Conti, Alberto; Atkinson, Charles

    2017-01-01

    Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This paper will discuss the origins of these new questions and the steps to their answers.

  16. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  17. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  18. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  19. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  20. 40 CFR 52.122 - Negative declarations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.122 Negative declarations. (a) The following... negative declarations are approved as additional information to the State Implementation Plan. (1) Maricopa... Operations, Rubber Tire Manufacturing, Polymer Manufacturing, Industrial Wastewater, Ship Building and Repair...

  1. Total quality through computer integrated manufacturing in the pharmaceutical industry.

    PubMed

    Ufret, C M

    1995-01-01

    The role of Computer Integrated Manufacturing (CIM) in the pursue of total quality in pharmaceutical manufacturing is assessed. CIM key objectives, design criteria, and performance measurements, in addition to its scope and implementation in a hierarchical structure, are explored in detail. Key elements for the success of each phase in a CIM project and a brief status of current CIM implementations in the pharmaceutical industry are presented. The role of World Class Manufacturing performance standards and other key issues to achieve full CIM benefits are also addressed.

  2. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  3. A simple approach to industrial laser safety.

    PubMed

    Lewandowski, Michael A; Hinz, Michael W

    2005-02-01

    Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.

  4. Potential of Continuous Manufacturing for Liposomal Drug Products.

    PubMed

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  5. Just-in-time: maximizing its success potential.

    PubMed

    Johnston, S K

    1990-08-01

    The effective implementation and use of JIT manufacturing practices depends largely on the education, training, and commitment of all levels of management to a fundamental quality-first policy. Management must transfer and demonstrate that commitment to every level and extension of the manufacturing endeavor. As a company establishes and reaches toward that goal, the move to JIT manufacturing practices becomes rational and justifiable. Failing to establish and commit to a quality directive greatly diminishes the potential benefits of JIT. If all levels of manufacturing participate in the JIT planning, implementing, and maintenance procedure, the realization of positive change and improvement drives the process. Total participation makes the task of JIT implementation not only possible, but practical. Enhanced mutual respect for all concerned is a likely consequence, advancing the productive environment.

  6. Reduced cost and improved figure of sapphire optical components

    NASA Astrophysics Data System (ADS)

    Walters, Mark; Bartlett, Kevin; Brophy, Matthew R.; DeGroote Nelson, Jessica; Medicus, Kate

    2015-10-01

    Sapphire presents many challenges to optical manufacturers due to its high hardness and anisotropic properties. Long lead times and high prices are the typical result of such challenges. The cost of even a simple 'grind and shine' process can be prohibitive. The high precision surfaces required by optical sensor applications further exacerbate the challenge of processing sapphire thereby increasing cost further. Optimax has demonstrated a production process for such windows that delivers over 50% time reduction as compared to traditional manufacturing processes for sapphire, while producing windows with less than 1/5 wave rms figure error. Optimax's sapphire production process achieves significant improvement in cost by implementation of a controlled grinding process to present the best possible surface to the polishing equipment. Following the grinding process is a polishing process taking advantage of chemical interactions between slurry and substrate to deliver excellent removal rates and surface finish. Through experiments, the mechanics of the polishing process were also optimized to produce excellent optical figure. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. In addition to reducing the cost of producing large sapphire sensor windows, the grinding and polishing technology Optimax has developed aids in producing spherical sapphire components to better figure quality. Through specially developed polishing slurries, the peak-to-valley figure error of spherical sapphire parts is reduced by over 80%.

  7. Operational challenges in delivering CD4 diagnostics in sub-Saharan Africa.

    PubMed

    Thairu, L; Katzenstein, D; Israelski, D

    2011-07-01

    Access to reliable and low cost CD4 T-cell enumeration to stage illness and monitor anti-retroviral therapy remains elusive in resource-limited settings. We report challenges in delivering CD4 testing using the microcapillary Fluorescence-Activated Cell Sorter (FACS) methodology (Guava EasyCD4 instrument Guava Technologies, Hayward) in Burkina Faso and Zimbabwe. Resources, instruments, reagents, and training were provided to local laboratories within the existing infrastructure and data on CD4 were collected from routine laboratory testing. Challenges encountered included frequent instrument breakdown; poor manufacturer maintenance; difficulties in managing reagent stocks; high technician turnover; reliance on antiquated data management systems; redundant service provision; and lack of repeat testing in male HIV+ patients and in patients with higher CD4 counts after initial staging. While adopting newer, less expensive technologies such as fluorescent platforms and point of care tests can facilitate access to lower cost CD4 testing, our experience suggests that supply chain, corporate commitment to implementation, and community factors also require consideration.

  8. Just-in-time adaptive disturbance estimation for run-to-run control of photolithography overlay

    NASA Astrophysics Data System (ADS)

    Firth, Stacy K.; Campbell, W. J.; Edgar, Thomas F.

    2002-07-01

    One of the main challenges to implementations of traditional run-to-run control in the semiconductor industry is a high mix of products in a single factory. To address this challenge, Just-in-time Adaptive Disturbance Estimation (JADE) has been developed. JADE uses a recursive weighted least-squares parameters estimation technique to identify the contributions to variation that are dependent on product, as well as the tools on which the lot was processed. As applied to photolithography overlay, JADE assigns these sources of variation to contributions from the context items: tool, product, reference tool, and reference reticle. Simulations demonstrate that JADE effectively identifies disturbances in contributing context items when the variations are known to be additive. The superior performance of JADE over traditional EWMA is also shown in these simulations. The results of application of JADE to data from a high mix production facility show that JADE still performs better than EWMA, even with the challenges of a real manufacturing environment.

  9. Contributions for the next generation of 3D metal printing machines

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Thombansen, U.

    2015-03-01

    The 3D metal printing processes are key technologies for the new industry manufacturing requirements, as small lot production associated with high design complexity and high flexibility are needed towards personalization and customization. The main challenges for these processes are associated to increasing printing volumes, maintaining the relative accuracy level and reducing the global manufacturing time. Through a review on current technologies and solutions proposed by global patents new design solutions for 3D metal printing machines can be suggested. This paper picks up current technologies and trends in SLM and suggests some design approaches to overcome these challenges. As the SLM process is based on laser scanning, an increase in printing volume requires moving the scanner over the work surface by motion systems if printing accuracy has to be kept constant. This approach however does not contribute to a reduction in manufacturing time, as only one laser source will be responsible for building the entire work piece. With given technology limits in galvo based laser scanning systems, the most obvious solution consists in using multiple beam delivery systems in series, in parallel or both. Another concern is related to the weight of large work pieces. A new powder recoater can control the layer thickness and uniformity and eliminate or diminish fumes. To improve global accuracy, the use of a pair of high frequency piezoelectric actuators can help in positioning the laser beam. The implementation of such suggestions can contribute to SLM productivity. To do this, several research activities need to be accomplished in areas related to design, control, software and process fundamentals.

  10. Containment challenges in HPAPI manufacture for ADC generation.

    PubMed

    Dunny, Elizabeth; O'Connor, Imelda; Bones, Jonathan

    2017-06-01

    Antibody-drug conjugates (ADCs) are emerging as an impactful class of therapeutics for the treatment of cancer because of their ability to harness the specificity of an antibody and the cytotoxic potential of the payload to target and destroy cancer cells. However, the potent nature of the cytotoxic payload creates associated manufacturing challenges for active pharmaceutical ingredient (API) manufacturers, because huge investment in containment technology is required to ensure the protection of operators and the environment. Here, we examine the differing attitudes to high-potency categorisation and levels of containment control. We also provide an overview of the most widely used containment strategies for facility design, powder handling, purification, analysis, and cleaning. Finally, we briefly consider the health and safety regulatory challenges associated with the manufacture of cytotoxic payloads for use in antibody-drug conjugates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review

    PubMed Central

    Zhang, Xiang-Yu; Fang, Gang; Zhou, Jie

    2017-01-01

    Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE) scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE) analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors’ view on the current challenges and further research directions. PMID:28772411

  12. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review.

    PubMed

    Zhang, Xiang-Yu; Fang, Gang; Zhou, Jie

    2017-01-10

    Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE) scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE) analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors' view on the current challenges and further research directions.

  13. Real-time parameter optimization based on neural network for smart injection molding

    NASA Astrophysics Data System (ADS)

    Lee, H.; Liau, Y.; Ryu, K.

    2018-03-01

    The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.

  14. Implementation of a high precision multi-measurement time-to-digital convertor on a Kintex-7 FPGA

    NASA Astrophysics Data System (ADS)

    Kuang, Jie; Wang, Yonggang; Cao, Qiang; Liu, Chong

    2018-05-01

    Time-to-digital convertors (TDCs) based on field programmable gate array (FPGA) are becoming more and more popular. Multi-measurement is an effective method to improve TDC precision beyond the cell delay limitation. However, the implementation of TDC with multi-measurement on FPGAs manufactured with 28 nm and more advanced process is facing new challenges. Benefiting from the ones-counter encoding scheme, which was developed in our previous work, we implement a ring oscillator multi-measurement TDC on a Xilinx Kintex-7 FPGA. Using the two TDC channels to measure time-intervals in the range (0 ns-30 ns), the average RMS precision can be improved to 5.76 ps, meanwhile the logic resource usage remains the same with the one-measurement TDC, and the TDC dead time is only 22 ns. The investigation demonstrates that the multi-measurement methods are still available for current main-stream FPGAs. Furthermore, the new implementation in this paper could make the trade-off among the time precision, resource usage and TDC dead time better than ever before.

  15. Lean Management—The Journey from Toyota to Healthcare

    PubMed Central

    Teich, Sorin T.; Faddoul, Fady F.

    2013-01-01

    The evolution of production systems is tightly linked to the story of Toyota Motor Company (TMC) that has its roots around 1918. The term “lean” was coined in 1990 following the exploration of the Toyota model that led to the “transference” thesis sustaining the concept that manufacturing problems and technologies are universal problems faced by management and that these concepts can be emulated in non-Japanese enterprises. Lean is a multi-faceted concept and requires organizations to exert effort along several dimensions simultaneously; some consider a successful implementation either achieving major strategic components of lean, implementing practices to support operational aspects, or providing evidence that the improvements are sustainable in the long term. The article explores challenges and opportunities faced by organizations that intend incorporating lean management principles and presents the specific context of the healthcare industry. Finally, the concepts of “essential few” and customer value are illustrated through a simple example of process change following lean principles, which was implemented in a dental school in the United States. PMID:23908857

  16. Lean management-the journey from toyota to healthcare.

    PubMed

    Teich, Sorin T; Faddoul, Fady F

    2013-04-01

    The evolution of production systems is tightly linked to the story of Toyota Motor Company (TMC) that has its roots around 1918. The term "lean" was coined in 1990 following the exploration of the Toyota model that led to the "transference" thesis sustaining the concept that manufacturing problems and technologies are universal problems faced by management and that these concepts can be emulated in non-Japanese enterprises. Lean is a multi-faceted concept and requires organizations to exert effort along several dimensions simultaneously; some consider a successful implementation either achieving major strategic components of lean, implementing practices to support operational aspects, or providing evidence that the improvements are sustainable in the long term. The article explores challenges and opportunities faced by organizations that intend incorporating lean management principles and presents the specific context of the healthcare industry. Finally, the concepts of "essential few" and customer value are illustrated through a simple example of process change following lean principles, which was implemented in a dental school in the United States.

  17. Performance measurement integrated information framework in e-Manufacturing

    NASA Astrophysics Data System (ADS)

    Teran, Hilaida; Hernandez, Juan Carlos; Vizán, Antonio; Ríos, José

    2014-11-01

    The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.

  18. Comparative Analysis of Two Industries for Validating Green Manufacturing (GM) Framework: An Indian Scenario

    NASA Astrophysics Data System (ADS)

    Rehman, Minhaj Ahemad Abdul; Shrivastava, Rakesh Lakshmikumar; Shrivastava, Rashmi Rakesh

    2017-04-01

    Green Manufacturing (GM) deals with manufacturing practices that reduces or eliminates the adverse environmental impact during any of its phases. It emphasizes the use of processes that do not contaminate the environment or hurt consumers, employees, or other stakeholders. This paper presents the comparative analysis of two Indian industries representing different sectors for validating GM framework. It also highlights the road map of the companies for achieving performance improvement through GM implementation and its impact on organisational performance. The case studies helps in evaluating the companies GM implementation and overall business performance. For this, a developed diagnostic instrument in the form of questionnaire was administered amongst employees in the companies respectively and their responses were analysed. In order to have a better understanding of the impact of GM implementation, the information about overall business performance was obtained over the last 3 years. The diagnostic instrument developed here may be used by manufacturing organisations to prioritise their management efforts to assess and implement GM.

  19. Mask manufacturing improvement through capability definition and bottleneck line management

    NASA Astrophysics Data System (ADS)

    Strott, Al

    1994-02-01

    In 1989, Intel's internal mask operation limited itself to research and development activities and re-inspection and pellicle application of externally manufactured masks. Recognizing the rising capital cost of mask manufacturing at the leading edge, Intel's Mask Operation management decided to offset some of these costs by manufacturing more masks internally. This was the beginning of the challenge they set to manufacture at least 50% of Intel's mask volume internally, at world class performance levels. The first step in responding to this challenge was the completion of a comprehensive operation capability analysis. A series of bottleneck improvements by focus teams resulted in an average cycle time improvement to less than five days on all product and less than two days on critical products.

  20. National Emission Standards for Aerospace Manufacturing and Rework Facilities: Summary of Requirements for Implementing the National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This summary of implementation requirements document for the Aerospace Manufacturing and Rework facilties NESHAP was originally prepared in August 1997, but it was updated in January 2001 with a new amendments update.

  1. Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-10-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.

  2. Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)

    NASA Astrophysics Data System (ADS)

    Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter

    2016-09-01

    As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.

  3. Using Performance Analysis for Training in an Organization Implementing ISO-9000 Manufacturing Practices: A Case Study.

    ERIC Educational Resources Information Center

    Kunneman, Dale E.; Sleezer, Catherine M.

    2000-01-01

    This case study examines the application of the Performance Analysis for Training (PAT) Model in an organization that was implementing ISO-9000 (International Standards Organization) processes for manufacturing practices. Discusses the interaction of organization characteristics, decision maker characteristics, and analyst characteristics to…

  4. 78 FR 73111 - National Marketing Agreement Regulating Leafy Green Vegetables; Termination of Proceeding on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... development and implementation of handling regulations (audit metrics) to reflect the United States Food and... Good Manufacturing Practices (GMPs). DATES: This termination is made on December 6, 2013. FOR FURTHER... implementation of handling audit metrics consistent with the FDA's good production, handling, and manufacturing...

  5. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  6. Using formal methods to scope performance challenges for Smart Manufacturing Systems: focus on agility.

    PubMed

    Jung, Kiwook; Morris, K C; Lyons, Kevin W; Leong, Swee; Cho, Hyunbo

    2015-12-01

    Smart Manufacturing Systems (SMS) need to be agile to adapt to new situations by using detailed, precise, and appropriate data for intelligent decision-making. The intricacy of the relationship of strategic goals to operational performance across the many levels of a manufacturing system inhibits the realization of SMS. This paper proposes a method for identifying what aspects of a manufacturing system should be addressed to respond to changing strategic goals. The method uses standard modeling techniques in specifying a manufacturing system and the relationship between strategic goals and operational performance metrics. Two existing reference models related to manufacturing operations are represented formally and harmonized to support the proposed method. The method is illustrated for a single scenario using agility as a strategic goal. By replicating the proposed method for other strategic goals and with multiple scenarios, a comprehensive set of performance challenges can be identified.

  7. Using formal methods to scope performance challenges for Smart Manufacturing Systems: focus on agility

    PubMed Central

    Jung, Kiwook; Morris, KC; Lyons, Kevin W.; Leong, Swee; Cho, Hyunbo

    2016-01-01

    Smart Manufacturing Systems (SMS) need to be agile to adapt to new situations by using detailed, precise, and appropriate data for intelligent decision-making. The intricacy of the relationship of strategic goals to operational performance across the many levels of a manufacturing system inhibits the realization of SMS. This paper proposes a method for identifying what aspects of a manufacturing system should be addressed to respond to changing strategic goals. The method uses standard modeling techniques in specifying a manufacturing system and the relationship between strategic goals and operational performance metrics. Two existing reference models related to manufacturing operations are represented formally and harmonized to support the proposed method. The method is illustrated for a single scenario using agility as a strategic goal. By replicating the proposed method for other strategic goals and with multiple scenarios, a comprehensive set of performance challenges can be identified. PMID:27141209

  8. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-03-01

    Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  9. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    DOE PAGES

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; ...

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less

  10. Quality of herbal medicines: challenges and solutions.

    PubMed

    Zhang, Junhua; Wider, Barbara; Shang, Hongcai; Li, Xuemei; Ernst, Edzard

    2012-01-01

    The popularity of herbal medicines has risen worldwide. This increase in usage renders safety issues important. Many adverse events of herbal medicines can be attributed to the poor quality of the raw materials or the finished products. Different types of herbal medicines are associated with different problems. Quality issues of herbal medicines can be classified into two categories: external and internal. In this review, external issues including contamination (e.g. toxic metals, pesticides residues and microbes), adulteration and misidentification are detailed. Complexity and non-uniformity of the ingredients in herbal medicines are the internal issues affecting the quality of herbal medicines. Solutions to the raised problems are discussed. The rigorous implementation of Good Agricultural and Collection Practices (GACP) and Good Manufacturing Practices (GMP) would undoubtedly reduce the risk of external issues. Through the use of modern analytical methods and pharmaceutical techniques, previously unsolved internal issues have become solvable. Standard herbal products can be manufactured from the standard herbal extracts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies

    NASA Astrophysics Data System (ADS)

    Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng

    2017-04-01

    Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).

  12. 3D printing of soft robotic systems

    NASA Astrophysics Data System (ADS)

    Wallin, T. J.; Pikul, J.; Shepherd, R. F.

    2018-06-01

    Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.

  13. "Service Wars": The Race To Be the Best in Product Service.

    ERIC Educational Resources Information Center

    Knox, Robert J.; Lorenzo, Albert L.

    To meet the price and quality challenges of foreign manufacturers, U.S. industry has had to invest heavily in technology, incorporating it extensively into both the manufacturing process and product. This trend, termed the "New Industrial Revolution" has created a new challenge--educating technicians to service these highly technical,…

  14. New Paradigms for Ensuring the Enduring Viability of the Space Science Enterprise

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Conti, Alberto

    2018-01-01

    Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future large space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This poster will present our recent results on the origins of these new questions and the steps to their answers.

  15. Automatic design of IMA systems

    NASA Astrophysics Data System (ADS)

    Salomon, U.; Reichel, R.

    During the last years, the integrated modular avionics (IMA) design philosophy became widely established at aircraft manufacturers, giving rise to a series of new design challenges, most notably the allocation of avionics functions to the various IMA components and the placement of this equipment in the aircraft. This paper presents a modelling approach for avionics that allows automation of some steps of the design process by applying an optimisation algorithm which searches for system configurations that fulfil the safety requirements and have low costs. The algorithm was implemented as a quite sophisticated software prototype, therefore we will also present detailed results of its application to actual avionics systems.

  16. Laboratory considerations of United States Pharmacopeia Chapter <71> sterility tests and its application to pharmaceutical compounding.

    PubMed

    Hyde, Tiffany D

    2014-01-01

    The purpose of this article is to describe United States Pharmacopeia Chapter <71> Sterility Tests from the perspective of Current Good Manufacturing Practices in order to aid compounding pharmacists in understanding the details and complexities that are required. Compounding pharmacists face a unique challenge in the industry today, with their compounding practice and the U.S. Food and Drug Administration trying to impose Current Good Manufacturing Practices guidelines. Naturally, this becomes a challenge to contract testing laboratories as well, as they are caught between the testing for non-Current Good Manufacturing Practices compounding standards and Current Good Manufacturing Practices manufacturing. It is important that the compounding pharmacist and their partner testing laboratory work closely together to ensure appropriate requirements are being met.

  17. A review of Integrated Vehicle Health Management tools for legacy platforms: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Esperon-Miguez, Manuel; John, Philip; Jennions, Ian K.

    2013-01-01

    Integrated Vehicle Health Management (IVHM) comprises a set of tools, technologies and techniques for automated detection, diagnosis and prognosis of faults in order to support platforms more efficiently. Specific challenges are faced when IVHM tools are to be retrofitted into legacy vehicles since major modifications are much more challenging than with platforms whose design can still be modified. The topics covered in this Review Paper include the state of the art of IVHM tools and how their characteristics match the requirements of legacy aircraft, a summary of problems faced in the past trying to retrofit IVHM tools both from a technical and organisational perspective and the current level of implementation of IVHM in industry. Although the technology has not reached the level necessary to implement IVHM to its full potential on every kind of component, significant progress has been achieved on rotating equipment, structures or electronics. Attempts to retrofit some of these tools in the past faced both technical difficulties and opposition by some stakeholders, the later being responsible for the failure of technically sound projects in more than one occasion. Nevertheless, despite these difficulties, products and services based on IVHM technology have started to be offered by the manufacturers and, what is more important, demanded by the operators, providing guidance on what the industry would demand from IVHM on legacy aircraft.

  18. Risk stratification, genomic data and the law.

    PubMed

    Hall, Alison; Finnegan, Thomas; Chowdhury, Susmita; Dent, Tom; Kroese, Mark; Burton, Hilary

    2018-02-22

    Risk prediction models have a key role in stratified disease prevention, and the incorporation of genomic data into these models promises more effective personalisation. Although the clinical utility of incorporating genomic data into risk prediction tools is increasingly compelling, at least for some applications and disease types, the legal and regulatory implications have not been examined and have been overshadowed by discussions about clinical and scientific utility and feasibility. We held a workshop to explore relevant legal and regulatory perspectives from four EU Member States: France, Germany, the Netherlands and the UK. While we found no absolute prohibition on the use of such data in those tools, there are considerable challenges. Currently, these are modest and result from genomic data being classified as sensitive data under existing Data Protection regulation. However, these challenges will increase in the future following the implementation of EU Regulations on data protection which take effect in 2018, and reforms to the governance of the manufacture, development and use of in vitro diagnostic devices to be implemented in 2022. Collectively these will increase the regulatory burden placed on these products as risk stratification tools will be brought within the scope of these new Regulations. The failure to respond to the challenges posed by the use of genomic data in disease risk stratification tools could therefore prove costly to those developing and using such tools.

  19. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  20. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  1. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice.

    PubMed

    Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann

    2018-02-01

    Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.

  2. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice

    PubMed Central

    Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann

    2018-01-01

    Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials. PMID:29212357

  3. Progress and challenges in viral vector manufacturing

    PubMed Central

    van der Loo, Johannes C.M.; Wright, J. Fraser

    2016-01-01

    Promising results in several clinical studies have emphasized the potential of gene therapy to address important medical needs and initiated a surge of investments in drug development and commercialization. This enthusiasm is driven by positive data in clinical trials including gene replacement for Hemophilia B, X-linked Severe Combined Immunodeficiency, Leber's Congenital Amaurosis Type 2 and in cancer immunotherapy trials for hematological malignancies using chimeric antigen receptor T cells. These results build on the recent licensure of the European gene therapy product Glybera for the treatment of lipoprotein lipase deficiency. The progress from clinical development towards product licensure of several programs presents challenges to gene therapy product manufacturing. These include challenges in viral vector-manufacturing capacity, where an estimated 1–2 orders of magnitude increase will likely be needed to support eventual commercial supply requirements for many of the promising disease indications. In addition, the expanding potential commercial product pipeline and the continuously advancing development of recombinant viral vectors for gene therapy require that products are well characterized and consistently manufactured to rigorous tolerances of purity, potency and safety. Finally, there is an increase in regulatory scrutiny that affects manufacturers of investigational drugs for early-phase clinical trials engaged in industry partnerships. Along with the recent increase in biopharmaceutical funding in gene therapy, industry partners are requiring their academic counterparts to meet higher levels of GMP compliance at earlier stages of clinical development. This chapter provides a brief overview of current progress in the field and discusses challenges in vector manufacturing. PMID:26519140

  4. CSP Manufacturing Challenges and Assembly Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    Although the expression of CSP is widely used by industry from suppliers to users, its implied definition had evolved as the technology has matured. There are "expert definition"- package that is up to 1.5 time die- or "interim definition". CSPs are miniature new packages that industry is starting to implement and there are many unresolved technical issues associated with their implementation. For example, in early 1997, packages with 1 mm pitch and lower were the dominant CSPs, whereas in early 1998 packages with 0.8 mm and lower became the norm for CSPs. Other changes included the use of flip chip die rather than wire bond in CSP. Nonetheless the emerging CSPs are competing with bare die assemblies and are becoming the package of choice for size reduction applications. These packages provide the benefits of small size and performance of the bare die or flip chip, with the advantage of standard die packages. The JPL-led MicrotypeBGA Consortium of enterprises representing government agencies and private companies have jointed together to pool in-kind resources for developing the quality and reliability of chip scale packages (CSPs) for a variety of projects. This talk will cover specifically the experience of our consortium on technology implementation challenges, including design and build of both standard and microvia boards, assembly of two types of test vehicles, and the most current environmental thermal cycling test results.

  5. The Seven Challenges for Transitioning into a Bio-based Circular Economy in the Agri-food Sector.

    PubMed

    Borrello, Massimiliano; Lombardi, Alessia; Pascucci, Stefano; Cembalo, Luigi

    2016-01-01

    Closed-loop agri-food supply chains have a high potential to reduce environmental and economic costs resulting from food waste disposal. This paper illustrates an alternative to the traditional supply chain of bread based on the principles of a circular economy. Six circular interactions among seven actors (grain farmers, bread producers, retailers, compostable packaging manufacturers, insect breeders, livestock farmers, consumers) of the circular filière are created in order to achieve the goal of "zero waste". In the model, two radical technological innovations are considered: insects used as animal feed and polylactic acid compostable packaging. The main challenges for the implementation of the new supply chain are identified. Finally, some recent patents related to bread sustainable production, investigated in the current paper, are considered. Recommendations are given to academics and practitioners interested in the bio-based circular economy model approach for transforming agri-food supply chains.

  6. Roadmap for Lean implementation in Indian automotive component manufacturing industry: comparative study of UNIDO Model and ISM Model

    NASA Astrophysics Data System (ADS)

    Jadhav, J. R.; Mantha, S. S.; Rane, S. B.

    2015-06-01

    The demands for automobiles increased drastically in last two and half decades in India. Many global automobile manufacturers and Tier-1 suppliers have already set up research, development and manufacturing facilities in India. The Indian automotive component industry started implementing Lean practices to fulfill the demand of these customers. United Nations Industrial Development Organization (UNIDO) has taken proactive approach in association with Automotive Component Manufacturers Association of India (ACMA) and the Government of India to assist Indian SMEs in various clusters since 1999 to make them globally competitive. The primary objectives of this research are to study the UNIDO-ACMA Model as well as ISM Model of Lean implementation and validate the ISM Model by comparing with UNIDO-ACMA Model. It also aims at presenting a roadmap for Lean implementation in Indian automotive component industry. This paper is based on secondary data which include the research articles, web articles, doctoral thesis, survey reports and books on automotive industry in the field of Lean, JIT and ISM. ISM Model for Lean practice bundles was developed by authors in consultation with Lean practitioners. The UNIDO-ACMA Model has six stages whereas ISM Model has eight phases for Lean implementation. The ISM-based Lean implementation model is validated through high degree of similarity with UNIDO-ACMA Model. The major contribution of this paper is the proposed ISM Model for sustainable Lean implementation. The ISM-based Lean implementation framework presents greater insight of implementation process at more microlevel as compared to UNIDO-ACMA Model.

  7. Manufacturing DTaP-based combination vaccines: industrial challenges around essential public health tools.

    PubMed

    Vidor, Emmanuel; Soubeyrand, Benoit

    2016-12-01

    The manufacture of DTP-backboned combination vaccines is complex, and vaccine quality is evaluated by both batch composition and conformance of manufacturing history. Since their first availability, both the manufacturing regulations for DTP combination vaccines and their demand have evolved significantly. This has resulted in a constant need to modify manufacturing and quality control processes. Areas covered: Regulations that govern the manufacture of complex vaccines can be inconsistent between countries and need to be aligned with the regulatory requirements that apply in all countries of distribution. Changes in product mix and quantities can lead to uncertainty in vaccine supply maintenance. These problems are discussed in the context of the importance of these products as essential public health tools. Expert commentary: Increasing demand for complex vaccines globally has led to problems in supply due to intrinsically complex manufacturing and regulatory procedures. Vaccine manufacturers are fully engaged in the resolution of these challenges, but currently changes in demand need ideally to be anticipated approximately 3 years in advance due to long production cycle times.

  8. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry

    PubMed Central

    Devadasan, S. R.; Sivaram, N. M.

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps. PMID:26065016

  9. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry.

    PubMed

    Thilak, V M M; Devadasan, S R; Sivaram, N M

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps.

  10. An Automated Design Framework for Multicellular Recombinase Logic.

    PubMed

    Guiziou, Sarah; Ulliana, Federico; Moreau, Violaine; Leclere, Michel; Bonnet, Jerome

    2018-05-18

    Tools to systematically reprogram cellular behavior are crucial to address pressing challenges in manufacturing, environment, or healthcare. Recombinases can very efficiently encode Boolean and history-dependent logic in many species, yet current designs are performed on a case-by-case basis, limiting their scalability and requiring time-consuming optimization. Here we present an automated workflow for designing recombinase logic devices executing Boolean functions. Our theoretical framework uses a reduced library of computational devices distributed into different cellular subpopulations, which are then composed in various manners to implement all desired logic functions at the multicellular level. Our design platform called CALIN (Composable Asynchronous Logic using Integrase Networks) is broadly accessible via a web server, taking truth tables as inputs and providing corresponding DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin ). We anticipate that this automated design workflow will streamline the implementation of Boolean functions in many organisms and for various applications.

  11. Active optics as enabling technology for future large missions: current developments for astronomy and Earth observation at ESA

    NASA Astrophysics Data System (ADS)

    Hallibert, Pascal

    2017-09-01

    In recent years, a trend for higher resolution has increased the entrance apertures of future optical payloads for both Astronomy and Earth Observation most demanding applications, resulting in new opto-mechanical challenges for future systems based on either monolithic or segmented large primary mirrors. Whether easing feasibility and schedule impact of tight manufacturing and integration constraints or correcting mission-critical in-orbit and commissioning effects, Active Optics constitutes an enabling technology for future large optical space instruments at ESA and needs to reach the necessary maturity in time for future mission selection and implementation. We present here a complete updated overview of our current R and D activities in this field, ranging from deformable space-compatible components to full correction chains including wavefront sensing as well as control and correction algorithms. We share as well our perspectives on the way-forward to technological maturity and implementation within future missions.

  12. A compact, portable, re-configurable, and automated system for on-demand pharmaceutical tablet manufacturing.

    PubMed

    Azad, Mohammad A; Osorio, Juan G; Brancazio, David; Hammersmith, Gregory; Klee, David M; Rapp, Kersten; Myerson, Allan

    2018-03-25

    Due to the complex nature of the pharmaceutical supply chain, the industry faces several major challenges when it comes to ensuring an adequate supply of quality drug products. These challenges are not only the causes of supply chain disruptions and financial loss, but can also prevent underserved and remote areas from receiving life-saving drugs. As a preliminary demonstration to mitigate all these challenges, at MIT we have developed active pharmaceutical ingredients manufacturing in a miniature platform. However, manufacturing of final oral solid dosage as tablets from drug substances had not been demonstrated. In this study, a compact, portable, re-configurable, and automated tablet manufacturing system, roughly the size of a North American household oven, [72.4 cm (length) × 53.3 cm (width) × 134.6 cm (height)] was designed, built and demonstrated. This miniature system is able to manufacture on-demand tablets from drug crystals on a scale of hundreds to thousands per day. Ibuprofen and Diazepam, each having different drug loading, were manufactured using this miniature system and meet U.S. Pharmacopeia standards. We foresee this flexible, miniature, plug-and-play pharmaceutical solids dosage manufacturing system advancing on-demand ready-to-use pharmaceuticals enabling future treatment of human diseases at the point-of-care. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Novel folding device for manufacturing aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Tewfic, Tarik; Sarhadi, M.

    2000-10-01

    A new manufacturing methodology, termed shape-inclusive lay-up has been applied that allows the generation of three-dimensional preforms for the resin transfer molding (RTM) process. A flexible novel folding device for forming dry fabrics including non-crimp fabric (NCF) preform is designed and integrated with a Material Delivery System (MDS) into a robotic cell for manufacturing dry fiber composite aerospace components. The paper describes detailed design, implementation and operational performance of a prototype device. The proposed folding device has been implemented and tested by manufacturing a range of reinforcement structure preforms (C,T,J and I reinforcement preforms), normally used in aerostructure applications. A key advantage of the proposed device is its flexibility. The system is capable of manufacturing a wide range of components of various sizes without the need for reconfiguration.

  14. Research on application information system integration platform in medicine manufacturing enterprise.

    PubMed

    Deng, Wu; Zhao, Huimin; Zou, Li; Li, Yuanyuan; Li, Zhengguang

    2012-08-01

    Computer and information technology popularizes in the medicine manufacturing enterprise for its potentials in working efficiency and service quality. In allusion to the explosive data and information of application system in current medicine manufacturing enterprise, we desire to propose a novel application information system integration platform in medicine manufacturing enterprise, which based on a combination of RFID technology and SOA, to implement information sharing and alternation. This method exploits the application integration platform across service interface layer to invoke the RFID middleware. The loose coupling in integration solution is realized by Web services. The key techniques in RFID event components and expanded role-based security access mechanism are studied in detail. Finally, a case study is implemented and tested to evidence our understanding on application system integration platform in medicine manufacturing enterprise.

  15. Using Simulation to Explore Lean Manufacturing Implementation Strategies

    ERIC Educational Resources Information Center

    Shannon, Patrick W.; Krumwiede, Kip R.; Street, Jeffrey N.

    2010-01-01

    Lean manufacturing, an outgrowth of the Toyota Production System, has spread far beyond the automobile industry and is seen by many leaders as a key management philosophy in the battle to compete on an international scale. Successful implementation of lean requires that managers and employees be educated in the proper application of lean tools and…

  16. Solidification and solid-state transformation sciences in metals additive manufacturing

    DOE PAGES

    Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...

    2017-02-11

    Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.

  17. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  18. Logistics for the implementation of lead-free solders on electronic assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianco, P.T.; Artaki, I.

    1993-12-31

    The prospects of legislative and regulatory action aimed at taxing, restricting or banning lead-bearing materials from manufactured products has prompted the electronics community to examine the implementation of lead-free solders to replace currently used lead-containing alloys in the manufacture of electronic devices and assemblies. The logistics for changing the well established ``tin-lead solder technology`` require not only the selection of new compositions but also the qualification of different surface finishes and manufacturing processes. The meniscometer/wetting balance technique was used to evaluate the wettability of several candidate lead-free solders as well as to establish windows on processing parameters so as tomore » facilitate prototype manufacturing. Electroplated and electroless 100Sn coatings, as well as organic preservatives, were also examined as potential alternative finishes for device leads and terminations as well as circuit board conductor surfaces to replace traditional tin-lead layers. Sandia National Laboratories and AT&T have implemented a program to qualify the manufacturing feasibility of surface mount prototype circuit boards using several commercial lead-free solders by infrared reflow technology.« less

  19. 2001 Industry Studies: Advanced Manufacturing

    DTIC Science & Technology

    2001-05-28

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology

  20. 76 FR 22817 - Approval and Promulgation of Air Quality Implementation Plans; South Carolina; Update to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Manufacturing'' 5. ``Section VI--Hot Mix Asphalt Manufacturing'' 6. ``Section VII--Metal Refining;'' [[Page... Industries 1. ``Section III--Kraft Pulp and Paper Manufacturing Plants'' 2. ``Section VI--Hot Mix Asphalt... Manufacturing'' 3. ``Section XI--Total Reduced Sulfur Emissions of Kraft Pulp Mills;'' viii. Regulation 62.5...

  1. 21st Century Manufacturing Supervisors and Their Historical Roots

    ERIC Educational Resources Information Center

    Hotek, Douglas R.

    2003-01-01

    This article provides a perspective of the past and present roles of the manufacturing supervisor with a specific focus on new skills requirements. Within the structure of manufacturing management, the supervisor plays a key role in implementing today's complex automated manufacturing technologies. The supervisor is at the bottom of the management…

  2. Regulatory Perspectives on Continuous Pharmaceutical Manufacturing: Moving From Theory to Practice: September 26-27, 2016, International Symposium on the Continuous Manufacturing of Pharmaceuticals.

    PubMed

    Nasr, Moheb M; Krumme, Markus; Matsuda, Yoshihiro; Trout, Bernhardt L; Badman, Clive; Mascia, Salvatore; Cooney, Charles L; Jensen, Keith D; Florence, Alastair; Johnston, Craig; Konstantinov, Konstantin; Lee, Sau L

    2017-11-01

    Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  3. Achieving continuous manufacturing for final dosage formation: challenges and how to meet them. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    NASA Astrophysics Data System (ADS)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.

  5. Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification

    NASA Astrophysics Data System (ADS)

    Babu, S. S.; Raghavan, N.; Raplee, J.; Foster, S. J.; Frederick, C.; Haines, M.; Dinwiddie, R.; Kirka, M. K.; Plotkowski, A.; Lee, Y.; Dehoff, R. R.

    2018-06-01

    Innovative designs for turbines can be achieved by advances in nickel-based superalloys and manufacturing methods, including the adoption of additive manufacturing. In this regard, selective electron beam melting (SEBM) and selective laser melting (SLM) of nickel-based superalloys do provide distinct advantages. Furthermore, the direct energy deposition (DED) processes can be used for repair and reclamation of nickel alloy components. The current paper explores opportunities for innovation and qualification challenges with respect to deployment of AM as a disruptive manufacturing technology. In the first part of the paper, fundamental correlations of processing parameters to defect tendency and microstructure evolution will be explored using DED process. In the second part of the paper, opportunities for innovation in terms of site-specific control of microstructure during processing will be discussed. In the third part of the paper, challenges in qualification of AM parts for service will be discussed and potential methods to alleviate these issues through in situ process monitoring, and big data analytics are proposed.

  6. Bioengineering Solutions for Manufacturing Challenges in CAR T Cells

    PubMed Central

    Piscopo, Nicole J.; Mueller, Katherine P.; Das, Amritava; Hematti, Peiman; Murphy, William L.; Palecek, Sean P.; Capitini, Christian M.

    2017-01-01

    The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed “living drugs” for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control. PMID:28840981

  7. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market

    PubMed Central

    Geris, L.; Guyot, Y.; Schrooten, J.; Papantoniou, I.

    2016-01-01

    The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design. PMID:27051516

  8. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market.

    PubMed

    Geris, L; Guyot, Y; Schrooten, J; Papantoniou, I

    2016-04-06

    The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design.

  9. MRP (materiel requirements planning) II implementation: a case study.

    PubMed

    Sheldon, D

    1994-05-01

    Manufacturing resource planning (MRP II) is a powerful and effective business planning template on which to build a continuous improvement culture. MRP II, when successfully implemented, encourages a disciplined yet nonthreatening environment centered on measurement and accountability. From the education that accompanies an MRP II implementation, the employees can better understand the vision and mission of the organization. This common goal keeps everyone's energy directed toward the same final objective. The Raymond Corporation is a major materiels handling equipment manufacturer headquartered in Greene, New York, with class "A" MRP II manufacturing facilities in Greene and Brantford, Ontario and an aftermark distribution facility in East Syracuse, New York. Prior to the implementation of MRP II in its Greene plant (from 1988 through 1990) good intentions and hard work were proving to be less than necessary to compete in the global market. Certified class "A" in February 1990. The Raymond Corporation has built a world-class organization from these foundations.

  10. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  11. Three-Dimensional Printing of Medicinal Products and the Challenge of Personalized Therapy.

    PubMed

    Zema, Lucia; Melocchi, Alice; Maroni, Alessandra; Gazzaniga, Andrea

    2017-07-01

    By 3-dimensional (3D) printing, solid objects of any shape are fabricated through layer-by-layer addition of materials based on a digital model. At present, such a technique is broadly exploited in many industrial fields because of major advantages in terms of reduced times and costs of development and production. In the biomedical and pharmaceutical domains, the interest in 3D printing is growing in step with the needs of personalized medicine. Printed scaffolds and prostheses have partly replaced medical devices produced by more established techniques, and more recently, 3D printing has been proposed for the manufacturing of drug products. Notably, the availability of patient-tailored pharmaceuticals would be of utmost importance for children, elderly subjects, poor and high metabolizers, and individuals undergoing multiple drug treatments. 3D printing encompasses a range of differing techniques, each involving advantages and open issues. Particularly, solidification of powder, extrusion, and stereolithography have been applied to the manufacturing of drug products. The main challenge to their exploitation for personalized pharmacologic therapy is likely to be related to the regulatory issues involved and to implementation of production models that may allow to efficiently turn the therapeutic needs of individual patients into small batches of appropriate drug products meeting preset quality requirements. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Facility for orbital material processing

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Dellosa, M.; Erdelyi, E.; Volfson, L.

    2018-05-01

    The sustainable orbital manufacturing with commercially viable and profitable operation has tremendous potential for driving the space exploration industry and human expansion into outer space. This highly challenging task has never been accomplished before. The current relatively high delivery cost of materials represents the business challenge of value proposition for making products in space. FOMS Inc. team identified an opportunity of fluoride optical fiber manufacturing in space that can lead to the first commercial production on orbit. To address continued cost effective International Space Station (ISS) operations FOMS Inc. has developed and demonstrated for the first time a fully operational space facility for orbital remote manufacturing with up to 50 km fiber fabrication capability and strong commercial potential for manufacturing operations on board the ISS.

  13. Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis.

    PubMed

    Kocaoglu-Vurma, N A; Eliardi, A; Drake, M A; Rodriguez-Saona, L E; Harper, W J

    2009-08-01

    The acceptability of cheese depends largely on the flavor formed during ripening. The flavor profiles of cheeses are complex and region- or manufacturer-specific which have made it challenging to understand the chemistry of flavor development and its correlation with sensory properties. Infrared spectroscopy is an attractive technology for the rapid, sensitive, and high-throughput analysis of foods, providing information related to its composition and conformation of food components from the spectra. Our objectives were to establish infrared spectral profiles to discriminate Swiss cheeses produced by different manufacturers in the United States and to develop predictive models for determination of sensory attributes based on infrared spectra. Fifteen samples from 3 Swiss cheese manufacturers were received and analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). The spectra were analyzed using soft independent modeling of class analogy (SIMCA) to build a classification model. The cheeses were profiled by a trained sensory panel using descriptive sensory analysis. The relationship between the descriptive sensory scores and ATR-IR spectra was assessed using partial least square regression (PLSR) analysis. SIMCA discriminated the Swiss cheeses based on manufacturer and production region. PLSR analysis generated prediction models with correlation coefficients of validation (rVal) between 0.69 and 0.96 with standard error of cross-validation (SECV) ranging from 0.04 to 0.29. Implementation of rapid infrared analysis by the Swiss cheese industry would help to streamline quality assurance.

  14. Sharing risk between payer and provider by leasing health technologies: an affordable and effective reimbursement strategy for innovative technologies?

    PubMed

    Edlin, Richard; Hall, Peter; Wallner, Klemens; McCabe, Christopher

    2014-06-01

    The challenge of implementing high-cost innovative technologies in health care systems operating under significant budgetary pressure has led to a radical shift in the health technology reimbursement landscape. New reimbursement strategies attempt to reduce the risk of making the wrong decision, that is, paying for a technology that is not good value for the health care system, while promoting the adoption of innovative technologies into clinical practice. The remaining risk, however, is not shared between the manufacturer and the health care payer at the individual purchase level; it continues to be passed from the manufacturer to the payer at the time of purchase. In this article, we propose a health technology payment strategy-technology leasing reimbursement scheme-that allows the sharing of risk between the manufacturer and the payer: the replacing of up-front payments with a stream of payments spread over the expected duration of benefit from the technology, subject to the technology delivering the claimed health benefit. Using trastuzumab (Herceptin) in early breast cancer as an exemplar technology, we show how a technology leasing reimbursement scheme not only reduces the total budgetary impact of the innovative technology but also truly shares risk between the manufacturer and the health care system, while reducing the value of further research and thus promoting the rapid adoption of innovative technologies into clinical practice. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Reconfigurable manufacturing systems: Principles, design, and future trends

    NASA Astrophysics Data System (ADS)

    Koren, Yoram; Gu, Xi; Guo, Weihong

    2018-06-01

    Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are costeffective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.

  16. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  17. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    NASA Astrophysics Data System (ADS)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  18. Fully coupled methods for multiphase morphodynamics

    NASA Astrophysics Data System (ADS)

    Michoski, C.; Dawson, C.; Mirabito, C.; Kubatko, E. J.; Wirasaet, D.; Westerink, J. J.

    2013-09-01

    We present numerical methods for a system of equations consisting of the two dimensional Saint-Venant shallow water equations (SWEs) fully coupled to a completely generalized Exner formulation of hydrodynamically driven sediment discharge. This formulation is implemented by way of a discontinuous Galerkin (DG) finite element method, using a Roe Flux for the advective components and the unified form for the dissipative components. We implement a number of Runge-Kutta time integrators, including a family of strong stability preserving (SSP) schemes, and Runge-Kutta Chebyshev (RKC) methods. A brief discussion is provided regarding implementational details for generalizable computer algebra tokenization using arbitrary algebraic fluxes. We then run numerical experiments to show standard convergence rates, and discuss important mathematical and numerical nuances that arise due to prominent features in the coupled system, such as the emergence of nondifferentiable and sharp zero crossing functions, radii of convergence in manufactured solutions, and nonconservative product (NCP) formalisms. Finally we present a challenging application model concerning hydrothermal venting across metalliferous muds in the presence of chemical reactions occurring in low pH environments.

  19. Integrating health promotion and occupational safety and health in manufacturing worksites: Perspectives of leaders in small-to-medium sized businesses.

    PubMed

    Nelson, Candace C; Allen, Jennifer D; McLellan, Deborah; Pronk, Nico; Davis, Kia L

    2015-01-01

    Accumulating evidence suggests that worksite interventions integrating worksite health promotion (WHP) and occupational safety and health (OSH) may be more efficacious and have higher participation rates than health promotion programs offered alone. However, dissemination of integrated programs is complicated by lack of tools for implementation - particularly for small and medium-sized businesses (SMBs). The goal of this study is to describe perceptions of acceptability and feasibility of implementing an integrated approach to worker health that coordinates WHP and OSH in SMBs. In September to November 2012, decision-makers for employee health programming within SMBs (< 750 employees) in greater Minneapolis were identified. Fourteen semi-structured interviews were conducted and analyzed to develop an understanding of perceived benefits and barriers, awareness, and capacity for implementing an integrated approach. Worker health was widely valued by participants. They reported strong management support for improving employee health and safety. Most participants indicated that their company was open to making changes in their approach to worker health; however, cost and staffing considerations were frequently perceived as barriers. There are opportunities for implementing integrated worksite health programs in SMBs with existing resources and values. However, challenges to implementation exist, as these worksites may lack the appropriate resources.

  20. Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes.

    PubMed

    Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert

    2014-04-01

    The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.

  1. Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review).

    PubMed

    Harrison, Richard P; Chauhan, Veeren M

    2017-12-15

    Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.

  2. Design and manufacture of imaging time-of-propagation optics

    NASA Astrophysics Data System (ADS)

    Albrecht, Mike; Fast, James; Schwartz, Alan

    2016-09-01

    There are several challenges associated with the design and manufacture of the optics required for the imaging time-of- propagation detector constructed for the Belle II particle physics experiment. This detector uses Cherenkov light radiated in quartz bars to identify subatomic particles: pions, kaons, and protons. The optics are physically large (125 cm x 45 cm x 2 cm bars and 45 cm x 10 cm x 5 cm prisms), all surfaces are optically polished, and there is very little allowance for chamfers or surface defects. In addition to the optical challenges, there are several logistical and handling challenges associated with measuring, assembling, cleaning, packaging, and shipping these delicate precision optics. This paper describes a collaborative effort between Pacific Northwest National Laboratory, the University of Cincinnati, and ZYGO Corporation for the design and manufacture of 48 fused silica optics (30 bars and 18 prisms) for the iTOP Detector. Details of the iTOP detector design that drove the challenging optical requirements are provided, along with material selection considerations. Since the optics are so large, precise, and delicate, special care had to be given to the selection of a manufacturing process capable of achieving the challenging optical and surface defect requirements on such large and high-aspect-ratio (66:1) components. A brief update on the current status and performance of these optics is also provided.

  3. Designing and Implementing Collaborative Improvement in the Extended Manufacturing Enterprise: Action Learning and Action Research (ALAR) in CO-IMPROVE

    ERIC Educational Resources Information Center

    Coghlan, David; Coughlan, Paul

    2006-01-01

    Purpose: The purpose of this article is to provide a design and implementation framework for ALAR (action learning action research) programme which aims to address collaborative improvement in the extended manufacturing enterprise. Design/methodology/approach: This article demonstrates the design of a programme in which action learning and action…

  4. Vaccine stabilization: research, commercialization, and potential impact.

    PubMed

    Kristensen, Debra; Chen, Dexiang; Cummings, Ray

    2011-09-22

    All vaccines are susceptible to damage by elevated temperatures and many are also damaged by freezing. The distribution, storage, and use of vaccines therefore present challenges that could be reduced by enhanced thermostability, with resulting improvements in vaccine effectiveness. Formulation and processing technologies exist that can improve the stability of vaccines at temperature extremes, however, customization is required for individual vaccines and results are variable. Considerations affecting decisions about stabilization approaches include development cost, manufacturing cost, and the ease of use of the final product. Public sector agencies can incentivize vaccine developers to prioritize stabilization efforts through advocacy and by implementing policies that increase demand for thermostable vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Schematic driven silicon photonics design

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris

    2016-03-01

    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.

  6. Laser pattern generator challenges in airborne molecular contamination protection

    NASA Astrophysics Data System (ADS)

    Ekberg, Mats; Skotte, Per-Uno; Utterback, Tomas; Paul, Swaraj; Kishkovich, Oleg P.; Hudzik, James S.

    2003-08-01

    The introduction of photomask laser pattern generators presents new challenges to system designers and manufacturers. One of the laser pattern generator's environmental operating challenges is Airborne Molecular Contamination (AMC), which affects both chemically amplified resists (CAResist) and laser optics. Similar challenges in CAResist protection have already been addressed in semiconductor wafer lithography with reasonable solutions and experience gained by all those involved. However, photomask and photomask equipment manufacturers have not previously had a comparable experience, and some photomask AMC issues differ from those seen in semiconductor wafer lithography. Culminating years of AMC experience, the authors discuss specific requirements of Photomask AMC. Air sampling and material of construction analysis were performed to understand these particular AMC challenges and used to develop an appropriate filtration specification for different classes of contaminates. The authors portray the importance of cooperation between tool designers and AMC experts early in the design stage to assure goal attainment to maximize both process stability and machine productivity in advanced mask making. In conclusion, the authors provide valuable recommendations to both laser tool users and other equipment manufacturers.

  7. Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide

    NASA Technical Reports Server (NTRS)

    DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay

    2012-01-01

    Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.

  8. Department of the Navy (DON) Additive Manufacturing (AM) Implementation Plan V2.0 (2017)

    DTIC Science & Technology

    2017-05-04

    technology with significant implications for the U.S. manufacturing base and naval warfare. It can shorten the design to production cycle, enable new...11 Objective 5: Enable manufacturing agility through low volume production in maintenance and operational environments...A-5 Table 5. Objective 5: Enable manufacturing agility through low volume production in maintenance and operational environments

  9. The implementation of tissue banking experiences for setting up a cGMP cell manufacturing facility.

    PubMed

    Arjmand, Babak; Emami-Razavi, Seyed Hassan; Larijani, Bagher; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.

  10. Supportability Technologies for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watson, Kevin; Thompson, Karen

    2007-01-01

    Future long-duration human exploration missions will be challenged by resupply limitations and mass and volume constraints. Consequently, it will be essential that the logistics footprint required to support these missions be minimized and that capabilities be provided to make them highly autonomous from a logistics perspective. Strategies to achieve these objectives include broad implementation of commonality and standardization at all hardware levels and across all systems, repair of failed hardware at the lowest possible hardware level, and manufacture of structural and mechanical replacement components as needed. Repair at the lowest hardware levels will require the availability of compact, portable systems for diagnosis of failures in electronic systems and verification of system functionality following repair. Rework systems will be required that enable the removal and replacement of microelectronic components with minimal human intervention to minimize skill requirements and training demand for crews. Materials used in the assembly of electronic systems (e.g. solders, fluxes, conformal coatings) must be compatible with the available repair methods and the spacecraft environment. Manufacturing of replacement parts for structural and mechanical applications will require additive manufacturing systems that can generate near-net-shape parts from the range of engineering alloys employed in the spacecraft structure and in the parts utilized in other surface systems. These additive manufacturing processes will need to be supported by real-time non-destructive evaluation during layer-additive processing for on-the-fly quality control. This will provide capabilities for quality control and may serve as an input for closed-loop process control. Additionally, non-destructive methods should be available for material property determination. These nondestructive evaluation processes should be incorporated with the additive manufacturing process - providing an in-process capability to ensure that material deposited during layer-additive processing meets required material property criteria.

  11. Open Research Challenges with Big Data - A Data-Scientist s Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R

    In this paper, we discuss data-driven discovery challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical data mining and machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are data mining algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emergingmore » and outstanding challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security, healthcare and manufacturing to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.« less

  12. Advantages of utilizing DMD based rapid manufacturing systems in mass customization applications

    NASA Astrophysics Data System (ADS)

    El-Siblani, A.

    2010-02-01

    The Use of DMD based Rapid Manufacturing Systems has proven to be very advantageous in the production of highly accurate plastic based components for use in mass customization market such as hearing aids, and dental markets. The voxelization process currently afforded with the DLP technology eliminates any layering effect associated with all existing additive Rapid Manufacturing technologies. The smooth accurate surfaces produced in an additive process utilizing DLP technology, through the voxelization approach, allow for the production of custom finished products. The implementation of DLP technology in rapid prototyping and rapid manufacturing systems allow for the usage of highly viscous photopolymer based liquid and paste composites for rapid manufacturing that could not be used in any other additive process prior to implementation of DLP technology in RP and RM systems. It also allowed for the greater throughput in production without sacrificing quality and accuracy.

  13. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  14. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    ScienceCinema

    Zayas, Jose; Johnson, Mark

    2018-01-16

    Innovation in the design and manufacturing of wind power generation components continues to be critical to achieving our national renewable energy goals. As a result of this challenge, the U.S. Department of Energy's Wind Program and Advanced Manufacturing Office are partnering with public and private organizations to apply additive manufacturing, commonly known as 3D printing, to the production of wind turbine blade molds.

  15. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayas, Jose; Johnson, Mark

    2016-06-28

    Innovation in the design and manufacturing of wind power generation components continues to be critical to achieving our national renewable energy goals. As a result of this challenge, the U.S. Department of Energy's Wind Program and Advanced Manufacturing Office are partnering with public and private organizations to apply additive manufacturing, commonly known as 3D printing, to the production of wind turbine blade molds.

  16. Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability.

    PubMed

    Hourd, Paul; Ginty, Patrick; Chandra, Amit; Williams, David J

    2014-08-01

    Manufacturing of more-than-minimally manipulated autologous cell therapies presents a number of unique challenges driven by complex supply logistics and the need to scale out production to multiple manufacturing sites or near the patient within hospital settings. The existing regulatory structure in Europe and the United States imposes a requirement to establish and maintain comparability between sites. Under a single market authorization, this is likely to become an unsurmountable burden beyond two or three sites. Unless alternative manufacturing approaches can be found to bridge the regulatory challenge of comparability, realizing a sustainable and investable business model for affordable autologous cell therapy supply is likely to be extremely demanding. Without a proactive approach by the regulators to close this "translational gap," these products may not progress down the development pipeline, threatening patient accessibility to an increasing number of clinician-led autologous cellular therapies that are already demonstrating patient benefits. We propose three prospective manufacturing models for the scale out/roll out of more-than-minimally manipulated clinically led autologous cell therapy products and test their prospects for addressing the challenge of product comparability with a selected expert reference panel of US and UK thought leaders. This paper presents the perspectives and insights of the panel and identifies where operational, technological and scientific improvements should be prioritized. The main purpose of this report is to solicit feedback and seek input from key stakeholders active in the field of autologous cell therapy in establishing a consensus-based manufacturing approach that may permit the roll out of clinically led autologous cell therapies. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Manufacturing implementation of off-line programming for the Space Shuttle Main Engines

    NASA Technical Reports Server (NTRS)

    Sliwinski, K. E.; Pierson, B. L.; Anderson, R. R.; Guthmiller, W. A.

    1989-01-01

    An account is given of the efforts made to implement an off-line programming (OLP) system for a gas tungsten arc welding robot in actual manufacturing operations, namely those involved in the manufacture of the SSMEs. In conjunction with a real-time sensor control system, the OLP constitutes the Advanced Robotic Welding System, or 'AROWS'. OLP's task is to develop a robot-motion path without the initial use of the robot to 'teach' the characteristics of such motion; actual process parameters are recorded by OLP and correlated with the position along the weld.

  18. Analysis of form deviation in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  19. Miscellaneous Coating Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The national emission standards for hazardous air pollutants for miscellaneous coating manufacturing. Includes summary, rule history, compliance and implementation information, federal registry citations.

  20. Implementing Computer Integrated Manufacturing Technician Program.

    ERIC Educational Resources Information Center

    Gibbons, Roger

    A computer-integrated manufacturing (CIM) technician program was developed to provide training and technical assistance to meet the needs of business and industry in the face of the demands of high technology. The Computer and Automated Systems Association (CASA) of the Society of Manufacturing Engineers provided the incentive and guidelines…

  1. Chicago Manufacturing Tech Prep. Fiscal Year 1991 Final Report.

    ERIC Educational Resources Information Center

    Chicago City Colleges, IL.

    During its first year of development in 1991, the Chicago Manufacturing Technical Preparation (Tech Prep) Program established a plan for implementing an industry-driven, articulated 4-year manufacturing technology course of study that integrates applied academic courses with technical courses and meets industry hiring standards. The project…

  2. A Sharper Focus on Technical Workers: How to Educate and Train for the Global Economy

    ERIC Educational Resources Information Center

    Lamos, Erin; Simon, Martin; Waits, Mary Jo

    2010-01-01

    This report presents a case study of the Automotive Manufacturing Technical Education Collaborative (AMTEC), which brings together auto manufacturers and community colleges across 12 states to identify and implement wide-ranging improvements in technical education for automotive manufacturing workers. A "Big Collaboration"--AMTEC…

  3. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2018-05-18

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  4. Organizational Considerations for Advanced Manufacturing Technology

    ERIC Educational Resources Information Center

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  5. Implementation of Effective Capstone Projects in Undergraduate Manufacturing Design Engineering Program

    ERIC Educational Resources Information Center

    Viswanathan, Shekar

    2017-01-01

    Final program projects (capstone course) in manufacturing design engineering technology at National University are intensive experiences in critical thinking and analysis, designed to broaden students' perspectives and provide an opportunity for integration of coursework in the area of manufacturing design engineering. This paper focuses on three…

  6. 76 FR 30703 - Delegation of Authority to the Commonwealth of Pennsylvania To Implement and Enforce Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... combustion; (4) Subpart LLL (relating to Portland cement manufacturing industry; (5) Subpart NNNNNN (relating... production area sources; (7) Subpart PPPPPP (relating to lead acid battery manufacturing area sources; (8) Subpart SSSSSS (relating to glass manufacturing area sources); (10) Subpart TTTTTT (relating to secondary...

  7. Flexible manufacturing of aircraft engine parts

    NASA Astrophysics Data System (ADS)

    Hassan, Ossama M.; Jenkins, Douglas M.

    1992-06-01

    GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.

  8. The role of manufacturing in affecting the social dimension of sustainability

    DOE PAGES

    Sutherland, John W.; Richter, Justin S.; Hutchins, Margot J.; ...

    2016-08-03

    Manufacturing affects all three dimensions of sustainability: economy, environment, and society. This paper addresses the last of these dimensions. It explores social impacts identified by national level social indicators, frameworks, and principles. The effects of manufacturing on social performance are framed for different stakeholder groups with associated social needs. Methodology development as well as various challenges for social life cycle assessment (S-LCA) are further examined. Efforts to integrate social and another dimension of sustainability are considered, with attention to globalization challenges, including offshoring and reshoring. The study concludes with a summary of key takeaways and promising directions for future work.

  9. The role of manufacturing in affecting the social dimension of sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, John W.; Richter, Justin S.; Hutchins, Margot J.

    Manufacturing affects all three dimensions of sustainability: economy, environment, and society. This paper addresses the last of these dimensions. It explores social impacts identified by national level social indicators, frameworks, and principles. The effects of manufacturing on social performance are framed for different stakeholder groups with associated social needs. Methodology development as well as various challenges for social life cycle assessment (S-LCA) are further examined. Efforts to integrate social and another dimension of sustainability are considered, with attention to globalization challenges, including offshoring and reshoring. The study concludes with a summary of key takeaways and promising directions for future work.

  10. Numerical modelling of the flow in the resin infusion process on the REV scale: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabbari, M.; Spangenberg, J.; Hattel, J. H.

    2016-06-08

    The resin infusion process (RIP) has developed as a low cost method for manufacturing large fibre reinforced plastic parts. However, the process still presents some challenges to industry with regards to reliability and repeatability, resulting in expensive and inefficient trial and error development. In this paper, we show the implementation of 2D numerical models for the RIP using the open source simulator DuMu{sup X}. The idea of this study is to present a model which accounts for the interfacial forces coming from the capillary pressure on the so-called representative elementary volume (REV) scale. The model is described in detail andmore » three different test cases — a constant and a tensorial permeability as well as a preform/Balsa domain — are investigated. The results show that the developed model is very applicable for the RIP for manufacturing of composite parts. The idea behind this study is to test the developed model for later use in a real application, in which the preform medium has numerous layers with different material properties.« less

  11. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.

    2013-10-15

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the muchmore » lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.« less

  12. Unintended Consequences: How Qualification Constrains Innovation

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.

    2011-01-01

    The development and implementation of new materials and manufacturing processes for aerospace application is often hindered by the high cost and long time span associated with current qualification procedures. The data requirements necessary for material and process qualification are extensive and often require millions of dollars and multiple years to complete. Furthermore, these qualification data can become obsolete for even minor changes to the processing route. This burden is a serious impediment to the pursuit of revolutionary new materials and more affordable processing methods for air vehicle structures. The application of integrated computational materials engineering methods to this problem can help to reduce the barriers to rapid insertion of new materials and processes. By establishing predictive capability for the development of microstructural features in relation to processing and relating this to critical property characteristics, a streamlined approach to qualification is possible. This paper critically examines the advantages and challenges to a modeling-assisted qualification approach for aerospace structural materials. An example of how this approach might apply towards the emerging field of additive manufacturing is discussed in detail.

  13. Manufacturing cost/design system: A CAD/CAM dialogue

    NASA Technical Reports Server (NTRS)

    Loshigian, H. H.; Rachowitz, B. I.; Judson, D.

    1980-01-01

    The development of the Manufacturing Cost/Design System (MC/DS) will provide the aerospace design engineer a tool with which to perform heretofore impractical design manufacturing cost tradeoffs. The Air Force Integrated Computer Aided Manufacturing (ICAM) Office has initiated the development and demonstration of an MC/DS which, when fully implemented, will integrate both design and manufacturing data bases to provide real time visibility into the manufacturing costs associated with various design options. The first release of a computerized system will be made before the end of 1981.

  14. Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns.

    PubMed

    del Val, Ioscani Jimenez; Kontoravdi, Cleo; Nagy, Judit M

    2010-01-01

    Quality by design (QbD) is a scheme for the development, manufacture, and approval of pharmaceutical products. The end goal of QbD is to ensure product quality by building it into the manufacturing process. The main regulatory bodies are encouraging its implementation to the manufacture of all new pharmaceuticals including biological products. Monoclonal antibodies (mAbs) are currently the leading products of the biopharmaceutical industry. It has been widely reported that glycosylation directly influences the therapeutic mechanisms by which mAbs function in vivo. In addition, glycosylation has been identified as one of the main sources of monoclonal antibody heterogeneity, and thus, a critical parameter to follow during mAb manufacture. This article reviews the research on glycosylation of mAbs over the past 2 decades under the QbD scope. The categories presented under this scope are: (a) definition of the desired clinical effects of mAbs, (b) definition of the glycosylation-associated critical quality attributes (glycCQAs) of mAbs, (c) assessment of process parameters that pose a risk for mAb glycCQAs, and (d) methods for accurately quantifying glycCQAs of mAbs. The information available in all four areas leads us to conclude that implementation of QbD to the manufacture of mAbs with specific glycosylation patterns will be a reality in the near future. We also foresee that the implementation of QbD will lead to the development of more robust and efficient manufacturing processes and to a new generation of mAbs with increased clinical efficacy. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  15. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  16. A strategic planning methodology for aircraft redesign

    NASA Astrophysics Data System (ADS)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and tools that are identified within these research areas have been abstracted and adapted into the proposed SPEC method to meet the research goals. The proposed SPEC method is shown to be promising in improving the overall efficiency of the derivative aircraft planning process through two notional aircraft system redesign case studies that are presented in this study.

  17. Bioprocessing automation in cell therapy manufacturing: Outcomes of special interest group automation workshop.

    PubMed

    Ball, Oliver; Robinson, Sarah; Bure, Kim; Brindley, David A; Mccall, David

    2018-04-01

    Phacilitate held a Special Interest Group workshop event in Edinburgh, UK, in May 2017. The event brought together leading stakeholders in the cell therapy bioprocessing field to identify present and future challenges and propose potential solutions to automation in cell therapy bioprocessing. Here, we review and summarize discussions from the event. Deep biological understanding of a product, its mechanism of action and indication pathogenesis underpin many factors relating to bioprocessing and automation. To fully exploit the opportunities of bioprocess automation, therapeutics developers must closely consider whether an automation strategy is applicable, how to design an 'automatable' bioprocess and how to implement process modifications with minimal disruption. Major decisions around bioprocess automation strategy should involve all relevant stakeholders; communication between technical and business strategy decision-makers is of particular importance. Developers should leverage automation to implement in-process testing, in turn applicable to process optimization, quality assurance (QA)/ quality control (QC), batch failure control, adaptive manufacturing and regulatory demands, but a lack of precedent and technical opportunities can complicate such efforts. Sparse standardization across product characterization, hardware components and software platforms is perceived to complicate efforts to implement automation. The use of advanced algorithmic approaches such as machine learning may have application to bioprocess and supply chain optimization. Automation can substantially de-risk the wider supply chain, including tracking and traceability, cryopreservation and thawing and logistics. The regulatory implications of automation are currently unclear because few hardware options exist and novel solutions require case-by-case validation, but automation can present attractive regulatory incentives. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Astrium Technological Roadmaps for the Next Generation of Launchers Challenges

    NASA Astrophysics Data System (ADS)

    Larnac, Guy

    2014-06-01

    Main requirement on Ariane 6 are robustness, overall ownership cost and environmental impacts. To be able to meet these requirements it's mandatory to modify our usual way of working and to think the development and qualification of technologies differently. Airbus Defence and Space in the domain of materials, technologies and structures proposes a vision which address these points declined at different level:- Selection of key metallic and composite technologies to reduce drastically the cost of manufacturing,- Implementation of robust and economical way of assembly, promoting adhesive bonding and innovative technologies- Introducing virtual testing approach coupled with advanced methods and process simulation- Introduction of in-line monitoring to reduce cost of control- Implementation of the design for environment methodology with life cycle analysis to support the choice of technologies and materials- Development of EADS common materials to get benefice of aeronautic supply chain and communalitiesTo be efficient it seems evident and mandatory to develop all these approaches in an integrated and coordinated way. Advanced technologies and methodologies are supported by a strong network of collaboration enabling the integration of upstream ideas and concepts. This network is not only focused on low TRL level. Within EADS divisions intensive collaboration is deployed in order to get synergies. On the other side it's also mandatory for reliability and obsolescence issues to take care and master the supply chain.Additive layer manufacturing and thermoplastic based composite are directly concerned by this problematic. We present how, in the domain of materials and structures, aeronautic materials are considered first and how the mechanism of common qualification shared within EADS is now developed.This vision is being implemented within Airbus Defence and Space, described and reported through roadmaps. These roadmaps are the core of Airbus defence and Space strategies for the incoming years.

  19. Variation and Defect Tolerance for Nano Crossbars

    NASA Astrophysics Data System (ADS)

    Tunc, Cihan

    With the extreme shrinking in CMOS technology, quantum effects and manufacturing issues are getting more crucial. Hence, additional shrinking in CMOS feature size seems becoming more challenging, difficult, and costly. On the other hand, emerging nanotechnology has attracted many researchers since additional scaling down has been demonstrated by manufacturing nanowires, Carbon nanotubes as well as molecular switches using bottom-up manufacturing techniques. In addition to the progress in manufacturing, developments in architecture show that emerging nanoelectronic devices will be promising for the future system designs. Using nano crossbars, which are composed of two sets of perpendicular nanowires with programmable intersections, it is possible to implement logic functions. In addition, nano crossbars present some important features as regularity, reprogrammability, and interchangeability. Combining these features, researchers have presented different effective architectures. Although bottom-up nanofabrication can greatly reduce manufacturing costs, due to low controllability in the manufacturing process, some critical issues occur. Bottom- up nanofabrication process results in high variation compared to conventional top- down lithography used in CMOS technology. In addition, an increased failure rate is expected. Variation and defect tolerance methods used for conventional CMOS technology seem inadequate for adapting to emerging nano technology because the variation and the defect rate for emerging nano technology is much more than current CMOS technology. Therefore, variations and defect tolerance methods for emerging nano technology are necessary for a successful transition. In this work, in order to tolerate variations for crossbars, we introduce a framework that is established based on reprogrammability and interchangeability features of nano crossbars. This framework is shown to be applicable for both FET-based and diode-based nano crossbars. We present a characterization testing method which requires minimal number of test vectors. We formulate the variation optimization problem using Simulated Annealing with different optimization goals. Furthermore, we extend the framework for defect tolerance. Experimental results and comparison of proposed framework with exhaustive methods confirm its effectiveness for both variation and defect tolerance.

  20. Challenges in Catalytic Manufacture of Renewable Pyrrolidinones from Fermentation Derived Succinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, James F.; Holladay, Johnathan E.; Zacher, Alan H.

    2014-09-05

    Fermentation derived succinic acid ammonium salt is an ideal precursor for manufacture of renewable N-methyl pyrrolidinone (NMP) or 2-pyrrolidinone (2P) via heterogeneous catalysis. However, there are many challenges to making this a practical reality. Chief among the challenges is avoiding catalyst poisoning by fermentation by- and co-products. Battelle / Pacific Northwest National Laboratory (PNNL) have developed an economically effective technology strategy for this purpose. The technology is a combination of purely thermal processing, followed by simple catalytic hydrogenation that together avoids catalyst poisoning from fermentation impurities and provides high selectivity and yields of NMP or 2P.

  1. E3 Success Story - Advancing Performance in Sustainability and Workforce Development

    EPA Pesticide Factsheets

    E3: North Carolina advances performance in sustainability and workforce development strategies for the state's manufacturers. The initiative helps communities and manufacturers address energy and sustainability challenges by leveraging expertise.

  2. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes.

    PubMed

    Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J

    2015-01-01

    Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products.

  3. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities.

    PubMed

    Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan

    2016-11-01

    Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.

  4. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    PubMed Central

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  5. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  6. Design colloidal particle morphology and self-assembly for coating applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin

    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less

  7. Design of Low Complexity Model Reference Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  8. Design colloidal particle morphology and self-assembly for coating applications

    DOE PAGES

    Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; ...

    2017-05-04

    The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less

  9. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Guendalyn Kendra

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simplemore » in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.« less

  10. Deep silicon etching: current capabilities and future directions

    NASA Astrophysics Data System (ADS)

    Westerman, Russ; Martinez, Linnell; Pays-Volard, David; Mackenzie, Ken; Lazerand, Thierry

    2014-03-01

    Deep Reactive Ion Etching (DRIE) has revolutionized a wide variety of MEMS applications since its inception nearly two decades ago. The DRIE technology has been largely responsible for allowing lab scale technology demonstrations to become manufacturable and profitable consumer products. As applications which utilize DRIE technologies continue to expand and evolve, they continue to spawn a range of new requirements and open up exciting opportunities for advancement of DRIE. This paper will examine a number of current and emerging DRIE applications including nanotechnology, and DRIE related packaging technologies such as Through Silicon Via (TSV) and plasma dicing. The paper will discuss a number of technical challenges and solutions associated with these applications including: feature profile control at high aspect ratios, causes and elimination of feature tilt/skew, process options for fragile device structures, and problems associated with through substrate etching. The paper will close with a short discussion around the challenges of implementing DRIE in production environments as well as looking at potentially disruptive enhancements / substitutions for DRIE.

  11. Dynamic environmental control mechanisms for pneumatic foil constructions

    NASA Astrophysics Data System (ADS)

    Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John

    2017-11-01

    Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.

  12. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    NASA Astrophysics Data System (ADS)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self-learning strategies were implemented with very promising results, demonstrating the feasibility of using low-cost high-speed infrared imagers in advancing towards a real-time / in-line zero-defect production systems.

  13. Evaluation of RFID for Information Visibility Based Job-Shop Scheduling in Lean Manufacturing Environments

    ERIC Educational Resources Information Center

    Chongwatpol, Jongsawas

    2012-01-01

    This dissertation investigates the impact of radio frequency identification (RFID) in manufacturing. Two simulation studies of an organization that is considering implementing RFID on a production line are conducted. First, we investigate whether addition of RFID technologies in the manufacturing process can complement Lean initiatives.…

  14. 76 FR 42558 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... from Cement Manufacturing), for Portland cement kilns during the ozone season, from May 1 through... C (Emissions of NO X from Cement Manufacturing), for the control of NO X emissions from Portland... 145--Interstate Pollution Transport Reduction Subchapter C--Emissions of NOX From Cement Manufacturing...

  15. Development of Critical Profilometers to Meet Current and Future NASA Composite Overwrapped Pressure Vessel (COPV) Inspection Needs

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Nichols, Charles

    2012-01-01

    This project is part of a multi-center effort to develop and validate critical NDE techniques which can be implemented into current and future NASA spacecraft COPV manufacturing processes. After decades of COPV development, manufacturing variance is still high and has necessitated higher safety factors and additional mass to be flown on spacecraft (reducing overall performance). Additionally, the NASA Engineering and Safety Center (NESC) indicated that nondestructive evaluation (NDE) was not adequately implemented during Shuttle and International Space Station (ISS) COPV manufacturing and provisions were not made for on-going structural integrity and health checks during the various spacecraft programs. This project helps to provide additional data needed to help address these issues. This project seeks to develop and install internal and external laser profilometers at COPV manufacturing facilities to provide data needed to improve COPV quality and consistency. This project also investigates other scanning techniques that will enhance the system to more completely meet manufacturing needs, thus transforming the profilometer into what has been termed the "Universal Manufacturing COPV Scanner".

  16. Quicker, slicker, and better? An evaluation of a web-based human resource management system

    NASA Astrophysics Data System (ADS)

    Gibb, Stephen; McBride, Andrew

    2001-10-01

    This paper reviews the design and development of a web based Human Resource Management (HRM) system which has as its foundation a 'capability profiler' tool for analysing individual or team roles in organisations. This provides a foundation for managing a set of integrated activities in recruitment and selection, performance and career management, and training and development for individuals, teams, and whole organisations. The challenges of representing and processing information about the human side of organisation encountered in the design and implementation of such systems are evident. There is a combination of legal, practical, technical and philosophical issues to be faced in the processes of defining roles, selecting staff, monitoring and managing the performance of employees in the design and implementation of such systems. The strengths and weaknesses of web based systems in this context are evaluated. This evaluation highlights both the potential, given the evolution of broader Enterprise Resource Planning (ERP) systems and strategies in manufacturing, and concerns about the migration of HRM processes to such systems.

  17. "Just-in-time" clinical information.

    PubMed

    Chueh, H; Barnett, G O

    1997-06-01

    The just-in-time (JIT) model originated in the manufacturing industry as a way to manage parts inventories process so that specific components could be made available at the appropriate times (that is, "just in time"). This JIT model can be applied to the management of clinical information inventories, so that clinicians can have more immediate access to the most current and relevant information at the time they most need it--when making clinical care decisions. The authors discuss traditional modes of managing clinical information, and then describe how a new, JIT model may be developed and implemented. They describe three modes of clinician-information interactions that a JIT model might employ, the scope of information that may be made available in a JIT model (global information or local, case-specific information), and the challenges posed by the implementation of such an information-access model. Finally, they discuss how JIT information access may change how physicians practice medicine, various ways JIT information may be delivered, and concerns about the trustworthiness of electronically published and accessed information resources.

  18. 76 FR 61069 - Revisions to the California State Implementation Plan, Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... from organic chemical manufacturing, soil decontamination, and polyester resin operations. We are... Rule 464 (Organic Chemical Manufacturing Operations), VCAPCD Rule 74.29 (Soil Decontamination), and...

  19. Eastern white pine: production, markets, and marketing of primary manufacturers

    Treesearch

    Delton Alderman; Paul Duvall; Robert Smith; Scott Bowe

    2007-01-01

    Eastern white pine (EWP) production and manufacturing have been a staple of the forest products industry since the arrival of the first settlers in the United States. Current EWP market segments range from cabinets to flooring to log cabins to moulding to toys. Today's EWP producers and manufacturers are faced with unprecedented challenges from substitute products...

  20. Current status of the U.S. hardwood industry

    Treesearch

    Urs Buehlmann; Matthew Bumgardner; Michael Sperber

    2012-01-01

    The U.S. manufacturing sector has seen challenging years during the past decades. The major driver behind the decline of U.S. manufacturing prowess has been the ongoing globalization of trade, which has brought market share losses for U.S.-based manufacturing in many hardwood lumber consuming industries. The wood furniture, flooring, and millwork industries, for...

  1. Challenges and Opportunities for Harmonizing Research Methodology: Raw Accelerometry.

    PubMed

    van Hees, Vincent T; Thaler-Kall, Kathrin; Wolf, Klaus-Hendrik; Brønd, Jan C; Bonomi, Alberto; Schulze, Mareike; Vigl, Matthäus; Morseth, Bente; Hopstock, Laila Arnesdatter; Gorzelniak, Lukas; Schulz, Holger; Brage, Søren; Horsch, Alexander

    2016-12-07

    Raw accelerometry is increasingly being used in physical activity research, but diversity in sensor design, attachment and signal processing challenges the comparability of research results. Therefore, efforts are needed to harmonize the methodology. In this article we reflect on how increased methodological harmonization may be achieved. The authors of this work convened for a two-day workshop (March 2014) themed on methodological harmonization of raw accelerometry. The discussions at the workshop were used as a basis for this review. Key stakeholders were identified as manufacturers, method developers, method users (application), publishers, and funders. To facilitate methodological harmonization in raw accelerometry the following action points were proposed: i) Manufacturers are encouraged to provide a detailed specification of their sensors, ii) Each fundamental step of algorithms for processing raw accelerometer data should be documented, and ideally also motivated, to facilitate interpretation and discussion, iii) Algorithm developers and method users should be open about uncertainties in the description of data and the uncertainty of the inference itself, iv) All new algorithms which are pitched as "ready for implementation" should be shared with the community to facilitate replication and ongoing evaluation by independent groups, and v) A dynamic interaction between method stakeholders should be encouraged to facilitate a well-informed harmonization process. The workshop led to the identification of a number of opportunities for harmonizing methodological practice. The discussion as well as the practical checklists proposed in this review should provide guidance for stakeholders on how to contribute to increased harmonization.

  2. Energy efficiency through integrated environmental management.

    PubMed

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  3. Prepreg effects on honeycomb composite manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, Cary Joseph

    Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.

  4. Gender differences on the job satisfaction in the phase of implementing advanced manufacturing technology in the Chinese manufacturing firms.

    PubMed

    Yu, Na; Shen, Li Ming; Lewark, Siegfried

    2012-01-01

    This research gave an effort to study on gender differences in the job satisfaction for technological innovation at Chinese manufacturing firm. The exploratory study was conducted in four Chinese furniture manufacturing firms, which are all in the phases of introducing advanced manufacturing system. The results of statistical analysis show that general satisfaction of female employees to their jobs is significantly higher than male employees. In addition, supervisory satisfaction of female employees is significantly higher than male employees. The findings of the study reveal that activities are suggested to be carried out to increase the job satisfaction of male employees, especially improve communication and relationship between the managerial and the non-managerial levels in the innovation process. In addition, the higher job satisfaction of female employees could be considered a positive factor for the successful implementation of AMT in the technological innovation, although male employees are still dominated work force in the case study firms.

  5. The professionalization of Western herbalists: response to new product regulations in Canada.

    PubMed

    Moss, Karen; Boon, Heather; Ballantyne, Peri; Kachan, Natasha

    2007-12-01

    New Canadian Natural Health Products regulations (NHP regulations) came into law January 1st, 2004 and will be implemented over 6 years. These regulations have the potential to impact a variety of stakeholders, in particular complementary and alternative medicine (CAM) practitioners. In this article, we document Canadian Western herbalist leaders' responses to the new regulations, so as to provide insight into how new healthcare policy serves as a stimulus for the organization of an emerging healthcare profession. The data are derived from key informant interviews with Western herbalist leaders in Canada (n=9). The NHP regulations include "good manufacturing practices" and Western herbalist leaders are concerned that many small companies, often owned and run by Western herbalists, will find the regulations too costly to implement, causing them to reduce the number and diversity of products they manufacture, or go out of business all together. Furthermore, lack of availability of whole plant products could severely restrict the practice of Canadian Western herbalists. In response to this challenge, herbalists are attempting to (i) organize as a more cohesive group, (ii) define their unique body of knowledge and (iii) increase the perceived legitimacy of their practices in the eyes of the public, conventional healthcare practitioners, and regulators, in an attempt to protect their unique practices. An examination of the findings reveals the extent to which external factors (i.e., the new NHP regulations) both provoke and shape the professionalization of this group of healthcare practitioners.

  6. A specific nanomanufacturing challenge

    NASA Astrophysics Data System (ADS)

    Kelly, M. J.; Dean, M. C.

    2016-03-01

    For a science to become a technology, a certain level of control has to have been established over the way items are fabricated for manufacture and use. Here we first consider the challenge of making and using a LEGO® brick scaled down by a factor of 10 n for n = 0-6 in each spatial dimension, i.e. from millimetres to nanometres. We consider both the manufacture and the subsequent properties of the nanobricks that pertain to their use in constructing and dismantling structures. As n increases, the ability to use fails first, to manufacture fails second and to fabricate fails last. Applied to the vast literature in nanoscience, this process emphasises the unmanufacturability of most nanoscale artefacts.

  7. Quantum Computation: Entangling with the Future

    NASA Technical Reports Server (NTRS)

    Jiang, Zhang

    2017-01-01

    Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.

  8. Multi Response Optimization of Laser Micro Marking Process:A Grey- Fuzzy Approach

    NASA Astrophysics Data System (ADS)

    Shivakoti, I.; Das, P. P.; Kibria, G.; Pradhan, B. B.; Mustafa, Z.; Ghadai, R. K.

    2017-07-01

    The selection of optimal parametric combination for efficient machining has always become a challenging issue for the manufacturing researcher. The optimal parametric combination always provides a better machining which improves the productivity, product quality and subsequently reduces the production cost and time. The paper presents the hybrid approach of Grey relational analysis and Fuzzy logic to obtain the optimal parametric combination for better laser beam micro marking on the Gallium Nitride (GaN) work material. The response surface methodology has been implemented for design of experiment considering three parameters with their five levels. The parameter such as current, frequency and scanning speed has been considered and the mark width, mark depth and mark intensity has been considered as the process response.

  9. Could the Pharmaceutical Industry Benefit from Full-Scale Adoption of Radio-Frequency Identification (RFID) Technology with New Regulations?

    PubMed

    Coustasse, Alberto; Kimble, Craig A; Stanton, Robert B; Naylor, Mariah

    2016-01-01

    Healthcare regulators are directing attention to the pharmaceutical supply chain with the passage of the Drug Quality and Security Act (DQSA) and the Drug Supply Chain Security Act (DSCSA). Adoption of Radio-Frequency Identification (RFID) technology has the ability to improve compliance, reduce costs, and improve safety in the supply chain but its implementation has been limited; primarily because of hardware and tag costs. The purpose of this research study was to analyze the benefits to the pharmaceutical industry and healthcare system of the adoption of RFID technology as a result of newly implemented supply chain regulations. The methodology was a review following the steps of a systematic review with a total of 96 sources used. With the DSCSA, pharmaceutical companies must track and trace prescription drugs across the supply chain, and RFID can resolve many track-and-trace issues with manufacturer control of data. The practical implication of this study is that pharmaceutical companies must continue to have the potential to increase revenues, decrease associated costs, and increase compliance with new FDA regulations with RFID. Still, challenges related to regulatory statute wording, implementation of two-dimensional barcode technology, and the variety of interfaces within the pharmaceutical supply chain have delayed adoption and its full implementation.

  10. Could the Pharmaceutical Industry Benefit from Full-Scale Adoption of Radio-Frequency Identification (RFID) Technology with New Regulations?

    PubMed Central

    Coustasse, Alberto; Kimble, Craig A.; Stanton, Robert B.; Naylor, Mariah

    2016-01-01

    Healthcare regulators are directing attention to the pharmaceutical supply chain with the passage of the Drug Quality and Security Act (DQSA) and the Drug Supply Chain Security Act (DSCSA). Adoption of Radio-Frequency Identification (RFID) technology has the ability to improve compliance, reduce costs, and improve safety in the supply chain but its implementation has been limited; primarily because of hardware and tag costs. The purpose of this research study was to analyze the benefits to the pharmaceutical industry and healthcare system of the adoption of RFID technology as a result of newly implemented supply chain regulations. The methodology was a review following the steps of a systematic review with a total of 96 sources used. With the DSCSA, pharmaceutical companies must track and trace prescription drugs across the supply chain, and RFID can resolve many track-and-trace issues with manufacturer control of data. The practical implication of this study is that pharmaceutical companies must continue to have the potential to increase revenues, decrease associated costs, and increase compliance with new FDA regulations with RFID. Still, challenges related to regulatory statute wording, implementation of two-dimensional barcode technology, and the variety of interfaces within the pharmaceutical supply chain have delayed adoption and its full implementation. PMID:27843419

  11. Just Do It Yourself: Implementing 3D Printing in a Deployed Environment

    DTIC Science & Technology

    2017-04-01

    This 3D model data can be stored for future manufacturing or manipulated, using software, to improve the parts’ design .8 3D manufactured parts can be...be developed and tested in a virtual environment, very quickly, and before manufacturing has commenced. Additionally, these 3D designs can be...capitalize on this innovative technology. Consequently, AM may offer the best hope for designing a reusable hypersonic weapon. Traditional manufacturing

  12. A review of the solar array manufacturing industry costing standards

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.

  13. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    ERIC Educational Resources Information Center

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  14. Institute for Defense Analysis. Annual Report 1994

    DTIC Science & Technology

    1994-01-01

    activities with engineering and rines in submarine-unique roles. However, we manufacturing development into a single identified a number of other...development efforts. In addition, and mine-laying capabilities, with roughly 25 the panel proposed increasing both the number nations manufacturing ...the engineering concepts and design, and for implementing Synthetic Aperture Radar flexible manufacturing procedures for focal Reconnaissance

  15. 76 FR 26609 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... that manufacturers would be forced to alter the design or emission control equipment on new nonroad... in practical effect force manufacturers to alter the design or emission control equipment on new... manufacturer or user of a nonroad engine or vehicle to change the emission control design of the engine or...

  16. 2015 Summer Design Challenge: Team A&E (2241) Additively Manufactured Discriminator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Sarah E.; Moore, Brandon James

    Current discriminator designs are based on historical designs and traditional manufacturing methods. The goal of this project was to form non-traditional groups to create novel discriminator designs by taking advantage of additive manufacturing. These designs would expand current discriminator designs and provide insight on the applicability of additive manufacturing for future projects. Our design stretched the current abilities of additive manufacturing and noted desired improvements for the future. Through collaboration with NSC, we noted several additional technologies which work well with additive manufacturing such as topology optimization and CT scanning and determined how these technologies could be improved to bettermore » combine with additive manufacturing.« less

  17. Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review.

    PubMed

    Teżyk, Michał; Milanowski, Bartłomiej; Ernst, Andrzej; Lulek, Janina

    2016-08-01

    Continuous processing is an innovative production concept well known and successfully used in other industries for many years. The modern pharmaceutical industry is facing the challenge of transition from a traditional manufacturing approach based on batch-wise production to a continuous manufacturing model. The aim of this article is to present technological progress in manufacturing based on continuous and semi-continuous processing of the solid oral dosage forms. Single unit processes possessing an alternative processing pathway to batch-wise technology or, with some modification, an altered approach that may run continuously, and are thus able to seamlessly switch to continuous manufacturing are briefly presented. Furthermore, the concept of semi-continuous processing is discussed. Subsequently, more sophisticated production systems created by coupling single unit processes and comprising all the steps of production, from powder to final dosage form, were reviewed. Finally, attempts of end-to-end production approach, meaning the linking of continuous synthesis of API from intermediates with the production of final dosage form, are described. There are a growing number of scientific articles showing an increasing interest in changing the approach to the production of pharmaceuticals in recent years. Numerous scientific publications are a source of information on the progress of knowledge and achievements of continuous processing. These works often deal with issues of how to modify or replace the unit processes in order to enable seamlessly switching them into continuous processing. A growing number of research papers concentrate on integrated continuous manufacturing lines in which the production concept of "from powder to tablet" is realized. Four main domains are under investigation: influence of process parameters on intermediates or final dosage forms properties, implementation of process analytical tools, control-managing system responsible for keeping continuous materials flow through the whole manufacturing process and the development of new computational methods to assess or simulate these new manufacturing techniques. The attempt to connect the primary and secondary production steps proves that development of continuously operating lines is possible. A mind-set change is needed to be able to face, and fully assess, the advantages and disadvantages of switching from batch to continuous mode production.

  18. The hierarchy of environmental health and safety practices in the U.S. nanotechnology workplace.

    PubMed

    Engeman, Cassandra D; Baumgartner, Lynn; Carr, Benjamin M; Fish, Allison M; Meyerhofer, John D; Satterfield, Terre A; Holden, Patricia A; Harthorn, Barbara Herr

    2013-01-01

    Manufacturing of nanoscale materials (nanomaterials) is a major outcome of nanotechnology. However, the potential adverse human health effects of manufactured nanomaterial exposure are not yet fully understood, and exposures in humans are mostly uncharacterized. Appropriate exposure control strategies to protect workers are still being developed and evaluated, and regulatory approaches rely largely on industry self-regulation and self-reporting. In this context of soft regulation, the authors sought to: 1) assess current company-reported environmental health and safety practices in the United States throughout the product life cycle, 2) consider their implications for the manufactured nanomaterial workforce, and 3) identify the needs of manufactured nanomaterial companies in developing nano-protective environmental health and safety practices. Analysis was based on the responses of 45 U.S.-based company participants in a 2009-2010 international survey of private companies that use and/or produce nanomaterials. Companies reported practices that span all aspects of the current government-recommended hierarchical approach to manufactured nanomaterials' exposure controls. However, practices that were tailored to current manufactured nanomaterials' hazard and exposure knowledge, whether within or outside the hierarchical approach, were reported less frequently than general chemical hygiene practices. Product stewardship and waste management practices-the influences of which are substantially downstream-were reported less frequently than most other environmental health and safety practices. Larger companies had more workers handling nanomaterials, but smaller companies had proportionally more employees handling nanomaterials and more frequently identified impediments to implementing nano-protective practices. Company-reported environmental health and safety practices suggest more attention to environmental health and safety is necessary, especially with regard to practices that can cause external effects. Given reported impediments, smaller companies may especially benefit from more attention. However, the manufactured nanomaterial workforce within smaller companies is particularly difficult to identify and hence locate, posing challenges to developing and enforcing appropriate workplace environmental health and safety. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file containing Survey of Current Health and Safety Practices in the Nanomaterial Industry and a file containing figures.].

  19. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.

    PubMed

    Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J

    2013-10-01

    Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to predictably tune and precisely manufacture orthoses with objectively customized fit and functional characteristics.

  20. Perspective of vaccine manufacturers on financing pediatric and adolescent vaccines in the United States.

    PubMed

    Shen, Angela K; Rodewald, Lance E; Birkhead, Guthrie S

    2009-12-01

    The goal was to understand vaccine manufacturers' perspectives on vaccine financing as a barrier to immunization. Individual telephone interviews with representatives of the 6 manufacturers that produce routinely recommended vaccines for children and adolescents in the United States were conducted in November and December 2006. Although manufacturers acknowledged that the price of newer vaccines presents challenges to optimal vaccine use, they asserted that children and adolescents have access to vaccinations through public and private insurance. Respondents suggested that the system could be improved through adequate funding of the public-sector safety net. Respondents stated that providers should receive timely reimbursement for the full costs of vaccine purchase and administration, and manufacturers who sell directly to health care providers may provide flexible payment terms for vaccine purchases. Manufacturers supported targeted expansion of the Vaccines for Children program to allow children with incomplete insurance coverage for vaccines to receive vaccines at health department clinics. Manufacturers perceived delays in publication of Advisory Committee on Immunization Practices recommendations as a potential barrier to vaccine uptake. They viewed the perceived lack of public value for vaccines as a potential barrier to adequate reimbursement and optimal utilization. Respondents also maintained that their ability to negotiate vaccine prices through the private market is a crucial priority. Manufacturers assert that children and adolescents have access to immunizations through public and private insurance. Manufacturers think that they have mitigated the challenge most directly in their control: the large financial outlays required for up-front vaccine purchases.

  1. A normative price for a manufactured product: The SAMICS methodology. Volume 2: Analysis

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    The Solar Array Manufacturing Industry Costing Standards provide standard formats, data, assumptions, and procedures for determining the price a hypothetical solar array manufacturer would have to be able to obtain in the market to realize a specified after-tax rate of return on equity for a specified level of production. The methodology and its theoretical background are presented. The model is sufficiently general to be used in any production-line manufacturing environment. Implementation of this methodology by the Solar Array Manufacturing Industry Simultation computer program is discussed.

  2. Review of bilayer tablet technology.

    PubMed

    Abebe, Admassu; Akseli, Ilgaz; Sprockel, Omar; Kottala, Niranjan; Cuitiño, Alberto M

    2014-01-30

    Therapeutic strategies based on oral delivery of bilayer (and multilayer) tablets are gaining more acceptance among brand and generic products due to a confluence of factors including advanced delivery strategies, patient compliance and combination therapy. Successful manufacturing of these ever more complex systems needs to overcome a series of challenges from formulation design to tablet press monitoring and control. This article provides an overview of the state-of-the-art of bilayer tablet technology, highlighting the main benefits of this type of oral dosage forms while providing a description of current challenges and advances toward improving manufacturing practices and product quality. Several aspects relevant to bilayer tablet manufacturing are addressed including material properties, lubrication, layer ordering, layer thickness, layer weight control, as well as first and final compression forces. A section is also devoted to bilayer tablet characterization that present additional complexities associated with interfaces between layers. The available features of the manufacturing equipment for bilayer tablet production are also described indicating the different strategies for sensing and controls offered by bilayer tablet press manufacturers. Finally, a roadmap for bilayer tablet manufacturing is advanced as a guideline to formulation design and selection of process parameters and equipment. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  4. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  5. Neuromorphic Computing – From Materials Research to Systems Architecture Roundtable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, Ivan K.; Stevens, Rick; Pino, Robinson

    2015-10-29

    Computation in its many forms is the engine that fuels our modern civilization. Modern computation—based on the von Neumann architecture—has allowed, until now, the development of continuous improvements, as predicted by Moore’s law. However, computation using current architectures and materials will inevitably—within the next 10 years—reach a limit because of fundamental scientific reasons. DOE convened a roundtable of experts in neuromorphic computing systems, materials science, and computer science in Washington on October 29-30, 2015 to address the following basic questions: Can brain-like (“neuromorphic”) computing devices based on new material concepts and systems be developed to dramatically outperform conventional CMOS basedmore » technology? If so, what are the basic research challenges for materials sicence and computing? The overarching answer that emerged was: The development of novel functional materials and devices incorporated into unique architectures will allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer. To address this challenge, the following issues were considered: The main differences between neuromorphic and conventional computing as related to: signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning New neuromorphic architectures needed to: produce lower energy consumption, potential novel nanostructured materials, and enhanced computation Device and materials properties needed to implement functions such as: hysteresis, stability, and fault tolerance Comparisons of different implementations: spin torque, memristors, resistive switching, phase change, and optical schemes for enhanced breakthroughs in performance, cost, fault tolerance, and/or manufacturability.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaraj, D; Chan, K; Boddu, S

    Lean thinking has revolutionized the manufacturing industry. Toyota has pioneered and leveraged this aspect of Lean thinking. Application of Lean thinking and Lean Six Sigma techniques into Healthcare and in particular in Radiation Oncology has its merits and challenges. To improve quality, safety and patient satisfaction with available resources or reducing cost in terms of time, staff and resources is demands of today's healthcare. Radiation oncology treatment involves many processes and steps, identifying and removing the non-value added steps in a process can significantly improve the efficiency. Real projects undertaken in radiation oncology department in cutting down the procedure timemore » for MRI guided brachytherapy to 40% less using lean thinking will be narrated. Simple Lean tools and techniques such as Gemba walk, visual control, daily huddles, standard work, value stream mapping, error-proofing, etc. can be applied with existing resources and how that improved the operation in a Radiation Oncology department's two year experience will be discussed. Lean thinking focuses on identifying and solving the root-cause of a problem by asking “Why” and not “Who” and this requires a culture change of no blame. Role of leadership in building lean culture, employee empowerment and trains and develops lean thinkers will be presented. Why Lean initiatives fail and how to implement lean successfully in your clinic will be discussed. Learning Objectives: Concepts of lean management or lean thinking. Lean tools and techniques applied in Radiation Oncology. Implement no blame culture and focus on system and processes. Leadership role in implementing lean culture. Challenges for Lean thinking in healthcare.« less

  7. Ergonomics intervention in an Iranian television manufacturing industry.

    PubMed

    Motamedzade, M; Mohseni, M; Golmohammadi, R; Mahjoob, H

    2011-01-01

    The primary goal of this study was to use the Strain Index (SI) to assess the risk of developing upper extremity musculoskeletal disorders in a television (TV) manufacturing industry and evaluate the effectiveness of an educational intervention. The project was designed and implemented in two stages. In first stage, the SI score was calculated and the Nordic Musculoskeletal Questionnaire (NMQ) was completed. Following this, hazardous jobs were identified and existing risk factors in these jobs were studied. Based on these data, an educational intervention was designed and implemented. In the second stage, three months after implementing the interventions, the SI score was re-calculated and the Nordic Musculoskeletal Questionnaire (NMQ) completed again. 80 assembly workers of an Iranian TV manufacturing industry were randomly selected using simple random sampling approach. The results showed that the SI score had a good correlation with the symptoms of musculoskeletal disorders. It was also observed that the difference between prevalence of signs and symptoms of musculoskeletal disorders, before and after intervention, was significantly reduced. A well conducted implementation of an interventional program with total participation of all stakeholders can lead to a decrease in musculoskeletal disorders.

  8. Nested Dissection Interface Reconstruction in Pececillo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jibben, Zechariah Joel; Carlson, Neil N.; Francois, Marianne M.

    A nested dissection method for interface reconstruction in a volume tracking framework has been implemented in Pececillo, a mini-app for Truchas, which is the ASC code for casting and additive manufacturing. This method provides a significant improvement over the traditional onion-skin method, which does not appropriately handle T-shaped multimaterial intersections and dynamic contact lines present in additive manufacturing simulations. The resulting implementation lays the groundwork for further research in contact angle estimates and surface tension calculations.

  9. 75 FR 29584 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... and violations of the Pennsylvania State Implementation Plan at a steel manufacturing facility in...) Cease operation of the Natrona steel manufacturing facility not later than November 30, 2010; (2) pay a...

  10. Additive Manufacturing: Ensuring Quality for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore; Stephenson, Timothy

    2014-01-01

    Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.

  11. Relationship Between Lean Production and Operational Performance in the Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Rasi, Raja Zuraidah R. M.; Syamsyul Rakiman, Umol; Ahmad, Md Fauzi Bin

    2015-05-01

    Nowadays, more and more manufacturing firms have started to implement lean production system in their operations. Lean production viewed as one of the mechanism to maintain the organisation's position and to compete globally. However, many fail to apply the lean concepts successfully in their operations. Based on previous studies, implementation of lean production in the manufacturing industry is more focused on the relationship between Lean and Operational Performance of one dimension only. Therefore, this study attempted to examine the relationship between Lean Production (LP) and Operational Performance in 4 dimensions which are quality, delivery, cost and flexibility. This study employed quantitative study using questionnaires. Data was collected from 50 manufacturing industries. The data was analysed using Statistical Package for Social Science (SPSS) 22.0. This study is hoped to shed new understanding on the concept of Lean Production (LP) in regards of Operational Performance covering the 4 dimensions.

  12. System level analysis and control of manufacturing process variation

    DOEpatents

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  13. Design and implementation of a portal for the medical equipment market: MEDICOM.

    PubMed

    Palamas, S; Kalivas, D; Panou-Diamandi, O; Zeelenberg, C; van Nimwegen, C

    2001-01-01

    The MEDICOM (Medical Products Electronic Commerce) Portal provides the electronic means for medical-equipment manufacturers to communicate online with their customers while supporting the Purchasing Process and Post Market Surveillance. The Portal offers a powerful Internet-based search tool for finding medical products and manufacturers. Its main advantage is the fast, reliable and up-to-date retrieval of information while eliminating all unrelated content that a general-purpose search engine would retrieve. The Universal Medical Device Nomenclature System (UMDNS) registers all products. The Portal accepts end-user requests and generates a list of results containing text descriptions of devices, UMDNS attribute values, and links to manufacturer Web pages and online catalogues for access to more-detailed information. Device short descriptions are provided by the corresponding manufacturer. The Portal offers technical support for integration of the manufacturers Web sites with itself. The network of the Portal and the connected manufacturers sites is called the MEDICOM system. To establish an environment hosting all the interactions of consumers (health care organizations and professionals) and providers (manufacturers, distributors, and resellers of medical devices). The Portal provides the end-user interface, implements system management, and supports database compatibility. The Portal hosts information about the whole MEDICOM system (Common Database) and summarized descriptions of medical devices (Short Description Database); the manufacturers servers present extended descriptions. The Portal provides end-user profiling and registration, an efficient product-searching mechanism, bulletin boards, links to on-line libraries and standards, on-line information for the MEDICOM system, and special messages or advertisements from manufacturers. Platform independence and interoperability characterize the system design. Relational Database Management Systems are used for the system s databases. The end-user interface is implemented using HTML, Javascript, Java applets, and XML documents. Communication between the Portal and the manufacturers servers is implemented using a CORBA interface. Remote administration of the Portal is enabled by dynamically-generated HTML interfaces based on XML documents. A representative group of users evaluated the system. The aim of the evaluation was validation of the usability of all of MEDICOM s functionality. The evaluation procedure was based on ISO/IEC 9126 Information technology - Software product evaluation - Quality characteristics and guidelines for their use. The overall user evaluation of the MEDICOM system was very positive. The MEDICOM system was characterized as an innovative concept that brings significant added value to medical-equipment commerce. The eventual benefits of the MEDICOM system are (a) establishment of a worldwide-accessible marketplace between manufacturers and health care professionals that provides up-to-date and high-quality product information in an easy and friendly way and (b) enhancement of the efficiency of marketing procedures and after-sales support.

  14. Design and Implementation of a Portal for the Medical Equipment Market: MEDICOM

    PubMed Central

    Kalivas, Dimitris; Panou-Diamandi, Ourania; Zeelenberg, Cees; van Nimwegen, Chris

    2001-01-01

    Background The MEDICOM (Medical Products Electronic Commerce) Portal provides the electronic means for medical-equipment manufacturers to communicate online with their customers while supporting the Purchasing Process and Post Market Surveillance. The Portal offers a powerful Internet-based search tool for finding medical products and manufacturers. Its main advantage is the fast, reliable and up-to-date retrieval of information while eliminating all unrelated content that a general-purpose search engine would retrieve. The Universal Medical Device Nomenclature System (UMDNS) registers all products. The Portal accepts end-user requests and generates a list of results containing text descriptions of devices, UMDNS attribute values, and links to manufacturer Web pages and online catalogues for access to more-detailed information. Device short descriptions are provided by the corresponding manufacturer. The Portal offers technical support for integration of the manufacturers' Web sites with itself. The network of the Portal and the connected manufacturers' sites is called the MEDICOM system. Objective To establish an environment hosting all the interactions of consumers (health care organizations and professionals) and providers (manufacturers, distributors, and resellers of medical devices). Methods The Portal provides the end-user interface, implements system management, and supports database compatibility. The Portal hosts information about the whole MEDICOM system (Common Database) and summarized descriptions of medical devices (Short Description Database); the manufacturers' servers present extended descriptions. The Portal provides end-user profiling and registration, an efficient product-searching mechanism, bulletin boards, links to on-line libraries and standards, on-line information for the MEDICOM system, and special messages or advertisements from manufacturers. Platform independence and interoperability characterize the system design. Relational Database Management Systems are used for the system's databases. The end-user interface is implemented using HTML, Javascript, Java applets, and XML documents. Communication between the Portal and the manufacturers' servers is implemented using a CORBA interface. Remote administration of the Portal is enabled by dynamically-generated HTML interfaces based on XML documents. A representative group of users evaluated the system. The aim of the evaluation was validation of the usability of all of MEDICOM's functionality. The evaluation procedure was based on ISO/IEC 9126 Information technology - Software product evaluation - Quality characteristics and guidelines for their use. Results The overall user evaluation of the MEDICOM system was very positive. The MEDICOM system was characterized as an innovative concept that brings significant added value to medical-equipment commerce. Conclusions The eventual benefits of the MEDICOM system are (a) establishment of a worldwide-accessible marketplace between manufacturers and health care professionals that provides up-to-date and high-quality product information in an easy and friendly way and (b) enhancement of the efficiency of marketing procedures and after-sales support. PMID:11772547

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub

    Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.

  16. Freeform Optics: current challenges for future serial production

    NASA Astrophysics Data System (ADS)

    Schindler, C.; Köhler, T.; Roth, E.

    2017-10-01

    One of the major developments in optics industry recently is the commercial manufacturing of freeform surfaces for optical mid- and high performance systems. The loss of limitation on rotational symmetry enables completely new optical design solutions - but causes completely new challenges for the manufacturer too. Adapting the serial production from radial-symmetric to freeform optics cannot be done just by the extension of machine capabilities and software for every process step. New solutions for conventional optics productions or completely new process chains are necessary.

  17. Additive manufacturing of near-net-shape bonded magnets: Prospects and challenges

    DOE PAGES

    Li, Ling; Post, Brian; Kunc, Vlastimil; ...

    2017-01-03

    Additive manufacturing (AM) or 3D printing is well known for producing arbitrary shaped parts without any tooling required, offering a promising alternative to the conventional injection molding method to fabricate near-net-shaped magnets. In order to determine their applicability in the fabrication of Nd-Fe-B bondedmagnets, we compare two 3D printing technologies, namely binder jetting and material extrusion. Some prospects and challenges of these state-of-the-art technologies for large-scale industrial applications will be discussed.

  18. Regional variability in fecal microbiota transplantation practices: a survey of the Southern Ontario Fecal Microbiota Transplantation Movement.

    PubMed

    Hota, Susy S; Surangiwala, Salman; Paterson, Aimee S; Coburn, Bryan; Poutanen, Susan M

    2018-04-18

    There is growing evidence that fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection, but little guidance exists for implementation of FMT programs. The objective of this study is to describe the program characteristics and protocols of 9 planned or operating FMT programs in the Southern Ontario Fecal Microbiota Transplantation (SOFT) Movement, to help guide future FMT program implementation. A 59-item survey was administered electronically to clinical leads of the SOFT Movement on June 2, 2016. The survey evaluated 7 domains: FMT program characteristics, FMT recipients, donor screening/selection, transplant manufacturing, FMT administration, good manufacturing procedures/biosafety procedures and infection-control procedures. We used descriptive statistics to analyze quantitative data. All 9 programs responded to the survey: 6 were active, 1 had FMT standard operating procedures developed but did not have clinical experience, and 2 were in the process of forming FMT programs. All 6 active programs performed FMT in adult patients with C. difficile infection. About 1300 FMT procedures were performed between 2003 and 2016. Five of the 6 operating programs administered the preparation via enema. Programs were driven primarily by physicians. All programs used universal FMT donors and followed Health Canada's screening guidelines, with considerable variability in screening frequency (every 3-6 mo) and modality. Locations for transplant preparation and manufacturing protocols varied across programs. Stool mass for FMT ranged from 20 g to 150 g, and transplant volume ranged from 25 mL to 300 mL. The experience of this high-volume regional FMT network highlights current challenges in FMT program development, including a high reliance on physicians and the costly nature of donor screening. Standardization and optimization through development of regional centres of excellence for FMT donor recruitment and administration should be explored. Copyright 2018, Joule Inc. or its licensors.

  19. New optical microbarometer

    NASA Astrophysics Data System (ADS)

    Olivier, Serge; Hue, Anthony; Olivier, Nathalie; Le Mallet, Serge

    2015-04-01

    Usually, transducers implemented in infrasound sensor (microbarometer) are mainly composed of two associated elements. The first one converts the external pressure variation into a physical linear displacement. The second one converts this motion into an electrical signal. According to this configuration, MB3, MB2000 and MB2005 microbarometers are using an aneroid capsule for the first one, and an electromagnetic transducer (Magnet-coil or LVDT) for the second one. CEA DAM (designer of MB series) and PROLANN / SEISMO WAVE (manufacturer and seller of MB3) have associated their expertise to design an optical microbarometer: However, we think that changing the electromagnetic transducer by an interferometer is an interesting solution in order to increase the dynamic and the resolution of the sensor. Currently, we are exploring this way in order to propose a future optical microbarometer which will enlarge the panel of infrasound sensors. Firstly, we will present the new transducer principles, taking into account the aneroid capsule and the interferometer using integrated optics technology. More specifically, we will explain the operation of this optical technology, and discuss on its advantages and defaults. Secondly, we will present the first part of this project in which the interferometer is positioned outside the aneroid capsule. In this configuration, interferometer mechanical adjustments are easier, but measurement is directly disturbed by environmental effects like the thermal variations. Six prototypes were manufactured with two sets of different aneroid capsules, in order to compare their performances, and also an optical digitizer specifically designed to record the four channels interferometer. Then, we will present the first sensitivity and self-noise measurement results compared to those of a MB2005 microbarometer. Finally, we will propose a new design of the optical microbarometer as a second part of our study. It will implement a new location of interferometer into the aneroid capsule under vacuum in order to protect the optical measurement from environmental effects. Manufacturing such a prototype is a huge challenge from the miniaturization point of view and the interferometer mechanical stability.

  20. [Quality by design approaches for pharmaceutical development and manufacturing of Chinese medicine].

    PubMed

    Xu, Bing; Shi, Xin-Yuan; Wu, Zhi-Sheng; Zhang, Yan-Ling; Wang, Yun; Qiao, Yan-Jiang

    2017-03-01

    The pharmaceutical quality was built by design, formed in the manufacturing process and improved during the product's lifecycle. Based on the comprehensive literature review of pharmaceutical quality by design (QbD), the essential ideas and implementation strategies of pharmaceutical QbD were interpreted. Considering the complex nature of Chinese medicine, the "4H" model was innovated and proposed for implementing QbD in pharmaceutical development and industrial manufacture of Chinese medicine product. "4H" corresponds to the acronym of holistic design, holistic information analysis, holistic quality control, and holistic process optimization, which is consistent with the holistic concept of Chinese medicine theory. The holistic design aims at constructing both the quality problem space from the patient requirement and the quality solution space from multidisciplinary knowledge. Holistic information analysis emphasizes understanding the quality pattern of Chinese medicine by integrating and mining multisource data and information at a relatively high level. The batch-to-batch quality consistence and manufacturing system reliability can be realized by comprehensive application of inspective quality control, statistical quality control, predictive quality control and intelligent quality control strategies. Holistic process optimization is to improve the product quality and process capability during the product lifecycle management. The implementation of QbD is useful to eliminate the ecosystem contradictions lying in the pharmaceutical development and manufacturing process of Chinese medicine product, and helps guarantee the cost effectiveness. Copyright© by the Chinese Pharmaceutical Association.

  1. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    NASA Astrophysics Data System (ADS)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  2. Polylactides in additive biomanufacturing.

    PubMed

    Poh, Patrina S P; Chhaya, Mohit P; Wunner, Felix M; De-Juan-Pardo, Elena M; Schilling, Arndt F; Schantz, Jan-Thorsten; van Griensven, Martijn; Hutmacher, Dietmar W

    2016-12-15

    New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Six sigma critical success factors in manufacturing industries

    NASA Astrophysics Data System (ADS)

    Mustafa, Zainol; Jamaluddin, Z.

    2017-04-01

    The success of Six Sigma implementation is known to depend on a number of contributing factors. The purpose of this paper is to explore Six Sigma critical success factors (CSFs) in the context of Malaysian manufacturing organizations. Although Six Sigma success factors have been abundantly researched in the global context, in this paper, a maiden attempt is made to identify, through an extensive literature review, the CSFs for Six Sigma implementation followed by their validation using primary data collection from Malaysian manufacturing companies. A total of 33 indicators have thus been compiled through an extensive literature review which then been grouped into 6 contributing factors. These contributing success factors are then validated through an empirical research of selected Malaysian manufacturing companies at various stages of implementation of the Six Sigma process improvement methodology. There has been an overemphasis on the role and commitment of the management in the success of a Six Sigma program. Though it is undoubted, certain other factors also play an equally important role in ensuring that the Six Sigma programs are successful. The factor analysis of CSFs of the Malaysian manufacturing organizations selected in this study demonstrates that the top factor is a composite factor showing combination of the ability of the project teams to use the process management on quality initiative and a training using a proper analysis in problem solving. The CSFs extracted through the factor analysis could provide a basis for manufacturing organizations embarking on the Six Sigma journey to look beyond just management involvement. Thus, one can develop an integrated framework of other factors as outlined and give them appropriate priority and focus.

  4. Presidential Green Chemistry Challenge: 1997 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1997 award winner, Professor Joseph M. DeSimone, developed surfactants that allow carbon dioxide to be a solvent for chemical manufacturing, replacing hazardous chemical solvents.

  5. The Challenges of a Post-Industrial Society.

    ERIC Educational Resources Information Center

    Quilling, Joan I.

    1982-01-01

    Postindustrialism often describes societies which deemphasize agriculture and manufacturing while emphasizing information processing. There are five stages to postindustrialization: (1) mining, agriculture; (2) manufactured goods; (3) transportation, communication, public services; (4) commerce; and (5) abstract activities. The United States is in…

  6. Social and Labour Implications of Flexible Manufacturing Systems.

    ERIC Educational Resources Information Center

    Ebel, Karl-H.

    1985-01-01

    The flexible manufacturing system (FMS), a new way of organizing the production process by means of numerical control machines, robots, and computerized workstations, is described. The author examines some of the implications of FMS and the challenges it poses. (Author/CT)

  7. Rapid Estimation of Life Cycle Inventory

    EPA Science Inventory

    Many chemical manufacturers and regulators use life cycle assessment (LCA) to manage the sustainability of chemical manufacturing processes. A significant challenge to using LCA, however, is the sheer quantity of data related to energy and material flows that needs to be collecte...

  8. Manufacturer Tier 3 Questions and EPA Answers

    EPA Pesticide Factsheets

    This document contains a record of EPA responses to manufacturer questions received prior to October 16, 2015 with respect to implementation of the Tier 3 final rule intended to aid regulated parties in achieving compliance with regulations for light-duty

  9. Effusion plate using additive manufacturing methods

    DOEpatents

    Johnson, Thomas Edward; Keener, Christopher Paul; Ostebee, Heath Michael; Wegerif, Daniel Gerritt

    2016-04-12

    Additive manufacturing techniques may be utilized to construct effusion plates. Such additive manufacturing techniques may include defining a configuration for an effusion plate having one or more internal cooling channels. The manufacturing techniques may further include depositing a powder into a chamber, applying an energy source to the deposited powder, and consolidating the powder into a cross-sectional shape corresponding to the defined configuration. Such methods may be implemented to construct an effusion plate having one or more channels with a curved cross-sectional geometry.

  10. "I got it on Ebay!": cost-effective approach to surgical skills laboratories.

    PubMed

    Schneider, Ethan; Schenarts, Paul J; Shostrom, Valerie; Schenarts, Kimberly D; Evans, Charity H

    2017-01-01

    Surgical education is witnessing a surge in the use of simulation. However, implementation of simulation is often cost-prohibitive. Online shopping offers a low budget alternative. The aim of this study was to implement cost-effective skills laboratories and analyze online versus manufacturers' prices to evaluate for savings. Four skills laboratories were designed for the surgery clerkship from July 2014 to June 2015. Skills laboratories were implemented using hand-built simulation and instruments purchased online. Trademarked simulation was priced online and instruments priced from a manufacturer. Costs were compiled, and a descriptive cost analysis of online and manufacturers' prices was performed. Learners rated their level of satisfaction for all educational activities, and levels of satisfaction were compared. A total of 119 third-year medical students participated. Supply lists and costs were compiled for each laboratory. A descriptive cost analysis of online and manufacturers' prices showed online prices were substantially lower than manufacturers, with a per laboratory savings of: $1779.26 (suturing), $1752.52 (chest tube), $2448.52 (anastomosis), and $1891.64 (laparoscopic), resulting in a year 1 savings of $47,285. Mean student satisfaction scores for the skills laboratories were 4.32, with statistical significance compared to live lectures at 2.96 (P < 0.05) and small group activities at 3.67 (P < 0.05). A cost-effective approach for implementation of skills laboratories showed substantial savings. By using hand-built simulation boxes and online resources to purchase surgical equipment, surgical educators overcome financial obstacles limiting the use of simulation and provide learning opportunities that medical students perceive as beneficial. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Presidential Green Chemistry Challenge: 2001 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2001 award winners, Bayer Corporation and Bayer AG, developed a waste-free manufacturing process for sodium iminodisuccinate (Baypure CX), a biodegradable, nontoxic chelating agent.

  12. Presidential Green Chemistry Challenge: 2002 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2002 award winner, SC Fluids, with Los Alamos National Laboratory, developed supercritical CO2 resist remover technology to clean residues from semiconductor wafers during manufacture.

  13. Manufacturing challenges in the commercial production of recombinant coagulation factor VIII.

    PubMed

    Jiang, R; Monroe, T; McRogers, R; Larson, P J

    2002-03-01

    Advances in gene technology have led to the development of a method to manufacture recombinant coagulation Factor VIII (rFVIII) for haemophilia A. Because rFVIII is a large and complex protein, its commercialization has required that many challenges in manufacturing, purification and processing be overcome. In order to license the first generation of rFVIII (Kogenate) in 1993, Bayer Corporation invested over 10 years in research and manufacturing development. Seven additional years were subsequently devoted to research and manufacturing improvements in order to accomplish the recent licensing of a second rFVIII product (KOGENATE Bayer or Kogenate FS). This product differs from its predecessor, in that human albumin is removed from the purification and the formulation steps. In addition, fewer chromatography steps are involved resulting in greater yields per mL of conditioned medium, and a solvent-detergent viral inactivation step replaces the heat-processing step used for the previous product. Despite these changes in the manufacturing, the protein backbone and carbohydrate structure of the final rFVIII molecule are identical. The complexity of the production processes is reflected by over 100 000 manufacturing data entries and by 600 quality control tests for each batch of rFVIII. Manufacturers are continuing to develop the next generation of rFVIII, which will be produced without the addition of any human or animal proteins or byproducts. Investments in research, development and manufacturing technology are expected to result in the development of new products with enhanced safety profiles, and in an increase in the production capacity for products that are chronically in short supply.

  14. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as regards to systems approach to aircraft design and these include lack of basic scientific/practical models and tools for interfacing and integrating the components of SE and within a given component, for example, life cycle cost, basic models for linking the key drivers. The paper will review the current state of art in SE approach to aircraft design and identify some of the major challenges, the current state of the art and visions for the future. The review moves from an initial basis in traditional engineering design processes to consideration of costs and manufacturing in this integrated environment. Issues related to the implementation of integration in design at the detailed physics level are discussed in the case studies.

  15. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.

    PubMed

    Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M

    2015-08-28

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture.

  16. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves

    PubMed Central

    Grant, P. S.; Castles, F.; Lei, Q.; Wang, Y.; Janurudin, J. M.; Isakov, D.; Speller, S.; Dancer, C.; Grovenor, C. R. M.

    2015-01-01

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture. PMID:26217051

  17. A case study on Simulation and Design optimization to improve Productivity in cooling tower manufacturing industry

    NASA Astrophysics Data System (ADS)

    Pranav Nithin, R.; Gopikrishnan, S.; Sumesh, A.

    2018-02-01

    Cooling towers are the heat transfer devices commonly found in industries which are used to extract the high temperature from the coolants and make it reusable in various plants. Basically, the cooling towers has Fills made of PVC sheets stacked together to increase the surface area exposure of the cooling liquid flowing through it. This paper focuses on the study in such a manufacturing plant where fills are being manufactured. The productivity using the current manufacturing method was only 6 to 8 fills per day, where the ideal capacity was of 14 fills per day. In this plant manual labor was employed in the manufacturing process. A change in the process modification designed and implemented will help the industry to increase the productivity to 14. In this paper, initially the simulation study was done using ARENA the simulation package and later the new design was done using CAD Package and validated using Ansys Mechanical APDL. It’s found that, by the implementation of the safe design the productivity can be increased to 196 Units.

  18. The strategic relevance of manufacturing technology: An overall quality concept to promote innovation preventing drug shortage.

    PubMed

    Panzitta, Michele; Ponti, Mauro; Bruno, Giorgio; Cois, Giancarlo; D'Arpino, Alessandro; Minghetti, Paola; Mendicino, Francesca Romana; Perioli, Luana; Ricci, Maurizio

    2017-01-10

    Manufacturing is the bridge between research and patient: without product, there is no clinical outcome. Shortage has a variety of causes, in this paper we analyse only causes related to manufacturing technology and we use shortage as a paradigm highliting the relevance of Pharmaceutical Technology. Product and process complexity and capacity issues are the main challenge for the Pharmaceutical Industry Supply chain. Manufacturing Technology should be acknowledged as a R&D step and as a very important matter during University degree in Pharmacy and related disciplines, promoting collaboration between Academia and Industry, measured during HTA step and rewarded in terms of price and reimbursement. The above elements are not yet properly recognised, and manufacturing technology is taken in to consideration only when a shortage is in place. In a previous work, Panzitta et al. proposed to perform a full technology assessment at the Health Technological Assessment stage, evaluating three main technical aspects of a medicine: manufacturing process, physicochemical properties, and formulation characteristics. In this paper, we develop the concept of manufacturing appraisal, providing a technical overview of upcoming challenges, a risk based approach and an economic picture of shortage costs. We develop also an overall quality concept, not limited to GMP factors but broaden to all elements leading to a robust supply and promoting technical innovation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. TF4SM: A Framework for Developing Traceability Solutions in Small Manufacturing Companies

    PubMed Central

    Bordel Sánchez, Borja; Alcarria, Ramón; Martín, Diego; Robles, Tomás

    2015-01-01

    Nowadays, manufacturing processes have become highly complex. Besides, more and more, governmental institutions require companies to implement systems to trace a product’s life (especially for foods, clinical materials or similar items). In this paper, we propose a new framework, based on cyber-physical systems, for developing traceability systems in small manufacturing companies (which because of their size cannot implement other commercial products). We propose a general theoretical framework, study the requirements of these companies in relation to traceability systems, propose a reference architecture based on both previous elements and build the first minimum functional prototype, to compare our solution to a traditional tag-based traceability system. Results show that our system reduces the number of inefficiencies and reaction time. PMID:26610509

  20. TF4SM: A Framework for Developing Traceability Solutions in Small Manufacturing Companies.

    PubMed

    Bordel Sánchez, Borja; Alcarria, Ramón; Martín, Diego; Robles, Tomás

    2015-11-20

    Nowadays, manufacturing processes have become highly complex. Besides, more and more, governmental institutions require companies to implement systems to trace a product's life (especially for foods, clinical materials or similar items). In this paper, we propose a new framework, based on cyber-physical systems, for developing traceability systems in small manufacturing companies (which because of their size cannot implement other commercial products). We propose a general theoretical framework, study the requirements of these companies in relation to traceability systems, propose a reference architecture based on both previous elements and build the first minimum functional prototype, to compare our solution to a traditional tag-based traceability system. Results show that our system reduces the number of inefficiencies and reaction time.

  1. The US transit bus manufacturing industry [brief].

    DOT National Transportation Integrated Search

    2016-10-01

    Manufacturing buses for the US transit market has been a challenging business : over the last several decades. It is a small market with volatile demand. The : purpose of this report is to provide policy makers with an update on the state of the indu...

  2. Sustainable Materials Management (SMM) Electronics Challenge

    EPA Pesticide Factsheets

    Learn how the SMM Electronics Challenge encourage electronic manufacturers to strive to send 100 percent of the used electronics they collect from the public and retailers to certified electronics refurbishers and recyclers.

  3. Presidential Green Chemistry Challenge: 2004 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2004 award winner, Bristol-Myers Squibb, manufactures paclitaxel, the active ingredient in the anticancer drug, Taxol, using plant cell fermentation and extraction to replace synthesis.

  4. Presidential Green Chemistry Challenge: 2003 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2003 award winner, DuPont, developed a genetically engineered microorganism jointly with Genencor International to manufacture 1,3-propanediol, a building block for Sorona polyester.

  5. Quality challenges associated with microbial-based cleaning products from the Industry Perspective.

    PubMed

    Teasdale, Steve M; Kademi, Ali

    2018-06-01

    Microbial-based cleaning products (MBCPs) continue to gain popularity in the market as environmentally friendly cleaners. The majority of these products contain spores of various Bacillus species. Although the microorganisms used in MBCPs are subject to regulation in Canada under the Canadian Environmental Protection Act, the products themselves are not. Unlike other types of microbial products such as probiotics and biopesticides, the use, manufacture and quality parameters of MBCPs in Canada and other countries are poorly defined and not specifically subject to any required standards. Due to their complexity and nature, these products feature unique quality challenges. We noted the existing MBCPs we analyzed vary vastly in quality; external microbial contaminants, viability of the spores and the biocompatibility of the ingredients are issues that greatly affect product quality. A proper taxonomic identification of the bacterial species used also seems to be a major challenge for a number of manufacturers. A good understanding of the mechanisms governing these quality challenges and the adoption of good practices for the cultivation, harvesting, formulation, and manufacture of these types of products are essential for achieving high-quality performance standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study of activity based costing implementation for palm oil production using value-added and non-value-added activity consideration in PT XYZ palm oil mill

    NASA Astrophysics Data System (ADS)

    Sembiring, M. T.; Wahyuni, D.; Sinaga, T. S.; Silaban, A.

    2018-02-01

    Cost allocation at manufacturing industry particularly in Palm Oil Mill still widely practiced based on estimation. It leads to cost distortion. Besides, processing time determined by company is not in accordance with actual processing time in work station. Hence, the purpose of this study is to eliminates non-value-added activities therefore processing time could be shortened and production cost could be reduced. Activity Based Costing Method is used in this research to calculate production cost with Value Added and Non-Value-Added Activities consideration. The result of this study is processing time decreasing for 35.75% at Weighting Bridge Station, 29.77% at Sorting Station, 5.05% at Loading Ramp Station, and 0.79% at Sterilizer Station. Cost of Manufactured for Crude Palm Oil are IDR 5.236,81/kg calculated by Traditional Method, IDR 4.583,37/kg calculated by Activity Based Costing Method before implementation of Activity Improvement and IDR 4.581,71/kg after implementation of Activity Improvement Meanwhile Cost of Manufactured for Palm Kernel are IDR 2.159,50/kg calculated by Traditional Method, IDR 4.584,63/kg calculated by Activity Based Costing Method before implementation of Activity Improvement and IDR 4.582,97/kg after implementation of Activity Improvement.

  7. Combat Ration Network for Technology Implementation (CORANET II) Knurled Seal Heat Bar

    DTIC Science & Technology

    2010-08-01

    bench top comparison of ultrasonic sealing technology that included the participation of five ultrasonic sealing equipment manufacturers . Project...packaging journals • On-line web search yielded no useful research results • Contact with machine manufactures produced anecdotal evidence of improved...seal characteristics without documentation or research results • One manufacturer suggested rounded seal bars or seal rubbers for improved sealing

  8. Illinois Manufacturing Technology Curriculum.

    ERIC Educational Resources Information Center

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  9. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  10. George E. Pake Prize: A Few Challenges in the Evolution of Semiconductor Device/Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.

  11. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    PubMed Central

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  12. Propulsion Design With Freeform Fabrication (PDFF)

    NASA Technical Reports Server (NTRS)

    Barnes, Daudi; McKinnon, James; Priem, Richard

    2010-01-01

    The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in an SFF thruster design could reduce thruster weight by a factor of two or more. The thrust-to-weight ratios for such designs can achieve 1,000:1 or more, depending on chamber pressure. The potential exists for continued development in materials, size, speed, accuracy of SFF techniques, which can lead to speculative developments of PDFF processes such as fabrication of custom human interface devices like masks, chairs, and clothing, and advanced biomedical application to human organ reconstruction. Other potential applications are: higher fidelity lower cost test fixtures for probes and inspection, disposable thrusters, and ISRU (in situ resource utilization) for component production in space or on Lunar and Martian missions, and application for embedding MEMS (microelectromechanical systems) during construction process of form changing aerostructure/dynamic structures.

  13. Laboratory equipment maintenance: a critical bottleneck for strengthening health systems in sub-Saharan Africa?

    PubMed

    Fonjungo, Peter N; Kebede, Yenew; Messele, Tsehaynesh; Ayana, Gonfa; Tibesso, Gudeta; Abebe, Almaz; Nkengasong, John N; Kenyon, Thomas

    2012-02-01

    Properly functioning laboratory equipment is a critical component for strengthening health systems in developing countries. The laboratory can be an entry point to improve population health and care of individuals for targeted diseases - prevention, care, and treatment of TB, HIV/AIDS, and malaria, plus maternal and neonatal health - as well as those lacking specific attention and funding. We review the benefits and persistent challenges associated with sustaining laboratory equipment maintenance. We propose equipment management policies as well as a comprehensive equipment maintenance strategy that would involve equipment manufacturers and strengthen local capacity through pre-service training of biomedical engineers. Strong country leadership and commitment are needed to assure development and sustained implementation of policies and strategies for standardization of equipment, and regulation of its procurement, donation, disposal, and replacement.

  14. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  15. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  16. Temporal and spatial characteristics of lead emissions from the lead-acid battery manufacturing industry in China.

    PubMed

    Liu, Wei; Tian, Jinping; Chen, Lujun; Guo, Yang

    2017-01-01

    An inventory of lead emissions was established for the lead-acid battery (LAB) manufacturing industry in China from 2000 to 2014. The lead emissions from the LAB manufacturing industry increased from 133 t in 2000 to a peak at 281 t in 2010 with the rapid development of LAB industry. Since 2011, a mandatory national clean action on LAB industry and a series of retrofitting measures have been implemented in China. As a result, more than 80% of small and low-efficient LAB manufacturers were closed, and technical-environmental performance of the industry has been improved significantly. Thus the lead emissions from the industry declined to 113 t in 2014. Geographically, lead emissions were attributed to several provinces with intensive LAB manufacturers, including Zhejiang, Guangdong, Jiangsu, Shandong, and Hebei Province. Spatial transfer of the LAB manufacturing industry from developed areas to developing areas in China was manifest due to strict environmental regulation, posing potential environmental risks to the areas undertaking the industry transfer. In light of the effectiveness of the national clean action, the LAB manufacturing industry will reduce lead emissions further by implementing the entry criteria strictly, adopting policy of total lead emissions control, and establishing a long-term regulatory mechanism for LAB manufacturers. The local authorities in some developing areas should improve abilities of environmental supervision and environmental risk prevention to deal with the spillover of lead emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Lean Manufacturing Auto Cluster at Chennai

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2012-10-01

    Due the presence of lot of automotive Industry, Chennai is known as Detroit of India, that producing over 40 % of the Indian vehicle and components. Lean manufacturing concepts have been widely recognized as an important tool in improving the competitiveness of industries. This is a continuous process involving everyone, starting from management to the shop floor. Automotive Component Industries (ACIs) in Ambattur Industrial Estate, Chennai has formed special purpose vehicle (SPV) society namely Ambattur Industrial Estate Manufacturers Association (AIEMA) Technology Centre (ATC) lean manufacturing cluster (ATC-LMC) during July 2010 under lean manufacturing competitiveness scheme, that comes under National Manufacturing Competitiveness Programme of Government of India. The Tripartite Agreement is taken place between National Productivity Council, consultants and cluster (ATC-LMC). The objective is to conduct diagnostic study, study on training and application of various lean manufacturing techniques and auditing in ten ACIs. The methodology adopted is collection of primary data/details from ten ACIs. In the first phase, diagnostic study is done and the areas for improvement in each of the cluster member companies are identified. In the second phase, training programs and implementation is done on 5S and other areas. In the third phase auditing is done and found that the lean manufacturing techniques implementation in ATC-LMC is sustainable and successful in every cluster companies, which will not only enhance competitiveness but also decrease cost, time and increase productivity. The technical efficiency of LMC companies also increases significantly.

  18. A system model to integrate the “Green Manufacturing” concept in Romanian manufacturing organisation

    NASA Astrophysics Data System (ADS)

    Tilină, D. I.; Zapciu, M.; Mohora, C.

    2015-11-01

    In Romania, the large majorities of the manufacturing companies consume natural resources and energy in an unsustainable manner. Over the years, the emissions of greenhouse gases have led not only to many environmental problems but also to important social and economic problems. A real solution to help the Romanian manufacturing companies to adapt to the new legislative requirements is the green manufacturing implementation. Considering the current situation, the purpose of this paper is to present a model that will integrate the green manufacturing concept at the organizational level based on the practices identified in the Romanian manufacturing companies at the operational level in the context of sustainable development.

  19. Integrated design and manufacturing for the high speed civil transport

    NASA Technical Reports Server (NTRS)

    Lee, Jae Moon; Gupta, Anurag; Mueller, Craig; Morrisette, Monica; Dec, John; Brewer, Jason; Donofrio, Kevin; Sturisky, Hilton; Smick, Doug; An, Meng Lin

    1994-01-01

    In June 1992, the School of Aerospace Engineering at Georgia Tech was awarded a three year NASA University Space Research Association (USRA) Advanced Design Program (ADP) grant to address issues associated with the Integrated Design and Manufacturing of High Speed Civil Transport (HSCT) configurations in its graduate Aerospace Systems Design courses. This report provides an overview of the on-going Georgia Tech initiative to address these design/manufacturing issues during the preliminary design phases of an HSCT concept. The new design methodology presented here has been incorporated in the graduate aerospace design curriculum and is based on the concept of Integrated Product and Process Development (IPPD). The selection of the HSCT as a pilot project was motivated by its potential global transportation payoffs; its technological, environmental, and economic challenges; and its impact on U.S. global competitiveness. This pilot project was the focus of each of the five design courses that form the graduate level aerospace systems design curriculum. This year's main objective was the development of a systematic approach to preliminary design and optimization and its implementation to an HSCT wing/propulsion configuration. The new methodology, based on the Taguchi Parameter Design Optimization Method (PDOM), was established and was used to carry out a parametric study where various feasible alternative configurations were evaluated. The comparison criterion selected for this evaluation was the economic impact of this aircraft, measured in terms of average yield per revenue passenger mile ($/RPM).

  20. Pharmacovigilance in China: current situation, successes and challenges.

    PubMed

    Zhang, Li; Wong, Lisa Y L; He, Ying; Wong, Ian C K

    2014-10-01

    With the integration of the global pharmaceutical economy and the gradual transformation of the healthcare insurance system in China, the legislative framework for a comprehensive regulatory system monitoring the whole process including drug development, manufacture, distribution and use has been established by the China Food and Drug Administration (CFDA) to ensure the safety and effectiveness of medication use. China has established a relatively comprehensive pharmacovigilance system covering regulation, organisation and technology from 1989 to 2014. As of 2013, one national centre, 34 provincial centres and more than 400 municipal centres for adverse drug reaction (ADR) monitoring were included in the four-level pharmacovigilance network (national, provincial, municipal and county) with more than 200,000 grassroot organisation users. The China Adverse Drug Reaction Monitoring System (CADRMS) is an online spontaneous reporting system which connects the four-level pharmacovigilance network. By 2013, CADRMS had received over 6.6 million ADR case reports. After integrating and analysing pharmacovigilance data, the National Centre for ADR Monitoring (NCADRM) publishes medication safety information by releasing ADR bulletins, National ADR Annual Reports and International Pharmacovigilance Newsletters. The NCADRM also routinely provides CADRMS data feedback to manufacturers. The CFDA implemented risk management through several approaches, including arranging 'manufacturer communication meetings', modification of medication package inserts, and restriction, suspension or withdrawal of marketing authorisations. Seamless information exchange with overseas regulatory authorities and organisations remains an area for improvement. Further development of the China pharmacovigilance system in terms of signal generation, post-marketing pharmacoepidemiology research and education is also needed.

  1. New Tables For IABG's 320kN Shaker System: Design And Procurement Process

    NASA Astrophysics Data System (ADS)

    Baumgartl, Ralf

    2012-07-01

    For more than 25 years IABG is operating its 320kN vibration system in testing of space and non-space applications. The vibration system is a multi shaker system, using four electrodynamic shakers, driving a 3x3m2 head expander and a 3x3m2 slip table. During the recent years a modernisation program of the shaker system has been implemented. The purpose of this program was to exchange system components, which have reached their expected duration of life, as well as to exchange components which did no longer fulfil the state-of-the-art requirements in testing and thus to adapt the vibration system to future challenges. Two major components of the shaker system, which have been covered during the modernisation program, are the shaker tables (the head expander and the slip table). Being the direct interface of a vibration test facility to a specimen, the shaker tables are crucial regarding the shaker system overall performance. And this fact applies even more for shaker systems with large tables, because there are no off-the-shelf solutions in this area. During the recent 5 years IABG specified, designed and procured a new head expander and a new slip table for the 320kN shaker system. This paper describes the overall process investigating on the following listed aspects: - general requirements for the tables - definition of boundary conditions and guidance principles - specific areas of interest - definition of the table material and the manufacturing method - design solutions - challenges during manufacturing - results - table properties

  2. In Situ 3D Monitoring of Geometric Signatures in the Powder-Bed-Fusion Additive Manufacturing Process via Vision Sensing Methods.

    PubMed

    Li, Zhongwei; Liu, Xingjian; Wen, Shifeng; He, Piyao; Zhong, Kai; Wei, Qingsong; Shi, Yusheng; Liu, Sheng

    2018-04-12

    Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures.

  3. On architecting and composing engineering information services to enable smart manufacturing

    PubMed Central

    Ivezic, Nenad; Srinivasan, Vijay

    2016-01-01

    Engineering information systems play an important role in the current era of digitization of manufacturing, which is a key component to enable smart manufacturing. Traditionally, these engineering information systems spanned the lifecycle of a product by providing interoperability of software subsystems through a combination of open and proprietary exchange of data. But research and development efforts are underway to replace this paradigm with engineering information services that can be composed dynamically to meet changing needs in the operation of smart manufacturing systems. This paper describes the opportunities and challenges in architecting such engineering information services and composing them to enable smarter manufacturing. PMID:27840595

  4. Prospects of joining multi-material structures

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, R.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Spring up trends and necessities make the pipelines for the brand new Technologies. The same way, Multimaterial structures emerging as fruitful alternatives for the conventional structures in the manufacturing sector. Especially manufacturing of transport vehicles is placing a perfect platform for these new structures. Bonding or joining technology plays a crucial role in the field of manufacturing for sustainability. These latest structures are purely depending on such joining technologies so that multi-material structuring can be possible practically. The real challenge lies on joining dissimilar materials of different properties and nature. Escalation of thermoplastic usage in large structural components also faces similar ambiguity for joining multi-material structures. Adhesive bonding, mechanical fastening and are the answering technologies for multi-material structures. This current paper analysis the prospects of these bonding technologies to meet the challenges of tomorrow.

  5. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    NASA Astrophysics Data System (ADS)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  6. Manufacturing, characterization and control of cell-based medicinal products: challenging paradigms toward commercial use.

    PubMed

    Salmikangas, Paula; Menezes-Ferreira, Margarida; Reischl, Ilona; Tsiftsoglou, Asterios; Kyselovic, Jan; Borg, John Joseph; Ruiz, Sol; Flory, Egbert; Trouvin, Jean-Hugues; Celis, Patrick; Ancans, Janis; Timon, Marcos; Pante, Guido; Sladowski, Dariusz; Lipnik-Stangelj, Metoda; Schneider, Christian K

    2015-01-01

    During the past decade, a large number of cell-based medicinal products have been tested in clinical trials for the treatment of various diseases and tissue defects. However, licensed products and those approaching marketing authorization are still few. One major area of challenge is the manufacturing and quality development of these complex products, for which significant manipulation of cells might be required. While the paradigms of quality, safety and efficacy must apply also to these innovative products, their demonstration may be demanding. Demonstration of comparability between production processes and batches may be difficult for cell-based medicinal products. Thus, the development should be built around a well-controlled manufacturing process and a qualified product to guarantee reproducible data from nonclinical and clinical studies.

  7. 24 CFR 3282.410 - Implementation of plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... number of manufactured homes involved and the difficulty of completing the notifications. (2) The... of each notice, bulletin, and other written communication sent to retailers, distributors, or owners... manufactured homes involved, the immediacy of any risk, and the difficulty of completing the action. The...

  8. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge

    PubMed Central

    Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip “Eddie”; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant

    2014-01-01

    Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/. PMID:24418598

  9. Experience Of Implementing The Integrated Management System In Manufacturing Companies In Slovakia

    NASA Astrophysics Data System (ADS)

    Lestyánszka Škůrková, Katarína; Kučerová, Marta; Fidlerová, Helena

    2015-06-01

    In corporate practice, the term of Integrated Management System means a system the aim of which is to manage an organization regarding the quality, environment, health and safety at work. In the first phase of the VEGA project No. 1/0448/13 "Transformation of ergonomics program into the company management structure through interaction and utilization QMS, EMS, HSMS", we focused on obtaining information about the way or procedure of implementing the integrated management systems in manufacturing companies in Slovakia. The paper considers characteristics of integrated management system, specifies the possibilities for successive integration of the management systems and also describes the essential aspects of the practical implementation of integrated management systems in companies in Slovakia.

  10. Implementation of activity-based costing (ABC) to drive cost reduction efforts in a semiconductor manufacturing operation

    NASA Astrophysics Data System (ADS)

    Naguib, Hussein; Bol, Igor I.; Lora, J.; Chowdhry, R.

    1994-09-01

    This paper presents a case study on the implementation of ABC to calculate the cost per wafer and to drive cost reduction efforts for a new IC product line. The cost reduction activities were conducted through the efforts of 11 cross-functional teams which included members of the finance, purchasing, technology development, process engineering, equipment engineering, production control, and facility groups. The activities of these cross functional teams were coordinated by a cost council. It will be shown that these activities have resulted in a 57% reduction in the wafer manufacturing cost of the new product line. Factors contributed to successful implementation of an ABC management system are discussed.

  11. Simple laser vision sensor calibration for surface profiling applications

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  12. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein.

    PubMed

    Looby, Mairead; Ibarra, Neysi; Pierce, James J; Buckley, Kevin; O'Donovan, Eimear; Heenan, Mary; Moran, Enda; Farid, Suzanne S; Baganz, Frank

    2011-01-01

    This study describes the application of quality by design (QbD) principles to the development and implementation of a major manufacturing process improvement for a commercially distributed therapeutic protein produced in Chinese hamster ovary cell culture. The intent of this article is to focus on QbD concepts, and provide guidance and understanding on how the various components combine together to deliver a robust process in keeping with the principles of QbD. A fed-batch production culture and a virus inactivation step are described as representative examples of upstream and downstream unit operations that were characterized. A systematic approach incorporating QbD principles was applied to both unit operations, involving risk assessment of potential process failure points, small-scale model qualification, design and execution of experiments, definition of operating parameter ranges and process validation acceptance criteria followed by manufacturing-scale implementation and process validation. Statistical experimental designs were applied to the execution of process characterization studies evaluating the impact of operating parameters on product quality attributes and process performance parameters. Data from process characterization experiments were used to define the proven acceptable range and classification of operating parameters for each unit operation. Analysis of variance and Monte Carlo simulation methods were used to assess the appropriateness of process design spaces. Successful implementation and validation of the process in the manufacturing facility and the subsequent manufacture of hundreds of batches of this therapeutic protein verifies the approaches taken as a suitable model for the development, scale-up and operation of any biopharmaceutical manufacturing process. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  13. How development and manufacturing will need to be structured--heads of development/manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Nepveux, Kevin; Sherlock, Jon-Paul; Futran, Mauricio; Thien, Michael; Krumme, Markus

    2015-03-01

    Continuous manufacturing (CM) is a process technology that has been used in the chemical industry for large-scale mass production of chemicals in single-purpose plants with benefit for many years. Recent interest has been raised to expand CM into the low-volume, high-value pharmaceutical business with its unique requirements regarding readiness for human use and the required quality, supply chain, and liability constraints in this business context. Using a fairly abstract set of definitions, this paper derives technical consequences of CM in different scenarios along the development-launch-supply axis in different business models and how they compare to batch processes. Impact of CM on functions in development is discussed and several operational models suitable for originators and other business models are discussed and specific aspects of CM are deduced from CM's technical characteristics. Organizational structures of current operations typically can support CM implementations with just minor refinements if the CM technology is limited to single steps or small sequences (bin-to-bin approach) and if the appropriate technical skill set is available. In such cases, a small, dedicated group focused on CM is recommended. The manufacturing strategy, as centralized versus decentralized in light of CM processes, is discussed and the potential impact of significantly shortened supply lead times on the organization that runs these processes. The ultimate CM implementation may be seen by some as a totally integrated monolithic plant, one that unifies chemistry and pharmaceutical operations into one plant. The organization supporting this approach will have to reflect this change in scope and responsibility. The other extreme, admittedly futuristic at this point, would be a highly decentralized approach with multiple smaller hubs; this would require a new and different organizational structure. This processing approach would open up new opportunities for products that, because of stability constraints or individualization to patients, do not allow centralized manufacturing approaches at all. Again, the entire enterprise needs to be restructured accordingly. The situation of CM in an outsourced operation business model is discussed. Next steps for the industry are recommended. In summary, opportunistic implementation of isolated steps in existing portfolios can be implemented with minimal organizational changes; the availability of the appropriate skills is the determining factor. The implementation of more substantial sequences requires business processes that consider the portfolio, not just single products. Exploration and implementation of complete process chains with consequences for quality decisions do require appropriate organizational support. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Restructuring Principal Preparation in Illinois: Perspectives on Implementation Successes, Challenges, and Future Outlook. IERC 2015-3

    ERIC Educational Resources Information Center

    Klostermann, Brenda K.; Pareja, Amber Stitziel; Hart, Holly; White, Bradford R.; Huynh, Michelle Hanh

    2015-01-01

    The goals of the current mixed methods study--the Illinois Principal Preparation Implementation Review Project (I-PREP)--are to describe how the new policy is being implemented, learning which aspects of the implementation have been challenging and why they present challenges, and how programs are addressing challenges and realizing improvements…

  15. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  16. Production of Copper-Plated Beamline Bellows and Spools for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Katherine M.; Carpenter, Brian C.; Daly, Ed

    The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab) and Fermi National Accelerator Laboratory (FNAL), are participating in this project. The 1.3-GHz cryomodules for this project consist of eight cavities separated by bellows (expansion joints) and spools (tube sections), which are copper plated for RF conduction. JLab is responsible for procurement of these bellows and spools, which are delivered to JLab and FNAL for assembly into cryomodules. Achieving accelerator-grade copper plating is always amore » challenge and requires careful specification of requirements and application of quality control processes. Due to the demanding technical requirements of this part, JLab implemented procurement strategies to make the process more efficient as well as provide process redundancy. This paper discusses the manufacturing challenges that were encountered and resolved, as well as the strategies that were employed to minimize the impact of any technical issues.« less

  17. The Future of the Small Rural Grocery Store: A Qualitative Exploration.

    PubMed

    Pinard, Courtney A; Fricke, Hollyanne E; Smith, Teresa M; Carpenter, Leah R; Yaroch, Amy L

    2016-11-01

    Rural communities face unique challenges to and opportunities for offering more healthful foods and are often understudied in comparison to their urban counterparts. The purpose of this study was to conduct a qualitative assessment of rural storeowners' perceptions of their communities, their business practices, and factors that influences their viability, sustainability, and ability to support healthy food choices. We conducted interviews with storeowners (N = 15) in small stores in rural Nebraska and explored perceptions of business practices, role in the community, and consumer demand for more healthful foods. The storeowners reported strategies they employ to remain competitive, such as selling alcohol and tobacco, focusing on customer service, and ensuring quality of products. Manufacturer and distributor agreements often put constraints on their business models. Key challenges reported included a dwindling population and competition with larger chains in neighboring towns set in a sparsely populated landscape. Goals for the future included expanding equipment, largely to offer more prepared foods. This study adds to the literature around food access in rural communities, and can inform future implementation strategies to work with storeowners to improve healthy food access.

  18. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  19. Review of OECD/OPPTS-harmonized and OPPTS ecotoxicity test guidelines for their applicability to manufactured nanomaterials

    EPA Science Inventory

    Assessing the environmental risk of manufactured nanomaterials (NMs) presents a significant and growing challenge for environmental regulators. These materials, defined as having at least one physical dimensions between 1 and 100 nanometers are being developed, produced, and inco...

  20. Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers

    PubMed Central

    Martínez-López, J. Israel; Mojica, Mauricio; Rodríguez, Ciro A.; Siller, Héctor R.

    2016-01-01

    Despite the copious amount of research on the design and operation of micromixers, there are few works regarding manufacture technology aimed at implementation beyond academic environments. This work evaluates the viability of xurography as a rapid fabrication tool for the development of ultra-low cost microfluidic technology for extreme Point-of-Care (POC) micromixing devices. By eschewing photolithographic processes and the bulkiness of pumping and enclosure systems for rapid fabrication and passively driven operation, xurography is introduced as a manufacturing alternative for asymmetric split and recombine (ASAR) micromixers. A T-micromixer design was used as a reference to assess the effects of different cutting conditions and materials on the geometric features of the resulting microdevices. Inspection by stereographic and confocal microscopy showed that it is possible to manufacture devices with less than 8% absolute dimensional error. Implementation of the manufacturing methodology in modified circular shape- based SAR microdevices (balanced and unbalanced configurations) showed that, despite the precision limitations of the xurographic process, it is possible to implement this methodology to produce functional micromixing devices. Mixing efficiency was evaluated numerically and experimentally at the outlet of the microdevices with performances up to 40%. Overall, the assessment encourages further research of xurography for the development of POC micromixers. PMID:27196904

  1. Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers.

    PubMed

    Martínez-López, J Israel; Mojica, Mauricio; Rodríguez, Ciro A; Siller, Héctor R

    2016-05-16

    Despite the copious amount of research on the design and operation of micromixers, there are few works regarding manufacture technology aimed at implementation beyond academic environments. This work evaluates the viability of xurography as a rapid fabrication tool for the development of ultra-low cost microfluidic technology for extreme Point-of-Care (POC) micromixing devices. By eschewing photolithographic processes and the bulkiness of pumping and enclosure systems for rapid fabrication and passively driven operation, xurography is introduced as a manufacturing alternative for asymmetric split and recombine (ASAR) micromixers. A T-micromixer design was used as a reference to assess the effects of different cutting conditions and materials on the geometric features of the resulting microdevices. Inspection by stereographic and confocal microscopy showed that it is possible to manufacture devices with less than 8% absolute dimensional error. Implementation of the manufacturing methodology in modified circular shape- based SAR microdevices (balanced and unbalanced configurations) showed that, despite the precision limitations of the xurographic process, it is possible to implement this methodology to produce functional micromixing devices. Mixing efficiency was evaluated numerically and experimentally at the outlet of the microdevices with performances up to 40%. Overall, the assessment encourages further research of xurography for the development of POC micromixers.

  2. Small Scale Turbopump Manufacturing Technology and Material Processes

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  3. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    NASA Astrophysics Data System (ADS)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  4. Foreword

    NASA Astrophysics Data System (ADS)

    Bergheau, Jean-Michel; Drapier, Sylvain; Feulvarch, Éric; Ponthot, Jean-Philippe

    2016-04-01

    In the face of increasingly fierce global competition, industrial companies must develop products more and more quickly and cheaply. In such a context, the numerical simulation of manufacturing processes is a big challenge and a key factor for success. Indeed, numerical simulation enables the control of manufacturing processes and of the consequences that they induce on the manufactured parts in terms of material modifications, geometrical changes or residual stresses, each of them playing an important role in the lifetime of the component.

  5. Modeling of additive manufacturing processes for metals: Challenges and opportunities

    DOE PAGES

    Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...

    2017-01-09

    Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.

  6. 40 CFR 86.010-38 - Maintenance instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., excluding any research and development costs incurred in designing and implementing, upgrading or altering... months lead time to meet this requirement. Each manufacturer Web site shall: (i) Provide access in full... same time as manufacturer-franchised dealership World Wide Web sites; (iii) Provide users with a...

  7. 40 CFR 86.010-38 - Maintenance instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., excluding any research and development costs incurred in designing and implementing, upgrading or altering... months lead time to meet this requirement. Each manufacturer Web site shall: (i) Provide access in full... same time as manufacturer-franchised dealership World Wide Web sites; (iii) Provide users with a...

  8. 40 CFR 86.010-38 - Maintenance instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., excluding any research and development costs incurred in designing and implementing, upgrading or altering... months lead time to meet this requirement. Each manufacturer Web site shall: (i) Provide access in full... same time as manufacturer-franchised dealership World Wide Web sites; (iii) Provide users with a...

  9. 40 CFR 86.010-38 - Maintenance instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., excluding any research and development costs incurred in designing and implementing, upgrading or altering... months lead time to meet this requirement. Each manufacturer Web site shall: (i) Provide access in full... same time as manufacturer-franchised dealership World Wide Web sites; (iii) Provide users with a...

  10. Life-cycle management: a long-term challenge.

    PubMed

    Newman, Chris

    2003-04-01

    With some electronics components being withdrawn after only two years, life-cycle management is becoming a key strategic issue for users and manufacturers of electromedical equipment. This article describes some approaches to tackling the challenge.

  11. Opportunities and challenges for 3D printing of solid-state lighting systems

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Perera, Indika U.; Mou, Xi; Thotagamuwa, Dinusha R.

    2017-09-01

    Low energy use and reduced maintenance have made the LED, a solid-state light (SSL) source, the preferred technology for many lighting applications. With the explosion of products in the marketplace and subsequent price erosion, manufacturers are looking for lower cost materials and manufacturing methods. 3-D printing, also known as additive manufacturing, could be a potential solution. Recently, manufacturers in the automotive, aerospace, and medical industries have embraced 3-D printing for manufacturing parts and systems. This could pave the way for the lighting industry to produce lower cost, custom lighting systems that are 3-D printed on-site to achieve on-time and on-demand manufacturing. One unique aspect of LED fixture manufacturing is that it requires thermo-mechanical, electrical, and optical components. The goal of our investigation was to understand if current 3-D printing technologies and materials can be used to manufacture functional thermo-mechanical, electrical, and optical components for SSL fixtures. We printed heat sink components and electrical traces using an FFF-type 3-D printer with different filaments. The results showed that the printed heat sinks achieved higher thermal conductivity values compared to components made with plastic materials. For electrical traces, graphene-infused PLA showed low resistivity but it is much higher than bulk copper resistivity. For optics, SLA-printed optical components showed that print resolution, print orientation, and postprocessing affect light transmission and light scatter properties. Overall, 3-D printing offers an opportunity for mass customization of SSL fixtures and changing architectural lighting practice, but several challenges in terms of process and materials still have to be overcome.

  12. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    NASA Astrophysics Data System (ADS)

    Gonzalez, Albin; Bauer, Lisa; Kinney, Vicki; Crooks, Cheryl

    2008-03-01

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as "Image Guided Radiation Therapy" or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house

  13. Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City

    PubMed Central

    Guo, Kun; Lu, Yueming; Gao, Hui; Cao, Ruohan

    2018-01-01

    Smart city (SC) technologies can provide appropriate services according to citizens’ demands. One of the key enablers in a SC is the Internet of Things (IoT) technology, which enables a massive number of devices to connect with each other. However, these devices usually come from different manufacturers with different product standards, which confront interactive control problems. Moreover, these devices will produce large amounts of data, and efficiently analyzing these data for intelligent services. In this paper, we propose a novel artificial intelligence-based semantic IoT (AI-SIoT) hybrid service architecture to integrate heterogeneous IoT devices to support intelligent services. In particular, the proposed architecture is empowered by semantic and AI technologies, which enable flexible connections among heterogeneous devices. The AI technology can support very implement efficient data analysis and make accurate decisions on service provisions in various kinds. Furthermore, we also present several practical use cases of the proposed AI-SIoT architecture and the opportunities and challenges to implement the proposed AI-SIoT for future SCs are also discussed. PMID:29701679

  14. Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City.

    PubMed

    Guo, Kun; Lu, Yueming; Gao, Hui; Cao, Ruohan

    2018-04-26

    Smart city (SC) technologies can provide appropriate services according to citizens’ demands. One of the key enablers in a SC is the Internet of Things (IoT) technology, which enables a massive number of devices to connect with each other. However, these devices usually come from different manufacturers with different product standards, which confront interactive control problems. Moreover, these devices will produce large amounts of data, and efficiently analyzing these data for intelligent services. In this paper, we propose a novel artificial intelligence-based semantic IoT (AI-SIoT) hybrid service architecture to integrate heterogeneous IoT devices to support intelligent services. In particular, the proposed architecture is empowered by semantic and AI technologies, which enable flexible connections among heterogeneous devices. The AI technology can support very implement efficient data analysis and make accurate decisions on service provisions in various kinds. Furthermore, we also present several practical use cases of the proposed AI-SIoT architecture and the opportunities and challenges to implement the proposed AI-SIoT for future SCs are also discussed.

  15. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... approving into the Indiana State Implementation Plan (SIP) amendments to Indiana's automobile refinishing... (VOC) automobile refinishing rules to all persons in Indiana who sell or manufacture automobile...

  16. 76 FR 53369 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adhesives and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Adhesives and Sealants Rule AGENCY... Implementation Plan (SIP) revision submitted by the Commonwealth of Pennsylvania. The SIP revision pertains to... volatile organic compounds (VOC) from the manufacture, sale, use, or application of adhesives, sealants...

  17. MRP (materiel requirements planning) II: successful implementation the hard way.

    PubMed

    Grubbs, S C

    1994-05-01

    Many manufacturing companies embark on MRP II implementation projects as a method for improvement. In spite of an increasing body of knowledge regarding successful implementations, companies continue to attempt new approaches. This article reviews an actual implementation, featuring some of the mistakes made and the efforts required to still achieve "Class A" performance levels.

  18. Manufacturing Energy Intensity and Opportunity Analysis for Fiber-Reinforced Polymer Composites and Other Lightweight Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liddell, Heather; Brueske, Sabine; Carpenter, Alberta

    With their high strength-to-weight ratios, fiber-reinforced polymer (FRP) composites are important materials for lightweighting in structural applications; however, manufacturing challenges such as low process throughput and poor quality control can lead to high costs and variable performance, limiting their use in commercial applications. One of the most significant challenges for advanced composite materials is their high manufacturing energy intensity. This study explored the energy intensities of two lightweight FRP composite materials (glass- and carbon-fiber-reinforced polymers), with three lightweight metals (aluminum, magnesium, and titanium) and structural steel (as a reference material) included for comparison. Energy consumption for current typical and state-of-the-artmore » manufacturing processes were estimated for each material, deconstructing manufacturing process energy use by sub-process and manufacturing pathway in order to better understand the most energy intensive steps. Energy saving opportunities were identified and quantified for each production step based on a review of applied R&D technologies currently under development in order to estimate the practical minimum energy intensity. Results demonstrate that while carbon fiber reinforced polymer (CFRP) composites have the highest current manufacturing energy intensity of all materials considered, the large differences between current typical and state-of-the-art energy intensity levels (the 'current opportunity') and between state-of-the-art and practical minimum energy intensity levels (the 'R&D opportunity') suggest that large-scale energy savings are within reach.« less

  19. Restructuring Principal Preparation in Illinois: Perspectives on Implementation Successes, Challenges, and Future Outlook. Executive Summary. IERC 2015-3

    ERIC Educational Resources Information Center

    Klostermann, Brenda K.; Pareja, Amber Stitziel; Hart, Holly; White, Bradford R.; Huynh, Michelle Hanh

    2015-01-01

    The goals of the current mixed methods study--the Illinois Principal Preparation Implementation Review Project (I-PREP)--are to describe how the new policy is being implemented, learning which aspects of the implementation have been challenging and why they present challenges, and how programs are addressing challenges and realizing improvements…

  20. NCCN Oncology Risk Evaluation and Mitigation Strategies White Paper: Recommendations for Stakeholders.

    PubMed

    Johnson, Philip E; Dahlman, George; Eng, Kirby; Garg, Rekha; Gottlieb, Scott; Hoffman, James M; Howell, Peyton; Jahanzeb, Mohammad; Johnson, Shirley; Mackler, Emily; Rubino, Mark; Sarokhan, Brenda; Marc Stewart, F; Tyler, Tim; Vose, Julie M; Weinstein, Sharon; Li, Edward C; Demartino, Jessica

    2010-09-01

    REMS are a particularly important issue for oncology and the National Comprehensive Cancer Network (NCCN). A disproportionate number of drugs with complex REMS are used in patients with cancer or hematologic disorders. REMS policies and processes within oncology may act as a model for other clinical areas. A breadth of experience and access to a wide knowledge base exists within oncology that will ensure appropriate development and consideration of the practical implications of REMS. NCCN is uniquely positioned to assume a leadership role in this process given its status as the arbiter of high-quality cancer care based on its world-leading institutions and clinicians. Notwithstanding the potential benefits, the successful design, implementation, and analysis of the FDA's recent requirement for REMS for some high-risk drugs and biologics will present significant challenges for stakeholders, including patients, providers, cancer centers, manufacturers, payors, health information technology vendors, and regulatory agencies. To provide guidance to these stakeholders regarding REMS challenges, the NCCN assembled a work group comprised of thought leaders from NCCN Member Institutions and other outside experts. The Work Group identified challenges across the REMS spectrum, including the areas of standardization, development and assessment of REMS programs, medication guides, provider knowledge and impact on prescribing, provider burden and compensation, and incorporation of REMS into clinical practice.

  1. Enhancing Lean Manufacturing Learning Experience through Hands-On Simulation

    ERIC Educational Resources Information Center

    Elbadawi, Isam; McWilliams, Douglas L.; Tetteh, Edem G.

    2010-01-01

    Finding appropriate interactive exercises to increase students' learning in technical topic courses is always challenging to educators. In this study, several paper plane hands-on simulation exercises were developed, used, and tested in a lean manufacturing course for beginning college students. A pretest and posttest was used to assess the…

  2. Distributive Distillation Enabled by Microchannel Process Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Ravi

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation formore » new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.« less

  3. Ares I-X Flight Test Development Challenges and Success Factors

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James

    2010-01-01

    The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that required creative thinking, risk taking, and a passion to succeed.

  4. 77 FR 16940 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ...: Fiberglass Boat Manufacturing Materials, Section 218.890, Subpart JJ: Miscellaneous Industrial Adhesives...: Fiberglass Boat Manufacturing Materials, Sections 218.891, 218.892, 218.894, Subpart JJ: Miscellaneous..., Section 219.890, Subpart JJ: Miscellaneous Industrial Adhesives, Section 219.900; effective September 14...

  5. Policies and Programs to Facilitate Access to Targeted Cancer Therapies in Thailand

    PubMed Central

    Sruamsiri, Rosarin; Ross-Degnan, Dennis; Lu, Christine Y.; Chaiyakunapruk, Nathorn; Wagner, Anita K.

    2015-01-01

    Background Increasing access to clinically beneficial targeted cancer medicines is a challenge in every country due to their high cost. We describe the interplay of innovative policies and programs involving multiple stakeholders to facilitate access to these medicines in Thailand, as well as the utilization of selected targeted therapies over time. Methods We selected two medicines on the 2013 Thai national list of essential medicines (NLEM) [letrozole and imatinib] and three unlisted medicines for the same indications [trastuzumab, nilotinib and dasatinib]. We created timelines of access policies and programs for these products based on scientific and grey literature. Using IMS Health sales data, we described the trajectories of sales volumes of the study medicines between January 2001 and December 2012. We compared estimated average numbers of patients treated before and after the implementation of policies and programs for each product. Results Different stakeholders implemented multiple interventions to increase access to the study medicines for different patient populations. During 2007–2009, the Thai Government created a special NLEM category with different coverage requirements for payers and issued compulsory licenses; payers negotiated prices with manufacturers and engaged in pooled procurement; pharmaceutical companies expanded patient assistance programs and lowered prices in different ways. Compared to before the interventions, estimated numbers of patients treated with each medicine increased significantly afterwards: for letrozole from 645 (95% CI 366–923) to 3683 (95% CI 2,748–4,618); for imatinib from 103 (95% CI 72–174) to 350 (95% CI 307–398); and for trastuzumab from 68 (95% CI 45–118) to 412 (95% CI 344–563). Conclusions Government, payers, and manufacturers implemented multi-pronged approaches to facilitate access to targeted cancer therapies for the Thai population, which differed by medicine. Routine monitoring is needed to assess clinical and economic impacts of these strategies in the health system. PMID:25798948

  6. Better vaccines for healthier life. Part II. Conference report of the DCVMN International 14th Annual General Meeting Hanoi, Vietnam.

    PubMed

    Pagliusi, Sonia; Tippoo, Patrick; Sivaramakrishnan, Venkatraman; Nguyen, Thuvan

    2014-11-12

    New vaccines are required to meet the public health challenges of the next generation and many unmet global health needs can be addressed by developing countries vaccine manufacturers such as lower-cost vaccines based on single-dose, thermostable formulations, efficacious in children with compromised gastrointestinal tracts. GMP compliance is also a challenge, as sometimes innovation and clinical development focus is not accompanied by command of scale-up and quality assurance for large volume manufacturing and supply. Identifying and addressing such challenges, beyond cost and cold-chain space, including safety considerations and health worker behavior, regulatory alliances and harmonization to foster access to vaccines, will help countries to ensure sustainable immunization. There needs to be continuous and close management of the global vaccine supply both at national and international levels, requiring careful risk management, coordination and cooperation with manufacturers. Successful partnership models based on sharing a common goal, mutual respect and good communication were discussed among stakeholders. Copyright © 2014. Published by Elsevier Ltd.. All rights reserved.

  7. Dense Nonaqueous Phase Liquids at Former Manufactured Gas Plants: Challenges to Modeling and Remediation

    PubMed Central

    Birak, P.S.; Miller, C.T.

    2008-01-01

    The remediation of dense non-aqueous phase liquids (DNAPLs) in porous media continues to be one of the most challenging problems facing environmental scientists and engineers. Of all the environmentally relevant DNAPLs, tars in the subsurface at former manufactured gas plants (FMGP’s) pose one of the biggest challenges due to their complex chemical composition and tendency to alter wettability. To further our understanding of these complex materials, we consulted historic documentation to evaluate the impact of gas manufacturing on the composition and physicochemical nature of the resulting tars. In the recent literature, most work to date has been focused in a relatively narrow portion of the expected range of tar materials, which has yielded a bias toward samples of relatively low viscosity and density. In this work, we consider the dissolution and movement of tars in the subsurface, models used to predict these phenomena, and approaches used for remediation. We also explore the open issues and detail important gaps in our fundamental understanding of these extraordinarily complex systems that must be resolved to reach a mature level of understanding. PMID:19176266

  8. Wafer-shape metrics based foundry lithography

    NASA Astrophysics Data System (ADS)

    Kim, Sungtae; Liang, Frida; Mileham, Jeffrey; Tsai, Damon; Bouche, Eric; Lee, Sean; Huang, Albert; Hua, C. F.; Wei, Ming Sheng

    2017-03-01

    As device shrink, there are many difficulties with process integration and device yield. Lithography process control is expected to be a major challenge due to tighter overlay and focus control requirement. The understanding and control of stresses accumulated during device fabrication has becoming more critical at advanced technology nodes. Within-wafer stress variations cause local wafer distortions which in turn present challenges for managing overlay and depth of focus during lithography. A novel technique for measuring distortion is Coherent Gradient Sensing (CGS) interferometry, which is capable of generating a high-density distortion data set of the full wafer within a time frame suitable for a high volume manufacturing (HVM) environment. In this paper, we describe the adoption of CGS (Coherent Gradient Sensing) interferometry into high volume foundry manufacturing to overcome these challenges. Leveraging this high density 3D metrology, we characterized its In-plane distortion as well as its topography capabilities applied to the full flow of an advanced foundry manufacturing. Case studies are presented that summarize the use of CGS data to reveal correlations between in-plane distortion and overlay variation as well as between topography and device yield.

  9. Flexible Biomanufacturing Processes that Address the Needs of the Future.

    PubMed

    Diel, Bernhard; Manzke, Christian; Peuker, Thorsten

    2014-01-01

    : As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry's emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including-but not limited to-vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.

  10. Advanced Material Strategies for Next-Generation Additive Manufacturing

    PubMed Central

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  11. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    PubMed

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  12. Presidential Green Chemistry Challenge: 1996 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1996 award winner, Dow Chemical Company, developed a process to manufacture polystyrene foam sheet packaging that uses carbon dioxide (CO2) as a blowing agent, eliminating CFC-12 and HCFC-22.

  13. Department of Energy. Jobs and Innovation Accelerator Challenge (JIAC) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Jon

    1.1 NCMS Digital Manufacturing Initiative The people and businesses of Southeast Michigan have long been known for their prowess in the automotive industry, a sector built on the innovation of the assembly line and the rise of mass production as a manufacturing model. Just as the assembly line was the key to a strong manufacturing base a century ago, a digital manufacturing infrastructure is critical to the future of industry. Economic uncertainty has slowed innovation, but access to cutting-edge tools such as high performance modeling, simulation and analysis (MSA) provides a bold path forward, ensuring global competitiveness and transforming ourmore » manufacturing processes. Digital manufacturing is, essentially, the virtualization of processes that had been physical. Many larger manufacturers have embraced it, but the majority of small and medium-sized manufacturers (SMMs) have not. The Digital Manufacturing Initiative is a bold, national effort by the National Center for Manufacturing Sciences (NCMS) to put manufacturing innovation on fast forward, and bring the future of industry into the present. SMMs need a broader array of access options, training, support, and guidance. Providing access will supercharge any organization with tomorrow’s tools, as positively disruptive and potential-laden as the assembly line once was. Sustainable success in the State of Michigan requires the development of foundational infrastructure, the exploration of initial inroads with various manufacturers of all sizes, and the initiation of a prototype engagement mechanism applicable for other future regional efforts. To accomplish this NCMS leveraged complimen-tary State and Federal funding opportunities (shown in Figure 1) along with a coupled voice of industry market research study. A brief summary of each opportunity is found in Appendix A. At the heart of the Michigan effort was the development of an access portal (www.doitindigital.com) and the development of partnerships with local large manufacturers (OEMs) who could provide pull to encourage SMMs (current and future suppliers) to participate. Central to this entire effort was the opportunity that this Final Report documents corresponding to the specific tasks associated with the U.S. Department of Energy (DOE) funded component of the InnoState Jobs Innovation Accelerator Challenge (JIAC) Program.« less

  14. Communications, Immunization, and Polio Vaccines: Lessons From a Global Perspective on Generating Political Will, Informing Decision-Making and Planning, and Engaging Local Support.

    PubMed

    Menning, Lisa; Garg, Gaurav; Pokharel, Deepa; Thrush, Elizabeth; Farrell, Margaret; Kodio, Frederic Kunjbe; Veira, Chantal Laroche; Wanyoike, Sarah; Malik, Suleman; Patel, Manish; Rosenbauer, Oliver

    2017-07-01

    The requirements under objective 2 of the Polio Eradication and Endgame Strategic Plan 2013-2018-to introduce at least 1 dose of inactivated poliomyelitis vaccine (IPV); withdraw oral poliomyelitis vaccine (OPV), starting with the type 2 component; and strengthen routine immunization programs-set an ambitious series of targets for countries. Effective implementation of IPV introduction and the switch from trivalent OPV (containing types 1, 2, and 3 poliovirus) to bivalent OPV (containing types 1 and 3 poliovirus) called for intense global communications and coordination on an unprecedented scale from 2014 to 2016, involving global public health technical agencies and donors, vaccine manufacturers, World Health Organization and United Nations Children's Fund regional offices, and national governments. At the outset, the new program requirements were perceived as challenging to communicate, difficult to understand, unrealistic in terms of timelines, and potentially infeasible for logistical implementation. In this context, a number of core areas of work for communications were established: (1) generating awareness and political commitment via global communications and advocacy; (2) informing national decision-making, planning, and implementation; and (3) in-country program communications and capacity building, to ensure acceptance of IPV and continued uptake of OPV. Central to the communications function in driving progress for objective 2 was its ability to generate a meaningful policy dialogue about polio vaccines and routine immunization at multiple levels. This included efforts to facilitate stakeholder engagement and ownership, strengthen coordination at all levels, and ensure an iterative process of feedback and learning. This article provides an overview of the global efforts and challenges in successfully implementing the communications activities to support objective 2. Lessons from the achievements by countries and partners will likely be drawn upon when all OPVs are completely withdrawn after polio eradication, but also may offer a useful model for other global health initiatives. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Bio-Manufacturing to market pilot project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressen, Tiffaney

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companiesmore » and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.« less

  16. Cloud manufacturing: from concept to practice

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; Zhao, Chun; Chai, Xudong; Zhao, Xinpei

    2015-02-01

    The concept of cloud manufacturing is emerging as a new promising manufacturing paradigm, as well as a business model, which is reshaping the service-oriented, highly collaborative, knowledge-intensive and eco-efficient manufacturing industry. However, the basic concepts about cloud manufacturing are still in discussion. Both academia and industry will need to have a commonly accepted definition of cloud manufacturing, as well as further guidance and recommendations on how to develop and implement cloud manufacturing. In this paper, we review some of the research work and clarify some fundamental terminologies in this field. Further, we developed a cloud manufacturing systems which may serve as an application example. From a systematic and practical perspective, the key requirements of cloud manufacturing platforms are investigated, and then we propose a cloud manufacturing platform prototype, MfgCloud. Finally, a public cloud manufacturing system for small- and medium-sized enterprises (SME) is presented. This paper presents a new perspective for cloud manufacturing, as well as a cloud-to-ground solution. The integrated solution proposed in this paper, including the terminology, MfgCloud, and applications, can push forward this new paradigm from concept to practice.

  17. Implementation of random contact hole design with CPL mask by using IML technology

    NASA Astrophysics Data System (ADS)

    Hsu, Michael; Van Den Broeke, Doug; Hsu, Stephen; Chen, J. Fung; Shi, Xuelong; Corcoran, Noel; Yu, Linda

    2005-11-01

    The contact hole imaging is a very challenge task for the optical lithography process during IC manufacturing. Lots of RETs were proposed to improve the contrast of small opening hole. Scattering Bar (SB) OPC, together with optimized illumination, is no doubt one of the critical enablers for low k1 contact imaging. In this study, an effective model-based SB OPC based on IML technology is implemented for contact layer at 90nm, 65nm, and 45nm nodes. For our full-chip implementation flow, the first step is to determine the critical design area and then to proceed with NA and illumination optimization. Then, we selected the best NA in combination with optimum illumination via a Diffraction Optical Element (DOE). With optimized illumination, it is now possible to construct an interference map for the full-chip mask pattern. Utilizing the interference map, the model-based SB OPC is performed. Next, model OPC can be applied with the presence of SB for the entire chip. It is important to note that, for patterning at k1 near 0.35 or below, it may be necessary to include 3D mask effects with a high NA OPC model. With enhanced DOF by IML and immersion process, the low k1 production worthy contact process is feasible.

  18. Friction Stir Additive Manufacturing: Route to High Structural Performance

    NASA Astrophysics Data System (ADS)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  19. Recommendations for designing and conducting cold-fill hold challenge studies for acidified food products

    USDA-ARS?s Scientific Manuscript database

    A scheduled process developed for manufacture of acidified foods must be validated with data from existing literature or from a product-specific challenge study, either of which can establish both safety and shelf stability. The challenge study would evaluate the ability of a particular food product...

  20. A Tool for Investigating Asthma and COPD Exacerbations: A Newly Manufactured and Well Characterised GMP Wild-Type Human Rhinovirus for Use in the Human Viral Challenge Model

    PubMed Central

    Fullen, Daniel J.; Murray, Bryan; Mori, Julie; Catchpole, Andrew; Borley, Daryl W.; Murray, Edward J.; Balaratnam, Ganesh; Gilbert, Anthony; Mann, Alex; Hughes, Fiona; Lambkin-Williams, Rob

    2016-01-01

    Background Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose. Methods and Stock Development A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children’s Hospital, USA) was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London. Human Challenge and Conclusions In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics. Trial Registration ClinicalTrials.gov NCT02522832 PMID:27936016

  1. Implementation of environmentally compliant cleaning and insulation bonding for MNASA

    NASA Technical Reports Server (NTRS)

    Hutchens, Dale E.; Keen, Jill M.; Smith, Gary M.; Dillard, Terry W.; Deweese, C. Darrell; Lawson, Seth W.

    1995-01-01

    Historically, many subscale and full-scale rocket motors have employed environmentally and physiologically harmful chemicals during the manufacturing process. This program examines the synergy and interdependency between environmentally acceptable materials for solid rocket motor insulation applications, bonding, corrosion inhibiting, painting, priming, and cleaning, and then implements new materials and processes in subscale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of modified-NASA materials test motor (MNASA) components and identify alternate materials and/or processes following NASA Operational Environmental Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin, and insulation case bonding using ozone depleting chemical (ODC) compliant primers and adhesives.

  2. EVALUATION OF BARRIERS TO THE USE OF RADIATION-CURED COATINGS IN CAN MANUFACTURING

    EPA Science Inventory

    The report gives results of a study to investigate and identify the technical, educational, and economic barriers to the use and implementation of radiation-cured coatings in can manufacturing. The study is part of an EPA investigation of current industrial use and barriers to th...

  3. 75 FR 67623 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... amendments to its pharmaceutical manufacturing rules for approval into its SIP. These amendments consist of a... of this action? EPA is approving revisions to Illinois' pharmaceutical manufacturing rule for three... plan. * * * * * (c) * * * (186) On July 17, 2009, Illinois submitted amendments to its pharmaceutical...

  4. Computer Integrated Manufacturing. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a computer-integrated manufacturing program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  5. Advanced Manufacturing as an Online Case Study for Global Geography Education

    ERIC Educational Resources Information Center

    Glass, Michael R.; Kalafsky, Ronald V.; Drake, Dawn M.

    2013-01-01

    Advanced manufacturing continues to be an important sector for emerging and industrialized economies, therefore, remaining an important topic for economic geography education. This article describes a case study created for the Association of American Geographer's Center for Global Geography Education and its implementation. The international…

  6. 76 FR 14024 - Draft Guidance for Industry on Non-Penicillin Beta-Lactam Risk Assessment: A CGMP Framework...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... appropriate steps during the manufacturing process to prevent cross-contamination of finished pharmaceuticals... implementing appropriate steps during the manufacturing process to prevent cross-contamination of finished... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0104...

  7. Control Systems Engineering in Continuous Pharmaceutical Manufacturing May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Practical Framework: Implementing OEE Method in Manufacturing Process Environment

    NASA Astrophysics Data System (ADS)

    Maideen, N. C.; Sahudin, S.; Mohd Yahya, N. H.; Norliawati, A. O.

    2016-02-01

    Manufacturing process environment requires reliable machineries in order to be able to satisfy the market demand. Ideally, a reliable machine is expected to be operated and produce a quality product at its maximum designed capability. However, due to some reason, the machine usually unable to achieved the desired performance. Since the performance will affect the productivity of the system, a measurement technique should be applied. Overall Equipment Effectiveness (OEE) is a good method to measure the performance of the machine. The reliable result produced from OEE can then be used to propose a suitable corrective action. There are a lot of published paper mentioned about the purpose and benefit of OEE that covers what and why factors. However, the how factor not yet been revealed especially the implementation of OEE in manufacturing process environment. Thus, this paper presents a practical framework to implement OEE and a case study has been discussed to explain in detail each steps proposed. The proposed framework is beneficial to the engineer especially the beginner to start measure their machine performance and later improve the performance of the machine.

  10. Virtual environment assessment for laser-based vision surface profiling

    NASA Astrophysics Data System (ADS)

    ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.

    2015-03-01

    Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.

  11. 77 FR 37287 - Implementation of Statutory Amendments Requiring the Qualification of Manufacturers and Importers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ...The Alcohol and Tobacco Tax and Trade Bureau is making permanent, with some changes, temporary regulatory amendments promulgated in response to certain changes that the Children's Health Insurance Program Reauthorization Act of 2009 made to the tobacco provisions of the Internal Revenue Code of 1986. The regulatory amendments adopted in this final rule include permit and related requirements for manufacturers and importers of processed tobacco, requirements for manufacturers of tobacco products who also manufacture processed tobacco, and regulations related to the expansion of the definition of roll-your-own tobacco.

  12. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  13. Development of a Hybrid Deep Drawing Process to Reduce Springback of AHSS

    NASA Astrophysics Data System (ADS)

    Boskovic, Vladimir; Sommitsch, Christoph; Kicin, Mustafa

    2017-09-01

    In future, the steel manufacturers will strive for the implementation of Advanced High Strength Steels (AHSS) in the automotive industry to reduce mass and improve structural performance. A key challenge is the definition of optimal and cost effective processes as well as solutions to introduce complex steel products in cold forming. However, the application of these AHSS often leads to formability problems such as springback. One promising approach in order to minimize springback is the relaxation of stress through the targeted heating of materials in the radius area after the deep drawing process. In this study, experiments are conducted on a Dual Phase (DP) and TWining Induced Plasticity (TWIP) steel for the process feasibility study. This work analyses the influence of various heat treatment temperatures on the springback reduction of deep drawn AHSS.

  14. Overview of RFID technology and its applications in the food industry.

    PubMed

    Kumar, P; Reinitz, H W; Simunovic, J; Sandeep, K P; Franzon, P D

    2009-10-01

    Radio frequency identification (RFID) is an alternative technology with a potential to replace traditional universal product code (UPC) barcodes. RFID enables identification of an object from a distance without requiring a line of sight. RFID tags can also incorporate additional data such as details of product and manufacturer and can transmit measured environmental factors such as temperature and relative humidity. This article presents key concepts and terminology related to RFID technology and its applications in the food industry. Components and working principles of an RFID system are described. Numerous applications of RFID technology in the food industry (supply chain management, temperature monitoring of foods, and ensuring food safety) are discussed. Challenges in implementation of RFID technology are also discussed in terms of read range, read accuracy, nonuniform standards, cost, recycling issues, privacy, and security concerns.

  15. ATE accomplishes receiver specification testing with increased speed and throughput

    NASA Astrophysics Data System (ADS)

    Moser, S. A.

    1982-12-01

    The use of automatic test equipment (ATE) for receiver specifications testing can result in a 90-95% reduction of test time, with a corresponding reduction of labor costs due both to the reduction of personnel numbers and a simplification of tasks that permits less skilled personnel to be employed. These benefits free high-level technicians for more challenging system management assignments. Accuracy and repeatability also improve with the adoption of ATE, since no possibility of human error can be introduced into the readings that are taken by the system. A massive and expensive software design and development effort is identified as the most difficult aspect of ATE implementation, since programming is both time-consuming and labor intensive. An attempt is therefore made by system manufacturers to conduct an integrated development program for both ATE system hardware and software.

  16. Total Quality Management in Space Shuttle Main Engine manufacturing

    NASA Technical Reports Server (NTRS)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  17. Agile Electro-Mechanical Product Accelerator - Final Research Performance Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Brian

    2016-07-29

    NCDMM recognized the need to focus on the most efficient use of limited resources while ensuring compliance with regulations and minimizing the energy intensity and environmental impact of manufactured components. This was accomplished through the evaluation of current machining and processing practices, and their efficiencies, to further the sustainability of manufacturing as a whole. Additionally, the activities also identified, and furthered the implementation of new “best practices” within the southwestern Pennsylvania manufacturing sector.

  18. 40 CFR 63.708 - Implementation and enforcement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Magnetic Tape Manufacturing Operations § 63.708 Implementation and... §§ 63.701 and 63.703. (2) Approval of major alternatives to test methods under § 63.7(e)(2)(ii) and (f...

  19. Advanced manufacturing rules check (MRC) for fully automated assessment of complex reticle designs

    NASA Astrophysics Data System (ADS)

    Gladhill, R.; Aguilar, D.; Buck, P. D.; Dawkins, D.; Nolke, S.; Riddick, J.; Straub, J. A.

    2005-11-01

    Advanced electronic design automation (EDA) tools, with their simulation, modeling, design rule checking, and optical proximity correction capabilities, have facilitated the improvement of first pass wafer yields. While the data produced by these tools may have been processed for optimal wafer manufacturing, it is possible for the same data to be far from ideal for photomask manufacturing, particularly at lithography and inspection stages, resulting in production delays and increased costs. The same EDA tools used to produce the data can be used to detect potential problems for photomask manufacturing in the data. A production implementation of automated photomask manufacturing rule checking (MRC) is presented and discussed for various photomask lithography and inspection lines. This paper will focus on identifying data which may cause production delays at the mask inspection stage. It will be shown how photomask MRC can be used to discover data related problems prior to inspection, separating jobs which are likely to have problems at inspection from those which are not. Photomask MRC can also be used to identify geometries requiring adjustment of inspection parameters for optimal inspection, and to assist with any special handling or change of routing requirements. With this foreknowledge, steps can be taken to avoid production delays that increase manufacturing costs. Finally, the data flow implemented for MRC can be used as a platform for other photomask data preparation tasks.

  20. Impact of green supply chain management practices on firms' performance: an empirical study from the perspective of Pakistan.

    PubMed

    Khan, Syed Abdul Rehman; Qianli, Dong

    2017-07-01

    This article investigates the impact of five determinants of the green supply chain practices on organizational performance in the context of Pakistan manufacturing firms. A sample of 218 firms was collected from the manufacturing industry. The green supply chain practices were measured through five independent variables including green manufacturing, green purchasing, green information systems, cooperation with customers, and eco-design. By using exploratory factor and simultaneous regression analysis, the results indicate that except green purchasing, rests of the four independent variables have been found statistically significant to predict organizational performance. However, the eco-design of green practices followed by green information systems has revealed the greatest impact on organizational performance. Therefore, the managers of the manufacturing firms should not only implement eco-design in their supply chain but also concentrate on proper monitoring and implementation of green information systems to increase their firms' performance. A main contribution of this research from theoretical side is that it is possible to notice a negative effect of "green purchasing" towards organizational performance particularly in the scenario of Pakistan manufacturing industry. Another valuable result is that green purchasing is an important antecedent of firms economic performance in the US manufacturing firms (Green et al. 2012), although not significantly related to organizational performance in our study. In addition, we also discussed research limitations, areas for future research, and implications for practitioners.

  1. Engineering of mechanical manufacturing from the cradle to cradle

    NASA Astrophysics Data System (ADS)

    Peralta, M. E.; Aguayo, F.; Lama, J. R.

    2012-04-01

    The sustainability of manufacturing processes lies in industrial planning and productive activity. Industrial plants are characterized by the management of resource (inputs and outputs), processing and conversion processes, which usually are organized in a linear system. Good planning will optimize the manufacturing and promoting the quality of the industrial system. Cradle to Cradle is a new paradigm for engineering and sustainable manufacturing that integrates projects (industrial parks, manufacturing plants, systems and products) in a framework consistent with the environment, adapted to the society and technology and economically viable. To carry it out, we implement this paradigm in the MGE2 (Genomic Model of Eco-innovation and Eco-design), as a methodology for designing and developing products and manufacturing systems with an approach from the cradle to cradle.

  2. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    NASA Astrophysics Data System (ADS)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of advanced lightweight structures for new generation vehicles in the context of whole life performance parameters.

  3. The use of a direct manufacturing prosthetic socket system in a rural community in South Africa: A pilot study and lessons for future research.

    PubMed

    Ennion, Liezel; Johannesson, Anton; Rhoda, Anthea

    2017-10-01

    Challenges exist with the provision of appropriate mobility assistive devices in rural areas. The use of the direct manufacturing prosthetic socket system is a possible solution to these challenges. The objective of this study was to test and explore the clients' perspectives with the application of this device. Within a mixed-methods approach, a longitudinal sequential explanatory design was applied. The Orthotic and Prosthetic User's Survey was administered to explore the use of the direct manufacturing prosthetic socket system in terms of function, health-related quality of life and client satisfaction. A conveniently selected sample of 21 individuals who suffered a unilateral trans-tibial amputation was included. Data were collected at 1, 3 and 6 months post fitting, and two focus group discussions were also administered. Of the 21 participants recruited, 11 returned for follow up. Although participants reported favourably about the prosthesis, their scores were generally worse than the norms with regard to function and quality of life. Participants highlighted the need for improvement in the cosmetic appearance of the prosthesis. The direct manufacturing prosthetic socket system could be considered as an alternative technique of socket manufacturing for individuals living in rural areas due to the shorter manufacture time and promising initial results, but further research on this topic with a bigger sample is recommended. Clinical relevance The direct manufacturing prosthetic socket system may be considered as an alternative to the traditional prosthetic socket manufacturing technique used in South Africa. As this device requires only one visit and therefore decreased travel by the patients to the hospitals, it could be applicable to more amputees who cannot return to hospital post discharge.

  4. Critical challenges in ERP implementation: A qualitative case study in the Canadian oil and gas industry

    NASA Astrophysics Data System (ADS)

    Menon, Sreekumar A.

    This exploratory qualitative single-case study examines critical challenges encountered during ERP implementation based on individual perspectives in four project roles: senior leaders, project managers, project team members, and business users, all specifically in Canadian oil and gas industry. Data was collected by interviewing participants belonging to these categories, and by analyzing project documentation about ERP implementation. The organization for the case study was a leading multinational oil and gas company having a substantial presence in the energy sector in Canada. The study results were aligned with the six management questions regarding critical challenges in ERP: (a) circumstances to implement ERP, (b) benefits and process improvements achieved, (c) best practices implemented, (d) critical challenges encountered, (e) strategies and mitigating actions used, and (f) recommendations to improve future ERP implementations. The study results highlight six key findings. First, the study provided valid circumstances for implementing ERP systems. Second, the study underscored the importance of benefits and process improvements in ERP implementation. Third, the study highlighted that adoption of best practices is crucial for ERP Implementation. Fourth, the study found that critical challenges are encountered in ERP Implementation and are significant during ERP implementation. Fifth, the study found that strategies and mitigating actions can overcome challenges in ERP implementation. Finally, the study provided ten major recommendations on how to improve future ERP implementations.

  5. Exploring research priorities for the North American hardwood industry

    Treesearch

    David Brinberg; Earl Kline; Delton Alderman; Philip Araman; Ed Cesa; Steve Milauskas; Tom Walthousen; Jan Wiedenbeck

    2008-01-01

    With the increase of globalization, the North American hardwood industry is facing many challenges to remain competitive and sustainable, facing drastic changes in the areas of labor, land, manufacturing, markets and marketing, and supply chain. The hardwood industry is especially vulnerable, with the influx of foreign manufacturers and suppliers with greater natural...

  6. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    NASA Astrophysics Data System (ADS)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubenchik, A. M.

    2015-12-01

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this paper, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  7. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  8. Additive Manufacturing: Unlocking the Evolution of Energy Materials

    PubMed Central

    Zhakeyev, Adilet; Wang, Panfeng; Shu, Wenmiao; Wang, Huizhi

    2017-01-01

    Abstract The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near‐complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage. PMID:29051861

  9. Additive Manufacturing: Unlocking the Evolution of Energy Materials.

    PubMed

    Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin

    2017-10-01

    The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.

  10. Investment Incentives and the Implementation of the Framework Convention on Tobacco Control: Evidence from Zambia

    PubMed Central

    Drope, Jeffrey; Labonte, Ronald; Zulu, Richard; Goma, Fastone

    2016-01-01

    Purpose Policy misalignment across different sectors of government serves as one of the pivotal barriers to WHO Framework convention on Tobacco Control (FCTC) implementation. This paper examines the logic used by government officials to justify providing investment incentives to increase tobacco processing and manufacturing in the context of FCTC implementation in Zambia. Methods We conducted qualitative semi-structured interviews with key informants from government, civil society and intergovernmental economic organizations (n=23). We supplemented the interview data with an analysis of public documents pertaining to economic development policy in Zambia. Results We found gross misalignments between the policies of the economic sector and efforts to implement the provisions of the FCTC. Our interviews uncovered the rationale used by officials in the economic sector to justify providing economic incentives to bolster tobacco processing and manufacturing in Zambia: 1) tobacco is not consumed by Zambians/tobacco is an export commodity, 2) economic benefits outweigh health costs, and 3) tobacco consumption is a personal choice. Conclusions Much of the struggle Zambia has experienced implementing the FCTC can be attributed to misalignments between the economic and health sectors. Zambia’s development agenda seeks to bolster agricultural processing and manufacturing. Tobacco control proponents must understand and work within this context of economic development in order to foster productive strategies with those working on tobacco supply issues. These findings are broadly applicable to the global analysis on the barriers and facilitators of FCTC implementation. It is important that the Ministry of Health monitors the tobacco policy of other sectors and engages with these sectors to find ways of harmonizing FCTC implementation across sectors. PMID:26135987

  11. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  12. How Development and Manufacturing Will Need to Be Structured-Heads of Development/Manufacturing May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Nepveux, Kevin; Sherlock, Jon-Paul; Futran, Mauricio; Thien, Michael; Krumme, Markus

    2015-03-01

    Continuous manufacturing (CM) is a process technology that has been used in the chemical industry for large-scale mass production of chemicals in single-purpose plants with benefit for many years. Recent interest has been raised to expand CM into the low-volume, high-value pharmaceutical business with its unique requirements regarding readiness for human use and the required quality, supply chain, and liability constraints in this business context. Using a fairly abstract set of definitions, this paper derives technical consequences of CM in different scenarios along the development-launch-supply axis in different business models and how they compare to batch processes. Impact of CM on functions in development is discussed and several operational models suitable for originators and other business models are discussed and specific aspects of CM are deduced from CM's technical characteristics. Organizational structures of current operations typically can support CM implementations with just minor refinements if the CM technology is limited to single steps or small sequences (bin-to-bin approach) and if the appropriate technical skill set is available. In such cases, a small, dedicated group focused on CM is recommended. The manufacturing strategy, as centralized versus decentralized in light of CM processes, is discussed and the potential impact of significantly shortened supply lead times on the organization that runs these processes. The ultimate CM implementation may be seen by some as a totally integrated monolithic plant, one that unifies chemistry and pharmaceutical operations into one plant. The organization supporting this approach will have to reflect this change in scope and responsibility. The other extreme, admittedly futuristic at this point, would be a highly decentralized approach with multiple smaller hubs; this would require a new and different organizational structure. This processing approach would open up new opportunities for products that, because of stability constraints or individualization to patients, do not allow centralized manufacturing approaches at all. Again, the entire enterprise needs to be restructured accordingly. The situation of CM in an outsourced operation business model is discussed. Next steps for the industry are recommended. In summary, opportunistic implementation of isolated steps in existing portfolios can be implemented with minimal organizational changes; the availability of the appropriate skills is the determining factor. The implementation of more substantial sequences requires business processes that consider the portfolio, not just single products. Exploration and implementation of complete process chains with consequences for quality decisions do require appropriate organizational support. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Challenges of image placement and overlay at the 90-nm and 65-nm nodes

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.

    2003-05-01

    The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor supplier community and the manufacturers. INTERNATIONAL SE-MATECH has been leading and supporting efforts to investigate the impact of the tech-nology introduction. This paper examines the issue of manufacturing tolerances available for image placement on adjacent critical levels (overlay) at the 90nm and 65nm technol-ogy nodes. The allowable values from the 2001 release of the ITRS Roadmap are 32nm for the 90nm node, and 23nm for the 65nm node. Even the 130nm node has overlay requirements of only 46nm. Employing tolerances that can be predicted, the impact of existing production/processing tolerance accumulation can provide an indication of the challenges facing the manufacturer in the production of 90nm and 65nm Node devices.

  14. Additive manufacturing of materials: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performancemore » computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.« less

  15. Additive manufacturing of materials: Opportunities and challenges

    DOE PAGES

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; ...

    2015-11-01

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performancemore » computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.« less

  16. Exploding the Black Box: Personal Computing, the Notebook Battery Crisis, and Postindustrial Systems Thinking.

    PubMed

    Eisler, Matthew N

    Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.

  17. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  18. 78 FR 18415 - Connected Vehicle Reference Implementation Architecture Workshop; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... DEPARTMENT OF TRANSPORTATION Connected Vehicle Reference Implementation Architecture Workshop...) Intelligent Transportation System Joint Program Office (ITS JPO) will host a free Connected Vehicle Reference... manufacturing, developing, deploying, operating, or maintaining the connected [[Page 18416

  19. Bioprinting: an assessment based on manufacturing readiness levels.

    PubMed

    Wu, Changsheng; Wang, Ben; Zhang, Chuck; Wysk, Richard A; Chen, Yi-Wen

    2017-05-01

    Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions. Technology Readiness Level (TRL) is used to evaluate the maturity of a technology. This paper reviews recent advances in bioprinting following the MRL scheme and addresses corresponding MRL levels of engineering challenges and gaps associated with the translation of bioprinting from lab-bench experiments to ultimate full-scale manufacturing of tissues and organs. According to our step-by-step TRL and MRL assessment, after years of rigorous investigation by the biotechnology community, bioprinting is on the cusp of entering the translational phase where laboratory research practices can be scaled up into manufacturing products specifically designed for individual patients.

  20. Novel Epoxy Particulate Composites for Mitigation of Insect Residue Adhesion on Future Aircraft Surfaces

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Smith, Joseph G., Jr.; Gardner, John M.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2014-01-01

    Drag is reduced significantly for airflow over surfaces when laminar flow can be maintained over greater chord lengths, the distance from the leading edge of an airfoil.1 However, surface imperfections, such as chipped paint, scratches, and events that change topography on a microscopic scale can introduce airflow instabilities resulting in premature transition to turbulent flow.1 Although many of these surface imperfections can be avoided with proper maintenance, advanced materials, and advanced manufacturing practices, topographical surface anomalies arising during flight from insect impacts cannot be controlled and can influence laminar flow stability. Practical solutions to this operational challenge need to be developed for future aircraft to have full advantage of laminar flow designs that improve fuel efficiency.2 Researchers have investigated various methods to mitigate insect residue adhesion for decades.3 Although several techniques have demonstrated efficacy including mechanical scrapers, active liquid discharge systems, and sacrificial paper coatings, they have not been commercially implemented due to increased manufacturing and operational complexity, environmental impact, and weight penalties. Coatings offer a simple route for passive insect residue adhesion prevention without many of the challenges associated with maintenance of laminar flow.4 In our previous work, we determined that most commercially available materials were not effective at insect residue adhesion.5 We also identified improvements when both surface energy could be controlled by surface modifying agents and the topography could be altered through the use of micron-sized and nanometer-sized filler materials.6 In this work, these general principles were applied to an epoxy system to evaluate the behavior of the surface modifying agent, a fluorinated alkyl ether oligomer, on surface energy and insect residue adhesion properties.

  1. Autonomous Sensors for Large Scale Data Collection

    NASA Astrophysics Data System (ADS)

    Noto, J.; Kerr, R.; Riccobono, J.; Kapali, S.; Migliozzi, M. A.; Goenka, C.

    2017-12-01

    Presented here is a novel implementation of a "Doppler imager" which remotely measures winds and temperatures of the neutral background atmosphere at ionospheric altitudes of 87-300Km and possibly above. Incorporating both recent optical manufacturing developments, modern network awareness and the application of machine learning techniques for intelligent self-monitoring and data classification. This system achieves cost savings in manufacturing, deployment and lifetime operating costs. Deployed in both ground and space-based modalities, this cost-disruptive technology will allow computer models of, ionospheric variability and other space weather models to operate with higher precision. Other sensors can be folded into the data collection and analysis architecture easily creating autonomous virtual observatories. A prototype version of this sensor has recently been deployed in Trivandrum India for the Indian Government. This Doppler imager is capable of operation, even within the restricted CubeSat environment. The CubeSat bus offers a very challenging environment, even for small instruments. The lack of SWaP and the challenging thermal environment demand development of a new generation of instruments; the Doppler imager presented is well suited to this environment. Concurrent with this CubeSat development is the development and construction of ground based arrays of inexpensive sensors using the proposed technology. This instrument could be flown inexpensively on one or more CubeSats to provide valuable data to space weather forecasters and ionospheric scientists. Arrays of magnetometers have been deployed for the last 20 years [Alabi, 2005]. Other examples of ground based arrays include an array of white-light all sky imagers (THEMIS) deployed across Canada [Donovan et al., 2006], oceans sensors on buoys [McPhaden et al., 2010], and arrays of seismic sensors [Schweitzer et al., 2002]. A comparable array of Doppler imagers can be constructed and deployed on the ground, to compliment the CubeSat data.

  2. Separation and Conditioning of Mars Atmospheric Gases via TSA

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Space and planetary exploration almost always presents interesting and unusual engineering challenges. Separations engineering for chemical processes that are critical to humans working in space is no exception. The challenges are becoming clearer as we make the transition from concepts and planning to hardware development, and as we understand better the constraints and environments in which the processes must perform. The coming decade will see a robotic Mars exploration program that has recovered from recent setbacks and is building a knowledge and technology base for human exploration. One of the missions will carry a small chemical pilot plant for demonstrating the manufacture of rocket propellants and life support consumables from the low-pressure (0.01 atm) Martian atmosphere. By manufacturing and storing the fuel and consumables needed for human-return missions in situ, launch mass and landed mass are reduced by tons and missions become far less expensive. The front-end to the pilot plant is a solid-state atmosphere acquisition and separation unit based on temperature-swing adsorption (TSA). The unit produces purified and pressurized (to 1.0 atm) carbon dioxide to downstream reactors that will make methane and oxygen. The unit also produces a nitrogen-argon mixture as a valuable by-product for life support, inflatable structures, and propellant pressurization. With nighttime temperatures falling to -100 degrees C, power availability restricted to a few watts, and flawless operation critical to success, the dusty Martian surface is a difficult place to operate a remote plant. This talk will focus on how this TSA separation process is designed and implemented for this application, and how it might be used in the more distant future for human exploration.

  3. LAMP Whys? LAMP Wise! A Practical Guide to the Lansing Area Manufacturing Partnership.

    ERIC Educational Resources Information Center

    MacAllum, Keith; McDonald, Deanne; Johnson, Amy Bell

    This document profiles the Lansing Area Manufacturing Partnership (LAMP), which is a model school-to-career initiative featuring an innovative integrated, employer-driven curriculum that was designed, developed, and implemented through the joint efforts of the Ingham Intermediate School District in Lansing, Michigan, the United Auto Workers (UAW),…

  4. 40 CFR 1054.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-IGNITION ENGINES AND EQUIPMENT Emission Standards and Related Requirements § 1054.145 Are there interim... Phase 3 implementation for engine manufacturers. Small-volume engine manufacturers may delay complying... II engines and until 2014 for Class I engines. The running loss standards in § 1054.112 also do not...

  5. Knowledge Acquisition at Work. IEE Brief Number 2.

    ERIC Educational Resources Information Center

    Scribner, Sylvia; Sachs, Patricia

    An exploratory investigation attempted to determine how learning at work actually takes place and in what ways learning on the job differs from classroom learning. The study was based on extensive observations and interviews over a 5-year period at two manufacturing plants that implemented a computer-based system known as Manufacturing Resource…

  6. EVALUATION OF BARRIERS TO THE USE OF RADIATION-CURED AND HOT MELT COATINGS IN COATED AND LAMINATED SUBSTRATE MANUFACTURING

    EPA Science Inventory

    The report gives results of a study to investigate and identify the technical, educational, and economic barriers to the use and implementation of radiation-cured and hot melt coatings in coated and laminated substrate manufacturing. (NOTE: In support of EPA's Source Reduction Re...

  7. 76 FR 29180 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Control of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... regulation to control NO X emissions from Portland cement kilns. Portland cement manufacturing is an energy... Pa. Code) Chapter 145, Subchapter C (Emissions of NO X from Cement Manufacturing), for Portland... Portland Cement Kilns AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is...

  8. Proposal of a Methodology for Implementing a Service-Oriented Architecture in Distributed Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Medina, I.; Garcia-Dominguez, A.; Aguayo, F.; Sevilla, L.; Marcos, M.

    2009-11-01

    As envisioned by Intelligent Manufacturing Systems (IMS), Next Generation Manufacturing Systems (NGMS) will satisfy the needs of an increasingly fast-paced and demanding market by dynamically integrating systems from inside and outside the manufacturing firm itself into a so-called extended enterprise. However, organizing these systems to ensure the maximum flexibility and interoperability with those from other organizations is difficult. Additionally, a defect in the system would have a great impact: it would affect not only its owner, but also its partners. For these reasons, we argue that a service-oriented architecture (SOA) would be a good candidate. It should be designed following a methodology where services play a central role, instead of being an implementation detail. In order for the architecture to be reliable enough as a whole, the methodology will need to help find errors before they arise in a production environment. In this paper we propose using SOA-specific testing techniques, compare some of the existing methodologies and outline several extensions upon one of them to integrate testing techniques.

  9. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with less hands-on labor needed for processing and troubleshooting.

  10. Constructing the informatics and information technology foundations of a medical device evaluation system: a report from the FDA unique device identifier demonstration.

    PubMed

    Drozda, Joseph P; Roach, James; Forsyth, Thomas; Helmering, Paul; Dummitt, Benjamin; Tcheng, James E

    2018-02-01

    The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches that have increased decision velocity and reduced associated costs. This paper will summarize recent SLS Program accomplishments, as well as the challenges and opportunities ahead for the most powerful and capable launch vehicle in history.

  12. Reformulating partially hydrogenated vegetable oils to maximise health gains in India: is it feasible and will it meet consumer demand?

    PubMed Central

    2013-01-01

    Background The consumption of partially hydrogenated vegetable oils (PHVOs) high in trans fat is associated with an increased risk of cardiovascular disease and other non-communicable diseases. In response to high intakes of PHVOs, the Indian government has proposed regulation to set limits on the amount of trans fat permissible in PHVOs. Global recommendations are to replace PHVOs with polyunsaturated fatty acids (PUFAs) in order to optimise health benefits; however, little is known about the practicalities of implementation in low-income settings. The aim of this study was to examine the technical and economic feasibility of reducing trans fat in PHVOs and reformulating it using healthier fats. Methods Thirteen semi-structured interviews were conducted with manufacturers and technical experts of PHVOs in India. Data were open-coded and organised according to key themes. Results Interviewees indicated that reformulating PHVOs was both economically and technically feasible provided that trans fat regulation takes account of the food technology challenges associated with product reformulation. However, there will be challenges in maintaining the physical properties that consumers prefer while reducing the trans fat in PHVOs. The availability of input oils was not seen to be a problem because of the low cost and high availability of imported palm oil, which was the input oil of choice for industry. Most interviewees were not concerned about the potential increase in saturated fat associated with increased use of palm oil and were not planning to use PUFAs in product reformulation. Interviewees indicated that many smaller manufacturers would not have sufficient capacity to reformulate products to reduce trans fat. Conclusions Reformulating PHVOs to reduce trans fat in India is feasible; however, a collision course exists where the public health goal to replace PHVOs with PUFA are opposed to the goals of industry to produce a cheap alternative product that meets consumer preferences. Ensuring that product reformulation is done in a way that maximises health benefits will require shifts in knowledge and subsequent demand of products, decreased reliance on palm oil, investment in research and development and increased capacity for smaller manufacturers. PMID:24308642

  13. Reformulating partially hydrogenated vegetable oils to maximise health gains in India: is it feasible and will it meet consumer demand?

    PubMed

    Downs, Shauna M; Gupta, Vidhu; Ghosh-Jerath, Suparna; Lock, Karen; Thow, Anne Marie; Singh, Archna

    2013-12-05

    The consumption of partially hydrogenated vegetable oils (PHVOs) high in trans fat is associated with an increased risk of cardiovascular disease and other non-communicable diseases. In response to high intakes of PHVOs, the Indian government has proposed regulation to set limits on the amount of trans fat permissible in PHVOs. Global recommendations are to replace PHVOs with polyunsaturated fatty acids (PUFAs) in order to optimise health benefits; however, little is known about the practicalities of implementation in low-income settings. The aim of this study was to examine the technical and economic feasibility of reducing trans fat in PHVOs and reformulating it using healthier fats. Thirteen semi-structured interviews were conducted with manufacturers and technical experts of PHVOs in India. Data were open-coded and organised according to key themes. Interviewees indicated that reformulating PHVOs was both economically and technically feasible provided that trans fat regulation takes account of the food technology challenges associated with product reformulation. However, there will be challenges in maintaining the physical properties that consumers prefer while reducing the trans fat in PHVOs. The availability of input oils was not seen to be a problem because of the low cost and high availability of imported palm oil, which was the input oil of choice for industry. Most interviewees were not concerned about the potential increase in saturated fat associated with increased use of palm oil and were not planning to use PUFAs in product reformulation. Interviewees indicated that many smaller manufacturers would not have sufficient capacity to reformulate products to reduce trans fat. Reformulating PHVOs to reduce trans fat in India is feasible; however, a collision course exists where the public health goal to replace PHVOs with PUFA are opposed to the goals of industry to produce a cheap alternative product that meets consumer preferences. Ensuring that product reformulation is done in a way that maximises health benefits will require shifts in knowledge and subsequent demand of products, decreased reliance on palm oil, investment in research and development and increased capacity for smaller manufacturers.

  14. Code of ethics for the national pharmaceutical system: Codifying and compilation

    PubMed Central

    Salari, Pooneh; Namazi, Hamidreza; Abdollahi, Mohammad; Khansari, Fatemeh; Nikfar, Shekoufeh; Larijani, Bagher; Araminia, Behin

    2013-01-01

    Pharmacists as one of health-care providers face ethical issues in terms of pharmaceutical care, relationship with patients and cooperation with the health-care team. Other than pharmacy, there are pharmaceutical companies in various fields of manufacturing, importing or distributing that have their own ethical issues. Therefore, pharmacy practice is vulnerable to ethical challenges and needs special code of conducts. On feeling the need, based on a shared project between experts of the ethics from relevant research centers, all the needs were fully recognized and then specified code of conduct for each was written. The code of conduct was subject to comments of all experts involved in the pharmaceutical sector and thus criticized in several meetings. The prepared code of conduct is comprised of professional code of ethics for pharmacists, ethics guideline for pharmaceutical manufacturers, ethics guideline for pharmaceutical importers, ethics guideline for pharmaceutical distributors, and ethics guideline for policy makers. The document was compiled based on the principles of bioethics and professionalism. The compiling the code of ethics for the national pharmaceutical system is the first step in implementing ethics in pharmacy practice and further attempts into teaching the professionalism and the ethical code as the necessary and complementary effort are highly recommended. PMID:24174954

  15. Feature based Weld-Deposition for Additive Manufacturing of Complex Shapes

    NASA Astrophysics Data System (ADS)

    Panchagnula, Jayaprakash Sharma; Simhambhatla, Suryakumar

    2018-06-01

    Fabricating functional metal parts using Additive Manufacturing (AM) is a leading trend. However, realizing overhanging features has been a challenge due to the lack of support mechanism for metals. Powder-bed fusion techniques like, Selective Laser Sintering (SLS) employ easily-breakable-scaffolds made of the same material to realize the overhangs. However, the same approach is not extendible to deposition processes like laser or arc based direct energy deposition processes. Although it is possible to realize small overhangs by exploiting the inherent overhanging capability of the process or by blinding some small features like holes, the same cannot be extended for more complex geometries. The current work presents a novel approach for realizing complex overhanging features without the need of support structures. This is possible by using higher order kinematics and suitably aligning the overhang with the deposition direction. Feature based non-uniform slicing and non-uniform area-filling are some vital concepts required in realizing the same and are briefly discussed here. This method can be used to fabricate and/or repair fully dense and functional components for various engineering applications. Although this approach has been implemented for weld-deposition based system, the same can be extended to any other direct energy deposition processes also.

  16. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  17. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  18. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    PubMed

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel double patterning approach for 30nm dense holes

    NASA Astrophysics Data System (ADS)

    Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven

    2011-04-01

    Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.

  20. Sceening, down selection, and implementation of environmentally compliant cleaning and insulation bonding for MNASA

    NASA Astrophysics Data System (ADS)

    Keen, Jill M.; Hutchens, D. E.; Smith, G. M.; Dillard, T. W.

    1994-06-01

    MNASA, a quarter-scale space shuttle solid rocket motor, has historically been processed using environmentally and physiologically harmful chemicals. This program draws from previous testing done in support of full-scale manufacturing and examines the synergy and interdependency between environmentally acceptable materials for Solid Rocket Motor insulation applications, bonding, corrosion inhibiting, painting, priming and cleaning; and then implements new materials and processes in sub-scale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of MNASA components and identify alternate materials and/or processes following NASA Operational Environment Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin and insulation case bonding using ODC compliant primers and adhesives.

  1. Advanced Space Flight and Environmental Concerns

    NASA Technical Reports Server (NTRS)

    Whitaker, A.

    2001-01-01

    The aerospace industry has conquered numerous environmental challenges during the last decade. The aerospace industry of today has evolved due in part to the environmental challenges, becoming stronger, more robust, learning to push the limits of technology, materials and manufacturing, and performing cutting edge engineering.

  2. Towards a commercial process for the manufacture of genetically modified T cells for therapy

    PubMed Central

    Kaiser, A D; Assenmacher, M; Schröder, B; Meyer, M; Orentas, R; Bethke, U; Dropulic, B

    2015-01-01

    The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital. PMID:25613483

  3. Contamination during production of heater-cooler units by Mycobacterium chimaera potential cause for invasive cardiovascular infections: results of an outbreak investigation in Germany, April 2015 to February 2016.

    PubMed

    Haller, Sebastian; Höller, Christiane; Jacobshagen, Anja; Hamouda, Osamah; Abu Sin, Muna; Monnet, Dominique L; Plachouras, Diamantis; Eckmanns, Tim

    2016-04-28

    Invasive infections with Mycobacterium chimaera were reported in patients with previous open chest surgery and exposure to contaminated heater-cooler units (HCUs). We present results of the surveillance of clinical cases and of contaminated HCUs as well as environmental investigations in Germany up until February 2016. Clinical infections occurred in five male German cases over 50 years of age (range 53-80). Cases had been exposed to HCUs from one single manufacturer during open chest surgery up to five years prior to onset of symptoms. During environmental investigations, M. chimaera was detected in samples from used HCUs from three different countries and samples from new HCUs as well as in the environment at the manufacturing site of one manufacturer in Germany. Our investigation suggests that at least some of the M. chimaera infections may have been caused by contamination of HCUs at manufacturing site. We recommend that until sustainable measures for safe use of HCUs in operation theatres are implemented, users continue to adhere to instructions for use of HCUs and Field Safety Notices issued by the manufacturer, implement local monitoring for bacterial contamination and continuously check the websites of national and European authorities for current recommendations for the safe operation of HCUs.

  4. Applying Value Stream Mapping Technique for Production Improvement in a Manufacturing Company: A Case Study

    NASA Astrophysics Data System (ADS)

    Jeyaraj, K. L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S. G.

    2013-01-01

    The purpose of this paper is to explain how value stream mapping (VSM) is helpful in lean implementation and to develop the road map to tackle improvement areas to bridge the gap between the existing state and the proposed state of a manufacturing firm. Through this case study, the existing stage of manufacturing is mapped with the help of VSM process symbols and the biggest improvement areas like excessive TAKT time, production, and lead time are identified. Some modifications in current state map are suggested and with these modifications future state map is prepared. Further TAKT time is calculated to set the pace of production processes. This paper compares the current state and future state of a manufacturing firm and witnessed 20 % reduction in TAKT time, 22.5 % reduction in processing time, 4.8 % reduction in lead time, 20 % improvement in production, 9 % improvement in machine utilization, 7 % improvement in man power utilization, objective improvement in workers skill level, and no change in the product and semi finished product inventory level. The findings are limited due to the focused nature of the case study. This case study shows that VSM is a powerful tool for lean implementation and allows the industry to understand and continuously improve towards lean manufacturing.

  5. Consumer ring count and grain texture preferences of selected eastern United States hardwoods

    Treesearch

    Delton Alderman; Matthew Bumgardner; Scott Bowe; David Brinberg

    2008-01-01

    Historically, eastern hardwoods have been a staple of forest products production. However, hardwood producers are now faced with serious challenges from substitutable products, such as imports of foreign species, utilization of foreign species in overseas manufacture (e.g., case goods, etc.), and composite-based materials that are imported or manufactured here in the...

  6. Reusing Old Manufacturing Buildings

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  7. A University Engagement Model for Achieving Technology Adoption and Performance Improvement Impacts in Healthcare, Manufacturing, and Government

    ERIC Educational Resources Information Center

    McKinnis, David R.; Sloan, Mary Anne; Snow, L. David; Garimella, Suresh V.

    2014-01-01

    The Purdue Technical Assistance Program (TAP) offers a model of university engagement and service that is achieving technology adoption and performance improvement impacts in healthcare, manufacturing, government, and other sectors. The TAP model focuses on understanding and meeting the changing and challenging needs of those served, always…

  8. U.S. Offshore Wind Manufacturing and Supply Chain Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  9. Primary utilization of birch

    Treesearch

    Henry W. Saunders

    1969-01-01

    From an industry point-of-view, procurement of raw material and primary manufacture present problems today and challenges for tomorrow. So that you may become more familiar with the white birch industry and more specifically with Saunders Brothers, I will briefly explain some of the products we manufacture and some of the methods we use to make them. In some ways, we...

  10. Practical Education Support to Foster Engineers at Manufacturing and Engineering Design Center in Muroran Institute of Technology

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki

    To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.

  11. ANSI/AIAA S-081A, Pressure Vessel Standards Implementation Guidelines

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.

    2009-01-01

    The stress rupture specification for Composite Overwrapped Pressure Vessels (COPV) is discussed. The composite shell of the COPV shall be designed to meet the design life considering the time it is under sustained load. A Mechcanical Damage Control Plan (MDCP) shall be created and implemented that assures the COPV will not fail due to mechanical damage due to manufacturing, testing, shipping, installation, or flight. Proven processes and procedures for fabrication and repair shall be used to preclude damage or material degradation during material processing, manufacturing operations, and refurbushment.Selected NDI techniques for the liner and/or boss(es) shall be performed before overwrapping with composite. When visual inspection reveals mechanical damage or defects exceeding manufacturing specification levels (and standard repair procedures), the damaged COPV shall be submitted to a material review board (MRB) for disposition. Every COPV shall be subjected to visual and other non-destructive inspection (NDI), per the inspection plan.

  12. Tissue engineering and regenerative medicine: manufacturing challenges.

    PubMed

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.

  13. Alcoa North American Extrusions Implements Energy Use Assessments at Multiple Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2001-08-01

    This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

  14. Component, Context, and Manufacturing Model Library (C2M2L)

    DTIC Science & Technology

    2012-11-01

    123 5.1 MML Population and Web Service Interface...104 Table 41. Relevant Questions with Associated Web Services...the models, and implementing web services that provide semantically aware programmatic access to the models, including implementing the MS&T

  15. Safety, immunogenicity and protective efficacy in mice of a new cell-cultured Lister smallpox vaccine candidate.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Meignier, Bernard; Garin, Daniel; Crance, Jean-Marc

    2007-11-28

    It is now difficult to manufacture the first-generation smallpox vaccine, as the process could not comply with current safety and manufacturing regulations. In this study, a candidate non-clonal second-generation smallpox vaccine developed by Sanofi-Pasteur from the Lister strain has been assessed using a cowpox virus challenge in mice. We have observed similar safety, immunogenicity and protection (from disease and death) after a short or long interval following vaccination, as well as similar virus clearance post-challenge, with the second-generation smallpox vaccine candidate as compared to the traditional vaccine used as a benchmark.

  16. Space Manufacturing: The Next Great Challenge

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.

    1998-01-01

    Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.

  17. Biochemical quality of the pharmaceutically licensed plasma OctaplasLG after implementation of a novel prion protein (PrPSc) removal technology and reduction of the solvent/detergent (S/D) process time.

    PubMed

    Heger, A; Svae, T-E; Neisser-Svae, A; Jordan, S; Behizad, M; Römisch, J

    2009-10-01

    A new chromatographic step for the selective binding of pathological prion proteins (PrP(Sc)) to an affinity ligand, developed and optimized for PrP(Sc) capture and attached to synthetic resin particles (PRDT, USA; ProMetic BioSciences Ltd, Isle of Man, UK) was implemented into the manufacturing process of the solvent/detergent (S/D) treated biopharmaceutical quality plasma Octaplas. Pilot batches of Octaplas with the implemented chromatographic step [labelled as OctaplasLG (ligand gel)] were manufactured by Octapharma PPGmbH, Vienna, Austria. The biochemical quality was compared directly after manufacturing as well as after 18 months storage. All samples were tested on global coagulation parameters, fibrinogen levels, activities of coagulation factors and protease inhibitors, ADAMTS13 levels, as well as markers of activated coagulation and fibrinolysis. In addition, von Willebrand factor multimeric analysis was performed. The incorporation of this novel chromatography into the large-scale routine manufacturing process was shown to be technically feasible and the performance of the column was assessed to be excellent. The biochemical studies showed that Octaplas and OctaplasLG produced without and with the new column, respectively, demonstrate an identical biochemical quality. OctaplasLG remained stable over a period of 18 months stored frozen. A parallel reduction of the S/D virus inactivation step from 4-4.5 to 1-1.5 h led to significantly higher activities of plasmin inhibitor. The studies confirmed that the affinity ligand chromatography under the developed conditions can be introduced into the Octaplas manufacturing process, as a mean to reduce potentially present PrP(Sc), without hampering the proven quality of this product.

  18. [Requirements for CE-marking of apps and wearables].

    PubMed

    Berensmann, Michael; Gratzfeld, Markus

    2018-03-01

    Depending on the intended use, apps and wearables can be medical devices. In such cases, the manufacturer has to provide evidence that the requirements stated in directive 93/42/EWG are fulfilled. Depending on the classification of the medical device, several so-called conformity assessment procedures are possible. Once the conformity assessment procedure has been finished successfully, the manufacturer attaches the CE-marking to the product. This assures that all requirements of the directive have been fulfilled and the manufacturer is therefore authorized to put the product onto the market in all member states of the European union. In this article, the possible and practical conformity assessment procedures for apps and wearables are described and their implementation is outlined.For medical devices with sufficiently high-risk classification, the manufacturer has to involve a Notified Body. For the conformity assessment procedure according to annex II, the manufacturer implements a full quality management system and compiles technical documentation. These are supervised and evaluated by Notified Body audits. Especially for startups, it is important for the development of apps and wearables to implement a quality management system early and to fulfill the regulatory requirements, for example, related to the software life-cycle model. This also includes considering accompanying processes during development like risk management, usability engineering, and clinical evaluation.Additionally, it should be pointed out, that according to the new medical device regulation almost all apps will fall at least into class IIa. Thus, the involvement of a Notified Body in the related conformity assessment procedures would be required. Apps that have already been put onto the market as class I devices, and are now upgraded to a higher class, need the approval of a notified body starting from 26 May 2020.

  19. Application of Hazard Analysis Critical Control Point in the local manufacture of ready-to-use therapeutic foods (RUTFs).

    PubMed

    Henry, C Jeya K; Xin, Janice Lim Wen

    2014-06-01

    The local manufacture of ready-to-use therapeutic foods (RUTFs) is increasing, and there is a need to develop methods to ensure their safe production. We propose the application of Hazard Analysis Critical Control Point (HACCP) principles to achieve this goal. The basic principles of HACCP in the production of RUTFs are outlined. It is concluded that the implementation of an HACCP system in the manufacture of RUTFs is not only feasible but also attainable. The introduction of good manufacturing practices, coupled with an effective HACCP system, will ensure that RUTFs are produced in a cost-effective, safe, and hygienic manner.

  20. Electronic Design Automation: Integrating the Design and Manufacturing Functions

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic; Salkowski, Charles

    1997-01-01

    As the complexity of electronic systems grows, the traditional design practice, a sequential process, is replaced by concurrent design methodologies. A major advantage of concurrent design is that the feedback from software and manufacturing engineers can be easily incorporated into the design. The implementation of concurrent engineering methodologies is greatly facilitated by employing the latest Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and support virtual prototyping, rapid prototyping, and hardware-software co-design. This report presents recommendations for enhancing the electronic design and manufacturing capabilities and procedures at JSC based on a concurrent design methodology that employs EDA tools.

Top