Science.gov

Sample records for manufacturing process final

  1. Integrated manufacturing and processing predoctoral fellowships. Final performance report

    SciTech Connect

    Rozzell, Thomas

    1999-10-01

    The first and fourth cohorts of U.S. Department of Energy Integrated Manufacturing and Processing Predoctoral Fellows were supported under this grant for up to three years of study leading to a PhD degree in a field related to integrated manufacturing and processing.

  2. Environmental assessment of advanced thin film manufacturing process. Final report

    SciTech Connect

    Cunningham, D.W.; Mopas, E.; Skinner, D.; McGuire, L.; Strehlow, M.

    1998-09-01

    This report describes work performed by BP Solar, Inc., to provide an extensive preproduction analysis of waste-stream abatement at its plant in Fairfield, California. During the study, numerous technologies were thoroughly evaluated, which allowed BP Solar to select systems that outperformed the stringent federal and state regulations. The main issues were originally perceived to be controlling cadmium compound releases to both air and wastewater to acceptable levels and adopting technologies for air and water waste streams in an efficient, cost-effective manner. BP Solar proposed high-efficiency, reliable control equipment that would reduce air-contaminant emission levels below levels of concern. Cadmium telluride dust is successfully controlled with high-efficiency (>99.9%) bag-in/bag-out filters. For air abatement, carbon canisters provide efficient VOC reduction, and wastewater pretreatment is required per federal pretreatment standards. BP Solar installed a cadmium-scavenging ion exchange system and electrowinning system capable of removing cadmium to <10 ppb (local publicly-owned-treatment-works limits for cadmium is 30 ppb). BP Solar plans to maximize potential reuse of rinse waters by phasing in additional wastewater treatment technologies. Finally, the work to date has identified the areas that need to be revisited as production scales up to ensure that all health, safety, and environmental goals are met.

  3. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    SciTech Connect

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  4. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    EPA Pesticide Factsheets

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  5. United States Department of Energy Integrated Manufacturing & Processing Predoctoral Fellowships. Final Report

    SciTech Connect

    Petrochenkov, M.

    2003-03-31

    The objective of the program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design.

  6. Current good manufacturing practice in manufacturing, processing, packing, or holding of drugs; revision of certain labeling controls. Final rule.

    PubMed

    2012-03-20

    The Food and Drug Administration (FDA) is amending the packaging and labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and veterinary drug products by limiting the application of special control procedures for the use of cut labeling to immediate container labels, individual unit cartons, or multiunit cartons containing immediate containers that are not packaged in individual unit cartons. FDA is also permitting the use of any automated technique, including differentiation by labeling size and shape, that physically prevents incorrect labeling from being processed by labeling and packaging equipment when cut labeling is used. This action is intended to protect consumers from labeling errors more likely to cause adverse health consequences, while eliminating the regulatory burden of applying the rule to labeling unlikely to reach or adversely affect consumers. This action is also intended to permit manufacturers to use a broader range of error prevention and labeling control techniques than permitted by current CGMPs.

  7. Manufacturing processes

    NASA Technical Reports Server (NTRS)

    Bennet, Jay; Brower, David; Levine, Stan; Walker, Ray; Wooten, John

    1991-01-01

    The following issues are covered: process development frequently lags behind material development, high fabrication costs, flex joints (bellows) - a continuing program, SRM fabrication-induced defects, and in-space assembly will require simplified design.

  8. Compatibility of manufacturing process fluids with R-134a and polyolester lubricant. Final report

    SciTech Connect

    Cavestri, R.C.; Schooley, D.L.

    1996-07-01

    This report includes a broad list of processing fluids that are known to be used to manufacture air conditioning and refrigeration products. Sixty-four process fluids from this list were selected for compatibility studies with R-134a and ICI EMKARATE RL32H (32 ISO) polyolester lubricant. Solutions or suspensions of the process fluid residues in polyolester lubricant were heated for 14 days at 175{degrees}C (347{degrees}F) in evacuated sealed glass tubes containing only valve steel coupons. Miscibility tests were performed at 90 wt.% R-134a, 10 wt.% polyolester lubricant with process fluid residue contaminate and were scanned in 10{degrees}C (18{degrees}F) increments over a temperature range of ambient to -40{degrees}C (-40{degrees}F). Any sign of turbidity, haze formation or oil separation was considered the immiscibility point.

  9. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    EPA Pesticide Factsheets

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  10. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    SciTech Connect

    Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  11. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    SciTech Connect

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  12. Industrial yogurt manufacture: monitoring of fermentation process and improvement of final product quality.

    PubMed

    Soukoulis, C; Panagiotidis, P; Koureli, R; Tzia, C

    2007-06-01

    Lactic acid fermentation during the production of skim milk and whole fat set-style yogurt was continuously monitored by measuring pH. The modified Gompertz model was successfully applied to describe the pH decline and viscosity development during the fermentation process. The viscosity and incubation time data were also fitted to linear models against ln(pH). The investigation of the yogurt quality improvement practices included 2 different heat treatments (80 degrees C for 30 min and 95 degrees C for 10 min), 3 milk protein fortifying agents (skim milk powder, whey powder, and milk protein concentrate) added at 2.0%, and 4 hydrocolloids (kappa-carrageenan, xanthan, guar gum, and pectin) added at 0.01% to whole fat and skim yogurts. Heat treatment significantly affected viscosity and acetaldehyde development without influencing incubation time and acidity. The addition of whey powder shortened the incubation time but had a detrimental effect on consistency, firmness, and overall acceptance of yogurts. On the other hand, addition of skim milk powder improved the textural quality and decreased the vulnerability of yogurts to syneresis. Anionic stabilizers (kappa-carrageenan and pectin) had a poor effect on the texture and palatability of yogurts. However, neutral gums (xanthan and guar gum) improved texture and prevented the wheying-off defect. Skim milk yogurts exhibited longer incubation times and higher viscosities, whereas they were rated higher during sensory evaluation than whole fat yogurts.

  13. The mechanics of manufacturing processes

    SciTech Connect

    Wright, P.; Stori, J.; King, C.

    1996-10-01

    Economic pressures, particularly related to the quality of manufactured goods and `time-to-market` are forcing designers to think not only in terms of product design but also in terms of integrated product and process design, and finally in terms of deterministic manufacturing planning and control. As a result of these three high level needs, there is now an even greater need for comprehensive simulations that predict material behavior during a manufacturing process, the stresses and/or temperatures on associated tooling, and the final-product integrity. The phrase `manufacturing processes` of course covers a broad scope; it includes semiconductor manufacturing, injection molding of polymers, metal machining and precision lapping, wood and textile production, and the final assembly of piece-parts into a consumer product. It can be seen from this partial listing that the fields of fluid mechanics, solid mechanics, dynamics and tribology can all play a role. The introduction to the paper will contain a review of manufacturing processes and describe where simulations have been successfully applied, and where simulations are still lacking. The best of the simulations are those where the models accurately fit the physical phenomena, where accurate constitutive equations are available, and where boundary conditions are realistic. Thus, the body of the paper will focus on the results from one of these more successful simulations. It has been used to predict the deflections of tooling and the most appropriate operating conditions for the manufacturing process under study. A new method for manufacturing planning is described. In this method, closed form, somewhat simplified, analytical models are used to determine manufacturing planning parameters and then the results from these simpler models are refined by the fuller simulations. A case study in machining parameter selection for peripheral finish milling operations is developed.

  14. Manufacturing Curriculum Grant. Final Report.

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    A manufacturing curriculum for secondary vocational programs was designed to bridge the gap between grades 9-10 level courses and the community college-level curriculum of the Illinois Plan for Industrial Education. During the project, a literature review of manufacturing curriculum materials was conducted, a manufacturing conceptual framework was…

  15. Beryllium Manufacturing Processes

    SciTech Connect

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  16. Rapid Response Manufacturing (RRM). Final CRADA report

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  17. Blade Manufacturing Improvement Project: Final Report

    SciTech Connect

    SHERWOOD, KENT

    2002-10-01

    The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

  18. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect

    Easoz, J.R.; Herlocher, R.H. )

    1991-12-01

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  19. Quality management of manufacturing process based on manufacturing execution system

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Jiang, Yang; Jiang, Weizhuo

    2017-04-01

    Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.

  20. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  1. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  2. Process for manufacturing slit collimators

    NASA Technical Reports Server (NTRS)

    Romanenko, V. P.; Yemelyanov, A. A.; Churbakov, K. I.

    1974-01-01

    Peculiarities are described of the manufacturing process and the control of elements of slit collimators, the structural design of the required equipment and the process or assembling the collimators.

  3. Environmentally conscious manufacturing integrated demonstration. Final report

    SciTech Connect

    Gentry, D.E.

    1993-07-01

    The objective of the Environmentally Conscious Manufacturing Integrated Demonstration was to show that several of the individually developed materials and processes to reduce hazardous materials and waste could be successfully used on a single assembly. A methodology was developed that could be used on any product to plan the approach to eliminating hazardous materials. Sample units of an existing design electronic unit were fabricated applying this methodology and substituting nonhazardous materials and processes. The results of this project show that total waste can be drastically reduced by at least an order of magnitude and hazardous material and waste can be essentially eliminated in the manufacture of this type of electronic devices.

  4. Photovoltaic industry manufacturing technology. Final report

    SciTech Connect

    Vanecek, D.; Diver, M.; Fernandez, R.

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  5. Modeling and simulation of CVD processes for manufacturing ceramic composites. Final report, 30 September 1994-25 June 1995

    SciTech Connect

    Adjerid, S.; Flaherty, J.E.; Hudson, J.B.; Shephard, M.S.; Webster, B.E.

    1995-06-29

    A chemical vapor deposition (CVD) process used to coat crystal sapphire fibers with B-Al2O3 has been mathematically modelled and numerically simulated using adaptive finite element software. This software system is applicable for solving transient and steady partial differential equations and is capable of automatic mesh generation, mesh-order variation, and/or mesh refinement.

  6. 24 CFR 3285.6 - Final leveling of manufactured home.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Final leveling of manufactured home... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.6 Final leveling of manufactured home. The manufactured home must be adequately leveled prior to completion of the...

  7. 24 CFR 3285.6 - Final leveling of manufactured home.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Final leveling of manufactured home... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.6 Final leveling of manufactured home. The manufactured home must be adequately leveled prior to completion of the...

  8. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  9. Rapid response manufacturing (RRM). Final CRADA report

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1998-02-10

    US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was

  10. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  11. New Skills in Process Manufacturing.

    ERIC Educational Resources Information Center

    Dumbrell, Tom; de Montfort, Rowena; Finnegan, Wendy

    Recent changes in the nature of work in Australia's process manufacturing industry and their impact on operative-level workers and vocational education and training (VET) were examined. Structured interviews were conducted with training or human resource managers in 16 firms representing a cross-section of small, medium, and large enterprises…

  12. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  13. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  14. Semiconductor Manufacturing Final Air Toxics Rules Fact Sheets

    EPA Pesticide Factsheets

    This page contains a February 2003 fact sheet for the final NESHAP for Semiconductor Manufacturing. This page also contains a July 2008 fact sheet with information regarding the final amendments to the 2003 final rule for the NESHAP.

  15. Laser Material Processing in Manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Marshall

    2014-03-01

    This presentation will address some of the past, present, and potential uses of lasers for material processing in manufacturing. Laser processing includes welding, drilling, cutting, cladding, etc. The U.S. was the hot bed for initial uses of lasers for material processing in the past with Europe, especially Germany, presently leading the way. The future laser processing leader may still be Germany. Selected uses, past and present, of lasers within GE will also be highlighted as seen in such business units as Aviation, Lighting, Power and Water, Healthcare, and Transportation.

  16. Manufacturing Process Applications Team (MATeam)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.

  17. TX-100 manufacturing final project report.

    SciTech Connect

    Ashwill, Thomas D.; Berry, Derek S.

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three

  18. Aggregates in monoclonal antibody manufacturing processes.

    PubMed

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  19. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  20. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  1. Automated Manufacturing Training Center. Final Performance Report.

    ERIC Educational Resources Information Center

    Northampton Community Coll., Bethlehem, PA.

    A project conducted by Northampton Community College established an automated manufacturing training center for use by industry in eastern Pennsylvania. The center assists small and medium-size manufacturing firms in evaluating and integrating off-the-shelf technology to make them more competitive in the global marketplace. Comprehensive services…

  2. Trajectory-Oriented and Fault-Tolerant-Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing; Final Technical Report, 13 May 2002--30 May 2005

    SciTech Connect

    Simpson, L.; Britt, J.; Birkmire, R.; Vincent, T.

    2005-10-01

    ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.

  3. Establishment of a production-ready manufacturing process utilizing thin silicon substrates for solar cells. Final report. Motorola report No. 2364/4

    SciTech Connect

    Pryor, R. A.

    1980-10-01

    Three inch diameter Czochralski silicon substrates sliced directly to 5 mil, 8 mil, and 27 mil thicknesses with wire saw techniques were procured. Processing sequences incorporating either diffusion or ion implantation technologies were employed to produce n+p or n+pp+ solar cell structures. These cells were evaluated for performance, ease of fabrication, and cost effectiveness. It was determined that the use of 7 mil or even 4 mil wafers would provide near term cost reductions for solar cell manufacturers.

  4. Boosting Manufacturing through Modular Chemical Process Intensification

    ScienceCinema

    None

    2017-01-06

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  5. Boosting Manufacturing through Modular Chemical Process Intensification

    SciTech Connect

    2016-12-09

    Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.

  6. Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants. First draft of final report of part one and quarterly report of part two, January 3, 1994--November 30, 1994

    SciTech Connect

    Cavestri, R.C.

    1994-11-01

    Included in this report is a compiled partial list of presently used processing materials in the air-conditioning and refrigeration industry and the manufacturers, intended uses, and applications of each. Also listed are the processing materials that have received final acceptance for this contracted study. An analytical methodology discussion is presented, including the final decision and the limitations of said methodology, as well as how to establish a level of confidence in observed immiscible material components in two 32 ISO VG polyolesters: (1) Mobil EAL Arctic 32; and (2) ICI Emkarate RL32H; both with HFC 134a refrigerant solutions.

  7. Trajectory Oriented and Fault Tolerant Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing: Phase 1 Final Technical Report, March 2003

    SciTech Connect

    Simpson, L.

    2004-02-01

    With the assistance of NREL's PV Manufacturing R&D program, ITN Energy Systems, Inc. and Global Solar Energy, Inc. continued the advancement of CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include developing physics-based and empirical models for CIGS and physics-based Mo deposition processing, implementing model-based control for CIGS processing, and applying predictive models to the construction of new evaporation sources. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include systematic development of fault-prevention procedures (e.g., preventative maintenance schedules) and detection/reconfiguration of sensor and other hardware failures for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicate the potential for enhanced process status monitoring and control of all deposition processes. In spite of the short time since the program was initiated, substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control (e.g., 71% reduction in Cu variability), yield, and throughput.

  8. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  9. Final report: An enabling architecture for information driven manufacturing

    SciTech Connect

    Griesmeyer, J.M.

    1997-08-01

    This document is the final report for the LDRD: An Enabling Architecture for Information Driven Manufacturing. The project was motivated by the need to bring quality products to market quickly and to remain efficient and profitable with small lot sizes, intermittent production and short product life cycles. The emphasis is on integration of the product realization process and the information required to drive it. Enterprise level information was not addressed except in so far as the enterprise must provide appropriate information to the production equipment to specify what to produce, and the equipment must return enough information to record what was produced. A production script approach was developed in which the production script specifies all of the information required to produce a quality product. A task sequencer that decomposes the script into process steps which are dispatched to capable Standard Manufacturing Modules. The plug and play interface to these modules allows rapid introduction of new modules into the production system and speeds up the product realization cycle. The results of applying this approach to the Agile Manufacturing Prototyping System are described.

  10. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  11. Integrated lunar materials manufacturing process

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  12. Distributed object environment for manufacturing. Final report

    SciTech Connect

    Zimmerman, J.; Tocco, M.

    1996-10-01

    This project was initiated as a joint effort between the Department of Energy (DOE) and Ford to accelerate the development of integrated manufacturing systems through the use of emerging object-oriented software integration architectures and international product data standards. The project adopted the Object Management Group (OMG) Common Object Request Broker Architecture (CORBA) as the formal model for system integration and the ISO Standard for Exchange of Product Model Data (STEP) as the formal model for product data integration. No project at the time had brought the combined strengths of CORBA and STEP together to create an integrated system. Because CORBA technologies were just emerging when this project was started in September 1994, a reasonably high risk was assigned to this project. The first objective of this project was to build confidence in the STEP standard by exchanging a STEP description of a power steering pump with a Ford supplier and validating the exchange. This part was successfully exchanged. The second objective was the integration of the Ford in-house configuration management system with a STEP repository using CORBA-based technology. The repository chosen was the KCP Advanced Manufacturing Development System (AMDS), a development repository. This report will describe the power steering pump exchange and CORBA/STEP integration experiences.

  13. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.

  14. Current good manufacturing practice in manufacturing, packaging, labeling, or holding operations for dietary supplements. Final rule.

    PubMed

    2007-06-25

    The Food and Drug Administration (FDA) is issuing a final rule regarding current good manufacturing practice (CGMP) for dietary supplements. The final rule establishes the minimum CGMPs necessary for activities related to manufacturing, packaging, labeling, or holding dietary supplements to ensure the quality of the dietary supplement. The final rule is one of many actions related to dietary supplements that we are taking to promote and protect the public health.

  15. Lean Manufacturing Principles Improving the Targeting Process

    DTIC Science & Technology

    2012-06-08

    targeting process, specifically the adaptability of the process. The thesis will analyze a proven business improvement model ( Lean Manufacturing ), compare...areas of improvement in the adaptability of the process. Thus, the problem statement is as follows: Can Lean Manufacturing methods employed by modern businesses improve identified weaknesses in the targeting process?

  16. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    NASA Astrophysics Data System (ADS)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  17. News: Good chemical manufacturing process criteria

    EPA Science Inventory

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  18. News: Good chemical manufacturing process criteria

    EPA Science Inventory

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  19. Manufacturing Process of Flat Display

    NASA Astrophysics Data System (ADS)

    Ohmi, Tadahiro

    A large size display for entertainment, internet, PC and other information instruments is key tool for coming IT revolutionary era, so that the large size display must be characterized by very low electric power consumption and human friendly performance without tiring user's eyes. Thus, liquid crystal (LC) and electroluminescence (EL) displays are candidates for this target. High quality poly-silicon TFT is essentially required even for LCD displays instead current amorphous Si TFT, because very large current drivability is necessary for TFT due to the increase of LCD cell capacitor with an increase of display size up to 50 inches and beyond. The key issue for this target is a creation of very low temperature poly-Si TFT manufacturing technology without excimer laser annealing and very low cost manufacturing which is characterized by very simplified display structures and very simplified manufacturing steps based on very drastic progress of various relating materials and components such as backlights, polarizer, color filter, and etc.

  20. Encapsulation Processing and Manufacturing Yield Analysis

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    The development of encapsulation processing and a manufacturing productivity analysis for photovoltaic cells are discussed. The goals were: (1) to understand the relationships between both formulation variables and process variables; (2) to define conditions required for optimum performance; (3) to predict manufacturing yield; and (4) to provide documentation to industry.

  1. U-GAS process for chemical manufacture

    SciTech Connect

    Dihu, R.; Leppin, D.; Patel, J.G.

    1980-01-01

    The U-GAS coal gasification process and its potential application to the manufacture of two important industrial chemicals, methanol and ammonia, are described. Pilot plant results, the current status of the process, and economic projections for the cost of manufacture of methanol and ammonia are presented.

  2. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  3. 49 CFR 568.6 - Requirements for final-stage manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Requirements for final-stage manufacturers. 568.6...-ALL INCOMPLETE, INTERMEDIATE AND FINAL-STAGE MANUFACTURERS OF VEHICLES MANUFACTURED IN TWO OR MORE STAGES § 568.6 Requirements for final-stage manufacturers. Each final-stage manufacturer shall...

  4. Energetic additive manufacturing process with feed wire

    DOEpatents

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  5. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.

  6. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  7. Ultra-precision processes for optics manufacturing

    NASA Technical Reports Server (NTRS)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  8. Process and quality verification controls for solid propellant manufacturing

    NASA Technical Reports Server (NTRS)

    Rogers, C. J.

    1983-01-01

    It is pointed out that in-process tests to verify quality and detect discrepant propellant which could compromise motor performance are essential elements of the solid composite propellant manufacturing process. The successful performance of the 260SL-1 and 260SL-2 motors aptly verified the controls used for manufacturing the propellant. The present investigation is concerned with the selected control parameters, and their relationships to composition and final propellant properties. Control performance is evaluated by comparison with processing data experienced in the manufacture of the propellant for the 260SL-1 motor. It is found that the in-process quality verification controls utilized in the propellant manufacturing process for the 260-in. diameter motor contributed significantly to the confidence of successful and predictable motor performance.

  9. Process and quality verification controls for solid propellant manufacturing

    NASA Technical Reports Server (NTRS)

    Rogers, C. J.

    1983-01-01

    It is pointed out that in-process tests to verify quality and detect discrepant propellant which could compromise motor performance are essential elements of the solid composite propellant manufacturing process. The successful performance of the 260SL-1 and 260SL-2 motors aptly verified the controls used for manufacturing the propellant. The present investigation is concerned with the selected control parameters, and their relationships to composition and final propellant properties. Control performance is evaluated by comparison with processing data experienced in the manufacture of the propellant for the 260SL-1 motor. It is found that the in-process quality verification controls utilized in the propellant manufacturing process for the 260-in. diameter motor contributed significantly to the confidence of successful and predictable motor performance.

  10. Roughness parameter selection for novel manufacturing processes.

    PubMed

    Ham, M; Powers, B M

    2014-01-01

    This work proposes a method of roughness parameter (RP) selection for novel manufacturing processes or processes where little knowledge exists about which RPs are important. The method selects a single parameter to represent a group of highly correlated parameters. Single point incremental forming (SPIF) is used as the case study for the manufacturing process. This methodology was successful in reducing the number of RPs investigated from 18 to 8 in the case study. © Wiley Periodicals, Inc.

  11. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  12. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  13. Engineering in the Manufacturing Process

    DTIC Science & Technology

    1993-03-01

    create the right conditions to attract such suppliers and take advantage of the rapidly advancing commercial manufacturi g processes and product capability...production cost analysiz). o Alignment of DoD’s technology plans with best commercial manufacturinq trends and practices, including lean and agile

  14. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    The objectives and activities of an aerospace technology transfer group are outlined and programs in various stages of progress are described including the orbital tube flaring device, infrared proximity sensor for robot positioning, laser stripping magnet wire, infrared imaging as welding process tracking system, carbide coating of cutting tools, nondestructive fracture toughness testing of titanium welds, portable solar system for agricultural applications, and an anerobic methane gas generator.

  15. Evaluation of Manufacturing Processes for Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Laura Jáuregui, Ana; Siller, Héctor R.; Rodriguez, Ciro A.; Elías-Zúñiga, Alex

    2009-11-01

    In this paper several micro-mechanical manufacturing technologies were studied in order to characterize their performance for making miniaturized geometries known as micro-channels, which are the main geometric features of micro-fluidic devices. The technologies used were Micro-End Milling, Wire Electro Discharge Machiningesol Sandblasting and Abrasive Water Jet. Their capabilities were compared with Lithography capabilities, which is the conventional process for micro-channel manufacturing. The evaluation consists in a comprehensive study of surface quality and topography, made with the help of advanced contact and non-contact devices over each prototype made by each technology. Also economical considerations have been taken into account in order to choose the most appropriate manufacturing process for the prototyping of micro-fluidic devices. The results show that Micro-End Milling process can compete with Lithography, in terms of achieving acceptable levels of product quality and economics.

  16. Novel manufacturing processing route for forming high-density ceramic armor materials: Phase 1 -- SBIR. Final report, 25 April 1991--11 December 1991

    SciTech Connect

    Raman, R.V.

    1999-04-01

    The objective of the Phase 1 Small Business Innovative Research (SBIR) project was to demonstrate the feasibility of applying the Combustion Synthesis (CS)/Ceracon Consolidation Process for forming 10-cm-diameter, 2.5-cm-thick high-density titanium carbide (TiC) and titanium diboride (TiB[sub 2]) pieces. The Phase 1 project demonstrated for the first time the feasibility of CS initiation to form TiC and TiB[sub 2] by using Ceracon's hot, granular media and their in-situ consolidation. The effects of applied pressure and pressure-transmitting media (PTM) temperature in controlling density, as well as thermal management issues to prevent cracking in applying the CS/Ceracon process to form TiC and TiB[sub 2], have been identified. In-situ CS/Ceracon consolidation to densities exceeding 98% was demonstrated for fabricating 10-cm-diameter, 2.5-cm-thick TiC pieces. The CS/Ceracon-processed, high-density TiC specimen has a fine grain size, microhardness values exceeding 2,500 kg/mm2, and compressive strength of 1.3 GPa. Due to the use of inexpensive conventional forging equipment and a low- cost grain for both initiating self-propagating high-temperature synthesis (SHS) and consolidation, this novel approach has the potential to be significantly more cost effective than currently used conventional hot pressing (HP) or hot isostatic pressing (HIPing) of TiC and TiB[sub 2] powders. A set of recommendations for the technical approach to be followed in process upscaling in Phase 2 to fabricate larger size tiles of TiC material is provided.

  17. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  18. Towards automatic planning for manufacturing generative processes

    SciTech Connect

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from the original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.

  19. Auxetic polyurethane foam: Manufacturing and processing analysis

    NASA Astrophysics Data System (ADS)

    Jahan, Md Deloyer

    Materials with negative Poisson's ratio are referred to as auxetic materials. They are different from conventional materials in their deformation behavior when responding to external stresses. The cross-section of the materials widens in the lateral direction when being stretched in the longitudinal direction and becomes narrower when being compressed longitudinally. While a number of natural auxetic materials exist, most auxetic materials are synthetic. They show interesting properties and have potential in several important applications. Auxetic materials exhibit better mechanical properties than conventional materials such as enhanced indentation resistance, shear resistance, toughness, damping and energy absorption capacity, sound absorption, variable permeability and capability of producing complex curvature. These properties are beneficial in a wide range of applications including personal protective equipments, sound absorbers, packaging, smart filtration, drug delivery, tissue scaffolding, seat cushioning, etc. A wide range of auxetic materials has been synthesized. They include different polymers, metals, composites and ceramics. Among these, auxetic polyurethane (PU) foam is one of the most widely studied types of auxetic materials. Auxetic PU foams are usually fabricated by altering the microstructure of conventional foams and the unusual mechanical properties originate from the deformation characteristics of the microstructures. Three most important processing parameters in fabricating auxetic PU foam that dictate auxetic behavior are processing temperature, heating time and volumetric compression ratio. This study addresses several important issues in the manufacturing and characterization of auxetic PU foam. First, an improved automatic measuring technique has been developed to determine Poisson's ratio of auxetic PU foam. The technique involves development of a Matlab based image processing program. The second part of the study includes an

  20. Computational Fluid Dynamics - Applications in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  1. Mining manufacturing data for discovery of high productivity process characteristics.

    PubMed

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  2. Friction Stir Processing for Efficient Manufacturing

    SciTech Connect

    Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

    2012-01-31

    Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant

  3. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  4. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  5. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  6. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  7. Ceramic component manufacturing process development. Final report

    SciTech Connect

    Robinson, S.

    1996-09-30

    Ceramic materials are well suited for applications where temperature, wear, and corrosion resistance are necessary. The toughness and wear resistance properties that make ceramics desirable, also make fabrication of parts difficult. The objective of this CRADA was to increase the grinding efficiency on Ceradyne Incorporated silicon nitride. This was to be accomplished through optimization of grinding wheel life and increasing silicon nitride material removal rates. Experiments were conducted to determine the relationship between grinding parameters, wheel wear, and material removal rates. Due to excessive, unexplained variation in the experimental results, a consistent relationship between the selected grinding parameters and wheel wear could not be established. Maximum material removal rates were limited by spindle and table drive power. Additional experiments were conducted to evaluate high speed grinding. When compared to conventional grinding speeds, the material removal rates using high speed grinding (13,000 SFM) increased by a factor of five to ten with no degradation of fracture strength.

  8. Microeconomics of process control in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  9. Process economics of industrial monoclonal antibody manufacture.

    PubMed

    Farid, Suzanne S

    2007-03-15

    Pressures for cost-effective manufacture of antibodies are growing given their high doses and increasing market potential that have resulted in significant increases in total site capacities of up to 200,000 L. This paper focuses on the process economic issues associated with manufacturing antibodies and reviews the cost studies published in the literature; many of the issues highlighted are not only specific to antibodies but also apply to recombinant proteins. Data collated at UCL suggest current benchmark investment costs of $660-$1580/ft2 ($7130-$17,000/m2) and $1765-$4220/L for antibody manufacturing facilities with total site capacities in the range of 20,000-200,000 L; the limitations of the data are highlighted. The complications with deriving benchmark cost of goods per gram (COG/g) values are discussed, stressing the importance of stating the annual production rate and either titre or fermentation capacity with the cost so as to allow comparisons. The uses and limitations of the methods for cost analysis and the available software tools for process economics are presented. Specific examples found in the literature of process economic studies related to antibody manufacture for different expression systems are reviewed. The key economic drivers are identified; factors such as fermentation titre and overall yield are critical determinants of economic success. Future trends in antibody manufacture that are driven by economic pressures are discussed, such as the use of alternative expression systems (e.g. transgenics, E. coli and yeast), disposables, and improvements to downstream technology. The hidden costs and the challenges in each case are highlighted.

  10. 21 CFR 1005.25 - Service of process on manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders,...

  11. Space manufacturing utilizing the directional electrostatic accretion process

    NASA Technical Reports Server (NTRS)

    Mortensen, A.

    1986-01-01

    The Directional Electrostatic Accretion Process (DEAP) is described with respect to both the physical process and its application to manufacturing in space. This high precision portable manufacturing method will revolutionize current practices in manufacturing and repair of spacecraft and space structures. The cost effectiveness of this process will be invaluable to future space manufacturing projects.

  12. Space manufacturing utilizing the directional electrostatic accretion process

    NASA Technical Reports Server (NTRS)

    Mortensen, A.

    1986-01-01

    The Directional Electrostatic Accretion Process (DEAP) is described with respect to both the physical process and its application to manufacturing in space. This high precision portable manufacturing method will revolutionize current practices in manufacturing and repair of spacecraft and space structures. The cost effectiveness of this process will be invaluable to future space manufacturing projects.

  13. Increasing component functionality via multi-process additive manufacturing

    NASA Astrophysics Data System (ADS)

    Coronel, Jose L.; Fehr, Katherine H.; Kelly, Dominic D.; Espalin, David; Wicker, Ryan B.

    2017-05-01

    Additively manufactured components, although extensively customizable, are often limited in functionality. Multi-process additive manufacturing (AM) grants the ability to increase the functionality of components via subtractive manufacturing, wire embedding, foil embedding and pick and place. These processes are scalable to include several platforms ranging from desktop to large area printers. The Multi3D System is highlighted, possessing the capability to perform the above mentioned processes, all while transferring a fabricated component with a robotic arm. Work was conducted to fabricate a patent inspired, printed missile seeker. The seeker demonstrated the advantage of multi-process AM via introduction of the pick and place process. Wire embedding was also explored, with the successful interconnect of two layers of embedded wires in different planes. A final demonstration of a printed contour bracket, served to show the reduction of surface roughness on a printed part is 87.5% when subtractive manufacturing is implemented in tandem with AM. Functionality of the components on all the cases was improved. Results included optical components embedded within the printed housing, wires embedded with interconnection, and reduced surface roughness. These results highlight the improved functionality of components through multi-process AM, specifically through work conducted with the Multi3D System.

  14. A simulation study on garment manufacturing process

    NASA Astrophysics Data System (ADS)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  15. Big Data Analysis of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  16. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  17. Process and control systems for composites manufacturing

    NASA Technical Reports Server (NTRS)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  18. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  19. Improving drug manufacturing with process analytical technology.

    PubMed

    Rodrigues, Licinia O; Alves, Teresa P; Cardoso, Joaquim P; Menezes, José C

    2006-01-01

    Within the process analytical technology (PAT) framework, as presented in the US Food and Drug Administration guidelines, the aim is to design, develop and operate processes consistently to ensure a pre-defined level of quality at the end of the manufacturing process. Three PAT implementation scenarios can be envisaged. Firstly, PAT could be used in its most modest version (in an almost non-PAT manner) to simply replace an existing quality control protocol (eg, using near-infrared spectroscopy for an in-process quality control, such as moisture content). Secondly, the use of in-process monitoring and process analysis could be integrated to enhance process understanding and operation for an existing industrial process. Thirdly, PAT could be used extensively and exclusively throughout development, scale-up and full-scale production of a new product and process. Although the first type of implementations are well known, reports of the second and third types remain scarce. Herein, results obtained from PAT implementations of the second and third types are described for two industrial processes for preparing bulk active pharmaceutical ingredients, demonstrating the benefits in terms of increased process understanding and process control.

  20. 49 CFR 529.6 - Requirements for final-stage manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... thereunder, other than those in part 537, Fuel Economy Reports. (b) Each final-stage manufacturer that... paragraph (a)(1) of this section, that manufacturer shall prepare a new fuel economy label for that... manufacturer shall attach the fuel economy label furnished by the incomplete automobile manufacturer under...

  1. 49 CFR 529.6 - Requirements for final-stage manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... thereunder, other than those in part 537, Fuel Economy Reports. (b) Each final-stage manufacturer that... paragraph (a)(1) of this section, that manufacturer shall prepare a new fuel economy label for that... manufacturer shall attach the fuel economy label furnished by the incomplete automobile manufacturer under...

  2. Documentation of a heroin manufacturing process in Afghanistan.

    PubMed

    Zerell, U; Ahrens, B; Gerz, P

    2005-01-01

    The present article documents an authentic process of heroin manufacturing in Afghanistan: white heroin hydrochloride produced using simple equipment and a small quantity of chemicals. The quantities of chemicals actually used corresponded to the minimum needed for manufacturing heroin. The only organic solvent used was acetone, and only a very small quantity of it was used. Because the chemicals used in the demonstration were from actual seizures in Afghanistan, some of the chemicals had been disguised or repackaged by smugglers. Others had been put into labelled containers that proved to be counterfeit, and some glass containers used were not the original containers of the manufacturer displayed on the label. The brown heroin base prepared as an intermediate step in the process shares some of the characteristics of the South-West Asia type of heroin preparations often seized in Germany. The final product of the documented heroin manufacturing process was white heroin hydrochloride, which shares the key characteristics of the white heroin occasionally seized in Germany and other countries in Western Europe since 2000. The present article demonstrates that this kind of heroin can be produced in Afghanistan.

  3. Precision replenishable grinding tool and manufacturing process

    SciTech Connect

    Makowiecki, Daniel M.; Kerns, John A.; Blaedel, Kenneth L.; Colella, Nicholas J.; Davis, Pete J.; Juntz, Robert S.

    1998-01-01

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  4. Precision replenishable grinding tool and manufacturing process

    DOEpatents

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  5. Achieving Continuous Manufacturing for Final Dosage Formation: Challenges and How to Meet Them May 20-21 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Laser processing of ceramics for microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  7. Laser Beam Processing - A Manufacturer's Viewpoint

    NASA Astrophysics Data System (ADS)

    Peng, Y. C. J.

    1985-09-01

    The ability of continuous wave high power CO2 Lasers to generate power densities of up to 108 watts Cm makes them useful for a variety of material processing tasks. Deep-penetration laser welding, high precision laser cutting, surface heat treating by martensitic phase transformation hardening, and surface alloying are the four major areas which are accepting laser processes. This paper will cover these four primary laser applications existing in production within a variety of industries. Each individual area will be discussed in detail, describing the advantages and various parameters to achieve maximum productivity and quality. Beam config-uration, integration, and manipulation are included also. Production examples of laser welding, cutting, surface hardening and surface alloying, are examined to demonstrate the laser processing advantages. This paper also reviews the present and future status of the laser metalsworking industry in respect to the growth potential, research and development, manufacturers responsibilities etc.

  8. Defective Reduction in Automotive Headlining Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Rittichai, Saranya; Chutima, Parames

    2016-05-01

    In an automobile parts manufacturing company, currently the headlining process has a lot of wastes resulting in a high cost of quality per year. In this paper, the Six Sigma method is used to reduce the defects in the headlining process. Cause-and-effect matrix and failure mode and effect analysis (FMEA) were adopted to screen the factors that affect the quality of headlining. The 2k-1 fractional factorials design was also use to determine the potential preliminary root causes. The full factorial experiments was conducted to identify appropriate settings of the significant factors. The result showed that the process can reduce the defects of headlining from 12.21% to 6.95%

  9. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    SciTech Connect

    van Swol, Frank B.; Miller, James E.

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  10. CHARACTERIZATION OF ADDITIVE MANUFACTURING FOR PROCESS TUBING

    SciTech Connect

    Korinko, John S.; BobbittIII, John T.; Morgan, Michael J.; Reigel, Marissa; List III, Frederick Alyious; Babu, Suresh S.

    2016-01-01

    Additive Manufacturing has garnered significant levels of interest in recent years as a primary manufacturing method. While the general technology has been around for over 20 years, with increased computing capacity, higher powered directed energy sources, e.g., lasers and electron beams, it is coming of age as a viable technique for high value added, low production quantity components. The Savannah River National Laboratory is interested in AM as a technique to build hydrogen isotope separation components called Thermal Cycling Absorption Process (TCAP) columns. The TCAP operates from cryogenic to moderate temperatures in a cyclic manner and is a pressure boundary. The current technique for fabricating TCAP columns is to form a flat coil of 0.375 to 0.5 inch diameter tube and braze two coils together. During the brazing operation, the two nested coils often move and this movement results in gaps between the coils. Since one coil contains the working fluid, i.e., liquid nitrogen, and the other the process fluid, hydrogen isotopes, these gaps result in poor heat transfer. Additive manufacturing is being explored as a replacement technology since the adjacent tubes can be fabricated simultaneously and in intimate contact and they can also share a common wall to improve heat transfer. AM allows designers to develop unique tube structures that overcome several of the shortcomings of the coil and braze technique, such as the braze gap in fabrication and slow cooling during operation. Simple test samples with various internal geometries were designed and built from Type 316L stainless steel using a laser powder bed process. Three test article geometries that were built include a simple tube, a pair of stacked tubes, and a tube partially surrounded by two kidney shaped tubes with cooling fins that would extend into the process fluid, these tube sections incorporated thermowells or heat trace channels, selectively. The test samples will be subjected to heat transfer

  11. FINAL REPORT: Transformational electrode drying process

    SciTech Connect

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  12. Gravimelt Process development. Final report

    SciTech Connect

    Not Available

    1983-06-01

    This final report contains the results of a bench-scale program to continue the development of the TRW proprietary Gravimelt Process for chemically cleaning coal. This project consisted of two major efforts, a laboratory study aimed at identifying parameters which would influence the operation of a bench unit for desulfurization and demineralization of coal and the design, construction and operation of two types of continuous plug-flow type bench-scale fused caustic leachers. This present bench scale project has demonstrated modes for the continuous operation of fused caustic leaching of coal at coal throughputs of 1 to 5 pounds per hour. The remaining process unit operations of leach solutions regeneration and coal washing and filtration should be tested at bench scale together with fused caustic leaching of coal to demonstrate the complete Gravimelt Process. 22 figures, 11 tables.

  13. Modeling the VARTM Composite Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal

    2004-01-01

    A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.

  14. Process for manufacturing a petroleum resin

    SciTech Connect

    Iwashita, T.; Nagano, M.; Tanaka, K.

    1981-08-11

    The present invention relates to a process for manufacturing a petroleum resin wherein a fraction (Component a) containing an aromatic hydrocarbon obtained by cracking of petroleum and a thermally polymerized oil (Component b) obtained by previously thermal-polymerizing the component a are mixed and then the mixture of the components a and B is subjected to polymerization by employing a Friedel-Crafts catalyst. It is also directed to propose a petroleum resin of a superior quality having a softening point optionally in a range of 30-120/sup 0/C and various bromine value in such a manner that a mixing ratio of the components a and B is properly adjusted.

  15. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    SciTech Connect

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  16. Dimensional Stability of Complex Shapes Manufactured by the VARTM Process

    NASA Technical Reports Server (NTRS)

    Hubert, Pascal; Grimsley, Brian W.; Cano, Roberto J.; Pipes, R. Byron

    2002-01-01

    The vacuum assisted resin transfer molding (VARTM) process is a cost effective, innovative method that is being considered for manufacture of large aircraft-quality components where high mechanical properties and dimensional tolerance are essential. In the present work, carbon fiber SAERTEX fabric/SI-ZG-5A epoxy resin C-shaped laminates were manufactured by VARTM using different cure cycles followed by the same post-cure cycle. The final part thickness was uniform except at the corner were thinning was observed. The cure cycle selected is shown to significantly affect the part spring-in and a long cycle at 66 C followed by a 178 C post-cure produced a part with negligible spring-in.

  17. Achieving continuous manufacturing for final dosage formation: challenges and how to meet them. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including

  18. Metal Big Area Additive Manufacturing: Process Modeling and Validation

    SciTech Connect

    Simunovic, Srdjan; Nycz, Andrzej; Noakes, Mark W; Chin, Charlie; Oancea, Victor

    2017-01-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology for printing large-scale 3D objects. mBAAM is based on the gas metal arc welding process and uses a continuous feed of welding wire to manufacture an object. An electric arc forms between the wire and the substrate, which melts the wire and deposits a bead of molten metal along the predetermined path. In general, the welding process parameters and local conditions determine the shape of the deposited bead. The sequence of the bead deposition and the corresponding thermal history of the manufactured object determine the long range effects, such as thermal-induced distortions and residual stresses. Therefore, the resulting performance or final properties of the manufactured object are dependent on its geometry and the deposition path, in addition to depending on the basic welding process parameters. Physical testing is critical for gaining the necessary knowledge for quality prints, but traversing the process parameter space in order to develop an optimized build strategy for each new design is impractical by pure experimental means. Computational modeling and optimization may accelerate development of a build process strategy and saves time and resources. Because computational modeling provides these opportunities, we have developed a physics-based Finite Element Method (FEM) simulation framework and numerical models to support the mBAAM process s development and design. In this paper, we performed a sequentially coupled heat transfer and stress analysis for predicting the final deformation of a small rectangular structure printed using the mild steel welding wire. Using the new simulation technologies, material was progressively added into the FEM simulation as the arc weld traversed the build path. In the sequentially coupled heat transfer and stress analysis, the heat transfer was performed to calculate the temperature evolution, which was used in a stress analysis to

  19. Manufacturability improvements in EUV resist processing toward NXE:3300 processing

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Matsunaga, Koichi; Shimoaoki, Takeshi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie; Shimura, Satoru

    2014-03-01

    As the design rule of semiconductor process gets finer, extreme ultraviolet lithography (EUVL) technology is aggressively studied as a process for 22nm half pitch and beyond. At present, the studies for EUV focus on manufacturability. It requires fine resolution, uniform, smooth patterns and low defectivity, not only after lithography but also after the etch process. In the first half of 2013, a CLEAN TRACKTM LITHIUS ProTMZ-EUV was installed at imec for POR development in preparation of the ASML NXE:3300. This next generation coating/developing system is equipped with state of the art defect reduction technology. This tool with advanced functions can achieve low defect levels. This paper reports on the progress towards manufacturing defectivity levels and latest optimizations towards the NXE:3300 POR for both lines/spaces and contact holes at imec.

  20. Adhesive materials and processing selection for environmentally conscious manufacturing

    SciTech Connect

    Tira, J.S.

    1995-06-01

    Manufacturers that use certain adhesives and related manufacturing processes must consider the impact they have on worker health, safety, and the environment. Product manufacturers must find alternate replacements for solvent-based adhesives and solvent cements. In addition, processes that use ozone-depleting solvents for hand-wipe cleaning operations as well as vapor degreasing must find suitable alternates in order to be environmentally compliant. Likewise, manufacturers that use etching solutions that contain chrome must find a replacement. This paper identifies some of the specific problems associated with using certain adhesives and manufacturing processes. Environmentally acceptable alternative adhesives and processes are presented.

  1. Dry process for economic cell manufacturing

    NASA Astrophysics Data System (ADS)

    Donon, J.; Lauvray, H.; Aubril, P.; David, G.; Loubly, P.

    Plasma dry etching technologies and screen printing processes for the dopant and the contacts were employed in an attempt to develop a completely dry process for solar cell manufacturing. Plasma etching within a barrel reactor produced etch rates of 0.3 and 0.6 micron/min, compared with acid etching rates of 13 microns/min and basic etching rates of 5 microns/min. Ring etching was also carried out in a barrel reactor with 200 wafers positioned in a stack, power levels of 850 W, a CF4 + 8 pct O2 plasma, a flow rate of 200 cc/min, and a run time of 15 min. The ring etching process was also tested and proven to have good reproducibility. A doping paste was employed, together with a thermal treatment at 850 C for 1 hr, to obtain good diffusion homogeneity. The results included cell efficiencies more than half those from chemical etching with both monocrystalline and polycrystalline materials. The techniques are concluded to produce negligible pollution, waste little material, and be amenable to automation.

  2. Manufacturing process design for multi commodities in agriculture

    NASA Astrophysics Data System (ADS)

    Prasetyawan, Yudha; Santosa, Andrian Henry

    2017-06-01

    High-potential commodities within particular agricultural sectors should be accompanied by maximum benefit value that can be attained by both local farmers and business players. In several cases, the business players are small-medium enterprises (SMEs) which have limited resources to perform added value process of the local commodities into the potential products. The weaknesses of SMEs such as the manual production process with low productivity, limited capacity to maintain prices, and unattractive packaging due to conventional production. Agricultural commodity is commonly created into several products such as flour, chips, crackers, oil, juice, and other products. This research was initiated by collecting data by interview method particularly to obtain the perspectives of SMEs as the business players. Subsequently, the information was processed based on the Quality Function Deployment (QFD) to determine House of Quality from the first to fourth level. A proposed design as the result of QFD was produced and evaluated with Technology Assessment Model (TAM) and continued with a revised design. Finally, the revised design was analyzed with financial perspective to obtain the cost structure of investment, operational, maintenance, and workers. The machine that performs manufacturing process, as the result of revised design, was prototyped and tested to determined initial production process. The designed manufacturing process offers IDR 337,897, 651 of Net Present Value (NPV) in comparison with the existing process value of IDR 9,491,522 based on similar production input.

  3. 49 CFR 529.6 - Requirements for final-stage manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURERS OF MULTISTAGE AUTOMOBILES § 529... section, each final-stage manufacturer whose manufacturing operations on an incomplete automobile cause the completed automobile to exceed the maximum curb weight or maximum frontal area set forth in...

  4. 49 CFR 529.6 - Requirements for final-stage manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURERS OF MULTISTAGE AUTOMOBILES § 529... section, each final-stage manufacturer whose manufacturing operations on an incomplete automobile cause the completed automobile to exceed the maximum curb weight or maximum frontal area set forth in...

  5. 49 CFR 529.6 - Requirements for final-stage manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section, each final-stage manufacturer whose manufacturing operations on an incomplete automobile cause... body including the windshield and front seat side windows on the incomplete automobile, that... manufacturer of that automobile if: (i) The portion of the body including the windshield and front seat...

  6. Simulating the Composite Propellant Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  7. Simulating the Composite Propellant Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  8. Design Exploration of Engineered Materials, Products, and Associated Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Shukla, Rishabh; Kulkarni, Nagesh H.; Gautham, B. P.; Singh, Amarendra K.; Mistree, Farrokh; Allen, Janet K.; Panchal, Jitesh H.

    2015-01-01

    In the past few years, ICME-related research has been directed towards the study of multi-scale materials design. However, relatively little has been reported on model-based methods that are of relevance to industry for the realization of engineered materials, products, and associated industrial manufacturing processes. Computational models used in the realization of engineered materials and products are fraught with uncertainty, have different levels of fidelity, are incomplete and are even likely to be inaccurate. In light of this, we adopt a robust design strategy that facilitates the exploration of the solution space thereby providing decision support to a design engineer. In this paper, we describe a foundational construct embodied in our method for design exploration, namely, the compromise Decision Support Problem. We introduce a problem that we are using to establish the efficacy of our method. It involves the integrated design of steel and gears, traversing the chain of steel making, mill production, and evolution of the material during these processes, and linking this to the mechanical design and manufacture of the gear. We provide an overview of our method to determine the operating set points for the ladle, tundish and caster operations necessary to manufacture steel of a desired set of properties. Finally, we highlight the efficacy of our method.

  9. Powder metallurgy process for manufacturing core projectile

    NASA Astrophysics Data System (ADS)

    Akbar, Taufik; Setyowati, Vuri Ayu; Widyastuti

    2013-09-01

    Bullets are part of the defense equipment which the development is very rapid. There are a variety of forms but the bullet Lead is a metal that has always been used for applications projectiles. Lead core constituent materials are combined with antimony. In this research will be conducted by making the material for the core projectile with Tin Lead. The addition of Tin will increase the stiffness of Lead which is soft in nature. The Lead Tin composition variation was given in 10% weight of Sn. The manufacturing process using powder metallurgy using temperature and holding time variations of sintering at 100, 150, and 200°C for 1,2, and 3 hours. XRD samples will be tested to determine the form and phase morphology was observed using SEM-EDX. These results revealed that Pb-10%wtSn Composite which is sintered in temperature 200°C for 3 hours has the greatest density, 10.695 g/cm3 as well as the smallest porosity, 2.2%. In agreement with theoretical analysis that increasing higher temperature and longer holding time give decrease in porosity level due to activation energy which further promotes grain growth. Moreover, there is no intermetallic phase formation as well as no oxide found on composites.

  10. Environmentally benign manufacturing of compact disc stampers [Final Phase II report

    SciTech Connect

    1999-07-08

    Optical data storage is currently a $10B/yr. business. With the introduction of the high capacity Digital Versatile Disc (D/D) as well as the continued growth of CD-Audio and CD-ROM worldwide sales of optical data products as a whole are growing at rate of more than 10% per year. In North America, more than 2.5 billion optical discs will be sold in 1998. By 1999, the numbers of optical discs produced for the North American market will grow to almost three billion. The optical disc manufacturing industry is dominated by Asian and European companies (e.g. Sony of Japan and Philips of Netherlands). Prism Corporation has created a process that could significantly improve US competitiveness in the business of optical disc production. The objectives of the Phase II STTR project were to build and test an ion machining system (IMS) for stamper fabrication, prove overall manufacturing system feasibility by fabrication stampers and replicas, and evaluate alternative materials and alternative process parameters to optimize the process. During tie period of the Phase II project Prism Corporation was able to meet these objectives. In the course of doing so, adjustments had been made to better the project and in turn the final product. An ion machining system was designed and built that produced stampers ready for the molding process. Also, many control steps in the manufacturing process were studied to improve the current process and make it even more compatible with the industry standards, fitting seamlessly into current manufacturing lines.

  11. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect

    Eastwood, Eric

    2009-02-16

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  12. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    ERIC Educational Resources Information Center

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  13. Assessment of VOC emissions from fiberglass-boat manufacturing. Final report

    SciTech Connect

    Stockton, M.B.; Kuo, I.R.

    1990-05-01

    The report presents an assessment of volatile organic compound (VOC) emissions from fiberglass boat manufacturing. A description of the industry structures is presented, including estimates of the number of facilities, their size, and geographic distribution. The fiberglass boat manufacturing process is described, along with sources and types of VOC emissions. Model plants representative of typical facilities are also described. Estimates of VOC emissions are presented on per plant and national bases. VOC emissions from this industry consist mainly of styrene emission from gel coating and lamination, and acetone or other solvent emissions from clean-up activities. Finally, potential VOC control technologies are evaluated for this industry, including a discussion of technical feasibility. Limited cost data are also presented.

  14. Manufacturing Technology Continuation Project--FY 92. Final Report.

    ERIC Educational Resources Information Center

    Chicago City Colleges, IL. Richard J. Daley Coll.

    A project to identify metalworking subsectors (multiple spindle screw machining and gears machining) for inclusion in the Manufacturing Technology Preparation Program is the subject of this report. The project accomplished the following: developed five courses in multiple spindle, secured large donations of equipment and tooling, established a…

  15. ECMT31 New Mexico Manufacturing Environmental Survey. Final Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). To identify and analyze…

  16. Platform for 3D inline process control in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Preissler, Marc; Zhang, Chen; Rosenberger, Maik; Notni, Gunther

    2017-06-01

    3D - Inline - Process - Control is getting more attention in any fields of manufacturing processes to increase productivity and quality. Sensor systems are necessary to capture the currently process status and are basement for Inline-Process- Control. The presented work is a possibility to get inline information's about the additive manufacturing process Fused Filament Fabrication. The requirement is the ability to manipulate the machine code to get free field of view to the topside of the object after every manufactured layer. The adaptable platform layout makes possible to create different approaches for inline process control. One approach is the single camera layout from bird view to get 2,5D information's about the manufactured object and the other one is the active stereoscopic camera layout with pattern projection. Both approaches are showing a possibility to get information's of the manufactured object in process. Additional this cases allow a view inside the manufactured object and defects can be located. Deviations in the manufacturing process can be corrected and relevant parameters can be adapted during slicing process to increase the manufacturing quality.

  17. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  18. Study on Process Planning System for Holonic Manufacturing

    NASA Astrophysics Data System (ADS)

    Rais, Suyoto; Sugimura, Nobuhiro; Kokubun, Atsushi

    New architectures of manufacturing systems have been proposed aiming at realizing more flexible control structures of manufacturing systems which can cope with dynamic changes in volume and variety of products. They are so called as holonic manufacturing systems, autonomous distributed manufacturing systems, random manufacturing systems and biological manufacturing systems. The objective of the present research is to develop an integrated process planning and scheduling system which is applicable to the holonic manufacturing systems. In the previous paper, procedures were proposed to recognize the machining features from the product model. A systematic method is proposed, in this paper, to select suitable machining sequences and sequences of machining equipment, by applying the genetic algorithm (GA) and the dynamic programming (DP) methods.

  19. Manufacturing Methods and Technology Application of High Energy Laser Welding Process.

    DTIC Science & Technology

    1980-08-01

    bead shape and appearance to welds made by the automatic GTAW process. 4. Lens-to-Work Distance The effect of lens to workpiece distance is...REPORT RL-82-2 0 MANUFACTURING METHODS AND TECHNOLOGY APPLICATION _OF HIGH ENERGY LASER WELDING PROCESS 0John V. Melonas Structures Directorate, U S...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Manufacturing Methods and Technology Application Final Technical Report of High Energy Laser Welding

  20. Optimization of steel bar manufacturing process using six sigma

    NASA Astrophysics Data System (ADS)

    Naeem, Khawar; Ullah, Misbah; Tariq, Adnan; Maqsood, Shahid; Akhtar, Rehman; Nawaz, Rashid; Hussain, Iftikhar

    2016-03-01

    Optimization of a manufacturing process results in higher productivity and reduced wastes. Production parameters of a local steel bar manufacturing industry of Pakistan is optimized by using six Sigma-Define, measure, analyze, improve, and controlmethodology. Production data is collected and analyzed. After analysis, experimental design result is used to identify significant factors affecting process performance. The significant factors are controlled to optimized level using two-level factorial design method. A regression model is developed that helps in the estimation of response under multi variable input values. Model is tested, verified, and validated by using industrial data collected at a local steel bar manufacturing industry of Peshawar(Khyber Pakhtunkhwa, Pakistan). The sigma level of the manufacturing process is improved to 4.01 from 3.58. The novelty of the research is the identification of the significant factors along with the optimum levels that affects the process yield, and the methodology to optimize the steel bar manufacturing process.

  1. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  2. Wellbore manufacturing processes for in situ heat treatment processes

    DOEpatents

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  3. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  4. Net shape processing of alnico magnets by additive manufacturing

    DOE PAGES

    White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah; ...

    2017-06-07

    Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less

  5. Final Regulations to Reduce Toxic Air Pollutant Emissions from Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Fact Sheets

    EPA Pesticide Factsheets

    This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing

  6. Systematic Classifier OF Manufacturing Processes For Medium Size Shafts

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Lasukov, A. A.; Walter, A. V.; Arkhipova, D. A.

    2016-04-01

    The article considers some issues of increasing efficiency of manufacturing preparation as a part of manufacturing processes design at a machine building enterprise. A tree of routing manufacturing processes for machining shafts of medium size is described as an example of clustering parts according to their structural and technological characteristics. Processing route for a certain part included into a certain group is developed through choosing machining operations for elementary surfaces of a part from the process route developed for a template representative of the group.

  7. Current manufacturing processes of drug-eluting sutures.

    PubMed

    Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine

    2017-02-24

    Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.

  8. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.

  9. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.

  10. Environmental Strategies for Sustainable Manufacturing Process of Composites

    NASA Astrophysics Data System (ADS)

    Kireitseu, Maxim

    2017-09-01

    This research is focused on the strategic road mapping of composite manufacturing process and aims to understand the sustainability and related costs of composite part manufacturing. A manufacturing route of a serial automotive component is mapped and modelled using the following steps: (1) a holistic, cradle to grave product model for both manuflacturing and assembly operations, (2) development of life-cycle model and analytical tools, and (3) direct data collection and measure of environmental impacts of manufacturing. Besides the theoretical outcomes recommendations are given considering further recycling and recovery of materials so as to provide further direction for sustainability research in carbon and glass fibre composites.

  11. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  12. SDIO producibility and manufacturing intelligent processing programs

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Greg

    1992-04-01

    SDIO has to fashion a comprehensive strategy to insert the capability of an industrial base into ongoing design tradeoffs. This means that there is not only a need to determine if something can be made to the precision needed to meet system performance, but also what changes need to be made in that industry sector to develop a deterministic approach to fabrication precision components. Developing and introducing advanced production and quality control systems is part of this success. To address this situation, SDIO has developed the MODIL (Manufacturing Operations Development and Integration Labs) program. MODILs were developed into three areas: Survivable Optics, Electronics and Sensors, and Spacecraft Fabrication and Test.

  13. SDIO Producibility and Manufacturing Intelligent Processing Programs

    NASA Technical Reports Server (NTRS)

    Stottlemyer, Greg

    1992-01-01

    SDIO has to fashion a comprehensive strategy to insert the capability of an industrial base into ongoing design tradeoffs. This means that there is not only a need to determine if something can be made to the precision needed to meet system performance, but also what changes need to be made in that industry sector to develop a deterministic approach to fabrication precision components. Developing and introducing advanced production and quality control systems is part of this success. To address this situation, SDIO has developed the MODIL (Manufacturing Operations Development and Integration Labs) program. MODILs were developed into three areas: Survivable Optics, Electronics and Sensors, and Spacecraft Fabrication and Test.

  14. SDIO Producibility and Manufacturing Intelligent Processing Programs

    NASA Technical Reports Server (NTRS)

    Stottlemyer, Greg

    1992-01-01

    SDIO has to fashion a comprehensive strategy to insert the capability of an industrial base into ongoing design tradeoffs. This means that there is not only a need to determine if something can be made to the precision needed to meet system performance, but also what changes need to be made in that industry sector to develop a deterministic approach to fabrication precision components. Developing and introducing advanced production and quality control systems is part of this success. To address this situation, SDIO has developed the MODIL (Manufacturing Operations Development and Integration Labs) program. MODILs were developed into three areas: Survivable Optics, Electronics and Sensors, and Spacecraft Fabrication and Test.

  15. Effects of Manufacturing Processes and In-Service Temperature Variations on the Properties of TRIP Steels

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-04-30

    This paper examines key aspects of the manufacturing process that “Transformation Induced Plasticity” (TRIP) steels would be exposed to, and systematically evaluate how the forming and thermal histories affect final strength and ductility of the material. The paper evaluates in-service temperature variations, such as under hood and hot/cold cyclic conditions, to determine whether these conditions influence final strength, ductility and energy absorption characteristics of several available TRIP steel grades. As part of the manufacturing thermal environment evaluations, stamping process thermal histories are included in the studies. As part of the in-service conditions, different pre-straining levels are also included. Materials from four steel suppliers world wide are examined. The material properties are established over a full range of expected thermal histories and selected loading modes. Establishing these relationships will allow OEM designers to select TRIP steels for proper vehicle applications, and to specify manufacturing process conditions that yield reliable final material property levels.

  16. Design and manufacturing tools for laser beam processing

    NASA Astrophysics Data System (ADS)

    Kaierle, Stefan; Fuerst, B.; Kittel, Jochen; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    1999-08-01

    Today's situation with increasingly shorter time-to-market limits and growing variant spectra calls for advanced methods in the manufacturing domain. A big potential for gaining faster and better manufacturing results lies in the application of offline programming, especially if processing small lot sizes. Offline programming offers as main advantage a notable reduction of deadlock times of manufacturing systems. Applying this technology there is no time consumptive teach-in on the robots necessary. A technology module based on CAD/CAM technique--mainly for 3D welding applications--is described which permits to carry out offline path and process planning including simulation and visualization of the processing task.

  17. Clean salt process final report

    SciTech Connect

    Herting, D.L.

    1996-09-30

    A process has been demonstrated in the laboratory for separating clean, virtually non-radioactive sodium nitrate from Hanford tank waste using fractional crystallization. The name of the process is the Clean Salt Process. Flowsheet modeling has shown that the process is capable of reducing the volume of vitrified low activity waste (LAW) by 80 to 90 %. Construction of the Clean Salt processing plant would cost less than $1 10 million, and would eliminate the need for building a $2.2 billion large scale vitrification plant planned for Privatization Phase 11. Disposal costs for the vitrified LAW would also be reduced by an estimated $240 million. This report provides a summary of five years of laboratory and engineering development activities, beginning in fiscal year 1992. Topics covered include laboratory testing of a variety of processing options; proof-of-principle demonstrations with actual waste samples from Hanford tanks 241-U-110 (U-110), 241-SY-101 (101-SY), and 241-AN-102 (102-AN); descriptions of the primary solubility phase diagrams that govem the process; a review of environmental regulations governing disposition of the reclaimed salt and an assessment of the potential beneficial uses of the reclaimed salt; preliminary plant design and construction cost estimates. A detailed description is given for the large scale laboratory demonstration of the process using waste from tank 241-AW-101 (101-AW), a candidate waste for 0044vitrification during Phase I Privatization.

  18. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    NASA Astrophysics Data System (ADS)

    Ilyas, Ismet P.

    2013-06-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  19. Development of a Launch Vehicle Manufacturing Process. Chapter 4

    NASA Technical Reports Server (NTRS)

    Vickers, John; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    One of the goals of this chapter is to provide sufficient information so that you can develop a manufacturing process for a potential launch vehicle. With the variety of manufacturing options available, you might ask how this can possibly be done in the span of a single chapter. Actually, it will be quite simple because a basic manufacturing process is nothing more than a set of logical steps that are iterated until they produce a desired product. Although these statements seem simple and logical, don't let this simplicity fool you. Manufacturing problems with launch vehicles and their subassemblies have been the primary cause of project failures because the vehicle concept delivered to the manufacturing floor could not be built as designed.

  20. Enhancing Manufacturing Process Education via Computer Simulation and Visualization

    ERIC Educational Resources Information Center

    Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter

    2014-01-01

    Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…

  1. Engineering aspects of rate-related processes in food manufacturing.

    PubMed

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  2. Defective Reduction in Frozen Pie Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Nooted, Oranuch; Tangjitsitcharoen, Somkiat

    2017-06-01

    The frozen pie production has a lot of defects resulting in high production cost. Failure mode and effect analysis (FMEA) technique has been applied to improve the frozen pie process. Pareto chart is also used to determine the major defects of frozen pie. There are 3 main processes that cause the defects which are the 1st freezing to glazing process, the forming process, and the folding process. The Risk Priority Number (RPN) obtained from FMEA is analyzed to reduce the defects. If RPN of each cause exceeds 45, the process will be considered to be improved and selected for the corrective and preventive actions. The results showed that RPN values decreased after the correction. Therefore, the implementation of FMEA technique can help to improve the performance of frozen pie process and reduce the defects approximately 51.9%.

  3. Manufacturing process of a multifunctional composite panel with nanocharged matrix

    NASA Astrophysics Data System (ADS)

    Volponi, R.; Spena, P.; De Nicola, F.; Guadagno, L.; Raimondo, M.; Vietri, U.

    2016-05-01

    This paper proposes an effective manufacturing process developed to overcome drawbacks that can occur using a nanofilled resin as matrix in aeronautical composites. Nanoparticles embedded in epoxy resins impregnating carbon fibers are able to improve a composite with new desired functionalities. As soon as the nanoparticles are dispersed in a resin, the viscosity dizzily rises and usually, the traditional manufacturing processes are not suitable to obtain a good quality of the manufactured panels. An alternative method has been developed starting from the Resin Film Infusion (RFI) process. This method has been firstly tested on several flat panels, and then it has been transferred on a more complex shaped panel with three stringers. In this work, a flame resistant resin based on a tetrafunctional epoxy precursor filled with carbon nanotubes to increase electrical conductivity, has been used for the panel manufacturing.

  4. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  5. Industrial web inspection for manufacturing process understanding and control

    NASA Astrophysics Data System (ADS)

    Xu, Wenyuan; Floeder, Steven P.

    1999-03-01

    Many industrial manufacturing processes are not well understood and are treated as `black art' with few experts able to control the process and ensure product quality. However, modern manufacturing companies are finding it increasingly difficult to compete in the global marketplace without better process understanding and control. Automated inspection systems for general manufacturing have become more feasible through technical advances, primarily in sensor and computing technology. However, these systems have been used almost exclusively for the detection and subsequent removal of well defined, discrete defects from the product; thus guaranteeing high quality for the customer. This paper describes a larger opportunity to affect operations by employing web inspection techniques to dynamically analyze manufacturing conditions rather than just detecting the presence of defective material. One can then keep the process under better control, thereby eliminating defects, ensuring product quality, and optimizing manufacturing time on the production line. Specific image and data processing techniques will be illustrated including product uniformity metrics, automatic determination of thresholds for blob analysis, and localization of repeating defects within production data. The benefit of these techniques will be demonstrated through `real-world' examples of web-based manufactured products.

  6. Small-scale manufacture of process cheese using a rapid visco analyzer.

    PubMed

    Kapoor, R; Metzger, L E

    2005-10-01

    Numerous formulation and processing parameters influence the functional properties of process cheese. Recently, a small-scale (25 g) manufacturing and analysis method was developed using a rapid visco analyzer (RVA), which was designed to evaluate the functional properties of process cheese when subjected to various formulations and processing conditions. Although this method successfully manufactured process cheese, there was a significant difference in the functional properties of the process cheese compared with process cheese manufactured on a pilot scale. In the present study, adjustments in the RVA methodology involving the RVA processing conditions, preblend preparation, and texture profile analysis (TPA) techniques for the final process cheese were investigated. Fourteen samples of pasteurized processed cheese food (PCF) were manufactured from 14 different preblends. Each pre-blend was prepared using 1 of the 14 different natural cheeses and was balanced for moisture, fat, and salt. Each of these 14 preblends was split into 3 portions and each portion was subjected to 3 different manufacturing treatments. The first treatment was manufactured in a pilot-scale Blentech twin screw (BTS) cooker, and the remaining 2 treatments were manufactured in an RVA with different processing profiles. The RVA treatments were produced in triplicate. The resulting process cheeses were analyzed for moisture and functional properties. Texture profile analysis and RVA melt analyses were performed on all PCF treatments. Additionally, for the RVA treatments, the data for time of emulsification and end apparent viscosity during RVA manufacture were collected and recorded. The functional properties of the PCF manufactured using the RVA treatments showed good correlation with the functional properties of the PCF produced on the pilot scale. Additionally, the end apparent viscosity during RVA manufacture was correlated with the functional properties of the process cheese. Consequently

  7. Integrated study of sustainability technological-economic in manufacturing processes

    NASA Astrophysics Data System (ADS)

    Peinado, B.; Sevilla, L.; Sebastián, M. A.

    2012-04-01

    Nowadays, some of the key aspects to consider during a manufacturing process are the ones related to its energy study. Choosing the most appropriate process allows to optimize not only technological and economic, but also it influence in sustainability and suitability of the process. In the current work a comparative technological-economic analysis between forming processes and machining processes is developed. We can find that drawing (forming process) has more advantages in most cases.

  8. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  9. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  10. Amorphous solid dispersions: Rational selection of a manufacturing process.

    PubMed

    Vasconcelos, Teófilo; Marques, Sara; das Neves, José; Sarmento, Bruno

    2016-05-01

    Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline.

  11. Encapsulation Processing and Manufacturing Yield Analysis

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    Evaluation of the ethyl vinyl acetate (EVA) encapsulation system is presented. This work is part of the materials baseline needed to demonstrate a 30 year module lifetime capability. Process and compound variables are both being studied along with various module materials. Results have shown that EVA should be stored rolled up, and enclosed in a plastic bag to retard loss of peroxide curing agents. The TBEC curing agent has superior shelf life and processing than the earlier Lupersol-101 curing agent. Analytical methods were developed to test for peroxide content, and experimental methodologies were formalized.

  12. Modeling of additive manufacturing processes for metals: Challenges and opportunities

    DOE PAGES

    Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...

    2017-01-09

    Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.

  13. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  14. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  15. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    NASA Astrophysics Data System (ADS)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  16. NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.

  17. Modeling Manufacturing Processes to Mitigate Technological Risk

    SciTech Connect

    Allgood, G.O.; Manges, W.W.

    1999-10-24

    An economic model is a tool for determining the justifiable cost of new sensors and subsystems with respect to value and operation. This process balances the R and D costs against the expense of maintaining current operations and allows for a method to calculate economic indices of performance that can be used as control points in deciding whether to continue development or suspend actions. The model can also be used as an integral part of an overall control loop utilizing real-time process data from the sensor groups to make production decisions (stop production and repair machine, continue and warn of anticipated problems, queue for repairs, etc.). This model has been successfully used and deployed in the CAFE Project. The economic model was one of seven (see Fig. 1) elements critical in developing an investment strategy. It has been successfully used in guiding the R and D activities on the CAFE Project, suspending activities on three new sensor technologies, and continuing development o f two others. The model has also been used to justify the development of a new prognostic approach for diagnosing machine health using COTS equipment and a new algorithmic approach. maintaining current operations and allows for a method to calculate economic indices of performance that can be used as control points in deciding whether to continue development or suspend actions. The model can also be used as an integral part of an overall control loop utilizing real-time process data from the sensor groups to make production decisions (stop production and repair machine, continue and warn of anticipated problems, queue for repairs, etc.).

  18. A novel process for manufacture of methanol

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1990-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol by a novel process. During the last quarter, the effect of potassium methoxide and Cu-chromite loading on the MeOH formation rate was investigated. The rate obtained with Cu-chromite was compared to that using Cu-ZnO as catalyst. Work also continued on the modification of the experimental equipment to permit on-line monitoring of liquid and gas compositions.

  19. Planning and scheduling for agile manufacturers: The Pantex Process Model

    SciTech Connect

    Kjeldgaard, E.A.; Jones, D.A.; List, G.F.; Tumquist, M.A.

    1998-02-01

    Effective use of resources that are shared among multiple products or processes is critical for agile manufacturing. This paper describes the development and implementation of a computerized model to support production planning in a complex manufacturing system at the Pantex Plant, a US Department of Energy facility. The model integrates two different production processes (nuclear weapon disposal and stockpile evaluation) that use common facilities and personnel at the plant. The two production processes are characteristic of flow-shop and job shop operations. The model reflects the interactions of scheduling constraints, material flow constraints, and the availability of required technicians and facilities. Operational results show significant productivity increases from use of the model.

  20. Developing the Manufacturing Process for VCE: Binder for Filled Elastomers

    SciTech Connect

    E.A. Eastwood

    2009-11-01

    This topical report presents work completed to re-establish the manufacturing process for poly(ethylene-co-vinyl acetate-co-vinyl alcohol) terpolymer called VCE. The new VCE formulations meet the material requirements and have lower melt viscosity, which results in improved production for the next assembly. In addition, the reaction conditions were optimized in order to achieve a satisfactory conversion rate to enable production in a single work shift. Several equipment and process changes were made to yield a manufacturing process with improved product quality, yield, efficiency, and worker safety.

  1. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa

    2014-05-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) characteristic in the define stratum. The next stratum constitutes the collection of dimensional measurement data of the CTQ characteristic identified. This is followed by the analysis and improvement strata where the various quality control tools like Ishikawa diagram, physical mechanism analysis, failure modes effects analysis and analysis of variance are applied. Finally, the process monitoring charts are deployed at the workplace for regular monitoring and control of the concerned CTQ characteristic. By adopting DMAIC approach, standard deviation is reduced from 0.003 to 0.002. The process potential capability index ( C P) values improved from 1.29 to 2.02 and the process performance capability index ( C PK) values improved from 0.32 to 1.45, respectively.

  2. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    ERIC Educational Resources Information Center

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  3. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    ERIC Educational Resources Information Center

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  4. Manufacturing Processes for Various Shaped Consumable Ordnance Products

    DTIC Science & Technology

    1982-10-01

    Spacers Spiral wrapping Felting...manufacture of a variety of different shaped combustible ordnance products. Matched metal molding and spiral wrapping processes were utilized...higher product off-press weight and slick feeling of the product’s outer surface. The process of spiral wrapping with nitro- cellulose paper was

  5. Continuous Flow in Labour-Intensive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Pacheco Eng., Jhonny; Carbajal MSc., Eduardo; Stoll-Ing., Cesar, Dr.

    2017-06-01

    A continuous-flow manufacturing represents the peak of standard production, and usually it means high production in a strict line production. Furthermore, low-tech industry demands high labour-intensive, in this context the efficient of the line production is tied at the job shop organization. Labour-intensive manufacturing processes are a common characteristic for developing countries. This research aims to propose a methodology for production planning in order to fulfilment a variable monthly production quota. The main idea is to use a clock as orchestra director in order to synchronize the rate time (takt time) of customer demand with the manufacturing time. In this way, the study is able to propose a stark reduction of stock in process, over-processing, and unnecessary variability.

  6. Application of Contact Mode AFM to Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Giordano, Michael A.; Schmid, Steven R.

    A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.

  7. Ultrasonic-assisted manufacturing processes: variational model and numerical simulations.

    PubMed

    Siddiq, Amir; El Sayed, Tamer

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature.

  8. A factory concept for processing and manufacturing with lunar material

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  9. A factory concept for processing and manufacturing with lunar material

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  10. 340B Drug Pricing Program Ceiling Price and Manufacturer Civil Monetary Penalties Regulation. Final rule.

    PubMed

    2017-01-05

    The Health Resources and Services Administration (HRSA) administers section 340B of the Public Health Service Act (PHSA), referred to as the "340B Drug Pricing Program" or the "340B Program." This final rule will apply to all drug manufacturers that are required to make their drugs available to covered entities under the 340B Program. This final rule sets forth the calculation of the 340B ceiling price and application of civil monetary penalties (CMPs).

  11. Integration Framework of Process Planning based on Resource Independent Operation Summary to Support Collaborative Manufacturing

    SciTech Connect

    Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo; Jones, Albert

    2004-06-01

    In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resource Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.

  12. Sustainable manufacturing: Effect of material selection and design on the environmental impact in the manufacturing process

    NASA Astrophysics Data System (ADS)

    Hazwan Syafiq Harun, Mohd; Taha, Zahari; Salaam, Hadi Abdul

    2013-12-01

    The environmental impact of a manufacturing process is also dependent on the selection of the material and design of a product. This is because the manufacturing of a product is directly connected to the amount of carbon emitted in consuming the electrical energy for that manufacturing process. The difference in the general properties of materials such as strength, hardness and impact will have significant effect on the power consumption of the machine used to complete the product. In addition the environmental impact can also be reduced if the proposed designs use less material. In this study, an LCA tool called Eco-It is used. Evaluate the environmental impact caused by manufacturing simple jig. A simple jig with 4 parts was used as a case study. Two experiments were carried out. The first experiment was to study the environmental effects of different material, and the second experiment was to study the environmental impact of different design. The materials used for the jig are Aluminium and mild steel. The results showed a decrease in the rate of carbon emissions by 60% when Aluminium is use instead from mild steel, and a decrease of 26% when the-design is modified.

  13. Monitoring Chlorfenapyr in Green Tea during the Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Takahashi, Atsushi; Kishi, Yasuhiro; Ogawa, Hideyuki; Nakajima, Kenta

    In order to clarify the change in the leaves of agricultural chemicals during the green tea manufacturing process, we analyzed chlorfenapyr in tea leaves obtained at each processing stage by using an immunoassay. Chlorfenapyr is a novel broad-spectrum insecticide-miticide registered in many countries for the control of various insects and mite pests. Chlorfenapyr is stable and persistent in the environment. Furthermore, it is widely applied for tea cultivation in Japan. Therefore, we selected chlorfenapyr for analysis in this study. In the unrefined tea (Aracha) manufacturing process, the highest level of chlorfenapyr was 16.5 ppm, which was obtained in tea powder separated from leaves at the secondary drying stage. However, the level at the other processing stages in tea leaves was approximately 9 ppm, and no significant difference in the chlorfenapyr level was detected between the processing stages. After Aracha processing, tea leaves are classified on the basis of their size, shape and color; this is the refined tea (Shiagecha) manufacturing process. After this process, although a high level of chlorfenapyr was detected in bud tea (8.1 ppm) and honcha (on-grade tea; 6.2 ppm), the level in the other classified teas was approximately 4.0 ppm. Thus, this paper shows the difference in the chlorfenapyr level in tea leaves obtained at each processing stage. This indicated that there are significant differences in the agricultural chemical levels between the green tea processing stages.

  14. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  15. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  16. Thermodynamic analysis of resources used in manufacturing processes.

    PubMed

    Gutowski, Timothy G; Branham, Matthew S; Dahmus, Jeffrey B; Jones, Alissa J; Thiriez, Alexandre

    2009-03-01

    In this study we use a thermodynamic framework to characterize the material and energy resources used in manufacturing processes. The analysis and data span a wide range of processes from "conventional" processes such as machining, casting, and injection molding, to the so-called "advanced machining" processes such as electrical discharge machining and abrasive waterjet machining, and to the vapor-phase processes used in semiconductor and nanomaterials fabrication. In all, 20 processes are analyzed. The results show that the intensity of materials and energy used per unit of mass of material processed (measured either as specific energy or exergy) has increased by at least 6 orders of magnitude over the past several decades. The increase of material/energy intensity use has been primarily a consequence of the introduction of new manufacturing processes, rather than changes in traditional technologies. This phenomenon has been driven by the desire for precise small-scale devices and product features and enabled by stable and declining material and energy prices over this period. We illustrate the relevance of thermodynamics (including exergy analysis) for all processes in spite of the fact that long-lasting focus in manufacturing has been on product quality--not necessarily energy/material conversion efficiency. We promote the use of thermodynamics tools for analysis of manufacturing processes within the context of rapidly increasing relevance of sustainable human enterprises. We confirm that exergy analysis can be used to identify where resources are lost in these processes, which is the first step in proposing and/or redesigning new more efficient processes.

  17. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2016-12-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  18. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  19. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  20. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  1. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  2. All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis

    PubMed Central

    Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L.; Terés, Lluís; Baumann, Reinhard R.

    2016-01-01

    We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement. PMID:27649784

  3. All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis

    NASA Astrophysics Data System (ADS)

    Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L.; Terés, Lluís; Baumann, Reinhard R.

    2016-09-01

    We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.

  4. All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis.

    PubMed

    Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L; Terés, Lluís; Baumann, Reinhard R

    2016-09-21

    We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.

  5. Relational-database model for improving quality assurance and process control in a composite manufacturing environment

    NASA Astrophysics Data System (ADS)

    Gentry, Jeffery D.

    2000-05-01

    A relational database is a powerful tool for collecting and analyzing the vast amounts of inner-related data associated with the manufacture of composite materials. A relational database contains many individual database tables that store data that are related in some fashion. Manufacturing process variables as well as quality assurance measurements can be collected and stored in database tables indexed according to lot numbers, part type or individual serial numbers. Relationships between manufacturing process and product quality can then be correlated over a wide range of product types and process variations. This paper presents details on how relational databases are used to collect, store, and analyze process variables and quality assurance data associated with the manufacture of advanced composite materials. Important considerations are covered including how the various types of data are organized and how relationships between the data are defined. Employing relational database techniques to establish correlative relationships between process variables and quality assurance measurements is then explored. Finally, the benefits of database techniques such as data warehousing, data mining and web based client/server architectures are discussed in the context of composite material manufacturing.

  6. The metallurgy and processing science of metal additive manufacturing

    DOE PAGES

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; ...

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  7. The metallurgy and processing science of metal additive manufacturing

    SciTech Connect

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developed for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.

  8. Evaluation of options for process sequences. [in solar cell manufacturing

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Goldman, H. M.; Lawson, A. C.

    1978-01-01

    A methodology is being developed to ease the comparative evaluation of competing options in the process sequence for the manufacture of photovoltaic solar energy utilization systems. This evaluation will largely involve process economic analyses but will place equal emphasis on other characteristics, including energy consumption and environmental effects of the process options. Early analyses have been performed for the energy consumption in the arc furnace reduction of SiO2, for the costs and energy consumption in CZ crystal pulling and various slicing processes, and for the total energy consumption of process sequence through the completed module.

  9. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    SciTech Connect

    Traub, Richard J.

    2008-10-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness.

  10. Heliostat Manufacturing for Near-Term Markets: Phase II Final Report

    SciTech Connect

    1998-12-21

    This report describes a project by Science Applications International Corporation and its subcontractors Boeing/Rocketdyne and Bechtel Corp. to develop manufacturing technology for production of SAIC stretched membrane heliostats. The project consists of three phases, of which two are complete. This first phase had as its goals to identify and complete a detailed evaluation of manufacturing technology, process changes, and design enhancements to be pursued for near-term heliostat markets. In the second phase, the design of the SAIC stretched membrane heliostat was refined, manufacturing tooling for mirror facet and structural component fabrication was implemented, and four proof-of-concept/test heliostats were produced and installed in three locations. The proposed plan for Phase III calls for improvements in production tooling to enhance product quality and prepare increased production capacity. This project is part of the U.S. Department of Energy's Solar Manufacturing Technology Program (SolMaT).

  11. “Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Herderick, Edward; Mishra, Rajiv S.; Sears, James

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with the aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.

  12. “Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Herderick, Edward; Mishra, Rajiv S.; Sears, James

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with the aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.

  13. “Additive Manufacturing: Building the Pathway Towards Process and Material Qualification”

    DOE PAGES

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...

    2016-06-14

    The potential benefits of metal additive manufacturing, as compared with more traditional, subtractive-only approaches, has created excitement within design circles seeking to take advantage of the ability to build and repair complex shapes, to integrate or consolidate multiple parts and minimize joining concerns, and to locally tailor material properties to increase functionality. Tempering the excitement of designers, however, has been concerns with the material deposited by the process. It is not enough for a part to ‘look’ right from a geometric perspective. Rather, the metallurgical aspects associated with the material being deposited must ‘look’ and ‘behave’ correctly along with themore » aforementioned geometric accuracy. Finally, without elucidation of the connections between processing, microstructure, properties, and performance from a materials science perspective, metal additive manufacturing will not realize its potential to change the manufacturing world for property and performance-critical engineering applications.« less

  14. Process to manufacture effervescent tablets: air forced oven melt granulation.

    PubMed

    Yanze, F M; Duru, C; Jacob, M

    2000-12-01

    In the present study we apply melt granulation in an air forced oven, called "are forced oven melt granulation" to the single-stage manufacture of effervescent granules consisting of anhydrous citric acid (43.2%) and sodium bicarbonate (56.8%) in order to make tablets. This study established that process parameters such as concentration of PEG 6000, residence time in the air forced oven, fineness of PEG 6000, fineness of the initial effervescent mix and efficiency of two lubricants markedly influenced several granule and tablet characteristics. The granules ready to be compressed into tablets were stable for 7 days at 60% RH/18 degrees C. It is a dry, simple, rapid, effective, economical, reproducible process particularly well suited to the manufacture of effervescent granules which are easily compressed into effervescent tablets. Of all the formulations tested, only formulations B2 and E2 melt granulated for 30 minutes gave tablets which had optimum compression characteristics without processing problems during compression.

  15. Scaling up of manufacturing processes of recycled carpet based composites

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Krishnan

    2011-12-01

    In this work, feasibility of recycling post-consumer carpets using a modified vacuum assisted resisted molding process into large-scale components was successfully demonstrated. The scale up also included the incorporation of nano-clay films in the carpet composites. It is expected that the films will enhance the ability of the composite to withstand environmental degradation and also serve as a fire retardant. Low-cost resins were used to fabricate the recycled carpet-based composites. The scale up in terms of process was achieved by manufacturing composites without a hot press and thereby saving additional equipment cost. Mechanical and physical properties were evaluated. Large-scale samples demonstrated mechanical properties that were different from results from small samples. Acoustic tests indicate good sound absorption of the carpet composite. Cost analysis of the composite material based on the cost of the raw materials and the manufacturing process has been presented.

  16. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  17. Hot-gas filter manufacturing assessments: Volume 5. Final report, April 15, 1997

    SciTech Connect

    Boss, D.E.

    1997-12-31

    The development of advanced filtration media for advanced fossil-fueled power generating systems is a critical step in meeting the performance and emissions requirements for these systems. While porous metal and ceramic candle-filters have been available for some time, the next generation of filters will include ceramic-matrix composites (CMCs), intermetallic alloys, and alternate filter geometries. The goal of this effort was to perform a cursory review of the manufacturing processes used by 5 companies developing advanced filters from the perspective of process repeatability and the ability for their processes to be scale-up to production volumes. It was found that all of the filter manufacturers had a solid understanding of the product development path. Given that these filters are largely developmental, significant additional work is necessary to understand the process-performance relationships and projecting manufacturing costs. While each organization had specific needs, some common among all of the filter manufacturers were access to performance testing of the filters to aide process/product development, a better understanding of the stresses the filters will see in service for use in structural design of the components, and a strong process sensitivity study to allow optimization of processing.

  18. Photovoltaic manufacturing technology, Phase 1. Final technical report, 1 May 1991--10 May 1991

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS ``Eureka`` facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the ``Eureka`` facility to Chronar`s ``batch`` plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  19. Model based control of polymer composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Potaraju, Sairam

    2000-10-01

    The objective of this research is to develop tools that help process engineers design, analyze and control polymeric composite manufacturing processes to achieve higher productivity and cost reduction. Current techniques for process design and control of composite manufacturing suffer from the paucity of good process models that can accurately represent these non-linear systems. Existing models developed by researchers in the past are designed to be process and operation specific, hence generating new simulation models is time consuming and requires significant effort. To address this issue, an Object Oriented Design (OOD) approach is used to develop a component-based model building framework. Process models for two commonly used industrial processes (Injected Pultrusion and Autoclave Curing) are developed using this framework to demonstrate the flexibility. Steady state and dynamic validation of this simulator is performed using a bench scale injected pultrusion process. This simulator could not be implemented online for control due to computational constraints. Models that are fast enough for online implementation, with nearly the same degree of accuracy are developed using a two-tier scheme. First, lower dimensional models that captures essential resin flow, heat transfer and cure kinetics important from a process monitoring and control standpoint are formulated. The second step is to reduce these low dimensional models to Reduced Order Models (ROM) suited for online model based estimation, control and optimization. Model reduction is carried out using Proper Orthogonal Decomposition (POD) technique in conjunction with a Galerkin formulation procedure. Subsequently, a nonlinear model-based estimation and inferential control scheme based on the ROM is implemented. In particular, this research work contributes in the following general areas: (1) Design and implementation of versatile frameworks for modeling and simulation of manufacturing processes using object

  20. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  1. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  2. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a...

  3. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  4. Pulp, paper, and paperboard industry -- Background information for promulgated air emission standards: Manufacturing processes at kraft, sulfite, soda, semi-chemical, mechanical, and secondary and non-wood fiber mills. Final report

    SciTech Connect

    1997-10-01

    National emission standards for hazardous air pollutants (NESHAP) are being promulgated for the pulp and paper industry under authority of Section 112(d) of the Clean Air Act as amended in 1990. This background information document provides technical information and analyses used in the development of the promulgated pulp and paper NESHAP, and contains responses to comments from the proposed rule. This document covers air emission controls for wood pulping and bleaching processes at pulp mills and integrated mills (i.e., mills that combine on-site production of both pulp and paper).

  5. Sustainable commercial nanocrystalline cellulose manufacturing process with acid recycling.

    PubMed

    Sarma, Saurabh Jyoti; Ayadi, Mariem; Brar, Satinder Kaur; Berry, Richard

    2017-01-20

    Nanocrystalline cellulose (NCC) is a biomaterial having potential applications in a wide range of industries. It is industrially produced by concentrated acid hydrolysis of cellulosic materials. In this process, the sulfuric acid rich liquor can be concentrated and reused. However, removal of sugar monomers and oligomers is necessary for such recycling. Membrane and ion exchange technology can be employed to remove sugars; however, such technologies are not efficient in meeting the quality required to recycle the acid solution. As a part of the present study, activated carbon (AC) has been evaluated as an adsorbent for sugar removal from the acidic solution generated during commercial nanocrystalline cellulose manufacturing process. Almost complete removal of sugar can be achieved by this approach. The maximum sugar removal observed during this study was 3.4g/g of AC. Based on this finding, a sustainable method has been proposed for commercial nanocrystalline cellulose manufacturing.

  6. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  7. Robust control of lithographic process in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Kang, Wei; Mao, John

    2005-05-01

    In this paper, a stability analysis is conducted for several feedback controllers of photolithography processes. We emphasize the stability of process controllers in the presence of model mismatch, and other uncertainties such as system drift and unknown noise. Real data of critical dimension (CD) in shallow trench isolation area from an Intel manufacturing fab is used for model analysis. The feedbacks studied in this paper include a controller based on an adaptive model, and several controllers based on existing estimation methods such as EWMA, extended EWMA, and d-EWMA. Both theoretical analysis and computer simulations are presented to show the stability of the controlled process under these feedbacks.

  8. Small Scale Turbopump Manufacturing Technology and Material Processes

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  9. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE PAGES

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  10. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Mishra, Rajiv; Sears, James

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. This symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.

  11. Perspectives on the design of safer nanomaterials and manufacturing processes

    PubMed Central

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-01-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles that includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial. PMID:26435688

  12. Perspectives on the design of safer nanomaterials and manufacturing processes.

    PubMed

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-09-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles that includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.

  13. Perspectives on the design of safer nanomaterials and manufacturing processes

    NASA Astrophysics Data System (ADS)

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-09-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.

  14. Development and characterization of a cell culture manufacturing process using quality by design (QbD) principles.

    PubMed

    Marasco, Daniel M; Gao, Jinxin; Griffiths, Kristi; Froggatt, Christopher; Wang, Tongtong; Wei, Gan

    2014-01-01

    The principles of quality by design (QbD) have been applied in cell culture manufacturing process development and characterization in the biotech industry. Here we share our approach and practice in developing and characterizing a cell culture manufacturing process using QbD principles for establishing a process control strategy. Process development and characterization start with critical quality attribute identification, followed by process parameter and incoming raw material risk assessment, design of experiment, and process parameter classification, and conclude with a design space construction. Finally, a rational process control strategy is established and documented.

  15. Generation Of Manufacturing Routing And Operations Using Structured Knowledge As Basis To Application Of Computer Aided In Process Planning

    NASA Astrophysics Data System (ADS)

    Oswaldo, Luiz Agostinho

    2011-01-01

    The development of computer aided resources in automation of generation of manufacturing routings and operations is being mainly accomplished through the search of similarities between existent ones, resulting standard process routings that are grouped by analysis of similarities between parts or routings. This article proposes the development of manufacturing routings and operations detailment using a methodology which steps will define the initial, intermediate and final operations, starting from the rough piece and going up to the final specifications, that must have binunivocal relationship with the part design specifications. Each step will use the so called rules of precedence to link and chain the routing operations. The rules of precedence order and prioritize the knowledge of various manufacturing processes, taking in account the theories of machining, forging, assembly, and heat treatments; also, utilizes the theories of accumulation of tolerances and process capabilities, between others. It is also reinforced the availability of manufacturing databases related to process tolerances, deviations of machine tool- cutting tool- fixturing devices—workpiece, and process capabilities. The statement and application of rules of precedence, linking and joining manufacturing concepts in a logical and structured way, and their application in the methodology steps will make viable the utilization of structured knowledge instead of tacit one currently available in the manufacturing engineering departments, in the generation of manufacturing routing and operations. Consequently, the development of Computer Aided in Process Planning will be facilitated, due to the structured knowledge applied with this methodology.

  16. Rigid-Flex Printed Circuit Manufacturing process. A Project of the Manufacturing Technology Program.

    DTIC Science & Technology

    1979-06-30

    002- L -0146601SECURITY CLASSIFICATION OF TNIS PAGE (011ioe Data Bntered) UNCLASSIFIED SUc~hfTY cLAIsaicooricoi OF THIS PACE (IIo "a Mu9.,erva...n I irt I Olut I Av- ’ji L ~ iii1’_ t PREFACE Advances in manufacturing technology are continuing to be made as both new materials and processing...Peel, Laminate Exhibit 10 6 5 4 1 2 3 Cost 5 6 3 4 2 1 L Facility Rating 4 5 2 6 3 1 Indicates Failure/Test Requirements I/ Indicates After Etching T

  17. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  18. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  19. Media fill for validation of a good manufacturing practice-compliant cell production process.

    PubMed

    Serra, Marta; Roseti, Livia; Bassi, Alessandra

    2015-01-01

    According to the European Regulation EC 1394/2007, the clinical use of Advanced Therapy Medicinal Products, such as Human Bone Marrow Mesenchymal Stem Cells expanded for the regeneration of bone tissue or Chondrocytes for Autologous Implantation, requires the development of a process in compliance with the Good Manufacturing Practices. The Media Fill test, consisting of a simulation of the expansion process by using a microbial growth medium instead of the cells, is considered one of the most effective ways to validate a cell production process. Such simulation, in fact, allows to identify any weakness in production that can lead to microbiological contamination of the final cell product as well as qualifying operators. Here, we report the critical aspects concerning the design of a Media Fill test to be used as a tool for the further validation of the sterility of a cell-based Good Manufacturing Practice-compliant production process.

  20. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review

    PubMed Central

    Sfakianakis, Panagiotis; Tzia, Constatnina

    2014-01-01

    Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review. PMID:28234312

  1. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review.

    PubMed

    Sfakianakis, Panagiotis; Tzia, Constatnina

    2014-03-11

    Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review.

  2. Green tea flavour determinants and their changes over manufacturing processes.

    PubMed

    Han, Zhuo-Xiao; Rana, Mohammad M; Liu, Guo-Feng; Gao, Ming-Jun; Li, Da-Xiang; Wu, Fu-Guang; Li, Xin-Bao; Wan, Xiao-Chun; Wei, Shu

    2016-12-01

    Flavour determinants in tea infusions and their changes during manufacturing processes were studied using Camellia sinensis cultivars 'Bai-Sang Cha' ('BAS') possessing significant floral scents and 'Fuding-Dabai Cha' ('FUD') with common green tea odour. Metabolite profiling based on odour activity threshold revealed that 'BAS' contained higher levels of the active odorants β-ionone, linalool and its two oxides, geraniol, epoxylinalool, decanal and taste determinant catechins than 'FUD' (p<0.05). Enhanced transcription of some terpenoid and catechin biosynthetic genes in 'BAS' suggested genetically enhanced production of those flavour compounds. Due to manufacturing processes, the levels of linalool and geraniol decreased whereas those of β-ionone, linalool oxides, indole and cis-jasmone increased. Compared with pan-fire treatment, steam treatment reduced the levels of catechins and proportion of geraniol, linalool and its derivatives, consequently, reducing catechin-related astringency and monoterpenol-related floral scent. Our study suggests that flavour determinant targeted modulation could be made through genotype and manufacturing improvements.

  3. Experience curve compared with manufacturing processes for TKA.

    PubMed

    Sampath, Shameem A C; Davies, Howard; Voon, South

    2009-10-01

    In the experience curve concept set forth by the National Aeronautics and Space Administration (NASA), production time falls by a set percentage every time cumulative production doubles. NASA has established benchmark figures for different manufacturing processes, and we have used these figures in analyzing our first 240 navigated total knee arthroplasties for varus knees. Our experience curve was 93% (P < .001), which is similar to the experience curve (90%) for processes consisting of 25% hand assembly and 75% machining. We suggest that the experience curve may provide a guide for comparing different surgical teams and navigation systems and for resource allocation.

  4. ATAC Process Proof of Concept Final Report

    SciTech Connect

    Bri Rolston; Sarah Freeman

    2014-03-01

    Researchers at INL with funding from the Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) evaluated a novel approach for near real-time consumption of threat intelligence. Demonstration testing in an industry environment supported the development of this new process to assist the electric sector in securing their critical networks. This report provides the reader with an understanding of the methods used during this proof of concept project. The processes and templates were further advanced with an industry partner during an onsite assessment. This report concludes with lessons learned and a roadmap for final development of these materials for use by industry.

  5. Manufacture of die casting dies by hot isostatic pressing. CRADA final report

    SciTech Connect

    Viswanathan, S.; Ren, W.; Luk, K.; Brucher, H.G.

    1998-09-01

    The reason for this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Doehler-Jarvis was to investigate the manufacture die-casting dies with internal water-cooling lines by hot-isostatic pressing (HIPing) of H13 tool steel powder. The use of HIPing will allow the near-net-shape manufacture of dies and the strategic placement of water-cooling lines during manufacture. The production of near-net-shape dies by HIPing involves the generation of HIPing diagrams, the design of the can that can be used for HIPing a die with complex details, strategic placement of water-cooling lines in the die, computer modeling to predict movement of the water lines during HIPing, and the development of strategies for placing water lines in the appropriate locations. The results presented include a literature review, particle analysis and characterization of H13 tool steel powder, and modeling of the HIPing process.

  6. A senior manufacturing laboratory for determining injection molding process capability

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Plocinski, David

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This subject material is directed at an upper level undergraduate/graduate student in an Engineering or Engineering Technology program. It is assumed that the student has a thorough understanding of the process and quality control. The format of this laboratory does not follow that which is normally recommended because of the nature of process capability and that of the injection molding equipment and tooling. This laboratory is instead developed to be used as a point of departure for determining process capability for any process in either a quality control laboratory or a manufacturing environment where control charts, process capability, and experimental or product design are considered important topics.

  7. Application of Resin Transfer Molding to the Manufacture of Wind Turbine Blade Substructures. Final Report

    SciTech Connect

    Hedley, C. W.; Ritter, W. J.; Ashwill, T.

    2001-07-26

    The U.S. has generally lacked the capability for an iterative process of detailed structural design, manufacturing, and testing at the full blade level to achieve specific structural performance, cost, and weight targets. This project examined the effects that different composites processing methods had on the performance of representative blade substructures. In addition, the results of the testing of these substructures was used to validate NuMAD, the design tool developed at Sandia National Laboratories.

  8. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.

  9. 78 FR 18234 - Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY... address is 10903 New Hampshire Ave., Silver Spring, MD 20993-0002. Designation of agent by manufacturers...

  10. A novel approach to establishing the design space for the oral formulation manufacturing process.

    PubMed

    Norioka, Tadashi; Hayashi, Yoshihiro; Onuki, Yoshinori; Andou, Hirotaka; Tsunashima, Daisuke; Yamashita, Kazunari; Takayama, Kozo

    2013-01-01

    A novel approach to establishing the design space for the oral formulation manufacturing process was investigated. A response surface method incorporating multivariate spline interpolation was applied to overcome the nonlinear problem, which is always problematic in pharmaceutical development studies, and a bootstrap resampling technique, polynomial approximation technique, and 95% confidence intervals based on a nonparametric approach were applied to estimate the reliability of the established design space derived from the nonlinear response surface model. The critical quality attributes (CQAs) of intermediate material rather than the critical process parameters (CPPs) were chosen as the causal factors for the response variables, which were CQAs of the final product to avoid scale-gap and equipment-gap. This enabled the effective use of data sets accumulated during all pharmaceutical development studies. It was confirmed that a conservative border as well as an optimistic border of the design space for practical use was obtained considering the variability of the border of the design spaces on nonlinear response surfaces. Furthermore, the nonlinear response surface model using CQAs of intermediate material derived from data sets of a laboratory scale study and pilot scale studies could predict the CQA of the final product (2.5 h dissolution of commercial-scale study) with high accuracy. Consequently, the proposed novel approach overcame all of the difficulties for the manufacturing process development of oral formulations and this is the first study to demonstrate the effectiveness of the design space using CQA of intermediate material for the oral formulation manufacturing process.

  11. The Establishment of a Production-ready Manufacturing Process Utilizing Thin Silicon Substrates for Solar Cells

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1979-01-01

    During the months of February and March, work towards the goals of the contract were started as scheduled. The first shipment of thin substrates were received and wafer processing was initiated. The objective of the contract is to investigate, develop and characterize the methods for establishing a production-ready manufacturing process which utilizes thin silicon substrates for solar cells. The thin substrates to be manufactured are three inches diameter, p-type Czochralski wafers of approximately 1 Omega cm resistivity. The wafers are prepared by sawing directly to thickness of 8 mils and 5 mils. To ensure removal of residual saw damage, most substrates are chemically etched to final thicknesses of 7 mils and 4 mils. The thin substrates are used to fabricate solar cells by standard processing techniques.

  12. Additive Manufacturing of Tooling for Refrigeration Cabinet Foaming Processes

    SciTech Connect

    Post, Brian K; Nuttall, David; Cukier, Michael; Hile, Michael

    2016-07-29

    The primary objective of this project was to leverage the Big Area Additive Manufacturing (BAAM) process and materials into a long term, quick change tooling concept to drastically reduce product lead and development timelines and costs. Current refrigeration foam molds are complicated to manufacture involving casting several aluminum parts in an approximate shape, machining components of the molds and post fitting and shimming of the parts in an articulated fixture. The total process timeline can take over 6 months. The foaming process is slower than required for production, therefore multiple fixtures, 10 to 27, are required per refrigerator model. Molds are particular to a specific product configuration making mixed model assembly challenging for sequencing, mold changes or auto changeover features. The initial goal was to create a tool leveraging the ORNL materials and additive process to build a tool in 4 to 6 weeks or less. A secondary goal was to create common fixture cores and provide lightweight fixture sections that could be revised in a very short time to increase equipment flexibility reduce lead times, lower the barriers to first production trials, and reduce tooling costs.

  13. Make-to-order manufacturing - new approach to management of manufacturing processes

    NASA Astrophysics Data System (ADS)

    Saniuk, A.; Waszkowski, R.

    2016-08-01

    Strategic management must now be closely linked to the management at the operational level, because only in such a situation the company can be flexible and can quickly respond to emerging opportunities and pursue ever-changing strategic objectives. In these conditions industrial enterprises seek constantly new methods, tools and solutions which help to achieve competitive advantage. They are beginning to pay more attention to cost management, economic effectiveness and performance of business processes. In the article characteristics of make-to-order systems (MTO) and needs associated with managing such systems is identified based on the literature analysis. The main aim of this article is to present the results of research related to the development of a new solution dedicated to small and medium enterprises manufacture products solely on the basis of production orders (make-to- order systems). A set of indicators to enable continuous monitoring and control of key strategic areas this type of company is proposed. A presented solution includes the main assumptions of the following concepts: the Performance Management (PM), the Balanced Scorecard (BSC) and a combination of strategic management with the implementation of operational management. The main benefits of proposed solution are to increase effectiveness of MTO manufacturing company management.

  14. Analysis of production flow process with lean manufacturing approach

    NASA Astrophysics Data System (ADS)

    Siregar, Ikhsan; Arif Nasution, Abdillah; Prasetio, Aji; Fadillah, Kharis

    2017-09-01

    This research was conducted on the company engaged in the production of Fast Moving Consumer Goods (FMCG). The production process in the company are still exists several activities that cause waste. Non value added activity (NVA) in the implementation is still widely found, so the cycle time generated to make the product will be longer. A form of improvement on the production line is by applying lean manufacturing method to identify waste along the value stream to find non value added activities. Non value added activity can be eliminated and reduced by utilizing value stream mapping and identifying it with activity mapping process. According to the results obtained that there are 26% of value-added activities and 74% non value added activity. The results obtained through the current state map of the production process of process lead time value of 678.11 minutes and processing time of 173.94 minutes. While the results obtained from the research proposal is the percentage of value added time of 41% of production process activities while non value added time of the production process of 59%. While the results obtained through the future state map of the production process of process lead time value of 426.69 minutes and processing time of 173.89 minutes.

  15. Process monitoring during manufacturing of large-scale composite parts

    NASA Astrophysics Data System (ADS)

    Heider, Dirk; Eckel, Douglas A., II; Don, Roderic C.; Fink, Bruce K.; Gillespie, John W., Jr.

    1999-01-01

    One of the inherent problems with the processing of composites is the development of internal stresses and the resulting warpage, which results in out-of-tolerance components. This investigation examines possible fiber-optic sensor methods, which can be applied to measure internal strain and thus residual stress during production. Extrinsic Fabry-Perot Interferometers (EFPI) and Bragg gratings are utilizes to monitor the strain behavior during manufacturing of large-scale composite parts. Initially, a 24 in X 18 in X 1 in thick part was manufactured using the vacuum- assisted resin transfer molding (VARTM) technique. In this part, one Bragg grating, multiple thermocouples and a resin flow sensor (SMARTweave) were integrate to measure the flow and cure behavior during production. An AGEMA thermal image camera verified the temperature history on the part surface. In addition, several EFPI's and Bragg gratings were implemented into three temperature history on the part surface. In addition, several EFPI's and Bragg gratings were implemented into three 13 ft X 32 ft X 20.3 in civilian bridge deck test specimens manufactured with the VARTM process. The Bragg gratings showed great promise to capture the changes in strain due to the residual stress during cure. The actual implementation of fiber optics into large composite parts is a challenge and the problems of sensor survivability in these parts are addressed in this study. The fiber optic measurements in combination with SMARTweave's ability to monitor flow could lead to a sensor system, which allows feedback for process control of the VARTM technique. In addition, the optical fibers will be used for health monitoring during the lifetime of the part.

  16. Variation transmission model for setting acceptance criteria in a multi-staged pharmaceutical manufacturing process.

    PubMed

    Montes, Richard O

    2012-03-01

    Pharmaceutical manufacturing processes consist of a series of stages (e.g., reaction, workup, isolation) to generate the active pharmaceutical ingredient (API). Outputs at intermediate stages (in-process control) and API need to be controlled within acceptance criteria to assure final drug product quality. In this paper, two methods based on tolerance interval to derive such acceptance criteria will be evaluated. The first method is serial worst case (SWC), an industry risk minimization strategy, wherein input materials and process parameters of a stage are fixed at their worst-case settings to calculate the maximum level expected from the stage. This maximum output then becomes input to the next stage wherein process parameters are again fixed at worst-case setting. The procedure is serially repeated throughout the process until the final stage. The calculated limits using SWC can be artificially high and may not reflect the actual process performance. The second method is the variation transmission (VT) using autoregressive model, wherein variation transmitted up to a stage is estimated by accounting for the recursive structure of the errors at each stage. Computer simulations at varying extent of variation transmission and process stage variability are performed. For the scenarios tested, VT method is demonstrated to better maintain the simulated confidence level and more precisely estimate the true proportion parameter than SWC. Real data examples are also presented that corroborate the findings from the simulation. Overall, VT is recommended for setting acceptance criteria in a multi-staged pharmaceutical manufacturing process.

  17. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1994-12-31

    The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

  18. Thermally stable booster explosive and process for manufacture

    DOEpatents

    Quinlin, William T.; Thorpe, Raymond; Lightfoot, James M.

    2006-03-21

    A thermally stable booster explosive and process for the manufacture of the explosive. The product explosive is 2,4,7,9-tetranitro-10H-benzo[4,5]furo[3,2-b]indole (TNBFI). A reactant/solvent such as n-methylpyrrolidone (NMP) or dimethyl formamide (DMF) is made slightly basic. The solution is heated to reduce the water content. The solution is cooled and hexanitrostilbene is added. The solution is heated to a predetermined temperature for a specific time period, cooled, and the product is collected by filtration.

  19. Modeling of carbon segregation and accompanying processes during HTSC manufacture

    NASA Astrophysics Data System (ADS)

    Parinov, I. A.; Parinova, L. I.; Rozhkov, E. V.

    2002-08-01

    The formation of microstructure defects and weak links, which have considerable influence on the structure-sensitive properties of high-temperature superconductors (HTSC) is discussed, taking into account the carbon segregation, which embrittles intergranular boundaries and constructs the weak links. The carbon segregation processes are associated with slow, fast and steady states of the dislocation-screened crack growth. The solutions obtained can be applied to the finite element formulations and other numerical codes by which the stress-strain states, distributions, kinetics and parameters of intergranular defects during manufacture of the HTSC systems can be predicted.

  20. De-risking pharmaceutical tablet manufacture through process understanding, latent variable modeling, and optimization technologies.

    PubMed

    Muteki, Koji; Swaminathan, Vidya; Sekulic, Sonja S; Reid, George L

    2011-12-01

    In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.

  1. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  2. Conjugated linoleic acid in processed cheeses during the manufacturing stages.

    PubMed

    Luna, Pilar; de la Fuente, Miguel Angel; Juárez, Manuela

    2005-04-06

    Conjugated linoleic acid (CLA) is a naturally occurring micronutrient in milk fat and dairy products consisting of a group of geometric and positional isomers. The purpose of this study was to assess the level and type of CLA isomers found in two commercial processed cheeses (portions and slices) as well as to monitor their evolution during the different manufacturing stages. Total CLA concentrations ranged from 7.5 to 7.9 mg/g of fat, and rumenic acid (cis-9,trans-11 C18:2), the isomer responsible for the biological functions, represented >80% of total CLA. trans-11,cis-13 and trans-11,trans-13 were, with approximately 4% each, the second main CLA isomers. trans-trans isomers accounted for <10% of total CLA. The processing parameters used in this research had negligible effects on the CLA content of processed cheese and did not modify the isomer profile in these dairy products, thereby confirming the stability of rumenic acid during manufacturing.

  3. 40 CFR 761.187 - Reporting importers and by persons generating PCBs in excluded manufacturing processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... generating PCBs in excluded manufacturing processes. 761.187 Section 761.187 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs... Reporting importers and by persons generating PCBs in excluded manufacturing processes. In addition...

  4. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    PubMed

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV.

  5. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH`s concentrator module. Final technical report, 9 January 1991--14 April 1991

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R.

    1991-11-01

    This final technical report documents ENTECH`s Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  6. Current good manufacturing practice and investigational new drugs intended for use in clinical trials. Final rule.

    PubMed

    2008-07-15

    The Food and Drug Administration (FDA) is amending the current good manufacturing practice (CGMP) regulations for human drugs, including biological products, to exempt most phase 1 investigational drugs from complying with the regulatory CGMP requirements. FDA will continue to exercise oversight of the manufacture of these drugs under FDA's general statutory CGMP authority and through review of the investigational new drug applications (IND). In addition, elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document entitled "Guidance for Industry: CGMP for Phase 1 Investigational Drugs" dated November 2007 (the companion guidance). This guidance document sets forth recommendations on approaches to compliance with statutory CGMP for the exempted phase 1 investigational drugs. FDA is taking this action to focus a manufacturer's effort on applying CGMP that is appropriate and meaningful for the manufacture of the earliest stage investigational drug products intended for use in phase 1 clinical trials while ensuring safety and quality. This action will also streamline and promote the drug development process.

  7. Laser based machine for die and prototype manufacturing: Final report, February 10, 1987--August 9, 1988

    SciTech Connect

    Feygin, M.

    1989-02-05

    In his application to the Bureau of Energy Related Inventions Michael Feygin proposed a feasibility study for a new process aiming at completely automated manufacturing of complex and hard to manufacture parts. The technique invented by Michael Feygin is called Laminated Object Manufacturing. It utilizes thin cross-sections of a part, cut by a laser based contouring machine. The part is created by successive deposition and bonding of layers of material. Part geometry is specified by successive cross-sectioning of 3-dimensional images created with a CAD program on a graphic workstation. The Laminated Object Manufacturing system can be thought of as a ''three-dimensional-printer'' which incrementally stacks two-dimensional images. The ultimate hard copy is produced, the object itself. The laser system is basically an assembly of known technologies: laser cutting, CAD and CAM, brazing or adhesion bonding, and computer controlled mechanical handling of components. It offers a revolutionary new way to produce 3-dimensional objects such as molds, dies, prototypes, models and other items produced in small batches. The research performed on the grant created a foundation for building a successful prototype of a LOM system. The prototype has been built in 1988 using funds of the Illinois Innovation Fund, a state agency independent from DOE. 8 figs., 1 tab.

  8. State-of-the-art in Manufacturing Pyrochemical Processing Crucibles

    SciTech Connect

    Parkinson, David Allen

    2016-05-03

    Engineers at Los Alamos National Laboratory have been purifying plutonium through pyrochemical processing for many years. The harsh environments involved with the pyrochemical processes include high temperatures (700-900 °C), molten salts and reactive metals (MgCl2, PuCl3, NaCl-KCl, CaCl2, Pu, Ca), and chlorine gas. Because of these corrosive conditions, designing and developing the pyrochemical processing equipment has always been an intriguing technical challenge. In this article I focus on the design and development of the pyrochemical processing crucible for the electrorefining (ER) process, applying design for manufacturability principles throughout the process. I review the current crucible design and electrorefining process and explore possibilities of making the crucible as one part, building the anode and cathode into the crucible, and various material of construction improvements. Materials of construction that should be reviewed further include alumina, silicon nitride, and a tantalum carbon alloy. I briefly review the application of three-dimensional (3D) printing to the process of producing the ER crucible, including thermoplastic 3D printing and mechanical property concerns. I finish by summarizing current plans and possibilities of improving the ER crucible.

  9. Economic analysis of final effluent limitations guidelines and standards for the pharmaceutical manufacturing industry

    SciTech Connect

    1998-07-01

    This economic analysis (EA) examines compliance costs and economic impacts resulting from the US Environmental Protection Agency`s (EPA`s) Final Effluent Limitations Guidelines and Standards for the Pharmaceutical Manufacturing Industry Point Source Category. It also investigates the costs and impacts associated with an air rule requiring Maximum Achievable Control Technology (MACT) to control air emissions, both separately and together with the Final Pharmaceutical Industry Effluent Guidelines. The EA estimates the economic effects of compliance with both final rules in terms of total aggregate annualized costs of compliance, facility closures, impacts on firms (likelihood of bankruptcy and effects on profit margins), and impacts on new sources. The EA also investigates secondary impacts on employment and communities, foreign trade, specific demographic groups, and environmental justice. This report includes a Final Regulatory Flexibility Analysis (FRFA) detailing the impacts on small businesses within the pharmaceutical industry to meet the requirements of the Regulatory Flexibility Act (RFA), as amended by the Small Business Regulatory Enforcement Fairness Act (SBREFA). Finally, the EA presents a cost-benefit analysis to meet the requirements of Executive Order 12866 and the Unfunded Mandates Reform Act.

  10. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  11. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations.

    PubMed

    Paudel, Amrit; Worku, Zelalem Ayenew; Meeus, Joke; Guns, Sandra; Van den Mooter, Guy

    2013-08-30

    Spray drying is an efficient technology for solid dispersion manufacturing since it allows extreme rapid solvent evaporation leading to fast transformation of an API-carrier solution to solid API-carrier particles. Solvent evaporation kinetics certainly contribute to formation of amorphous solid dispersions, but also other factors like the interplay between the API, carrier and solvent, the solution state of the API, formulation parameters (e.g. feed concentration or solvent type) and process parameters (e.g. drying gas flow rate or solution spray rate) will influence the final physical structure of the obtained solid dispersion particles. This review presents an overview of the interplay between manufacturing process, formulation parameters, physical structure, and performance of the solid dispersions with respect to stability and drug release characteristics.

  12. Silicon Valley's Processing Needs versus San Jose State University's Manufacturing Systems Processing Component: Implications for Industrial Technology

    ERIC Educational Resources Information Center

    Obi, Samuel C.

    2004-01-01

    Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…

  13. Practical Framework: Implementing OEE Method in Manufacturing Process Environment

    NASA Astrophysics Data System (ADS)

    Maideen, N. C.; Sahudin, S.; Mohd Yahya, N. H.; Norliawati, A. O.

    2016-02-01

    Manufacturing process environment requires reliable machineries in order to be able to satisfy the market demand. Ideally, a reliable machine is expected to be operated and produce a quality product at its maximum designed capability. However, due to some reason, the machine usually unable to achieved the desired performance. Since the performance will affect the productivity of the system, a measurement technique should be applied. Overall Equipment Effectiveness (OEE) is a good method to measure the performance of the machine. The reliable result produced from OEE can then be used to propose a suitable corrective action. There are a lot of published paper mentioned about the purpose and benefit of OEE that covers what and why factors. However, the how factor not yet been revealed especially the implementation of OEE in manufacturing process environment. Thus, this paper presents a practical framework to implement OEE and a case study has been discussed to explain in detail each steps proposed. The proposed framework is beneficial to the engineer especially the beginner to start measure their machine performance and later improve the performance of the machine.

  14. A practical and scalable manufacturing process for an anti-fungal agent, Nikkomycin Z.

    PubMed

    Stenland, Christopher J; Lis, Lev G; Schendel, Frederick J; Hahn, Nicholas J; Smart, Mary A; Miller, Amy L; von Keitz, Marc G; Gurvich, Vadim J

    2013-02-15

    A scalable and reliable manufacturing process for Nikkomycin Z HCl on a 170 g scale has been developed and optimized. The process is characterized by a 2.3 g/L fermentation yield, 79% purification yield, and >98% relative purity of the final product. This method is suitable for further scale up and cGMP production. The Streptomyces tendae ΔNikQ strain developed during the course of this study is superior to any previously reported strain in terms of higher yield and purity of Nikkomycin Z.

  15. A practical and scalable manufacturing process for an anti-fungal agent, Nikkomycin Z

    PubMed Central

    Stenland, Christopher J.; Lis, Lev G.; Schendel, Frederick J.; Hahn, Nicholas J.; Smart, Mary A.; Miller, Amy L.; von Keitz, Marc G.; Gurvich, Vadim J.

    2013-01-01

    A scalable and reliable manufacturing process for Nikkomycin Z HCl on a 170 g scale has been developed and optimized. The process is characterized by a 2.3 g/L fermentation yield, 79% purification yield, and >98% relative purity of the final product. This method is suitable for further scale up and cGMP production. The Streptomyces tendae ΔNikQ strain developed during the course of this study is superior to any previously reported strain in terms of higher yield and purity of Nikkomycin Z. PMID:23440664

  16. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  17. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  18. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  19. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  20. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  1. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  2. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  3. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  4. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  5. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  6. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  7. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  8. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  9. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manufacturing, processing and... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing...

  10. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be...

  11. 27 CFR 19.57 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... denatured spirits in manufacturing processes. 19.57 Section 19.57 Alcohol, Tobacco Products and Firearms... denatured spirits in manufacturing processes. The following persons are not, by reason of the activities...) Manufacturers who use denatured spirits, or articles or substances containing denatured spirits, in a process...

  12. CROW{trademark} process modeling. Final report

    SciTech Connect

    1996-01-01

    The Western Research Institute (WRI) has patented a technology (CROW{trademark}) for the recovery of oily contaminants from water-saturated formations. The CROW process uses either hot water or low-pressure steam to flush contaminants to the surface by means of production wells. CROW is typically applied to highly permeable aquifers that have been invaded by organics such as coal tars or chemical solvents. In conceptualizing a model of the CROW process, we draw an analogy between flushing organics from an organic-contaminated aquifer and producing oil from a petroleum reservoir. The organic-contaminated aquifer can be represented as a petroleum reservoir. The injection of water or steam and production of water/organic admixtures can be described by standard reservoir well equations. Finally, the movement of organic and water within the aquifer can be represented by Darcy flow of the individual phases. Thus, in modeling the CROW process, it is reasonable to assume that a petroleum reservoir simulator would accurately portray the recovery of organics from a contaminated aquifer. Of course, the reservoir simulator would need to incorporate thermal aspects of Darcy flow to accurately represent recovery during CROW processing.

  13. BAY 81-8973, a full-length recombinant factor VIII: manufacturing processes and product characteristics.

    PubMed

    Garger, S; Severs, J; Regan, L; Hesslein, A; Ignowski, J; Wu, P; Long, E; Gupta, S; Liu, S; Wang, W

    2017-03-01

    BAY 81-8973 (Kovaltry(®) , Bayer, Berkeley, CA, USA) is an unmodified, full-length recombinant human factor VIII (FVIII) approved for prophylaxis and on-demand treatment of bleeding episodes in patients with haemophilia A. The BAY 81-8973 manufacturing process is based on the process used for sucrose-formulated recombinant FVIII (rFVIII-FS), with changes and enhancements made to improve production efficiency, further augment pathogen safety, and eliminate animal- and human-derived raw materials from the production processes. The baby hamster kidney cell line used for BAY 81-8973 was developed by introducing the gene for human heat shock protein 70 into the rFVIII-FS cell line, a change that improved cell line robustness and productivity. Pathogen safety was enhanced by including a 20-nm filtration step, which can remove viruses, transmissible spongiform encephalopathy agents and potential protein aggregates. No human- or animal-derived proteins are added to the cell culture process, purification or final formulation. The BAY 81-8973 manufacturing process results in a product of enhanced purity with a consistently high degree of sialylation of N-linked glycans on the molecular surface. The innovative manufacturing techniques used for BAY 81-8973 yield an effective rFVIII product with a favourable safety profile for treatment of haemophilia A. © 2016 Bayer. Haemophilia Published by John Wiley & Sons Ltd.

  14. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  15. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    NASA Astrophysics Data System (ADS)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  16. A Digital Methodology for the Design Process of Aerospace Assemblies with Sustainable Composite Processes & Manufacture

    NASA Astrophysics Data System (ADS)

    McEwan, W.; Butterfield, J.

    2011-05-01

    The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.

  17. Assessing processes in uncertain, complex physical phenomena and manufacturing

    SciTech Connect

    Booker, J. M.; Kerscher, W. J. III; Smith, R. E.

    2002-01-01

    PREDICT (Performance and Reliability Evaluation with Diverse Information Combination and Tracking) is a set of structured quantitative approaches for the evaluation of system performance based on multiple information sources. The methodology integrates diverse types and sources of information, and their associated uncertainties, to develop full distributions for performance metrics, such as reliability. The successful application of PREDICT has involved system performance assessment in automotive product development, aging nuclear weapons, and fatigued turbine jet engines. In each of these applications, complex physical, mechanical and materials processes affect performance, safety and reliability assessments. Processes also include the physical actions taken during manufacturing, quality control, inspections, assembly, etc. and the steps involved in product design, development and certification. In this paper, we will examine the various types of processes involved in the decision making leading to production in an automotive system reliability example. Analysis of these processes includes not only understanding their impact on performance and reliability, but also the uncertainties associated with them. The automotive example demonstrates some of the tools used in tackling the complex problem of understanding processes. While some tools and methods exist for understanding processes (man made and natural) and the uncertainties associated with them, many of the complex issues discussed are open for continued research efforts.

  18. Developing an inventor support service which performs early stage market and manufacturing evaluations. [Final Report

    SciTech Connect

    Not Available

    1991-10-01

    American businesses are learning the difficult high cost lesson of ignoring production and market factors (producibility, unit product cost (UPC), marketability, etc) during the engineering design phase of product development. Studies have shown that the Japanese spend three times as long as Americans in the design feasibility and decision process of new product introductions and one third the amount of time in the implementation of those products. There is a 20 to 1 cost benefit on effort applied in the design phase versus the production phase of the product life cycle. The number one goal of this project was to establish an organization that has, as one of its purposes, the providing of services responsive to the needs of independent inventors. The number two goal was to demonstrate the value of providing marketing and manufacturing counsel at an early stage in the product development process. The first study goal was met by providing the materials and information necessary to establish an evaluation team and an organization to handle such evaluations. The second study goal was met by demonstrating the impact of early market analysis and manufacturing considerations on product design and therefore on the description of the invention for four different inventions. These inventions were selected at various stages of development. Regardless of stage of development, the marketing and manufacturing reviews resulted in significant changes in design and/or market positioning.

  19. Developing an inventor support service which performs early stage market and manufacturing evaluations. Final report

    SciTech Connect

    Not Available

    1991-10-01

    American businesses are learning the difficult high cost lesson of ignoring production and market factors (producibility, unit product cost (UPC), marketability, etc) during the engineering design phase of product development. Studies have shown that the Japanese spend three times as long as Americans in the design feasibility and decision process of new product introductions and one third the amount of time in the implementation of those products. There is a 20 to 1 cost benefit on effort applied in the design phase versus the production phase of the product life cycle. The number one goal of this project was to establish an organization that has, as one of its purposes, the providing of services responsive to the needs of independent inventors. The number two goal was to demonstrate the value of providing marketing and manufacturing counsel at an early stage in the product development process. The first study goal was met by providing the materials and information necessary to establish an evaluation team and an organization to handle such evaluations. The second study goal was met by demonstrating the impact of early market analysis and manufacturing considerations on product design and therefore on the description of the invention for four different inventions. These inventions were selected at various stages of development. Regardless of stage of development, the marketing and manufacturing reviews resulted in significant changes in design and/or market positioning.

  20. Amendment to the current good manufacturing practice regulations for finished pharmaceuticals. Direct final rule.

    PubMed

    2007-12-04

    The Food and Drug Administration (FDA) is amending certain regulations as the first phase of an incremental approach to modifying the current good manufacturing practice (CGMP) regulations for finished pharmaceuticals. We are amending the regulations to modernize or clarify some of the CGMP requirements, as well as harmonize some of the CGMP requirements with those of other foreign regulators and other FDA regulations. These amendments are also consistent with current industry practice. We are taking this action as part of our continuing effort to revise outdated regulations without diminishing public health protection. We are issuing a direct final rule for this action because FDA expects there will be no significant adverse comments on these amendments. Elsewhere in this issue of the Federal Register, we are publishing a companion proposed rule, under our usual notice-and-comment rulemaking procedures, to provide a procedural framework to finalize the rule in the event the agency receives any significant adverse comments and withdraws this direct final rule. The companion proposed rule and direct final rule are substantively identical.

  1. Statistics-enhanced multistage process models for integrated design &manufacturing of poly (vinyl alcohol) treated buckypaper

    NASA Astrophysics Data System (ADS)

    Wang, Kan

    Carbon nanotube (CNT) is considered a promising engineering material because of its exceptional mechanical, electrical, and thermal properties. Buckypaper (BP), a thin sheet of assembled CNTs, is an effective way to handle CNTs in macro scale. Pristine BP is a fragile material which is held together by weak van der Waals attractions among CNTs. This dissertation introduces a modified filtration based manufacturing process which uses poly (vinyl alcohol) (PVA) to treat BP. This treatment greatly improves the handleability of BP, reduces the spoilage during transferring, and shortens the production time. The multistage manufacturing process of PVA-treated BP is discussed in this dissertation, and process models are developed to predict the nanostructure of final products from the process parameters. Based on the nanostructure, a finite element based physical model for prediction of Young's modulus is also developed. This accuracy of this physical model is further improved by statistical methods. The aim of this study is to investigate and improve the scalability of the manufacturing process of PVA-treated BP. To achieve this goal, various statistical tools are employed. The unique issues in nanomanufacturing also motivate the development of new statistical tools and modification of existing tools. Those issues include the uncertainties in nanostructure characterization due to the scale, limited number experimental data due to high cost of raw materials, large variation in final product due to the random nature in structure, and the high complexity in physical models due to the small scale of structural building blocks. This dissertation addresses those issues by combining engineering field knowledge and statistical methods. The resulting statistics-enhanced physical model provides an approach to design the manufacturing process of PVA-treated BP for a targeting property and tailor the robustness of the final product by manipulating the process parameters. In addition

  2. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    PubMed Central

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  3. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  4. Current good manufacturing practices, quality control procedures, quality factors, notification requirements, and records and reports, for infant formula. Final rule.

    PubMed

    2014-06-10

    The Food and Drug Administration (FDA or we) is issuing a final rule that adopts, with some modifications, the interim final rule (IFR) entitled "Current Good Manufacturing Practices, Quality Control Procedures, Quality Factors, Notification Requirements, and Records and Reports, for Infant Formula'' (February 10, 2014). This final rule affirms the IFR's changes to FDA's regulations and provides additional modifications and clarifications. The final rule also responds to certain comments submitted in response to the request for comments in the IFR.

  5. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  6. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  7. Process for manufacturing a lithium alloy electrochemical cell

    DOEpatents

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  8. Fundamental Processes in Plasmas. Final report

    SciTech Connect

    O'Neil, Thomas M.; Driscoll, C. Fred

    2009-11-30

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN.

  9. Cost analysis of composite fan blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Stelson, T. S.; Barth, C. F.

    1980-01-01

    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  10. Process monitoring of additive manufacturing by using optical tomography

    SciTech Connect

    Zenzinger, Guenter E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander E-mail: alexander.ladewig@mtu.de; Hess, Thomas E-mail: alexander.ladewig@mtu.de; Henkel, Benjamin E-mail: alexander.ladewig@mtu.de; Satzger, Wilhelm E-mail: alexander.ladewig@mtu.de

    2015-03-31

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  11. 77 FR 38083 - Certain Rubber Resins and Processes for Manufacturing Same Institution of Investigation Pursuant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... for manufacturing same by reason of misappropriation of trade secrets, the threat or effect of which... rubber resins and processes for manufacturing same by reason of misappropriation of trade secrets,...

  12. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear power reactor being manufactured, or the requirements for the manufacture of the nuclear power... a manufactured nuclear power reactor which is imposed by the Commission under paragraph (a)(1) of...)(1) of this section, for which a nuclear power reactor manufactured under this subpart is referenced...

  13. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear power reactor being manufactured, or the requirements for the manufacture of the nuclear power... a manufactured nuclear power reactor which is imposed by the Commission under paragraph (a)(1) of...)(1) of this section, for which a nuclear power reactor manufactured under this subpart is referenced...

  14. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear power reactor being manufactured, or the requirements for the manufacture of the nuclear power... a manufactured nuclear power reactor which is imposed by the Commission under paragraph (a)(1) of...)(1) of this section, for which a nuclear power reactor manufactured under this subpart is referenced...

  15. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear power reactor being manufactured, or the requirements for the manufacture of the nuclear power... a manufactured nuclear power reactor which is imposed by the Commission under paragraph (a)(1) of...)(1) of this section, for which a nuclear power reactor manufactured under this subpart is referenced...

  16. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear power reactor being manufactured, or the requirements for the manufacture of the nuclear power... a manufactured nuclear power reactor which is imposed by the Commission under paragraph (a)(1) of...)(1) of this section, for which a nuclear power reactor manufactured under this subpart is referenced...

  17. Environmentally conscious manufacturing & technology access project: Final technical progress report, April 1, 1994--September 30, 1996

    SciTech Connect

    1997-05-01

    This final report is being submitted in fulfillment of the management obligations associated with the TRP/DOE grant which funded the Environmentally Conscious Manufacturing & Technology Access (ECM) Project. A {open_quotes}Federal Assistance Project Status Report{close_quotes} is also being submitted with this form. This report will elaborate on the successful completion of this project in achieving and in most cases exceeding its programmatic goals and fulfilling it statutory financial match obligation. A review of the Year 1 {open_quotes}Technical Progress Report{close_quotes} and the Quarterly Reports filed during the project period, clearly portray that, in all substantive areas, the Environmentally Conscious Manufacturing & Technology Access Project (ECM Project) achieved or exceeded its goals. The success of the Project is largely due to the tremendous support provided by the Center for Technology Transfer (CTT) and the Maine Metal Products Association (MMPA). Both organizations provided extensive administrative and financial support and were instrumental in promoting the work of the project within the metals industry. The programmatic oversight provided by the industry Steering Committee and the broad partnership represented on the Board of Advisors were invaluable in developing, promoting and implementing the work of the ECM Project.

  18. Laser Consolidation - A Novel One-Step Manufacturing Process for Making Net-Shape Functional Components

    DTIC Science & Technology

    2006-05-01

    addition , this computer-aided manufacturing process provides an excellent opportunity for manufacturing complex parts that are difficult to make by...consolidation process, more unique features can be added to the components to provide additional functionality, reduce manufacturing time and cost...Functional Prototypes IN-625 alloy 316L S.S Stellite 6 alloy LC IN-738 Applications - Manufacturing Complex Net-Shape Parts LC IN-625LC IN-625 Applications

  19. Additive manufacturing of stretchable tactile sensors: Processes, materials, and applications

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza

    3D printing technology is becoming more ubiquitous every day especially in the area of smart structures. However, fabrication of multi-material, functional, and smart structures is problematic because of the process and material limitations. This thesis sought to develop a Direct Print Photopolymerization (DPP) fabrication technique that appreciably extends the manufacturing space for the 3D smart structures. This method employs a robotically controlled micro-extrusion of a filament equipped with a photopolymerization process. The ability to use polymers and ultimately their nanocomposites in this process is the advantage of the proposed process over the current fabrication methods in the fabrication of 3D structures featuring mechanical, physical, and electrical functionalities. In addition, this study focused to develop a printable, conductive, and stretchable nanocomposite based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs). This nanocomposite exhibited piezoresistivity, means its resistivity changes as it deforms. This property is a favorable factor in developing resistance based tactile sensors. They were also able to resist high tensile strains while they showed conductivity. Furthermore, this study offered a possible and low-cost method to have a unique and highly stretchable pressure sensitive polymer. This disruptive pressure sensitive polymer composed of an Ionic Liquid (IL) and a stretchable photopolymer embedded between two layers of Carbon Nanotube (CNTs) based stretchable electrodes. The developed IL-polymer showed both field effect property and piezoresistivity that can detect large tensile strains up 30%. In summary, this research study focused to present feasible methods and materials for printing a 3D smart structure especially in the context of flexible tactile sensors. This study provides a foundation for the future efforts in fabrication of skin like tactile sensors in three-dimensional motifs

  20. Control of a chemical precursor used in the illicit manufacture of fentanyl as a List I chemical. Final rule.

    PubMed

    2008-07-25

    The Drug Enforcement Administration (DEA) is finalizing the Interim Rule with Request for Comment published in the Federal Register on April 23, 2007. The Interim Rule controlled the chemical N-phenethyl-4- piperidone (NPP) as a List I chemical under the Controlled Substances Act. Clandestine laboratories are using this chemical to illicitly manufacture the schedule II controlled substance fentanyl. No comments to the Interim Rule were received. This Final Rule finalizes the regulations without change.

  1. Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.

  2. The inverse problems of wing panel manufacture processes

    NASA Astrophysics Data System (ADS)

    Oleinikov, A. I.; Bormotin, K. S.

    2013-12-01

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  3. The inverse problems of wing panel manufacture processes

    SciTech Connect

    Oleinikov, A. I.; Bormotin, K. S.

    2013-12-16

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  4. Heat pipe cooling of an aerospace foam mold manufacturing process

    SciTech Connect

    Hahn, D.R.; Feldman, K.T.; Marjon, P.L.

    1980-01-01

    A passive heat pipe cooling system was developed to cool a Bendix foam mold used to manufacture aerospace foam parts. The cooling system consists of ten copper-water heat pipes with cooling fins implanted into the aluminum mold and cooled by a domestic size fan blowing ambient air. The number and location of the heat pipes was determined to provide the most effective cooling and mold isothermalization based on experimental measurements of mold temperatures during the exothermic foaming process and from practical considerations of the mold geometry and use. Performance tests were cnducted on an individual heat pipe and on the ten heat pipes implanted in the mold. Both exothermic foam heating and internal electrical heat input were used in the experiments. The experimental test results indicate that the heat pipe cooling system with a fan is four to six times faster than free convection cooling of the mold with no heat pipes or fan and nearly twice as fast as cooling by the fan only. Similarly fast increases in mold heating time in the cure furnace could be realized if the heat pipes are used during this part of the production process. The heat pipes also cool hot spots in the mold and help isothermalize the mold so that better quality foam parts should be produced.

  5. A decision-support model for evaluating changes in biopharmaceutical manufacturing processes.

    PubMed

    Chhatre, S; Francis, R; O'Donovan, K; Titchener-Hooker, N J; Newcombe, A R; Keshavarz-Moore, E

    2007-01-01

    A simulation is described that evaluates the impacts of altering bio-manufacturing processes. Modifications designed to improve production levels, times and costs were assessed, including increasing feed volumes/titres, replacing initial downstream stages with packed or expanded bed affinity steps and removing ion exchange steps. Options were evaluated for manufactured product mass, COG, batch times and development costs and timescales. Metrics were combined using multi-attribute-decision-making techniques generating a single assessment metric for each option. The utility of this approach was illustrated by application to an FDA-approved process manufacturing rattlesnake anti-venom (Protherics U.K.). Currently, ovine serum containing anti-venom IgG is purified by precipitation/centrifugation, prior to antibody proteolysis by papain. An ion exchanger removes F(C), before affinity chromatography yields the final anti-venom. An expanded bed affinity column operating with an 80% higher IgG titre, 66% higher feed volume and without the ion exchanger delivered the best multi-attribute-decision-making value, potentially providing the most desirable alternative.

  6. Control of immediate precursor used in the illicit manufacture of fentanyl as a schedule II controlled substance. Final rule.

    PubMed

    2010-06-29

    The Drug Enforcement Administration (DEA) is designating the precursor chemical, 4-anilino-N-phenethyl-4-piperidine (ANPP) as an immediate precursor for the schedule II controlled substance fentanyl under the definition set forth in 21 U.S.C. 802(23). Furthermore, DEA is finalizing the control of ANPP as a schedule II substance under the Controlled Substances Act (CSA), pursuant to the authority in 21 U.S.C. 811(e), which states that an immediate precursor may be placed in the same schedule as the controlled substance it produces, without regard to the procedures required by 21 U.S.C. 811(a) and (b) and without regard to the findings required by 21 U.S.C. 811(a) and 812(b). ANPP is the immediate chemical intermediary in the synthesis process currently used by clandestine laboratory operators for the illicit manufacture of the schedule II controlled substance fentanyl. In 2005 and 2006, the distribution of illicitly manufactured fentanyl caused an unprecedented outbreak of hundreds of fentanyl-related overdoses in the United States. DEA believes that the control of ANPP as a schedule II controlled substance is necessary to prevent its diversion as an immediate chemical intermediary for the illicit production of fentanyl.

  7. Environmentally Conscious Manufacturing Solvent Substitution Program/switch tube assemblies final report

    SciTech Connect

    Lopez, E.P.; Ohlhausen, J.A.; Peebles, D.E.; Benkovich, M.G.

    1995-06-01

    As part of an Environmentally Conscious Manufacturing (ECM) Program, a study was conducted at Sandia National Laboratories to identify an alternative cleaning process that would effectively replace trichloroethylene (TCE) for cleaning mechanical piece parts of Switch Tube assemblies. Eight aqueous alkaline cleaners, as well as an isopropyl alcohol and isopropyl alcohol/Cyclohexane cleaning process, were studied as potential replacements. Cleaning efficacy, materials compatibility, etch rate and corrosion studies were conducted and used to screen potential candidates. Cleaning efficacy was determined using visual examination, goniometer/contact angle measurements, Auger electron spectroscopy, X-ray Photoelectron spectroscopy and an evaporative rate analysis technique known as MESERAN Surface Analysis. Several cleaners were identified as potential replacements for TCE based solely on the cleaning efficacy results. Some of the cleaners, however, left undesirable residues studies were completed, Brulin 815GD (an aqueous alkaline cleaner) was selected as the replacement for TCE.

  8. The Enterprise Derivative Application: Flexible Software for Optimizing Manufacturing Processes

    SciTech Connect

    Ward, Richard C; Allgood, Glenn O; Knox, John R

    2008-11-01

    The Enterprise Derivative Application (EDA) implements the enterprise-derivative analysis for optimization of an industrial process (Allgood and Manges, 2001). It is a tool to help industry planners choose the most productive way of manufacturing their products while minimizing their cost. Developed in MS Access, the application allows users to input initial data ranging from raw material to variable costs and enables the tracking of specific information as material is passed from one process to another. Energy-derivative analysis is based on calculation of sensitivity parameters. For the specific application to a steel production process these include: the cost to product sensitivity, the product to energy sensitivity, the energy to efficiency sensitivity, and the efficiency to cost sensitivity. Using the EDA, for all processes the user can display a particular sensitivity or all sensitivities can be compared for all processes. Although energy-derivative analysis was originally designed for use by the steel industry, it is flexible enough to be applied to many other industrial processes. Examples of processes where energy-derivative analysis would prove useful are wireless monitoring of processes in the petroleum cracking industry and wireless monitoring of motor failure for determining the optimum time to replace motor parts. One advantage of the MS Access-based application is its flexibility in defining the process flow and establishing the relationships between parent and child process and products resulting from a process. Due to the general design of the program, a process can be anything that occurs over time with resulting output (products). So the application can be easily modified to many different industrial and organizational environments. Another advantage is the flexibility of defining sensitivity parameters. Sensitivities can be determined between all possible variables in the process flow as a function of time. Thus the dynamic development of the

  9. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  10. Using Data Exclusivity Grants to Incentivize Cumulative Innovation of Biologics' Manufacturing Processes.

    PubMed

    Levi, Eric Lawrence

    The pharmaceutical market is divided into two types of compounds: small-molecule chemical compounds and large-molecule biologics. Due to biologics’ molecular sizes and the current scientific state of biologics manufacturing, manufacturing facilities and processes require frequent reassessment to ensure production of safe, pure, and potent therapeutics. Manufacturers utilize patent and drug regulatory law to protect their investments and simultaneously signal where innovation and investment are lacking. The current four- and twelve-year regimented structures of the Biologics Price, Competition, and Innovation Act do not keep pace with scientific development; biologics manufacturing processes drift with time, and if a manufacturer can obtain a higher degree of process control, then it should not feel restricted to wait until their exclusivity period lapses. Currently, the FDA rarely grants market exclusivity privileges for manufacturing process improvements alone; hence, manufacturing processes--or at least large portions thereof--are typically withheld as trade secrets or strategically claimed within companion composition claims. As a result, significant opportunity exists in regulatory framework to incentivize the research and development of biologics manufacturing processes. By creating a one- to four-year data exclusivity extension opportunity, manufacturers will feel more comfortable reinvesting their returns on investment towards manufacturing efficiency, and manufacturers can capitalize on the complex-molecule nature of their biologic.

  11. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    NASA Astrophysics Data System (ADS)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  12. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    SciTech Connect

    Farrar, Paul

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  13. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    SciTech Connect

    Ahmad, Iftikhar; Zhang, Pu

    2016-11-30

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much faster than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of the

  14. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  15. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  16. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    SciTech Connect

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  17. Improvements in process performance for immersion technology high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Nafus, K.; Shimoaoki, T.; Enomoto, M.; Shite, H.; Otsuka, T.; Kosugi, H.; Shibata, T.; Mallmann, J.; Maas, R.; Verspaget, C.; van der Heijden, E.; van Setten, E.; Finders, J.; Wang, S.; Boudou, N.; Zoldesi, C.

    2009-03-01

    Through collaborative efforts ASML and TEL are continuously improving the process performance for the LITHIUS Pro -i/ TWINSCAN XT:1900Gi litho cluster. In previous work from this collaboration, TEL and ASML have investigated the CDU and defectivity performance for the 45nm node with high through put processing. CDU performance for both memory and logic illumination conditions were shown to be on target for ITRS roadmap specifications. Additionally, it was shown that the current defect metrology is able to measure the required defect size of 30nm with a 90% capture rate. For the target through put of 180wph, no added impact to defectivity was seen from the multi-module processing on the LITHIUS Pro -i, using a topcoat resist process. For increased productivity, a new bevel cut strategy was investigated and shown to have no adverse impact while increasing the usable wafer surface. However, with the necessity of double patterning for at least the next technology node, more stringent requirements are necessary to prevent, in the worst case, doubling of the critical dimension variation and defectivity. In this work, improvements in process performance with regards to critical dimension uniformity and defectivity are investigated to increase the customer's productivity and yield for whichever double patterning scheme is utilized. Specifically, TEL has designed, evaluated and proven the capability of the latest technology hardware for post exposure bake and defect reduction. For the new post exposure bake hardware, process capability data was collected for 40nm CD targets. For defectivity reduction, a novel concept in rinse technology and processing was investigated on hydrophobic non top coat resists processes. Additionally, improvements to reduce micro bridging were evaluated. Finally bevel rinse hardware to prevent contamination of the immersion scanner was tested.

  18. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing.

    PubMed

    Jannin, Vincent; Rodier, Jean-David; Musakhanian, Jasmine

    2014-05-15

    Lipid-based formulations are a viable option to address modern drug delivery challenges such as increasing the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs), or sustaining the drug release of molecules intended for chronic diseases. Esters of fatty acids and glycerol (glycerides) and polyethylene-glycols (polyoxylglycerides) are two main classes of lipid-based excipients used by oral, dermal, rectal, vaginal or parenteral routes. These lipid-based materials are more and more commonly used in pharmaceutical drug products but there is still a lack of understanding of how the manufacturing processes, processing aids, or additives can impact the chemical stability of APIs within the drug product. In that regard, this review summarizes the key parameters to look at when formulating with lipid-based excipients in order to anticipate a possible impact on drug stability or variation of excipient functionality. The introduction presents the chemistry of natural lipids, fatty acids and their properties in relation to the extraction and refinement processes. Then, the key parameters during the manufacturing process influencing the quality of lipid-based excipients are provided. Finally, their critical characteristics are discussed in relation with their intended functionality and ability to interact with APIs and others excipients within the formulation.

  19. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  20. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  1. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products, cigarette papers and tubes, and processed tobacco. 40.1 Section 40.1 Alcohol, Tobacco Products... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part...

  2. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  3. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  4. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  5. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  6. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  7. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  8. High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003

    SciTech Connect

    Rand, J. A.; Culik, J. S.

    2005-10-01

    The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

  9. Design process optimization, virtual prototyping of manufacturing, and foundry-portable DFM (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Hogan, James; Progler, Christopher; Chatila, Ahmad; Bruggeman, Bert; Heins, Mitchell; Pack, Robert; Boksha, Victor

    2005-05-01

    We consider modern design for manufacturing (DFM) as a manifestation of IC industry re-integration and intensive cost management dynamics. In that regard DFM is somewhat different from so-called design for yield (DFY) which essentially focuses on productivity (yield) management (that is not to say that DFM and DFY do not have significant overlaps and interactions). We clearly see the shaping of a new "full-chip DFM" infrastructure on the background of the "back to basics" design-manufacturing re-integration dynamics. In the presented work we are focusing on required DFM-efficiencies in a "foundry-fabless" link. Concepts of "virtual prototyping of manufacturing", "design process optimization", and "foundry-portable DFM" models are explored. Both senior management of the industry and leading design groups finally realize the need for a radical change of design styles. Some of the DFM super-goals are to isolate designers from process details and to make designs foundry portable. It requires qualification of designs at different foundries. In their turn, foundries specified and are implementing a set of DFM rules: "action-required", "recommended", and "guidelines" while asking designers to provide netlist and testing information. Also, we observe strong signs of innovation coming back to the mask industry. Powerful solutions are emerging and shaping up toward mask-centered IP as a business. While it seems that pure-play foundries have found their place for now in the "IDM+" model (supporting manufacturing capacity of IDMs) it is not obvious how sustainable the model is. Wafer as a production unit is not sufficient anymore; foundries are being asked by large customers to price products in terms of good die. It brings back the notion of the old ASIC business model where the foundry is responsible for dealing with both random and systematic yield issues for a given design. One scenario of future development would be that some of the leading foundries might eventually

  10. Product and process for manufacturing an optical disc master

    SciTech Connect

    Dobbin, R.B.; Loeppky, D.G.; Norton, J.R.; Del Mar, B.E.

    1994-01-11

    The invention discloses a simplified four step process for making an optical disc master or alternatively a WORM disc by first making or obtaining a transparent polymer disc with a tracking groove of desired geometry molded therein, then spin coating an optically active lamina on the grooved side of the disc, then recording data on said polymer disc with groove controlled and tracked laser means by ablating active lamina, forming pits, the shape of which is determined by the groove geometry and finally depositing a conductive and reflective lamina over the pitted active lamina. To change the OD master to an OD WORM, a protective cover is added to the electrically conductive and optically reflective lamina. 12 figs.

  11. Fact Sheets and Questions and Answers for the Final Air Toxics Rules for the Aerospace Manufacturing and Rework Industry

    EPA Pesticide Factsheets

    This page contains the July 1995 final rule fact sheet and the January 2015 proposed rule fact sheet that contains information on the National Emission Standards for Aerospace Manufacturing and Rework Facilities, as well as a 2001 Q&A document on the rule

  12. [Manufacturing process of high quality phytopreparation on example of herbal sedative].

    PubMed

    Dordević, Sofija; Dickov, Aleksandra; Pavkov, Sava; Tadić, Vanja; Arsić, Ivana; Zugić, Ana

    2013-01-01

    Rational phytotherapy is a modern concept of using plant-originated drugs which has emerged from the need to improve phytotherapy in order to make the use of herbal remedies more efficient and safer. The aim of this study was to give the health-care workers more information on the manufacturing process of high quality phytopreparation following principles of Good Manufacturing Practice and Good Laboratory Practice on the example of herbal sedative, Odoval S capsules. This study was designed to reflect the production process of a high-quality and safe herbal remedy, starting from defining the formulation and the production procedure to the quality control of raw materials, characterization of the final product, and testing stability of active ingredients in the capsules. Formulation of the phytopreparation, validation of the production process, quality control and stability testing, all together have resulted in the production of capsules with defined valeric acid content (1 mg valeric acid per capsule). The preparation is recommended to relieve the symptoms caused by chronic stress (anxiety, irritability, fatigue, lack of concentration, heart palpitations) and for mild insomnia. This paper presents the complete cycle of the production of a phytopreparation on the example of a new herbal sedative--Odoval S capsules.

  13. Fuzzy methods in decision making process - A particular approach in manufacturing systems

    NASA Astrophysics Data System (ADS)

    Coroiu, A. M.

    2015-11-01

    We are living in a competitive environment, so we can see and understand that the most of manufacturing firms do the best in order to accomplish meeting demand, increasing quality, decreasing costs, and delivery rate. In present a stake point of interest is represented by the development of fuzzy technology. A particular approach for this is represented through the development of methodologies to enhance the ability to managed complicated optimization and decision making aspects involving non-probabilistic uncertainty with the reason to understand, development, and practice the fuzzy technologies to be used in fields such as economic, engineering, management, and societal problems. Fuzzy analysis represents a method for solving problems which are related to uncertainty and vagueness; it is used in multiple areas, such as engineering and has applications in decision making problems, planning and production. As a definition for decision making process we can use the next one: result of mental processes based upon cognitive process with a main role in the selection of a course of action among several alternatives. Every process of decision making can be represented as a result of a final choice and the output can be represented as an action or as an opinion of choice. Different types of uncertainty can be discovered in a wide variety of optimization and decision making problems related to planning and operation of power systems and subsystems. The mixture of the uncertainty factor in the construction of different models serves for increasing their adequacy and, as a result, the reliability and factual efficiency of decisions based on their analysis. Another definition of decision making process which came to illustrate and sustain the necessity of using fuzzy method: the decision making is an approach of choosing a strategy among many different projects in order to achieve some purposes and is formulated as three different models: high risk decision, usual risk

  14. The use of iodised salt in the manufacturing of processed foods in South Africa: bread and bread premixes, margarine, and flavourants of salty snacks.

    PubMed

    Harris, M J; Jooste, P L; Charlton, K E

    2003-01-01

    Salt is widely used by the food industry, but information on the use of iodised salt as an ingredient in the manufacturing of processed foods in South Africa is not available. The iodine content of salt used in the manufacturing of bread, margarine and salty snack flavourants was investigated in a cross-sectional descriptive study. Questionnaire information and salt sampled on 1 day per week for 5 consecutive weeks were obtained from 12 food manufacturers (eight bread and bread premix manufacturers, two margarine manufacturers and two salty snack flavourant manufacturers). The iodine concentration of salt samples was analysed using the potentiometric titration method. Eleven of the 12 manufacturers surveyed reported that they used non-iodised salt. The reported reasons for using non-iodised salt included properties of the final product, health reasons, and financial considerations. However, substantial amounts of iodine were found in the salt of one-third of these manufacturers (n = 4), ranging from a mean content of 39-69 ppm. Three of these four particular manufacturers distributed their products countrywide. This information serves as a strong indication that iodised salt does not necessarily cause the adverse affects that food manufacturers fear may affect their products. Although the amounts of iodine in the salt were variable, our results showed that an appreciable percentage of the food companies used iodised salt unknowingly in the manufacturing of frequently consumed processed foods, and this may have a considerable impact on the daily iodine intake of consumers.

  15. Remedy of dye manufacturing process effluent by UV/H2O2 process.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Hsieh, Wen-Pin

    2006-01-16

    The effluent from dye manufacturing industry is more difficult to be treated than laboratory synthesized wastewater according to high variability of composition and color intensity. Thus, this study aimed to propose the method for remedying industrial effluent by UV/H2O2 process in a recirculated batch reactor system while considering the effects on hydrogen peroxide dosage, UV power and wastewater intensity for the removal of color and COD. From the experimental results, it was feasibly treated that the distinguished removal of color and COD by increasing the hydrogen peroxide dosage and UV power, but not by the strong intensity of industrial effluent. Therefore, UV/H2O2 process of the developed reactor was a positively superior treatment or pre-treatment for dye manufacturing plant effluent to comply the regulated requirements.

  16. Process window limiting hot spot monitoring for high-volume manufacturing

    NASA Astrophysics Data System (ADS)

    Jochemsen, Marinus; Anunciado, Roy; Timoshkov, Vadim; Hunsche, Stefan; Zhou, Xinjian; Jones, Chris; Callan, Neal

    2016-03-01

    As process window margins for cutting edge DUV lithography continue to shrink, the impact of systematic patterning defects on final yield increases. Finding process window limiting hot spot patterns and monitoring them in high volume manufacturing (HVM) is increasingly challenging with conventional methods, as the size of critical defects can be below the resolution of traditional HVM inspection tools. We utilize a previously presented computational method of finding hot spot patterns by full chip simulation and use this to guide high resolution review tools by predicting the state of the hot spots on all fields of production wafers. In experiments with a 10nm node Metal LELELE vehicle we show a 60% capture rate of after-etch defects down to 3nm in size, at specific hot spot locations. By using the lithographic focus and dose correction knobs we can reduce the number of patterning defects for this test case by ~60%.

  17. System level analysis and control of manufacturing process variation

    DOEpatents

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  18. Fact Sheet - Final Amendments to Air Toxics Rule for Miscellaneous Coating Manufacturing

    EPA Pesticide Factsheets

    Fact sheet answering questions concerning National Emission Standards for Hazardous Air Pollutants for Miscellaneous Coating Manufacturing which includes facilities that produce inks, paints and adhesives.

  19. Process for the manufacture of 117Sn diethylenetriaminepentaacetic acids

    DOEpatents

    Srivastava, Suresh C.; Li, Zizhong; Meinken, George

    2003-01-01

    Novel methods are provided for the manufacture of .sup.117m Sn(Sn.sup.4+) DTPA. The method allows the use of DTPA, a toxic chelating agent, in an approximately 1:1 ratio to .sup.117m Sn(Sn.sup.4+) via either aqueous conditions, or using various organic solvents, such as methylene chloride. A pharmaceutical composition manufactured by the novel method is also provided, as well as methods for treatment of bone tumors and pain associated with bone cancer using the pharmaceutical composition of the invention.

  20. Changes in the Microbial Composition of Microbrewed Beer during the Process in the Actual Manufacturing Line.

    PubMed

    Kim, S A; Jeon, S H; Kim, N H; Kim, H W; Lee, N Y; Cho, T J; Jung, Y M; Lee, S H; Hwang, I G; Rhee, M S

    2015-12-01

    This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.

  1. [Drug development from natural fermentation products: establishing a manufacturing process which maximizes the potential of microorganisms].

    PubMed

    Nagao, Koji; Ueda, Satoshi; Kanda, Munekazu; Oohata, Nobutaka; Yamashita, Michio; Hino, Motohiro

    2010-11-01

    Natural fermentation products have long been studied as attractive targets for drug discovery due to their amazing diverse, complex chemical structures and biological activities. As such, a number of revolutionary drugs developed from natural fermentation products have contributed to global human health. To commercialize a drug derived from natural fermentation products, an effective chemical entity must be identified and thoroughly researched, and an effective manufacturing process to prepare a commercial supply must be developed. To construct such a manufacturing process for tacrolimus and micafungin, the following studies were conducted: first, we focused on controlling the production of the tacrolimus-related compound FR900525, a fermentation by-product of tacrolimus which was critical for quality assurance of the drug substance. FR900525 production was reduced by using a mutant strain which produced more pipecolic acid, the biosynthesis material of tacrolimus, than the original strain. Then, to optimize the fermentation process of FR901379, an intermediate of micafungin, a fed-batch culture was adopted to increase FR901379 productivity. Additionally, FULLZONE(TM) impeller was installed into the scaled-up fermenter, reducing the agitation-induced damage to the mycelium. As a result, the mycelial form changed from filamentous to pellet-shaped, and the air uptake rate during fermentation was drastically improved. Finally, we conducted screening for FR901379 acylase-producing microorganisms, as FR901379 acylase is necessary to manufacture micafungin. We were able to easily discover FR901379 acylase-producing microorganisms in soil samples using our novel, convenient screening method, which involves comparing the difference in antibiotic activity between FR901379 and its deacylated product.

  2. New Process for Grain Refinement of Aluminum. Final Report

    SciTech Connect

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  3. Process Equipment Cost Estimation, Final Report

    SciTech Connect

    Loh, H. P.; Lyons, Jennifer; White, Charles W.

    2002-01-01

    This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

  4. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes....

  5. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes....

  6. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes. Certain...

  7. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes. Certain...

  8. 15 CFR 400.32 - Procedure for review of request for approval of manufacturing or processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Procedure for review of request for approval of manufacturing or processing. 400.32 Section 400.32 Commerce and Foreign Trade Regulations... REGULATIONS OF THE FOREIGN-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.32...

  9. 15 CFR 400.32 - Procedure for review of request for approval of manufacturing or processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Procedure for review of request for approval of manufacturing or processing. 400.32 Section 400.32 Commerce and Foreign Trade Regulations... REGULATIONS OF THE FOREIGN-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.32...

  10. 15 CFR 400.32 - Procedure for review of request for approval of manufacturing or processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Procedure for review of request for approval of manufacturing or processing. 400.32 Section 400.32 Commerce and Foreign Trade Regulations... REGULATIONS OF THE FOREIGN-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.32...

  11. Innovative Manufacturing of Launch Vehicle Structures - Integrally Stiffened Cylinder Process

    NASA Technical Reports Server (NTRS)

    Wagner, John; Domack, Marcia; Tayon, Wesley; Bird, Richard K.

    2017-01-01

    Reducing launch costs is essential to ensuring the success of NASA's visions for planetary exploration and earth science, economical support of the International Space Station, and competitiveness of the U.S. commercial launch industry. Reducing launch vehicle manufacturing cost supports NASA's budget and technology development priorities.

  12. 47 CFR 301.5 - Manufacturers' technical approval process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF COMMERCE DIGITAL-TO-ANALOG CONVERTER BOX COUPON PROGRAM § 301.5 Manufacturers' technical... boxes. Notices should be sent to DTV Converter Coupon Program, NTIA/OTIA, U.S. Department of Commerce... include a brief description of the proposed converter box, including permitted as well as...

  13. Changing Employment Patterns of Scientists, Engineers, and Technicians in Manufacturing Industries: 1977-80. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report presents an analysis of science, engineering, and technician (SET) employment within manufacturing industries based on data from the 1977 and 1980 Occupational Employment Statistics survey. The purposes of the report are to: (1) summarize employment data for detailed SET occupations in manufacturing to describe demand patterns; (2)…

  14. FY-2010 Process Monitoring Technology Final Report

    SciTech Connect

    Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

    2011-01-01

    During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

  15. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  16. Hydrocyclones for radwaste processing. Final report

    SciTech Connect

    Galbraith, G.T.; Asay, R.H.

    1982-04-01

    Two types of hydrocyclone separators were evaluated to ascertain their applicability for processing liquid radwaste streams. The pilot-scale evaluation was conducted at the Nine Mile Point-1 BWR. Bypass streams of floor drain and filter sludge wastes were processed with the separators. Suspended solids concentration, slurry density, and particle size distribution were determined for the inlet, overhead, and underdrain streams. Typical suspended solids removal efficiencies were 82 to 89% (wt) for separator A. Removal efficiencies for separator B were significantly lower and highly variable. The results of this study indicate that separator A could be beneficially applied to a number of radwaste processing applications. Significant radwaste volume reduction can result when waste streams of high suspended solids concentration are pretreated to remove the bulk of the solids prior to filtration through a precoat filter.

  17. Phase transformation considerations during process development and manufacture of solid oral dosage forms.

    PubMed

    Zhang, Geoff G Z; Law, Devalina; Schmitt, Eric A; Qiu, Yihong

    2004-02-23

    The quality and performance of a solid oral dosage form depends on the choice of the solid phase, the formulation design, and the manufacturing process. The potential for process-induced solid phase transformations must be evaluated during design and development of formulations and manufacturing processes. This article briefly reviews the basic principles of polymorphism, defines the classes of phase transformation and the underlying transformation mechanisms, and discusses respective kinetic factors. The potential phase transformations associated with common unit operations employed in manufacturing solid oral dosage forms are highlighted. Specific examples are given to illustrate the importance of solid phases, and process-induced phase transitions in formulation and process development.

  18. Antenna dielectric sealing process characterization. Final report

    SciTech Connect

    Busby, M.L.; Yerganian, S.S.

    1994-04-01

    An antenna assembly experienced leak test failures during TMS testing. The leaks were occurring between the dielectric and housing. The antenna assembly dielectric is sealed into a nickel-plated aluminum housing using a tin catalyzed condensation cure silicone (RTV). In preparation for sealing, the dielectric and housing are chemically cleaned and then plasma cleaned. The surfaces to be sealed are primed, RTV is applied, and the RTV is cured in a humidity chamber. This report is an evaluation of the production process and includes FEM analysis and process characterization and control (PC&C) data.

  19. Development of superplastic steel processing. Final report

    SciTech Connect

    Goldberg, A.

    1995-04-01

    Objective was to provide basis for producing, processing, and forming UHCS (ultrahigh carbon steel) on a commercial scale. Business plans were developed for potential commercialization. Effort was directed at improving the combination of flow stress and forming rates in UHCS alloys in order to make near net shape superplastic forming competitive; the result was the development of a series of UHCS alloys and processing, the selection of which depends on the specific requirements of the commercial application. Useful ancillary properties of these materials include: improved mechanical properties, wear resistance, and oxidation resistance at elevated temperatures.

  20. Tubeless evaporation process development: Final report

    SciTech Connect

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  1. DATA PROCESSING CURRICULUM FOR EDUCATORS. FINAL REPORT.

    ERIC Educational Resources Information Center

    ROBERTS, ELLIS W.; AND OTHERS

    THIS CURRICULUM DESIGN COULD BE USED (QUITE POSSIBLY WITH INSERVICE TRAINING SESSIONS) BY AN INSTRUCTOR EXPERIENCED IN DATA PROCESSING TO FAMILIARIZE EDUCATORS WITH THE COMPUTER AND TO TEACH THEM A SYSTEMS APPROACH TO ITS USE IN THE FIELD OF EDUCATION. THE CURRICULUM CONSISTS OF AN OUTLINE OF THE POINTS TO BE COVERED IN EACH LESSON, SUPPLEMENTED…

  2. Agricultural Processing and Marketing. Final Report.

    ERIC Educational Resources Information Center

    James Madison Univ., Harrisonburg, VA.

    A vocational guidance project was conducted in Virginia to identify a valid list of tasks/competencies for three levels of agricultural processing and marketing (AG-PAM) courses for secondary students. These competencies were then to be presented in a competency-based instructional resource guide for such courses. The project developers followed…

  3. Urethane foam process improvements. Final report

    SciTech Connect

    Watson, D.R.

    1995-03-01

    A study was completed to evaluate the foam molding process for environmental and technical improvements. The investigation led to a replacement for chlorinated solvent usage, a potential permanent mold release coating, improved tooling design, and shrinkage characterization of foams filled with varying levels of aluminum oxide.

  4. Processing of continuous fiber composites: Final report

    SciTech Connect

    Higgins, B.G.; Powell, R.L.; Hsieh, You-Lo

    1989-02-01

    This report covers the first year progress in the four main areas of this project. The goal of this project are: the characterization of single carbon fibers by wetting studies and SEM; the kinetics of impregnation into carbon fiber bundles (tows): (a) axial, (b) normal; the factors affecting void formation in carbon fiber composites; and process simulations and optimization. (JL)

  5. Requirements for blood and blood components intended for transfusion or for further manufacturing use. Final rule.

    PubMed

    2015-05-22

    The Food and Drug Administration (FDA) is amending the regulations applicable to blood and blood components, including Source Plasma, to make the donor eligibility and testing requirements more consistent with current practices in the blood industry, to more closely align the regulations with current FDA recommendations, and to provide flexibility to accommodate advancing technology. In order to better assure the safety of the nation's blood supply and to help protect donor health, FDA is revising the requirements for blood establishments to test donors for infectious disease, and to determine that donors are eligible to donate and that donations are suitable for transfusion or further manufacture. FDA is also requiring establishments to evaluate donors for factors that may adversely affect the safety, purity, and potency of blood and blood components or the health of a donor during the donation process. Accordingly, these regulations establish requirements for donor education, donor history, and donor testing. These regulations also implement a flexible framework to help both FDA and industry to more effectively respond to new or emerging infectious agents that may affect blood product safety.

  6. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  7. Microwave processing of materials. Final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Garard, R.S.

    1997-11-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and Lambda Technologies, Inc. (Lambda) of Raleigh, N.C., was initiated in May 1995. [Lockheed Martin Energy Research, Corp. (LMER) has replaced LMES]. The completion data for the Agreement was December 31, 1996. The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace (VFMF); and (2) microwave curing of polymer composites. The VFMF, whose initial conception and design was funded by the Advanced Industrial Concepts (AIC) Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  8. 77 FR 16158 - Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 211 (formerly 97N-0300) Current Good... Controls AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug..., Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg....

  9. Manufacturing process applications team (MATeam). [NASA/industry relations

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1978-01-01

    Forty additional statements were added to the list of 150 problem/opportunity statements identifying possibilities for transfer of NASA technology to various manufacturing industries. Selected statements that are considered to have a high potential for transfer in the 1978 program year are presented in the form of goals and milestones. The transfer of a flux used in the stud welding of aluminum is reported. Candidate RTOP programs are identified.

  10. Variations in Manufacturing Processes 155 mm Combustible Cartridge Case

    DTIC Science & Technology

    1983-08-01

    number) Spiral wrap Talc Accretion Molded Combustibility Felting Tensile strength Nitrocellulose formulation Adhesive bonding Resin Wood cellulose ’M...preform and pressing techniques that were employed during the past century in the manufacture of three dimensional shapes from wood cellulose fibers... Kraft fibers is added to the water. 3. The mixture is beaten until the desired freeness is at- tained. 4. A measured amount of nitrocellulose fibers is

  11. [Data integration, data mining and visualization analysis of traditional Chinese medicine manufacturing process].

    PubMed

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    Huge amount of data becomes available from the pharmaceutical manufacturing process with wide application of in- dustrial automatic control technology in traditional Chinese medicine (TCM) industry. The industrial big data thus provides golden op- portunities to better understand the manufacturing process and improve the process performance. Therefore it is important to implement data integration and management systems in TCM plants to easily collect, integrate, store, analyze, communicate and visulize the data with high efficiency. It could break the data island and discover useful information and knowledge to improve the manufacturing process performance. The key supporting technologies for TCM manufacturing and industrial big data management were introduced in this paper, with a specific focus on data mining and visualization technologies. Using historic data collected from a manufacturing plant of Shengmai injection of SZYY group, we illustrated the usefulness and discussed future prospects of data mining and visualization technologies.

  12. Final Rule: NESHAP for the Portland Cement Manufacturing Industry: Alternative Monitoring Method

    EPA Pesticide Factsheets

    EPA is extending its approval for the use of an alternative method to show compliance with hydrogen chloride (HCl) emissions limits in the National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry

  13. Fact Sheet: Final Air Toxics Standards for Area Sources in the Chemical Manufacturing Industry

    EPA Pesticide Factsheets

    Fact sheet on the national air toxics standards issued October 16, 2009 by the Environmental Protection Agency (EPA) for smaller-emitting sources, known as area sources, in the chemical manufacturing industry.

  14. Final Rule to Reduce Toxic Air Emissions from Lime Manufacturing Plants Fact Sheet

    EPA Pesticide Factsheets

    This page contains an August 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Lime Manufacturing Plants. This document provides a summary of the information for this NESHAP.

  15. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    NASA Technical Reports Server (NTRS)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  16. 10 CFR 710.29 - Final appeal process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Final appeal process. 710.29 Section 710.29 Energy DEPARTMENT OF ENERGY CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO CLASSIFIED MATTER OR... Classified Matter or Special Nuclear Material Administrative Review § 710.29 Final appeal process. (a) The...

  17. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  18. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  19. Imaging-based optical caliper for objects in hot manufacturing processes

    SciTech Connect

    Huang, Howard

    2013-04-03

    OG Technologies, Inc. (OGT), in conjunction with its industrial and academic partners, proposes to develop an Imaging-Based Optical Caliper (hereafter referred to as OC) for Objects in Hot Manufacturing Processes. The goal is to develop and demonstrate the OC with the synergy of OGT's current technological pool and other innovations to provide a light weight, robust, safe and accurate portable dimensional measurement device for hot objects with integrated wireless communication capacity to enable real time process control. The technical areas of interest in this project are the combination of advanced imaging, Sensor Fusion, and process control. OGT believes that the synergistic interactions between its current set of technologies and other innovations could deliver products that are viable and have high impact in the hot manufacture processes, such as steel making, steel rolling, open die forging, and glass industries, resulting in a new energy efficient control paradigm in the operations through improved yield, prolonged tool life and improved quality. In-line dimension measurement and control is of interest to the steel makers, yet current industry focus is on the final product dimension only instead of whole process due to the limit of man power, system cost and operator safety concerns. As sensor technologies advances, the industry started to see the need to enforce better dimensional control throughout the process, but lack the proper tools to do so. OGT along with its industrial partners represent the indigenous effort of technological development to serve the US steel industry. The immediate market that can use and get benefited from the proposed OC is the Steel Industry. The deployment of the OC has the potential to provide benefits in reduction of energy waste, CO2 emission, waste water amount, toxic waste, and so forth. The potential market after further expended function includes Hot Forging and Freight Industries. The OC prototypes were fabricated, and

  20. Impact of the Skim Milk Powder Manufacturing Process on the Flavor of Model White Chocolate.

    PubMed

    Stewart, Ashleigh; Grandison, Alistair S; Ryan, Angela; Festring, Daniel; Methven, Lisa; Parker, Jane K

    2017-02-15

    Milk powder is an important ingredient in the confectionery industry, but its variable nature has consequences for the quality of the final confectionary product. This paper demonstrates that skim milk powders (SMP) produced using different (but typical) manufacturing processes, when used as ingredients in the manufacture of model white chocolates, had a significant impact on the sensory and volatile profiles of the chocolate. SMP was produced from raw bovine milk using either low or high heat treatment, and a model white chocolate was prepared from each SMP. A directional discrimination test with naïve panelists showed that the chocolate prepared from the high heat SMP had more caramel/fudge character (p < 0.0001), and sensory profiling with an expert panel showed an increase in both fudge (p < 0.05) and condensed milk (p < 0.05) flavor. Gas chromatography (GC)-mass spectrometry and GC-olfactometry of both the SMPs and the model chocolates showed a concomitant increase in Maillard-derived volatiles which are likely to account for this change in flavor.

  1. Process for the manufacture of carbon or graphite fibers

    NASA Technical Reports Server (NTRS)

    Overhoff, D.; Winkler, E.; Mueller, D.

    1979-01-01

    Carbon or graphite fibers are manufactured by heating polyacrylonitrile fiber materials in various solutions and gases. They are characterized in that the materials are heated to temperatures from 150 to 300 C in a solution containing one or more acids from the group of carbonic acids, sulfonic acids, and/or phenols. The original molecular orientation of the fibers is preserved by the cyclization that occurs before interlacing, which gives very strong and stiff carbon or graphite fibers without additional high temperature stretching treatments.

  2. 75 FR 61418 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Agricultural Marketing Service Milk for Manufacturing Purposes and Its Production and Processing; Requirements...: Notice; request for comments. SUMMARY: This document proposes to amend the recommended manufacturing milk... goat milk from 1,000,000 cells per milliliter to 1,500,000 cells per milliliter. This proposal was...

  3. 76 FR 36078 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Agricultural Marketing Service Milk for Manufacturing Purposes and Its Production and Processing; Requirements...: Notice. SUMMARY: This document amends the recommended manufacturing milk requirements (Recommended Requirements) by raising the maximum allowable somatic cell count in producer herd goat milk from 1,000,000...

  4. Closing the Competency Gap in Manufacturing Processes as It Applies to New Engineering Graduates

    ERIC Educational Resources Information Center

    Ssemakula, Mukasa; Liao, Gene; Ellis, Darin

    2010-01-01

    Industry has consistently identified lack of experience in manufacturing processes as one of the key competency gaps among new engineering graduates. This paper discusses a laboratory-based course that provides realistic hands-on manufacturing experiences to students. The course uses team-based projects that help students gain hands-on experience…

  5. Analytic network process model for sustainable lean and green manufacturing performance indicator

    NASA Astrophysics Data System (ADS)

    Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik

    2014-09-01

    Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.

  6. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  7. Mixed technologies of artistic ceramics processing for the jewelery manufacture

    NASA Astrophysics Data System (ADS)

    Kutsenko, L. E.; Arventyeva, N. A.

    2017-01-01

    The need for the study of different technologies of the jewellery manufacture is due to the demand of the modern world in a variety of high-quality environmentally friendly products. While working with ceramics, it is possible to get the product, which is unique in its form, a wide range of colors, possibility of harmoniously combining it with a number of other modern materials. Images of ancient birds are used, stages of technology, which allow connecting the ceramics and metal, the technology for working with underglaze paints are represented, application limits associated with a particular operation of the product (fragility) are analyzed in the research. The society need for exclusive products determines the relevance of different materials connection, the characteristics research of their compounds, while working with them. The research objective is a bird image stylized design for a piece of jewellery, different materials compounds, the substantiation of technology of its manufacturing “narikomi” technique. Also, the research objective includes the development of the technology stages, allowing the connection of ceramic and metal to get jewellery that is unique in its form, a wide range of colors, a possibility of harmonious combination of it with a number of other modern materials.

  8. Manufacturing processes for athletic shoe outsoles and their significance in the examination of footwear impression evidence.

    PubMed

    Bodziak, W J

    1986-01-01

    The most common methods of manufacturing athletic shoe outsoles are given and how each method can influence the examination of footwear impression evidence. Several processes for manufacturing athletic shoe outsoles are described. Significant factors of each process that are relevant to the examination of footwear impressions are explained. Some manufacturing processes result in distinguishing random characteristics which can assist in the identification of a shoe sole, even when new. These characteristics, together with the traditionally observed wear patterns and random cuts on the shoe outsoles, enable the examiner a stronger basis for expert opinion.

  9. Using experimental design modules for process characterization in manufacturing/materials processes laboratories

    NASA Technical Reports Server (NTRS)

    Ankenman, Bruce; Ermer, Donald; Clum, James A.

    1994-01-01

    Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.

  10. FEM analysis of bonding process used for minimization of deformation of optical surface under Metis coronagraph mirrors manufacturing

    NASA Astrophysics Data System (ADS)

    Procháska, F.; Vít, T.; Matoušek, O.; Melich, R.

    2016-11-01

    High demands on the final surfaces micro-roughness as well as great shape accuracy have to be achieved under the manufacturing process of the precise mirrors for Metis orbital coronagraph. It is challenging engineering task with respect to lightweight design of the mirrors and resulting objectionable optical surface shape stability. Manufacturing of such optical elements is usually affected by number of various effects. Most of them are caused by instability of temperature field. It is necessary to explore, comprehend and consequently minimize all thermo - mechanical processes which take place during mirror cementing, grinding and polishing processes to minimize the optical surface deformation. Application of FEM simulation was proved as a useful tool to help to solve this task. FEM simulations were used to develop and virtually compare different mirror holders to minimize the residual stress generated by temperature changes and to suppress the shape deformation of the optical surface below the critical limit of about 100 nm.

  11. 1995 national heat transfer conference: Proceedings. Volume 4: Transport phenomena in manufacturing and materials processing; Transport phenomena in materials joining processes; Transport phenomena in net shape manufacturing; HTD-Volume 306

    SciTech Connect

    Mahajan, R.L.

    1995-12-31

    This book is divided into three sections: (1) transport phenomena in manufacturing and materials processing; (2) transport phenomena in net shape manufacturing: and (3) transport phenomena in materials joining processes. Separate abstracts were prepared for most papers in this volume.

  12. Medical Gas Containers and Closures; Current Good Manufacturing Practice Requirements. Final rule.

    PubMed

    2016-11-18

    The Food and Drug Administration (FDA or the Agency) is amending its current good manufacturing practice (CGMP) and labeling regulations regarding medical gases. FDA is requiring that portable cryogenic medical gas containers not manufactured with permanent gas use outlet connections have gas-specific use outlet connections that cannot be readily removed or replaced except by the manufacturer. FDA is also requiring that portable cryogenic medical gas containers and high-pressure medical gas cylinders meet certain labeling, naming, and color requirements. These requirements are intended to increase the likelihood that the contents of medical gas containers are accurately identified and reduce the likelihood of the wrong gas being connected to a gas supply system or container. FDA is also revising an existing regulation that conditionally exempts certain medical gases from certain otherwise-applicable labeling requirements in order to add oxygen and nitrogen to the list of gases subject to the exemption, and to remove cyclopropane and ethylene from the list.

  13. Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1974-01-01

    A two year study of the major process variables associated with the manufacturing process for sealed, nickel-cadmium, areospace cells is summarized. Effort was directed toward identifying the major process variables associated with a manufacturing process, experimentally assessing each variable's effect, and imposing the necessary changes (optimization) and controls for the critical process variables to improve results and uniformity. A critical process variable associated with the sintered nickel plaque manufacturing process was identified as the manual forming operation. Critical process variables identified with the positive electrode impregnation/polarization process were impregnation solution temperature, free acid content, vacuum impregnation, and sintered plaque strength. Positive and negative electrodes were identified as a major source of carbonate contamination in sealed cells.

  14. Development of Pulsed Processes for the Manufacture of Solar Cells

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development status of the process based upon ion implantation for the introduction of junctions and back surface fields is described. A process sequence is presented employing ion implantation and pulse processing. Efforts to improve throughout and descrease process element costs for furnace annealing are described. Design studies for a modular 3,000 wafer per hour pulse processor are discussed.

  15. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  16. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  17. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  18. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  19. Microeconomics of yield learning and process control in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.

    2003-06-01

    Simple microeconomic models that directly link yield learning to profitability in semiconductor manufacturing have been rare or non-existent. In this work, we review such a model and provide links to inspection capability and cost. Using a small number of input parameters, we explain current yield management practices in 200mm factories. The model is then used to extrapolate requirements for 300mm factories, including the impact of technology transitions to 130nm design rules and below. We show that the dramatic increase in value per wafer at the 300mm transition becomes a driver for increasing metrology and inspection capability and sampling. These analyses correlate well wtih actual factory data and often identify millions of dollars in potential cost savings. We demonstrate this using the example of grating-based overlay metrology for the 65nm node.

  20. Process for the manufacture of carbon fibers and feedstock therefor

    SciTech Connect

    Sawran, W.R.; Turrill, F.H.; Newman, J.W.; Hall, N.W.; Ward, C.

    1987-06-09

    This patent describes a petroleum pitch derived from residuum from the catalytic cracking of petroleum, especially adapted for use in the manufacture of carbon fibers, with reduced stabilization time, the pitch comprising an aromatic enriched petroleum pitch containing about 20 to about 40 mole percent alpha hydrogens, based on the moles of hydrogen present in the pitch, having a softening point of at least about 250/sup 0/C, a xylene insolubles content of about 15% to about 40% by weight, a quinoline insolubles content of about 0% to about 5.0% by weight, a sulfur content of about 0.1 to about 4% by weight, a coking value of 65 to 90 weight % and a mesophase content of 0 to about 5% by weight.

  1. Thin film photovoltaic device and process of manufacture

    SciTech Connect

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  2. Integrated simulation method for interaction between manufacturing process and machine tool

    NASA Astrophysics Data System (ADS)

    Chen, Wanqun; Huo, Dehong; Xie, Wenkun; Teng, Xiangyu; Zhang, Jiayi

    2016-10-01

    The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.

  3. Surface Roughness Measurement of Parts Manufactured by FDM Process using Light Sectioning Vision System

    NASA Astrophysics Data System (ADS)

    Kelkar, A. S.; Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    Fused Deposition Modeling (FDM) is a process of developing prototypes by depositing layers of material according to predetermined cross sectional geometry. Quality of the produced part is highly dependent on surface finish. This work describes a methodology to calculate the surface roughness of part manufactured using FDM process. The surface roughness values are measured using conventional stylus instrument and light sectioning vision system. In conventional stylus instrument method, diamond tipped stylus destroys the surface topography. Light sectioning method is non-contact method hence it overcomes this problem. In light sectioning method microscope and light source are arranged in such a manner, as both are inclined at an angle of 45° to the normal plane. The light section is projected on surface of profile at an incident angle of 45°. The reflected light can be observed using microscope. The camera is connected with microscope to capture the micrograph. These images are analyzed and processed using various image processing techniques. Experimental results are validated by comparing final results with conventional system.

  4. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three

  5. Job Cluster for Manufacturing Occupations at the High School Level. Final Report.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton. Div. of Vocational Education.

    A project was designed to develop curricula in manufacturing occupations for grades 9 through 12, and to test, modify, reproduce, and disseminate the results. To enhance the dimensions of the operation a committee from Fairleigh Dickinson University and the New Jersey State Department of Education staff was formed to ensure effective achievement…

  6. Development of Articulated Competency-Based Curriculum in Computer Integrated Manufacturing Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in computer-integrated manufacturing. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  7. The Boeing Company's Manufacturing Technology Student Internship. Final Evaluation Report for 1996.

    ERIC Educational Resources Information Center

    Owens, Tom

    A study evaluated The Boeing Company's Student Internship Program for students enrolled in a manufacturing technology program. The programs in the Seattle (Washington) and Portland (Oregon) areas provided students with three progressive internship levels offered in the summers of grades 11, 12, and 13 (the first year of community college). The…

  8. Manufacture of Optacons for a Field Trial Within Elementary and Secondary Schools. Final Report.

    ERIC Educational Resources Information Center

    Brugler, J. Stephen; Bliss, James C.

    Telesensory Systems, Inc. (TSI) was awarded a contract to design, develop, and test Optacons (Optical-to-Tactile Converter) and perepheral equipment. Optacons are direct-translation reading aids for the blind. The text summarizes the engineering design, manufacturing activities, field test procedure and results, and it provides recommendations for…

  9. Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support

    NASA Astrophysics Data System (ADS)

    Smith, Jacob; Xiong, Wei; Yan, Wentao; Lin, Stephen; Cheng, Puikei; Kafka, Orion L.; Wagner, Gregory J.; Cao, Jian; Liu, Wing Kam

    2016-04-01

    Additive manufacturing (AM) methods for rapid prototyping of 3D materials (3D printing) have become increasingly popular with a particular recent emphasis on those methods used for metallic materials. These processes typically involve an accumulation of cyclic phase changes. The widespread interest in these methods is largely stimulated by their unique ability to create components of considerable complexity. However, modeling such processes is exceedingly difficult due to the highly localized and drastic material evolution that often occurs over the course of the manufacture time of each component. Final product characterization and validation are currently driven primarily by experimental means as a result of the lack of robust modeling procedures. In the present work, the authors discuss primary detrimental hurdles that have plagued effective modeling of AM methods for metallic materials while also providing logical speculation into preferable research directions for overcoming these hurdles. The primary focus of this work encompasses the specific areas of high-performance computing, multiscale modeling, materials characterization, process modeling, experimentation, and validation for final product performance of additively manufactured metallic components.

  10. 78 FR 3917 - Certain Rubber Resins & Processes for Manufacturing Same; Commission Determination Not To Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Rubber Resins & Processes for Manufacturing Same; Commission Determination Not To Review... importation into the United States of certain rubber resins by reason of misappropriation of trade...

  11. Towards a commercial process for the manufacture of genetically modified T cells for therapy

    PubMed Central

    Kaiser, A D; Assenmacher, M; Schröder, B; Meyer, M; Orentas, R; Bethke, U; Dropulic, B

    2015-01-01

    The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital. PMID:25613483

  12. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  13. Process for utilizing the waste heat content of condensate and/or vapor produced in the manufacture of sugar

    SciTech Connect

    Huber, H.; Schiweck, H.

    1981-09-22

    A process is provided for utilizing the waste heat content of condensate and/or vapor produced in the manufacture of sugar in which thin juice is cooled, subjected to one or more stages of flash evaporation to concentrate and further cool the juice, after which it is heated with condensate and/or vapor produced elsewhere in the sugar manufacturing process and with incoming thin juice thereby heating the outgoing juice to substantially its original temperature and providing the cooling of the incoming thin juice. In another embodiment completely purified thin juice is concentrated in a multiple effect evaporating plant wherein the vapor produced in the final evaporator is compressed and is returned selectively to one of the preceding evaporators of the evaporating plant for use in heating the juice.

  14. JCQ scale reliability and responsiveness to changes in manufacturing process.

    PubMed

    d'Errico, Angelo; Punnett, Laura; Gold, Judith E; Gore, Rebecca

    2008-02-01

    The job content questionnaire (JCQ) was administered to automobile manufacturing workers in two interviews, 5 years apart. Between the two interviews, the company introduced substantial changes in production technology in some production areas. The aims were: (1) to describe the impact of these changes on self-reported psychosocial exposures, and (2) to examine test-retest reliability of the JCQ scales, taking into account changes in job assignment and, for a subset of workers, physical ergonomic exposures as assessed through field observations. The study population included 790 subjects at the first and 519 at the second interview, of whom 387 were present in both. Differences in demand and control scores between interviews were analyzed by Wilcoxon matched-pairs signed-rank test. Test-retest reliability of these scales was evaluated by the intraclass correlation coefficient (ICC) and the Spearman's rho coefficient. The introduction of more automated technology produced an overall increase in job control but did not decrease psychological demand. The reliability of the control scale was low overall but increased to an acceptable level among workers who had not changed job. The demand scale had high reliability only among workers whose physical ergonomic exposures were similar on both survey occasions. These results show that 5-year test-retest reliability of self-reported psychosocial exposures is adequate among workers whose job assignment and ergonomic exposures have remained stable over time.

  15. Future CIS Manufacturing Technology Development: Final Report, 8 July 1998--17 October 2001

    SciTech Connect

    Anderson, T. J.; Crisalle, O. D.; Li, S. S.; Holloway, P. H.

    2003-06-01

    The University of Florida served as the basis for educating 12 graduate students in the area of photovoltaics engineering and research with a focus on thin-film CIS manufacturing technologies. A critical assessment of the thermodynamic data and of the phase diagrams for the Cu-Se and In-Se binary systems were carried out. We investigated the use of two novel precursor structures that used stacked In-Se and Cu-Se binary layers instead of conventional elemental layers, followed by rapid thermal processing (RTP) to produce CIS films. We investigated the evolution of electrical and microstructural properties of sputter-deposited ZnO:Al thin films. An assessment of the thermodynamics of the pseudobinary Cu2Se-Ga2Se3 system was done by using available experimental data, as well as an empirical method for estimating interactions in semiconductor solid solutions. Optimization studies were conducted to characterize the RTP of binary bilayer precursors for CIS synthesis using a newly acquired AG Associates Heatpulse furnace. Progress was made on the calculation of the 500C isothermal section of the phase diagram of the ternary Cu-In-Se system. Pursuit of developing alternative buffer layers for Cd-free CIS-based solar cells using a chemical-bath deposition (CBD) process has resulted in specific recipes for deposition. A rigorous model has been derived to predict the metal mass fluxes produced by conical thermal effusion sources. A two-dimensional model of the heat transfer was developed to model the substrate temperature distribution in the UF PMEE Reactor that features a rotating platen/substrates and effusion sources. We have grown and characterized polycrystalline CIS epitaxial films on single-crystal GaAs substrates under conditions that enhance the influence of surface effects on the resulting films and their properties. Progress was made on the study of CIS and CGS single-crystal growth, along with accompanying morphological and compositional characterizations. We have

  16. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    EPA Pesticide Factsheets

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  17. High-volume manufacturing equipment and processing for directed self-assembly applications

    NASA Astrophysics Data System (ADS)

    Somervell, Mark; Yamauchi, Takashi; Okada, Soichiro; Tomita, Tadatoshi; Nishi, Takanori; Iijima, Etsuo; Nakano, Takeo; Ishiguro, Takumi; Nagahara, Seiji; Iwaki, Hiroyuki; Dojun, Makiko; Ozawa, Mariko; Yatsuda, Koichi; Tobana, Toshikatsu; Romo Negreira, Ainhoa; Parnell, Doni; Kawakami, Shinchiro; Muramatsu, Makoto; Rathsack, Benjamen; Nafus, Kathleen; Peyre, Jean-Luc; Kitano, Takahiro

    2014-03-01

    Directed Self-Assembly (DSA) is one of the most promising technologies for scaling feature sizes to 16 nm and below. Both line/space and hole patterns can be created with various block copolymer morphologies, and these materials allow for molecular-level control of the feature shapes—exactly the characteristics that are required for creating high fidelity lithographic patterns. Over the past five years, the industry has been addressing the technical challenges of maturing this technology by addressing concerns such as pattern defectivity, materials specifications, design layout, and tool requirements. Though the learning curve has been steep, DSA has made significant progress toward implementation in high-volume manufacturing. Tokyo Electron has been focused on the best methods of achieving high-fidelity patterns using DSA processing. Unlike other technologies where optics and photons drive the formation of patterns, DSA relies on surface interactions and polymer thermodynamics to determine the final pattern shapes. These phenomena, in turn, are controlled by the processing that occurs on clean-tracks, etchers, and cleaning systems, and so a host of new technology has been developed to facilitate DSA. In this paper we will discuss the processes and hardware that are emerging as critical enablers for DSA implementation, and we will also demonstrate the kinds of high fidelity patterns typical of mainstream DSA integrations.

  18. Model development and simulation of a slurry-based fiberglass preform manufacturing process

    SciTech Connect

    Johnson, R.W.

    1997-12-31

    The U.S. Department of Energy is currently supporting the development of a computer-based model to simulate a slurry process under development to manufacture fiberglass mattes in complex shapes for automobile components. The Automotive Composites Consortium of USCAR has provided oversight and direction for the modeling effort currently underway at the Idaho National Engineering Laboratory (INEL). The overall objective of the sponsored work is to minimize nonuniformity of fiberglass mass per unit area in the complex mattes in order to ensure desired properties for the final component. A model has been developed to simulate the buildup of fiberglass on a screen mounted in the center of a piston which is driven through the slurry. The screen is constructed to have the shape of the desired component. The present paper discusses the physics of the slurry process, the approach used to build a computer model of the process, model simulations and comparison of the model simulations with experimental data from actual fiberglass preforms.

  19. Manufacturing process for the WEAVE prime focus corrector optics for the 4.2m William Hershel Telescope

    NASA Astrophysics Data System (ADS)

    Lhomé, Emilie; Agócs, Tibor; Abrams, Don Carlos; Dee, Kevin M.; Middleton, Kevin F.; Tosh, Ian A.; Jaskó, Attila; Connor, Peter; Cochrane, Dave; Gers, Luke; Jonas, Graeme; Rakich, Andrew; Benn, Chris R.; Balcells, Marc; Trager, Scott C.; Dalton, Gavin B.; Carrasco, Esperanza; Vallenari, Antonella; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.

    2016-07-01

    In this paper, we detail the manufacturing process for the lenses that will constitute the new two-degree field-of-view Prime Focus Corrector (PFC) for the 4.2m William Herschel Telescope (WHT) optimised for the upcoming WEAVE Multi-Object Spectroscopy (MOS) facility. The corrector, including an Atmospheric Dispersion Corrector (ADC), is made of six large lenses, the largest being 1.1-meter diameter. We describe how the prescriptions of the optical design were translated into manufacturing specifications for the blanks and lenses. We explain how the as-built glass blank parameters were fed back into the optical design and how the specifications for the lenses were subsequently modified. We review the critical issues for the challenging manufacturing process and discuss the trade-offs that were necessary to deliver the lenses while maintaining the optimal optical performance. A short description of the lens optical testing is also presented. Finally, the subsequent manufacturing steps, including assembly, integration, and alignment are outlined.

  20. Modeling the thermal behavior of PZT patches during the manufacturing process of smart thermoplastic structures

    NASA Astrophysics Data System (ADS)

    Elsoufi, L.; Khalil, K.; Lachat, R.; Charon, W.

    2007-08-01

    This paper concerns the manufacturing processes of thermoplastic structures including piezoceramic patches (PZT). The objective of the study reported here was to find a trade-off between the manufacturing conditions and the thermal endurance of the PZT patches. We studied the influence of high temperatures on the PZT efficiency during manufacturing. Two processes were considered: injection molding and thermoforming. The studied object consists of a polypropylene plate containing a PZT patch integrated at different positions. On the one hand, we simulated with ANSYS the thermal transient effects to study the PZT cooling according to the time of its exposure to heat for different fabrication cases and with different manufacturing processes. On the other hand, the loss in PZT generated voltage according to the temperature increment was measured by thermo-mechanical experiences using a dynamical-mechanical analysis machine (DMA) connected to an acquisition chain.

  1. One-batch transfer process for the additive manufacturing of a cantilever with a weight

    NASA Astrophysics Data System (ADS)

    Kanazawa, Shusuke; Kusaka, Yasuyuki; Yamamoto, Noritaka; Ushijima, Hirobumi

    2017-06-01

    An improved transferring process that can be used to additively fabricate a cantilever with a weight is reported. By using a poly(dimethylsiloxane) template with a cavity relief structure for the weight formation, an increase in the number of process steps was not required. A capacitive acceleration sensor was successfully manufactured using the described process. Enhanced responsiveness of the sensor was clearly shown to result from the effect of the weight. The one-batch transfer process has the potential to significantly simplify the manufacturing process of highly responsive hollow structures and could be applied in the fabrication of various microelectromechanical system sensors.

  2. Reclaimed manufacturer asphalt roofing shingles in asphalt mixtures. Final research report

    SciTech Connect

    Reed, A.B.

    1999-04-23

    The purpose of this project was to pave a test section using hot mix asphalt with roofing shingle pieces in the wearing and binder courses and to evaluate. The test project near Allentown, PA plus two other test projects in 1998 provide evidence of very good pavement performance. The bituminous concrete mix was modified with shredded shingles with a maximum size of 1/2 inch which added 1% of the asphalt content. The Department issued a statewide Provisional Specification titled Reclaimed Manufacturer Asphalt Roofing Shingles in Plant-Mixed Bituminous Concrete Courses'' on March 15, 1999. New manufacturer asphalt roofing shingle scrap including tab punch-outs can be successfully incorporated in bituminous concrete pavements if the shingles are shredded to 100% passing the 3/4 inch sieve. To take full advantage of the potential to replace a portion of the asphalt and therefore, reduce mix costs, shingles should be shredded to 100% passing minus 1/2 inch sieve.

  3. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.

  4. Quality-by-Design approach to monitor the operation of a batch bioreactor in an industrial avian vaccine manufacturing process.

    PubMed

    Largoni, Martina; Facco, Pierantonio; Bernini, Donatella; Bezzo, Fabrizio; Barolo, Massimiliano

    2015-10-10

    Monitoring batch bioreactors is a complex task, due to the fact that several sources of variability can affect a running batch and impact on the final product quality. Additionally, the product quality itself may not be measurable on line, but requires sampling and lab analysis taking several days to be completed. In this study we show that, by using appropriate process analytical technology tools, the operation of an industrial batch bioreactor used in avian vaccine manufacturing can be effectively monitored as the batch progresses. Multivariate statistical models are built from historical databases of batches already completed, and they are used to enable the real time identification of the variability sources, to reliably predict the final product quality, and to improve process understanding, paving the way to a reduction of final product rejections, as well as to a reduction of the product cycle time. It is also shown that the product quality "builds up" mainly during the first half of a batch, suggesting on the one side that reducing the variability during this period is crucial, and on the other side that the batch length can possibly be shortened. Overall, the study demonstrates that, by using a Quality-by-Design approach centered on the appropriate use of mathematical modeling, quality can indeed be built "by design" into the final product, whereas the role of end-point product testing can progressively reduce its importance in product manufacturing.

  5. On-Line Texture Diagnostics for Coated Conductor Manufacture. Final Report

    SciTech Connect

    White, M. K.

    2002-12-30

    This Phase I project was undertaken to assess the feasibility of implementing a particular diagnostic method for characterizing the crystallographic texture of high temperature superconductor (HTS) coated conductors on-line during their reel-to-reel continuous manufacture. Key factors in this technique were the use of an area detector to greatly reduce scan time, an x-ray mirror to enhance incident beam brightness, and an automation scheme for diffractometer control, tape motion control, and calculation and output of texture characterizations.

  6. From lab to industrial: PZT nanoparticles synthesis and process control for application in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Hsien-Lin

    Lead Zirconate Titanate (PZT) nanoparticles hold many promising current and future applications, such as PZT ink for 3-D printing or seeds for PZT thick films. One common method is hydrothermal growth, in which temperature, duration time, or mineralizer concentrations are optimized to produce PZT nanoparticles with desired morphology, controlled size and size distribution. A modified hydrothermal process is used to fabricate PZT nanoparticles. The novelty is to employ a high ramping rate (e.g., 20 deg C/min) to generate abrupt supersaturation so as to promote burst nucleation of PZT nanoparticles as well as a fast cooling rate (e.g., 5 deg C/min) with a controlled termination of crystal growth. As a result, PZT nanoparticles with a size distribution ranging from 200 nm to 800 nm are obtained with cubic morphology and good crystallinity. The identification of nanoparticles is confirmed through use of X-ray diffractometer (XRD). XRD patterns are used to compare sample variations in their microstructures such as lattice parameter. A cubic morphology and particle size are also examined via SEM images. The hydrothermal process is further modified with excess lead (from 20% wt. to 80% wt.) to significantly reduce amorphous phase and agglomeration of the PZT nanoparticles. With a modified process, the particle size still remains within the 200 nm to 800 nm. Also, the crystal structures (microstructure) of the samples show little variations. Finally, a semi-continuous hydrothermal manufacturing process was developed to substantially reduce the fabrication time and maintained the same high quality as the nanoparticles prepared in an earlier stage. In this semi-continuous process, a furnace is maintained at the process temperature (200 deg C), whereas autoclaves containing PZT sol are placed in and out of the furnace to control the ramp-up and cooling rates. This setup eliminates an extremely time-consuming step of cooling down the furnace, thus saving tremendous amount of

  7. Low energy production processes in manufacturing of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1976-01-01

    Ion implantation and pulsed energy techniques are being combined for fabrication of silicon solar cells totally under vacuum and at room temperature. Simplified sequences allow very short processing times with small process energy consumption. Economic projections for fully automated production are excellent.

  8. Shared and service-oriented CNC machining system for intelligent manufacturing process

    NASA Astrophysics Data System (ADS)

    Li, Yao; Liu, Qiang; Tong, Ronglei; Cui, Xiaohong

    2015-11-01

    To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared among different systems is a common disadvantage. In this paper, a machining database with data evaluation module is set up to ensure integrity and update. An online monitoring system based on internet of things and multi-sensors "feel" a variety of signal features to "percept" the state in CNC machining process. A high efficiency and green machining parameters optimization system "execute" service-oriented manufacturing, intelligent manufacturing and green manufacturing. The intelligent CNC machining system is applied in production. CNC machining database effectively shares and manages process data among different systems. The prediction accuracy of online monitoring system is up to 98.8% by acquiring acceleration and noise in real time. High efficiency and green machining parameters optimization system optimizes the original processing parameters, and the calculation indicates that optimized processing parameters not only improve production efficiency, but also reduce carbon emissions. The application proves that the shared and service-oriented CNC machining system is reliable and effective. This research presents a shared and service-oriented CNC machining system for intelligent manufacturing process.

  9. Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein: towards a global multi-step design space.

    PubMed

    Eon-duval, Alex; Valax, Pascal; Solacroup, Thomas; Broly, Hervé; Gleixner, Ralf; Strat, Claire L E; Sutter, James

    2012-10-01

    The article describes how Quality by Design principles can be applied to the drug substance manufacturing process of an Fc fusion protein. First, the quality attributes of the product were evaluated for their potential impact on safety and efficacy using risk management tools. Similarly, process parameters that have a potential impact on critical quality attributes (CQAs) were also identified through a risk assessment. Critical process parameters were then evaluated for their impact on CQAs, individually and in interaction with each other, using multivariate design of experiment techniques during the process characterisation phase. The global multi-step Design Space, defining operational limits for the entire drug substance manufacturing process so as to ensure that the drug substance quality targets are met, was devised using predictive statistical models developed during the characterisation study. The validity of the global multi-step Design Space was then confirmed by performing the entire process, from cell bank thawing to final drug substance, at its limits during the robustness study: the quality of the final drug substance produced under different conditions was verified against predefined targets. An adaptive strategy was devised whereby the Design Space can be adjusted to the quality of the input material to ensure reliable drug substance quality. Finally, all the data obtained during the process described above, together with data generated during additional validation studies as well as manufacturing data, were used to define the control strategy for the drug substance manufacturing process using a risk assessment methodology.

  10. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1978-01-01

    The results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included: (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation.

  11. Automated defect spatial signature analysis for semiconductor manufacturing process

    DOEpatents

    Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed

    1999-01-01

    An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.

  12. PLYMAP : a computer simulation model of the rotary peeled softwood plywood manufacturing process

    Treesearch

    Henry Spelter

    1990-01-01

    This report documents a simulation model of the plywood manufacturing process. Its purpose is to enable a user to make quick estimates of the economic impact of a particular process change within a mill. The program was designed to simulate the processing of plywood within a relatively simplified mill design. Within that limitation, however, it allows a wide range of...

  13. Statistics to the Rescue!: Using Data to Evaluate a Manufacturing Process

    ERIC Educational Resources Information Center

    Keithley, Michael G.

    2009-01-01

    The use of statistics and process controls is too often overlooked in educating students. This article describes an activity appropriate for high school students who have a background in material processing. It gives them a chance to advance their knowledge by determining whether or not a manufacturing process works well. The activity follows a…

  14. Statistics to the Rescue!: Using Data to Evaluate a Manufacturing Process

    ERIC Educational Resources Information Center

    Keithley, Michael G.

    2009-01-01

    The use of statistics and process controls is too often overlooked in educating students. This article describes an activity appropriate for high school students who have a background in material processing. It gives them a chance to advance their knowledge by determining whether or not a manufacturing process works well. The activity follows a…

  15. Manufacturing an advanced process characterization reticle incorporating halftone biasing

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kent H.; Van Den Broeke, Douglas J.; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.

    1999-04-01

    As the semiconductor roadmap continues to require imaging of smaller feature son wafers, we continue to explore new approaches in OPC strategies to extend the lifespan of existing technology. In this paper, we study a new OPC technology, called halftone biasing, and its application on an OPC characterization reticle, designed by MicroUnity Systems Engineering, Inc. The RTP9 test reticle is the latest in a series of 'LineSweeper' characterization reticles. Each reticle contains a wide range of line width sand pitches, each with several alternative OPC treatments, including references cases, scattering bars, and fine biasing. One of RTP9's design requirements was to support very fine, incremental biases for densely-pitched lines. Ordinarily, this would dictate a reduced address unit and with it the costly penalty of a square-law increase in e- beam write time. RTP9 incorporates a new OPC strategy, called halftone biasing, which has been proposed to address this problem. Taking advantage of optical reduction printing, this technique applies a sub-resolution halftone screen to the edges of figures to accomplish fine biasing equivalent to using an address unit one-fourth of the size of the actual e-beam writing grid. The resulting edge structure has some of the characteristics of aggressive OPC structures, but can be used in areas where traditional scattering bars cannot be placed. The trade-off between the faster write times achieved and the inflation of pattern file size is examined. The manufacturability and inspectability of halftone-biased lines on the RTP9 test reticle are explored. Pattern fidelity is examined using both optical and SEM tools. Printed 0.18 micrometers DUV resist line edge profiles are compared for both halftone and non- halftone feature edges. The CD uniformity of the OPC features, and result of die-to-database inspection are reported. The application of halftone biasing to real circuits, including the impact of data volume and saved write time

  16. 340B Drug Pricing Program Ceiling Price and Manufacturer Civil Monetary Penalties Regulation. Final rule; further delay of effective date.

    PubMed

    2017-05-19

    The Health Resources and Services Administration (HRSA) administers section 340B of the Public Health Service Act (PHSA), referred to as the "340B Drug Pricing Program" or the "340B Program." HRSA published a final rule on January 5, 2017, that set forth the calculation of the ceiling price and application of civil monetary penalties. The final rule applied to all drug manufacturers that are required to make their drugs available to covered entities under the 340B Program. In accordance with a January 20, 2017, memorandum from the Assistant to the President and Chief of Staff, entitled "Regulatory Freeze Pending Review," HRSA issued an interim final rule that delayed the effective date of the final rule published in the Federal Register (82 FR 1210, (January 5, 2017)) to May 22, 2017. HHS invited commenters to provide their views on whether a longer delay of the effective date to October 1, 2017, would be more appropriate. After consideration of the comments received on the interim final rule, HHS is delaying the effective date of the January 5, 2017 final rule, to October 1, 2017.

  17. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  18. Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.

  19. Yield enhancement through monitoring of real-time manufacturing processes

    NASA Astrophysics Data System (ADS)

    Henis, Neil B.; Satterfield, Michael J.; Travis, Edward O.; Gelatos, Carol

    1994-09-01

    One of the major sources of particles today is from processing equipment. As die size continues to shrink, more effort needs to be placed in defect detection and elimination. A defect of 1 - 2 microns in size, while barely noticeable 5 years ago, can now destroy an entire die. Even with redundancy, a metal defect 1 micron in size will result in excess leakage due to an array short. While missing metal may be repairable, metal flakes from sputtering machines, for example, result in nonrepairable die. The objective of this paper is to show how backend defect reduction and yield enhancement can be improved with the use of the newer defect detection tools. We discuss three defect problems at different process levels which were discovered and eliminated with this work. The term `process induced defects per wafer pass' (PIDPWP) is demonstrated.

  20. Process for manufacture of thick film hydrogen sensors

    DOEpatents

    Perdieu, Louisa H.

    2000-09-09

    A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

  1. Microstructure-controllable Laser Additive Manufacturing Process for Metal Products

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chuang, Chuan-Sheng; Lin, Ching-Chih; Wu, Chih-Hsien; Lin, De-Yau; Liu, Sung-Ho; Tseng, Wen-Peng; Horng, Ji-Bin

    Controlling the cooling rate of alloy during solidification is the most commonly used method for varying the material microstructure. However, the cooling rate of selective laser melting (SLM) production is constrained by the optimal parameter settings for a dense product. This study proposes a method for forming metal products via the SLM process with electromagnetic vibrations. The electromagnetic vibrations change the solidification process for a given set of SLM parameters, allowing the microstructure to be varied via magnetic flux density. This proposed method can be used for creating microstructure-controllable bio-implant products with complex shapes.

  2. Feasibility of ground-penetrating radar for use at manufactured gas plant sites. Final report

    SciTech Connect

    Plumb, R.G.; Chaturvedi, P.; Demarest, K.R.; Huang, Z.; Chakradbarti, S. Ng, S.

    1994-12-01

    The average cost of soil and groundwater remediation at former manufactured gas plant (MGP) sites could range in the millions of dollars per site. Accurate delineation of subsurface areas containing coal tar contamination is important in controlling these costs and limiting future liabilities. Ground-penetrating radar (GPR) mapping has the potential to be used to guide sampling locations and focus site investigations in areas with the heaviest contamination. Simulations performed under this project demonstrated that advanced imaging techniques applied to bistatic GPR data can produce images (shapes and electrical properties) of low-contrast targets such as hydrocarbons where traditional monostatic GPR data cannot.

  3. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    NASA Astrophysics Data System (ADS)

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-01

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  4. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    SciTech Connect

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-04

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  5. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  6. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  7. Good Cause Final Rule and Proposal: NESHAP for the Portland Cement Manufacturing Industry: Alternative Monitoring Method

    EPA Pesticide Factsheets

    Withdrawing direct final rule that would have extended approval for the use of an alternative compliance monitoring method for hydrogen chloride (HCl) emissions limits at Portland cement plants and reopening public comment on parallel proposal.

  8. Fungal community succession and major components change during manufacturing process of Fu brick tea.

    PubMed

    Li, Qin; Huang, Jianan; Li, Yongdi; Zhang, Yiyang; Luo, Yu; Chen, Yuan; Lin, Haiyan; Wang, Kunbo; Liu, Zhonghua

    2017-07-31

    Fu brick tea is a unique post-fermented tea product which is fermented with microorganism during the manufacturing process. Metabolic analysis showed that most metabolites content were decreased during the manufacturing process of Fu brick tea, except GA (gallic acid). Illumina MiSeq sequencing of ITS gene amplicons was applied to analyze the fungal community succession. The genera Aspergillus, Cyberlindnera and Candida were predominant at the early stage of manufacturing process (from "primary dark tea" to "fermentation for 3 days"), but after the stage of "fermentation for 3 days" only Aspergillus was still dominated, and maintain a relatively constant until to the end of manufacturing process. The effects of metabolites on the structure of the fungal community were analyzed by redundancy analysis (RDA) and variation partitioning analysis (VPA). The results indicated that GCG (gallocatechin gallate), EGCG (epigallocatechin gallate) and GA as well as the interactions among them were the most probably ones to influence, or be influenced by the fungal communities during the fermentation process of Fu brick tea. This study revealed fungal succession, metabolite changes and their relationships, provided new insights into the mechanisms for manufacturing process of Fu brick tea.

  9. Computer Aided Process Planning -- A Path to Just-in-Time Manufacturing for Shipyards (The National Shipbuilding Research Program)

    DTIC Science & Technology

    1987-08-01

    Just - In - Time Manufacturing for Shipyards U.S. DEPARTMENT OF...Shipbuilding Research Program 1987 Ship Production Symposium Paper No.14: Computer Aided Process Planning -- A Path to Just - In - Time Manufacturing for...SECTION OF THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS Computer Aided Process Planning—A Path to Just - in - Time Manufacturing for

  10. Basic Education in the Workplace Exploratory Project. Canadian Manufacturers' Association. Perceptions of Workplace Literacy Skills in Manitoba's Manufacturing Sector. Final Report.

    ERIC Educational Resources Information Center

    McKeag, Janis

    A project assessed perceptions of manufacturing employers regarding the workplace literacy skills of occupational groups in their industry in Manitoba. A mailed survey was sent to 125 members of the Canadian Manufacturers' Association; 41 completed it. The first part of the survey obtained information about the occupations in manufacturing and…

  11. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    SciTech Connect

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  12. Transesterification process to manufacture ethyl ester of rape oil

    SciTech Connect

    Korus, R.A.; Hoffman, D.S.; Bam, N.; Peterson, C.L.; Drown, D.C.

    1993-12-31

    A process for the production of the ethyl ester of winter rape [EEWR] for use as a biodiesel fuel has been studied. The essential part of the process is the transesterification of rape oil with ethanol, in the presence of a catalyst, to yield the ethyl ester of rape oil as a product and glycerin as a by-product. Experiments have been performed to determine the optimum conditions for the preparation of EEWR. The process variables were: (1) temperature, (2) catalyst, (3) rate of agitation, (4) water content of the alcohol used, and (5) the amount of excess alcohol used. The optimum conditions were: (1) room temperature, (2) 0.5% sodium methoxide or 1% potassium hydroxide catalyst by weight of rapeseed oil, (3) extremely vigorous agitation with some splashing during the initial phase of the reaction and agitation was not necessary after the reaction mixture became homogeneous, (4) absolute ethanol was necessary for high conversion, and (5) 50% excess ethanol with NaOCH{sub 3} or 100% excess with KOH gave a maximum conversion. Viscosity, cloud point and pour point of the EEWR were measured. A preliminary break-even cost for the commercial production of EEWR was found to be $0.55/liter [$2.08/US gallon].

  13. Ultrasound assisted manufacturing of paraffin wax nanoemulsions: process optimization.

    PubMed

    Jadhav, A J; Holkar, C R; Karekar, S E; Pinjari, D V; Pandit, A B

    2015-03-01

    This work reports on the process optimization of ultrasound-assisted, paraffin wax in water nanoemulsions, stabilized by modified sodium dodecyl sulfate (SDS). This work focuses on the optimization of major emulsification process variables including sonication time, applied power and surfactant concentration. The effects of these variables were investigated on the basis of mean droplet diameter and stability of the prepared emulsion. It was found that the stable emulsion with droplet diameters about 160.9 nm could be formed with the surfactant concentration of 10 mg/ml and treated at 40% of applied power (power density: 0.61 W/ml) for 15 min. Scanning electron microscopy (SEM) was used to study the morphology of the emulsion droplets. The droplets were solid at room temperature, showing bright spots under polarized light and a spherical shape under SEM. The electrophoretic properties of emulsion droplets showed a negative zeta potential due to the adsorption of head sulfate groups of the SDS surfactant. For the sake of comparison, paraffin wax emulsion was prepared via emulsion inversion point method and was checked its intrinsic stability. Visually, it was found that the emulsion get separated/creamed within 30 min. while the emulsion prepared via ultrasonically is stable for more than 3 months. From this study, it was found that the ultrasound-assisted emulsification process could be successfully used for the preparation of stable paraffin wax nanoemulsions.

  14. Downstream process development in biotechnological itaconic acid manufacturing.

    PubMed

    Magalhães, Antonio Irineudo; de Carvalho, Júlio Cesar; Medina, Jesus David Coral; Soccol, Carlos Ricardo

    2017-01-01

    Itaconic acid is a promising chemical that has a wide range of applications and can be obtained in large scale using fermentation processes. One of the most important uses of this biomonomer is the environmentally sustainable production of biopolymers. Separation of itaconic acid from the fermented broth has a considerable impact in the total production cost. Therefore, optimization and high efficiency downstream processes are technological challenges to make biorefineries sustainable and economically viable. This review describes the current state of the art in recovery and purification for itaconic acid production via bioprocesses. Previous studies on the separation of itaconic acid relying on operations such as crystallization, precipitation, extraction, electrodialysis, diafiltration, pertraction, and adsorption. Although crystallization is a typical method of itaconic acid separation from fermented broth, other methods such as membrane separation and reactive extraction are promising as a recovery steps coupled to the fermentation, potentially enhancing the overall process yield. Another approach is adsorption in fixed bed columns, which efficiently separates itaconic acid. Despite recent advances in separation and recovery methods, there is still space for improvement in IA recovery and purification.

  15. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

  16. Additive manufacturing of Inconel 718 using electron beam melting: Processing, post-processing, & mechanical properties

    NASA Astrophysics Data System (ADS)

    Sames, William James, V.

    Additive Manufacturing (AM) process parameters were studied for production of the high temperature alloy Inconel 718 using Electron Beam Melting (EBM) to better understand the relationship between processing, microstructure, and mechanical properties. Processing parameters were analyzed for impact on process time, process temperature, and the amount of applied energy. The applied electron beam energy was shown to be integral to the formation of swelling defects. Standard features in the microstructure were identified, including previously unidentified solidification features such as shrinkage porosity and non-equilibrium phases. The as-solidified structure does not persist in the bulk of EBM parts due to a high process hold temperature (˜1000°C), which causes in situ homogenization. The most significant variability in as-fabricated microstructure is the formation of intragranular delta-phase needles, which can form in samples produced with lower process temperatures (< 960°C). A novel approach was developed and demonstrated for controlling the temperature of cool down, thus providing a technique for in situ heat treatment of material. This technique was used to produce material with hardness of 478+/-7 HV with no post-processing, which exceeds the hardness of peak-aged Inconel 718. Traditional post-processing methods of hot isostatic pressing (HIP) and solution treatment and aging (STA) were found to result in variability in grain growth and phase solution. Recrystallization and grain structure are identified as possible mechanisms to promote grain growth. These results led to the conclusion that the first step in thermal post-processing of EBM Inconel 718 should be an optimized solution treatment to reset phase variation in the as-fabricated microstructure without incurring significant grain growth. Such an optimized solution treatment was developed (1120°C, 2hr) for application prior to aging or HIP. The majority of as-fabricated tensile properties met ASTM

  17. Thermographic process monitoring in powderbed based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.

    2015-03-01

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  18. Thermographic process monitoring in powderbed based additive manufacturing

    SciTech Connect

    Krauss, Harald Zaeh, Michael F.; Zeugner, Thomas

    2015-03-31

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  19. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    SciTech Connect

    Hajaligol, M.R.; Scorey, C.; Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.; Lilly, A.C. Jr.; German, R.M.

    2000-02-29

    A powder metallurgical process is disclosed of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as {<=}1% Cr, {>=}0.05% Zr{<=}2% Ti, {<=}2% Mo, {<=}1% Ni, {<=}0.75% C, {<=}0.1% B, {<=}1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, and/or {<=}3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 {mu}m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  20. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2003-12-09

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  1. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  2. Converting printed wiring product processing to aqueous processable dry film photoresist. Final report

    SciTech Connect

    Goldammer, S.E.

    1996-07-01

    Fully aqueous processable dry film photoresists were evaluated to determine which dry film in the Federal Manufacturing and Technologies printed wiring board facility performed the best. The photoresists were chosen for their compatibility in alkaline etching, copper electroplating, and tin-lead electroplating. The processing evaluation included both single layer and double layer dry film photoresist for pattern plating.

  3. Photovoltaic manufacturing cost analysis: a required-price approach. Volume 2. Appendixes. Final report

    SciTech Connect

    Wright, S.R.; Champagne, P.T.; Brookshire, K.L.

    1986-09-01

    These appendices contain supporting information to aid in interpreting a comparative assessment of the required module price drivers for five different processes of producing photovoltaic modules. They include: definition of the IMCAP model, base case simulation results, cost catalog, and definition of the dendritic web process, the Czochralski process, single-junction amorphous silicon process, tandem-junction amorphous silicon process, and 500X concentrator process. (LEW)

  4. A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Roberts, Christopher E.; Bourell, David; Watt, Trevor; Cohen, Julien

    Aluminum 6061 is of great commercial interest due to its ubiquitous use in manufacturing, advantageous mechanical properties, and its successful certification in aerospace applications. However, as an off-eutectic with accompanying large freezing range, attempts to process the material by additive manufacturing have resulted in part cracking and diminished mechanical properties. A unique approach using mixed powders is presented to process this historically difficult-to-process material. Expansion of this combined-powder approach to other materials systems not typically compatible with additive manufacturing is possible. Dense parts without solidification cracking have been produced by the SLM process, as verified using SEM and EDS. An overview of this approach is presented along with test results using an Al-Si mixture.

  5. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-01

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  6. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-18

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  7. Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing.

    PubMed

    Kim, Sumin

    2010-04-15

    This paper assesses the reproducibility of testing formaldehyde and TVOC emission behavior from wood flooring composites bonded by urea-formaldehyde resin at various manufacturing steps for surface finishing materials. The surface adhesion step of laminate flooring for this research was divided into two steps; HDF only and HDF with LPMs. In the case of engineered flooring, the manufacturing steps were divided into three steps; plywood only, fancy veneer bonded on plywood and UV coated on fancy veneer with plywood. Formaldehyde and VOCs emission decreased at the process of final surface finishing materials; LPMs were applied on the surface of HDF for laminate flooring. Although emissions increased when fancy veneer was bonded onto plywood in the case of engineered flooring, emission was dramatically reduced up to similar level with plywood only when final surface finishing; UV-curable coating was applied on fancy veneer. This study suggests that formaldehyde and VOCs emission from floorings can be controlled at manufacturing steps for surface finishing. 2009 Elsevier B.V. All rights reserved.

  8. Influence of Different Container Closure Systems and Capping Process Parameters on Product Quality and Container Closure Integrity (CCI) in GMP Drug Product Manufacturing.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander

    2016-01-01

    Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range

  9. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    SciTech Connect

    Walczyk, Daniel F.

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  10. Design and implementation of a high-throughput biological sample processing facility using modern manufacturing principles.

    PubMed

    Downey, Paul; Peakman, Tim C

    2008-04-01

    UK Biobank is a prospective study that is collecting biological samples and health and lifestyle data from 500 000 volunteer participants over a 4-year period. These data will be used to facilitate biological and medical research. Modern manufacturing principles were used to direct the development of the sample processing facility and automated systems. A fit for purpose facility comprising technology, systems, dedicated process, infrastructure and an appropriate staff structure has been implemented that will deliver and maintain a resource that will support the long-term goals of the UK Biobank study. Modern manufacturing principles are appropriate for use in the development of a high throughput biological sample processing facility.

  11. A Process Analytical Technology (PAT) approach to control a new API manufacturing process: development, validation and implementation.

    PubMed

    Schaefer, Cédric; Clicq, David; Lecomte, Clémence; Merschaert, Alain; Norrant, Edith; Fotiadu, Frédéric

    2014-03-01

    Pharmaceutical companies are progressively adopting and introducing Process Analytical Technology (PAT) and Quality-by-Design (QbD) concepts promoted by the regulatory agencies, aiming the building of the quality directly into the product by combining thorough scientific understanding and quality risk management. An analytical method based on near infrared (NIR) spectroscopy was developed as a PAT tool to control on-line an API (active pharmaceutical ingredient) manufacturing crystallization step during which the API and residual solvent contents need to be precisely determined to reach the predefined seeding point. An original methodology based on the QbD principles was designed to conduct the development and validation of the NIR method and to ensure that it is fitted for its intended use. On this basis, Partial least squares (PLS) models were developed and optimized using chemometrics methods. The method was fully validated according to the ICH Q2(R1) guideline and using the accuracy profile approach. The dosing ranges were evaluated to 9.0-12.0% w/w for the API and 0.18-1.50% w/w for the residual methanol. As by nature the variability of the sampling method and the reference method are included in the variability obtained for the NIR method during the validation phase, a real-time process monitoring exercise was performed to prove its fit for purpose. The implementation of this in-process control (IPC) method on the industrial plant from the launch of the new API synthesis process will enable automatic control of the final crystallization step in order to ensure a predefined quality level of the API. In addition, several valuable benefits are expected including reduction of the process time, suppression of a rather difficult sampling and tedious off-line analyses. © 2013 Published by Elsevier B.V.

  12. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1979-01-01

    Low-energy ion implantation processes for the automated production of silicon solar cells were investigated. Phosphorus ions at an energy of 10 keV and dose of 2 x 10 to the 15th power/sq cm were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10 to the 15th power were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100 mA, automated implanter with a production capacity of 100 MW sub e/sq cm per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. A computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  13. Proteolysis in Mozzarella cheeses manufactured by different industrial processes.

    PubMed

    Costabel, L; Pauletti, M S; Hynes, E

    2007-05-01

    The objective of the present study was to investigate the influence of stretching temperature, fat content, and time of brining on proteolysis during ripening of Mozzarella cheeses. Seventeen cheese-making experiments (batches) were carried out on an industrial scale on successive days, following the standard procedure with some modifications. Fat content of cheese milk, temperature at the stretching step, and time of brining varied from one batch to another as required by the experimental design, outlined by a surface response model. Proteolysis was assessed during ripening of samples, which was prolonged for at least 3 mo, by means of electrophoresis, nitrogen fractions, and soluble peptide mapping. The amount of soluble nitrogen at pH 4.6 was not significantly different in cheeses obtained by diverse procedures, but it increased during ripening of all samples. This result was coincident with the breakdown of alpha(s1)- and beta-caseins evidenced by electrophoresis, which reached similar extents at late stages of ripening, regardless of the cheese-making process. Multivariate analysis on soluble peptide profiles obtained by liquid chromatography also detected sample grouping according to ripening time, but did not evidence any separation caused by the cheese-making technology. We concluded that the changes in the cheese-making process assayed in this work were insufficient to produce significant differences in proteolysis of the cheeses. Ripening time had more influence on proteolysis of Mozzarella cheeses than any other assayed variable.

  14. Porous tooling process for manufacture of graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Smiser, L. W.; Orr, K. K.; Araujo, S. M.

    1981-01-01

    A porous tooling system was selected for the processing of Graphite/PMR-15 Polyimide laminates in thickness up to 3.2 mm. (0.125 inch). This tool system must have a reasonable strength, permeability dimensional stability, and thermal conductivity to accomplish curing at 600 F and 200 psi and 200 psi autoclave temperature and pressure. A permeability measuring apparatus was constructed and permeability vs. casting water level determined to produce tools at three different permeability levels. On these tools, laminates of 5, 11, and 22 plies (.027, .060, and 0.121 inch) were produced and evaluated by ultrasonic, mechanical, and thermal tests to determine the effect of the tool permeability on the cured laminates. All tools produced acceptable laminates at 5 and 11 plies but only the highest permeability produced acceptable clear ultrasonic C-Scans. Recommendations are made for future investigations of design geometry, and strengthening techniques for porous ceramic tooling.

  15. 78 FR 5496 - Certain Paper Shredders, Certain Processes for Manufacturing or Relating to Same and Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... COMMISSION Certain Paper Shredders, Certain Processes for Manufacturing or Relating to Same and Certain... sale within the United States after importation of certain paper shredders, certain processes for... for importation, and the sale within the United States after importation of certain paper shredders...

  16. High performance poly(etherketoneketone) (PEKK) composite parts fabricated using Big Area Additive Manufacturing (BAAM) processes

    SciTech Connect

    Kunc, Vlastimil; Kishore, Vidya; Chen, Xun; Ajinjeru, Christine; Duty, Chad; Hassen, Ahmed A

    2016-09-01

    ORNL collaborated with Arkema Inc. to investigate poly(etherketoneketone) (PEKK) and its composites as potential feedstock material for Big Area Additive Manufacturing (BAAM) system. In this work thermal and rheological properties were investigated and characterized in order to identify suitable processing conditions and material flow behavior for BAAM process.

  17. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    SciTech Connect

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  18. Novel fermentation processes for manufacturing plant natural products.

    PubMed

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed.

  19. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    PubMed

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  20. Development of a Manufacturing Process for High-Precision Cu EOS Targets

    SciTech Connect

    Bono, M J; Castro, C; Hibbard, R L

    2006-01-12

    This document describes the development of a manufacturing process and the production of Cu EOS targets. The development of a manufacturing process for these targets required a great deal of research, because the specifications for the targets required a level of precision an order of magnitude beyond Target Fabrication's capabilities at the time. Strict limitations on the dimensions of the components and the interfaces between them required research efforts to develop bonding and deposition processes consistent with a manufacturing plan with a dimensional precision on the order of 0.1 {micro}m. Several months into this effort, the specifications for the targets were relaxed slightly as a result of discussions between the Target Fabrication Group and the physicists. The level of precision required for these targets remained an order of magnitude beyond previous capabilities, but the changes made it possible to manufacture targets to the specifications. The development efforts and manufacturing processes described in this document successfully produced a complete Cu EOS target that satisfied all of the fabrication and metrology specifications.